Review on Hydrogel-based pH Sensors and Microsenso

Sensors 8, 561-581 DOI: 10.3390/s8010561

Citation Report

#	Article	IF	CITATIONS
1	Multiresponsive Biopolyelectrolyte Membrane. Advanced Materials, 2008, 20, 4588-4593.	11.1	54
2	Gelation Mechanism of Poly(<i>N</i> -isopropylacrylamide)â^Clay Nanocomposite Hydrogels Synthesized by Photopolymerization. Langmuir, 2008, 24, 12627-12635.	1.6	30
3	Comparison of a hydrogel model to the Poisson–Boltzmann cell model. Journal of Chemical Physics, 2009, 131, 094903.	1.2	69
4	pH sensor based on boron nitride nanotubes. Nanotechnology, 2009, 20, 415501.	1.3	38
5	Modeling for analysis of the effect of Young's modulus on soft active hydrogels subject to pH stimulus. Smart Materials and Structures, 2009, 18, 045010.	1.8	0
6	Application of hydrogel-coated microcantilevers as sensing elements for pH. Journal of Micromechanics and Microengineering, 2009, 19, 127002.	1.5	12
7	Tunable Gel Formation by Both Sonication and Thermal Processing in a Cholesterolâ€Based Selfâ€Assembly System. Chemistry - A European Journal, 2009, 15, 6234-6243.	1.7	76
8	Columnar Mesophases Controlled by Counterions in Potassium Complexes of Dibenzo[18]crownâ€6 Derivatives. Chemistry - A European Journal, 2009, 15, 9530-9542.	1.7	43
9	Responsive hydrogel layers—from synthesis to applications. Colloid and Polymer Science, 2009, 287, 881-891.	1.0	123
10	A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sensors and Actuators A: Physical, 2009, 155, 58-65.	2.0	107
11	Novel Platforms for Oral Drug Delivery. Pharmaceutical Research, 2009, 26, 601-611.	1.7	92
12	Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring. Sensors and Actuators B: Chemical, 2009, 136, 186-195.	4.0	75
13	The effect of perchlorate ions on a pyridine-based microgel. Advances in Colloid and Interface Science, 2009, 147-148, 67-73.	7.0	7
14	Swelling behaviour of thermo-sensitive hydrogels based on oligo(ethylene glycol) methacrylates. European Polymer Journal, 2009, 45, 3418-3425.	2.6	49
15	Optoelectrothermic Control of Highly Integrated Polymerâ€Based MEMS Applied in an Artificial Skin. Advanced Materials, 2009, 21, 979-983.	11.1	70
16	Supramolecular Interactions in Chemomechanical Polymers. Accounts of Chemical Research, 2009, 42, 1489-1500.	7.6	113
17	Tuning the pH Responsiveness of Î ² -Hairpin Peptide Folding, Self-Assembly, and Hydrogel Material Formation. Biomacromolecules, 2009, 10, 2619-2625.	2.6	161
18	Grafted Functional Polymer Nanostructures Patterned Bottom-Up by Colloidal Lithography and Initiated Chemical Vapor Deposition (iCVD). Chemistry of Materials, 2009, 21, 742-750.	3.2	68

ITATION REDO

#	Article	IF	CITATIONS
19	Oxygen Diffusion in Cross-Linked, Ethanol-Swollen Poly(vinyl alcohol) Gels: Counter-Intuitive Results Reflect Microscopic Heterogeneities. Langmuir, 2009, 25, 1148-1153.	1.6	13
20	Hydrogels for Actuators. Springer Series on Chemical Sensors and Biosensors, 2009, , 221-248.	0.5	27
21	Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab on A Chip, 2009, 9, 613-618.	3.1	101
22	Molecular recognition in chemomechanical polymers. Journal of Materials Chemistry, 2009, 19, 569-573.	6.7	12
23	Stimuli-responsive hydrogel thin films. Soft Matter, 2009, 5, 511-524.	1.2	514
24	Synthesis of Microgels by Radiation Methods. Advances in Polymer Science, 2010, , 95-128.	0.4	6
25	Hydrogel based sensor arrays (2×2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro). Sensors and Actuators B: Chemical, 2010, 145, 807-816.	4.0	43
26	Luminescent N-isopropylacrylamide–surfmer copolymer hydrogels prepared upon electrostatic self-assembly of 1-pyrenesulfonate. Colloid and Polymer Science, 2010, 288, 1479-1484.	1.0	6
27	Synthesis of water-soluble homo- and block-copolymers by RAFT polymerization under Î ³ -irradiation in aqueous media. Polymer, 2010, 51, 4319-4328.	1.8	40
28	Hydrogel-based devices for biomedical applications. Sensors and Actuators B: Chemical, 2010, 147, 765-774.	4.0	368
29	Kinetics of BSA release from poly(N-isopropylacrylamide) hydrogels. Chemical Engineering and Processing: Process Intensification, 2010, 49, 581-588.	1.8	22
30	Hydrogel-based photonic sensor for a biopotential wearable recording system. Biosensors and Bioelectronics, 2010, 26, 80-86.	5.3	25
31	Diffusion Kinetics of BSA Protein in Stimuli Responsive Hydrogels. Defect and Diffusion Forum, 0, 297-301, 664-669.	0.4	2
32	Poroelasticity of a covalently crosslinked alginate hydrogel under compression. Journal of Applied Physics, 2010, 108, .	1.1	69
33	Porous Polyelectrolyte Hydrogels With Enhanced Swelling Properties Prepared Via Thermal Reverse Casting Technique. , 2010, , .		0
34	Two-photon lithography in the future of cell-based therapeutics and regenerative medicine: a review of techniques for hydrogel patterning and controlled release. Future Medicinal Chemistry, 2010, 2, 1669-1680.	1.1	38
35	Squeeze-Film Hydrogel Deposition and Dry Micropatterning. Analytical Chemistry, 2010, 82, 3377-3382.	3.2	15
36	Thermoresponsive Copolymer Hydrogels on the Basis of <i>N</i> -Isopropylacrylamide and a Non-Ionic Surfactant Monomer: Swelling Behavior, Transparency and Rheological Properties. Macromolecules, 2010, 43, 9964-9971	2.2	32

ARTICLE IF CITATIONS # Temperature-Responsive Properties of Poly(acrylic acid-<i>co</i>acrylamide) Hydrophobic Association 37 2.2 114 Hydrogels with High Mechanical Strength. Macromolecules, 2010, 43, 10645-10651. Molecular dynamics in smart hydrogel systems. Journal of Non-Crystalline Solids, 2010, 356, 754-756. 1.5 Mesoporous Hydrogels: Revealing Reversible Porosity by Cryoporometry, X-ray Scattering, and Gas 39 1.6 36 Adsorption. Langmuir, 2010, 26, 10158-10164. Preliminary characterization of a glucose-sensitive hydrogel., 2010, 2010, 5014-7. Actively-moving materials based on stimuli-responsive polymers. Journal of Materials Chemistry, 2010, 41 6.7 83 20, 3382. A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter, 2010, 6, 784. 1.2 288 Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment. Soft 43 1.2 186 Matter, 2010, 6, 6004. Quantifying hydrogel response using laser light scattering. Soft Matter, 2010, 6, 743-749. 44 1.2 Improvement of elasticity and strength of poly(N-isopropylacrylamide) hydrogels upon 45 1.2 28 copolymerization with cationic surfmers. Soft Matter, 2011, 7, 6590. Hydrogel-driven carbon nanotube microtransducers. Soft Matter, 2011, 7, 9844. 1.2 Vapor-based synthesis of ultrathin hydrogel coatings for thermo-responsive nanovalves. Journal of 47 20 6.7 Materials Chemistry, 2011, 21, 7946. Surface grafting of thermoresponsive microgel nanoparticles. Soft Matter, 2011, 7, 9962. 1.2 Processing and fabrication technologies for biomedical hydrogels., 2011, , 63-80. 49 2 Relative Humidity Sensors Based on an Environment-Sensitive Fluorophore in Hydrogel Films. 3.2 Analytical Chemistry, 2011, 83, 928-932. Aqueous polymeric sensors based on temperature-induced polymer phase transitions and 51 2.2 161 solvatochromic dyes. Chemical Communications, 2011, 47, 8750. Reversible Tuning of Plasmon Coupling in Gold Nanoparticle Chains Using Ultrathin Responsive 39 Polymer Film. ACS Applied Materials & amp; Interface's, 2011, 3, 945-951. Composites of functional polymeric hydrogels and porous membranes. Journal of Materials 53 6.7 186 Chemistry, 2011, 21, 2783-2811. 54 Responsive Polymers in Biology and Technology. Polymer Reviews, 2011, 51, 53-97. 5.3

			-
#	ARTICLE	IF	CITATIONS
55	A modified Boltzmann sigmoidal model for the phase transition of smart gels. Soft Matter, 2011, 7, 5847.	1.2	50
56	Drug-carrier/hydrogel scaffold for controlled growth of cells. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78, 346-354.	2.0	27
58	Proton-fountain Electric-field-assisted Nanolithography (PEN). , 2011, , 299-324.		0
59	Hydrodynamic dispersion in \$ eta\$ -lactoglobulin gels measured by PCSE NMR. European Physical Journal E, 2011, 34, 18.	0.7	1
61	Microcantilever sensing arrays from biodegradable, pH-responsive hydrogels. Biomedical Microdevices, 2011, 13, 829-836.	1.4	24
62	Poly(sodium 4-styrene sulfonate) and poly(2-acrylamidoglycolic acid) nanocomposite hydrogels: montmorillonite effect on water absorption, thermal, and rheological properties. Polymer Bulletin, 2011, 67, 1823-1836.	1.7	20
63	A facile pathway for the fast synthesis of colloidal crystalâ€loaded hydrogels via frontal polymerization. Journal of Polymer Science Part A, 2011, 49, 3121-3128.	2.5	18
64	Multichannel detection using transmissive diffraction grating sensor. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 1645-1650.	2.4	5
65	Thermo―and pHâ€sensitive hydrogels based on 2â€(2â€methoxyethoxy)ethyl methacrylate and methacrylic acid. Polymer International, 2011, 60, 178-185.	1.6	16
66	Thermoresponsiveness of Integrated Ultraâ€Thin Silicon with Poly(<i>N</i> â€isopropylacrylamide) Hydrogels. Macromolecular Rapid Communications, 2011, 32, 820-824.	2.0	12
67	Hydrogel composites with temperature induced phase transition for biocatalysis. Journal of Chemical Technology and Biotechnology, 2011, 86, 519-524.	1.6	6
69	Electrically Tunable Hysteretic Photonic Gels for Nonvolatile Display Pixels. Angewandte Chemie - International Edition, 2011, 50, 6311-6314.	7.2	75
70	Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate. Journal of Magnetism and Magnetic Materials, 2011, 323, 557-563.	1.0	59
71	Synthesis, characterization and slow drug delivery of hydrogels based in N-acryloyl-tris-(hydroxymethyl) aminomethane and N-isopropyl acrylamide. Reactive and Functional Polymers, 2011, 71, 440-446.	2.0	10
72	Characterization of a surrogate swelling polymer as a functional sensor for distributed liquid sensing. Sensors and Actuators A: Physical, 2011, 168, 242-252.	2.0	5
73	Effect of temperature changes on the performance of ionic strength biosensors based on hydrogels and pressure sensors. , 2011, 2011, 1855-8.		1
74	Hygroscopic biomimetic transducers made from CNT-hydrogel composites. , 2011, , .		2
75	Biochemical microsensors on the basis of metabolically sensitive hydrogels. Proceedings of SPIE, 2011,	0.8	2

#	Article	IF	Citations
76	Conductometric and optical sensing of stimuli senssitive hydrogels inside microfluidic channels. , 2011, , .		1
77	Toward a Continuous Intravascular Glucose Monitoring System. Sensors, 2011, 11, 409-424.	2.1	11
78	Hydrogels in Biosensing Applications. , 2011, , 491-517.		6
79	Fabrication and testing of a MEMS platform for characterization of stimuli-sensitive hydrogels. Journal of Micromechanics and Microengineering, 2012, 22, 087001.	1.5	4
80	Gel-based optical waveguides with live cell encapsulation and integrated microfluidics. Optics Letters, 2012, 37, 1472.	1.7	76
81	Continuum Models of Stimuli-responsive Gels. , 2012, , 165-196.		2
82	PH sensor using fiber Bragg grating based on swelling of hydrogel. , 2012, , .		2
84	Hydrogels in sensing applications. Progress in Polymer Science, 2012, 37, 1678-1719.	11.8	593
85	Fluidic microchemomechanical integrated circuits processing chemical information. Lab on A Chip, 2012, 12, 5034.	3.1	42
86	Hydrophobically associated hydrogels based on acrylamide and anionic surface active monomer with high mechanical strength. Soft Matter, 2012, 8, 5078.	1.2	103
87	An amphiphilic silicone-modified polysaccharide molecular hybrid with in situ forming of hierarchical superporous architecture upon swelling. Soft Matter, 2012, 8, 10868.	1.2	19
88	Liquid–liquid interface assisted synthesis of multifunctional and multicomponent hydrogel particles. Journal of Materials Chemistry, 2012, 22, 20998.	6.7	7
89	Dynamic Moisture Sorption Characteristics of Xerogels from Water-Swellable Oligo(oxyethylene) Lignin Derivatives. ACS Applied Materials & Interfaces, 2012, 4, 5852-5862.	4.0	54
90	Highly Swellable Lignin Hydrogels: Novel Materials with Interesting Properties. ACS Symposium Series, 2012, , 211-228.	0.5	18
91	CVD of polymeric thin films: applications in sensors, biotechnology, microelectronics/organic electronics, microfluidics, MEMS, composites and membranes. Reports on Progress in Physics, 2012, 75, 016501.	8.1	152
93	Thin Hydrogel Films for Optical Biosensor Applications. Membranes, 2012, 2, 40-69.	1.4	141
94	Plasmonics. , 2012, , 647-659.		4

