Cellulose Nanopaper Structures of High Toughness

Biomacromolecules 9, 1579-1585 DOI: 10.1021/bm800038n

Citation Report

#	Article	IF	CITATIONS
7	Polymers from Renewable Resources: A Challenge for the Future of Macromolecular Materials. Macromolecules, 2008, 41, 9491-9504.	4.8	985
8	The Mechanical and it Combined with Enzymatic Preparation Methods of Microfibrillated Cellulose. Advanced Materials Research, 2009, 87-88, 393-397.	0.3	1
9	Mechanical stretching effect on the actuator performance of cellulose electroactive paper. Smart Materials and Structures, 2009, 18, 055005.	3.5	9
10	Wood and Paper as Materials for the 21st Century. Materials Research Society Symposia Proceedings, 2009, 1187, 51.	0.1	2
11	A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose, 2009, 16, 783-793.	4.9	83
12	All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose, 2009, 16, 435-444.	4.9	161
13	Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Composites Science and Technology, 2009, 69, 500-506.	7.8	192
14	Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter, 2009, 5, 4124.	2.7	83
15	Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps. Industrial & Engineering Chemistry Research, 2009, 48, 11211-11219.	3.7	277
16	Paper transistor made with covalently bonded multiwalled carbon nanotube and cellulose. Applied Physics Letters, 2009, 95, .	3.3	91
17	Solid state nanofibers based on self-assemblies: from cleaving from self-assemblies to multilevel hierarchical constructs. Faraday Discussions, 2009, 143, 95.	3.2	34
18	Ionic Liquids and Their Interaction with Cellulose. Chemical Reviews, 2009, 109, 6712-6728.	47.7	1,280
19	Task Specific Ionic Liquids for Cellulose Technology. Chemistry Letters, 2009, 38, 2-7.	1.3	298
20	Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 2010, 79, 1086-1093.	10.2	456
21	Probing anion–cellulose interactions in imidazolium-based room temperature ionic liquids: a density functional study. Carbohydrate Research, 2010, 345, 2201-2205.	2.3	51
22	Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM. Journal of Polymers and the Environment, 2010, 18, 355-363.	5.0	174
23	Viscoelasticity and water plasticization of polymer-cellulose composite films and paper sheets. Cellulose, 2010, 17, 375-385.	4.9	27
24	Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose, 2010, 17, 661-669.	4.9	132

ARTICLE IF CITATIONS # Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose, 2010, 17, 4.9 612 25 559-574. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 2010, 17, 459-494. 2,454 Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose, 27 4.9 157 2010, 17, 575-586. The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose, 2010, 17, 835-848. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper 29 4.9 299 strength. Cellulose, 2010, 17, 1005-1020. Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose, 2010, 17, 1147-1158. Review: current international research into cellulose nanofibres and nanocomposites. Journal of 31 2,042 3.7 Materials Science, 2010, 45, 1-33. Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated 1.9 48 cellulose. Journal of Nanoparticle Research, 2010, 12, 841-851. Physical properties and morphology of films prepared from microfibrillated cellulose and 33 microfibrillated cellulose in combination with amylopectin. Journal of Applied Polymer Science, 2010, 2.6 27 117, 3601-3609. Investigation of mass transport properties of microfibrillated cellulose (MFC) films. Journal of 8.2 Membrane Science, 2010, 358, 67-75. Discrimination of matrix–fibre interactions in all-cellulose nanocomposites. Composites Science and 35 7.8 50 Technology, 2010, 70, 2325-2330. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as 31.5 36 templates. Nature Nanotechnology, 2010, 5, 584-588. On the possible developments for the structural materials relevant for future mobile devices., 0,, 37 1 21-50. All-Cellulose Nanocomposite Made from Nanofibrillated Cellulose. Advanced Composites Letters, 1.3 2010, 19, 096369351001900. Enzymatic functionalization of cellulosic fibres for textile and other applications: xyloglucan as a 39 3 molecular anchor. , 2010, , 266-287. Optimization of the Mechanical Performance of Bacterial Cellulose/Poly(<scp>l</scp>-lactic) Acid 101 Composites. ACS Applied Materials & amp; Interfaces, 2010, 2, 321-330. Enzyme-Assisted Preparation of Fibrillated Cellulose Fibers and Its Effect on Physical and Mechanical 41 Properties of Paper Sheet Composites. Industrial & amp; Engineering Chemistry Research, 2010, 49, 3.7 32 2161-2168. Fast Preparation Procedure for Large, Flat Cellulose and Cellulose/Inorganic Nanopaper Structures. 5.4 351 Biomacromolecules, 2010, 11, 2195-2198.

#	Article	IF	CITATIONS
43	A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. Journal of Physical Chemistry B, 2010, 114, 4178-4182.	2.6	258
44	Poly(methyl vinyl ether- <i>co</i> -maleic acid)â^'Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers. Biomacromolecules, 2010, 11, 2660-2666.	5.4	66
45	Large-Area, Lightweight and Thick Biomimetic Composites with Superior Material Properties via Fast, Economic, and Green Pathways. Nano Letters, 2010, 10, 2742-2748.	9.1	435
46	Cellulose and Derivatives from Wood and Fibers as Renewable Sources of Raw-Materials. Topics in Current Chemistry, 2010, 294, 117-128.	4.0	28
47	The effect of chemical composition on microfibrillar cellulose films from wood pulps: Mechanical processing and physical properties. Bioresource Technology, 2010, 101, 5961-5968.	9.6	253
48	Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter, 2010, 6, 1824.	2.7	400
49	Challenges for Natural Monomers and Polymers: Novel Design Strategies and Engineering to Develop Advanced Polymers. Designed Monomers and Polymers, 2010, 13, 87-121.	1.6	78
50	Self-Organized Films from Cellulose I Nanofibrils Using the Layer-by-Layer Technique. Biomacromolecules, 2010, 11, 872-882.	5.4	142
51	Carbohydrates in Sustainable Development I. Topics in Current Chemistry, 2010, , .	4.0	6
52	Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems. MRS Bulletin, 2010, 35, 201-207.	3.5	168
53	Enhanced electrical properties of regenerated cellulose by polypyrrole and ionic liquid nanocoating. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225, 33-39.	0.1	0
54	Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chemistry, 2011, 13, 1339.	9.0	207
55	Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes. Journal of Nanomaterials, 2011, 2011, 1-8.	2.7	178
56	Nanofibrillation of Wood Pulp Using a High-Speed Blender. Biomacromolecules, 2011, 12, 348-353.	5.4	213
57	Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter, 2011, 7, 7342.	2.7	153
58	Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter, 2011, 7, 8804.	2.7	320
59	Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2011, 115, 3747-3755.	2.6	129
60	Strong and Tough Cellulose Nanopaper with High Specific Surface Area and Porosity. Biomacromolecules, 2011, 12, 3638-3644.	5.4	432

#	Article	IF	CITATIONS
62	Design and characterization of cellulose nanofibril-based freestanding films prepared by layer-by-layer deposition technique. Soft Matter, 2011, 7, 3467.	2.7	44
63	Colloidal Ionic Assembly between Anionic Native Cellulose Nanofibrils and Cationic Block Copolymer Micelles into Biomimetic Nanocomposites. Biomacromolecules, 2011, 12, 2074-2081.	5.4	78
64	Colloidal Stability of Aqueous Nanofibrillated Cellulose Dispersions. Langmuir, 2011, 27, 11332-11338.	3.5	265
65	Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions. Biomacromolecules, 2011, 12, 633-641.	5.4	383
66	Nanotechnology in Pulp and Paper Industries: A Review. Key Engineering Materials, 0, 471-472, 251-256.	0.4	11
69	Direct Fabrication of <i>all</i> -Cellulose Nanocomposite from Cellulose Microfibers Using Ionic Liquid-Based Nanowelding. Biomacromolecules, 2011, 12, 4080-4085.	5.4	105
70	Next-generation biopolymers: Advanced functionality and improved sustainability. MRS Bulletin, 2011, 36, 687-691.	3.5	42
71	Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40, 3941.	38.1	5,132
72	The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chemistry, 2011, 13, 1061.	9.0	610
73	All-cellulose composite and nanocomposite made from partially dissolved micro- and nanofibers of canola straw. Polymer Journal, 2011, 43, 559-564.	2.7	83
74	Determination of Young's Modulus for Nanofibrillated Cellulose Multilayer Thin Films Using Buckling Mechanics. Biomacromolecules, 2011, 12, 961-969.	5.4	74
75	Structural Characterisation of Kraft Pulp Fibres and Their Nanofibrillated Materials for Biodegradable Composite Applications. , 0, , .		10
77	Production of Cellulose Nanofiber Reinforced Optically Transparent Film and Its Properties. Journal of the Adhesion Society of Japan, 2011, 47, 210-214.	0.0	1
78	Paper transistor made with regenerated cellulose and covalently bonded single-walled carbon nanotubes. , 2011, , .		0
79	Immobilization of protein-coated drug nanoparticles in nanofibrillar cellulose matrices—Enhanced stability and release. Journal of Controlled Release, 2011, 156, 390-397.	9.9	128
80	Addition of silica nanoparticles to tailor the mechanical properties of nanofibrillated cellulose thin films. Journal of Colloid and Interface Science, 2011, 363, 566-572.	9.4	23
81	Superhydrophobic and Superoleophobic Nanocellulose Aerogel Membranes as Bioinspired Cargo Carriers on Water and Oil. Langmuir, 2011, 27, 1930-1934.	3.5	286
82	A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 2011, 18, 1097-1111.	4.9	469

#	Article	IF	CITATIONS
83	Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: Preparation, characteristics and reinforcing potential. Carbohydrate Polymers, 2011, 86, 1198-1206.	10.2	182
84	Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates. Composites Science and Technology, 2011, 71, 13-17.	7.8	41
85	Functionalization of Nanofibrillated Cellulose with Silver Nanoclusters: Fluorescence and Antibacterial Activity. Macromolecular Bioscience, 2011, 11, 1185-1191.	4.1	121
86	Multifunctional Highâ€Performance Biofibers Based on Wetâ€Extrusion of Renewable Native Cellulose Nanofibrils. Advanced Materials, 2011, 23, 2924-2928.	21.0	246
87	Highly transparent films from carboxymethylated microfibrillated cellulose: The effect of multiple homogenization steps on key properties. Journal of Applied Polymer Science, 2011, 119, 2652-2660.	2.6	161
90	Nanocelluloses: A New Family of Natureâ€Based Materials. Angewandte Chemie - International Edition, 2011, 50, 5438-5466.	13.8	3,550
91	Genetic Engineering of Biomimetic Nanocomposites: Diblock Proteins, Graphene, and Nanofibrillated Cellulose. Angewandte Chemie - International Edition, 2011, 50, 8688-8691.	13.8	142
92	Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydrate Polymers, 2011, 84, 579-583.	10.2	368
93	Investigation of the graft length impact on the interfacial toughness in a cellulose/poly(Îμ-caprolactone) bilayer laminate. Composites Science and Technology, 2011, 71, 9-12.	7.8	41
94	Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Composites Science and Technology, 2011, 71, 382-387.	7.8	152
95	Preparation of ultrastrength nanopapers using cellulose nanofibrils. Journal of Industrial and Engineering Chemistry, 2011, 17, 521-526.	5.8	71
96	A note on the nonlinear mechanical behavior of planar random network structures subjected to in-plane compression. Journal of Composite Materials, 2011, 45, 2697-2703.	2.4	8
97	Preparation and Morphological Characteristics of Cellulose Micro/Nano Fibrils. Materials Science Forum, 0, 675-677, 255-258.	0.3	0
98	Cellulose nanofillers for food packaging. , 2011, , 86-107.		9
99	2 Preparation of microfibrillated cellulose. , 2012, , 43-82.		1
100	A simplified probabilistic macroscopic model for estimating microscopic fracture development in idealized planar fiber network materials. Mathematics and Mechanics of Solids, 2012, 17, 364-377.	2.4	1
102	Effect of freeze dry on the properties of cellulose nanofibrils/phenol formaldehyde nanocomposites. , 2012, , .		0
103	Research on Preparation and Properties of Cellulose Nanofibers and its Polymethylmethacrylate (PMMA) Based Nanocomposites. Applied Mechanics and Materials, 2012, 174-177, 893-899.	0.2	0

#	Article	IF	CITATIONS
104	Conductive Photoswitchable Vanadium Oxide Nanopaper based on Bacterial Cellulose. ChemSusChem, 2012, 5, 2323-2327.	6.8	37
105	Micromechanical Tensile Testing of Cellulose-Reinforced Electrospun Fibers Using a Template Transfer Method (TTM). Journal of Polymers and the Environment, 2012, 20, 967-975.	5.0	12
106	Inkjet-printed silver nanoparticles on nano-engineered cellulose films for electrically conducting structures and organic transistors: concept and challenges. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	45
107	Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	49
108	High-Performance Nanopapers Based on Benzenesulfonic Functionalized Graphenes. ACS Nano, 2012, 6, 10178-10185.	14.6	71
109	Stiff as a Board: Perspectives on the Crystalline Modulus of Cellulose. ACS Macro Letters, 2012, 1, 1237-1239.	4.8	45
110	Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 16618.	6.7	266
111	The transparent crab: preparation and nanostructural implications for bioinspired optically transparent nanocomposites. Soft Matter, 2012, 8, 1369-1373.	2.7	43
112	Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 2012, 90, 735-764.	10.2	1,395
113	Viscoelastic properties and antimicrobial activity of cellulose fiber sheets impregnated with Ag nanoparticles. Carbohydrate Polymers, 2012, 90, 1139-1146.	10.2	31
114	Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1145-1152.	7.6	51
116	Micromechanics of TEMPO-Oxidized Fibrillated Cellulose Composites. ACS Applied Materials & Interfaces, 2012, 4, 331-337.	8.0	54
117	pH-Responsive Cellulose Nanocrystal Gels and Nanocomposites. ACS Macro Letters, 2012, 1, 1001-1006.	4.8	241
118	Statistical Analysis of Plating Variable Effects on the Electrical Conductivity of Electroless Copper Patterns on Paper. ACS Applied Materials & Interfaces, 2012, 4, 2358-2368.	8.0	23
119	Facile Method for Stiff, Tough, and Strong Nanocomposites by Direct Exfoliation of Multilayered Graphene into Native Nanocellulose Matrix. Biomacromolecules, 2012, 13, 1093-1099.	5.4	126
120	Flexible and Transparent Paper-Based Ionic Diode Fabricated from Oppositely Charged Microfibrillated Cellulose. Journal of Physical Chemistry C, 2012, 116, 9227-9234.	3.1	59
122	Films Prepared from Electrosterically Stabilized Nanocrystalline Cellulose. Langmuir, 2012, 28, 7834-7842.	3.5	146
123	Effective Young's Modulus of Bacterial and Microfibrillated Cellulose Fibrils in Fibrous Networks. Biomacromolecules, 2012, 13, 1340-1349.	5.4	189

#	Article	IF	CITATIONS
124	Immobilization–Stabilization of Proteins on Nanofibrillated Cellulose Derivatives and Their Bioactive Film Formation. Biomacromolecules, 2012, 13, 594-603.	5.4	108
125	Enhancement of the Nanofibrillation of Wood Cellulose through Sequential Periodate–Chlorite Oxidation. Biomacromolecules, 2012, 13, 1592-1597.	5.4	275
126	Cellulose Nanofiber Orientation in Nanopaper and Nanocomposites by Cold Drawing. ACS Applied Materials & Interfaces, 2012, 4, 1043-1049.	8.0	299
127	Stretchable and Strong Cellulose Nanopaper Structures Based on Polymer-Coated Nanofiber Networks: An Alternative to Nonwoven Porous Membranes from Electrospinning. Biomacromolecules, 2012, 13, 3661-3667.	5.4	87
128	Adhesive Layer-by-Layer Films of Carboxymethylated Cellulose Nanofibril–Dopamine Covalent Bioconjugates Inspired by Marine Mussel Threads. ACS Nano, 2012, 6, 4731-4739.	14.6	96
129	Relationship between Length and Degree of Polymerization of TEMPO-Oxidized Cellulose Nanofibrils. Biomacromolecules, 2012, 13, 842-849.	5.4	419
130	CHAPTER 1. Nanocellulose: Potential Reinforcement in Composites. RSC Green Chemistry, 2012, , 1-32.	0.1	19
131	Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose, 2012, 19, 1631-1643.	4.9	248
132	Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. Journal of Materials Chemistry, 2012, 22, 19014.	6.7	136
133	RENEWABLE FIBERS AND BIO-BASED MATERIALS FOR PACKAGING APPLICATIONS – A REVIEW OF RECENT DEVELOPMENTS. BioResources, 2012, 7, 2506-2552.	1.0	216
134	NANOFIBRILLATED CELLULOSE AS PAPER ADDITIVE IN EUCALYPTUS PULPS. BioResources, 2012, 7, .	1.0	155
135	Multifunctional Coating Films by Layer-by-Layer Deposition of Cellulose and Chitin Nanofibrils. Biomacromolecules, 2012, 13, 553-558.	5.4	96
136	Understanding the mechanism of cellulose dissolution in 1-butyl-3-methylimidazolium chloride ionic liquid via quantum chemistry calculations and molecular dynamics simulations. Journal of Computer-Aided Molecular Design, 2012, 26, 329-337.	2.9	54
137	Polylactide latex/nanofibrillated cellulose bionanocomposites of high nanofibrillated cellulose content and nanopaper network structure prepared by a papermaking route. Journal of Applied Polymer Science, 2012, 125, 2460-2466.	2.6	41
138	Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). Journal of Applied Polymer Science, 2012, 126, E449.	2.6	88
139	Vapour-driven Marangoni propulsion: continuous, prolonged and tunable motion. Chemical Science, 2012, 3, 2526.	7.4	76
140	Elastic properties of cellulose nanopaper. Cellulose, 2012, 19, 793-807.	4.9	82
141	Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose, 2012, 19, 831-842.	4.9	157

	CI	CITATION REPORT	
#	Article	IF	CITATIONS
142	Interactions between inorganic nanoparticles and cellulose nanofibrils. Cellulose, 2012, 19, 779-792.	4.9	34
143	Mechanosorptive creep in nanocellulose materials. Cellulose, 2012, 19, 809-819.	4.9	16
144	Smooth and flexible filler-nanocellulose composite structure for printed electronics applications. Cellulose, 2012, 19, 821-829.	4.9	68
145	Toughening mechanisms in poly(lactic) acid reinforced with TEMPO-oxidized cellulose. Journal of Materials Science, 2012, 47, 5517-5523.	3.7	31
146	Arabinoxylan/nanofibrillated cellulose composite films. Journal of Materials Science, 2012, 47, 6724-6732.	3.7	50
147	Plasticized xyloglucan for improved toughness—Thermal and mechanical behaviour. Carbohydrate Polymers, 2012, 87, 2532-2537.	10.2	23
148	Crack growth in planar elastic fiber materials. International Journal of Solids and Structures, 2012, 49, 1900-1907.	2.7	27
149	Comparison of Multilayer Formation Between Different Cellulose Nanofibrils and Cationic Polymers. Journal of Colloid and Interface Science, 2012, 373, 84-93.	9.4	47
150	Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Materials & Design, 2012, 36, 570-576.	5.1	115
151	On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers. Nanoscale Research Letters, 2012, 7, 192.	5.7	53
152	Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose, 2012, 19, 401-410.	4.9	330
153	Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose, 2012, 19, 547-560.	4.9	46
154	Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose, 2012, 19, 561-574.	4.9	91
155	Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. Journal of Materials Science, 2012, 47, 4463-4472.	3.7	45
156	Thermo-responsive nanofibrillated cellulose by polyelectrolyte adsorption. European Polymer Journal, 2013, 49, 2689-2696.	5.4	44
157	Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose, 2013, 20, 807-818.	4.9	148
158	Non-ionic assembly of nanofibrillated cellulose and polyethylene glycol grafted carboxymethyl cellulose and the effect of aqueous lubrication in nanocomposite formation. Soft Matter, 2013, 9, 7448.	2.7	34
159	Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose, 2013, 20, 1885-1896.	4.9	133

