Structural Insights into the Polymorphism of Amyloidof Amylin Revealed by Solid-State NMR and X-ray Fiber

Journal of the American Chemical Society 130, 14990-15001 DOI: 10.1021/ja802483d

Citation Report

#	Article	IF	CITATIONS
1	Solution state structures of human pancreatic amylin and pramlintide. Protein Engineering, Design and Selection, 2009, 22, 497-513.	1.0	47
2	Structural diversity of the soluble trimers of the human amylin(20–29) peptide revealed by molecular dynamics simulations. Journal of Chemical Physics, 2009, 130, 125101.	1.2	44
3	Amyloidogenesis Abolished by Proline Substitutions but Enhanced by Lipid Binding. PLoS Computational Biology, 2009, 5, e1000357.	1.5	39
4	Structural polymorphism of Alzheimer A \hat{I}^2 and other amyloid fibrils. Prion, 2009, 3, 89-93.	0.9	234
5	Methods for structural characterization of prefibrillar intermediates and amyloid fibrils. FEBS Letters, 2009, 583, 2600-2609.	1.3	63
6	Structure–activity relationship of amyloid fibrils. FEBS Letters, 2009, 583, 2610-2617.	1.3	114
8	Unique Identification of Supramolecular Structures in Amyloid Fibrils by Solid‣tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 2118-2121.	7.2	195
9	Membrane permeabilization by Islet Amyloid Polypeptide. Chemistry and Physics of Lipids, 2009, 160, 1-10.	1.5	116
10	Molecular mechanisms for protein-encoded inheritance. Nature Structural and Molecular Biology, 2009, 16, 973-978.	3.6	250
11	Fluorescence and mass spectrometry studies of the interaction between naproxen and synthetic pseudopeptidic models in organic media. Tetrahedron, 2009, 65, 7801-7808.	1.0	4
12	Cross-β Spine Architecture of Fibrils Formed by the Amyloidogenic Segment NFGSVQFV of Medin from Solid-State NMR and X-ray Fiber Diffraction Measurements. Biochemistry, 2009, 48, 3089-3099.	1.2	24
13	Observation of β-Sheet Aggregation in a Gas-Phase Tau-Peptide Dimer. Journal of the American Chemical Society, 2009, 131, 2472-2474.	6.6	33
14	A New Artificial β-Sheet That Dimerizes through Parallel β-Sheet Interactions. Organic Letters, 2009, 11, 1003-1006.	2.4	9
15	Molecular Dynamics Simulations to Gain Insights into the Stability and Morphologies of K3 Oligomers from β2-microglobulin. Journal of Biomolecular Structure and Dynamics, 2009, 26, 549-559.	2.0	27
16	Self-assembly of Peptideâ~'Amphiphile C ₁₂ â^'Aβ(11â^'17) into Nanofibrils. Journal of Physical Chemistry B, 2009, 113, 8539-8544.	1.2	42
17	Aβ(1-40) Fibril Polymorphism Implies Diverse Interaction Patterns in Amyloid Fibrils. Journal of Molecular Biology, 2009, 386, 869-877.	2.0	280
18	The Role of Prefibrillar Structures in the Assembly of a Peptide Amyloid. Journal of Molecular Biology, 2009, 393, 214-226.	2.0	22
19	Sequence and Crowding Effects in the Aggregation of a 10-Residue Fragment Derived from Islet Amyloid Polypeptide. Biophysical Journal, 2009, 96, 4552-4560.	0.2	42

#	Article	IF	CITATIONS
20	Thermodynamic Description of Polymorphism in Q- and N-Rich Peptide Aggregates Revealed by Atomistic Simulation. Biophysical Journal, 2009, 97, 1-11.	0.2	65
21	Polymorphism of Alzheimer's Aβ17-42 (p3) Oligomers: The Importance of the Turn Location and Its Conformation. Biophysical Journal, 2009, 97, 1168-1177.	0.2	91
22	Guest Molecules Confined in Amphipathic Crystals as Revealed by X-ray Diffraction and MAS NMR. Crystal Growth and Design, 2009, 9, 2999-3002.	1.4	24