#	Article	IF	CITATIONS
96	Multifunctional modified silver nanoparticles as ion and pH sensors in aqueous solution. Analyst, The, 2012, 137, 2338.	1.7	37
97	Indentation: A simple, nondestructive method for characterizing the mechanical and transport properties of pH-sensitive hydrogels. Journal of Materials Research, 2012, 27, 152-160.	1.2	52
98	Viscoelasticity and poroelasticity in elastomeric gels. Acta Mechanica Solida Sinica, 2012, 25, 441-458.	1.0	127
99	Development and fabrication of a novel photopatternable electric responsive Pluronic hydrogel for MEMS applications. Sensors and Actuators A: Physical, 2012, 186, 184-190.	2.0	19
101	Functional Binary Micropattern of Hyperbranched Poly(ether amine) (hPEA-AN) Network and Poly(ether amine) (PEA) Brush for Recognition of Guest Molecules. Biomacromolecules, 2012, 13, 535-541.	2.6	13
102	Biopolymer folding driven nanoparticle reorganization in bio-nanocomposites. Soft Matter, 2012, 8, 2930.	1.2	19
103	Controlled Synthesis of Cell-Laden Microgels by Radical-Free Gelation in Droplet Microfluidics. Journal of the American Chemical Society, 2012, 134, 4983-4989.	6.6	208
104	pH-Sensitive Hydrogel for Micro-Fluidic Valve. Journal of Functional Biomaterials, 2012, 3, 464-479.	1.8	44
105	Heterogeneous and homogeneous structure dextran–poly(methacrylic acid) interpenetrating network hydrogels: synthesis and an application study. Polymer International, 2012, 61, 1758-1766.	1.6	4
106	Microfluidic chip with integrated microvalves based on temperature―and pHâ€responsive hydrogel thin films. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 839-845.	0.8	23
107	Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature, 2012, 487, 214-218.	13.7	418
108	Lightâ€Controlled Reversible Manipulation of Microgel Particle Size Using Azobenzeneâ€Containing Surfactant. Advanced Functional Materials, 2012, 22, 5000-5009.	7.8	97
110	Macroscopic cale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and Their Applications. Angewandte Chemie - International Edition, 2012, 51, 5101-5105.	7.2	609
111	A general method to determine ionization constants of responsive polymer thin films. Journal of Colloid and Interface Science, 2012, 365, 178-183.	5.0	12
112	pH induced swelling of PVP microgel particles – A first order phase transition?. Journal of Colloid and Interface Science, 2012, 370, 67-72.	5.0	11
113	Photoresponsive Block Copolymer Photonic Gels with Widely Tunable Photosensitivity by Counterâ€ions. Advanced Materials, 2012, 24, OP127-30, OP89.	11.1	21
114	A novel pH sensing membrane based on an ionic liquid-polymer composite. Mikrochimica Acta, 2012, 176, 229-234.	2.5	13
115	Surface Microdynamics Phase Transition and Internal Structure of High-Density, Ultrathin PHEMA- <i>b</i> PNIPAM Diblock Copolymer Brushes on Silicone Rubber. Macromolecules, 2013, 46, 5260-5278.	2.2	28

#	Article	IF	CITATIONS
116	Thermoresponsive Polymers with Functional Groups Selected for Pharmaceutical and Biomedical Applications. ACS Symposium Series, 2013, , 235-241.	0.5	4
117	Dual pH―and Temperatureâ€Responsive Metallosupramolecular Block Copolymers with Tunable Critical Micelle Temperature by Modulation of the Selfâ€Assembly of NIRâ€Emissive Alkynylplatinum(II) Complexes Induced by Changes in Hydrophilicity and Electrostatic Effects. Chemistry - A European Journal, 2013, 19. 13182-13192.	1.7	39
118	Stimuli-responsive hydrogel patterns for smart microfluidics and microarrays. Analyst, The, 2013, 138, 6230.	1.7	65
119	The influence of selective solvents on the transition behavior of poly(styrene-b-monomethoxydiethylenglycol-acrylate-b-styrene) thick films. Colloid and Polymer Science, 2013, 291, 1439-1451.	1.0	10
120	Imprinted hydrogels for tunable hemispherical microlenses. Microelectronic Engineering, 2013, 111, 189-192.	1.1	6
121	Responsive DNAâ€Based Hydrogels and Their Applications. Macromolecular Rapid Communications, 2013, 34, 1271-1283.	2.0	129
122	Photo-electric biotransducer for activating ionic hydrogel microactuators. Sensors and Actuators B: Chemical, 2013, 176, 1056-1064.	4.0	5
123	Chemical microsensors based on hydrogels with adjustable measurement range. , 2013, , .		0
124	Reversible switching transitions of stimuli-responsive shape changing polymers. Journal of Materials Chemistry A, 2013, 1, 7838.	5.2	106
125	Shape transitions in hyperbolic non-Euclidean plates. Soft Matter, 2013, 9, 8151.	1.2	29
126	Fiber-Optic Chemical Sensors and Biosensors (2008–2012). Analytical Chemistry, 2013, 85, 487-508.	3.2	428
127	Hydration studies in polymer hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 159-175.	2.4	48
128	Valve based on novel hydrogels: From synthesis to application. Sensors and Actuators B: Chemical, 2013, 188, 176-184.	4.0	8
129	Thermoresponsive poly-(N-isopropylmethacrylamide) microgels: Tailoring particle size by interfacial tension control. Polymer, 2013, 54, 5499-5510.	1.8	59
130	Theoretical analysis of a parallel-plate electroosmotic hydrogel actuation and sensing platform. Sensors and Actuators B: Chemical, 2013, 177, 334-343.	4.0	0
131	Dynamic pH mapping in microfluidic devices by integrating adaptive coatings based on polyaniline with colorimetric imaging techniques. Lab on A Chip, 2013, 13, 1079.	3.1	49
132	Chemo-Mechanically Regulated Oscillation of an Enzymatic Reaction. Chemistry of Materials, 2013, 25, 521-523.	3.2	17
133	Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydrate Polymers, 2013, 91, 7-13.	5.1	121

		CITATION REPORT		
#	Article		IF	Citations
134	Biomimetic Hydrogelâ€Based Actuating Systems. Advanced Functional Materials, 2013	3, 23, 4555-4570.	7.8	411
135	Photoisomerizable and Thermoresponsive <i>N</i> â€isopropylacrylamide–Surfmer C Prepared upon Electrostatic Selfâ€Assembly of an Azobenzene Bolaamphiphile. Macro Communications, 2013, 34, 393-398.	Copolymer Hydrogels molecular Rapid	2.0	7
136	Tailoring the Dependency between Rigidity and Water Uptake of a Microfabricated Hyd Conformational Rigidity of a Polymer Cross-Linker. Biomacromolecules, 2013, 14, 1362	drogel with the 1-1369.	2.6	16
137	Controllable Cross-Linking of Vapor-Deposited Polymer Thin Films and Impact on Mate Macromolecules, 2013, 46, 1832-1840.	rial Properties.	2.2	48
138	Structure and Thermal Response of Thin Thermoresponsive Polystyrene- <i>block</i> -poly(methoxydiethylene glycol acrylate)- <i>block</i> -polysty Macromolecules, 2013, 46, 4069-4080.	rene Films.	2.2	30
139	Smart Polymers for Neural Interfaces. Polymer Reviews, 2013, 53, 108-129.		5.3	63
140	Surface modification of cotton fabric with dualâ€responsive PNIPAAm/chitosan nano h Polymers for Advanced Technologies, 2013, 24, 797-806.	ydrogel.	1.6	41
141	Disposable Fluorescence Optical pH Sensor for Near Neutral Solutions. Sensors, 2013,	13, 484-499.	2.1	42
142	Thermo-responsive metallo-supramolecular gels based on terpyridine end-functionalize diblock copolymers. Materials Research Society Symposia Proceedings, 2013, 1499, 1.	d amphiphilic	0.1	1
143	Bihydrogel particles as free-standing mechanical pH microsensors. Applied Physics Lett 031901.	ers, 2013, 102,	1.5	4
144	Synthesis of poly(ethylene glycol)â€based hydrogels and their swelling/shrinking respo molecular recognition. Journal of Polymer Science Part A, 2013, 51, 3153-3158.	inse to	2.5	11
145	Inhomogeneous Equilibrium Swelling of Core-Shell-Coating Gels. Soft Materials, 2013,	11, 215-220.	0.8	6
146	INHOMOGENEOUS LARGE DEFORMATION KINETICS OF POLYMERIC GELS. Internation Mechanics, 2013, 05, 1350001.	al Journal of Applied	1.3	57
147	Synthesis of Hollow Zinc Oxide Nanoparticles by Templating Micelles of Poly(styrene-< 884-890.	i>b-acrylic) Tj ETQq1 1	0.784314 2.0	4 rgBT /Over 6
148	- Polymeric Nanoparticles for Drug Delivery. , 2013, , 144-173.			0
150	Tunable Molecular Sieving in Gel Electrophoresis Using a Poly(ethylene glycol)-Based H Chromatography, 2014, 35, 81-86.	ydrogel.	0.8	5
151	Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Application Overview. Coatings, 2014, 4, 756-771.	ons—An	1.2	79
152	Piezoresistive Chemical Sensors Based on Functionalized Hydrogels. Chemosensors, 20	014, 2, 145-170.	1.8	14

#	Article	IF	CITATIONS
153	TOWARDS COMPUTATION WITH MICROCHEMOMECHANICAL SYSTEMS. International Journal of Foundations of Computer Science, 2014, 25, 507-523.	0.8	7
154	Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose, 2014, 21, 4157-4165.	2.4	54
155	Miniature pH sensor based on optical fiber Fabry-Perot interferometer. , 2014, , .		3
156	Advances in interpenetrating polymer network hydrogels and their applications. Pure and Applied Chemistry, 2014, 86, 1707-1721.	0.9	49
157	Metal-Chelating Active Packaging Film Enhances Lysozyme Inhibition of Listeria monocytogenes. Journal of Food Protection, 2014, 77, 1153-1160.	0.8	12
158	Statistical Multiscale Modeling of Bond Clusters in Smart Polymer using Coupled Molecular Dynamics and Spring-Damper Model. , 2014, , .		2
159	Volume phase transition of polyelectrolyte gels: Effects of ionic size. Journal of Chemical Physics, 2014, 141, 104905.	1.2	6
160	Selfâ€bending hydrogel actuation for electrode shafts in cochlear implants. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1455-1461.	0.8	7
161	Conformal single-layer encapsulation of PEDOT at low substrate temperature. Applied Surface Science, 2014, 323, 2-6.	3.1	6
162	Fabrication of a photocurable highly sensitive optical ammonia sensor for aquaculture application. Proceedings of SPIE, 2014, , .	0.8	0
163	Double-pass Mach–Zehnder fiber interferometer pH sensor. Journal of Biomedical Optics, 2014, 19, 047002.	1.4	15
164	Blood pH optrode based on evanescent waves and refractive index change. , 2014, , .		2
165	Structure of Microgels with Debye–Hückel Interactions. Polymers, 2014, 6, 1602-1617.	2.0	59
166	Comparative study of chemo-electro-mechanical transport models for an electrically stimulated hydrogel. Smart Materials and Structures, 2014, 23, 075022.	1.8	6
167	Thermal management of a multiple mini-channel heat sink by the integration of a thermal responsive shape memory material. Applied Thermal Engineering, 2014, 62, 113-122.	3.0	7
168	Poly(N,N-dimethylaminoethyl methacrylate)/graphene oxide hybrid hydrogels: pH and temperature sensitivities and Cr(VI) adsorption. Reactive and Functional Polymers, 2014, 81, 8-13.	2.0	24
169	Gemini Interfaces in Aqueous Lubrication with Hydrogels. Tribology Letters, 2014, 54, 59-66.	1.2	96
170	Antimicrobial alginate/PVA silver nanocomposite hydrogel, synthesis and characterization. Journal of Polymer Research, 2014, 21, 1.	1.2	87