#	Article	IF	CITATIONS
160	Multifunctional Nanoclay Hybrids of High Toughness, Thermal, and Barrier Performances. ACS Applied Materials & Interfaces, 2013, 5, 7613-7620.	8.0	71
161	An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules, 2013, 14, 248-253.	5.4	507
162	Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions. Journal of Materials Science, 2013, 48, 6911-6920.	3.7	13
163	Tough nanopaper structures based on cellulose nanofibers and carbon nanotubes. Composites Science and Technology, 2013, 87, 103-110.	7.8	94
164	A particleâ€based method for mechanical analyses of planar fiberâ€based materials. International Journal for Numerical Methods in Engineering, 2013, 93, 1216-1234.	2.8	9
165	Prediction of elastic properties of nanofibrillated cellulose from micromechanical modeling and nano-structure characterization by transmission electron microscopy. Cellulose, 2013, 20, 761-770.	4.9	25
166	High-Strength Nanocellulose–Talc Hybrid Barrier Films. ACS Applied Materials & Interfaces, 2013, 5, 13412-13418.	8.0	94
167	Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose. Nanoscale, 2013, 5, 11837.	5.6	27
168	A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. Journal of Materials Chemistry A, 2013, 1, 6678.	10.3	138
169	Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. Journal of Wood Science, 2013, 59, 449-459.	1.9	347
170	Humidity and Multiscale Structure Govern Mechanical Properties and Deformation Modes in Films of Native Cellulose Nanofibrils. Biomacromolecules, 2013, 14, 4497-4506.	5.4	230
171	Novel transparent and flexible nanocomposite film prepared fromÂchrysotile nanofibres. Materials Chemistry and Physics, 2013, 142, 412-419.	4.0	5
172	Reconfigurable sticker label electronics manufactured from nanofibrillated cellulose-based self-adhesive organic electronic materials. Organic Electronics, 2013, 14, 3061-3069.	2.6	25
173	Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose, 2013, 20, 2221-2262.	4.9	510
174	Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydrate Polymers, 2013, 97, 725-730.	10.2	104
176	Fire-retardant and ductile clay nanopaper biocomposites based on montmorrilonite in matrix of cellulose nanofibers and carboxymethyl cellulose. European Polymer Journal, 2013, 49, 940-949.	5.4	76
177	Electrically conductive lines on cellulose nanopaper for flexible electrical devices. Nanoscale, 2013, 5, 9289.	5.6	133
178	Processable polyaniline suspensions through in situ polymerization onto nanocellulose. European Polymer Journal, 2013, 49, 335-344.	5.4	107

	CITATION	CITATION REPORT	
#	Article	IF	Citations
180	Nanocomposites of bacterial cellulose nanofibers and chitin nanocrystals: fabrication, characterization and bactericidal activity. Green Chemistry, 2013, 15, 3404.	9.0	129
181	Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Industrial Crops and Products, 2013, 43, 732-737.	5.2	153
182	The structure and mechanics of nanofibrillar cellulose foams. Soft Matter, 2013, 9, 1580-1588.	2.7	76
183	The role of hemicellulose in nanofibrillated cellulose networks. Soft Matter, 2013, 9, 1319-1326.	2.7	103
184	Transparent and conductive paper from nanocellulose fibers. Energy and Environmental Science, 2013, 6, 513-518.	30.8	431
185	Cellulose Based Blends, Composites and Nanocomposites. Advanced Structured Materials, 2013, , 21-54.	0.5	10
186	Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers, 2013, 93, 172-177.	10.2	187
187	Nanocrystalline cellulose from aspen kraft pulp and its application in deinked pulp. International Journal of Biological Macromolecules, 2013, 60, 241-247.	7.5	37
188	Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation. Carbohydrate Polymers, 2013, 96, 621-627.	10.2	94
189	Cellulose nanofibers decorated with magnetic nanoparticles – synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker. Journal of Materials Chemistry C, 2013, 1, 7963.	5.5	106
190	Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment. Cellulose, 2013, 20, 741-749.	4.9	137
191	A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydrate Polymers, 2013, 97, 226-234.	10.2	253
192	Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry A, 2013, 1, 4671.	10.3	193
193	Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream. ACS Applied Materials & amp; Interfaces, 2013, 5, 2527-2534.	8.0	88
194	Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydrate Polymers, 2013, 96, 611-620.	10.2	104
195	Highly Transparent and Flexible Nanopaper Transistors. ACS Nano, 2013, 7, 2106-2113.	14.6	401
196	Self-Assembling Behavior of Cellulose Nanoparticles during Freeze-Drying: Effect of Suspension Concentration, Particle Size, Crystal Structure, and Surface Charge. Biomacromolecules, 2013, 14, 1529-1540.	5.4	392
197	Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Applied Materials & amp; Interfaces, 2013, 5, 2999-3009.	8.0	773

#	Article	IF	CITATIONS
198	Flexible nano-paper-based positive electrodes for Li-ion batteries—Preparation process and properties. Nano Energy, 2013, 2, 794-800.	16.0	73
199	A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials. ACS Applied Materials & Interfaces, 2013, 5, 4640-4647.	8.0	270
200	Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology, 2013, 47, 925-937.	3.2	30
201	Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter, 2013, 9, 2047.	2.7	294
202	Obtaining nanofibers from curauÃi and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose, 2013, 20, 1491-1500.	4.9	116
203	State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. Journal of Biomaterials and Nanobiotechnology, 2013, 04, 165-188.	0.5	164
204	Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydrate Polymers, 2013, 98, 562-567.	10.2	215
205	Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydrate Polymers, 2013, 95, 760-767.	10.2	173
206	Transition to Reinforced State by Percolating Domains of Intercalated Brush-Modified Cellulose Nanocrystals and Poly(butadiene) in Cross-Linked Composites Based on Thiol–ene Click Chemistry. Biomacromolecules, 2013, 14, 1547-1554.	5.4	96
207	Colloidal silica nanoparticle-assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. Journal of Power Sources, 2013, 242, 533-540.	7.8	123
208	Micro-structural characterisation of homogeneous and layered MFC nano-composites. Micron, 2013, 44, 331-338.	2.2	18
209	Rapid preparation of cellulose nanofibre sheet. Cellulose, 2013, 20, 211-215.	4.9	58
210	Resin impregnation of cellulose nanofibril films facilitated by water swelling. Cellulose, 2013, 20, 303-313.	4.9	36
211	All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose, 2013, 20, 2909-2921.	4.9	57
212	The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy. Cellulose, 2013, 20, 2291-2309.	4.9	33
213	Solvent impact on esterification and film formation ability of nanofibrillated cellulose. Cellulose, 2013, 20, 2359-2370.	4.9	37
214	Cellulose Nanofibrils. Journal of Renewable Materials, 2013, 1, 195-211.	2.2	152
215	Nanocellulose Patents Trends: A Comprehensive Review on Patents on Cellulose Nanocrystals, Microfibrillated and Bacterial Cellulose. Recent Patents on Nanotechnology, 2013, 7 <u>, 56-80.</u>	1.3	191

#	ARTICLE	IF	CITATIONS
216	Water-Triggered Dimensional Swelling of Cellulose Nanofibril Films: Instant Observation Using Optical Microscope. Journal of Nanomaterials, 2013, 2013, 1-6.	2.7	11
217	Characterization of Magnetic Cellulose Microspheres Reconstituted from Ionic Liquid. Advanced Materials Research, 0, 634-638, 913-917.	0.3	4
218	All-cellulose Nanocomposites using Cellulose Nanofibers. Nippon Gomu Kyokaishi, 2013, 86, 28-34.	0.0	0
219	BIOREFINERY: Nanofibrillated cellulose for enhancement of strength in high-density paper structures. Nordic Pulp and Paper Research Journal, 2013, 28, 182-189.	0.7	63
220	PAPER CHEMISTRY: Approaching super-hydrophobicity from cellulosic materials: A Review. Nordic Pulp and Paper Research Journal, 2013, 28, 216-238.	0.7	150
221	Effect of Degree of Substitution on the Adhesive Propterties of Methyl Cellulose Derived from Waste Bitter Orange [Citrus Aurantium (Linn.)] Mesocarp. Academic Journal of Interdisciplinary Studies, 2013, , .	0.6	Ο
222	Advanced-Microscopy Techniques for the Characterization of Cellulose Structure and Cellulose-Cellulase Interactions. , 2013, , .		5
223	Cellulose Nanocomposites by Melt Compounding of TEMPO-Treated Wood Fibers in Thermoplastic Starch Matrix. BioResources, 2014, 9, .	1.0	27
224	Energy consumption of the nanofibrillation of bleached pulp, wheat straw and recycled newspaper through a grinding process. Nordic Pulp and Paper Research Journal, 2014, 29, 167-175.	0.7	108
225	Difference between bamboo- and wood-derived cellulose nanofibers prepared by the aqueous counter collision method. Nordic Pulp and Paper Research Journal, 2014, 29, 69-76.	0.7	52
226	Synergic effects of additives on bacterial cellulose properties. , 2014, , .		0
227	Development, application and commercialization of transparent paper. Translational Materials Research, 2014, 1, 015004.	1.2	54
228	Lightweight, Conformal Antennas for Robotic Flapping Flyers. IEEE Antennas and Propagation Magazine, 2014, 56, 29-40.	1.4	7
229	Three-Dimensional Microstructural Properties of Nanofibrillated Cellulose Films. International Journal of Molecular Sciences, 2014, 15, 6423-6440.	4.1	31
230	Nanopaper membranes from chitin–protein composite nanofibers—structure and mechanical properties. Journal of Applied Polymer Science, 2014, 131, .	2.6	25
231	Microscopic Characterization of Nanofibers and Nanocrystals. Materials and Energy, 2014, , 159-180.	0.1	2
232	Toughness and Strength of Wood Cellulose-based Nanopaper and Nanocomposites. Materials and Energy, 2014, , 121-129.	0.1	1
233	Nanocellulose Films and Barriers. Materials and Energy, 2014, , 213-229.	0.1	8

#	Article	IF	CITATIONS
234	Cellulose nanofibre–poly(lactic acid) microcellular foams exhibiting high tensile toughness. Reactive and Functional Polymers, 2014, 85, 201-207.	4.1	29
235	High performance green barriers based on nanocellulose. Sustainable Chemical Processes, 2014, 2, .	2.3	246
238	Mechanical performance of cellulose nanofibril film-wood flake laminate. Holzforschung, 2014, 68, 283-290.	1.9	12
239	Superior mechanical performance of highly porous, anisotropic nanocellulose–montmorillonite aerogels prepared by freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 88-99.	3.1	131
240	The effect of residual fibres on the micro-topography of cellulose nanopaper. Micron, 2014, 56, 80-84.	2.2	40
241	Synthesis and characterisation of nanocellulose-based polyaniline conducting films. Composites Science and Technology, 2014, 99, 31-36.	7.8	115
242	Nanofibrillated cellulose reinforced acetylated arabinoxylan films. Composites Science and Technology, 2014, 98, 72-78.	7.8	28
243	Thermoplastic polymer impregnation of cellulose nanofibre networks: Morphology, mechanical and optical properties. Composites Part A: Applied Science and Manufacturing, 2014, 58, 30-35.	7.6	52
244	Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. Carbohydrate Polymers, 2014, 99, 311-318.	10.2	98
245	A method for the heterogeneous modification of nanofibrillar cellulose in aqueous media. Carbohydrate Polymers, 2014, 100, 107-115.	10.2	43
246	Properties of surface acetylated microfibrillated cellulose relative to intra- and inter-fibril bonding. Cellulose, 2014, 21, 1541-1552.	4.9	15
247	Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 2014, 99, 649-665.	10.2	1,046
249	Characterization of cellulose nanofibrillation by micro grinding. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	98
250	Cellulose nanofiber network for moisture stable, strong and ductile biocomposites and increased epoxy curing rate. Composites Part A: Applied Science and Manufacturing, 2014, 63, 35-44.	7.6	153
251	Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose, 2014, 21, 367-382.	4.9	128
252	Mechanical behavior of transparent nanofibrillar cellulose–chitosan nanocomposite films in dry and wet conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 279-286.	3.1	86
253	Simultaneous Reinforcing and Toughening of Polyurethane via Grafting on the Surface of Microfibrillated Cellulose. ACS Applied Materials & amp; Interfaces, 2014, 6, 2497-2507.	8.0	107
254	Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate Polymers, 2014, 102, 369-375.	10.2	138

#	Article	IF	CITATIONS
255	Modified nanofibrillated cellulose–polyvinyl alcohol films with improved mechanical performance. RSC Advances, 2014, 4, 11343.	3.6	81
256	Supracolloidal Multivalent Interactions and Wrapping of Dendronized Glycopolymers on Native Cellulose Nanocrystals. Journal of the American Chemical Society, 2014, 136, 866-869.	13.7	72
257	Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels. Journal of Biomaterials Applications, 2014, 29, 423-432.	2.4	94
259	Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 2014, 292, 5-31.	2.1	363
260	Highly tough and transparent layered composites of nanocellulose and synthetic silicate. Nanoscale, 2014, 6, 392-399.	5.6	72
261	Transparent paper: fabrications, properties, and device applications. Energy and Environmental Science, 2014, 7, 269-287.	30.8	457
262	Strong and Moldable Cellulose Magnets with High Ferrite Nanoparticle Content. ACS Applied Materials & Interfaces, 2014, 6, 20524-20534.	8.0	17
263	Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose. Cellulose, 2014, 21, 4349-4358.	4.9	109
264	Nanofibrillated Cellulose: Sustainable Nanofiller with Broad Potentials Use. , 2014, , 267-305.		9
265	Nanorobotic Testing to Assess the Stiffness Properties of Nanopaper. IEEE Transactions on Robotics, 2014, 30, 115-119.	10.3	11
266	Hydrophobic, Ductile, and Transparent Nanocellulose Films with Quaternary Alkylammonium Carboxylates on Nanofibril Surfaces. Biomacromolecules, 2014, 15, 4320-4325.	5.4	114
267	Highly Porous Paper Loading with Microfibrillated Cellulose by Spray Coating on Wet Substrates. Industrial & Engineering Chemistry Research, 2014, 53, 10982-10989.	3.7	39
268	Electrospun Nanopaper and its Applications to Microsystems. International Journal for Computational Methods in Engineering Science and Mechanics, 2014, 15, 2-8.	2.1	2
269	Luminescent and Transparent Nanopaper Based on Rare-Earth Up-Converting Nanoparticle Grafted Nanofibrillated Cellulose Derived from Garlic Skin. ACS Applied Materials & Interfaces, 2014, 6, 14945-14951.	8.0	52
270	Aqueous Gating of van der Waals Materials on Bilayer Nanopaper. ACS Nano, 2014, 8, 10606-10612.	14.6	31
271	Nanopapers for organic solvent nanofiltration. Chemical Communications, 2014, 50, 5778-5781.	4.1	114
272	A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale, 2014, 6, 9110.	5.6	85
273	UVâ€cured cellulose nanofiber composites with moisture durable oxygen barrier properties. Journal of Applied Polymer Science, 2014, 131, .	2.6	28

#	Article	IF	CITATIONS
274	Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: Development and characterisation. Carbohydrate Polymers, 2014, 113, 131-137.	10.2	42
275	Environmental science and engineering applications of nanocellulose-based nanocomposites. Environmental Science: Nano, 2014, 1, 302-316.	4.3	233
276	Photon Energy Upconverting Nanopaper: A Bioinspired Oxygen Protection Strategy. ACS Nano, 2014, 8, 8198-8207.	14.6	116
277	Biocomposites of Nanofibrillated Cellulose, Polypyrrole, and Silver Nanoparticles with Electroconductive and Antimicrobial Properties. Biomacromolecules, 2014, 15, 3655-3663.	5.4	106
278	Ductile All-Cellulose Nanocomposite Films Fabricated from Core–Shell Structured Cellulose Nanofibrils. Biomacromolecules, 2014, 15, 2218-2223.	5.4	84
279	On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 2014, 105, 15-27.	7.8	669
280	Superior non-woven sheet forming characteristics of low-density cationic polymer-cellulose nanofibre colloids. Cellulose, 2014, 21, 3541-3550.	4.9	18
281	Agricultural Biomass Raw Materials: The Current State and Future Potentialities. , 2014, , 77-100.		5
282	Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose, 2014, 21, 291-299.	4.9	51
283	Microfibrillated cellulose and cellulose nanopaper from Miscanthus biogas production residue. Cellulose, 2014, 21, 1601-1610.	4.9	16
284	Nanopaper from almond (Prunus dulcis) shell. Cellulose, 2014, 21, 1619-1629.	4.9	39
285	Stability and efficiency improvement of ASA in internal sizing of cellulosic paper by using cationically modified cellulose nanocrystals. Cellulose, 2014, 21, 2879-2887.	4.9	42
286	Intrinsic viscosity of aqueous suspensions of cellulose nanofibrils. Cellulose, 2014, 21, 2511-2517.	4.9	54
287	Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose, 2014, 21, 2831-2844.	4.9	191
288	Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. Journal of Materials Science, 2014, 49, 5043-5055.	3.7	14
289	A Nanorobotic System for In Situ Stiffness Measurements on Membranes. IEEE Transactions on Robotics, 2014, 30, 119-124.	10.3	24
290	From paper to nanopaper: evolution of mechanical and physical properties. Cellulose, 2014, 21, 2599-2609.	4.9	118
291	Thermoplastic composites of polyamide $\hat{a} \in 1$ 2 reinforced by cellulose nanofibers with cationic surface modification. Journal of Applied Polymer Science, 2014, 131, .	2.6	33

ARTICLE

IF CITATIONS

Using carboxylated nanocrystalline cellulose as an additive in cellulosic paper and poly (vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742

293	Mechanical Performance of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical Comparison. Biomacromolecules, 2014, 15, 2709-2717.	5.4	154
295	Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Advances, 2014, 4, 45136-45142.	3.6	58
297	Extrusion processing of green biocomposites: Compounding, fibrillation efficiency, and fiber dispersion. Journal of Applied Polymer Science, 2014, 131, .	2.6	42
298	Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nature Communications, 2014, 5, 4018.	12.8	402
299	Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibrils for membrane structures. Carbohydrate Polymers, 2014, 102, 584-589.	10.2	30
300	Enzyme-assisted isolation of microfibrillated cellulose from date palm fruit stalks. Industrial Crops and Products, 2014, 55, 102-108.	5.2	59
301	Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25, 094008.	2.6	218
302	Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydrate Polymers, 2014, 112, 255-263.	10.2	84
303	Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan. Frontiers in Chemistry, 2014, 2, 99.	3.6	49
304	Effects of Reinforcing Fillers and Coupling Agents on Performances of Wood–Polymer Composites. , 2014, , 126-145.		0
305	Mountain Pine Beetle-Killed Lodgepole Pine for the Production of Submicron Lignocellulose Fibrils. Forest Science, 2014, 60, 502-511.	1.0	6
306	Intelligent Responsive Copolymers Based on Cellulose: Structure, Properties, and Applications. , 2015, , 476-495.		1
308	Natural Cellulose Fibers: Sources, Isolation, Properties and Applications. , 2015, , 25-59.		1
309	Ambientâ€Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices. Advanced Functional Materials, 2015, 25, 6618-6626.	14.9	155
310	Estudio de estructuras de cis- y trans-estilbeno mediante microscopiade fuerza atómica. Revista Materia, 2015, 20, 764-771.	0.2	0
311	Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology, Science and Applications, 2015, 8, 45.	4.6	604
312	Damage Characterization of Bio and Green Polyethylene–Birch Composites under Creep and Cyclic Testing with Multivariable Acoustic Emissions. Materials, 2015, 8, 7322-7341.	2.9	22