23	Two distinct \hat{I}^2 -sheet fibrils from silk protein. Chemical Communications, 2009, , 7506.	2.2	89
24	Physical methods and techniques : NMR spectroscopy. Annual Reports on the Progress of Chemistry Section B, 2009, 105, 340.	0.8	3
25	Structural integrity of \hat{I}^2 -sheet assembly. Biochemical Society Transactions, 2009, 37, 671-676.	1.6	39
26	Emergence and natural selection of drug-resistant prions. Molecular BioSystems, 2010, 6, 1115.	2.9	48
27	Update 1 of: Over One Hundred Peptide-Activated G Protein-Coupled Receptors Recognize Ligands with Turn Structure. Chemical Reviews, 2010, 110, PR1-PR41.	23.0	66
28	Liposome Damage and Modeling of Fragments of Human Islet Amyloid Polypeptide (IAPP) Support a Two-Step Model of Membrane Destruction. International Journal of Peptide Research and Therapeutics, 2010, 16, 43-54.	0.9	8
29	Nanoimaging for protein misfolding diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 526-543.	3.3	40
30	Amyloid structure – one but not the same: the many levels of fibrillar polymorphism. FEBS Journal, 2010, 277, 4591-4601.	2.2	101
31	Human Islet Amyloid Polypeptide Fibril Binding to Catalase: A Transmission Electron Microscopy and Microplate Study. Scientific World Journal, The, 2010, 10, 879-893.	0.8	10
32	Minimalist design of water-soluble cross-l ² architecture. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3469-3474.	3.3	30
33	Polymorphism in Alzheimer Al² Amyloid Organization Reflects Conformational Selection in a Rugged Energy Landscape. Chemical Reviews, 2010, 110, 4820-4838.	23.0	265
34	Characterizing the Assembly of the Sup35 Yeast Prion Fragment, GNNQQNY: Structural Changes Accompany a Fiber-to-Crystal Switch. Biophysical Journal, 2010, 98, 330-338.	0.2	94
35	Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR. Biochemistry, 2010, 49, 9457-9469.	1.2	66
36	A Unique Approach to the Mobile Proton Model: Influence of Charge Distribution on Peptide Fragmentation. Journal of Physical Chemistry B, 2010, 114, 6350-6353.	1.2	10
37	The Common Architecture of Cross-Î ² Amyloid. Journal of Molecular Biology, 2010, 395, 717-727.	2.0	261

#	Article	IF	Citations
38	Expression and purification of a recombinant amyloidogenic peptide from transthyretin for solid-state NMR spectroscopy. Protein Expression and Purification, 2010, 70, 101-108.	0.6	5
39	From natural to designer self-assembling biopolymers, the structural characterisation of fibrous proteins & peptides using fibre diffraction. Chemical Society Reviews, 2010, 39, 3445.	18.7	79
40	Influence of the Solvent on the Self-Assembly of a Modified Amyloid Beta Peptide Fragment. II. NMR and Computer Simulation Investigation. Journal of Physical Chemistry B, 2010, 114, 940-951.	1.2	77
41	Conformational Flexibility of Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of the American Chemical Society, 2010, 132, 2393-2403.	6.6	126
42	Fibres, crystals and polymorphism: the structural promiscuity of amyloidogenic peptides. Soft Matter, 2010, 6, 2110.	1.2	16
43	Protofibrillar Assembly Toward the Formation of Amyloid Fibrils. Journal of Physical Chemistry Letters, 2011, 2, 2385-2390.	2.1	39
44	Solid-State NMR Characterization of Autofluorescent Fibrils Formed by the Elastin-Derived Peptide GVGVAGVG. Biomacromolecules, 2011, 12, 1546-1555.	2.6	56