#	Article	IF	CITATIONS
171	Separating viscoelasticity and poroelasticity of gels with different length and time scales. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 20-27.	1.5	90
172	Influence of non-migratory metal-chelating active packaging film on food quality: Impact on physical and chemical stability of emulsions. Food Chemistry, 2014, 151, 257-265.	4.2	22
173	Design and applications of interpenetrating polymer network hydrogels. A review. Chemical Engineering Journal, 2014, 243, 572-590.	6.6	764
174	Optical Chemical pH Sensors. Analytical Chemistry, 2014, 86, 15-29.	3.2	438
175	Magneto-responsive nanocomposites: Preparation and integration of magnetic nanoparticles into films, capsules, and gels. Advances in Colloid and Interface Science, 2014, 207, 3-13.	7.0	38
176	Miniature pH optical fiber sensor based on waist-enlarged bitaper and mode excitation. Sensors and Actuators B: Chemical, 2014, 191, 579-585.	4.0	29
177	Flexible Sensors for Chronic Wound Management. IEEE Reviews in Biomedical Engineering, 2014, 7, 73-86.	13.1	76
178	Overcoming confinement limited swelling in hydrogel thin films using supramolecular interactions. Soft Matter, 2014, 10, 6705-6712.	1.2	21
179	Photothermally Triggered Fast Responding Hydrogels Incorporating a Hydrophobic Moiety for Light-Controlled Microvalves. ACS Applied Materials & Interfaces, 2014, 6, 16949-16955.	4.0	60
180	Construction of cellulose–phosphor hybrid hydrogels and their application for bioimaging. Journal of Materials Chemistry B, 2014, 2, 7559-7566.	2.9	39
181	Strong and conductive double-network graphene/PVA gel. RSC Advances, 2014, 4, 39588.	1.7	31
182	Controlling the swelling and rheological properties of hydrophobically modified polyacrylic acid nanoparticles: Role of pH, anionic surfactant and electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 233-239.	2.3	13
183	Design of nanostructures based on aromatic peptide amphiphiles. Chemical Society Reviews, 2014, 43, 8150-8177.	18.7	690
184	Multiresponsive Hydrogels Based on Xylan-Type Hemicelluloses and Photoisomerized Azobenzene Copolymer as Drug Delivery Carrier. Journal of Agricultural and Food Chemistry, 2014, 62, 10000-10007.	2.4	59
185	Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors. RSC Advances, 2014, 4, 10454-10461.	1.7	50
186	Micro pH Sensors Based on Iridium Oxide Nanotubes. IEEE Nanotechnology Magazine, 2014, 13, 945-953.	1.1	14
187	Parylene C Surface Functionalization and Patterning with pH-Responsive Microgels. ACS Applied Materials & Material	4.0	16
188	Thermodynamic Model for Polyelectrolyte Hydrogels. Journal of Physical Chemistry B, 2014, 118, 10534-10542.	1.2	8

#	Article	IF	CITATIONS
189	Fourier Transform Infrared Studies on the Dissociation Behavior of Metal-Chelating Polyelectrolyte Brushes. ACS Applied Materials & Interfaces, 2014, 6, 5383-5387.	4.0	26
190	A colorimetric alginate-catechol hydrogel suitable as a spreadable pH indicator. Dyes and Pigments, 2014, 108, 1-6.	2.0	19
192	Monodispersed p(2-VP) and p(2-VP-co-4-VP) particle preparation and their use as template for metal nanoparticle and as catalyst for H2 production from NaBH4 and NH3BH3 hydrolysis. International Journal of Hydrogen Energy, 2014, 39, 10476-10484.	3.8	36
193	Smart and functional polymer materials for smart and functional microfluidic instruments. , 2014, , .		0
194	Self-organization in suspensions of end-functionalized semiflexible polymers under shear flow. Journal of Chemical Physics, 2015, 143, 243117.	1.2	12
195	Combined Simulation of the Closing Behavior of a Smart Hydrogel Micro-Valve. , 2015, , .		4
196	Characterization of pHâ€sensitive polymer layers by surface plasmon resonance and quartz crystal microbalance. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1249-1253.	0.8	1
197	Ionic Polymer Microactuator Activated by Photoresponsive Organic Proton Pumps. Actuators, 2015, 4, 237-254.	1.2	3
198	Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration. Cement and Concrete Research, 2015, 75, 1-13.	4.6	111
199	Molecularly Imprinted Polymers for Selective Adsorption of Lysozyme and Cytochrome <i>c</i> Using a PEG-Based Hydrogel: Selective Recognition for Different Conformations Due to pH Conditions. Macromolecules, 2015, 48, 4081-4087.	2.2	49
200	Molecular Tracer Diffusion in Nondilute Polymer Solutions: Universal Master Curve and Glass Transition Effects. Macromolecules, 2015, 48, 8907-8912.	2.2	10
201	Grafting of polymeric platforms on gold by combining the diazonium salt chemistry and the photoiniferter method. Polymer, 2015, 57, 12-20.	1.8	23
202	Celebrating Soft Matter's 10th Anniversary: Chain configuration and rate-dependent mechanical properties in transient networks. Soft Matter, 2015, 11, 2085-2096.	1.2	32
203	Development of microscopic timeâ€domain dual lifetime referencing luminescence detection for pH monitoring in microfluidic freeâ€flow isoelectric focusing. Engineering in Life Sciences, 2015, 15, 276-285.	2.0	15
204	Superadsorbent with three-dimensional networks: From bulk hydrogel to granular hydrogel. European Polymer Journal, 2015, 72, 661-686.	2.6	69
205	Inhomogeneous swelling behavior of temperature sensitive PNIPAM hydrogels in micro-valves: analytical and numerical study. Smart Materials and Structures, 2015, 24, 045004.	1.8	36
206	Aptamers Selected by Cell-SELEX for Theranostics. , 2015, , .		10
207	Evaluation of pH-sensitive poly(2-hydroxyethyl methacrylate-co-2-(diisopropylamino)ethyl) Tj ETQq1 1 0.784314 therapies/ocular delivery of drugs. EXPRESS Polymer Letters, 2015, 9, 554-566.	rgBT /Ove 1.1	rlock 10 Tf 5 17

	Сітатіс	CITATION REPORT	
#	ARTICLE Molecularly imprinted polymer with a pseudo-template for thermo-responsive adsorption/desorption	IF	CITATIONS
208	based on hydrogen bonding. Microporous and Mesoporous Materials, 2015, 218, 112-117. Rehydration of Thermoresponsive Poly(monomethoxydiethylene glycol acrylate) Films Probed <i>in</i>	2.2	91
209	Situ by Real-Time Neutron Reflectivity. Macromolecules, 2015, 48, 3604-3612.	2.2	17
210	Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid	1.7	17
211	hydrogel coating. Applied Optics, 2015, 54, 2647.	0.9	55
212	Aptamer-Based Hydrogels and Their Applications. , 2015, , 163-195.		2
213	Real-time wound management through integrated pH sensors: a review. Sensor Review, 2015, 35, 183-189	. 1.0	25
214	Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. International Journal of Biological Macromolecules, 2015, 79, 269-277.	3.6	117
215	Swelling and Thermoresponsive Behavior of Linear versus Cyclic Poly(<i>N</i> -isopropylacrylamide) Thin Films. Macromolecules, 2015, 48, 3104-3111.	2.2	42
216	Biocompatible, ionicâ€strengthâ€sensitive, doubleâ€network hydrogel based on chitosan and an oligo(trimethylene carbonate)–poly(ethylene glycol)–oligo(trimethylene carbonate) triblock copolymer. Journal of Applied Polymer Science, 2015, 132, .	1.3	8
217	Advances in Mechanics of Soft Materials: A Review of Large Deformation Behavior of Hydrogels. International Journal of Applied Mechanics, 2015, 07, 1530001.	1.3	195
218	Rheology of polyacrylate systems depends strongly on architecture. Colloid and Polymer Science, 2015, 293, 3285-3293.	1.0	18
219	Investigation of Mechanical Properties and Dye Adsorption Capacities of Novel Hydrophobic Association Nanocomposite Hydrogels. Materials Science Forum, 0, 815, 568-575.	0.3	0
220	Removable interpenetrating network enables highly-responsive 2-D photonic crystal hydrogel sensors. Analyst, The, 2015, 140, 6517-6521.	1.7	18
221	Nanostructured highly-swollen hydrogels: Complexation with amino acids through copper (II) ions. Polymer, 2015, 74, 94-107.	1.8	13
222	Biodegradation of Hydrogels from Oxyethylated Lignins in Model Soils. ACS Sustainable Chemistry and Engineering, 2015, 3, 1955-1964.	3.2	25
223	Influence of Confinement on the Chain Conformation of Cyclic Poly(<i>N</i> -isopropylacrylamide). ACS Macro Letters, 2015, 4, 1362-1365.	2.3	30
224	Evaluation of pH-sensitive polyurethane/2-diethylaminoethyl methacrylate hybrids potentially useful for drug delivery developments. Journal of Drug Delivery Science and Technology, 2015, 30, 199-208.	1.4	33
225	Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. International Journal of Biological Macromolecules, 2015, 74, 136-141.	3.6	164

#	Article	IF	CITATIONS
226	Swelling Enhanced Remanent Magnetization of Hydrogels Cross-Linked with Magnetic Nanoparticles. Langmuir, 2015, 31, 442-450.	1.6	10
227	Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. International Journal of Biological Macromolecules, 2015, 73, 109-114.	3.6	164
228	Sol–gel based portable optical sensor for simultaneous and minimal invasive measurement of pH and dissolved oxygen. Measurement: Journal of the International Measurement Confederation, 2015, 59, 337-343.	2.5	18
229	Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing. Sensors and Actuators B: Chemical, 2015, 207, 571-580.	4.0	18
230	Effect of superabsorbent polymers (SAPs) on rheological properties of fresh cement-based mortars — Development of yield stress and plastic viscosity over time. Cement and Concrete Research, 2015, 67, 52-65.	4.6	200
231	Improved PNIPAAm-Hydrogel Photopatterning by Process Optimisation with Respect to UV Light Sources and Oxygen Content. Gels, 2016, 2, 10.	2.1	13
232	Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions. Gels, 2016, 2, 16.	2.1	70
233	Cationic hybrids from poly(<scp>N,N</scp> â€dimethylaminoethyl methacrylate) covalently crosslinked with chloroalkyl silicone derivatives effective in binding anionic dyes. Journal of Applied Polymer Science, 2016, 133, .	1.3	7
234	High porosity, responsive hydrogel copolymers from emulsion templating. Polymer International, 2016, 65, 280-289.	1.6	55
235	BioHybrid Hydrogels as Environment-Sensitive Materials for Systematic Delivery of Therapeutics. , 2016, , 103-135.		0
236	Hydrogels as Actuators for Biological Applications. , 2016, , 149-187.		1
237	Polymer Gels as EAPs: Fundamentals. , 2016, , 1-25.		0
238	Polymer Gels as EAPs: How to Start Experimenting with Them. , 2016, , 1-27.		0
239	Harnessing Buckling to Design Architected Materials that Exhibit Effective Negative Swelling. Advanced Materials, 2016, 28, 6619-6624.	11.1	112
240	Finite Element Model of a Hydrogel-Based Micro-Valve. , 2016, , .		2
241	Superabsorbent hydrogel composite based on copolymer cellulose/poly (vinyl alcohol)/CNT. AIP Conference Proceedings, 2016, , .	0.3	5
242	A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics, 2016, 10, 044111.	1.2	109
243	Solvent and solute ingress into hydrogels resolved by a combination of imaging techniques. Journal of Chemical Physics, 2016, 144, 204903.	1.2	6