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
313	Forming and Dewatering of a Microfibrillated Cellulose Composite Paper. BioResources, 2015, 10, .	1.0	12
314	3D Bioprinting of Carboxymethylated-Periodate Oxidized Nanocellulose Constructs for Wound Dressing Applications. BioMed Research International, 2015, 2015, 1-7.	1.9	188
315	Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chemistry, 2015, 17, 1853-1866.	9.0	380
316	Easily deconstructed, high aspect ratio cellulose nanofibres from Triodia pungens; an abundant grass of Australia's arid zone. RSC Advances, 2015, 5, 32124-32132.	3.6	60
317	Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper(<scp>ii</scp>) and a positively charged dye. Soft Matter, 2015, 11, 5294-5300.	2.7	77
318	Characterization and Processing of Nanocellulose Thermosetting Composites. , 2015, , 265-295.		7
319	Poly(vinyl Alcohol)-Cellulose and Nanocellulose Composites. , 2015, , 297-322.		2
320	Bio-inspired functional wood-based materials – hybrids and replicates. International Materials Reviews, 2015, 60, 431-450.	19.3	98
321	Self-assembled optically transparent cellulose nanofibril films: effect of nanofibril morphology and drying procedure. Cellulose, 2015, 22, 1091-1102.	4.9	61
322	A Transparent, Hazy, and Strong Macroscopic Ribbon of Oriented Cellulose Nanofibrils Bearing Poly(ethylene glycol). Advanced Materials, 2015, 27, 2070-2076.	21.0	185
323	Traction–separation laws and stick–slip shear phenomenon of interfaces between cellulose nanocrystals. Journal of the Mechanics and Physics of Solids, 2015, 78, 526-539.	4.8	53
324	Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. Journal of Materials Science, 2015, 50, 3189-3199.	3.7	38
325	High-Performance and Moisture-Stable Cellulose–Starch Nanocomposites Based on Bioinspired Core–Shell Nanofibers. Biomacromolecules, 2015, 16, 904-912.	5.4	78
326	Aligned Bioinspired Cellulose Nanocrystal-Based Nanocomposites with Synergetic Mechanical Properties and Improved Hygromechanical Performance. ACS Applied Materials & Interfaces, 2015, 7, 4595-4607.	8.0	99
327	Water-Resistant, Transparent Hybrid Nanopaper by Physical Cross-Linking with Chitosan. Biomacromolecules, 2015, 16, 1062-1071.	5.4	130
328	From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 2015, 48, 1-39.	24.7	530
329	Online determination of anisotropy during cellulose nanofibril assembly in a flow focusing device. RSC Advances, 2015, 5, 18601-18608.	3.6	37
330	Bio-Inspired Multiproperty Materials: Strong, Self-Healing, and Transparent Artificial Wood Nanostructures. ACS Nano, 2015, 9, 1127-1136.	14.6	73

#	Article	IF	CITATIONS
331	One-step degradation of cellulose to 5-hydroxymethylfurfural in ionic liquid under mild conditions. Carbohydrate Polymers, 2015, 117, 694-700.	10.2	63
332	Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose, 2015, 22, 421-433.	4.9	131
333	Direct solvent nanowelding of cellulose fibers to make all-cellulose nanocomposite. Cellulose, 2015, 22, 1189-1200.	4.9	37
334	Sodium periodate oxidation of cellulose nanocrystal and its application as a paper wet strength additive. Cellulose, 2015, 22, 1135-1146.	4.9	191
335	Rheology of semi-dilute suspensions of carboxylated cellulose nanofibrils. Carbohydrate Polymers, 2015, 123, 416-423.	10.2	48
336	Oriented Clay Nanopaper from Biobased Components—Mechanisms for Superior Fire Protection Properties. ACS Applied Materials & Interfaces, 2015, 7, 5847-5856.	8.0	108
337	Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose, 2015, 22, 1729-1741.	4.9	158
338	Nanocellulose–Zeolite Composite Films for Odor Elimination. ACS Applied Materials & Interfaces, 2015, 7, 14254-14262.	8.0	44
339	Properties and characterization ofÂelectrically conductive nanocellulose-based compositeÂfilms. , 2015, , 3-25.		3
340	All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Industrial Crops and Products, 2015, 76, 166-173.	5.2	64
341	Elastic models coupling the cellulose nanofibril to the macroscopic film level. RSC Advances, 2015, 5, 58091-58099.	3.6	5
342	Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. Journal of Membrane Science, 2015, 493, 46-57.	8.2	156
343	Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper. Biomacromolecules, 2015, 16, 2427-2435.	5.4	75
344	Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. Nanoscale, 2015, 7, 13694-13701.	5.6	56
345	Anisotropic viscoelastic–viscoplastic continuum model for high-density cellulose-based materials. Journal of the Mechanics and Physics of Solids, 2015, 84, 1-20.	4.8	47
346	Mechanism of TEMPO-oxidized cellulose nanofibril film reinforcement with poly(acrylamide). Cellulose, 2015, 22, 2607-2617.	4.9	29
347	Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose, 2015, 22, 2483-2498.	4.9	81
348	Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Composites Science and Technology, 2015, 117, 298-306.	7.8	84

#	Article	IF	CITATIONS
349	Nanostructural Effects on Polymer and Water Dynamics in Cellulose Biocomposites: ² H and ¹³ C NMR Relaxometry. Biomacromolecules, 2015, 16, 1506-1515.	5.4	33
350	Hierarchical wood cellulose fiber/epoxy biocomposites – Materials design of fiber porosity and nanostructure. Composites Part A: Applied Science and Manufacturing, 2015, 74, 60-68.	7.6	52
351	Electrically conductive nanocellulose/graphene composites exhibiting improved mechanical properties in high-moisture condition. Cellulose, 2015, 22, 1799-1812.	4.9	64
352	Structural characteristics of nanofibrillated cellulose mats: Effect of preparation conditions. Fibers and Polymers, 2015, 16, 294-301.	2.1	10
353	Cellulose Gels and Microgels: Synthesis, Service, and Supramolecular Interactions. Advances in Polymer Science, 2015, , 209-251.	0.8	10
354	Supramolecular Polymer Networks and Gels. Advances in Polymer Science, 2015, , .	0.8	39
355	Biocellulose-based flexible magnetic paper. Journal of Applied Physics, 2015, 117, 17B734.	2.5	24
356	Correlation between cellulose thin film supramolecular structures and interactions with water. Soft Matter, 2015, 11, 4273-4282.	2.7	43
357	Core–shell cellulose nanofibers for biocomposites – Nanostructural effects in hydrated state. Carbohydrate Polymers, 2015, 125, 92-102.	10.2	44
358	Biocomposites with tunable properties from poly(lactic acid)-based copolymers and carboxymethyl cellulose via ionic assembly. Carbohydrate Polymers, 2015, 128, 122-129.	10.2	19
359	Bark derived submicron-sized and nano-sized cellulose fibers: From industrial waste to high performance materials. Carbohydrate Polymers, 2015, 134, 258-266.	10.2	46
360	In Vivo Curdlan/Cellulose Bionanocomposite Synthesis by Genetically Modified <i>Gluconacetobacter xylinus</i> . Biomacromolecules, 2015, 16, 3154-3160.	5.4	45
361	Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials. Biomacromolecules, 2015, 16, 3399-3410.	5.4	267
362	High-consistency milling of oxidized cellulose for preparing microfibrillated cellulose films. Cellulose, 2015, 22, 3151-3160.	4.9	16
363	Mechanistic study on the cellulose dissolution in ionic liquids by density functional theory. Chinese Journal of Chemical Engineering, 2015, 23, 1894-1906.	3.5	34
364	Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels. Journal of Materials Science, 2015, 50, 7413-7423.	3.7	34
365	Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization. Journal of Polymers and the Environment, 2015, 23, 551-558.	5.0	46
366	Composite Films of Poly(vinyl alcohol) and Bifunctional Cross-linking Cellulose Nanocrystals. ACS Applied Materials & Margin Interfaces, 2015, 7, 19691-19699.	8.0	77

#	Article	IF	CITATIONS
367	Interpenetrated polymer networks in composites with poly(vinyl alcohol), micro- and nano-fibrillated cellulose (M/NFC) and polyHEMA to develop packaging materials. Cellulose, 2015, 22, 3877-3894.	4.9	27
368	Preparation and characterization of a Lithium-ion battery separator from cellulose nanofibers. Heliyon, 2015, 1, e00032.	3.2	54
369	Hydroxyapatite formation on oxidized cellulose nanofibers in a solution mimicking body fluid. Polymer Journal, 2015, 47, 158-163.	2.7	25
370	Rapid nanopaper production by spray deposition of concentrated microfibrillated cellulose slurries. Industrial Crops and Products, 2015, 72, 200-205.	5.2	23
371	Examples of Natural Composites and Composite Structures. , 2015, , 425-449.		2
372	The effect of electric charge density of polyacrylamide (PAM) on properties of PAM/cellulose nanofibril composite films. Cellulose, 2015, 22, 499-506.	4.9	16
373	A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydrate Polymers, 2015, 118, 1-8.	10.2	127
374	Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization. Cellulose, 2015, 22, 351-361.	4.9	105
375	Development of novel green and biocomposite materials: Tensile and flexural properties and damage analysis using acoustic emission. Materials & Design, 2015, 66, 16-28.	5.1	51
376	Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose, 2015, 22, 789-802.	4.9	88
377	Cellulose nanopapers as tight aqueous ultra-filtration membranes. Reactive and Functional Polymers, 2015, 86, 209-214.	4.1	147
378	The use of bamboo fibres as reinforcements in composites. , 2015, , 488-524.		31
379	Tensile Properties of Wood Cellulose Nanopaper and Nanocomposite Films. , 2016, , 115-130.		7
380	Effects of Ozone and Nanocellulose Treatments on the Strength and Optical Properties of Paper Made from Chemical Mechanical Pulp. BioResources, 2016, 11, .	1.0	4
381	Effect of Pulp Concentration during Cellulase Pretreatment on Microfibrillated Cellulose and Its Film Properties. BioResources, 2016, 11, .	1.0	3
382	Utilizing Cellulose Nanofibril as an Eco-Friendly Flocculant for Filler Flocculation in Papermaking. BioResources, 2016, 11, .	1.0	7
383	Preparation and Viscoelastic Properties of Composite Fibres Containing Cellulose Nanofibrils: Formation of a Coherent Fibrillar Network. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	4
384	Characterization of vegetable fibers and their application in cementitious composites. , 2016, , 83-110.		4

#	Article	IF	CITATIONS
385	Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper Properties. BioResources, 2016, 11, .	1.0	31
386	Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications. Sensors, 2016, 16, 1172.	3.8	59
387	Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review. BioResources, 2016, 12, 2143-2233.	1.0	189
388	Microfibrillated Lignocellulose Enables the Suspension-Polymerisation of Unsaturated Polyester Resin for Novel Composite Applications. Polymers, 2016, 8, 255.	4.5	20
389	Dual Mechanism of Dry Strength Improvement of Cellulose Nanofibril Films by Polyamide-epichlorohydrin Resin Cross-Linking. Industrial & Engineering Chemistry Research, 2016, 55, 11467-11474.	3.7	33
390	Dramatically enhanced electrical breakdown strength in cellulose nanopaper. AIP Advances, 2016, 6, 095026.	1.3	5
391	Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the â€~Green' composite. Carbohydrate Polymers, 2016, 147, 282-293.	10.2	115
392	Drying techniques applied to cellulose nanofibers. Journal of Reinforced Plastics and Composites, 2016, 35, 682-697.	3.1	86
393	Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock―biosensor for wastewater. Biosensors and Bioelectronics, 2016, 85, 232-239.	10.1	59
394	Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture. Journal of Membrane Science, 2016, 514, 418-428.	8.2	172
395	Fabrication of microfibrillated cellulose gel from waste pulp sludge via mild maceration combined with mechanical shearing. Cellulose, 2016, 23, 2573-2583.	4.9	19
396	Theoretical modeling of water vapor transport in cellulose-based materials. Cellulose, 2016, 23, 1537-1552.	4.9	39
397	UV-ozone patterning of micro-nano fibrillated cellulose (MNFC) with alkylsilane self-assembled monolayers. Cellulose, 2016, 23, 1847-1857.	4.9	8
398	Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films. Journal of Materials Science, 2016, 51, 9562-9572.	3.7	14
399	Preparation of photoreactive nanocellulosic materials via benzophenone grafting. RSC Advances, 2016, 6, 85100-85106.	3.6	27
400	Production and Characterization of Laminates of Paper and Cellulose Nanofibrils. ACS Applied Materials & amp; Interfaces, 2016, 8, 25520-25528.	8.0	30
401	Self-reinforced poly(lactic acid) nanocomposites of high toughness. Polymer, 2016, 103, 347-352.	3.8	35
402	Gel point as a measure of cellulose nanofibre quality and feedstock development with mechanical energy. Cellulose, 2016, 23, 3051-3064.	4.9	47

ARTICLE IF CITATIONS # Management of citrus waste by switching in the production of nanocellulose. IET 403 3.8 35 Nanobiotechnology, 2016, 10, 395-399. Effect of polyelectrolyte morphology and adsorption on the mechanism of nanocellulose 404 9.4 44 flocculation. Journal of Colloid and Interface Science, 2016, 481, 158-167. 405 An Organic Mixed Ion–Electron Conductor for Power Electronics. Advanced Science, 2016, 3, 1500305. 11.2 188 Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures. Advanced 406 5.8 Materials Technologies, 2016, 1, 1600096. Extreme Thermal Shielding Effects in Nanopaper Based on Multilayers of Aligned Clay Nanoplatelets in 407 3.7 30 Cellulose Nanofiber Matrix. Advanced Materials Interfaces, 2016, 3, 1600551. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical 408 47.7 1,110 Reviews, 2016, 116, 9305-9374. Functional Cellulose Nanofiber Filters with Enhanced Flux for the Removal of Humic Acid by 410 6.7 52 Adsorption. ACS Sustainable Chemistry and Engineering, 2016, 4, 4582-4590. The fracture toughness of polymer cellulose nanocomposites using the essential work of fracture 3.7 10 method. Journal of Materials Ścience, 2016, 51, 8916-8927. A review on nanocellulosic fibres as new material for sustainable packaging: Process and 412 210 16.4 applications. Renewable and Sustainable Energy Reviews, 2016, 64, 823-836. Micro-fibrillated cellulose reinforced eco-friendly polymeric resin from non-edible â€Jatropha curcas' 3.6 seed waste after biodiesel production. RSC Advances, 2016, 6, 47101-47111. Nanofibrillated Cellulose Templated Membranes with High Permeance. ACS Applied Materials & amp; 414 8.0 13 Interfaces, 2016, 8, 33943-33954. The application of nanoindentation for determination of cellulose nanofibrils (CNF) nanomechanical 1.6 properties. Materials Research Express, 2016, 3, 105017. Nanocellulose Alignment and Electrical Properties Improvement., 2016, , 343-376. 416 12 Reinforcing Fillers and Coupling Agents' Effects for Performing Wood Polymer Composites. , 2016, , 385-406. The feasibility of incorporating cellulose micro/nanofibers in papermaking processes: the relevance of 418 4.9 64 enzymatic hýdrolysis. Cellulose, 2016, 23, 1433-1445. High Temperature Proton Conduction in Nanocellulose Membranes: Paper Fuel Cells. Chemistry of 134 Materials, 2016, 28, 4805-4814. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. 420 5.6 127 Nanoscale, 2016, 8, 12294-12306. Use of nanocellulose in printed electronics: a review. Nanoscale, 2016, 8, 13131-13154. 367

#	Article	IF	CITATIONS
422	Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. International Journal of Environmental Science and Technology, 2016, 13, 1861-1872.	3.5	104
423	Enhanced water resistance properties of bacterial cellulose multilayer films by incorporating interlayers of electrospun zein fibers. Food Hydrocolloids, 2016, 61, 269-276.	10.7	41
424	Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. Biomacromolecules, 2016, 17, 2417-2426.	5.4	49
425	Hydrolytic activities of artificial nanocellulose synthesized via phosphorylase-catalyzed enzymatic reactions. Polymer Journal, 2016, 48, 539-544.	2.7	52
426	Materials Research for Manufacturing. Springer Series in Materials Science, 2016, , .	0.6	5
427	American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications. Springer Series in Materials Science, 2016, , 267-302.	0.6	49
428	Reinforcement of polycaprolactone with microfibrillated lignocellulose. Industrial Crops and Products, 2016, 93, 302-308.	5.2	46
429	Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres. Composites Part A: Applied Science and Manufacturing, 2016, 83, 38-46.	7.6	59
430	Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydrate Polymers, 2016, 137, 608-616.	10.2	168
432	Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Industrial Crops and Products, 2016, 93, 235-243.	5.2	41
433	Crosslinked poly(vinyl acetate) (PVAc) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties. Composites Science and Technology, 2016, 126, 35-42.	7.8	59
434	Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products, 2016, 93, 2-25.	5.2	1,186
435	High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Advances, 2016, 6, 20644-20653.	3.6	84
436	Comparative study of the structure, mechanical and thermomechanical properties of cellulose nanopapers with different thickness. Cellulose, 2016, 23, 1375-1382.	4.9	33
437	Properties of cellulose micro/nanofibers obtained from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose, 2016, 23, 1239-1256.	4.9	54
438	Effect of stretching on the mechanical properties in melt-spun poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overloc 383-392.	k 10 Tf 50 10.2) 147 Td (su 28
439	Vegetable nanocellulose in food science: A review. Food Hydrocolloids, 2016, 57, 178-186.	10.7	267
440	Preparation of porous sheets with high mechanical strength by the addition of cellulose nanofibrils. Cellulose, 2016, 23, 1383-1392.	4.9	18

#	Δρτιςι ε	IF	CITATIONS
141	Characterization of cellulose nanofiber sheets from different refining processes. Cellulose, 2016, 23,	4.0	40
441	403-414.	4.9	40
442	Influence of combined mechanical treatments on the morphology and structure of cellulose nanofibrils: Thermal and mechanical properties of the resulting films. Industrial Crops and Products, 2016, 85, 1-10.	5.2	62
443	Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials, 2016, 82, 208-220.	11.4	127
444	Clay nanopaper as multifunctional brick and mortar fire protection coating—Wood case study. Materials and Design, 2016, 93, 357-363.	7.0	80
445	Innovations in Food Packaging Materials. Food Engineering Series, 2016, , 383-412.	0.7	2
446	Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Composites Science and Technology, 2016, 123, 49-56.	7.8	63
447	Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 2016, 83, 2-18.	7.6	573
448	Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose, 2016, 23, 837-852.	4.9	103
449	Effect of precipitated calcium carbonate—Cellulose nanofibrils composite filler on paper properties. Carbohydrate Polymers, 2016, 136, 820-825.	10.2	80
450	Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose, 2016, 23, 93-123.	4.9	314
451	Surface modification of cellulose nanofibrils by maleated styrene block copolymer and their composite reinforcement application. Cellulose, 2016, 23, 519-528.	4.9	24
452	Mechanical characterization of scalable cellulose nano-fiber based composites made using liquid composite molding process. Composites Part B: Engineering, 2016, 84, 277-284.	12.0	63
453	Plant-derived nanostructures: types and applications. Green Chemistry, 2016, 18, 20-52.	9.0	341
454	Nitrate removal from water using a nanopaper ion-exchanger. Environmental Science: Water Research and Technology, 2016, 2, 117-124.	2.4	46
455	Phase behaviour and droplet size of oil-in-water Pickering emulsions stabilised with plant-derived nanocellulosic materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 60-70.	4.7	143
456	Influence of Surface Charge Density and Morphology on the Formation of Polyelectrolyte Multilayers on Smooth Charged Cellulose Surfaces. Langmuir, 2017, 33, 968-979.	3.5	31
457	Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Industrial Crops and Products, 2017, 97, 374-387.	5.2	55
458	Thin Cellulose Nanofiber from Corncob Cellulose and Its Performance in Transparent Nanopaper. ACS Sustainable Chemistry and Engineering, 2017, 5, 2529-2534.	6.7	79

