Framework for Understanding Structural Errors (FUSE) diagnose differences between hydrological models

Water Resources Research 44, DOI: 10.1029/2007wr006735

Citation Report

#	Article	IF	CITATIONS
1	Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Advances in Water Resources, 2008, 31, 1309-1324.	1.7	395
2	Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resources Research, 2008, 44, .	1.7	664
3	Model complexity control for hydrologic prediction. Water Resources Research, 2008, 44, .	1.7	120
4	Advances in the identification and evaluation of complex environmental systems models. Journal of Hydroinformatics, 2009, 11, 266-281.	1.1	18
5	Towards a limits of acceptability approach to the calibration of hydrological models: Extending observation error. Journal of Hydrology, 2009, 367, 93-103.	2.3	137
6	On the development of regionalization relationships for lumped watershed models: The impact of ignoring sub-basin scale variability. Journal of Hydrology, 2009, 373, 337-351.	2.3	82
7	Consistency between hydrological models and field observations: linking processes at the hillslope scale to hydrological responses at the watershed scale. Hydrological Processes, 2009, 23, 311-319.	1.1	128
8	A top-down framework for watershed model evaluation and selection under uncertainty. Environmental Modelling and Software, 2009, 24, 901-916.	1.9	79
9	Introduction to special section on Uncertainty Assessment in Surface and Subsurface Hydrology: An overview of issues and challenges. Water Resources Research, 2009, 45, .	1.7	80
10	How Bayesian data assimilation can be used to estimate the mathematical structure of a model. Stochastic Environmental Research and Risk Assessment, 2010, 24, 925-937.	1.9	36
11	Application of the Distributed Hydrological Model, TOPNET, to the Big Darby Creek Watershed, Ohio, USA. Water Resources Management, 2010, 24, 979-1003.	1.9	11
12	Estimating seepage intensities from groundwater level time series by inverse modelling: A sensitivity analysis on wet meadow scenarios. Journal of Hydrology, 2010, 385, 132-142.	2.3	14
13	Diagnostic evaluation of conceptual rainfall–runoff models using temporal clustering. Hydrological Processes, 2010, 24, 2840-2850.	1.1	81
14	Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling and Software, 2010, 25, 691-701.	1.9	34
15	Performance and reliability of multimodel hydrological ensemble simulations based on seventeen lumped models and a thousand catchments. Hydrology and Earth System Sciences, 2010, 14, 2303-2317.	1.9	62
17	Toward an integrative software infrastructure for water management in the Smarter Planet. IBM Journal of Research and Development, 2010, 54, 1-20.	3.2	6
18	Ensemble evaluation of hydrological model hypotheses. Water Resources Research, 2010, 46, .	1.7	83
19	Toward improved identification of hydrological models: A diagnostic evaluation of the " <i>abcd</i> ― monthly water balance model for the conterminous United States. Water Resources Research, 2010, 46	1.7	120

#	Article	IF	CITATIONS
20	Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes. Water Resources Research, 2010, 46, .	1.7	121
21	Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction. Water Resources Research, 2010, 46, .	1.7	128
22	A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and nonâ€Gaussian errors. Water Resources Research, 2010, 46, .	1.7	419
23	A limitedâ€memory acceleration strategy for MCMC sampling in hierarchical Bayesian calibration of hydrological models. Water Resources Research, 2010, 46, .	1.7	32
24	Uncertainty of Hydrological Predictions. , 2011, , 459-478.		40
25	Benchmarking quantitative precipitation estimation by conceptual rainfallâ€runoff modeling. Water Resources Research, 2011, 47, .	1.7	48
26	Convergence of approaches toward reducing uncertainty in predictions in ungauged basins. Water Resources Research, 2011, 47, .	1.7	146
27	Impact of temporal data resolution on parameter inference and model identification in conceptual hydrological modeling: Insights from an experimental catchment. Water Resources Research, 2011, 47, .	1.7	84