45	Dewetting Transitions in the Self-Assembly of Two Amyloidogenic β-Sheets and the Importance of Matching Surfaces. Journal of Physical Chemistry B, 2011, 115, 11137-11144.	1.2	27
46	Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2011, 133, 13934-13937.	6.6	57
47	Systematic Examination of Polymorphism in Amyloid Fibrils by Molecular-Dynamics Simulation. Biophysical Journal, 2011, 100, 2234-2242.	0.2	47
48	Steric Zipper Formed by Hydrophobic Peptide Fragment of Syrian Hamster Prion Protein. Biochemistry, 2011, 50, 6815-6823.	1.2	32
49	Single Molecule Tracking Analysis Reveals That the Surface Mobility of Amyloid Oligomers Is Driven by Their Conformational Structure. Journal of the American Chemical Society, 2011, 133, 12001-12008.	6.6	32
50	Solid-State NMR Studies of Amyloid Fibril Structure. Annual Review of Physical Chemistry, 2011, 62, 279-299.	4.8	493
51	Porcine islet amyloid polypeptide fragments are refractory to amyloid formation. FEBS Letters, 2011, 585, 71-77.	1.3	40
52	Influence of Hydrophobicity on the Surface-Catalyzed Assembly of the Islet Amyloid Polypeptide. ACS Nano, 2011, 5, 2770-2778.	7.3	68
53	The charge ratio between O and N on amide bonds: A new approach to the mobile proton model. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1915-1919.	2.0	2
54	Solidâ€state NMR detection of ¹⁴ N ¹³ C dipolar couplings between amino acid side groups provides constraints on amyloid fibril architecture. Magnetic Resonance in Chemistry, 2011, 49, 65-69.	1.1	5
55	Mechanical Characterization of Amyloid Fibrils Using Coarseâ€Grained Normal Mode Analysis. Advanced Functional Materials, 2011, 21, 3454-3463.	7.8	56

#	Article	IF	CITATIONS
56	Amyloid Features and Neuronal Toxicity of Mature Prion Fibrils Are Highly Sensitive to High Pressure. Journal of Biological Chemistry, 2011, 286, 13448-13459.	1.6	20
57	A Multiscale Approach to Characterize the Early Aggregation Steps of the Amyloid-Forming Peptide GNNQQNY from the Yeast Prion Sup-35. PLoS Computational Biology, 2011, 7, e1002051.	1.5	80
59	Fibrils and nanotubes assembled from a modified amyloid-β peptide fragment differ in the packing of the same β-sheet building blocks. Chemical Communications, 2012, 48, 2976.	2.2	32
60	Cross-Seeding of Fibrils from Two Types of Insulin Induces New Amyloid Strains. Biochemistry, 2012, 51, 9460-9469.	1.2	54
61	Polymorphism of β2-Microglobulin Amyloid Fibrils Manifested by Ultrasonication-enhanced Fibril Formation in Trifluoroethanol. Journal of Biological Chemistry, 2012, 287, 22827-22837.	1.6	40
62	Structures of amyloid fibrils formed by the prion protein derived peptides PrP(244–249) and PrP(245–250). Journal of Structural Biology, 2012, 180, 290-302.	1.3	8
63	Helix-Dipole Effects in Peptide Self-Assembly to Amyloid. Biochemistry, 2012, 51, 4167-4174.	1.2	5
64	Cross-Î ² -Sheet Supersecondary Structure in Amyloid Folds: Techniques for Detection and Characterization. Methods in Molecular Biology, 2012, 932, 237-257.	0.4	20
65	Amphiphilic Adsorption of Human Islet Amyloid Polypeptide Aggregates to Lipid/Aqueous Interfaces. Journal of Molecular Biology, 2012, 421, 537-547.	2.0	71
66	Modulation of fibrillation of hIAPP core fragments by chemical modification of the peptide backbone. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 274-285.	1.1	14
67	2Dâ€Oriented Selfâ€Assembly of Peptides Induced by Hydrated Electrons. Chemistry - A European Journal, 2012, 18, 14614-14617.	1.7	24