	CITATION RE	CITATION REPORT	
# 459	ARTICLE Drying and Pyrolysis of Cellulose Nanofibers from Wood, Bacteria, and Algae for Char Application in Oil Absorption and Dye Adsorption, ACS Sustainable Chemistry and Engineering, 2017, 5, 2679-2692,	IF 6.7	Citations
460	Mechanical characteristics of nanocellulose-PEG bionanocomposite wound dressings in wet conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 377-384.	3.1	61
461	Multi-layer nanopaper based composites. Cellulose, 2017, 24, 1759-1773.	4.9	18
462	Magnetic bionanocomposites from cellulose nanofibers: Fast, simple and effective production method. International Journal of Biological Macromolecules, 2017, 99, 29-36.	7.5	21
463	Room temperature synthesis of transition metal silicide-conducting polymer micro-composites for thermoelectric applications. Synthetic Metals, 2017, 225, 55-63.	3.9	9
464	Preparation and properties of thermoset composite films from two-component waterborne polyurethane with low loading level nanofibrillated cellulose. Progress in Organic Coatings, 2017, 106, 170-176.	3.9	30
465	Effects of preparation approaches on optical properties of self-assembled cellulose nanopapers. RSC Advances, 2017, 7, 10463-10468.	3.6	38
466	A multiscale crack-bridging model of cellulose nanopaper. Journal of the Mechanics and Physics of Solids, 2017, 103, 22-39.	4.8	75
470	Efficient continuous removal of nitrates from water with cationic cellulose nanopaper membranes. Resource-efficient Technologies, 2017, 3, 22-28.	0.1	17
471	Soft and rigid core latex nanoparticles prepared by RAFT-mediated surfactant-free emulsion polymerization for cellulose modification – a comparative study. Polymer Chemistry, 2017, 8, 1061-1073.	3.9	36
474	Steady-shear and viscoelastic properties of cellulose nanofibril–nanoclay dispersions. Cellulose, 2017, 24, 1815-1824.	4.9	19
475	Cellulose nanofibril nanopapers and bioinspired nanocomposites: a review to understand the mechanical property space. Journal of Materials Chemistry A, 2017, 5, 16003-16024.	10.3	237
476	Relationship between Young's Modulus and Film Architecture in Cellulose Nanofibril-Based Multilayered Thin Films. Langmuir, 2017, 33, 4138-4145.	3.5	17
477	Modelling the elastic properties of cellulose nanopaper. Materials and Design, 2017, 126, 183-189.	7.0	34
478	All-cellulose composite laminates prepared from pineapple leaf fibers treated with steam explosion and alkaline treatment. Journal of Reinforced Plastics and Composites, 2017, 36, 1146-1155.	3.1	24
479	Ultrastrong and Bioactive Nanostructured Bio-Based Composites. ACS Nano, 2017, 11, 5148-5159.	14.6	146
480	Cellulose Nanofibril-Based Coatings of Woven Cotton Fabrics for Improved Inkjet Printing with a Potential in E-Textile Manufacturing. ACS Sustainable Chemistry and Engineering, 2017, 5, 4793-4801.	6.7	73
481	Optical and mechanical properties of cellulose nanopaper structures. Proceedings of SPIE, 2017, , .	0.8	1

#	Article	IF	CITATIONS
482	Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper. Journal of Materials Science, 2017, 52, 9508-9519.	3.7	40
483	Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration. Biomacromolecules, 2017, 18, 242-248.	5.4	107
484	Effect of cellulose microfibril (CMF) addition on strength properties of middle ply of board. Cellulose, 2017, 24, 1041-1055.	4.9	12
485	Preparation of cellulose nanofibers and their improvement on ultradrawing properties of ultrahigh molecular weight polyethylene nanocomposite fibers. Polymers for Advanced Technologies, 2017, 28, 708-716.	3.2	4
486	Multifunctional hybrid films prepared by aqueous stabilization of graphene sheets viaing cellulose nanofibers and exfoliated montmorillonite system. European Polymer Journal, 2017, 86, 85-93.	5.4	8
487	Optimizing the mechanical properties of cellulose nanopaper through surface energy and critical length scale considerations. Cellulose, 2017, 24, 3289-3299.	4.9	25
488	Impact of nanofibrillation degree of eucalyptus and Amazonian hardwood sawdust on physical properties of cellulose nanofibril films. Wood Science and Technology, 2017, 51, 1095-1115.	3.2	36
489	A new quality index for benchmarking of different cellulose nanofibrils. Carbohydrate Polymers, 2017, 174, 318-329.	10.2	145
490	Direct production of cellulose nanocrystals from old newspapers and recycled newsprint. Carbohydrate Polymers, 2017, 173, 489-496.	10.2	44
491	Nanocellulose-based conductive materials and their emerging applications in energy devices - A review. Nano Energy, 2017, 35, 299-320.	16.0	329
492	Inorganic Nanowires-Assembled Layered Paper as the Valve for Controlling Water Transportation. ACS Applied Materials & Interfaces, 2017, 9, 11045-11053.	8.0	13
493	Counterion Size and Nature Control Structural and Mechanical Response in Cellulose Nanofibril Nanopapers. Biomacromolecules, 2017, 18, 1642-1653.	5.4	50
494	Sample geometry dependency on the measured tensile properties of cellulose nanopapers. Materials and Design, 2017, 121, 421-429.	7.0	50
495	Swelling and mass transport properties of nanocellulose-HPMC composite films. Materials and Design, 2017, 122, 414-421.	7.0	16
496	Aspects on nanofibrillated cellulose (NFC) processing, rheology and NFC-film properties. Current Opinion in Colloid and Interface Science, 2017, 29, 68-75.	7.4	61
497	Improving the mechanical properties of CNF films by NMMO partial dissolution with hot calender activation. Cellulose, 2017, 24, 1691-1704.	4.9	15
498	Green composites made from cellulose nanofibers and bio-based epoxy. , 2017, , 31-49.		5
499	Nanofibrillated cellulose: properties reinvestigated. Cellulose, 2017, 24, 1933-1945.	4.9	52

#	Article	IF	CITATIONS
500	Tunable softening and toughening of individualized cellulose nanofibers-polyurethane urea elastomer composites. Carbohydrate Polymers, 2017, 159, 125-135.	10.2	33
501	Biomimetic Inks Based on Cellulose Nanofibrils and Cross-Linkable Xylans for 3D Printing. ACS Applied Materials & Interfaces, 2017, 9, 40878-40886.	8.0	106
502	Surface-Tailored Nanocellulose Aerogels with Thiol-Functional Moieties for Highly Efficient and Selective Removal of Hg(II) Ions from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 11715-11726.	6.7	135
503	Submicron hierarchy of cellulose nanofibril films with etherified hemicelluloses. Carbohydrate Polymers, 2017, 177, 126-134.	10.2	13
504	Toughening mechanisms in cellulose nanopaper: the contribution of amorphous regions. Cellulose, 2017, 24, 4627-4639.	4.9	34
505	Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. Journal of Materials Chemistry A, 2017, 5, 19184-19194.	10.3	72
506	Preparation and characterization of zinc oxide/TEMPO-oxidized cellulose nanofibril composite films. Cellulose, 2017, 24, 4861-4870.	4.9	22
507	Production of Cellulose Nanofibrils and Their Application to Food: A Review. , 2017, , 1-33.		6
508	Can Fibrous Mats Outperform Current Ultrafiltration and Microfiltration Membranes?. Industrial & & & & & & & & & & & & & & & & & & &	3.7	6
509	Comparative characteristics of TEMPO-oxidized cellulose nanofibers and resulting nanopapers from bamboo, softwood, and hardwood pulps. Cellulose, 2017, 24, 4831-4844.	4.9	64
510	Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide. Journal of Pharmacy and Pharmacology, 2017, 69, 1477-1484.	2.4	19
511	Review of recent research on flexible multifunctional nanopapers. Nanoscale, 2017, 9, 15181-15205.	5.6	126
512	Aligning cellulose nanofibril dispersions for tougher fibers. Scientific Reports, 2017, 7, 11860.	3.3	79
513	Biomimetic adsorption of zwitterionic–xyloglucan block copolymers to CNF: towards tailored super-absorbing cellulose materials. RSC Advances, 2017, 7, 14947-14958.	3.6	16
514	Behavior of the interphase of dyed cotton residue flocks reinforced polypropylene composites. Composites Part B: Engineering, 2017, 128, 200-207.	12.0	39
515	Immobilization of antimicrobial peptides onto cellulose nanopaper. International Journal of Biological Macromolecules, 2017, 105, 741-748.	7.5	13
516	Super impact absorbing bio-alloys from inedible plants. Green Chemistry, 2017, 19, 4503-4508.	9.0	9
517	An Implantable Transparent Conductive Film with Water Resistance and Ultrabendability for Electronic Devices. ACS Applied Materials & amp; Interfaces, 2017, 9, 42302-42312.	8.0	20

#	Article	IF	CITATIONS
518	Thermal conductivity analysis and applications of nanocellulose materials. Science and Technology of Advanced Materials, 2017, 18, 877-892.	6.1	87
519	Water sorption in microfibrillated cellulose (MFC): The effect of temperature and pretreatment. Carbohydrate Polymers, 2017, 174, 1201-1212.	10.2	30
520	Enzyme-assisted mechanical production of microfibrillated cellulose from Northern Bleached Softwood Kraft pulp. Cellulose, 2017, 24, 3929-3942.	4.9	27
521	Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose, 2017, 24, 3943-3954.	4.9	63
522	A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydrate Polymers, 2017, 174, 740-749.	10.2	56
523	Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors. Scientific Reports, 2017, 7, 4317.	3.3	30
524	Novel Functional Materials Based on Cellulose. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.4	17
525	Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process. Cellulose, 2017, 24, 107-118.	4.9	47
526	Nanocellulose-Based Functional Materials. SpringerBriefs in Applied Sciences and Technology, 2017, , 69-87.	0.4	1
527	Interactions between cellulose nanofibers and retention systems in flocculation of recycled fibers. Cellulose, 2017, 24, 677-692.	4.9	28
528	Oriented Cellulose Nanopaper (OCNP) based on bagasse cellulose nanofibrils. Carbohydrate Polymers, 2017, 157, 1883-1891.	10.2	23
529	Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers. Cellulose, 2017, 24, 349-362.	4.9	49
530	Electrochemical circuits from â€ [~] cut and stick' PEDOT:PSS-nanocellulose composite. Flexible and Printed Electronics, 2017, 2, 045010.	2.7	18
531	Biomass nanofibrillar cellulose in nanocomposites. , 2017, , 305-326.		1
532	Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films. Frontiers of Chemical Science and Engineering, 2017, 11, 554-563.	4.4	44
533	Nanocellulose. , 2017, , 261-276.		50
534	9. Mechanical properties of nanocellulose-based nanocomposites. , 2017, , 471-530.		0
535	2. Preparation of microfibrillated cellulose. , 2017, , 47-116.		3

#	Article	IF	CITATIONS
536	Key issues in reinforcement involving nanocellulose. , 2017, , 401-425.		6
537	Preparation and Properties of Nanocellulose Films. , 2017, , 69-81.		Ο
538	Theoretical Study of the BaTiO3 Powder's Volume Ratio's Influence on the Output of Composite Piezoelectric Nanogenerator. Nanomaterials, 2017, 7, 143.	4.1	5
539	Nanopaper Properties and Adhesive Performance of Microfibrillated Cellulose from Different (Ligno-)Cellulosic Raw Materials. Polymers, 2017, 9, 326.	4.5	12
540	Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost. Polymers, 2017, 9, 557.	4.5	76
541	Nanocellulose in functional packaging. , 2017, , 175-213.		12
542	Spectroscopy and microscopy of microfibrillar and nanofibrillar composites. , 2017, , 279-299.		2
543	Nanofibrillated cellulose reinforcement in thermoset polymer composites. , 2017, , 1-24.		9
544	Nanofibrillated Cellulose from Appalachian Hardwoods Logging Residues as Template for Antimicrobial Copper. Journal of Nanomaterials, 2017, 2017, 1-14.	2.7	8
545	Investigation of Mechanical Properties and Morphology of Multi-Walled Carbon Nanotubes Reinforced Cellulose Acetate Fibers. Fibers, 2017, 5, 42.	4.0	3
546	Cellulose Nanofibers for the Enhancement of Printability of Low Viscosity Gelatin Derivatives. BioResources, 2017, 12, .	1.0	70
547	Cellulose fiber/nanofiber from natural sources including waste-based sources. , 2017, , 19-38.		8
548	Study of the structure/property relationship of nanomaterials for development of novel food packaging. , 2017, , 265-294.		2
549	Carbohydrate gel beads as model probes for quantifying non-ionic and ionic contributions behind the swelling of delignified plant fibers. Journal of Colloid and Interface Science, 2018, 519, 119-129.	9.4	19
550	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	31.8	182
551	Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. Advanced Functional Materials, 2018, 28, 1707491.	14.9	142
552	Cellulose nanofiber board. Carbohydrate Polymers, 2018, 187, 133-139.	10.2	32
553	Ultrasound-assisted conversion of cellulose into hydrogel and functional carbon material. Cellulose, 2018, 25, 2629-2645,	4.9	21

	CITATION	CITATION REPORT	
#	ARTICLE	IF 21.0	CITATIONS
554	Auvanced Materials through Assembly of Nanocendioses. Auvanced Materials, 2016, 50, e1705779.	21.0	493
555	Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2018, 115, 385-392.	7.5	55
556	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	38.1	690
557	Effects of nanofiber orientations on the fracture toughness of cellulose nanopaper. Engineering Fracture Mechanics, 2018, 194, 350-361.	4.3	47
558	Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films. Biomacromolecules, 2018, 19, 2423-2431.	5.4	30
559	On the potential of using nanocellulose for consolidation of painting canvases. Carbohydrate Polymers, 2018, 194, 161-169.	10.2	37
560	Flexible cellulose nanopaper with high wet tensile strength, high toughness and tunable ultraviolet blocking ability fabricated from tobacco stalk <i>via</i> a sustainable method. Journal of Materials Chemistry A, 2018, 6, 13021-13030.	10.3	132
561	Delignified and Densified Cellulose Bulk Materials with Excellent Tensile Properties for Sustainable Engineering. ACS Applied Materials & Interfaces, 2018, 10, 5030-5037.	8.0	191
562	Copper-Coated Cellulose-Based Water Filters for Virus Retention. ACS Omega, 2018, 3, 446-454.	3.5	31
563	Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil. Food Hydrocolloids, 2018, 79, 416-427.	10.7	87
564	Better together: synergy in nanocellulose blends. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170043.	3.4	21
565	Improving the water resistance of nanocellulose-based films with polyhydroxyalkanoates processed by the electrospinning coating technique. Cellulose, 2018, 25, 1291-1307.	4.9	75
566	Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities. Biomacromolecules, 2018, 19, 973-979.	5.4	30
567	Novel Thermoplastic Cellulose Esters Containing Bulky Moieties and Soft Segments. ACS Sustainable Chemistry and Engineering, 2018, 6, 4931-4939.	6.7	79
568	Cellulose Nanopapers. , 2018, , 121-173.		15
569	Cellulose/graphene bioplastic for thermal management: Enhanced isotropic thermally conductive property by three-dimensional interconnected graphene aerogel. Composites Part A: Applied Science and Manufacturing, 2018, 107, 189-196.	7.6	83
570	Chitosan adsorption on nanofibrillated cellulose with different aldehyde content and interaction with phosphate buffered saline. Carbohydrate Polymers, 2018, 186, 192-199.	10.2	12
571	Water vapor mass transport across nanofibrillated cellulose films: effect of surface hydrophobization. Cellulose, 2018, 25, 347-356.	4.9	20

#	Article	IF	CITATIONS
572	Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose, 2018, 25, 1339-1351.	4.9	25
573	Nanocellulose-montmorillonite composites of low water vapour permeability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 540, 233-241.	4.7	43
574	Improved redispersibility of cellulose nanofibrils in water using maltodextrin as a green, easily removable and non-toxic additive. Food Hydrocolloids, 2018, 79, 30-39.	10.7	46
575	Producing nanofibres from carrots with a chemical-free process. Carbohydrate Polymers, 2018, 184, 307-314.	10.2	40
576	Assessment of physical properties of self-bonded composites made of cellulose nanofibrils and poly(lactic acid) microfibrils. Cellulose, 2018, 25, 3393-3405.	4.9	8
577	Regenerated cellulose from N-methylmorpholine N-oxide solutions as a coating agent for paper materials. Cellulose, 2018, 25, 3595-3607.	4.9	20
578	Spraying Cellulose Nanofibrils for Improvement of Tensile and Barrier Properties of Writing & Printing (W&P) Paper. Journal of Wood Chemistry and Technology, 2018, 38, 233-245.	1.7	20
579	Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. International Journal of Biological Macromolecules, 2018, 114, 1077-1083.	7.5	38
580	Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring. Biomacromolecules, 2018, 19, 2341-2350.	5.4	63
581	Towards standardization of laboratory preparation procedure for uniform cellulose nanopapers. Cellulose, 2018, 25, 2915-2924.	4.9	18
582	Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn stover. Carbohydrate Polymers, 2018, 192, 202-207.	10.2	81
583	Anomalousâ€Diffusionâ€Assisted Brightness in White Cellulose Nanofibril Membranes. Advanced Materials, 2018, 30, e1704050.	21.0	83
584	Reinforcing abilities of microfibers and nanofibrillated cellulose in poly(lactic acid) composites. Science and Engineering of Composite Materials, 2018, 25, 395-401.	1.4	8
585	Effect of fiber and bond strength variations on the tensile stiffness and strength of fiber networks. International Journal of Solids and Structures, 2018, 154, 19-32.	2.7	40
586	Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstocks. Journal of Polymers and the Environment, 2018, 26, 830-837.	5.0	54
587	Activated Carbon-Entrapped Microfibrilated Cellulose Films As An Effective Adsorbent For Removing Organic Dye From Aqueous Effluent. Journal of Wood Chemistry and Technology, 2018, 38, 15-27.	1.7	9
588	Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 2018, 25, 269-280.	4.9	52
589	Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydrate Polymers, 2018, 181, 256-263.	10.2	19

#	Article	IF	CITATIONS
590	Review: nanoparticles and nanostructured materials in papermaking. Journal of Materials Science, 2018, 53, 146-184.	3.7	104
591	Nematic structuring of transparent and multifunctional nanocellulose papers. Nanoscale Horizons, 2018, 3, 28-34.	8.0	89
592	Physical and mechanical properties of a vegetable oil based nanocomposite. European Polymer Journal, 2018, 98, 116-124.	5.4	25
593	Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions. International Journal of Solids and Structures, 2018, 136-137, 271-278.	2.7	31
594	Combination of silicon microstructures and porous cellulose nanofiber structures to improve liquid-infused-type self-cleaning function. Precision Engineering, 2018, 51, 638-646.	3.4	6
595	Woodâ€Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453.	21.0	359
596	Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology, 2018, 102, 1155-1165.	3.6	55
597	Influence of Drying Treatment on Density of Cellulose Nanofiber Sheet. Journal of Fiber Science and Technology, 2018, 74, 118-121.	0.4	0
598	Self-Alignment Sequence of Colloidal Cellulose Nanofibers Induced by Evaporation from Aqueous Suspensions. Colloids and Interfaces, 2018, 2, 71.	2.1	9
599	Alcohol induced gelation of TEMPO-oxidized cellulose nanofibril dispersions. Soft Matter, 2018, 14, 9243-9249.	2.7	19
600	Nanocellulose, a Versatile Green Platform: From Biosources to Materials and Their Applications. Chemical Reviews, 2018, 118, 11575-11625.	47.7	1,008
601	Continuous Assembly of Cellulose Nanofibrils and Nanocrystals into Strong Macrofibers through Microfluidic Spinning. Advanced Materials Technologies, 2019, 4, 1800557.	5.8	47
602	Native Crystalline Polysaccharide Nanofibers: Processing and Properties. , 2018, , 1-36.		4
603	Bioinspired Environmentally Friendly Amorphous CaCO ₃ -Based Transparent Composites Comprising Cellulose Nanofibers. ACS Omega, 2018, 3, 12722-12729.	3.5	21
604	Review of Cellulose Smart Material: Biomass Conversion Process and Progress on Cellulose-Based Electroactive Paper. Journal of Renewable Materials, 2018, 6, 1-25.	2.2	29
605	Enzyme-assisted mechanical grinding for cellulose nanofibers from bagasse: energy consumption and nanofiber characteristics. Cellulose, 2018, 25, 7065-7078.	4.9	40
606	Self-reinforced poly(lactic acid) nanocomposites with integrated bacterial cellulose and its surface modification. Nanocomposites, 2018, 4, 102-111.	4.2	23
608	Hybrid nanopaper of cellulose nanofibrils and PET microfibers with high tear and crumpling resistance. Cellulose, 2018, 25, 7127-7142.	4.9	16