# 244	ARTICLE Antimicrobial loading into and release from poly(ethylene glycol)/poly(acrylic acid) semiâ€interpenetrating hydrogels. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 64-72.	IF 2.4	CITATIONS
245	Removal of heavy metal ions in water by starch esters. Starch/Staerke, 2016, 68, 37-46.	1.1	40
246	Swelling behavior of bisensitive interpenetrating polymer networks for microfluidic applications. Soft Matter, 2016, 12, 5529-5536.	1.2	24
247	Fabrication and evaluation of a novel polymeric hydrogel of carboxymethyl chitosan-g-polyacrylic acid (CMC-g-PAA) for oral insulin delivery. RSC Advances, 2016, 6, 52858-52867.	1.7	29
248	Photoresponsive gelators. Chemical Communications, 2016, 52, 8196-8206.	2.2	135
249	Approaches towards molecular amplification for sensing. Analyst, The, 2016, 141, 3157-3218.	1.7	52
250	Hydrogel coated fiber Bragg grating based chromium sensor. , 2016, , .		2
251	Porous silicon carbide derived from apple fruit with high electromagnetic absorption performance. Journal of Materials Chemistry C, 2016, 4, 5349-5356.	2.7	46
252	Actuating Fibers: Design and Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 24281-24294.	4.0	86
253	Polymer Gels as EAPs: Fundamentals. , 2016, , 3-26.		0
254	Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels. Biomacromolecules, 2016, 17, 3619-3631.	2.6	46
255	Electrospun Nanofibrous Materials as Stimuliâ€Responsive Polymerized Hydrogels. Macromolecular Symposia, 2016, 365, 118-127.	0.4	4
256	Hydrophobic association mediated physical hydrogels with high strength and healing ability. Polymer, 2016, 100, 60-68.	1.8	68
257	Role of mechanical factors in applications of stimuli-responsive polymer gels – Status and prospects. Polymer, 2016, 101, 415-449.	1.8	33
258	Preparation and characterization of luminescent cellulose–Y4Si2O7N2:Ce4+ hybrid hydrogels. Polymer Science - Series B, 2016, 58, 594-600.	0.3	1
259	Multi-stimuli-responsive poly(NIPA-co-HEMA-co-NVP) with spironaphthoxazine hydrogel for optical data storage application. Colloid and Polymer Science, 2016, 294, 1623-1632.	1.0	18
260	Stimuli-Responsive Polymers: Design and Applications. , 2016, , 7675-7707.		0
261	Chitosan-functionalised poly(2-hydroxyethyl methacrylate) core-shell microgels as drug delivery carriers: salicylic acid loading and release. Journal of Microencapsulation, 2016, 33, 563-568.	1.2	5

# 262	ARTICLE Polymer Gels as EAPs: How to Start Experimenting with Them. , 2016, , 101-127.	IF	CITATIONS 0
263	Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems. Lab on A Chip, 2016, 16, 3977-3989.	3.1	19
264	Preparation of Graphene by Solvent Dispersion Methods and Its Functionalization through Noncovalent and Covalent Approaches. , 2016, , 205-222.		0
265	Highly Swellable, Dualâ€Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. Macromolecular Rapid Communications, 2016, 37, 1939-1944.	2.0	43
266	A Microfluidic Platform with Nanoparticle-Based Metal-Enhanced Fluorescence for pH Mapping Acidified Aqueous Solutions by CO2 Microbubbles. MRS Advances, 2016, 1, 2037-2043.	0.5	1
267	Itaconic Acid Grafted Starch Hydrogels as Metal Remover: Capacity, Selectivity and Adsorption Kinetics. Journal of Polymers and the Environment, 2016, 24, 343-355.	2.4	36
268	Decoupling dual-stimuli responses in patterned lamellar hydrogels as photonic sensors. Journal of Materials Chemistry B, 2016, 4, 4104-4109.	2.9	34
269	Hydrogel-coated fiber Bragg grating sensor for pH monitoring. Optical Engineering, 2016, 55, 066112.	0.5	29
270	A smart multifunctional drug delivery nanoplatform for targeting cancer cells. Nanoscale, 2016, 8, 12723-12728.	2.8	56
271	Permeation control in hydrogel-layered patterned PET membranes with defined switchable pore geometry – Experiments and numerical simulation. Sensors and Actuators B: Chemical, 2016, 232, 499-505.	4.0	39
272	A novel polyvinyl alcohol–tragacanth/nano silver hydrogel on polyester fabric through in situ synthesis method. Journal of Industrial Textiles, 2016, 45, 1635-1651.	1.1	23
273	Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 2016, 25, 027001.	1.8	253
274	Functional nucleic acid-based hydrogels for bioanalytical and biomedical applications. Chemical Society Reviews, 2016, 45, 1410-1431.	18.7	416
275	The detection of Escherichia coli (E. coli) with the pH sensitive hydrogel nanofiber-light addressable potentiometric sensor (NF-LAPS). Sensors and Actuators B: Chemical, 2016, 226, 176-183.	4.0	64
276	Evaluation of Adhesion Forces for the Manipulation of Micro-Objects in Submerged Environment through Deposition of pH Responsive Polyelectrolyte Layers. Langmuir, 2016, 32, 102-111.	1.6	3
278	Miniature pH Optical Fiber Sensor Based on Fabry–Perot Interferometer. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 331-335.	1.9	49
279	Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment. ACS Applied Materials & Interfaces, 2016, 8, 6411-6422.	4.0	115
280	Pharmaceutical Applications of Natural Polymers. , 2016, , 263-313.		3

#	Article	IF	CITATIONS
281	Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydrate Polymers, 2016, 138, 222-228.	5.1	83
282	Microchamber arrays with an integrated long luminescence lifetime pH sensor. Analytical and Bioanalytical Chemistry, 2016, 408, 2927-2935.	1.9	9
283	Hydrogel-based biosensors and sensing devices for drug delivery. Journal of Controlled Release, 2016, 240, 142-150.	4.8	129
284	Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on–off switching and drug release. Carbohydrate Polymers, 2016, 136, 750-756.	5.1	84
285	An optimized cross-linked network model to simulate the linear elastic material response of a smart polymer. Journal of Intelligent Material Systems and Structures, 2016, 27, 1461-1475.	1.4	14
286	Oil-in-microgel strategy for enzymatic-triggered release of hydrophobic drugs. Journal of Colloid and Interface Science, 2017, 493, 356-364.	5.0	24
287	Surface plasmon resonance based fiber optic trichloroacetic acid sensor utilizing layer of silver nanoparticles and chitosan doped hydrogel. Nanotechnology, 2017, 28, 065503.	1.3	29
288	Implantable Tin Porphyrin-PEG Hydrogels with pH-Responsive Fluorescence. Biomacromolecules, 2017, 18, 562-567.	2.6	32
289	Ultrasound-Mediated Self-Healing Hydrogels Based on Tunable Metal–Organic Bonding. Biomacromolecules, 2017, 18, 1162-1171.	2.6	74
290	Harnessing structural instability and material instability in the hydrogel-actuated integrated responsive structures (HAIRS). Extreme Mechanics Letters, 2017, 13, 84-90.	2.0	9
292	Responsive Hydrogels Based Lens Structure with Configurable Focal Length for Intraocular Lens (IOLs) Application. Macromolecular Symposia, 2017, 372, 127-131.	0.4	5
294	Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications. Nanoscale Research Letters, 2017, 12, 314.	3.1	16
295	Modeling and simulation of a chemically stimulated hydrogel bilayer bending actuator. , 2017, , .		0
296	Static and Dynamic Large Strain Properties of Methyl Cellulose Hydrogels. Macromolecules, 2017, 50, 4817-4826.	2.2	14
297	Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. Journal of Colloid and Interface Science, 2017, 505, 467-475.	5.0	23
298	Autonomous Integrated Microfluidic Circuits for Chipâ€Level Flow Control Utilizing Chemofluidic Transistors. Advanced Functional Materials, 2017, 27, 1700430.	7.8	28
299	Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary. Scientific Reports, 2017, 7, 45987.	1.6	39
300	Hydrogel Based Biosensors for In Vitro Diagnostics of Biochemicals, Proteins, and Genes. Advanced Healthcare Materials, 2017, 6, 1601475.	3.9	124

#	ARTICLE	IF	CITATIONS
301	A Novel Design of Multiâ€Mechanoresponsive and Mechanically Strong Hydrogels. Advanced Materials, 2017, 29, 1606900.	11.1	215
302	Light-triggered antifouling coatings for porous silicon optical transducers. Polymers for Advanced Technologies, 2017, 28, 859-866.	1.6	2
303	Unified solution for poroelastic oscillation indentation on gels for spherical, conical and cylindrical indenters. Soft Matter, 2017, 13, 852-861.	1.2	38
304	Direction and pressure response of osmotic pressure in binary polymer solutions. Macromolecular Research, 2017, 25, 79-84.	1.0	0
305	Detection of trace amounts of chromium(VI) using hydrogel coated Fiber Bragg grating. Sensors and Actuators B: Chemical, 2017, 243, 626-633.	4.0	51
306	Photo-crosslinkable comb-type copolymers bearing a benzophenone moiety for the enhanced swelling kinetics of hydrogels. Polymer Chemistry, 2017, 8, 6786-6794.	1.9	10
307	A precision structured smart hydrogel for sensing applications. Journal of Applied Physics, 2017, 122, .	1.1	7
308	Preparation and characterization of pH-responsive poly(N,N -dimethyl acrylamide- co -methacryloyl) Tj ETQq1 Polymers, 2017, 120, 57-65.	1 0.784314 2.0	rgBT /Overloo 22
309	Protein Biophosphors: Biodegradable, Multifunctional, Proteinâ€Based Hydrogel for White Emission, Sensing, and pH Detection. Advanced Functional Materials, 2017, 27, 1702955.	7.8	74
310	Thermo-responsive hydrogels with tunable transition temperature crosslinked by multifunctional graphene oxide nanosheets. Composites Science and Technology, 2017, 151, 139-146.	3.8	34
311	Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair. Scientific Reports, 2017, 7, 10553.	1.6	47
312	Building a bio-based hydrogel via electrostatic and host-guest interactions for realizing dual-controlled release mechanism. International Journal of Biological Macromolecules, 2017, 105, 377-384.	3.6	15
313	Optical sensing properties of Au nanoparticle/hydrogel composite microbeads using droplet microfluidics. Nanotechnology, 2017, 28, 405502.	1.3	8
314	Application of a Conceptual Nanomedical Platform to Facilitate the Mapping of the Human Brain: Survey of Cognitive Functions and Implications. Springer Series in Cognitive and Neural Systems, 2017, , 741-771.	0.1	0
316	Swelling-induced wrinkling in layered gel beams. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170454.	1.0	11
317	A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel. Optical Fiber Technology, 2017, 39, 43-48.	1.4	56
318	Relationship between processing history and functionality recovery after rehydration of dried cellulose-based suspensions: A critical review. Advances in Colloid and Interface Science, 2017, 246, 1-12.	7.0	27
319	A review of characterisation methods for superabsorbent polymer (SAP) samples to be used in cement-based construction materials: report of the RILEM TC 260-RSC. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	1.3	89

#	Article	IF	CITATIONS
320	Multifunctional sensors based on silicone hydrogel and their responses to solvents, <scp>pH</scp> and solution composition. Polymer International, 2017, 66, 566-572.	1.6	8
321	Preparation and characterisation of a sensing system for wireless pH measurements in vivo, in a rumen of a cow. Sensors and Actuators B: Chemical, 2017, 242, 637-644.	4.0	2
322	Reversibly Actuating Solid Janus Polymeric Fibers. ACS Applied Materials & Interfaces, 2017, 9, 4873-4881.	4.0	29
323	Wide-Range pH Sensor Based on a Smart- Hydrogel-Coated Long-Period Fiber Grating. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 284-288.	1.9	56
324	Luminescence materials for pH and oxygen sensing in microbial cells – structures, optical properties, and biological applications. Critical Reviews in Biotechnology, 2017, 37, 723-738.	5.1	14
325	Dynamic Finite Element Modelling of a Hydrogel-Based Micro-Valve With 2-Way Fluid Structure Interactions. , 2017, , .		2
326	Incorporation of soft shaped hydrogel sheets into microfluidic systems using a simple adhesion masking process. Applied Physics Letters, 2017, 111, .	1.5	5
328	Latest Improvements of Acrylic-Based Polymer Properties for Biomedical Applications. , 0, , .		6
329	The Synthesis of a Chemical Stimuli Nanowhiskers of Cellulose (CNWs) Composite Hydrogel. IOP Conference Series: Materials Science and Engineering, 2017, 269, 012043.	0.3	0
330	Recent Progress toward Microfluidic Quality Control Testing of Radiopharmaceuticals. Micromachines, 2017, 8, 337.	1.4	35
331	Fiber Bragg Grating Sensors for Mainstream Industrial Processes. Electronics (Switzerland), 2017, 6, 92.	1.8	47
332	Development of Alginate–Cum Arabic Beads for Targeted Delivery of Protein. Journal of Biomolecular Research & Therapeutics, 2017, 06, .	0.2	3
333	A review on optical fiber sensors for environmental monitoring. International Journal of Precision Engineering and Manufacturing - Green Technology, 2018, 5, 173-191.	2.7	257
334	Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS ₂ : An Effective Platform for in Situ pH Sensing and Photothermal Heating. ACS Applied Materials & Interfaces, 2018, 10, 9023-9031.	4.0	50
335	Design and Electrochemical Characterization of Ion-Sensitive Capacitors With ALD Al ₂ O ₃ as the Sensitive Dielectric. IEEE Sensors Journal, 2018, 18, 231-236.	2.4	12
336	pH-responsive physically and chemically cross-linked glutamic-acid-based hydrogels and nanogels. European Polymer Journal, 2018, 101, 341-349.	2.6	35
337	Monte Carlo simulations of weak polyelectrolyte microgels: pH-dependence of conformation and ionization. Soft Matter, 2018, 14, 4087-4100.	1.2	42
338	Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route. Materials Horizons, 2018, 5, 408-415.	6.4	81

