Mesenchymal stem cells promote proliferation of endog survival of newborn cells in a rat stroke model

Experimental and Molecular Medicine 40, 387 DOI: 10.3858/emm.2008.40.4.387

Citation Report

#	Article	IF	CITATIONS
1	Delayed intralesional transplantation of bone marrow stromal cells increases endogenous neurogenesis and promotes functional recovery after severe traumatic brain injury. Brain Injury, 2009, 23, 760-769.	1.2	50
2	Regeneration of the ischemic brain by engineered stem cells: Fuelling endogenous repair processes. Brain Research Reviews, 2009, 61, 1-13.	9.0	71
3	A New Method for Transduction of Mesenchymal Stem Cells Using Mechanical Agitation. Molecules and Cells, 2009, 28, 515-520.	2.6	4
4	Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opinion on Biological Therapy, 2009, 9, 1487-1497.	3.1	103
5	Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Molecular Psychiatry, 2010, 15, 1164-1175.	7.9	104
6	Mesenchymal stem cells in the treatment of ischemic stroke: progress and possibilities. Stem Cells and Cloning: Advances and Applications, 2010, 3, 157.	2.3	26
7	Neural and Non-Neural Stem Cells as Novel Therapeutic Modalities for Brain Injury. NeuroImmune Biology, 2010, 9, 59-66.	0.2	0
8	Company Profile: Biocompatibles International plc: local drug delivery for targeted therapies. Regenerative Medicine, 2010, 5, 189-195.	1.7	4
9	In vitro interactions between bone marrow stromal cells and hippocampal slice cultures. Comptes Rendus - Biologies, 2010, 333, 582-590.	0.2	11
10	Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain, Behavior, and Immunity, 2010, 24, 387-393.	4.1	233
11	Intracerebral transplantation of mesenchymal stem cells derived from human umbilical cord blood alleviates hypoxic ischemic brain injury in rat neonates. Journal of Perinatal Medicine, 2010, 38, 215-21.	1.4	66
12	Recent advances and novel approaches in deriving neurons from stem cells. Molecular BioSystems, 2010, 6, 324-328.	2.9	3
13	Stem cells and stroke: opportunities, challenges and strategies. Expert Opinion on Biological Therapy, 2011, 11, 447-461.	3.1	57
14	Late transplantation of allogeneic bone marrow stromal cells improves neurologic deficits subsequent to intracerebral hemorrhage. Cytotherapy, 2011, 13, 562-571.	0.7	43
15	Human Stem/Progenitor Cells from Bone Marrow Enhance Glial Differentiation of Rat Neural Stem Cells: A Role for Transforming Growth Factor β and Notch Signaling. Stem Cells and Development, 2011, 20, 289-300.	2.1	38
16	Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience, 2011, 175, 394-405.	2.3	127
17	Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes periâ€infarct angiogenesis after focal cerebral ischemia. Neuropathology, 2011, 31, 384-391.	1.2	64
18	Acute Hepatocyte Growth Factor Treatment Induces Long-Term Neuroprotection and Stroke Recovery via Mechanisms Involving Neural Precursor Cell Proliferation and Differentiation. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1251-1262.	4.3	64

		CITATION REPORT		
#	Article		IF	CITATIONS
19	Immunoregulatory function of bone marrow mesenchymal stem cells in EAE depends of differentiation state and secretion of PGE2. Journal of Neuroimmunology, 2011, 233, 10		2.3	60
20	Effect of human neural precursor cell transplantation on endogenous neurogenesis afte cerebral ischemia in the rat. Brain Research, 2011, 1374, 56-62.	er focal	2.2	89
21	Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient for ischemia. Acta Neuropathologica, 2011, 122, 429-42.	ocal cerebral	7.7	36