68	Effect of Sequence Variation on the Mechanical Response of Amyloid Fibrils Probed by Steered Molecular Dynamics Simulation. Biophysical Journal, 2012, 102, 587-596.	0.2	43
69	Solvent-Induced Tuning of Internal Structure in a Protein Amyloid Protofibril. Biophysical Journal, 2012, 103, 797-806.	0.2	14
71	Role of amino acid hydrophobicity, aromaticity, and molecular volume on IAPP(20–29) amyloid selfâ€assembly. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1053-1065.	1.5	64
72	Solidâ€state NMR reveals differences in the packing arrangements of peptide aggregates derived from the aortic amyloid polypeptide medin. Journal of Peptide Science, 2012, 18, 65-72.	0.8	6
73	X-Ray Fibre Diffraction Studies of Amyloid Fibrils. Methods in Molecular Biology, 2012, 849, 121-135.	0.4	85
74	Amyloid-Derived Peptide Forms Self-Assembled Monolayers on Gold Nanoparticle with a Curvature-Dependent β-Sheet Structure. ACS Nano, 2012, 6, 1416-1426.	7.3	84
75	Improving Internal Peptide Dynamics in the Coarse-Grained MARTINI Model: Toward Large-Scale Simulations of Amyloid- and Elastin-like Peptides. Journal of Chemical Theory and Computation, 2012, 8, 1774-1785.	2.3	69

#	Article	IF	CITATIONS
76	Effect of electrostatics on aggregation of prion protein Sup35 peptide. Journal of Physics Condensed Matter, 2012, 24, 164205.	0.7	26
78	An Asymmetric Dimer as the Basic Subunit in Alzheimer's Disease Amyloid β Fibrils. Angewandte Chemie - International Edition, 2012, 51, 6136-6139.	7.2	88
79	Stepwise oligomerization of murine amylin and assembly of amyloid fibrils. Biophysical Chemistry, 2013, 180-181, 135-144.	1.5	23
80	Monitoring oligomer formation from self-aggregating amylin peptides using ESI-IMS-MS. International Journal for Ion Mobility Spectrometry, 2013, 16, 29-39.	1.4	13
82	Ruthenium complexes as novel inhibitors of human islet amyloid polypeptide fibril formation. Metallomics, 2013, 5, 1599.	1.0	35
83	How curcumin affords effective protection against amyloid fibrillation in insulin. Food and Function, 2013, 4, 1474.	2.1	34
84	Lysine functionalised amyloid fibrils: the design and assembly of a TTR1-based peptide. Soft Matter, 2013, 9, 3315.	1.2	10
85	Mutations and Seeding of Amylin Fibril-Like Oligomers. Journal of Physical Chemistry B, 2013, 117, 16076-16085.	1.2	30
86	Evidence of ï€â€stacking interactions in the selfâ€assembly of hIAPP _{22â€29} . Proteins: Structure, Function and Bioinformatics, 2013, 81, 690-703.	1.5	43
87	Membrane Permeation Induced by Aggregates of Human Islet Amyloid Polypeptides. Biophysical Journal, 2013, 105, 2323-2332.	0.2	39
88	Coexistence of ribbon and helical fibrils originating from hIAPP _{20–29} revealed by quantitative nanomechanical atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2798-2803.	3.3	104
89	Protein Structure Determination by Magic-Angle Spinning Solid-State NMR, and Insights into the Formation, Structure, and Stability of Amyloid Fibrils. Annual Review of Biophysics, 2013, 42, 515-536.	4.5	83
92	Molecular Mechanism of Misfolding and Aggregation of Aβ(13–23). Journal of Physical Chemistry B, 2013, 117, 6175-6186.	1.2	46
93	Local Frustration Determines Molecular and Macroscopic Helix Structures. Journal of Physical Chemistry B, 2013, 117, 7918-7928.	1.2	13
94	Fibril formation and toxicity of the non-amyloidogenic rat amylin peptide. Micron, 2013, 44, 246-253.	1.1	23