#	Article	IF	CITATIONS
339	pH-driven preparation of small, non-aggregated micelles for ultra-stretchable and tough hydrogels. Chemical Engineering Journal, 2018, 342, 357-363.	6.6	11
340	Hydrogel Contact Lens Water Content is Dependent on Tearfilm pH. Military Medicine, 2018, 183, 224-230.	0.4	3
341	Electroresponsive Homogeneous Polyelectrolyte Complex Hydrogels from Naturally Derived Polysaccharides. ACS Sustainable Chemistry and Engineering, 2018, 6, 7052-7063.	3.2	32
342	Polymer Gel Composites for Bio-Applications. Gels Horizons: From Science To Smart Materials, 2018, , 111-123.	0.3	1
343	Rheological Characterization of Agarose and Poloxamer 407 (P407) Based Hydrogels. MRS Advances, 2018, 3, 1719-1724.	0.5	6
344	Developing an analytical solution for photo-sensitive hydrogel bilayers. Journal of Intelligent Material Systems and Structures, 2018, 29, 1953-1963.	1.4	11
345	Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: results of a RILEM Round-Robin Test. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	112
346	Conductive composites for oligonucleotide detection. Sensing and Bio-Sensing Research, 2018, 17, 1-6.	2.2	1
347	A Wireless Chemical Sensing Scheme using Ultrasonic Imaging of Silica-Particle-Embedded Hydrogels (Silicagel). Sensors and Actuators B: Chemical, 2018, 259, 552-559.	4.0	15
348	Super-Nernstian sensitivity in microfabricated electrochemical pH sensor based on CeTixOy film for biofluid monitoring. Electrochimica Acta, 2018, 261, 482-490.	2.6	13
349	Modeling and Simulation of a Chemically Stimulated Hydrogel Bilayer Bending Actuator. Advanced Structured Materials, 2018, , 211-226.	0.3	1
350	Preparation of cellulose–graphene oxide aerogels with <i>N</i> â€methyl morpholineâ€ <i>N</i> â€oxide as a solvent. Journal of Applied Polymer Science, 2018, 135, 46152.	1.3	11
351	Templating polyacrylamide hydrogel for interconnected microstructure and improved performance. Journal of Applied Polymer Science, 2018, 135, 46205.	1.3	3
352	Fast Thermoresponsive Optical Membrane Using Hydrogels Embedded in Macroporous Silicon. , 2018, 2, 1-4.		12
353	A holographic sensor based on a biomimetic affinity ligand for the detection of cocaine. Sensors and Actuators B: Chemical, 2018, 270, 216-222.	4.0	20
354	Probing the swelling-dependent mechanical and transport properties of polyacrylamide hydrogels through AFM-based dynamic nanoindentation. Soft Matter, 2018, 14, 2619-2627.	1.2	32
355	A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels. Journal of the Mechanics and Physics of Solids, 2018, 116, 239-266.	2.3	48
356	Portable Nanofiber-Light Addressable Potentiometric Sensor for Rapid <i>Escherichia coli</i> Detection in Orange Juice. ACS Sensors, 2018, 3, 815-822.	4.0	69

#	Article	IF	CITATIONS
357	<scp>pH</scp> stimuliâ€responsive poly(acrylamideâ€ <i>co</i> â€sodium alginate) hydrogels prepared by γâ€radiation for improved compressive strength of concrete. Advances in Polymer Technology, 2018, 37, 2123-2133.	0.8	38
358	Increased volume responsiveness of macroporous hydrogels. Sensors and Actuators B: Chemical, 2018, 255, 2900-2903.	4.0	34
359	Miniaturized force-compensated hydrogel-based pH sensors. Sensors and Actuators B: Chemical, 2018, 255, 3495-3504.	4.0	29
360	Graphene-based devices for measuring pH. Sensors and Actuators B: Chemical, 2018, 256, 976-991.	4.0	111
361	Development of visible-light responsive and mechanically enhanced "smart―UCST interpenetrating network hydrogels. Soft Matter, 2018, 14, 151-160.	1.2	29
362	High Integration of Microfluidic Circuits Based on Hydrogel Valves for MEMS Control. Advanced Materials Technologies, 2018, 3, 1700108.	3.0	27
363	On the rheology of mixed systems of hydrophobically modified polyacrylate microgels and surfactants: Role of the surfactant architecture. Journal of Colloid and Interface Science, 2018, 513, 489-496.	5.0	17
364	Integrated water quality monitoring system with pH, free chlorine, and temperature sensors. Sensors and Actuators B: Chemical, 2018, 255, 781-790.	4.0	72
365	Fluorescence pH Sensor Based on Polymer Film. , 2018, , .		0
366	Low-Cost Microfluidic Sensors with Smart Hydrogel Patterned Arrays Using Electronic Resistive Channel Sensing for Readout. Gels, 2018, 4, 84.	2.1	17
367	Contact-Printing of Zinc Oxide Nanowires for Chemical Sensing Applications. , 2018, , .		0
368	Polysulfobetaines in Aqueous Solution and in Thin Film Geometry. Materials, 2018, 11, 850.	1.3	12
369	Deswelling of Hydrogels in Aqueous and Polyethylene Glycol Solutions. A New Approach for Drug Delivery Application. Periodica Polytechnica: Chemical Engineering, 2018, 62, 137-143.	0.5	5
370	Broad-Range Hydrogel-Based pH Sensor with Capacitive Readout Manufactured on a Flexible Substrate. Chemosensors, 2018, 6, 30.	1.8	9
371	Integrated 3D Hydrogel Waveguide Out-Coupler by Step-and-Repeat Thermal Nanoimprint Lithography: A Promising Sensor Device for Water and pH. Sensors, 2018, 18, 3240.	2.1	14
372	Tuning the Negative Photochromism of Water-Soluble Spiropyran Polymers. Macromolecules, 2018, 51, 8027-8037.	2.2	51
373	Self-Assembled Polyvinyl Alcohol–Tannic Acid Hydrogels with Diverse Microstructures and Good Mechanical Properties. ACS Omega, 2018, 3, 11788-11795.	1.6	98
374	Strong and tough hydrogels crosslinked by multiâ€functional polymer colloids. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1336-1350.	2.4	60

#	Article	IF	CITATIONS
375	Shape Memory Hydrogels Based on Noncovalent Interactions. , 2018, , .		1
376	Thiol-Mediated Chemoselective Strategies for In Situ Formation of Hydrogels. Gels, 2018, 4, 72.	2.1	35
377	Highâ€strength hydrogels: Microstructure design, characterization and applications. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1325-1335.	2.4	47
378	Remote Microwave and Field-Effect Sensing Techniques for Monitoring Hydrogel Sensor Response. Micromachines, 2018, 9, 526.	1.4	3
379	A Fluorescence Intensity Ratiometric Fiber Optics–Based Chemical Sensor for Monitoring pH. Advanced Materials Technologies, 2018, 3, 1800205.	3.0	29
380	Anisotropic contraction of fiber-reinforced hydrogels. Soft Matter, 2018, 14, 7731-7739.	1.2	11
381	Fully physical double network hydrogels with high strength, rapid self-recovery and self-healing performances. Polymer Testing, 2018, 69, 167-174.	2.3	22
382	An Injectable Oxidized Carboxymethyl Cellulose/Polyacryloyl Hydrazide Hydrogel via Schiff Base Reaction. Australian Journal of Chemistry, 2018, 71, 74.	0.5	5
383	Multifunctional Hydrogels. Polymers and Polymeric Composites, 2018, , 1-29.	0.6	0
384	Smart polymeric gels. , 2018, , 179-230.		2
385	Tough Hydrogels with Fast, Strong, and Reversible Underwater Adhesion Based on a Multiscale Design. Advanced Materials, 2018, 30, e1801884.	11.1	235
386	Integration of hydrogels with functional nanoparticles using hydrophobic comb-like polymers as an adhesive layer. Journal of Materials Chemistry A, 2018, 6, 15147-15153.	5.2	43
387	Enhancement of Hydrogelsâ \in M Properties for Biomedical Applications: Latest Achievements. , 0, , .		6
388	Synthesis, Curing Behavior and Swell Tests of pH-Responsive Coatings from Acryl-Terminated Oligo(β-Amino Esters). Chemosensors, 2018, 6, 10.	1.8	4
389	Electrochemical immunoassay for tumor markers based on hydrogels. Expert Review of Molecular Diagnostics, 2018, 18, 457-465.	1.5	11
390	Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics, 2018, 3, 15.	1.5	164
391	In-Line Mach–Zehnder Interferometer and FBG With Smart Hydrogel for Simultaneous pH and Temperature Detection. IEEE Sensors Journal, 2018, 18, 7499-7504.	2.4	27
392	Stimuli-Responsive Cellulose Based Hydrogels. Polymers and Polymeric Composites, 2018, , 1-40.	0.6	0

#	Article	IF	CITATIONS
393	Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber. Sensors and Actuators A: Physical, 2018, 280, 399-405.	2.0	36
394	A facile, robust and versatile finite element implementation to study the time-dependent behaviors of responsive gels. Extreme Mechanics Letters, 2018, 22, 89-97.	2.0	9
395	Construction of Various Supramolecular Assemblies from Rod–Coil Molecules Containing Biphenyl and Anthracene Groups Driven by Donor–Acceptor Interactions. ACS Applied Materials & Interfaces, 2018, 10, 22529-22536.	4.0	18
396	Aqua-gel pH sensor: intelligent engineering and evaluation of pH sensor based on multi-factorial testing regimes. Sensor Review, 2019, 39, 178-189.	1.0	6
397	Untethered microgripper-the dexterous hand at microscale. Biomedical Microdevices, 2019, 21, 82.	1.4	14
398	pH-Dependent Electrochemomechanical Transition of Hydrophobe-Water Interface. , 2019, 3, 1-4.		5
400	Intramolecular force-compensated hydrogel-based sensors with reduced response times. TM Technisches Messen, 2019, 86, 227-236.	0.3	10
401	Programmable Disassembly of Polymer Nanoparticles through Surfactant Interactions. Industrial & Engineering Chemistry Research, 2019, 58, 21003-21013.	1.8	6
402	Enzyme-Functionalized Piezoresistive Hydrogel Biosensors for the Detection of Urea. Sensors, 2019, 19, 2858.	2.1	40
403	Polyethyleneâ€Glycolâ€Based Thermoreversible Biscarbamate Hydrogels and Metallogels Synthesized through Nonâ€Isocyanate Route. ChemistrySelect, 2019, 4, 11052-11060.	0.7	6
404	Soft Robotics Programmed with Double Crosslinking DNA Hydrogels. Advanced Functional Materials, 2019, 29, 1905911.	7.8	62
405	The kinetics and mechanism of polymerâ€based NHCâ€Pdâ€pyridine catalyzed heterogeneous Suzuki reaction in aqueous media. International Journal of Chemical Kinetics, 2019, 51, 931-942.	1.0	4
406	Corrosion Sensors for Structural Health Monitoring of Oil and Natural Gas Infrastructure: A Review. Sensors, 2019, 19, 3964.	2.1	86
407	Environmentally Friendly Fertilizers Based on Starch Superabsorbents. Materials, 2019, 12, 3493.	1.3	7
408	Super-Tough Polyacrylamide/iota-Carrageenan Double-Network Hydrogels Strengthened By Bacterial Cellulose Microclusters. Materials Today: Proceedings, 2019, 16, 1497-1501.	0.9	3
409	Mechanical behaviour of alginate film with embedded voids under compression-decompression cycles. Scientific Reports, 2019, 9, 13193.	1.6	6
410	Tough physical hydrogels reinforced by hydrophobic association with remarkable mechanical property, rapid stimuli-responsiveness and fast self-recovery capability. European Polymer Journal, 2019, 120, 109278.	2.6	13
411	Trends in polymeric shape memory hydrogels and hydrogel actuators. Polymer Chemistry, 2019, 10, 1036-1055.	1.9	172