22	Mesenchymal Stem Cells Stimulate Endogenous Neurogenesis in the Subventricular Zo Mice. Stem Cell Reviews and Reports, 2011, 7, 404-412.	ne of Adult	5.6	75
23	Human Umbilical Mesenchymal Stem Cells Promote Recovery After Ischemic Stroke. Str 2045-2053.	oke, 2011, 42,	2.0	143
24	Effects of Neural Progenitor Cells on Sensorimotor Recovery and Endogenous Repair M After Photothrombotic Stroke. Stroke, 2011, 42, 1757-1763.	echanisms	2.0	70
25	Motor-Evoked Potential Confirmation of Functional Improvement by Transplanted Bone Mesenchymal Stem Cell in the Ischemic Rat Brain. Journal of Biomedicine and Biotechno 1-11.		3.0	14
26	Toward Personalized Cell Therapies by Using Stem Cells. Journal of Biomedicine and Bio 2012, 2012, 1-2.	technology,	3.0	3
27	Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Therapy Promotes Functi of Contused Rat Spinal Cord through Enhancement of Endogenous Cell Proliferation an Oligogenesis. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.		3.0	48
28	Brain-Derived Neurotrophic Factor-Transfected and Nontransfected 3T3 Fibroblasts Enh Migratory Neuroblasts and Functional Restoration in Mice With Intracerebral Hemorrha of Neuropathology and Experimental Neurology, 2012, 71, 1123-1136.	ance ge. Journal	1.7	9
30	Mesenchymal Stem Cells Derived from Human Limbal Niche Cells. , 2012, 53, 5686.			102
31	Angiogenesis Potential of Human Limbal Stromal Niche Cells. , 2012, 53, 3357.			42
32	Modulation of microglial activation enhances neuroprotection and functional recovery from bone marrow mononuclear cell transplantation after cortical ischemia. Neuroscier Research, 2012, 73, 122-132.	derived Ice	1.9	64
33	Effects of Bone Marrow Mesenchymal Stem Cells on Cell Proliferation and Growth Factor of Limbal Epithelial Cells in vitro. Ophthalmic Research, 2012, 48, 82-88.	br Expression	1.9	25
34	Neural differentiation and support of neuroregeneration of non-neural adult stem cells. Brain Research, 2012, 201, 17-34.	Progress in	1.4	9
35	Neurorestoration Induced by Mesenchymal Stem Cells: Potential Therapeutic Mechanis Trials. Yonsei Medical Journal, 2012, 53, 1059.	ms for Clinical	2.2	41
36	Fate of Transplanted Bone Marrow Derived Mesenchymal Stem Cells Following Spinal C Rats by Transplantation Routes. Journal of Korean Medical Science, 2012, 27, 586.	ord Injury in	2.5	51
37	Hepatocyte growth factor mediates mesenchymal stem cell–induced recovery in mul models. Nature Neuroscience, 2012, 15, 862-870.	tiple sclerosis	14.8	365

#	Article	IF	CITATIONS
38	Human umbilical cord blood–derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatric Research, 2012, 72, 277-284.	2.3	112
39	The Endogenous Regenerative Capacity of the Damaged Newborn Brain: Boosting Neurogenesis with Mesenchymal Stem Cell Treatment. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 625-634.	4.3	57
40	Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-I ² . Neurobiology of Disease, 2013, 58, 249-257.	4.4	111
41	MSCs: Paracrine Effects. , 2013, , 145-167.		5
42	Towards Clinical Application of Mesenchymal Stem Cells for Treatment of Neurological Diseases of the Central Nervous System. Journal of NeuroImmune Pharmacology, 2013, 8, 1062-1076.	4.1	45
43	Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Research and Therapy, 2013, 4, 11.	5.5	201
44	Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy, 2013, 15, 1549-1562.	0.7	65
45	Therapeutic applications of bone marrow-derived stem cells in ischemic stroke. Neurological Research, 2013, 35, 470-478.	1.3	28
46	Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells. Experimental and Molecular Medicine, 2013, 45, e10-e10.	7.7	15