95	Heme Bound Amylin: Spectroscopic Characterization, Reactivity, and Relevance to Type 2 Diabetes. Inorganic Chemistry, 2013, 52, 5226-5235.	1.9	40
96	Molecular Mechanism of the Early Stage of Amyloidogenic Hexapeptides (NFGAIL) Aggregation. Communications in Theoretical Physics, 2013, 60, 515-520.	1.1	3
97	The Total Charge of Carbon and Nitrogen Atoms in the Amide Bonds Acts as a New Approach to Understand the Mobile Proton Model. Spectroscopy Letters, 2013, 46, 408-414.	0.5	1

		CITATION REPORT		
# 98	ARTICLE Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloi fibrils containing structural defects. Bailetain Journal of Nanotechnology, 2013, 4, 429,440	d	IF 1.5	CITATIONS
99	Amyloid-Like Protofibrils with Different Physical Properties. , 2014, , 223-231.			0
100	Polymorphism of Amyloid Fibrils and their Complexes with Catalase. , 2014, , 255-262.			1
101	The bond survival time variation of polymorphic amyloid fibrils in the mechanical insight. Cher Physics Letters, 2014, 600, 68-72.	nical	1.2	23
102	Stabilities and structures of islet amyloid polypeptide (IAPP22–28) oligomers: From dimer t Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 357-366.	o 16-mer.	1.1	24
103	The mechanical response of hIAPP nanowires based on different bending direction simulation Physical Chemistry Chemical Physics, 2014, 16, 18493.	5.	1.3	19
104	The Importance of Being Capped: Terminal Capping of an Amyloidogenic Peptide Affects Fibri Propensity and Fibril Morphology. Biochemistry, 2014, 53, 6968-6980.	llation	1.2	33
105	Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes. Metallom 6, 1087-1096.	ics, 2014,	1.0	40
106	The role of copper(<scp>ii</scp>) in the aggregation of human amylin. Metallomics, 2014, 6,	1841-1852.	1.0	51
107	Spontaneous Aggregation of the Insulin-Derived Steric Zipper Peptide VEALYL Results in Diffe Aggregation Forms with Common Features. Journal of Molecular Biology, 2014, 426, 362-376	rent b.	2.0	21
108	Peptide Amyloid Surface Display. Biochemistry, 2015, 54, 987-993.		1.2	7
109	Proteins at Interfaces Probed by Chiral Vibrational Sum Frequency Generation Spectroscopy. J of Physical Chemistry B, 2015, 119, 2769-2785.	ournal	1.2	55
110	Relationship between structural composition and material properties of polymorphic hIAPP fil Biophysical Chemistry, 2015, 199, 1-8.	orils.	1.5	19
111	Computer Simulation Studies of Al̂² _{37–42} Aggregation Thermodynamics and Water and Salt Solution. Journal of Physical Chemistry B, 2015, 119, 662-670.	Kinetics in	1.2	19
112	New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions Amyloid Polypeptides with Lipid Membranes. Journal of Diabetes Research, 2016, 2016, 1-17.	of Islet	1.0	17
113	Structural Characterization of Fibrils from Recombinant Human Islet Amyloid Polypeptide by Solid-State NMR: The Central FGAILS Segment Is Part of the Î ² -Sheet Core. PLoS ONE, 2016, 1	1, e0161243.	1.1	38
114	Understanding structural characteristics of out-of-register hIAPP amyloid proteins via molecul dynamics. RSC Advances, 2016, 6, 77666-77672.	ar	1.7	3
115	The effect of structural heterogeneity on the conformation and stability of Aβ–tau mixture Advances, 2016, 6, 52236-52247.	s. RSC	1.7	13

#	Article	IF	CITATIONS
116	Conformational Ensemble of hIAPP Dimer: Insight into the Molecular Mechanism by which a Green Tea Extract inhibits hIAPP Aggregation. Scientific Reports, 2016, 6, 33076.	1.6	79