#	Article	IF	Citations
412	Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter, 2019, 15, 1155-1185.	1.2	78
413	Tuning Hydrogel Mechanics by Kinetically Dependent Cross-Linking. Macromolecules, 2019, 52, 1249-1256.	2.2	23
414	Exploiting Direct Laser Writing for Hydrogel Integration into Fragile Microelectromechanical Systems. Sensors, 2019, 19, 2494.	2.1	0
415	On the Race for More Stretchable and Tough Hydrogels. Gels, 2019, 5, 24.	2.1	26
416	Physics-based prediction of biopolymer degradation. Soft Matter, 2019, 15, 4098-4108.	1.2	10
417	Swelling and Exchange Behavior of Poly(sulfobetaine)-Based Block Copolymer Thin Films. Macromolecules, 2019, 52, 3486-3498.	2.2	28
418	Effective Suppression of Oxidative Stress on Living Cells in Hydrogel Particles Containing a Physically Immobilized WS ₂ Radical Scavenger. ACS Applied Materials & Interfaces, 2019, 11, 18817-18824.	4.0	8
419	Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications. Chemical Reviews, 2019, 119, 5248-5297.	23.0	161
420	Small and Robust All-Polymer Fiber Bragg Grating Based pH Sensor. Journal of Lightwave Technology, 2019, 37, 4480-4486.	2.7	42
421	Luminescence-Based Sensors for Bioprocess Applications. Springer Series on Fluorescence, 2019, , 1-38.	0.8	3
422	An implanted pH sensor read using radiography. Analyst, The, 2019, 144, 2984-2993.	1.7	18
423	A unified approach for investigating chemosensor properties – dynamic characteristics. Analyst, The, 2019, 144, 2208-2225.	1.7	11
424	Shapeable Material Technologies for 3D Selfâ€Assembly of Mesoscale Electronics. Advanced Materials Technologies, 2019, 4, 1800692.	3.0	44
425	Effect of monomer content and external stimuli on properties of renewable Tulipalin A-based superabsorbent hydrogels. European Polymer Journal, 2019, 115, 99-106.	2.6	15
426	Piezoresistive Hydrogel-Based Sensors for the Detection of Ammonia. Sensors, 2019, 19, 971.	2.1	19
427	Hydrogel-Based Sensors for Ethanol Detection in Alcoholic Beverages. Sensors, 2019, 19, 1199.	2.1	27
428	In situ probing of switchable nanomechanical properties of responsive high-density polymer brushes on poly(dimethylsiloxane): An AFM nanoindentation approach. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 118-129.	1.5	7
429	Mechanical reinforcement of methylcellulose hydrogels by rigid particle additives. Mechanics of Materials, 2019, 132, 57-65.	1.7	10

#	Article	IF	CITATIONS
430	A Survey on Pollution Monitoring Using Sensor Networks in Environment Protection. Journal of Sensors, 2019, 2019, 1-11.	0.6	28
431	Multi-Organs-on-Chips: Towards Long-Term Biomedical Investigations. Molecules, 2019, 24, 675.	1.7	93
432	Antibacterial oxidized starch/ZnO nanocomposite hydrogel: Synthesis and evaluation of its swelling behaviours in various pHs and salt solutions. International Journal of Biological Macromolecules, 2019, 126, 578-584.	3.6	89
433	A Step Towards Miniaturized Milk Adulteration Detection System: Smartphone-Based Accurate pH Sensing Using Electrospun Halochromic Nanofibers. Food Analytical Methods, 2019, 12, 612-624.	1.3	25
434	Contact mechanics of a gel under constrained swelling. Journal of the Mechanics and Physics of Solids, 2019, 124, 427-445.	2.3	9
435	Stimuli-Responsive Cellulose-Based Hydrogels. Polymers and Polymeric Composites, 2019, , 269-308.	0.6	3
436	Multifunctional Hydrogels. Polymers and Polymeric Composites, 2019, , 375-403.	0.6	0
437	Textile-Based Potentiometric Electrochemical pH Sensor for Wearable Applications. Biosensors, 2019, 9, 14.	2.3	116
438	Shrinkage and strength development of UHSC incorporating a hybrid system of SAP and SRA. Cement and Concrete Composites, 2019, 97, 175-189.	4.6	79
439	pH sensing using whispering gallery modes of a silica hollow bottle resonator. Talanta, 2019, 194, 585-590.	2.9	19
440	Oneâ€pot photoinduced synthesis of dansyl containing acrylamide hydrogels and their chemosensing properties. Journal of Applied Polymer Science, 2019, 136, 47096.	1.3	2
441	Microfabrication of pH-responsive 3D hydrogel structures via two-photon polymerization of high-molecular-weight poly(ethylene glycol) diacrylates. Sensors and Actuators B: Chemical, 2019, 279, 418-426.	4.0	34
442	Modeling the closing behavior of a smart hydrogel micro-valve. Journal of Intelligent Material Systems and Structures, 2019, 30, 1409-1418.	1.4	7
443	CO2-responsive poly(N,N-dimethylaminoethyl methacrylate) hydrogels with fast responsive rate. Journal of the Taiwan Institute of Chemical Engineers, 2019, 94, 135-142.	2.7	12
444	Pressure diffusion wave and shear wave in gels with tunable wave propagation properties. Journal of the Mechanics and Physics of Solids, 2020, 134, 103736.	2.3	0
445	Rheology and adhesive properties versus structure of poly(acrylamide-co-hydroxyethyl methacrylate) hydrogels. International Journal of Adhesion and Adhesives, 2020, 96, 102449.	1.4	9
446	Prediction of the deswelling behaviors of pH- and temperature-responsive poly(NIPAAm-co-AAc) IPN hydrogel by artificial intelligence techniques. Research on Chemical Intermediates, 2020, 46, 409-428.	1.3	22
447	Control of Intramolecular Hydrogen Bonding in a Conformation‣witchable Helical‣pring Polymer by Solvent and Temperature. Angewandte Chemie - International Edition, 2020, 59, 1837-1844.	7.2	21

#	Article	IF	CITATIONS
448	pH-Responsive Copolymer Films Prepared by Surface-Initiated Polymerization and Simple Modification. Langmuir, 2020, 36, 715-722.	1.6	13
449	Patterned Surface Energy in Elastomeric Molds as a Generalized Approach to Polymer Particle Fabrication. ACS Applied Polymer Materials, 2020, 2, 846-852.	2.0	8
450	[12]aneN3-based multifunctional compounds as fluorescent probes and nucleic acids delivering agents. Drug Delivery, 2020, 27, 66-80.	2.5	10
451	Rapid photothermal actuation of light-addressable, arrayed hydrogel columns in a macroporous silicon membrane. Sensors and Actuators A: Physical, 2020, 301, 111729.	2.0	9
452	Hydrogel-Based Technologies for the Diagnosis of Skin Pathology. Technologies, 2020, 8, 47.	3.0	7
453	Cyclic Water Storage Behavior of Doubly Thermoresponsive Poly(sulfobetaine)-Based Diblock Copolymer Thin Films. Macromolecules, 2020, 53, 9108-9121.	2.2	11
454	Hydrogelâ^'Solid Hybrid Materials for Biomedical Applications Enabled by Surfaceâ€Embedded Radicals. Advanced Functional Materials, 2020, 30, 2004599.	7.8	26
455	Progress in hydrogels for sensing applications: a review. Materials Today Chemistry, 2020, 17, 100317.	1.7	73
456	Multicomponent DNA Polymerization Motor Gels. Small, 2020, 16, e2002946.	5.2	14
457	Disposable Hydrogel Activated Circular Interdigitated Sensor for Monitoring Biological Fluid pH. IEEE Sensors Journal, 2020, 20, 14624-14631.	2.4	5
458	Development and characterization sensitivity of optical fibre pH sensor for industrial application. Journal of Physics: Conference Series, 2020, 1484, 012020.	0.3	0
459	Precipitated droplets in-situ cross-linking polymerization and its applications. Polymer Testing, 2020, 91, 106756.	2.3	6
460	Hydrogel sensors with pH sensitivity. Polymer Bulletin, 2021, 78, 5769-5787.	1.7	8
461	Hydrogels Obtained via \hat{i}^3 -Irradiation Based on Poly(Acrylic Acid) and Its Copolymers with 2-Hydroxyethyl Methacrylate. Applied Sciences (Switzerland), 2020, 10, 4960.	1.3	13
462	Hydrogels for Efficient Multiplex PCR. Biotechnology and Bioprocess Engineering, 2020, 25, 503-512.	1.4	3
463	Long-Period Fiber Grating Wide-Range pH Sensor Based on Polyvinyl Alcohol/Polyacrylic Acid Hydrogel Coating. , 2020, , .		1
464	Preparations of Tough and Conductive PAMPS/PAA Double Network Hydrogels Containing Cellulose Nanofibers and Polypyrroles. Polymers, 2020, 12, 2835.	2.0	18
465	Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chemical Reviews, 2020, 120, 12357-12489.	23.0	299

#	Article	IF	CITATIONS
466	Nanocarbon in Polymeric Nanocomposite Hydrogel—Design and Multi-Functional Tendencies. Polymer-Plastics Technology and Materials, 2020, 59, 1505-1521.	0.6	15
467	Revealable photonic prints with oppositely responsive polymers for improved visual sensing. Journal of Materials Chemistry C, 2020, 8, 9286-9292.	2.7	15
468	Real-time characterization of hydrogel viscoelastic properties and sol-gel phase transitions using cantilever sensors. Journal of Rheology, 2020, 64, 837-850.	1.3	11
469	Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology. , 2020, , 617-649.		5
470	<p>Healthcare Applications of pH-Sensitive Hydrogel-Based Devices: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 3887-3901.	3.3	79
471	Acrylic-Based Hydrogels as Advanced Biomaterials. , 2020, , .		1
472	Smart Hydrogel Micromechanical Resonators with Ultrasound Readout for Biomedical Sensing. ACS Sensors, 2020, 5, 1882-1889.	4.0	17
473	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	7.8	51
474	Development of zinc-loaded nanoparticle hydrogel made from sugarcane bagasse for special medical application. Journal of Material Cycles and Waste Management, 2020, 22, 1723-1733.	1.6	15
475	Repulsion of Polar Gels From Water: Hydrationâ€Triggered Actuation, Selfâ€Folding, and 3D Fabrication. Advanced Materials Interfaces, 2020, 7, 2000509.	1.9	3
476	Control of Intramolecular Hydrogen Bonding in a Conformation‣witchable Helicalâ€Spring Polymer by Solvent and Temperature. Angewandte Chemie, 2020, 132, 1853-1860.	1.6	9
477	Hydrogelâ€Based Artificial Muscles: Overview and Recent Progress. Advanced Intelligent Systems, 2020, 2, 1900135.	3.3	103
478	Theoretical assessment of D-shaped optical fiber chemical sensor associated with nanoscale silver strip operating in near-infrared region. Optical and Quantum Electronics, 2020, 52, 1.	1.5	17
479	Low-Cost Passive pH Sensor Fabricated on Scotchâ,,¢ÂTape. , 2020, 4, 1-4.		4
480	Hydrogel Responsive Nanomaterials for Colorimetric Chemical Sensors. Springer Series in Materials Science, 2020, , 165-196.	0.4	1
481	Review—Inkjet Printing of Metal Structures for Electrochemical Sensor Applications. Journal of the Electrochemical Society, 2020, 167, 037571.	1.3	63
482	Tunable swelling and deswelling of temperature- and light-responsive graphene oxide-poly(<i>N</i> -isopropylacrylamide) composite hydrogels. Polymer Chemistry, 2020, 11, 2332-2338.	1.9	20
483	Design Rationale for Stimuliâ€Responsive, Semiâ€interpenetrating Polymer Network Hydrogels–A Quantitative Approach. Macromolecular Rapid Communications, 2020, 41, e2000199.	2.0	11