28	Correcting the mathematical structure of a hydrological model via Bayesian data assimilation. Water Resources Research, 2011, 47, .	1.7	54
29	Corruption of parameter behavior and regionalization by model and forcing data errors: A Bayesian example using the SNOW17 model. Water Resources Research, 2011, 47, .	1.7	28
30	Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 2011, 47, .	1.7	414
31	Identification of nonlinearity in rainfallâ€flow response using dataâ€based mechanistic modeling. Water Resources Research, 2011, 47, .	1.7	16
32	Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity. Water Resources Research, 2011, 47, .	1.7	65
33	Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development. Water Resources Research, 2011, 47, .	1.7	269
34	Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers. Water Resources Research, 2011, 47, .	1.7	49
35	Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation. Water Resources Research, 2011, 47, .	1.7	172
36	Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights. Water Resources Research, 2011, 47, .	1.7	97
37	Integrating point glacier mass balance observations into hydrologic model identification. Hydrology and Earth System Sciences, 2011, 15, 1227-1241.	1.9	57

ARTICLE IF CITATIONS # Low-frequency variability of European runoff. Hydrology and Earth System Sciences, 2011, 15, 1.9 46 38 2853-2869. Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban 39 development effects. Hydrology and Earth System Sciences, 2011, 15, 617-633. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic 40 1.9 66 regimes. Hydrology and Earth System Sciences, 2011, 15, 3877-3893. Comparison of hydrological model structures based on recession and low flow simulations. 104 Hydrology and Earth System Sciences, 2011, 15, 3447-3459. Catchment classification: hydrological analysis of catchment behavior through process-based 42 1.9 110 modeling along a climate gradient. Hydrology and Earth System Sciences, 2011, 15, 3411-3430. Integrated modelling for river basin management planning. Water Management, 2011, 164, 405-419. 0.4 Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, 44 2.3 162 Korea. Journal of Hydrology, 2011, 401, 90-105. Parameter estimation in ensemble based snow data assimilation: A synthetic study. Advances in Water 1.7 Resources, 2011, 34, 407-416. Hydrological field data from a modeller's perspective: Part 1. Diagnostic tests for model structure. 47 1.1 121 Hydrological Processes, 2011, 25, 511-522. Numerical troubles in conceptual hydrology: Approximations, absurdities and impact on hypothesis 1.1 testing. Hydrological Processes, 2011, 25, 661-670. Hydrological field data from a modeller's perspective: Part 2: processâ€based evaluation of model 49 103 1.1 hýpotheses. Hydrological Processes, 2011, 25, 523-543. Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrological Processes, 2011, 25, 1784-1799. 1.1 99 Catchmentâ€scale estimates of flow path partitioning and water storage based on transit time and 51 1.1 64 runoff modelling. Hydrological Processes, 2011, 25, 3960-3976. An open software environment for hydrological model assessment and development. Environmental Modelling and Software, 2011, 26, 1171-1185. 122 CMF: A Hydrological Programming Language Extension For Integrated Catchment Models. 53 1.9 73 Environmental Modelling and Software, 2011, 26, 828-830. Ensemble Evaluation of Hydrologically Enhanced Noah-LSM: Partitioning of the Water Balance in High-Resolution Simulations over the Little Washita River Experimental Watershed. Journal of Hydrometeorology, 2011, 12, 45-64. Statistical Comparisons of Watershed-Scale Response to Climate Change in Selected Basins across the 55 0.7 36 United States. Earth Interactions, 2011, 15, 1-26. Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe. Journal of Hydrometeorology, 2012, 13, 604-620.