		PORT	
# 609	ARTICLE Polymers from Renewable Resources. Polymers and Polymeric Composites, 2018, , 1-27.	IF 0.6	Citations
610	Extremely stiff and strong nanocomposite hydrogels with stretchable cellulose nanofiber/poly(vinyl) Tj ETQq1 1 ().784314 4.9	rgBT /Overlo
611	Fabrication of Cellulose Nanofiber Reinforced Thermoplastic Composites. Fibers and Polymers, 2018, 19, 1753-1759.	2.1	8
612	Layer-by-layer-assembled chitosan/phosphorylated cellulose nanofibrils as a bio-based and flame protecting nano-exoskeleton on PU foams. Carbohydrate Polymers, 2018, 202, 479-487.	10.2	64
613	Effect of high residual lignin on the properties of cellulose nanofibrils/films. Cellulose, 2018, 25, 6421-6431.	4.9	79
614	NANOFIBRILLATED CELLULOSE AS AN ADDITIVE FOR RECYCLED PAPER. Cerne, 2018, 24, 140-148.	0.9	19
615	Sonication-assisted surface modification method to expedite the water removal from cellulose nanofibers for use in nanopapers and paper making. Carbohydrate Polymers, 2018, 197, 92-99.	10.2	38
616	Bioinspired LDHâ€Based Hierarchical Structural Hybrid Materials with Adjustable Mechanical Performance. Advanced Functional Materials, 2018, 28, 1801614.	14.9	13
617	Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Films. Pharmaceutical Research, 2018, 35, 145.	3.5	21
618	Composite films of regenerate cellulose with chitosan and polyvinyl alcohol: Evaluation of water adsorption, mechanical and optical properties. International Journal of Biological Macromolecules, 2018, 117, 235-246.	7.5	66
619	Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency. Biomacromolecules, 2018, 19, 3020-3029.	5.4	59
620	Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. International Journal of Polymer Science, 2018, 2018, 1-25.	2.7	162
621	lonic liquids for the preparation of biopolymer materials for drug/gene delivery: a review. Green Chemistry, 2018, 20, 4169-4200.	9.0	89
622	Nanocellulose for Industrial Use. , 2018, , 74-126.		105
623	Nanoparticles capture on cellulose nanofiber depth filters. Carbohydrate Polymers, 2018, 201, 482-489.	10.2	14
624	Top-down Approach to Produce Protein Functionalized and Highly Thermally Stable Cellulose Fibrils. Biomacromolecules, 2018, 19, 3549-3559.	5.4	6
625	Application of Nanofibrillated Cellulose on BOPP/LDPE Film as Oxygen Barrier and Antimicrobial Coating Based on Cold Plasma Treatment. Coatings, 2018, 8, 207.	2.6	34
626	Recent Advances in Modified Cellulose for Tissue Culture Applications. Molecules, 2018, 23, 654.	3.8	97

#	Article	IF	CITATIONS
627	Characterization of Bamboo Nanocellulose Prepared by TEMPO-mediated Oxidation. BioResources, 2018, 13, .	1.0	14
628	Stereoselectively water resistant hybrid nanopapers prepared by cellulose nanofibers and water-based polyurethane. Carbohydrate Polymers, 2018, 199, 286-293.	10.2	11
629	Analysis of the Porous Architecture and Properties of Anisotropic Nanocellulose Foams: A Novel Approach to Assess the Quality of Cellulose Nanofibrils (CNFs). ACS Sustainable Chemistry and Engineering, 2018, 6, 11959-11967.	6.7	40
630	Comparative properties of nanofibers produced using unbleached and bleached wheat straw pulps. Nordic Pulp and Paper Research Journal, 2018, 33, 439-447.	0.7	2
631	Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. ACS Nano, 2018, 12, 6378-6388.	14.6	359
632	Polymers at the Interface with Biology. Biomacromolecules, 2018, 19, 3151-3162.	5.4	10
633	Influence of the morphology of zinc oxide nanoparticles on the properties of zinc oxide/nanocellulose composite films. Reactive and Functional Polymers, 2018, 131, 293-298.	4.1	16
634	Tuning the Nanoscale Properties of Phosphorylated Cellulose Nanofibril-Based Thin Films To Achieve Highly Fire-Protecting Coatings for Flammable Solid Materials. ACS Applied Materials & Interfaces, 2018, 10, 32543-32555.	8.0	31
635	Zeolite Integrated Nanocellulose Films for Removal of Loose Anionic Reactive Dye by Adsorption vs. Filtration Mode during Textile Laundering. Fibers and Polymers, 2018, 19, 1556-1566.	2.1	6
636	Transparent plywood as a load-bearing and luminescent biocomposite. Composites Science and Technology, 2018, 164, 296-303.	7.8	90
637	Green Formation of Robust Supraparticles for Cargo Protection and Hazards Control in Natural Environments. Small, 2018, 14, e1801256.	10.0	32
638	Toward Sustainable Multifunctional Coatings Containing Nanocellulose in a Hybrid Glass Matrix. ACS Nano, 2018, 12, 5495-5503.	14.6	25
639	Cellulose nanofibril-reinforced composites using aqueous dispersed ethylene-acrylic acid copolymer. Cellulose, 2018, 25, 4577-4589.	4.9	15
640	Chitin Nanopapers. , 2018, , 175-200.		4
641	Nanostructural Effects in High Cellulose Content Thermoplastic Nanocomposites with a Covalently Grafted Cellulose–Poly(methyl methacrylate) Interface. Biomacromolecules, 2019, 20, 598-607.	5.4	15
642	Mechanical Characterization of Cellulose Nanofibril Materials Made by Additive Manufacturing. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 43-45.	0.5	3
643	Enzymatic nanocellulose in papermaking – The key role as filler flocculant and strengthening agent. Carbohydrate Polymers, 2019, 224, 115200.	10.2	34
644	Wet-Stacking Lamination of Multilayer Mechanically Fibrillated Cellulose Nanofibril (CNF) Sheets with Increased Mechanical Performance for Use in High-Strength and Lightweight Structural and Packaging Applications. ACS Applied Polymer Materials, 2019, 1, 2525-2534.	4.4	20

#	Article	IF	CITATIONS
645	Multifunctional Nanocomposites with High Strength and Capacitance Using 2D MXene and 1D Nanocellulose. Advanced Materials, 2019, 31, e1902977.	21.0	253
646	Physicochemical Mechanics of Bacterial Cellulose. Colloid Journal, 2019, 81, 366-376.	1.3	21
647	Cellulose nanofibrils prepared by gentle drying methods reveal the limits of helium ion microscopy imaging. RSC Advances, 2019, 9, 15668-15677.	3.6	15
648	Nanostructured Films Produced from the Bleached Pinus sp. Kraft Pulp. Floresta E Ambiente, 2019, 26, .	0.4	9
649	Microstructure and Size Effects on the Mechanics of Two Dimensional, High Aspect Ratio Nanoparticle Assemblies. Frontiers in Materials, 2019, 6, .	2.4	7
650	Polylactide cellulose-based nanocomposites. International Journal of Biological Macromolecules, 2019, 137, 912-938.	7.5	114
651	Processing-Structure-Property Correlation Understanding of Microfibrillated Cellulose Based Dimensional Structures for Ferric Ions Removal. Scientific Reports, 2019, 9, 10277.	3.3	17
652	Structural control of cellulose nanofibrous composite membrane with metal organic framework (ZIF-8) for highly selective removal of cationic dye. Carbohydrate Polymers, 2019, 222, 115018.	10.2	65
653	Mechanical behavior of nonwoven non-crosslinked fibrous mats with adhesion and friction. Soft Matter, 2019, 15, 5951-5964.	2.7	21
655	Extraction of Cellulose Nanofibers via Eco-friendly Supercritical Carbon Dioxide Treatment Followed by Mild Acid Hydrolysis and the Fabrication of Cellulose Nanopapers. Polymers, 2019, 11, 1813.	4.5	41
656	Outstanding Synergies in Mechanical Properties of Bioinspired Cellulose Nanofibril Nanocomposites using Self-Cross-Linking Polyurethanes. ACS Applied Polymer Materials, 2019, 1, 3334-3342.	4.4	22
657	Ionâ€Specific Assembly of Strong, Tough, and Stiff Biofibers. Angewandte Chemie, 2019, 131, 18735-18742.	2.0	13
658	lon‧pecific Assembly of Strong, Tough, and Stiff Biofibers. Angewandte Chemie - International Edition, 2019, 58, 18562-18569.	13.8	47
659	Thermal and electrical properties of nanocellulose films with different interfibrillar structures of alkyl ammonium carboxylates. Cellulose, 2019, 26, 1657-1665.	4.9	6
660	Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims. Bio-Design and Manufacturing, 2019, 2, 187-212.	7.7	49
661	Lignin-Rich Nanocellulose Fibrils Isolated from Parenchyma Cells and Fiber Cells of Western Red Cedar Bark. ACS Sustainable Chemistry and Engineering, 2019, 7, 15607-15616.	6.7	51
662	Cellulose nanofibrils for biomaterial applications. Materials Today: Proceedings, 2019, 16, 1959-1968.	1.8	25
663	Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals. Current Opinion in Solid State and Materials Science, 2019, 23, 101-106.	11.5	138

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
664	Tailored nanocellulose structure depending on the origin. Example of apple parenchyma and carrot root celluloses. Carbohydrate Polymers, 2019, 210, 186-195.	10.2	33
665	Extraction of Cellulose Nanofibers and Their Eco/Friendly Polymer Composites. , 2019, , 37-64.		13
666	Nanocellulose in the Paper Making. , 2019, , 1027-1066.		9
667	Anti-oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extract. Food Hydrocolloids, 2019, 92, 208-217.	10.7	69
668	In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production. Molecules, 2019, 24, 1800.	3.8	40
669	So much more than paper. Nature Photonics, 2019, 13, 365-367.	31.4	64
670	Mechanics of Strong and Tough Cellulose Nanopaper. Applied Mechanics Reviews, 2019, 71, .	10.1	74
671	Evaluation of properties and specific energy consumption of spinifex-derived lignocellulose fibers produced using different mechanical processes. Cellulose, 2019, 26, 6555-6569.	4.9	21
672	Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment. Chemical Engineering Journal, 2019, 375, 122050.	12.7	59
673	Comparative study of cellulose and lignocellulose nanopapers prepared from hard wood pulps: Morphological, structural and barrier properties. International Journal of Biological Macromolecules, 2019, 135, 512-520.	7.5	13
674	Mechanical properties of cellulose nanofibril films: effects of crystallinity and its modification by treatment with liquid anhydrous ammonia. Cellulose, 2019, 26, 6615-6627.	4.9	14
675	Recent Advances on Renewable and Biodegradable Cellulose Nanopaper Substrates for Transparent Light-Harvesting Devices: Interaction with Humid Environment. International Journal of Photoenergy, 2019, 2019, 1-16.	2.5	14
676	Cross-linking of cellulose nanofiber films with glutaraldehyde for improved mechanical properties. Materials Letters, 2019, 250, 99-102.	2.6	56
677	Mesoporous Cellulose Nanocrystal Membranes as Battery Separators for Environmentally Safer Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 3749-3761.	5.1	58
678	High strength nanostructured films based on well-preserved β-chitin nanofibrils. Nanoscale, 2019, 11, 11001-11011.	5.6	35
679	Contribution of hemicellulose to cellulose nanofiber-based nanocomposite films with enhanced strength, flexibility and UV-blocking properties. Cellulose, 2019, 26, 6023-6034.	4.9	42
680	Explaining the Exceptional Wet Integrity of Transparent Cellulose Nanofibril Films in the Presence of Multivalent Ions—Suitable Substrates for Biointerfaces. Advanced Materials Interfaces, 2019, 6, 1900333.	3.7	26
681	Ultra-low Cost, Large Area Graphene/MoS2-Based Piezotronic Memristor on Paper: A Systematic Study for Both Direct Current and Alternating Current Inputs. ACS Applied Electronic Materials, 2019, 1, 883-891.	4.3	22

#	Article	IF	CITATIONS
682	Production of cationic nanofibrils of cellulose by twin-screw extrusion. Industrial Crops and Products, 2019, 137, 81-88.	5.2	32
683	The Effect of Oxidation Time and Concentration on Physicochemical, Structural, and Thermal Properties of Bacterial Nano-Cellulose. Polymer Science - Series A, 2019, 61, 265-273.	1.0	3
684	Interaction of divalent cations with carboxylate group in TEMPO-oxidized microfibrillated cellulose systems. Cellulose, 2019, 26, 4841-4851.	4.9	11
685	Enhanced microfibrillated cellulose-based film by controlling the hemicellulose content and MFC rheology. Carbohydrate Polymers, 2019, 218, 307-314.	10.2	26
686	Thin-film diaphragms of cellulose nanofiber fabricated using high-concentration polar dispersion for application to MEMS actuators. Sensors and Actuators A: Physical, 2019, 289, 134-143.	4.1	2
687	Nanocomposites from Clay, Cellulose Nanofibrils, and Epoxy with Improved Moisture Stability for Coatings and Semistructural Applications. ACS Applied Nano Materials, 2019, 2, 3117-3126.	5.0	24
688	Hybrid films of cellulose nanofibrils, chitosan and nanosilica—Structural, thermal, optical, and mechanical properties. Carbohydrate Polymers, 2019, 218, 87-94.	10.2	26
689	Natural fibre-nanocellulose composite filters for the removal of heavy metal ions from water. Industrial Crops and Products, 2019, 133, 325-332.	5.2	44
690	Using cellulose fibers to fabricate transparent paper by microfibrillation. Carbohydrate Polymers, 2019, 214, 26-33.	10.2	44
691	Pickering Emulsions Containing Cellulose Microfibers Produced by Mechanical Treatments as Stabilizer in the Food Industry. Applied Sciences (Switzerland), 2019, 9, 359.	2.5	53
692	Shape fidelity and structure of 3D printed high consistency nanocellulose. Scientific Reports, 2019, 9, 3822.	3.3	39
693	The adsorption of phosphate-buffered saline to model films composed of nanofibrillated cellulose and gelatin. Journal of Applied Biomaterials and Functional Materials, 2019, 17, 228080001982651.	1.6	3
694	Study on Nanocellulose Properties Processed Using Different Methods and Their Aerogels. Journal of Polymers and the Environment, 2019, 27, 1418-1428.	5.0	13
695	Nanostructure and Properties of Nacre-Inspired Clay/Cellulose Nanocomposites—Synchrotron X-ray Scattering Analysis. Macromolecules, 2019, 52, 3131-3140.	4.8	38
696	Organic transistors on paper: a brief review. Journal of Materials Chemistry C, 2019, 7, 5522-5533.	5.5	90
697	Composite Films with UV-Barrier Properties Based on Bacterial Cellulose Combined with Chitosan and Poly(vinyl alcohol): Study of Puncture and Water Interaction Properties. Biomacromolecules, 2019, 20, 2084-2095.	5.4	37
699	Facile preparation of fluorescence-labelled nanofibrillated cellulose (NFC) toward revealing spatial distribution and the interface. Cellulose, 2019, 26, 4345-4355.	4.9	12
700	Polymers from Renewable Resources. Polymers and Polymeric Composites, 2019, , 45-71.	0.6	0

#	Article	IF	CITATIONS
701	Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose, 2019, 26, 4767-4786.	4.9	60
702	Preparation of cellulose nanomaterials via cellulose oxalates. Carbohydrate Polymers, 2019, 213, 208-216.	10.2	65
703	Stronger cellulose microfibril network structure through the expression of cellulose-binding modules in plant primary cell walls. Cellulose, 2019, 26, 3083-3094.	4.9	11
704	Transparent and flexible vermiculite–cellulose nanofiber composite membranes with high-temperature proton conduction. Journal of Materials Science, 2019, 54, 5528-5535.	3.7	11
705	Influences of diffusion coefficient of 1â€allylâ€3â€methylimidazolium chloride on structure and properties of regenerated cellulose fiber obtained via dryâ€jetâ€wet spinning. Journal of Applied Polymer Science, 2019, 136, 47609.	2.6	9
706	Carboxymethylated cellulose nanofibrils in papermaking: influence on filler retention and paper properties. Cellulose, 2019, 26, 3489-3502.	4.9	29
707	NANOCELLULOSE OBTAINED MECHANICALLY BY DIFFERENT COLLOID GRINDING INTENSITIES. Floresta, 2019, 50, 897.	0.2	3
708	Lytic polysaccharide monooxygenase (LPMO) mediated production of ultra-fine cellulose nanofibres from delignified softwood fibres. Green Chemistry, 2019, 21, 5924-5933.	9.0	69
709	Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. Journal of Materials Chemistry A, 2019, 7, 27023-27031.	10.3	86
710	Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films. Cellulose, 2019, 26, 1577-1593.	4.9	60
711	Comparative study of aramid nanofiber (ANF) and cellulose nanofiber (CNF). Carbohydrate Polymers, 2019, 208, 372-381.	10.2	59
712	Vitrimer Chemistry Meets Cellulose Nanofibrils: Bioinspired Nanopapers with High Water Resistance and Strong Adhesion. Biomacromolecules, 2019, 20, 1045-1055.	5.4	77
713	The Role of Cellulose Based Separator in Lithium Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A5237-A5243.	2.9	27
714	Production and modification of nanofibrillated cellulose composites and potential applications. , 2019, , 115-141.		12
715	Towards optimised size distribution in commercial microfibrillated cellulose: a fractionation approach. Cellulose, 2019, 26, 1565-1575.	4.9	38
716	Cellulose Nanopaper with Monolithically Integrated Conductive Micropatterns. Advanced Electronic Materials, 2019, 5, 1800924.	5.1	19
717	Printing and mechanical characterization of cellulose nanofibril materials. Cellulose, 2019, 26, 2639-2651.	4.9	17
718	Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. European Polymer Journal, 2019, 112, 334-345.	5.4	34

