Detection of Intermediates and Kinetic Control during A Procapsid

Journal of Molecular Biology 381, 1395-1406 DOI: 10.1016/j.jmb.2008.06.020

Citation Report

CITATION REPORT

#	Article	IF	CITATIONS
1	Monodisperse self-assembly in a model with protein-like interactions. Journal of Chemical Physics, 2009, 131, 175102.	1.2	61
2	The structural dynamics of macromolecular processes. Current Opinion in Cell Biology, 2009, 21, 97-108.	2.6	74
3	An Overview of Capsid Assembly Kinetics. , 2010, , 131-158.		6
4	Modeling the competition between aggregation and selfâ€assembly during virusâ€like particle processing. Biotechnology and Bioengineering, 2010, 107, 550-560.	1.7	44
5	Understanding the Concentration Dependence of Viral Capsid Assembly Kinetics—the Origin of the Lag Time and Identifying the Critical Nucleus Size. Biophysical Journal, 2010, 98, 1065-1074.	0.2	95
6	Simultaneous Reduction and Digestion of Proteins with Disulfide Bonds for Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry. Analytical Chemistry, 2010, 82, 1450-1454.	3.2	51
7	Conformational Changes in Bacteriophage P22 Scaffolding Protein Induced by Interaction with Coat Protein. Journal of Molecular Biology, 2011, 410, 226-240.	2.0	17
8	The Bacteriophage Lambda gpNu3 Scaffolding Protein Is an Intrinsically Disordered and Biologically Functional Procapsid Assembly Catalyst. Journal of Molecular Biology, 2011, 412, 723-736.	2.0	20
9	In Vitro Assembly of the Ã,X174 Procapsid from External Scaffolding Protein Oligomers and Early Pentameric Assembly Intermediates. Journal of Molecular Biology, 2011, 412, 387-396.	2.0	26
10	Decoding bacteriophage P22 assembly: Identification of two charged residues in scaffolding protein responsible for coat protein interaction. Virology, 2011, 421, 1-11.	1.1	40
11	Mechanical Disassembly of Single Virus Particles Reveals Kinetic Intermediates Predicted by Theory. Biophysical Journal, 2012, 102, 2615-2624.	0.2	43
12	Integrative structural modeling with small angle X-ray scattering profiles. BMC Structural Biology, 2012, 12, 17.	2.3	92
13	Role of Channel Lysines and the "Push Through a One-Way Valve―Mechanism of the Viral DNA Packaging Motor. Biophysical Journal, 2012, 102, 127-135.	0.2	57
14	Norovirus Capsid Proteins Self-Assemble through Biphasic Kinetics via Long-Lived Stave-like Intermediates. Journal of the American Chemical Society, 2013, 135, 15373-15381.	6.6	50
15	Assembly-Directed Antivirals Differentially Bind Quasiequivalent Pockets to Modify Hepatitis B Virus Capsid Tertiary and Quaternary Structure. Structure, 2013, 21, 1406-1416.	1.6	120
16	Applying Molecular Crowding Models to Simulations of Virus Capsid Assembly InÂVitro. Biophysical Journal, 2014, 106, 310-320.	0.2	31
17	Self-Assembling Virus-Like and Virus-Unlike Particles. , 2015, , 13-26.		0
18	Solution scattering from colloidal curved plates: barrel tiles, scrolls and spherical patches. Journal of Applied Crystallography, 2015, 48, 1901-1906.	1.9	4

#	Article	IF	CITATIONS
19	Early Stage P22 Viral Capsid Self-Assembly Mediated by Scaffolding Protein: Atom-Resolved Model and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2015, 119, 5156-5162.	1.2	7
20	Nature× ³ s favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold. Virology, 2015, 479-480, 487-497.	1.1	92
21	Reconstruction of the Disassembly Pathway of an Icosahedral Viral Capsid and Shape Determination of Two Successive Intermediates. Journal of Physical Chemistry Letters, 2015, 6, 3471-3476.	2.1	23
22	Assembly, Engineering and Applications of Virus-Based Protein Nanoparticles. Advances in Experimental Medicine and Biology, 2016, 940, 83-120.	0.8	39
23	Identification of a major intermediate along the self-assembly pathway of an icosahedral viral capsid by using an analytical model of a spherical patch. Soft Matter, 2016, 12, 6728-6736.	1.2	14
24	Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid. Journal of the American Chemical Society, 2016, 138, 15385-15396.	6.6	38
25	Ferritin Assembly Revisited: A Time-Resolved Small-Angle X-ray Scattering Study. Biochemistry, 2016, 55, 287-293.	1.2	44
26	Derivative-Free Optimization of Rate Parameters of Capsid Assembly Models from Bulk in Vitro Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 844-855.	1.9	1
27	Coat Protein Mutations That Alter the Flux of Morphogenetic Intermediates through the ϕX174 Early Assembly Pathway. Journal of Virology, 2017, 91, .	1.5	7
28	Investigating the thermal dissociation of viral capsid by lattice model. Journal of Physics Condensed Matter, 2017, 29, 474001.	0.7	9
29	A method for efficient Bayesian optimization of self-assembly systems from scattering data. BMC Systems Biology, 2018, 12, 65.	3.0	5
30	Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte. Nature Communications, 2018, 9, 3071.	5.8	59
31	NMR Mapping of Disordered Segments from a Viral Scaffolding Protein Enclosed in a 23 MDa Procapsid. Biophysical Journal, 2019, 117, 1387-1392.	0.2	5
32	Mechanisms of ferritin assembly studied by time-resolved small-angle X-ray scattering. Biophysical Reviews, 2019, 11, 449-455.	1.5	13
33	Assembly of Capsids from Hepatitis B Virus Core Protein Progresses through Highly Populated Intermediates in the Presence and Absence of RNA. ACS Nano, 2020, 14, 10226-10238.	7.3	16
34	Nonsymmetrical Dynamics of the HBV Capsid Assembly and Disassembly Evidenced by Their Transient Species. Journal of Physical Chemistry B, 2020, 124, 9987-9995.	1.2	26
35	Visualization of Single Molecules Building a Viral Capsid Protein Lattice through Stochastic Pathways. ACS Nano, 2020, 14, 8724-8734.	7.3	33
36	Physics of viral dynamics. Nature Reviews Physics, 2021, 3, 76-91.	11.9	58

CITATION REPORT

		CITATION RE	CITATION REPORT		
#	Article		IF	CITATIONS	
37	In Vitro Assembly of Virus-Like Particles and Their Applications. Life, 2021, 11, 334.		1.1	41	
38	Building the Machines: Scaffolding Protein Functions During Bacteriophage Morphoge in Experimental Medicine and Biology, 2012, 726, 325-350.	nesis. Advances	0.8	60	
39	Mechanisms of Icosahedral Virus Assembly. RSC Biomolecular Sciences, 2010, , 180-20)2.	0.4	12	
41	Packaging contests between viral RNA molecules and kinetic selectivity. PLoS Comput 2022, 18, e1009913.	ational Biology,	1.5	0	
42	Bioinspired Approaches to Self-Assembly of Virus-like Particles: From Molecules to Mat Accounts of Chemical Research, 2022, 55, 1349-1359.	erials.	7.6	21	