	Сітатіої	n Report	
#	ARTICLE Representation of Terrestrial Hydrology and Large-Scale Drought of the Continental United States	IF 0.7	CITATIONS
58	Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities. Hydrology and Earth System Sciences, 2012, 16, 3863-3887.	1.9	350
59	Web-Based Environmental Simulation: Bridging the Gap between Scientific Modeling and Decision-Making. Environmental Science & Technology, 2012, 46, 1971-1976.	4.6	38
60	Causal models as multiple working hypotheses about environmental processes. Comptes Rendus - Geoscience, 2012, 344, 77-88.	0.4	93
62	Evaluation of nine largeâ€scale hydrological models with respect to the seasonal runoff climatology in Europe. Water Resources Research, 2012, 48, .	1.7	107
63	Towards a comprehensive assessment of model structural adequacy. Water Resources Research, 2012, 48, .	1.7	317
64	When are multiobjective calibration tradeâ€offs in hydrologic models meaningful?. Water Resources Research, 2012, 48, .	1.7	121
65	Can time domain and source area tracers reduce uncertainty in rainfallâ€runoff models in larger heterogeneous catchments?. Water Resources Research, 2012, 48, .	1.7	37
66	Do timeâ€variable tracers aid the evaluation of hydrological model structure? A multimodel approach. Water Resources Research, 2012, 48, .	1.7	86
67	Efficient hydrological model parameter optimization with Sequential Monte Carlo sampling. Environmental Modelling and Software, 2012, 38, 283-295.	1.9	38
68	Analysis of the behavior of a rainfall–runoff model using three global sensitivity analysis methods evaluated at different temporal scales. Journal of Hydrology, 2012, 475, 97-110.	2.3	39
69	An analytical model for soil-atmosphere feedback. Hydrology and Earth System Sciences, 2012, 16, 1863-1878.	1.9	11
70	An integrated uncertainty and ensemble-based data assimilation approach for improved operational streamflow predictions. Hydrology and Earth System Sciences, 2012, 16, 815-831.	1.9	30
71	Effect of spatial variability and seasonality in soil moisture on drainage thresholds and fluxes in a conceptual hydrological model. Hydrological Processes, 2012, 26, 2838-2844.	1.1	14
72	A Parsimonious Hydrological Model for a Data Scarce Dryland Region. Water Resources Management, 2012, 26, 909-926.	1.9	16
73	Results of the DMIP 2 Oklahoma experiments. Journal of Hydrology, 2012, 418-419, 17-48.	2.3	97
74	A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources, 2013, 55, 131-148.	1.7	235
75	Quantile hydrologic model selection and model structure deficiency assessment: 2. Applications. Water Resources Research, 2013, 49, 5658-5673.	1.7	10

#	Article	IF	CITATIONS
76	Estimating epistemic and aleatory uncertainties during hydrologic modeling: An information theoretic approach. Water Resources Research, 2013, 49, 2253-2273.	1.7	87
77	Hydrologic data assimilation using particle Markov chain Monte Carlo simulation: Theory, concepts and applications. Advances in Water Resources, 2013, 51, 457-478.	1.7	165
78	Toward computationally efficient large-scale hydrologic predictions with a multiscale regionalization scheme. Water Resources Research, 2013, 49, 5700-5714.	1.7	81
79	Effects of measurement uncertainties of meteorological data on estimates of site water balance components. Journal of Hydrology, 2013, 492, 176-189.	2.3	24
80	Modelling and understanding the hierarchy in a mixture of experts using multiple catchment descriptors. Journal of Hydrology, 2013, 507, 273-286.	2.3	0
81	Uncertainty in seasonal snow reconstruction: Relative impacts of model forcing and image availability. Advances in Water Resources, 2013, 55, 165-177.	1.7	52
82	A decade of Predictions in Ungauged Basins (PUB)—a review. Hydrological Sciences Journal, 2013, 58, 1198-1255.	1.2	821
83	The Impact of Asynchronicity on Eventâ€Flow Estimation in Basinâ€Scale Hydrologic Model Calibration ¹ . Journal of the American Water Resources Association, 2013, 49, 300-318.	1.0	2
84	Timeâ€varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior. Water Resources Research, 2013, 49, 1400-1414.	1.7	115
85	Evaluating model structure adequacy: The case of the Maggia Valley groundwater system, southern Switzerland. Water Resources Research, 2013, 49, 260-282.	1.7	56
86	Specifying a hierarchical mixture of experts for hydrologic modeling: Gating function variable selection. Water Resources Research, 2013, 49, 2926-2939.	1.7	18
87	Using field data to inform and evaluate a new model of catchment hydrologic connectivity. Water Resources Research, 2013, 49, 6834-6846.	1.7	30