#	Article	IF	CITATIONS
719	Tailoring adhesion of anionic surfaces using cationic PISA-latexes – towards tough nanocellulose materials in the wet state. Nanoscale, 2019, 11, 4287-4302.	5.6	22
720	Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particles. Biomacromolecules, 2019, 20, 693-704.	5.4	202
721	Modeling the Large Deformation and Microstructure Evolution of Nonwoven Polymer Fiber Networks. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	21
722	Morphological and property characteristics of surface-quaternized nanofibrillated cellulose derived from bamboo pulp. Cellulose, 2019, 26, 1683-1701.	4.9	20
723	Strong and Tough Chitin Film from α-Chitin Nanofibers Prepared by High Pressure Homogenization and Chitosan Addition. ACS Sustainable Chemistry and Engineering, 2019, 7, 1692-1697.	6.7	44
724	A fast method to prepare mechanically strong and water resistant lignocellulosic nanopapers. Carbohydrate Polymers, 2019, 203, 148-156.	10.2	40
725	Characterizing highly fibrillated nanocellulose by modifying the gel point methodology. Carbohydrate Polymers, 2020, 227, 115340.	10.2	27
726	Nanomaterials Derived from Fungal Sources—Is It the New Hype?. Biomacromolecules, 2020, 21, 30-55.	5.4	68
727	A comparison between the failure modes observed in biological and synthetic polymer nanocomposites. Polymer-Plastics Technology and Materials, 2020, 59, 241-270.	1.3	4
728	Incorporation of ligno-cellulose nanofibrils and bark extractives in water-based coatings for improved wood protection. Progress in Organic Coatings, 2020, 138, 105210.	3.9	15
729	Sustainable production of cellulose nanofiber gels and paper from sugar beet waste using enzymatic pre-treatment. Carbohydrate Polymers, 2020, 230, 115581.	10.2	31
731	Silk/Natural Rubber (NR) and 3,4-Dihydroxyphenylalanine (DOPA)-Modified Silk/NR Composites: Synthesis, Secondary Structure, and Mechanical Properties. Molecules, 2020, 25, 235.	3.8	8
732	Mussel-Inspired Highly Stretchable, Tough Nanocomposite Hydrogel with Self-Healable and Near-Infrared Actuated Performance. Industrial & Engineering Chemistry Research, 2020, 59, 166-174.	3.7	18
733	Eco-Friendly Cellulose Nanofibrils Designed by Nature: Effects from Preserving Native State. ACS Nano, 2020, 14, 724-735.	14.6	130
734	Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water. Reactive and Functional Polymers, 2020, 146, 104428.	4.1	35
735	Microfibrillated lignocellulose (MFLC) and nanopaper films from unbleached kraft softwood pulp. Cellulose, 2020, 27, 2325-2341.	4.9	30
736	Aggregation-induced white emission of lanthanide metallopolymer and its coating on cellulose nanopaper for white-light softening. Journal of Materials Chemistry C, 2020, 8, 2205-2210.	5.5	17
737	The Topochemistry of Cellulose Nanofibrils as a Function of Mechanical Generation Energy. ACS Sustainable Chemistry and Engineering, 2020, 8, 1471-1478.	6.7	27

#	Article	IF	CITATIONS
738	Xyloglucan coating for enhanced strength and toughness in wood fibre networks. Carbohydrate Polymers, 2020, 229, 115540.	10.2	6
739	On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications. Cellulose, 2020, 27, 1853-1877.	4.9	99
740	High-Strength Nanostructured Films Based on Well-Preserved α-Chitin Nanofibrils Disintegrated from Insect Cuticles. Biomacromolecules, 2020, 21, 604-612.	5.4	18
741	The influence of versatile thiol-norbornene modifications to cellulose nanofibers on rheology and film properties. Carbohydrate Polymers, 2020, 230, 115672.	10.2	22
742	Preparation and characterization of cellulose acetate membranes with TEMPO-oxidized cellulose nanofibrils containing alkyl ammonium carboxylates. Cellulose, 2020, 27, 1357-1365.	4.9	6
743	A review of cellulose nanomaterials incorporated fruit coatings with improved barrier property and stability: Principles and applications. Journal of Food Process Engineering, 2020, 43, e13344.	2.9	20
744	Favorable combination of foldability and toughness of transparent cellulose nanofibril films by a PET fiber-reinforced strategy. International Journal of Biological Macromolecules, 2020, 164, 3268-3274.	7.5	10
745	TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37–9 strains. International Journal of Biological Macromolecules, 2020, 163, 1908-1914.	7.5	10
746	Controlled retention and drainage of microfibrillated cellulose in continuous paper production. New Journal of Chemistry, 2020, 44, 13796-13806.	2.8	8
747	Bio-Composites Consisting of Cellulose Nanofibers and Na+ Montmorillonite Clay: Morphology and Performance Property. Polymers, 2020, 12, 1448.	4.5	9
748	Emerging Nanocellulose Technologies: Recent Developments. Advanced Materials, 2021, 33, e2000630.	21.0	178
749	Cellulose and its derivatives for lithium ion battery separators: A review on the processing methods and properties. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100001.	2.6	45
750	Mechanics Design in Celluloseâ€Enabled Highâ€Performance Functional Materials. Advanced Materials, 2021, 33, e2002504.	21.0	77
751	Assembly of Anisotropic Nanocellulose Films Stronger than the Original Tree. ACS Nano, 2020, 14, 16525-16534.	14.6	19
752	Nanocellulose from fractionated sulfite wood pulp. Cellulose, 2020, 27, 9325-9336.	4.9	8
753	Fabrication of nanocrystalline cellulose from banana peel obtained from unripe plantain bananas. Journal of Physics: Conference Series, 2020, 1644, 012002.	0.4	5
754	Investigation of physical and mechanical properties of nano-pulverized cellulose nanofiber preform sheets for CNF thermoset nanocomposites application. Wood Science and Technology, 2020, 54, 1349-1362.	3.2	2
755	Procuring the nano-scale lignin in prehydrolyzate as ingredient to prepare cellulose nanofibril composite film with multiple functions. Cellulose, 2020, 27, 9355-9370.	4.9	101

#	Article	IF	CITATIONS
756	A Review on Micro- to Nanocellulose Biopolymer Scaffold Forming for Tissue Engineering Applications. Polymers, 2020, 12, 2043.	4.5	71
757	Exploring Large Ductility in Cellulose Nanopaper Combining High Toughness and Strength. ACS Nano, 2020, 14, 11150-11159.	14.6	45
758	Enhanced sieving of cellulosic microfiber membranes <i>via</i> tuning of interlayer spacing. Environmental Science: Nano, 2020, 7, 2941-2952.	4.3	9
759	Production of High Solid Nanocellulose by Enzyme-Aided Fibrillation Coupled with Mild Mechanical Treatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 18853-18863.	6.7	26
760	Nanocellulose as a sustainable material for water purification. SPE Polymers, 2020, 1, 69-80.	3.3	32
761	Lignocellulose Enabled Highly Transparent Nanopaper with Tunable Ultraviolet-Blocking Performance and Superior Durability. ACS Sustainable Chemistry and Engineering, 2020, 8, 17033-17041.	6.7	20
762	Nanopaper-based sensors. Comprehensive Analytical Chemistry, 2020, , 257-312.	1.3	11
763	Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency. Carbohydrate Polymers, 2020, 240, 116342.	10.2	23
764	Self-Standing High-Performance Transparent Actuator Based on Poly(dimethylsiloxane)/TEMPO-Oxidized Cellulose Nanofibers/Ionic Liquid Gel. Langmuir, 2020, 36, 6154-6159.	3.5	13
765	UV-blocking, transparent and hazy cellulose nanopaper with superior strength based on varied components of poplar mechanical pulp. Cellulose, 2020, 27, 6563-6576.	4.9	27
766	Cellulose micro and nanofibrils as coating agent for improved printability in office papers. Cellulose, 2020, 27, 6001-6010.	4.9	24
767	Pure cellulose nanofibrils membranes loaded with ciprofloxacin for drug release and antibacterial activity. Cellulose, 2020, 27, 7037-7052.	4.9	8
768	Effects of nanocellulose formulation on physicomechanical properties of Aquazol–nanocellulose composites. Cellulose, 2020, 27, 5757-5769.	4.9	8
769	Field-Assisted Alignment of Cellulose Nanofibrils in a Continuous Flow-Focusing System. ACS Applied Materials & Interfaces, 2020, 12, 28568-28575.	8.0	20
770	Wood Cellulose Paper for Solar Cells. , 2020, , 279-295.		4
771	Structural and Ecofriendly Holocellulose Materials from Wood: Microscale Fibers and Nanoscale Fibrils. Advanced Materials, 2021, 33, e2001118.	21.0	52
772	Biocomposites from Rice Straw Nanofibers: Morphology, Thermal and Mechanical Properties. Materials, 2020, 13, 2138.	2.9	21
773	Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids. Carbohydrate Polymers, 2020, 237, 116109.	10.2	39

#	Article	IF	CITATIONS
774	Fractionation of non-timber wood from Atlantic mixed forest into high-value lignocellulosic materials. Journal of Wood Chemistry and Technology, 2020, 40, 200-212.	1.7	0
775	Nanocomposites of Bacterial Cellulose Nanofibrils and Zein Nanoparticles for Food Packaging. ACS Applied Nano Materials, 2020, 3, 2899-2910.	5.0	38
776	Nanoparticle rearrangement under stress in networks of cellulose nanofibrils using in situ SAXS during tensile testing. Nanoscale, 2020, 12, 6462-6471.	5.6	9
777	Cellulose nanocrystal based multifunctional nanohybrids. Progress in Materials Science, 2020, 112, 100668.	32.8	113
778	Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering.ÂA review. Environmental Chemistry Letters, 2020, 18, 851-869.	16.2	195
779	A comprehensive study on nanocelluloses in papermaking: the influence of common additives on filler retention and paper strength. Cellulose, 2020, 27, 5297-5309.	4.9	16
780	Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose. Frontiers in Chemistry, 2020, 8, 37.	3.6	49
781	Bottom-up assembly of nanocellulose structures. Carbohydrate Polymers, 2020, 247, 116664.	10.2	46
782	Combined mechanical grinding and enzyme post-treatment leading to increased yield and size uniformity of cellulose nanofibrils. Cellulose, 2020, 27, 7447-7461.	4.9	10
783	Biopolymer membranes in fuel cell applications. , 2020, , 423-476.		7
784	Characterization of vegetable fibers and their application in cementitious composites. , 2020, , 141-167.		6
785	Anisotropic Thermal Expansion of Transparent Cellulose Nanopapers. Frontiers in Chemistry, 2020, 8, 68.	3.6	9
786	Characterization data of pulp fibres performance in tissue papers applications. Data in Brief, 2020, 29, 105253.	1.0	9
787	High-strength cellulose nanofibers produced∢i>viaswelling pretreatment based on a choline chloride–imidazole deep eutectic solvent. Green Chemistry, 2020, 22, 1763-1775.	9.0	65
788	Nanocelluloseâ€Enabled Membranes for Water Purification: Perspectives. Advanced Sustainable Systems, 2020, 4, 1900114.	5.3	118
789	Critical Role of Degree of Polymerization of Cellulose in Super-Strong Nanocellulose Films. Matter, 2020, 2, 1000-1014.	10.0	106
790	Wood-Based Flexible Electronics. ACS Nano, 2020, 14, 3528-3538.	14.6	152
791	Cellulose nanofiber diameter distributions from microscopy image analysis: effect of measurement statistics and operator. Cellulose, 2020, 27, 4189-4208.	4.9	12

#	Article	IF	CITATIONS
792	Tuning of size and properties of cellulose nanofibers isolated from sugarcane bagasse by endoglucanase-assisted mechanical grinding. Industrial Crops and Products, 2020, 146, 112201.	5.2	28
793	Cellulose nanofibrils versus cellulose nanocrystals: Comparison of performance in flexible multilayer films for packaging applications. Food Packaging and Shelf Life, 2020, 23, 100464.	7.5	66
794	High porosity cellulose nanopapers as reinforcement in multi-layer epoxy laminates. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105779.	7.6	22
795	Thermal diffusivity modulation driven by the interfacial elastic dynamics between cellulose nanofibers. Nanoscale Advances, 2020, 2, 1024-1030.	4.6	8
796	Bio-sorbents, industrially important chemicals and novel materials from citrus processing waste as a sustainable and renewable bioresource: A review. Journal of Advanced Research, 2020, 23, 61-82.	9.5	94
797	A reproducible method to characterize the bulk morphology of cellulose nanocrystals and nanofibers by transmission electron microscopy. Cellulose, 2020, 27, 4871-4887.	4.9	33
798	Transparent lignin-containing wood nanofiber films with UV-blocking, oxygen barrier, and anti-microbial properties. Journal of Materials Chemistry A, 2020, 8, 7935-7946.	10.3	110
799	Cellulose nanofibrils and nanocrystals in confined flow: Single-particle dynamics to collective alignment revealed through scanning small-angle x-ray scattering and numerical simulations. Physical Review E, 2020, 101, 032610.	2.1	26
800	Simulating Study on Mechanical Properties of Rock Wool Board for Thermal Insulation on External Walls. Advances in Materials Science and Engineering, 2020, 2020, 1-11.	1.8	2
801	Facile chemo-refining approach for production of micro-nanofibrillated cellulose from bleached mixed hardwood pulp to improve paper quality. Carbohydrate Polymers, 2020, 238, 116186.	10.2	17
802	Novel polyethersulfone-cellulose composite thin film using sustainable empty fruit bunches from Elaeis guineensis for methylene blue removal. Polymer Testing, 2020, 86, 106494.	4.8	11
803	Experimental evaluation of glass fiber composite reinforced with cellulose nanoparticles. Materials Today: Proceedings, 2021, 39, 1221-1227.	1.8	1
804	Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydrate Polymers, 2021, 253, 117273.	10.2	43
805	Modification of nanocellulose membrane by impregnation method with sulfosuccinic acid for direct methanol fuel cell applications. Polymer Bulletin, 2021, 78, 3705-3728.	3.3	17
806	Bacterial nanocellulose papers with high porosity for optimized permeance and rejection of nm-sized pollutants. Carbohydrate Polymers, 2021, 251, 117130.	10.2	19
807	Tensile and morphological properties of nanocrystalline cellulose and nanofibrillated cellulose reinforced <scp>PLA</scp> bionanocomposites: A review. Polymer Engineering and Science, 2021, 61, 22-38.	3.1	27
808	High-performance homogenized and spray coated nanofibrillated cellulose-montmorillonite barriers. Cellulose, 2021, 28, 405-416.	4.9	13
809	Impact of incubation conditions and post-treatment on the properties of bacterial cellulose membranes for pressure-driven filtration. Carbohydrate Polymers, 2021, 251, 117073.	10.2	15

#	Article	IF	CITATIONS
810	Nanocellulose-based sustainable microwave absorbers to stifle electromagnetic pollution. , 2021, , 237-258.		10
811	Electrochemical applications of nanocellulose. , 2021, , 313-335.		2
812	Fabrication of regenerated cellulose films by DMAc dissolution using parenchyma cells via low-temperature pulping from Yunnan-endemic bamboos. Industrial Crops and Products, 2021, 160, 113116.	5.2	26
813	Effect of carboxymethylated cellulose nanofibril concentration regime upon material forming on mechanical properties in films and filaments. Cellulose, 2021, 28, 881-895.	4.9	6
814	Nanocellulose-based functional paper. , 2021, , 31-72.		1
815	Comparison of tension wood and normal wood for oxidative nanofibrillation and network characteristics. Cellulose, 2021, 28, 1085-1104.	4.9	10
816	Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. International Journal of Biological Macromolecules, 2021, 166, 1586-1616.	7.5	72
817	Design strategies, properties and applications of cellulose nanomaterials-enhanced products with residual, technical or nanoscale lignin—A review. Carbohydrate Polymers, 2021, 254, 117480.	10.2	23
818	Incorporation of gelatin improves toughness of collagen films with a homo-hierarchical structure. Food Chemistry, 2021, 345, 128802.	8.2	36
819	High crystallinity of tunicate cellulose nanofibers for high-performance engineering films. Carbohydrate Polymers, 2021, 254, 117470.	10.2	22
820	Molecular weight characterization of cellulose using ionic liquids. Polymer Testing, 2021, 93, 106985.	4.8	20
821	High-Performance Bamboo Steel Derived from Natural Bamboo. ACS Applied Materials & Interfaces, 2021, 13, 1431-1440.	8.0	63
822	In-depth characterization of the aggregation state of cellulose nanocrystals through analysis of transmission electron microscopy images. Carbohydrate Polymers, 2021, 254, 117271.	10.2	20
823	Effect of endoglucanase and high-pressure homogenization post-treatments on mechanically grinded cellulose nanofibrils and their film performance. Carbohydrate Polymers, 2021, 253, 117253.	10.2	30
824	Fracture toughness analysis of helical fiber-reinforced biocomposites. Journal of the Mechanics and Physics of Solids, 2021, 146, 104206.	4.8	22
825	Surface Charges Control the Structure and Properties of Layered Nanocomposite of Cellulose Nanofibrils and Clay Platelets. ACS Applied Materials & amp; Interfaces, 2021, 13, 4463-4472.	8.0	25
826	Reduced graphene oxide integrated poly(ionic liquid) functionalized nano-fibrillated cellulose composite paper with improved toughness, ductility and hydrophobicity. Materials Advances, 2021, 2, 948-952.	5.4	2
827	Spray deposition of sulfonated cellulose nanofibers as electrolyte membranes in fuel cells. Cellulose, 2021, 28, 1355-1367.	4.9	20

# 828	ARTICLE A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization, Polymer Composites, 2021, 42, 1588-1630,	IF 4.6	Citations
829	Nanocellulose and its composite films: Applications, properties, fabrication methods, and their limitations. , 2021, , 247-297.		4
830	Green tribology and tribological characterization of biocomposites. , 2021, , 207-212.		3
831	Functional green-based nanomaterials towards sustainable carbon capture and sequestration. , 2021, , 125-177.		4
832	Nanocellulose/Fullerene Hybrid Films Assembled at the Air/Water Interface as Promising Functional Materials for Photo-electrocatalysis. Polymers, 2021, 13, 243.	4.5	7
833	Eco-Friendly High-Strength Composites Based on Hot-Pressed Lignocellulose Microfibrils or Fibers. ACS Sustainable Chemistry and Engineering, 2021, 9, 1899-1910.	6.7	26
834	Investigating the adsorption of anisotropic diblock copolymer worms onto planar silica and nanocellulose surfaces using a quartz crystal microbalance. Polymer Chemistry, 2021, 12, 6088-6100.	3.9	7
835	A Proposition for the Estimation of the Maximum Tensile Strength of Variously Charged Nanocellulosic Film Materials Provided by Vacuum Filtration. Nanomaterials, 2021, 11, 543.	4.1	1
836	Rice straw paper sheets reinforced with bleached or unbleached nanofibers. Nordic Pulp and Paper Research Journal, 2021, 36, 139-148.	0.7	2
837	Femtosecond Laser-Induced Graphitization of Transparent Cellulose Nanofiber Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 2955-2961.	6.7	21
838	Study review on properties of nano fillers in composite materials. Materials Today: Proceedings, 2021,	1.8	1
839	Rapid Processing of Holocellulose-Based Nanopaper toward an Electrode Material. ACS Sustainable Chemistry and Engineering, 2021, 9, 3337-3346.	6.7	9
840	A microstructure-based constitutive model of anisotropic cellulose nanopaper with aligned nanofibers. Extreme Mechanics Letters, 2021, 43, 101158.	4.1	12
841	Underwater superoleophobic all-cellulose composite papers for the separation of emulsified oil. Cellulose, 2021, 28, 4357-4370.	4.9	13
842	Entangled cellulose nanofibers produced from sugarcane bagasse via alkaline treatment, mild acid hydrolysis assisted with ultrasonication. Journal of King Saud University, Engineering Sciences, 2023, 35, 24-31.	2.0	13
843	Recent Development of Polyvinylidene Fluoride/Cellulose Membranes Electrolyte Separator for Lithium Ion Batteries. IOP Conference Series: Materials Science and Engineering, 2021, 1096, 012144.	0.6	2
844	Lignin-Based Porous Supraparticles for Carbon Capture. ACS Nano, 2021, 15, 6774-6786.	14.6	56
845	Enhancement of Luminance in Powder Electroluminescent Devices by Substrates of Smooth and Transparent Cellulose Nanofiber Films. Nanomaterials, 2021, 11, 697.	4.1	9