47	Quantitative Microplate Assay for Studying Mesenchymal Stromal Cell-Induced Neuropoiesis. Stem Cells Translational Medicine, 2013, 2, 223-232.	3.3	14
48	Bone-Marrow-Derived Mesenchymal Stem Cells Promote Proliferation and Neuronal Differentiation of Niemann–Pick Type C Mouse Neural Stem Cells by Upregulation and Secretion of CCL2. Human Gene Therapy, 2013, 24, 655-669.	2.7	32
49	MicroRNA-146a Negatively Regulates the Immunoregulatory Activity of Bone Marrow Stem Cells by Targeting Prostaglandin E2 Synthase-2. Journal of Immunology, 2013, 190, 5102-5109.	0.8	41
50	Neural Induction with Neurogenin 1 Enhances the Therapeutic Potential of Mesenchymal Stem Cells in an Amyotrophic Lateral Sclerosis Mouse Model. Cell Transplantation, 2013, 22, 855-870.	2.5	33
51	Mesenchymal stem cells in neurological diseases. Clinical Investigation, 2013, 3, 173-189.	0.0	5
52	Mesenchymal Stem Cell Conditioning Promotes Rat Oligodendroglial Cell Maturation. PLoS ONE, 2013, 8, e71814.	2.5	45
53	Brain Remodelling following Endothelin-1 Induced Stroke in Conscious Rats. PLoS ONE, 2014, 9, e97007.	2.5	25
54	Stem cell-based treatments against stroke: observations from human proof-of-concept studies and considerations regarding clinical applicability. Frontiers in Cellular Neuroscience, 2014, 8, 357.	3.7	34
55	Mesenchymal Stem Cells Expressing Brain-Derived Neurotrophic Factor Enhance Endogenous Neurogenesis in an Ischemic Stroke Model. BioMed Research International, 2014, 2014, 1-10.	1.9	105

#	Article	IF	CITATIONS
56	Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer′s disease mice. Neural Regeneration Research, 2014, 9, 798.	3.0	108
57	Superparamagnetic iron oxide magnetic nanomaterial-labeled bone marrow mesenchymal stem cells for rat liver repair after hepatectomy. Journal of Surgical Research, 2014, 191, 290-301.	1.6	18
58	Is the subarachnoid administration of mesenchymal stromal cells a useful strategy to treat chronic brain damage?. Cytotherapy, 2014, 16, 1501-1510.	0.7	11
59	Update on Therapeutic Mechanism for Bone Marrow Stromal Cells in Ischemic Stroke. Journal of Molecular Neuroscience, 2014, 52, 177-185.	2.3	28
60	Bone marrow stromal cells as a therapeutic treatment for ischemic stroke. Neuroscience Bulletin, 2014, 30, 524-534.	2.9	28
61	Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1435-1449.	0.8	27
62	Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency. Journal of Functional Biomaterials, 2015, 6, 863-888.	4.4	27
63	Skin-Derived Precursor Cells Promote Angiogenesis and Stimulate Proliferation of Endogenous Neural Stem Cells after Cerebral Infarction. BioMed Research International, 2015, 2015, 1-10.	1.9	14
64	Functional recovery after acute intravenous administration of human umbilical cord mesenchymal stem cells in rats with cerebral ischemia-reperfusion injury. Intractable and Rare Diseases Research, 2015, 4, 98-104.	0.9	15
66	Therapeutic properties of mesenchymal stem cells for autism spectrum disorders. Medical Hypotheses, 2015, 84, 169-177.	1.5	11
67	Effect of umbilical cord mesenchymal stromal cells on motor functions of identical twins with cerebral palsy: pilot study on the correlation of efficacy and hereditary factors. Cytotherapy, 2015, 17, 224-231.	0.7	52
68	Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Translational Medicine, 2015, 4, 1131-1143.	3.3	584
69	An avian model for ascertaining the mechanisms of organophosphate neuroteratogenicity and its therapy with mesenchymal stem cell transplantation Neurotoxicology and Teratology, 2015, 50, 73-81.	2.4	13
70	The Vegetative State and Stem Cells: Therapeutic Considerations. Frontiers in Neurology, 2016, 7, 118.	2.4	7