88	A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences, 2013, 17, 1893-1912.	1.9	197
89	What can flux tracking teach us about water age distribution patterns and their temporal dynamics?. Hydrology and Earth System Sciences, 2013, 17, 533-564.	1.9	217
90	Resolving structural errors in a spatially distributed hydrologic model using ensemble Kalman filter state updates. Hydrology and Earth System Sciences, 2013, 17, 3455-3472.	1.9	10
91	Bridging the gap between GLUE and formal statistical approaches: approximate Bayesian computation. Hydrology and Earth System Sciences, 2013, 17, 4831-4850.	1.9	50
92	An approach to identify time consistent model parameters: sub-period calibration. Hydrology and Earth System Sciences, 2013, 17, 149-161.	1.9	98
93	The influence of conceptual model structure on model performance: a comparative study for 237 French catchments. Hydrology and Earth System Sciences, 2013, 17, 4227-4239.	1.9	88

#	ARTICLE Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological	IF	CITATIONS
94	model structure, human water use and calibration. Hydrology and Earth System Sciences, 2014, 18, 3511-3538.	1.9	285
95	From Catchment to National Scale Rainfall-Runoff Modelling: Demonstration of a Hydrological Modelling Framework. Hydrology, 2014, 1, 63-88.	1.3	17
96	Attribution of detected changes in streamflow using multiple working hypotheses. Hydrology and Earth System Sciences, 2014, 18, 1935-1952.	1.9	63
97	Using expert knowledge to increase realism in environmental system models can dramatically reduce the need for calibration. Hydrology and Earth System Sciences, 2014, 18, 4839-4859.	1.9	106
98	The Great Lakes Runoff Intercomparison Project Phase 1: Lake Michigan (GRIP-M). Journal of Hydrology, 2014, 519, 3448-3465.	2.3	29
99	A qualitative model structure sensitivity analysis method to support model selection. Journal of Hydrology, 2014, 519, 3426-3435.	2.3	13
100	Investigation of Uncertainties in Surface Water Resource Assessment of Georgia's State Water Plan. Journal of Water Resources Planning and Management - ASCE, 2014, 140, 228-237.	1.3	3
101	The Wageningen Lowland Runoff Simulator (WALRUS): a lumped rainfall–runoff model for catchments with shallow groundwater. Geoscientific Model Development, 2014, 7, 2313-2332.	1.3	60
102	Spatial variability of hydrological processes and model structure diagnostics in a 50 km ² catchment. Hydrological Processes, 2014, 28, 4896-4913.	1.1	64
103	A strategy for diagnosing and interpreting hydrological model nonstationarity. Water Resources Research, 2014, 50, 5090-5113.	1.7	134
104	Use of Hydrologic Landscape Classification to Diagnose Streamflow Predictability in Oregon. Journal of the American Water Resources Association, 2014, 50, 762-776.	1.0	17
105	Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the Community Land Model using two runoff parameterizations. Journal of Advances in Modeling Earth Systems, 2014, 6, 658-679.	1.3	48
106	Addressing the Uncertainty in Modeling Watershed Nonpoint Source Pollution. Developments in Environmental Modelling, 2014, , 113-159.	0.3	3
108	Bayesian scrutiny of simple rainfall–runoff models used in forest water management. Journal of Hydrology, 2014, 512, 344-365.	2.3	4
109	Physically-based modifications to the Sacramento Soil Moisture Accounting model. Part A: Modeling the effects of frozen ground on the runoff generation process. Journal of Hydrology, 2014, 519, 3475-3491.	2.3	44
110	A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling. Environmental Modelling and Software, 2014, 54, 211-221.	1.9	124
111	A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study. Environmental Modelling and Software, 2014, 51, 26-34.	1.9	127
112	How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model Calibration and Streamflow Simulations?. Journal of Hydrometeorology, 2014, 15, 1384-1403.	0.7	43

#	Article	IF	CITATIONS
113	An integrated error parameter estimation and lag-aware data assimilation scheme for real-time flood forecasting. Journal of Hydrology, 2014, 519, 2722-2736.	2.3	42
114	Hydrological Variability and Uncertainty of Lower Missouri River Basin Under Changing Climate. Journal of the American Water Resources Association, 2014, 50, 246-260.	1.0	25
115	Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity. Water Resources Research, 2014, 50, 2350-2375.	1.7	130
116	Quantifying the effects of data integration algorithms on the outcomes of a subsurface–land surface processes model. Environmental Modelling and Software, 2014, 59, 146-161.	1.9	30