#	Article	IF	CITATIONS
846	Photoinduced Enhancement of Uranium Extraction from Seawater by MOF/Black Phosphorus Quantum Dots Heterojunction Anchored on Cellulose Nanofiber Aerogel. Advanced Functional Materials, 2021, 31, 2100106.	14.9	139
847	Extraction of Nanofibrillated Cellulose from Water Hyacinth Using a High Speed Homogenizer. Journal of Natural Fibers, 2022, 19, 5676-5696.	3.1	19
848	Characterization of compressed bacterial cellulose nanopaper film after exposure to dry and humid conditions. Journal of Materials Research and Technology, 2021, 11, 896-904.	5.8	36
849	Variations in the mechanical properties of bionanocomposites by water absorption. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1655-1664.	1.1	0
850	Towards a cellulose-based society: opportunities and challenges. Cellulose, 2021, 28, 4511-4543.	4.9	27
851	Polymer Films from Cellulose Nanofibrils—Effects from Interfibrillar Interphase on Mechanical Behavior. Macromolecules, 2021, 54, 4443-4452.	4.8	37
852	Aqueous Modification of Chitosan with Itaconic Acid to Produce Strong Oxygen Barrier Film. Biomacromolecules, 2021, 22, 2119-2128.	5.4	24
853	Hydrophobic modification of nanocellulose and all-cellulose composite films using deep eutectic solvent as a reaction medium. Cellulose, 2021, 28, 5433.	4.9	25
854	Cellulose-based polymers. ChemistrySelect, 2023, 8, 2001-2048.	1.5	2
855	Pediocin and Grape Seed Extract as Antimicrobial Agents in Nanocellulose Biobased Food Packaging: A Review. IOP Conference Series: Materials Science and Engineering, 2021, 1143, 012037.	0.6	1
856	Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. Small, 2021, 17, e2007306.	10.0	54
857	Influence of biological origin on the tensile properties of cellulose nanopapers. Cellulose, 2021, 28, 6619.	4.9	27
858	Preparation, Properties and Use of Nanocellulose from Non-Wood Plant Materials. , 0, , .		8
859	Cellulose-Based Fibrous Materials From Bacteria to Repair Tympanic Membrane Perforations. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669863.	4.1	13
860	Threeâ€Dimensional Printed Mechanically Compliant Supercapacitor with Exceptional Areal Capacitance from a Selfâ€Healable Ink. Advanced Functional Materials, 2021, 31, 2102184.	14.9	22
861	A Review on the Role and Performance of Cellulose Nanomaterials in Sensors. ACS Sensors, 2021, 6, 2473-2496.	7.8	69
862	New Solvent and Coagulating Agent for Development of Chitosan Fibers by Wet Spinning. Polymers, 2021, 13, 2121.	4.5	13
863	Effect of Electric Field on the Hydrodynamic Assembly of Polydisperse and Entangled Fibrillar Suspensions. Langmuir, 2021, 37, 8339-8347.	3.5	4

#	Article	IF	CITATIONS
864	Processing Effects on Structure, Strength, and Barrier Properties of Refiner-Produced Cellulose Nanofibril Layers. ACS Applied Polymer Materials, 2021, 3, 3666-3678.	4.4	12
865	Nanocellulose Coupled 2D Graphene Nanostructures: Emerging Paradigm for Sustainable Functional Applications. Industrial & Engineering Chemistry Research, 2021, 60, 10882-10916.	3.7	25
866	Fast and Filtration-Free Method to Prepare Lactic Acid-Modified Cellulose Nanopaper. ACS Omega, 2021, 6, 19038-19044.	3.5	1
867	Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures. Nanomaterials, 2021, 11, 2127.	4.1	11
868	Reductive Amination Reaction for the Functionalization of Cellulose Nanocrystals. Molecules, 2021, 26, 5032.	3.8	6
869	Thermoconformational Behavior of Cellulose Nanofiber Films as a Device Substrate and Their Superior Flexibility and Durability to Glass. ACS Applied Materials & Interfaces, 2021, 13, 40853-40862.	8.0	4
870	Biocompatible and biodegradable super-toughness regenerated cellulose via water molecule-assisted molding. Chemical Engineering Journal, 2021, 417, 129229.	12.7	32
871	High-performance TEMPO-oxidised cellulose nanofibre/PEDOT:PSS/ionic liquid gel actuators. Sensors and Actuators B: Chemical, 2021, 343, 130105.	7.8	10
872	Nanodancing with Moisture: Humidityâ€5ensitive Bilayer Actuator Derived from Cellulose Nanofibrils and Reduced Graphene Oxide. Advanced Intelligent Systems, 2022, 4, 2100084.	6.1	15
873	Influence of Lactic Acid Surface Modification of Cellulose Nanofibrils on the Properties of Cellulose Nanofibril Films and Cellulose Nanofibril–Poly(lactic acid) Composites. Biomolecules, 2021, 11, 1346.	4.0	14
874	Kirigami-processed cellulose nanofiber films for smart heat dissipation by convection. NPG Asia Materials, 2021, 13, .	7.9	13
875	Emerging Developments Regarding Nanocellulose-Based Membrane Filtration Material against Microbes. Polymers, 2021, 13, 3249.	4.5	24
876	Structure–Property Relationships of Cellulose Nanocrystals and Nanofibrils: Implications for the Design and Performance of Nanocomposites and All-Nanocellulose Systems. ACS Applied Nano Materials, 2021, 4, 10505-10518.	5.0	18
877	Cellulosic substrate materials with multi-scale building blocks: fabrications, properties and applications in bioelectronic devices. Chemical Engineering Journal, 2022, 430, 132562.	12.7	17
878	Highly fibrillated and intrinsically flame-retardant nanofibrillated cellulose for transparent mineral filler-free fire-protective coatings. Chemical Engineering Journal, 2021, 419, 129440.	12.7	32
879	Modeling multi-fracturing fibers in fiber networks using elastoplastic Timoshenko beam finite elements with embedded strong discontinuities — Formulation and staggered algorithm. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 113964.	6.6	12
880	Ultra-high-strength composite films prepared from NMMO solutions of bamboo-derived dissolving pulp and chitosan. Industrial Crops and Products, 2021, 170, 113747.	5.2	4
881	Synthesis and characterization of a novel star polycaprolactone to be applied in the development of graphite nanoplates-based nanopapers. Reactive and Functional Polymers, 2021, 167, 105019.	4.1	7

#	Article	IF	CITATIONS
882	Promising eco-friendly biomaterials for future biomedicine: Cleaner production and applications of Nanocellulose. Environmental Technology and Innovation, 2021, 24, 101855.	6.1	10
883	Mechanical properties of cellulose nanofibril papers and their bionanocomposites: A review. Carbohydrate Polymers, 2021, 273, 118507.	10.2	60
884	Cellulose and its derivatives: towards biomedical applications. Cellulose, 2021, 28, 1893-1931.	4.9	386
885	Reinforcement effect of pulp fines and microfibrillated cellulose in highly densified binderless paperboards. Journal of Cleaner Production, 2021, 281, 125258.	9.3	19
886	Recent advances in nanocellulose processing, functionalization and applications: a review. Materials Advances, 2021, 2, 1872-1895.	5.4	108
887	Native Crystalline Polysaccharide Nanofibers: Processing and Properties. , 2019, , 287-321.		1
888	Design of Ionic Liquids for Cellulose Dissolution. Biofuels and Biorefineries, 2014, , 91-106.	0.5	2
889	The impact of using different renewable films in the synthesis and microstructure of carbonaceous materials applicable in origami-inspired manufacturing. Materialia, 2020, 11, 100734.	2.7	6
890	Carbon Nanotube-Based Hierarchical Paper Structure for Ultra-high Electrothermal Actuation in a Wide Humidity Range. ACS Applied Electronic Materials, 2021, 3, 1260-1267.	4.3	14
891	Humidity-responsive molecular gate-opening mechanism for gas separation in ultraselective nanocellulose/IL hybrid membranes. Green Chemistry, 2020, 22, 3546-3557.	9.0	35
892	Effect of interfiber bonding on the rupture of electrospun fibrous mats. Journal Physics D: Applied Physics, 2021, 54, 025302.	2.8	14
893	Application of Nanotechnology in Wood-Based Products Industry: A Review. Nanoscale Research Letters, 2020, 15, 207.	5.7	36
894	Buffering and Antibacterial Properties of Cotton Canvas with Dolomite/ZnO-Styrene-Acrylic Complex Coating and their Comparison with Properties after the Accelerated Aging. Tekstilec, 2017, 60, 275-282.	0.6	2
895	Study of LCNF and CNF from pine and eucalyptus pulps. Nordic Pulp and Paper Research Journal, 2020, 35, 670-684.	0.7	9
896	Cellulose as a nanostructured polymer: A short review. BioResources, 2008, 3, 1403-1418.	1.0	26
897	Turning low-cost recycled paper into high-value binder-free all-cellulose panel products. Green Materials, 2020, 8, 51-59.	2.1	3
898	Electrospun Cellulose Fibres and Applications. Sains Malaysiana, 2019, 48, 1459-1472.	0.5	6
899	Nanoselüloz üretim teknolojisi. Turkish Journal of Forestry, 2015, 16, .	0.1	2

#	Article	IF	CITATIONS
900	Cellulose Nanofibers: Recent Progress and Future Prospects. Journal of Fiber Science and Technology, 2020, 76, 310-326.	0.4	31
901	Mechanical testing of thin film nanocellulose composites using buckling mechanics. Tappi Journal, 2013, 12, 9-17.	0.5	14
902	A METHOD FOR ISOLATING CELLULOSE NANOFIBRILS FROM WOOD AND THEIR MORPHOLOGICAL CHARACTERISTICS. Acta Polymerica Sinica, 2010, 00, 1320-1326.	0.0	5
903	ADVANCED FUNCTIONAL MATERIALS BASED ON CELLULOSE. Acta Polymerica Sinica, 2010, 00, 1376-1398.	0.0	23
904	Fiberâ€Based Biopolymer Processing as a Route toward Sustainability. Advanced Materials, 2022, 34, e2105196.	21.0	71
905	Recent Advances in Cellulose Nanofibers Preparation through Energy-Efficient Approaches: A Review. Energies, 2021, 14, 6792.	3.1	32
906	Effects of cellulose nanofibrils and starch compared with polyacrylamide on fundamental properties of pulp and paper. International Journal of Biological Macromolecules, 2021, 192, 618-626.	7.5	12
907	"Nanotechnical―Structures and Devices. , 2012, , 383-429.		0
908	Modeling Deformation and Damage of Random Fiber Network (RFN) Materials. , 2013, , 1-19.		0
910	Modeling Deformation and Damage of Random Fiber Network (RFN) Materials. , 2015, , 1349-1368.		1
913	Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber. Journal of the Korean Wood Science and Technology, 2015, 43, 730-739.	3.0	1
914	Bionanocomposites: A Greener Alternative for Future Generation. , 2016, , 527-551.		1
915	Cellulose Nanofibers for Biomedical Applications. , 2016, , 213-232.		1
916	Effect of a Combined Pretreatment of Beating and Carboxymethylation on Properties and Nanofibrillation of Pulp Fibers. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2017, 49, 12-19.	0.4	0
917	Cellulose Nanofiber. Seikei-Kakou, 2018, 30, 424-428.	0.0	0
918	Design of Amino Acid ILs for Dissolution of Lignocellulosic Biomass. , 2019, , 1-13.		0
920	Highlights on the mechanical pre-refining step in the production of wood cellulose nanofibrils. Cellulose, 2021, 28, 11329-11344.	4.9	6
921	Microstructure and dynamics of nanocellulose films: Insights into the deformational behavior. Extreme Mechanics Letters, 2022, 50, 101519.	4.1	10

#	Article	IF	CITATIONS
922	Comprehensive review on potential applications of microfluidization in food processing. Food Science and Biotechnology, 2022, 31, 17-36.	2.6	18
923	Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose, 2022, 29, 1-23.	4.9	158
924	High-performance Esterified-Poly (vinyl alcohol)-Citric acid-Lignin resin and its application to Wet-spun nanocellulose Filament-Reinforced polymer composite. Composites Part A: Applied Science and Manufacturing, 2022, 153, 106735.	7.6	19
925	Nonleachable Antibacterial Nanocellulose with Excellent Cytocompatible and UV-Shielding Properties Achieved by Counterion Exchange with Nature-Based Phenolic Acids. ACS Sustainable Chemistry and Engineering, 2021, 9, 15755-15767.	6.7	8
926	Hydrophilic to hydrophobic: Ultrafast conversion of cellulose nanofibrils by cold plasma fluorination. Applied Surface Science, 2022, 581, 152276.	6.1	24
927	Clean Manufacturing of Cellulose Nanopapers by Incorporating Lignin and Xylan as Sustainable Additives. SSRN Electronic Journal, 0, , .	0.4	0
928	Production of microfibrillated cellulose fibers and their application in polymeric composites. , 2022, , 197-229.		2
929	Superstrong, Lightweight, and Exceptional Environmentally Stable SiO ₂ @GO/Bamboo Composites. ACS Applied Materials & Interfaces, 2022, 14, 7311-7320.	8.0	13
930	Fabrication of transparent paper devices from nanocellulose fiber. Materials Chemistry and Physics, 2022, 281, 125707.	4.0	13
931	Nanocellulose in packaging industry. , 2022, , 43-66.		2
932	Nanotechnology in paper and wood engineering: an introduction. , 2022, , 3-13.		6
933	Precise Tuning of Multiple Perovskite Photoluminescence by Volume-Controlled Printing of Perovskite Precursor Solution on Cellulose Paper. ACS Nano, 2022, 16, 2521-2534.	14.6	14
934	Nanocellulose in electronics and electrical industry. , 2022, , 217-246.		3
935	Green environment: Effects of acetate buffer on cellulose production by Acetobacter xylinum 0416 in fermented static cultivation. IOP Conference Series: Earth and Environmental Science, 2022, 951, 012025.	0.3	0
936	Stress-transfer analyses in cellulose nanofiber/montmorillonite nanocomposites with X-ray diffraction and chemical interaction between cellulose nanofiber and montmorillonite. Cellulose, 2022, 29, 2949-2960.	4.9	2
937	Fully bio-based cellulose nanofiber/epoxy composites with both sustainable production and selective matrix deconstruction towards infinite fiber recycling systems. Journal of Materials Chemistry A, 2022, 10, 570-576.	10.3	23
938	Fabrication of nanowoods and nanopapers. , 2022, , 125-142.		1
939	Enhanced mechanical and gas barrier performance of plasticized cellulose nanofibril films. Nordic Pulp and Paper Research Journal, 2022, .	0.7	1

#	Article	IF	Citations
940	Strong, tough and degradable cellulose nanofibers-based composite film by the dual crosslinking of polydopamine and iron ions. Composites Science and Technology, 2022, 220, 109299.	7.8	15
941	Effect of cationization pretreatment on the properties of cationic Eucalyptus micro/nanofibrillated cellulose. International Journal of Biological Macromolecules, 2022, 201, 468-479.	7.5	20
942	Mechanochemical Transformations of Biomass into Functional Materials. ChemSusChem, 2022, 15, .	6.8	25
944	Effect of interfibre bonding on mechanical behaviour of electrospun fibrous mats. , 2022, , 317-354.		2
945	The sustainability of phytomass-derived materials: thermodynamical aspects, life cycle analysis and research perspectives. Green Chemistry, 2022, 24, 2653-2679.	9.0	3
946	Nanocellulose composites in the pulp and paper industry. , 2022, , 375-395.		1
947	Composite Films of Nanofibrillated Cellulose with Sepiolite: Effect of Preparation Strategy. Coatings, 2022, 12, 303.	2.6	8
948	Nanocellulose for Sustainable Water Purification. Chemical Reviews, 2022, 122, 8936-9031.	47.7	82
949	Enhanced thermal conductivity in oriented cellulose nanofibril/graphene composites via interfacial engineering. Composites Communications, 2022, 31, 101101.	6.3	15
950	High overall performance transparent bamboo composite via a lignin-modification strategy. Composites Part B: Engineering, 2022, 235, 109798.	12.0	29
951	Buckling Mechanics Modulus Measurement of Anisotropic Cellulose Nanocrystal Thin Films. ACS Applied Polymer Materials, 2022, 4, 3045-3053.	4.4	6
952	Preparation and mechanical failure analysis of wood-epoxy polymer composites with excellent mechanical performances. Composites Part B: Engineering, 2022, 235, 109748.	12.0	14
953	Efficient Softening and Toughening Strategies of Cellulose Nanofibril Nanocomposites Using Comb Polyurethane. Biomacromolecules, 2022, 23, 1693-1702.	5.4	2
954	Highly antimicrobial and strong cellulose-based biocomposite film prepared with bacterial cellulose powders, Uncaria gambir, and ultrasonication treatment. International Journal of Biological Macromolecules, 2022, 208, 88-96.	7.5	8
955	Upscaled engineered functional microfibrillated cellulose flat sheet membranes for removing charged water pollutants. Separation and Purification Technology, 2022, 289, 120745.	7.9	7
956	Twin-screw extrusion for the production of nanocellulose-PVA gels with a high solid content. Carbohydrate Polymers, 2022, 286, 119308.	10.2	8
957	Adjustable film properties of cellulose nanofiber and cellulose nanocrystal composites. Carbohydrate Polymers, 2022, 286, 119283.	10.2	12
958	Strengthening Cellulose Nanopaper via Deep Eutectic Solvent and Ultrasound-Induced Surface Disordering of Nanofibers. Polymers, 2022, 14, 78.	4.5	4

#		IF	CITATIONS
" 959	Sustainable Multiscale High-Haze Transparent Cellulose Fiber Film via a Biomimetic Approach. , 2022, 4, 87-92.		32
960	Hindrance to nanofibrillation of undried pulp produced by the kraft cooking process. Carbohydrate Polymers, 2022, 291, 119481.	10.2	4
961	Strategies to mitigate the synergistic effects of moist-heat aging on TEMPO-oxidized nanocellulose. Polymer Degradation and Stability, 2022, 200, 109943.	5.8	3
962	Clean Manufacturing of Cellulose Nanopapers by Incorporating Lignin and Xylan as Sustainable Additives. Carbohydrate Polymer Technologies and Applications, 2022, , 100207.	2.6	1
965	Nanoscale cellulose and nanocellulose-based aerogels. , 2022, , 229-260.		1
966	Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. Nanomaterials, 2022, 12, 1432.	4.1	11
967	Production of Nanocellulose Film from Abaca Fibers. Crystals, 2022, 12, 601.	2.2	5
968	Water-induced shape memory cellulose nanofiber-based nanocomposite membrane containing lignin with quick water response and excellent wet mechanical property. European Polymer Journal, 2022, 171, 111204.	5.4	12
969	CNFs from softwood pulp fibers containing hemicellulose and lignin. Cellulose, 2022, 29, 4961-4976.	4.9	7
970	Hydrophobicity improvement of cellulose nanofibrils films by stearic acid and modified precipitated calcium carbonate coating. Journal of Materials Science, 2022, 57, 11443-11459.	3.7	8
971	The use of enzymes to isolate cellulose nanomaterials: A systematic map review. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100212.	2.6	5
972	Recent advancements, trends, fundamental challenges and opportunities in spray deposited cellulose nanofibril films for packaging applications. Science of the Total Environment, 2022, 836, 155654.	8.0	17
973	Production of lignin-containing cellulose nanofibrils by the combination of different mechanical processes. Industrial Crops and Products, 2022, 183, 114991.	5.2	10
974	Nanocelluloses: Production, Characterization and Market. Advances in Experimental Medicine and Biology, 2022, 1357, 129-151.	1.6	1
975	Mechanical and softness characterization of "deco―and "micro―embossed tissue papers using finite element model (FEM) validation. Cellulose, 2022, 29, 5895-5912.	4.9	4
976	Effect of cellulose nanofiber and cellulose nanocrystals reinforcement on the strength and stiffness of PVAc bonded joints. Composite Structures, 2022, 295, 115821.	5.8	12
977	Application of Lignin-Containing Cellulose Nanofibers and Cottonseed Protein Isolate for Improved Performance of Paper. Polymers, 2022, 14, 2154.	4.5	2
978	Closing the Carbon Loop in the Circular Plastics Economy. Macromolecular Rapid Communications, 2022, 43, .	3.9	21