71	Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites. Critical Care Medicine, 2016, 44, e1118-e1131.	0.9	66
73	Comparison of MSC-Neurogenin1 administration modality in MCAO rat model. Translational Neuroscience, 2016, 7, 164-172.	1.4	8
74	Effect of Extracellular Vesicles on Neural Functional Recovery and Immunologic Suppression after Rat Cerebral Apoplexy. Cellular Physiology and Biochemistry, 2016, 40, 155-162.	1.6	36
75	Current developments in cell- and biomaterial-based approaches for stroke repair. Expert Opinion on Biological Therapy, 2016, 16, 43-56.	3.1	29

#	Article	IF	CITATIONS
76	Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis. Molecular Neurobiology, 2017, 54, 1531-1540.	4.0	33
77	Neurogenesis in Stroke Recovery. Translational Stroke Research, 2017, 8, 3-13.	4.2	162
78	Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Scientific Reports, 2017, 7, 40758.	3.3	86
79	Mesenchymal stromal cells from umbilical cord Wharton's jelly trigger oligodendroglial differentiation in neural progenitor cells through cell-to-cell contact. Cytotherapy, 2017, 19, 829-838.	0.7	15
80	Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice. Scientific Reports, 2017, 7, 6962.	3.3	36
81	Repair of neonatal brain injury: bringing stem cellâ€based therapy into clinical practice. Developmental Medicine and Child Neurology, 2017, 59, 997-1003.	2.1	35
82	Hypoxia pretreatment and EPO-modification enhance the protective effects of MSC on neuron-like PC12Âcells in a similar way. Biochemical and Biophysical Research Communications, 2017, 482, 232-238.	2.1	8
83	Endothelial-derived extracellular matrix ameliorate the stemness deprivation during ex vivo expansion of mouse bone marrow-derived mesenchymal stem cells. PLoS ONE, 2017, 12, e0184111.	2.5	11
84	Cell Therapy for Chronic Stroke. Stroke, 2018, 49, 1066-1074.	2.0	55
85	Bone marrow mesenchymal stromal cells alleviate brain white matter injury via the enhanced proliferation of oligodendrocyte progenitor cells in focal cerebral ischemic rats. Brain Research, 2018, 1680, 127-136.	2.2	18
86	Comparisons of the therapeutic effects of three different routes of bone marrow mesenchymal stem cell transplantation in cerebral ischemic rats. Brain Research, 2018, 1680, 143-154.	2.2	36
87	Immunomodulatory effect of CD200-positive human placenta-derived stem cells in the early phase of stroke. Experimental and Molecular Medicine, 2018, 50, e425-e425.	7.7	29
88	Therapeutic potential to reduce brain injury in growth restricted newborns. Journal of Physiology, 2018, 596, 5675-5686.	2.9	14
89	Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Science China Life Sciences, 2018, 61, 2-13.	4.9	64
90	Mesenchymal Stromal Cell Therapy of Stroke. Springer Series in Translational Stroke Research, 2018, , 217-237.	0.1	3
91	Interdisciplinary Advances Towards Understanding and Enhancing the Therapeutic Potential of Stem Cell-Based Therapies for Ischaemic Stroke. Springer Series in Translational Stroke Research, 2018, , 21-45.	0.1	0
92	Therapeutic Potential of Human Turbinate-Derived Mesenchymal Stem Cells in Experimental Acute Ischemic Stroke. International Neurourology Journal, 2018, 22, S131-138.	1.2	13
93	Rat Cranial Bone-Derived Mesenchymal Stem Cell Transplantation Promotes Functional Recovery in Ischemic Stroke Model Rats. Stem Cells and Development, 2018, 27, 1053-1061.	2.1	23

#	Article	IF	CITATIONS
94	Potential Use of Stem Cells in Mood Disorders. Advances in Experimental Medicine and Biology, 2018, 1089, 87-96.	1.6	2