117	A lumped conceptual model to simulate groundwater level time-series. Environmental Modelling and Software, 2014, 61, 229-245.	1.9	56
118	Filling in the gaps: Inferring spatially distributed precipitation from gauge observations over complex terrain. Water Resources Research, 2014, 50, 8589-8610.	1.7	40
119	Debates—the future of hydrological sciences: A (common) path forward? Using models and data to learn: A systems theoretic perspective on the future of hydrological science. Water Resources Research, 2014, 50, 5351-5359.	1.7	91
120	Incorporating dynamic root growth enhances the performance of Noah-MP at two contrasting winter wheat field sites. Water Resources Research, 2014, 50, 1337-1356.	1.7	47
121	Hybrid Hydrologic Modeling. , 2014, , 347-368.		9
122	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562.	1.7	182
122 123	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification. Water Resources Research, 2014, 50, 5577-5596.	1.7	182 33
122 123 124	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification. Water Resources Research, 2014, 50, 5577-5596. Projecting climate change impacts on stream flow regimes with tracer-aided runoff models - preliminary assessment of heterogeneity at the mesoscale. Hydrological Processes, 2014, 28, 545-558.	1.7 1.7 1.1	182 33 24
122 123 124 125	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification. Water Resources Research, 2014, 50, 5577-5596. Projecting climate change impacts on stream flow regimes with tracer-aided runoff models - preliminary assessment of heterogeneity at the mesoscale. Hydrological Processes, 2014, 28, 545-558. Catchment properties, function, and conceptual model representation: is there a correspondence?. Hydrological Processes, 2014, 28, 2451-2467.	1.7 1.7 1.1 1.1	 182 33 24 135
122 123 124 125 126	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification. Water Resources Research, 2014, 50, 5577-5596. Projecting climate change impacts on stream flow regimes with tracer-aided runoff models - preliminary assessment of heterogeneity at the mesoscale. Hydrological Processes, 2014, 28, 545-558. Catchment properties, function, and conceptual model representation: is there a correspondence?. Hydrological Processes, 2014, 28, 2451-2467. Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmeltâtedominated upper Tuolumne Basin, Sierra Nevada. Hydrological Processes, 2014, 28, 3896-3918.	1.7 1.7 1.1 1.1 1.1	 182 33 24 135 52
122 123 124 125 126	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification. Water Resources Research, 2014, 50, 5577-5596. Projecting climate change impacts on stream flow regimes with tracer-aided runoff models - preliminary assessment of heterogeneity at the mesoscale. Hydrological Processes, 2014, 28, 545-558. Catchment properties, function, and conceptual model representation: is there a correspondence?. Hydrological Processes, 2014, 28, 2451-2467. Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmelta€dominated upper Tuolumne Basin, Sierra Nevada. Hydrological Processes, 2014, 28, 3896-3918. Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24 UK catchments. Hydrological Processes, 2014, 28, 6135-6150.	1.7 1.7 1.1 1.1 1.1 1.1	 182 33 24 135 52 71
122 123 124 125 126 127	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification. Water Resources Research, 2014, 50, 5577-5596. Projecting climate change impacts on stream flow regimes with tracer-aided runoff models - preliminary assessment of heterogeneity at the mesoscale. Hydrological Processes, 2014, 28, 545-558. Catchment properties, function, and conceptual model representation: is there a correspondence?. Hydrological Processes, 2014, 28, 2451-2467. Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmeltã@dominated upper Tuolumne Basin, Sierra Nevada. Hydrological Processes, 2014, 28, 3896-3918. Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24 UK catchments. Hydrological Processes, 2014, 28, 6135-6150. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research, 2014, 50, 7445-7469.	1.7 1.7 1.1 1.1 1.1 1.1 1.1	 182 33 24 135 52 71 170