117	Effect of Mutation on an Aggregation-Prone Segment of p53: From Monomer to Dimer to Multimer. Journal of Physical Chemistry B, 2016, 120, 11665-11673.	1.2	12
119	Effect of Terminal Capping on Aggregation of Peptide Fragments. Springer Theses, 2016, , 87-100.	0.0	0
120	End Capping Alters the Structural Characteristics and Mechanical Properties of Transthyretin (105–115) Amyloid Protofibrils. ChemPhysChem, 2016, 17, 425-432.	1.0	14
121	Crystal Structures of IAPP Amyloidogenic Segments Reveal a Novel Packing Motif of Out-of-Register Beta Sheets. Journal of Physical Chemistry B, 2016, 120, 5810-5816.	1.2	61
122	Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophysical Chemistry, 2016, 210, 14-26.	1.5	23
123	Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules. ChemPhysChem, 2017, 18, 817-827.	1.0	7
124	Tracking the amyloidogenic core of IAPP amyloid fibrils: Insights from micro-Raman spectroscopy. Journal of Structural Biology, 2017, 199, 140-152.	1.3	9
125	Self-Assembly, Dynamics, and Polymorphism of hIAPP(20–29) Aggregates at Solid–Liquid Interfaces. Langmuir, 2017, 33, 372-381.	1.6	9
126	Distinct oligomerization and fibrillization dynamics of amyloid core sequences of amyloid-beta and islet amyloid polypeptide. Physical Chemistry Chemical Physics, 2017, 19, 28414-28423.	1.3	43
127	Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils. ACS Nano, 2017, 11, 8579-8589.	7.3	48
128	Small Bioactive Peptides for Biomaterials Design and Therapeutics. Chemical Reviews, 2017, 117, 14015-14041.	23.0	317
129	Competition between crystal and fibril formation in molecular mutations of amyloidogenic peptides. Nature Communications, 2017, 8, 1338.	5.8	76
130	Structure-Property Relationship of Amyloidogenic Prion Nanofibrils. , 2017, , .		0
131	Solid-State NMR of Supramolecular Materials. , 2017, , 75-99.		3
132	Amyloidâ€Polymorphie in der Energielandschaft der Faltung und Aggregation von Proteinen. Angewandte Chemie, 2018, 130, 8502-8515.	1.6	16
133	Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape. Angewandte Chemie - International Edition, 2018, 57, 8370-8382.	7.2	229
134	Atomistic-level study of the interactions between hIAPP protofibrils and membranes: Influence of pH and lipid composition. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1818-1825.	1.4	33

#	Article	IF	CITATIONS
135	Engineering and evaluation of amyloid assemblies as a nanovaccine against the Chikungunya virus. Nanoscale, 2018, 10, 19547-19556.	2.8	31
136	Structural Polymorphs Suggest Competing Pathways for the Formation of Amyloid Fibrils That Diverge from a Common Intermediate Species. Biochemistry, 2018, 57, 6470-6478.	1.2	23
137	Formation of Heterotypic Amyloids: αâ€Synuclein in Coâ€Aggregation. Proteomics, 2018, 18, e1800059.	1.3	8
138	Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR. Biophysical Reviews, 2018, 10, 1133-1149.	1.5	28
139	Guiding the Morphology of Amyloid Assemblies by Electrostatic Capping: from Polymorphic Twisted Fibrils to Uniform Nanorods. Small, 2019, 15, e1901806.	5.2	23
140	Molecular Dynamics Simulations Reveal the Inhibitory Mechanism of Dopamine against Human Islet Amyloid Polypeptide (hIAPP) Aggregation and Its Destabilization Effect on hIAPP Protofibrils. ACS Chemical Neuroscience, 2019, 10, 4151-4159.	1.7	46