95	Emerging Cellular and Molecular Strategies for Enhancing Central Nervous System (CNS) Remyelination. Brain Sciences, 2018, 8, 111.	2.3	27
96	New Neurons in the Post-ischemic and Injured Brain: Migrating or Resident?. Frontiers in Neuroscience, 2019, 13, 588.	2.8	28
97	SOD3 overexpression alleviates cerebral ischemiaâ€reperfusion injury in rats. Molecular Genetics & Genomic Medicine, 2019, 7, e00831.	1.2	12
98	Synergistic Improvement in Children with Cerebral Palsy Who Underwent Double-Course Human Wharton's Jelly Stem Cell Transplantation. Stem Cells International, 2019, 2019, 1-11.	2.5	4
99	Adult Stem Cells and Induced Pluripotent Stem Cells for Stroke Treatment. Frontiers in Neurology, 2019, 10, 908.	2.4	31
100	Therapeutic Potential of Neurotrophins for Repair After Brain Injury: A Helping Hand From Biomaterials. Frontiers in Neuroscience, 2019, 13, 790.	2.8	89
101	Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behavioural Brain Research, 2019, 374, 111887.	2.2	6
102	Combined Treatment with Insulin-Like Growth Factor 1 and AMD3100 Improves Motor Outcome in a Murine Model of Neonatal Hypoxic-Ischemic Encephalopathy. Developmental Neuroscience, 2019, 41, 255-262.	2.0	3
103	Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Experimental Neurology, 2020, 334, 113456.	4.1	49
104	Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 7609.	4.1	448
105	Outcomes of Bone Marrow-Derived Mononuclear Cell Transplantation for Patients in Persistent Vegetative State After Drowning: Report of Five Cases. Frontiers in Pediatrics, 2020, 8, 564.	1.9	11
106	In Vitro Oxygen-Glucose Deprivation-Induced Stroke Models with Human Neuroblastoma Cell- and Induced Pluripotent Stem Cell-Derived Neurons. Stem Cells International, 2020, 2020, 1-13.	2.5	14
107	Potential of stem cell therapy in intracerebral hemorrhage. Molecular Biology Reports, 2020, 47, 4671-4680.	2.3	7
108	Immuno-suppressive hydrogels enhance allogeneic MSC survival after transplantation in the injured brain. Biomaterials, 2021, 266, 120419.	11.4	34
109	Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. Journal of Neurochemistry, 2021, 158, 59-73.	3.9	38
110	Neuroprotective response and efficacy of intravenous administration of mesenchymal stem cells in traumatic brain injury mice. European Journal of Neuroscience, 2021, 54, 4392-4407.	2.6	6
111	Delayed Double Treatment with Adult-Sourced Adipose-Derived Mesenchymal Stem Cells Increases Striatal Medium-Spiny Neuronal Number, Decreases Striatal Microglial Number, and Has No Subventricular Proliferative Effect, after Acute Neonatal Hypoxia-Ischemia in Male Rats. International Journal of Molecular Sciences. 2021. 22. 7862.	4.1	5

# 112	ARTICLE Interaction of Bone Marrow Stem Cells with Other Cells. , 2017, , 81-105.	IF	CITATIONS 2
114	Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor. Molecules and Cells, 2015, 38, 806-813.	2.6	2
115	Intralesional administration of allogeneic bone marrow stromal cells reduces functional deficits after intracerebral hemorrhage. Histology and Histopathology, 2010, 25, 453-61.	0.7	15
116	Intrahippocampal Transplantation of Undifferentiated Human Chorionic- Derived Mesenchymal Stem Cells Does Not Improve Learning and Memory in the Rat Model of Sporadic Alzheimer Disease. Current Stem Cell Research and Therapy, 2019, 14, 184-190.	1.3	6
117	Partial Improvement of Spatial Memory Following Trimethyltin Chloride by Bone Marrow Mesenchymal Stem Cells Transplantation in the Rat CA1. Basic and Clinical Neuroscience, 2019, 10, 567-577.	0.6	3
118	Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomolecules and Therapeutics, 2020, 28, 34-44.	2.4	75