#	Article	IF	CITATIONS
484	Challenges in engineering conductive protein fibres: Disentangling the knowledge. Canadian Journal of Chemical Engineering, 2020, 98, 2081-2095.	0.9	6
485	Shell-Forming Stimulus-Active Hydrogel Composite Membranes: Concept and Modeling. Micromachines, 2020, 11, 541.	1.4	19
486	Photochromic Polymers Based on Fluorophenyl Oxime Ester Photoinitiators as Photoswitchable Molecules. Macromolecules, 2020, 53, 5701-5710.	2.2	24
487	Phase Separation Behavior in Tough and Self-Healing Polyampholyte Hydrogels. Macromolecules, 2020, 53, 5116-5126.	2.2	49
488	Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly(NIPAAm-co-AAc)-PEG IPN hydrogel. Journal of Drug Delivery Science and Technology, 2020, 57, 101603.	1.4	28
489	Interpenetrating Polymer Network: Biomedical Applications. , 2020, , .		5
490	Rheological investigation of magnetic sensitive biopolymer composites: effect of the ligand grafting of magnetic nanoparticles. Rheologica Acta, 2020, 59, 165-176.	1.1	6
491	Free radical synthesis of cross-linking gelatin base poly NVP/acrylic acid hydrogel and nanoclay hydrogel as cephalexin drug deliver. Journal of Polymer Research, 2020, 27, 1.	1.2	28
492	Recent progress and future prospects in development of advanced materials for nanofiltration. Materials Today Communications, 2020, 23, 100888.	0.9	51
493	Hydrogel machines. Materials Today, 2020, 36, 102-124.	8.3	625
493 494	Hydrogel machines. Materials Today, 2020, 36, 102-124. Tough and Self-Healing Hydrogels from Polyampholytes. Advances in Polymer Science, 2020, , 295-317.	8.3 0.4	625 4
493 494 495	Hydrogel machines. Materials Today, 2020, 36, 102-124. Tough and Self-Healing Hydrogels from Polyampholytes. Advances in Polymer Science, 2020, , 295-317. Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, 2020, , .	8.3 0.4 0.4	625 4 2
493 494 495 496	Hydrogel machines. Materials Today, 2020, 36, 102-124. Tough and Self-Healing Hydrogels from Polyampholytes. Advances in Polymer Science, 2020, , 295-317. Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, 2020, , . Use of graphene substrates for wastewater treatment of textile industries. Advanced Composites and Hybrid Materials, 2020, 3, 187-193.	8.3 0.4 0.4 9.9	625 4 2 46
493 494 495 496	Hydrogel machines. Materials Today, 2020, 36, 102-124. Tough and Self-Healing Hydrogels from Polyampholytes. Advances in Polymer Science, 2020, , 295-317. Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, 2020, , . Use of graphene substrates for wastewater treatment of textile industries. Advanced Composites and Hybrid Materials, 2020, 3, 187-193. Study on the behavior of a temperature-sensitive hydrogel micro-channel via FSI and non-FSI approaches. Acta Mechanica, 2020, 231, 2799-2813.	 8.3 0.4 0.4 9.9 1.1 	625 4 2 46 8
 493 494 495 496 497 498 	Hydrogel machines. Materials Today, 2020, 36, 102-124. Tough and Self-Healing Hydrogels from Polyampholytes. Advances in Polymer Science, 2020, , 295-317. Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, 2020, , . Use of graphene substrates for wastewater treatment of textile industries. Advanced Composites and Hybrid Materials, 2020, 3, 187-193. Study on the behavior of a temperature-sensitive hydrogel micro-channel via FSI and non-FSI approaches. Acta Mechanica, 2020, 231, 2799-2813. Swelling Studies of Porous and Nonporous Semi-IPN Hydrogels for Sensor and Actuator Applications. Micromachines, 2020, 11, 425.	 8.3 0.4 0.4 9.9 1.1 1.4 	 625 4 2 46 8 10
 493 494 495 496 497 498 499 	Hydrogel machines. Materials Today, 2020, 36, 102-124. Tough and Self-Healing Hydrogels from Polyampholytes. Advances in Polymer Science, 2020, , 295-317. Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, 2020, , . Use of graphene substrates for wastewater treatment of textile industries. Advanced Composites and Hybrid Materials, 2020, 3, 187-193. Study on the behavior of a temperature-sensitive hydrogel micro-channel via FSI and non-FSI approaches. Acta Mechanica, 2020, 231, 2799-2813. Swelling Studies of Porous and Nonporous Semi-IPN Hydrogels for Sensor and Actuator Applications. Micromachines, 2020, 11, 425. A nonlinear visco-poroelasticity model for transversely isotropic gels. Meccanica, 2021, 56, 1483-1504.	 8.3 0.4 0.4 9.9 1.1 1.4 	 625 4 2 46 8 10 5
 493 494 495 496 497 498 499 500 	Hydrogel machines. Materials Today, 2020, 36, 102-124. Tough and Self-Healing Hydrogels from Polyampholytes. Advances in Polymer Science, 2020, , 295-317. Responsive Nanomaterials for Sustainable Applications. Springer Series in Materials Science, 2020, , . Use of graphene substrates for wastewater treatment of textile industries. Advanced Composites and Hybrid Materials, 2020, 3, 187-193. Study on the behavior of a temperature-sensitive hydrogel micro-channel via FSI and non-FSI approaches. Acta Mechanica, 2020, 231, 2799-2813. Swelling Studies of Porous and Nonporous Semi-IPN Hydrogels for Sensor and Actuator Applications. Micromachines, 2020, 11, 425. A nonlinear visco-poroelasticity model for transversely isotropic gels. Meccanica, 2021, 56, 1483-1504. Fluid-structure interaction simulations for a temperature-sensitive functionally graded hydrogel-based micro-channel. Journal of Intelligent Material Systems and Structures, 2021, 32, 661-677.	 8.3 0.4 0.4 9.9 1.1 1.4 1.2 1.4 	 625 4 2 46 8 10 5 8

#	Article	IF	CITATIONS
502	Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Applied Bio Materials, 2021, 4, 140-162.	2.3	139
503	Controllable synthesis of cellulose/methylene bisacrylamide aerogels for enhanced adsorption performance. Journal of Applied Polymer Science, 2021, 138, 50204.	1.3	11
504	Facile Fabrication of Multiresponsive Selfâ€Healing Hydrogels with Logicâ€Gate Responses. Macromolecular Chemistry and Physics, 2021, 222, 2000339.	1.1	6
505	Static and dynamic experiments on hydrogels: Effects of the chemical composition of the fluid. Mechanics of Materials, 2021, 154, 103717.	1.7	12
506	Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Materials Horizons, 2021, 8, 351-369.	6.4	250
507	Sensors for detection of Cr(VI) in water: a review. International Journal of Environmental Analytical Chemistry, 2021, 101, 1051-1073.	1.8	21
508	3D sponges of chemically functionalized chitosan for potential environmental pollution remediation: biosorbents for anionic dye adsorption and †antibiotic-free' antibacterial activity. Environmental Technology (United Kingdom), 2021, 42, 2046-2066.	1.2	21
509	Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review. Regenerative Engineering and Translational Medicine, 2021, 7, 91-114.	1.6	51
510	Integrated microsystems for bridging multiscale elements. Advances in Chemical Engineering, 2021, 57, 157-196.	0.5	2
511	Smart polymer hydrogels and their applications. , 2021, , 117-143.		0
511 512	Smart polymer hydrogels and their applications. , 2021, , 117-143. SnO _X -Based <i>μ</i> W-Power Dual-Gate Ion-Sensitive Thin-Film Transistors With Linear Dependence of pH Values on Drain Current. IEEE Electron Device Letters, 2021, 42, 54-57.	2.2	0
511 512 513	Smart polymer hydrogels and their applications. , 2021, , 117-143. SnO _X -Based <i>μ</i> W-Power Dual-Gate Ion-Sensitive Thin-Film Transistors With Linear Dependence of pH Values on Drain Current. IEEE Electron Device Letters, 2021, 42, 54-57. Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2021, , 211-252.	2.2	0 1 0
511512513514	Smart polymer hydrogels and their applications., 2021, , 117-143. SnO _X -Based <i>μ</i> W-Power Dual-Gate Ion-Sensitive Thin-Film Transistors With Linear Dependence of pH Values on Drain Current. IEEE Electron Device Letters, 2021, 42, 54-57. Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2021, , 211-252. Hydrogels for sensing applications. Advances in Chemical Engineering, 2021, , 123-155.	2.2 0.7 0.5	0 1 0 2
 511 512 513 514 515 	Smart polymer hydrogels and their applications., 2021, , 117-143. SnO _X -Based <i>Îl/4</i> W-Power Dual-Gate Ion-Sensitive Thin-Film Transistors With Linear Dependence of pH Values on Drain Current. IEEE Electron Device Letters, 2021, 42, 54-57. Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2021, , 211-252. Hydrogels for sensing applications. Advances in Chemical Engineering, 2021, , 123-155. Cross-Linking, Modular Design and Self-assembly in Hydrogels. Gels Horizons: From Science To Smart Materials, 2021, , 151-163.	2.2 0.7 0.5 0.3	0 1 0 2 1
 511 512 513 514 515 516 	Smart polymer hydrogels and their applications., 2021, , 117-143. SnO _X -Based <i>îl¼</i> W-Power Dual-Gate Ion-Sensitive Thin-Film Transistors With Linear Dependence of pH Values on Drain Current. IEEE Electron Device Letters, 2021, 42, 54-57. Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2021, , 211-252. Hydrogels for sensing applications. Advances in Chemical Engineering, 2021, , 123-155. Cross-Linking, Modular Design and Self-assembly in Hydrogels. Gels Horizons: From Science To Smart Materials, 2021, , 151-163. Chemical Sensors for Farm-to-Table Monitoring of Fruit Quality. Sensors, 2021, 21, 1634.	2.2 0.7 0.5 0.3 2.1	0 1 0 2 1 1 14
 511 512 513 514 515 516 517 	Smart polymer hydrogels and their applications. , 2021, , 117-143. SnO _X Based <i>Îl/4</i> W-Power Dual-Gate Ion-Sensitive Thin-Film Transistors With Linear Dependence of pH Values on Drain Current. IEEE Electron Device Letters, 2021, 42, 54-57. Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2021, , 211-252. Hydrogels for sensing applications. Advances in Chemical Engineering, 2021, , 123-155. Cross-Linking, Modular Design and Self-assembly in Hydrogels. Gels Horizons: From Science To Smart Materials, 2021, , 151-163. Chemical Sensors for Farm-to-Table Monitoring of Fruit Quality. Sensors, 2021, 21, 1634. Cellulosic fabric treated with hyperbranched polyethyleneimine derivatives for improving antibacterial, dyeing, pH and thermo-responsive performance. International Journal of Biological Macromolecules, 2021, 170, 479-489.	2.2 0.7 0.5 0.3 2.1 3.6	0 1 0 2 1 1 14
 511 512 513 514 515 516 517 518 	Smart polymer hydrogels and their applications., 2021,, 117-143. SnO _X -Based <i>î)Î4<(i) W-Power Dual-Gate Ion-Sensitive Thin-Film Transistors With Linear Dependence of pH Values on Drain Current. IEEE Electron Device Letters, 2021, 42, 54-57.</i>	2.2 0.7 0.5 0.3 2.1 3.6 1.8	0 1 2 2 1 1 4 17 33

#	Article	IF	Citations
520	Internal curing of blended cement pastes with ultraâ€low waterâ€toâ€cement ratio: Absorption/desorption kinetics of superabsorbent polymer. Journal of the American Ceramic Society, 2021, 104, 3603-3618.	1.9	7
522	Development of Kraft Lignin Chemically Modified as a Novel Crosslinking Agent for the Synthesis of Active Hydrogels. Applied Sciences (Switzerland), 2021, 11, 4012.	1.3	5
523	Characterization of swelling behavior of carbon nano-filler modified polydimethylsiloxane composites. Journal of Elastomers and Plastics, 2021, 53, 955-974.	0.7	10
524	Facile synthesis and application of aluminum oxide nanoparticle based biodegradable film. Polymer Composites, 2021, 42, 3899-3910.	2.3	4
525	Hydrogels and Their Role in Biosensing Applications. Advanced Healthcare Materials, 2021, 10, e2100062.	3.9	133
526	Experimental investigation of the mechanical behavior of a poly(acrylamide-co-sodium acrylate) hydrogel. Journal of Intelligent Material Systems and Structures, 2022, 33, 309-318.	1.4	5
527	Biomedical Catheters With Integrated Miniature Piezoresistive Pressure Sensors: A Review. IEEE Sensors Journal, 2021, 21, 10241-10290.	2.4	27
528	A Review on Antifungal Efficiency of Plant Extracts Entrenched Polysaccharide-Based Nanohydrogels. Nutrients, 2021, 13, 2055.	1.7	33
529	Nano- and microgels: a review for educators. Chemistry Teacher International, 2021, 3, 155-167.	0.9	5
530	Structurally Dynamic Hydrogels for Biomedical Applications: Pursuing a Fine Balance between Macroscopic Stability and Microscopic Dynamics. Chemical Reviews, 2021, 121, 11149-11193.	23.0	161
531	Hydrogel-Based Chemical and Biochemical Sensors—A Review and Tutorial Paper. IEEE Sensors Journal, 2021, 21, 12798-12807.	2.4	6
532	A chemical micropump actuated by self-oscillating polymer gel. Sensors and Actuators B: Chemical, 2021, 337, 129769.	4.0	15
533	Inhomogeneous Large Deformation Study on Magneto-Thermal Sensitive Hydrogels. International Journal of Applied Mechanics, 2021, 13, .	1.3	9
534	Magnetism in curved geometries. Journal of Applied Physics, 2021, 129, .	1.1	29
535	Synthesis of lignin-based hydrogels and their applications in agriculture: A review. Chemical Papers, 2021, 75, 4465-4478.	1.0	13
536	Fiber optic sensor designs and luminescence-based methods for the detection of oxygen and pH measurement. Measurement: Journal of the International Measurement Confederation, 2021, 178, 109323.	2.5	28
537	Development of oxidized hydroxyethyl cellulose-based hydrogel enabling unique mechanical, transparent and photochromic properties for contact lenses. International Journal of Biological Macromolecules, 2021, 183, 1162-1173.	3.6	17
538	Solvation Behavior of Poly(sulfobetaine)-Based Diblock Copolymer Thin Films in Mixed Water/Methanol Vapors. Macromolecules, 2021, 54, 7147-7159.	2.2	8