		CITATION REPORT		
#	Article		IF	CITATIONS
979	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11	604-11674.	47.7	102
980	A systematic study on the fabrication of transparent nanopaper based on controlled cellulose nanostructure from oil palm empty fruit bunch. Journal of Polymers and the Environment, 2022, 3901-3913.	30,	5.0	8
981	Rapidly Prepared Nanocellulose Hybrids as Gas Barrier, Flame Retardant, and Energy Storage Ma ACS Applied Nano Materials, 0, , .	terials.	5.0	2
982	Optimization of reagent consumption in TEMPO-mediated oxidation of Eucalyptus cellulose to c cellulose nanofibers. Cellulose, 2022, 29, 6611-6627.	obtain	4.9	22
983	Resilient Mechanical Metamaterial Based on Cellulose Nanopaper with Kirigami Structure. Nanomaterials, 2022, 12, 2431.		4.1	4
984	Sulfonated Cellulose Membranes Improve the Stability of Aqueous Organic Redox Flow Batterie Advanced Energy and Sustainability Research, 2022, 3, .	5.	5.8	5
985	Water-resistant hybrid cellulose nanofibril films prepared by charge reversal on gibbsite nanocla Carbohydrate Polymers, 2022, 295, 119867.	ys.	10.2	3
986	Advances in sustainable polymeric materials from lignocellulosic biomass. Materials Today Chen 2022, 26, 101022.	histry,	3.5	24
987	Production of cellulose nanofibers and sugars using high dry matter feedstock. Nordic Pulp and Paper Research Journal, 2022, .		0.7	0
989	Nanocellulose for Paper and Textile Coating: The Importance of Surface Chemistry. ChemPlusCh 2022, 87, .	lem,	2.8	28
990	Enzyme-assisted extraction of nanocellulose from textile waste: A review on production techniq and applications. Bioresource Technology Reports, 2022, 19, 101183.	ue	2.7	8
991	Improving the degree of polymerization of cellulose nanofibers by largely preserving native struct of wood fibers. Carbohydrate Polymers, 2022, 296, 119919.	cture	10.2	4
992	Superhydrophobic Cellulosic Membranes for Membrane Distillation. ACS ES&T Water, 2022, 2,	1822-1833.	4.6	6
993	Modification of nanocellulose films in deep eutectic solvents using vinyl esters. Cellulose, 2022, 9073-9087.	29,	4.9	5
994	Flaw sensitivity of cellulose paper. Extreme Mechanics Letters, 2022, 56, 101865.		4.1	1
995	Material Properties of Traditional Handmade Paper Samples Fabricated from Cellulosic Fiber of L Bushes. ACS Omega, 2022, 7, 32717-32726.	okta	3.5	3
996	Colorimetric Freshness Indicator Based on Cellulose Nanocrystal–Silver Nanoparticle Compos Intelligent Food Packaging. Polymers, 2022, 14, 3695.	ite for	4.5	8
997	Strength and Toughness of Network Materials. , 2022, , 278-337.			0

#	Article	IF	CITATIONS
998	Insight into Cellulose Nanosizing for Advanced Electrochemical Energy Storage and Conversion: A Review. Electrochemical Energy Reviews, 2022, 5, .	25.5	8
999	Hybrid films from cellulose nanomaterials—properties and defined optical patterns. Cellulose, 2022, 29, 8551-8567.	4.9	7
1002	Phenol formaldehyde resin modified by cellulose and lignin nanomaterials: Review and recent progress. International Journal of Biological Macromolecules, 2022, 222, 1888-1907.	7.5	10
1003	<i>Hornification</i> : Lessons learned from the wood industry for attenuating this phenomenon in plantâ€based dietary fibers from food wastes. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 4-45.	11.7	10
1004	Transparent wood-based functional materials via a top-down approach. Progress in Materials Science, 2023, 132, 101025.	32.8	38
1005	CRITICAL REVIEW ON ENZYMATIC ASSISTED ISOLATION OF CELLULOSE NANOFIBRE FROM PLANT FIBRES AND ITS FUNCTIONAL APPLICATION IN NANO-BIOCOMPOSITE. Federal University of Technology Akure Journal of Engineering and Engineering Technology, 2022, 16, 105-112.	0.1	1
1006	Characteristics of Cellulose Nanofibrils from Transgenic Trees with Reduced Expression of Cellulose Synthase Interacting 1. Nanomaterials, 2022, 12, 3448.	4.1	2
1007	Mixed-linkage (1,3;1,4)-β-d-glucans as rehydration media for improved redispersion of dried cellulose nanofibrils. Carbohydrate Polymers, 2023, 300, 120276.	10.2	1
1008	Nanocellulose-Based Materials with Superior Mechanical Performance. Nanoscience and Technology, 2023, , 141-178.	1.5	1
1009	Nanocellulose Paper for Flexible Electronic Substrate. Nanoscience and Technology, 2023, , 211-235.	1.5	0
1010	Role of inter-fibre bonds and their influence on sheet scale behaviour of paper fibre networks. International Journal of Solids and Structures, 2022, 256, 111990.	2.7	2
1011	Acidic and alkaline deep eutectic solvents pre-treatment to produce high aspect ratio microfibrillated cellulose. Bioresource Technology, 2023, 368, 128312.	9.6	14
1012	Modification of CNFâ€networks by the Addition of Small Amounts of Wellâ€defined Rigid Cationic Nanolatexes. Macromolecular Chemistry and Physics, 0, , 2200249.	2.2	1
1013	Effectiveness of sulfonation to produce lignin-containing cellulose micro/nanofibrils (LCM/NF) by grinding. Cellulose, 2023, 30, 815-832.	4.9	2
1014	Addition of carboxylated styrene–butadiene rubber in cellulose nanofibrils composite films: effect on film production and its performance. Iranian Polymer Journal (English Edition), 0, , .	2.4	3
1015	Composition Regulation of Free Delignification of Wood Powder toward High Performance, Recyclable Composites. ACS Sustainable Chemistry and Engineering, 2022, 10, 15999-16008.	6.7	3
1016	Facile sulfation of cellulose <i>via</i> recyclable ternary deep eutectic solvents for low-cost cellulose nanofibril preparation. Nanoscale Advances, 2023, 5, 356-360.	4.6	2
1017	Microwave-assisted esterification of bleached and unbleached cellulose nanofibers. Industrial Crops and Products, 2023, 191, 115970.	5.2	4

#	Article	IF	CITATIONS
1018	Electrochemical study of redox stream antioxidant effect of nanocellulose membranes prepared from wheat straw in blood medium. AIP Conference Proceedings, 2022, , .	0.4	0
1019	Mechanical properties of celluloseâ€based multiscale composites: A review. Polymer Composites, 2023, 44, 734-756.	4.6	18
1020	Programming material properties by tuning intermolecular bonding. Journal of Applied Physics, 2022, 132, .	2.5	5
1021	Nanocellulose in Paper and Board Coating. , 2023, , 197-298.		1
1022	Nanocellulose from Spanish Harvesting Residues to Improve the Sustainability and Functionality of Linerboard Recycling Processes. Nanomaterials, 2022, 12, 4447.	4.1	7
1023	How weak hydration interfaces simultaneously strengthen and toughen nanocellulose materials. Extreme Mechanics Letters, 2023, 58, 101947.	4.1	2
1024	Synthesis and Applications of Cellulose Nanomaterials Derived from Agricultural Waste and Byproducts. , 2023, , 471-500.		0
1025	Cellulose nanofibril production by the combined use of four mechanical fibrillation processes with different destructuration effects. Cellulose, 2023, 30, 2123-2146.	4.9	3
1026	Design of Amino Acid ILs for Dissolution of Lignocellulosic Biomass. , 2022, , 262-273.		0
1027	Assessment of the gastrointestinal fate of bacterial nanocellulose and its toxicological effects after repeated-dose oral administration. Environmental Science: Nano, 2023, 10, 781-799.	4.3	0
1028	Toward Wheat Straw Valorization by Its Downsizing to Five Types of Cellulose Nanomaterials and Nanopapers Thereof. Waste and Biomass Valorization, 2023, 14, 2885-2896.	3.4	3
1029	Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials. Chemical Reviews, 2023, 123, 2200-2241.	47.7	26
1030	Applications of nanocellulose as biosensing platforms for the detection of functional biomacromolecules: A Review. Al-MaÄŸallatl^ Al-Qawmiyyatl^ Lil DirÄsÄŧ Al-TaÊ¿Äá¹Ä« Wa Al-IdmÄn, 2022, 2, 15-45	5. ^{0.1}	2
1031	Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. Nanomaterials, 2023, 13, 1381.	4.1	6
1032	An Oxidative Enzyme Boosting Mechanical and Optical Performance of Densified Wood Films. Small, 2023, 19, .	10.0	10
1033	Fully Wood-Based Transparent Plates with High Strength, Flame Self-Extinction, and Anisotropic Thermal Conduction. ACS Sustainable Chemistry and Engineering, 2023, 11, 2440-2448.	6.7	5
1034	Understanding Nanocellulose–Water Interactions: Turning a Detriment into an Asset. Chemical Reviews, 2023, 123, 1925-2015.	47.7	61
1035	Production of polylactic acid biocomposite reinforced with environmentally friendly cellulose nanofiber derived from steam-treated bamboo. Biomass Conversion and Biorefinery, 0, , .	4.6	4

#	Article	IF	CITATIONS
1036	3Dâ€Printed Anisotropic Nanofiber Composites with Gradual Mechanical Properties. Advanced Materials Technologies, 2023, 8, .	5.8	5
1038	Mandacaru cactus as a source of nanofibrillated cellulose for nanopaper production. International Journal of Biological Macromolecules, 2023, 235, 123850.	7.5	3
1039	Simultaneous/direct chemomechanical densification and downsizing of weak paulownia wood to produce a strong, unidirectional, all-wooden nanocomposite. Polymer Journal, 2023, 55, 691-702.	2.7	2
1040	Composite of Cellulose-Nanofiber-Reinforced Cellulose Acetate Butyrate: Improvement of Mechanical Strength by Cross-Linking of Hydroxyl Groups. Journal of Composites Science, 2023, 7, 130.	3.0	3
1041	Counterion-Dependent Material Properties of Phosphorylated Nanocellulose. Biomacromolecules, 2023, 24, 1881-1887.	5.4	1
1042	Effect of Cellulose Nano Fiber on the Physical and Printing Properties of Coated Paper. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2023, 55, 112-117.	0.4	0
1043	Skinâ€Adhesive, â€Breathable, and â€Compatible Nanopaper Electronics for Harmonious Onâ€5kin Electrophysiological Monitoring. Advanced Materials Interfaces, 0, , .	3.7	3
1044	Hierarchical biopolymerâ€based materials and composites. Journal of Polymer Science, 2023, 61, 2585-2632.	3.8	2
1045	Advances in Cellulose-Based Packaging Films for Food Products. , 0, , .		0
1046	Optically transparent laminated acrylic composites reinforced with mercerised bacterial cellulose nanopaper. Composites Part A: Applied Science and Manufacturing, 2023, 172, 107583.	7.6	3
1047	Impact of Eucalyptus nitens and Pinus radiata fiber properties on the production process of lignocellulose nanofibrils. Cellulose, 0, , .	4.9	0
1048	Eco-friendly cellulose nanofibrils with high surface charge and aspect ratio for nanopaper films with ultrahigh toughness and folding endurance. Green Chemistry, 2023, 25, 4696-4704.	9.0	8
1049	Correlation between morphology and performance of cellulose nanofibril-based films. Current Research in Green and Sustainable Chemistry, 2023, 6, 100363.	5.6	4
1051	Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications. Biomacromolecules, 2023, 24, 2264-2277.	5.4	12
1052	Mechanically Adaptive Mixed Ionic-Electronic Conductors Based on a Polar Polythiophene Reinforced with Cellulose Nanofibrils. ACS Applied Materials & amp; Interfaces, 2023, 15, 28300-28309.	8.0	4
1053	Sustainable cellulose and its derivatives for promising biomedical applications. Progress in Materials Science, 2023, 138, 101152.	32.8	22
1054	Precursory flow in the formation of cellulose nanofiber films revealed by multiscale image analysis. Physical Review Research, 2023, 5, .	3.6	1
1055	Fabrication of regenerated cellulose fibers using phosphoric acid with hydrogen peroxide treated wheat straw in a DMAc/LiCl solvent system. Cellulose, 2023, 30, 6187-6201.	4.9	2

#	Article	IF	CITATIONS
1056	Endoglucanase pretreatment aids in isolating tailored-cellulose nanofibrils combining energy saving and high-performance packaging. International Journal of Biological Macromolecules, 2023, 242, 125057.	7.5	1
1057	Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties. Carbohydrate Polymers, 2023, 319, 121168.	10.2	6
1058	Advances in the Production of Cellulose Nanomaterials and Their Use in Engineering (Bio)Plastics. Composites Science and Technology, 2023, , 333-393.	0.6	0
1059	Sprayed Hybrid Cellulose Nanofibril–Silver Nanowire Transparent Electrodes for Organic Electronic Applications. ACS Applied Nano Materials, 2023, 6, 13677-13688.	5.0	2
1060	Property-Thickness Correlations of Transparent All-Nanocellulose Laminates. Journal of Fiber Science and Technology, 2023, 79, 156-164.	0.4	0
1061	Harnessing Nature's Ingenuity: A Comprehensive Exploration of Nanocellulose from Production to Cutting-Edge Applications in Engineering and Sciences. Polymers, 2023, 15, 3044.	4.5	2
1062	High-Lignin-Containing Cellulose Nanofibrils from Date Palm Waste Produced by Hydrothermal Treatment in the Presence of Maleic Acid. Biomacromolecules, 2023, 24, 3872-3886.	5.4	1
1064	Development of all-cellulose sustainable composites from directionally aligned bamboo fiber scaffold with high strength, toughness, and low thermal conductivity. Chemical Engineering Journal, 2023, 473, 145437.	12.7	1
1066	Enhancing the flexural properties of CFRP with vacuum-assisted deposition of cellulose microfibrils to create a multiscale reinforcement network. Composite Interfaces, 0, , 1-22.	2.3	0
1067	Enhanced UV blocking, tensile and thermal properties of bendable TEMPO-oxidized bacterial cellulose powder-based films immersed in PVA/Uncaria gambir/ZnO solution. Journal of Materials Research and Technology, 2023, 26, 5566-5575.	5.8	6
1068	Property-Thickness Correlations of Transparent All-Nanocellulose Laminates. Journal of Fiber Science and Technology, 2023, 79, 156-164.	0.4	0
1069	Residual Strain and Nanostructural Effects during Drying of Nanocellulose/Clay Nanosheet Hybrids: Synchrotron X-ray Scattering Results. ACS Nano, 2023, 17, 15810-15820.	14.6	0
1070	Cellulose nanofibers from nonbleached and hydrogen peroxide bleached acidic thiourea treated sawdust. Journal of Cleaner Production, 2023, 423, 138824.	9.3	0
1071	Copper phosphorylated cellulose nanofibers mediated azide-alkyne cycloaddition click reaction in water. Carbohydrate Polymers, 2024, 324, 121501.	10.2	2
1072	Review on the strategies for enhancing mechanical properties of bacterial cellulose. Journal of Materials Science, 2023, 58, 15265-15293.	3.7	1
1073	Planar and uniplanar orientation in nanocellulose films: interpretation of 2D diffraction patterns step-by-step. Cellulose, 2023, 30, 8151-8159.	4.9	2
1074	Nanocellulose Fibers Derived from Culinary Banana Flower (Musa ABB) Waste: Its Characterization and Application. Journal of Packaging Technology and Research, 0, , .	1.5	0
1075	Electro-conductive Nanocrystalline Cellulose Film Filled with TiO ₂ -Reduced-Graphene Oxide Nanocomposite. , 2018, 3, 26-34.		0

	CITATION R	CITATION REPORT		
# 1076	ARTICLE Nanostructured Cellulose: Extraction and Characterization. , 2023, , 1-41.	IF	Citations 0	
1077	Spray Drying Enzyme-Treated Cellulose Nanofibrils. Polymers, 2023, 15, 4086.	4.5	1	
1079	Spatial exosome analysis using cellulose nanofiber sheets reveals the location heterogeneity of extracellular vesicles. Nature Communications, 2023, 14, .	12.8	1	
1080	Separator Materials for Lithium Sulfur Battery—A Review. Electrochem, 2023, 4, 485-522.	3.3	0	
1081	Modeling of modulus and strength in void-containing clay platelet/cellulose nanocomposites by unit cell approach. Nanocomposites, 2023, 9, 138-147.	4.2	0	
1082	Role of atomistic modeling in bioinspired materials design: A review. Computational Materials Science, 2024, 232, 112667.	3.0	0	
1083	Anomalous scaling law of strength and toughness in polymers with strong interfacial secondary bonds. Extreme Mechanics Letters, 2024, 66, 102111.	4.1	0	
1084	Glass-like transparent and heat-sealable films of cellulose nanoworms <i>via</i> ethanol triggered swelling of esterified cellulose. Journal of Materials Chemistry A, 2023, 11, 26000-26010.	10.3	0	
1085	Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. Advanced Materials, 2024, 36, .	21.0	3	
1086	ā,»āƒ«āƒāƒ¼ā,¹āƒŠāƒŽāƒ•ã,¡ā,╋ƒãƒ¹¼. Seni Kikai Gakkai Shi/Journal of the Textile Machinery Society of Japan, 2	012).65, 3	13 & 19.	
1087	Weakening fibril–fibril interactions <i>via</i> an on-demand regulation of hemicellulose phase towards the facile disassembly of lignocellulose heterostructure into approaching native-state elementary fibrils. Green Chemistry, 2024, 26, 879-894.	9.0	5	
1088	Improving sustainability of cellulose nanofibrils production: FTIR spectroscopy for online control of the synthesis of recyclable magnetic TEMPO catalyst. Carbohydrate Polymer Technologies and Applications, 2024, 7, 100417.	2.6	0	
1089	Progress in Achieving Fire-Retarding Cellulose-Derived Nano/Micromaterial-Based Thin Films/Coatings and Aerogels: A Review. Fire, 2024, 7, 31.	2.8	0	
1090	Processing factors affecting roughness, optical and mechanical properties of nanocellulose films for optoelectronics. Carbohydrate Polymers, 2024, 332, 121877.	10.2	0	
1091	The nonlinear mechanics of highly extensible plant epidermal cell walls. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	1	
1092	Enhancement of the production of TEMPO-mediated oxidation cellulose nanofibrils by kneading. International Journal of Biological Macromolecules, 2024, 261, 129612.	7.5	0	
1093	A partial dissolution-regeneration strategy for preparing water-resistant composite film of cellulose I and cellulose II with high light transmittance and adjustable haze. Composites Part B: Engineering, 2024, 274, 111285.	12.0	0	
1094	Strong nanostructured film and effective lead (II) removal by nitro-oxidized cellulose nanofibrils from banana rachis. Cellulose, 2024, 31, 2429-2445.	4.9	Ο	

	Cı	CITATION REPORT		
#	Article	IF	CITATIONS	
1095	A review study on derivation of nanocellulose to its functional properties and applications in drug delivery system, food packaging, and biosensing devices. Polymer Bulletin, 0, , .	3.3	0	
1096	Strong and Flame-Resistant Nanocellulose Sheets Derived from Agrowastes via a Papermaking-Assiste Process. ACS Applied Polymer Materials, 2024, 6, 2763-2776.	d 4.4	0	