119	Neural differentiation of human Wharton's jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regeneration Research, 2017, 12, 1103.	3.0	17
120	Cerebral ischemia and neuroregeneration. Neural Regeneration Research, 2018, 13, 373.	3.0	129
121	Mesenchymal Stem Cell Transplantation: New Avenues for Stem Cell Therapies. Journal of Transplantation Technologies & Research, 2013, 03, .	0.1	3
122	The Therapeutic Potential of Stimulating Endogenous Stem Cell Mobilization. , 0, , .		5
123	Repair of the Complete Radial Tear of the Anterior Horn of the Medial Meniscus in Rabbits: A Comparison between Simple Pullout Repair and Pullout Repair with Human Bone Marrow Stem Cell Implantation. Knee Surgery and Related Research, 2011, 23, 164-170.	4.2	17
124	Dual Roles of Mesenchymal Stem Cells in Spinal Cord Injury: Cell Replacement Therapy and as a Model System to Understand Axonal Repair. , 2010, , 271-284.		0
125	Neurogenesis in the Cerebral Cortex After Stroke. , 2012, , 211-217.		0
126	The Role of Human Postnatal Bone Marrow-Derived Mesenchymal Stem Cells and Their Importance in Growth, Spinal Cord Injury and Other Neurodegenerative Disorders. , 2012, , 1273-1287.		0
127	Neural Crest and Hirschsprung's Disease. , 2012, , 353-386.		1
128	Ischemia-Induced Neural Stem/Progenitor Cells Within the Post-Stroke Cortex in Adult Brains. , 0, , .		0
129	Mesenchymal Stromal Cells to Treat Brain Injury. , 0, , .		1
131	MSCs for the Treatment of Stroke, Spinal Cord Injury, and Traumatic Brain Injury: From Bench Work to Clinical Trials. , 2013, , 617-637.		0

#	Article	IF	CITATIONS
132	Stem Cell Therapy for Neurodegenerative Diseases: Strategies for Regeneration against Degeneration. Journal of Genes and Cells, 0, 3, 22.	1.0	2
133	Understanding the Therapeutic Potential of Bone Marrow Stem Cell Therapy in Ischemic Stroke. Georgetown Medical Review, 2018, 2, .	0.2	1
134	Immunoexpression of c-Kit in the Mice Hippocampal Subgranular Zone, a Possible Role of Hematopoietic Stem Cells in the Subgranular Zone Neurogenesis. Cell and Tissue Biology, 2020, 14, 250-255.	0.4	0
135	Bone Marrow Derived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages. International Journal of Molecular and Cellular Medicine, 2018, 7, 69-79.	1.1	1
136	Bone marrow mesenchymal stem cells overexpressing hepatocyte growth factor ameliorate hypoxic–ischemic brain damage in neonatal rats. Translational Neuroscience, 2021, 12, 561-572.	1.4	2
137	The endogenous progenitor response following traumatic brain injury: a target for cell therapy paradigms. Neural Regeneration Research, 2022, 17, 2351.	3.0	2
139	The roles, mechanism, and mobilization strategy of endogenous neural stem cells in brain injury. Frontiers in Aging Neuroscience, 0, 14, .	3.4	2
140	Poststroke Intravenous Transplantation of Human Mesenchymal Stem Cells Improves Brain Repair Dynamics and Functional Outcomes in Aged Mice. Stroke, 2023, 54, 1088-1098.	2.0	3
142	MesenchymAl stromal cells for Traumatic bRain Injury (MATRIx): a study protocol for a multicenter, double-blind, randomised, placebo-controlled phase II trial. Intensive Care Medicine Experimental, 2023, 11, .	1.9	2
143	Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. , 2023, 251, 108541.		3
144	Intracerebral Transplantation of Autologous Mesenchymal Stem Cells Improves Functional Recovery in a Rat Model of Chronic Ischemic Stroke. Translational Stroke Research, 0, , .	4.2	1
145	HLA-Homozygous iPSC-Derived Mesenchymal Stem Cells Rescue Rotenone-Induced Experimental Leber's Hereditary Optic Neuropathy-like Models In Vitro and In Vivo. Cells, 2023, 12, 2617.	4.1	0