122 123 124 125 125 127 128	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562. Catchments as simple dynamical systems: A case study on methods and data requirements for parameter identification. Water Resources Research, 2014, 50, 5577-5596. Projecting climate change impacts on stream flow regimes with tracer-aided runoff models - preliminary assessment of heterogeneity at the mesoscale. Hydrological Processes, 2014, 28, 545-558. Catchment properties, function, and conceptual model representation: is there a correspondence?. Hydrological Processes, 2014, 28, 2451-2467. Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmeltaedominated upper Tuolumne Basin, Sierra Nevada. Hydrological Processes, 2014, 28, 3896-3918. Diagnostic evaluation of multiple hypotheses of hydrological behaviour in a limits-of-acceptability framework for 24 UK catchments. Hydrological Processes, 2014, 28, 6135-6150. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity. Water Resources Research, 2014, 50, 7445-7469. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models. Water Resources Research, 2014, 50, 409-426.	1.7 1.7 1.1 1.1 1.1 1.1 1.7 1.7	 182 33 24 135 52 71 170 123

ARTICLE IF CITATIONS # Are all runoff processes the same? Numerical experiments comparing a <scp>D</scp>arcyâ€<scp>R</scp>ichards solver to an overland flowâ€based approach for subsurface 131 1.7 38 storm runoff simulation. Water Resources Research, 2015, 51, 10008-10028. Are we unnecessarily constraining the agility of complex process-based models?. Water Resources 1.7 123 Research, 2015, 51, 716-728. Estimating mountain basinâ€mean precipitation from streamflow using <scp>B</scp>ayesian inference. 133 1.7 44 Water Resources Research, 2015, 51, 8012-8033. Underâ€canopy turbulence and root water uptake of a <scp>T</scp>ibetan meadow ecosystem modeled 134 by <scp>N</scp>oahâ€<scp>MP</scp>. Water Resources Research, 2015, 51, 5735-5755. Improving the representation of hydrologic processes in Earth System Models. Water Resources 135 1.7 366 Research, 2015, 51, 5929-5956. Is there a superior conceptual groundwater model structure for baseflow simulation?. Hydrological 1.1 Processes, 2015, 29, 1301-1313. Bayesian model averaging to explore the worth of data for soilâ \in plant model selection and prediction. 137 1.7 43 Water Resources Research, 2015, 51, 2825-2846. Investigations of uncertainty in SWAT hydrologic simulations: a case study of a Canadian Shield 138 1.1 28 catchment. Hydrological Processes, 2015, 29, 4000-4017. Observational uncertainties in hypothesis testing: investigating the hydrological functioning of a tropical catchment. Hydrological Processes, 2015, 29, 4863-4879. 139 1.1 18 Using field observations to inform thermal hydrology models of permafrost dynamics with ATS 140 1.3 (v0.83). Geoscientific Model Development, 2015, 8, 2701-2722. Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance. 141 310 1.9 Hydrology and Earth System Sciences, 2015, 19, 209-223. SPHY v2.0: Spatial Processes in HYdrology. Geoscientific Model Development, 2015, 8, 2009-2034. 1.3 84 Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes. 143 1.9 26 Hydrology and Earth System Sciences, 2015, 19, 2295-2314. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework. Hydrology and Earth System Sciences, 2015, 19, 3153-3179. 144 Assessment of a multimodel ensemble against an operational hydrological forecasting system. 145 0.5 11 Canadian Water Resources Journal, 2015, 40, 272-284. A unified approach for processâ€based hydrologic modeling: 2. Model implementation and case studies. 146 173 Water Resources Research, 2015, 51, 2515-2542. Digital catchment observatories: A platform for engagement and knowledge exchange between 147 catchment scientists, policy makers, and local communities. Water Resources Research, 2015, 51, 1.7 24 4815-4822. The effect of forcing and landscape distribution on performance and consistency of model 148 1.1 structures. Hydrological Processes, 2015, 29, 3727-3743.

#	Article	IF	CITATIONS
149	A lightweight framework for rapid development of object-based hydrological model engines. Environmental Modelling and Software, 2015, 68, 110-121.	1.9	28
150	Modeling residual hydrologic errors with Bayesian inference. Journal of Hydrology, 2015, 528, 29-37.	2.3	88
151	Recursively updating the error forecasting scheme of a complementary modelling framework for improved reservoir inflow forecasts. Journal of Hydrology, 2015, 527, 967-977.	2.3	9
152	A multi-criteria penalty function approach for evaluating a priori model parameter estimates. Journal of Hydrology, 2015, 525, 165-177.	2.3	5
153	Projecting hydropower production under future climates: a guide for decisionâ€makers and modelers to interpret and design climate change impact assessments. Wiley Interdisciplinary Reviews: Water, 2015, 2, 271-289.	2.8	71
154	Uncertainty in a monthly water balance model using the generalized likelihood uncertainty estimation methodology. Journal of Earth System Science, 2015, 124, 49-59.	0.6	8