141	Effect of Terminal Modifications on the Adsorption and Assembly of hIAPP(20–29). ACS Omega, 2019, 4, 2649-2660.	1.6	11
142	Inhibitory effects of oxidovanadium complexes on the aggregation of human islet amyloid polypeptide and its fragments. Journal of Inorganic Biochemistry, 2019, 197, 110721.	1.5	9
143	Different protonated states at the C-terminal of the amyloid-β peptide modulate the stability of S-shaped protofibril. Journal of Chemical Physics, 2019, 150, 185102.	1.2	3
144	Aggregation of amylin: Spectroscopic investigation. International Journal of Biological Macromolecules, 2019, 133, 1242-1248.	3.6	8
145	Amyloid Selfâ€Assembly of hIAPP8â€20 via the Accumulation of Helical Oligomers, αâ€Helix to βâ€Sheet Transition, and Formation of βâ€Barrel Intermediates. Small, 2019, 15, e1805166.	5.2	49
146	Large-scale all-atom molecular dynamics alanine-scanning of IAPP octapeptides provides insights into the molecular determinants of amyloidogenicity. Scientific Reports, 2019, 9, 2530.	1.6	4
147	Nucleation of β-rich oligomers and β-barrels in the early aggregation of human islet amyloid polypeptide. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 434-444.	1.8	44
148	Characterization techniques of protein and peptide nanofibers: Self-assembly kinetics. , 2020, , 99-118.		1
149	Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals. Advanced Science, 2021, 8, 2002182.	5.6	20
150	Fibrilar Polymorphism of the Bacterial Extracellular Matrix Protein TasA. Microorganisms, 2021, 9, 529.	1.6	11
151	Interaction of ApoMyoglobin with Heme-hIAPP complex. Journal of Inorganic Biochemistry, 2021, 216, 111348.	1.5	3
152	Bio-inspired amyloid polypeptides: From self-assembly to nanostructure design and biotechnological applications. Applied Materials Today, 2021, 22, 100966.	2.3	11

#	Article	IF	CITATIONS
153	Amyloid-type Protein Aggregation and Prion-like Properties of Amyloids. Chemical Reviews, 2021, 121, 8285-8307.	23.0	98
154	Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Advanced Drug Delivery Reviews, 2021, 174, 1-29.	6.6	40
156	Deuterated Peptides and Proteins: Structure and Dynamics Studies by MAS Solid-State NMR. Methods in Molecular Biology, 2012, 831, 279-301.	0.4	11
157	Functional Bacterial Amyloids in Biofilms. Springer Series on Biofilms, 2011, , 41-62.	0.0	9
158	Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils. PLoS ONE, 2014, 9, e88502.	1.1	51
159	Insights into the Structure of Amyloid Fibrils. The Open Biology Journal, 2009, 2, 185-192.	0.5	13
160	Atomic structures of fibrillar segments of hIAPP suggest tightly mated \hat{l}^2 -sheets are important for cytotoxicity. ELife, 2017, 6, .	2.8	95
161	Structure-Toxicity Relationships of Amyloid Peptide Oligomers. , 0, , .		1
163	Probing of Amyloid AÎ 2 (14-23) Trimers by Single-Molecule Force Spectroscopy. , 2016, 1, .		7
164	Molecular Aspects of Insulin Aggregation and Various Therapeutic Interventions. ACS Bio & Med Chem Au, 2022, 2, 205-221.	1.7	32
165	General Principles Underpinning Amyloid Structure. Frontiers in Neuroscience, 2022, 16, .	1.4	20
166	Understanding the mechanism of amylin aggregation: From identifying crucial segments to tracing dominant sequential events to modeling potential aggregation suppressors. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2023, 1871, 140866.	1.1	3
167	The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. Jacs Au, 2023, 3, 657-681.	3.6	7