#	Article	IF	CITATIONS
539	Mechanically Tunable Nanogap Antennas: Singleâ€&tructure Effects and Multiâ€&tructure Applications. Advanced Optical Materials, 2021, 9, 2100326.	3.6	9
540	Review of Structural Health Monitoring Techniques in Pipeline and Wind Turbine Industries. Applied System Innovation, 2021, 4, 59.	2.7	19
541	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
542	<i>In Vivo</i> Monitoring of Glucose Using Ultrasound-Induced Resonance in Implantable Smart Hydrogel Microstructures. ACS Sensors, 2021, 6, 3587-3595.	4.0	4
543	Performance of force-compensated chemical sensors based on bisensitive hydrogels. Sensors and Actuators B: Chemical, 2021, 342, 129420.	4.0	9
544	Viscoelastic behaviour of rapid and slow self-healing hydrogels formed by densely branched arabinoxylans from Plantago ovata seed mucilage. Carbohydrate Polymers, 2021, 269, 118318.	5.1	9
545	Double-network hydrogel adsorbents for environmental applications. Chemical Engineering Journal, 2021, 426, 131900.	6.6	88
546	Characterization of a fast response fiber-optic pH sensor and illustration in a biological application. Analyst, The, 2021, 146, 4811-4821.	1.7	9
547	Progress on Preparation of pH/Temperature-Sensitive Intelligent Hydrogels and Applications in Target Transport and Controlled Release of Drugs. International Journal of Polymer Science, 2021, 2021, 1-14.	1.2	20
548	Poly(sulfobetaine) versus Poly(<i>N</i> -isopropylmethacrylamide): Co-Nonsolvency-Type Behavior of Thin Films in a Water/Methanol Atmosphere. Macromolecules, 2021, 54, 1548-1556.	2.2	17
549	Influence of Salt and pH on the Swelling Equilibrium of Ionizable N-IPAAm Based Hydrogels: Experimental Results and Modeling. , 2013, , 163-173.		1
550	Calculating Structural Properties of Reversibly Crosslinked Polymer Systems Using Self-Consistent Field Theory. , 2013, , 233-245.		1
551	Fabrication Technology of Chitosan-Based IPN: Drug Delivery Application. , 2020, , 55-78.		3
552	Design of two complementary copolymers that work as a glue for cell-laden collagen gels. Chemical Communications, 2020, 56, 10545-10548.	2.2	1
553	Kinetics of Polyelectrolyte Gels. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	20
554	Modeling of the Photo-Thermal-pH Triple-Responsive Hydrogels Considering the Coupled Effect of Photothermal Conversion and Electrochemistry. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	7
555	Nonlinear Visco-Poroelasticity of Gels With Different Rheological Parts. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	13
556	Stimulus responsive hydrogel-coated etched fiber Bragg grating for carcinogenic chromium (VI) sensing. Optical Engineering, 2018, 57, 1.	0.5	14

	CITATION REPORT	
ARTICLE Experimental determination of material parameters for an enhanced modeling of polyelectrolyte ge , 2019, , .	IF els.	CITATIONS 2
Semi-Interpenetrating Polymer Networks Based on N-isopropylacrylamide and 2-acrylamido-2-methylpropane Sulfonic Acid for Intramolecular Force-Compensated Sensors. Journ of the Electrochemical Society, 2020, 167, 167521.	al 1.3	4
Hydrogel based Fabry-Pérot cavity for a pH sensor. Optics Express, 2020, 28, 39640.	1.7	22
Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control. PLoS ONE, 2016, 11, e0161024.	1.1	13
Titanium Nitride Thin Film Based Low-Redox-Interference Potentiometric pH Sensing Electrodes. Sensors, 2021, 21, 42.	2.1	19
Modular Hydrogels for Drug Delivery. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 185-199.	1.0	53
Synthesis and Characterization of N-Isopropylacrylamide Microspheres as pH Sensors. Sensors, 202 21, 6493.	21, 2.1	3
Conductive Hydrogel-Based Electrochemical Sensor: A Soft Platform for Capturing Analyte. Chemosensors, 2021, 9, 282.	1.8	32
Analysis and Control of Swelling Behaviors of Polymer Gels. Japan Journal of Food Engineering, 201 12, 47-53.	.1, 0.1	1
Towards Computation with Microchemomechanical Systems. Lecture Notes in Computer Science, , 232-243.	2013, 1.0	Ο
Polyvinylbenzyl Tris-Aminodicarboxylate Microspheres for the Optical Sensing of Cu ²⁺ lons. American Journal of Analytical Chemistry, 20 122-127.	014, 05, 0.3	0
Polyelectrolyte Hydrogels: Thermodynamics. Engineering Materials, 2014, , 183-214.	0.3	5
Potentiometric pH Sensors at Ambient Temperature. , 2014, , 1683-1692.		0
Hydrogel Coated Fiber Bragg Grating Based pH Sensor. , 2015, , .		0
Formation of Hydrogel Microspring by using Bevel-tip Capillary for Soft Actuator. IEEJ Transactions on Sensors and Micromachines, 2016, 136, 398-403.	0.0	1
Microgels: Smart Polymer and Hybrid. , 0, , 4701-4715.		0
pH-Switchable Electrochemical Interfaces-a Brief Review. American Journal of Biomedical Sciences, 68-81.	0, , 0.2	0
Microgels: Smart Polymer and Hybrid. , 2017, , 917-931.		0

#

#	Articie	IF	CITATIONS
575	Primjena polimera u farmaceutskoj industriji. Kemija U Industriji, 2017, 66, 505-518.	0.2	0
576	All-Polymer Fiber Bragg Grating based pH Sensor. , 2018, , .		0
577	Gel Impedance Used as a Pressure Sensor: Preliminary Results. IFMBE Proceedings, 2020, , 1481-1487.	0.2	1
578	Ultrafast infrared spectroscopic study of microscopic structural dynamics in pH stimulus-responsive hydrogels. Chinese Journal of Chemical Physics, 2020, 33, 540-546.	0.6	0
580	Patterned Surface Energy in Elastomeric Molds as a Generalized Approach to Polymer Particle Fabrication. ACS Applied Polymer Materials, 2020, 2, .	2.0	0
581	Fabrication Process for Free-Standing Smart Hydrogel Pillars for Sensing Applications. , 2020, , .		3
582	Optical Hydrogel Detector for pH Measurements. Biosensors, 2022, 12, 40.	2.3	7
583	Shaping Macromolecules for Sensing Applications—From Polymer Hydrogels to Foldamers. Polymers, 2022, 14, 580.	2.0	5
584	A Review on Synthesis Methods of Phyllosilicate- and Graphene-Filled Composite Hydrogels. Journal of Composites Science, 2022, 6, 15.	1.4	13
585	Aptamer-Enabled Nanomaterials for Therapeutics, Drug Targeting and Imaging. Cells, 2022, 11, 159.	1.8	30
586	Recent advances in the 3D printing of ionic electroactive polymers and core ionomeric materials. Polymer Chemistry, 2022, 13, 456-473.	1.9	14
587	Size-selective characterization of porous media via tortuous network analysis. Journal of Rheology, 2022, 66, 219-233.	1.3	2
588	Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers, 2022, 14, 1012.	2.0	54
589	Microphase Separationâ€Ðriven Sequential Selfâ€Folding of Nanocomposite Hydrogel/Elastomer Actuators. Advanced Functional Materials, 2022, 32, .	7.8	17
590	A reliable and easy-to-implement optical characterization method for dynamic and static properties of smart hydrogels. Polymer, 2022, 246, 124713.	1.8	2
591	A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840.	2.5	3
592	Polyvinyl alcohol/polyacrylamide hydrogel-based sensor for lead (II) ion sensing by resonance Rayleigh scattering. Reactive and Functional Polymers, 2022, 175, 105266.	2.0	5
593	Rapid preparation of ZnO nanocomposite hydrogels by frontal polymerization of a ternary DES and performance study. RSC Advances, 2022, 12, 12871-12877.	1.7	5

#	Article	IF	CITATIONS
594	Magnetic functionalization of poly(<i>N</i> â€isopropylacrylamide) hydrogels for sensor applications. Physica Status Solidi (B): Basic Research, 0, , .	0.7	1
595	A finite strain chemo-poro-mechanical framework for the chemically stimulated permeation of fluid in polymer gels. Journal of Intelligent Material Systems and Structures, 2022, 33, 2564-2577.	1.4	1
596	Hydrogel Nanoarchitectonics: An Evolving Paradigm for Ultrasensitive Biosensing. Small, 2022, 18, .	5.2	31
597	Stabilized formulation for phaseâ€field fracture in nearly incompressible hyperelasticity. International Journal for Numerical Methods in Engineering, 2022, 123, 4655-4673.	1.5	7
598	Biocatalytic 3D Actuation in Liquid Crystal Elastomers via Enzyme Patterning. ACS Applied Materials & Interfaces, 2022, 14, 26480-26488.	4.0	11
599	Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. International Journal of Biological Macromolecules, 2022, 213, 987-1006.	3.6	95
600	Fundamentals of Hydrogelâ€Based Valves and Chemofluidic Transistors for Labâ€onâ€a hip Technology: A Tutorial Review. Advanced Materials Technologies, 2023, 8, .	3.0	10
601	A review on facile synthesis of nanoparticles made from biomass wastes. Nanotechnology for Environmental Engineering, 2022, 7, 783-796.	2.0	3
602	An anisotropic constitutive model for fiber reinforced salt-sensitive hydrogels. Mechanics of Advanced Materials and Structures, 2023, 30, 4814-4827.	1.5	7
603	Dynamic behaviors of the hydrogel. , 2022, , 139-157.		0
604	Hydrogelâ€Based Flexible Electronics. Advanced Materials, 2023, 35, .	11.1	116
605	Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: A mini-review and perspective. Carbohydrate Polymers, 2023, 299, 120140.	5.1	22
606	Construction and Ion Transport-Related Applications of the Hydrogel-Based Membrane with 3D Nanochannels. Polymers, 2022, 14, 4037.	2.0	7
607	Acoustoâ€Photolithography for Programmable Shape Deformation of Composite Hydrogel Sheets. Small, 2022, 18, .	5.2	3
608	Insights into the Role of Natural Polysaccharide-Based Hydrogel Wound Dressings in Biomedical Applications. Gels, 2022, 8, 646.	2.1	16
609	Rate-Independent Self-Healing Double Network Hydrogels Using a Thixotropic Sacrificial Network. Macromolecules, 2022, 55, 9547-9557.	2.2	13
610	Distributed pH sensing based on hydrogel coated single mode fibers and optical frequency domain reflectometry. Optics Express, 2022, 30, 42801.	1.7	2
612	Advances in hydrogel-based controlled drug-delivery systems. , 2023, , 329-350.		0

#	Article	IF	CITATIONS
613	Understanding the shrinkage behaviour of alkali-activated slag binders modified by the superabsorbent polymer. Construction and Building Materials, 2023, 365, 130053.	3.2	6
614	Label-Free Optical pH Measurement Based on Chitosan-TEOS-PDMS Hydrogel Layer for Microfluidic Applications. IEEE Sensors Journal, 2023, 23, 97-103.	2.4	2
615	Reversible electrospun fibers containing spiropyran for acid and base vapor sensing. Journal of Materials Research, 2023, 38, 547-556.	1.2	5
616	Fast Responsive, Reversible Colorimetric Nanoparticle-Hydrogel Complexes for pH Monitoring. Nanomaterials, 2022, 12, 4081.	1.9	3
617	Liquid Metal pH Morphology Sensor Used for Biological Microenvironment Detection. Analytical Chemistry, 2022, 94, 17312-17319.	3.2	3
618	Non-Specific Responsive Nanogels and Plasmonics to Design MathMaterial Sensing Interfaces: The Case of a Solvent Sensor. Sensors, 2022, 22, 10006.	2.1	1
619	Superâ€Strong Hydrogel Composites Reinforced with PBO Nanofibers for Cartilage Replacement. Macromolecular Bioscience, 2023, 23, .	2.1	3
620	Reconfigurable A-motif, i-motif and triplex nucleic acids for smart pH-responsive DNA hydrogels. Materials Today, 2023, 63, 188-209.	8.3	9
621	Tuning the pH of Activation of Fluorinated Hydrazone-Based Switches─A Pathway to Versatile ¹⁹ F Magnetic Resonance Imaging Contrast Agents. ACS Sensors, 2023, 8, 721-727.	4.0	4
622	Bioinspired, biomimetic hydrogels. , 2023, , 325-354.		0
623	Self-assembled, Porous and Molecularly Imprinted Supramolecular Structures in Sensing. , 2023, , 165-208.		0
624	A constitutive model for elastomers tailored by ionic bonds and entanglements. Mechanics of Materials, 2023, 179, 104604.	1.7	2
625	Synthesis of biodegradable carboxymethyl cellulose film-loaded magnesium nanoparticles. Emergent Materials, 2023, 6, 561-571.	3.2	3
626	pH-sensitive optical micro-resonator based on PAA/PVA gel swelling. , 2023, , .		1
627	Hydrochromic wood biocomposites for humidity and moisture detection. Chemical Engineering Journal, 2023, 465, 142890.	6.6	7
634	Signal Improvement on Fibre Optic Evanescent Wave Sensor Based Polymeric Sensitive Coating of Chitosan-Agarose Hydrogel. Lecture Notes in Mechanical Engineering, 2023, , 109-115.	0.3	0
652	Polymers in wound dressing. , 2024, , 149-189.		0
655	Hydrogel-based nanomedicines for cancer immunotherapy. , 2024, , 139-174.		0

ARTICLE

IF CITATIONS