155	A unified approach for processâ€based hydrologic modeling: 1. Modeling concept. Water Resources Research, 2015, 51, 2498-2514.	1.7	354
156	The Role of Regression Performance on Multimodel Analysis. Ground Water, 2015, 53, 130-139.	0.7	1
157	Do we need a Community Hydrological Model?. Water Resources Research, 2015, 51, 7777-7784.	1.7	57
158	Modelling rainfall–runoff processes of the Chemoga and Jedeb meso-scale catchments in the Abay/Upper Blue Nile basin, Ethiopia. Hydrological Sciences Journal, 0, , 1-18.	1.2	8
159	Effects of Meteorological and Ancillary Data, Temporal Averaging, and Evaluation Methods on Model Performance and Uncertainty in a Land Surface Model. Journal of Hydrometeorology, 2015, 16, 2559-2576.	0.7	22
160	Multi-model approach to assess the impact of climate change on runoff. Journal of Hydrology, 2015, 529, 1601-1616.	2.3	75
161	Estimating the Uncertainty of Hydrological Predictions through Data-Driven Resampling Techniques. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	0.8	53
162	Web technologies for environmental Big Data. Environmental Modelling and Software, 2015, 63, 185-198.	1.9	184
163	Modeller subjectivity and calibration impacts on hydrological model applications: An event-based comparison for a road-adjacent catchment in south-east Norway. Science of the Total Environment, 2015, 502, 315-329.	3.9	17
164	How much cryosphere model complexity is just right? Exploration using the conceptual cryosphere hydrology framework. Cryosphere, 2016, 10, 2147-2171.	1.5	18
165	Hierarchy of climate and hydrological uncertainties in transient low-flow projections. Hydrology and Earth System Sciences, 2016, 20, 3651-3672.	1.9	50
166	Spatial Combination Modeling Framework of Saturation-Excess and Infiltration-Excess Runoff for Semihumid Watersheds. Advances in Meteorology, 2016, 2016, 1-15.	0.6	15

#	Article	IF	CITATIONS
167	Accounting for dependencies in regionalized signatures for predictions in ungauged catchments. Hydrology and Earth System Sciences, 2016, 20, 887-901.	1.9	17
168	Is Catchment Classification Possible by Means of Multiple Model Structures? A Case Study Based on 99 Catchments in Germany. Hydrology, 2016, 3, 22.	1.3	6
169	From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions. Water Resources Research, 2016, 52, 954-989.	1.7	78
170	Effective groundwater-surface water exchange at watershed scales. Hydrological Processes, 2016, 30, 1849-1861.	1.1	2
171	Comparing classical performance measures with signature indices derived from flow duration curves to assess model structures as tools for catchment classification. Hydrology Research, 2016, 47, 1-14.	1.1	19
172	Linking tracers, water age and conceptual models to identify dominant runoff processes in a sparsely monitored humid tropical catchment. Hydrological Processes, 2016, 30, 4477-4493.	1.1	24
173	Model Validation. , 2016, , 597-620.		2
174	Comparison of Newton-type and SCE optimisation algorithms for the calibration of conceptual hydrological models. Australian Journal of Water Resources, 2016, 20, 169-176.	1.6	7
175	Parameterization, sensitivity analysis, and inversion: an investigation using groundwater modeling of the surface-mined Tivoli-Guidonia basin (Metropolitan City of Rome, Italy). Hydrogeology Journal, 2016, 24, 1423-1441.	0.9	18
176	Characterizing Uncertainty of the Hydrologic Impacts of Climate Change. Current Climate Change Reports, 2016, 2, 55-64.	2.8	159
177	Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty. Water Resources Research, 2016, 52, 2551-2570.	1.7	8
178	Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 2016, 15, 1-57.	1.3	445
179	A weakly-constrained data assimilation approach to address rainfall-runoff model structural inadequacy in streamflow prediction. Journal of Hydrology, 2016, 542, 373-391.	2.3	8
180	A metric for attributing variability in modelled streamflows. Journal of Hydrology, 2016, 541, 1475-1487.	2.3	10
181	Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments. Journal of Hydrology, 2016, 542, 292-303.	2.3	56
182	Most computational hydrology is not reproducible, so is it really science?. Water Resources Research, 2016, 52, 7548-7555.	1.7	119
183	Validation of a national hydrological model. Journal of Hydrology, 2016, 541, 800-815.	2.3	49
184	Framework for eventâ€based semidistributed modeling that unifies the SCS N method, VIC, PDM, and TOPMODEL. Water Resources Research, 2016, 52, 7036-7052.	1.7	15

#	Article	IF	Citations
185	Diagnostic calibration and cross atchment transferability of a simple process onsistent hydrologic model. Hydrological Processes, 2016, 30, 5027-5038.	1.1	9
186	On the deterministic and stochastic use of hydrologic models. Water Resources Research, 2016, 52, 5619-5633.	1.7	84
187	Synthetic Drought Scenario Generation to Support Bottom-Up Water Supply Vulnerability Assessments. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	1.3	70
188	Beyond the SCS N method: A theoretical framework for spatially lumped rainfallâ€runoff response. Water Resources Research, 2016, 52, 4608-4627.	1.7	67
189	Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods. Water Resources Research, 2016, 52, 8343-8373.	1.7	70
190	Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations. Advances in Water Resources, 2016, 97, 299-313.	1.7	41
191	Demasking the integrated information of discharge: Advancing sensitivity analysis to consider different hydrological components and their rates of change. Water Resources Research, 2016, 52, 8724-8743.	1.7	26
192	Combining snow, streamflow, and precipitation gauge observations to infer basinâ€mean precipitation. Water Resources Research, 2016, 52, 8700-8723.	1.7	26
193	Transit times—the link between hydrology and water quality at the catchment scale. Wiley Interdisciplinary Reviews: Water, 2016, 3, 629-657.	2.8	184
194	Improving the theoretical underpinnings of processâ€based hydrologic models. Water Resources Research, 2016, 52, 2350-2365.	1.7	80
195	The Plumbing of Land Surface Models: Is Poor Performance a Result of Methodology or Data Quality?. Journal of Hydrometeorology, 2016, 17, 1705-1723.	0.7	43
196	Uncertainty in Flow Time-Series Predictions in a Tropical Monsoon-Dominated Catchment in Northern Thailand. Journal of Hydrologic Engineering - ASCE, 2016, 21, 04016036.	0.8	2
197	An R package for modelling actual, potential and reference evapotranspiration. Environmental Modelling and Software, 2016, 78, 216-224.	1.9	83
198	Understanding hydrological flow paths in conceptual catchment models using uncertainty and sensitivity analysis. Computers and Geosciences, 2016, 90, 66-77.	2.0	36
199	Role of multimodel combination and data assimilation in improving streamflow prediction over multiple time scales. Stochastic Environmental Research and Risk Assessment, 2016, 30, 2255-2269.	1.9	14
200	How Does Availability of Meteorological Forcing Data Impact Physically Based Snowpack Simulations?*. Journal of Hydrometeorology, 2016, 17, 99-120.	0.7	56
201	The Transferability of Terrestrial Water Balance Components under Uncertainty and Nonstationarity: A Case Study of the Coastal Plain Watershed in the Southeastern USA. River Research and Applications, 2017, 33, 796-808.	0.7	8
202	Quantifying local rainfall dynamics and uncertain boundary conditions into a nested regionalâ€local flood modeling system. Water Resources Research, 2017, 53, 2770-2785.	1.7	51

#	Article	IF	CITATIONS
203	Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model. Journal of Hydrology, 2017, 548, 75-87.	2.3	32
204	How to Constrain Multiâ€Objective Calibrations of the SWAT Model Using Water Balance Components. Journal of the American Water Resources Association, 2017, 53, 532-546.	1.0	39
205	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	0.7	24
206	A new process sensitivity index to identify important system processes under process model and parametric uncertainty. Water Resources Research, 2017, 53, 3476-3490.	1.7	41
207	Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Advances in Water Resources, 2017, 104, 37-54.	1.7	21
208	Simpler models in environmental studies and predictions. Critical Reviews in Environmental Science and Technology, 2017, 47, 1669-1712.	6.6	14
209	Making the most out of a hydrological model data set: Sensitivity analyses to open the model blackâ€box. Water Resources Research, 2017, 53, 7933-7950.	1.7	50
210	Processâ€based interpretation of conceptual hydrological model performance using a multinational catchment set. Water Resources Research, 2017, 53, 7247-7268.	1.7	36
211	Design and experimentation of an empirical multistructure framework for accurate, sharp and reliable hydrological ensembles. Journal of Hydrology, 2017, 552, 313-340.	2.3	11
212	Creativity, Uncertainty, and Automated Model Building. Ground Water, 2017, 55, 693-697.	0.7	12
213	Enhanced identification of a hydrologic model using streamflow and satellite water storage data: A multicriteria sensitivity analysis and optimization approach. Hydrological Processes, 2017, 31, 3320-3333.	1.1	53
214	Using highâ€resolution isotope data and alternative calibration strategies for a tracerâ€aided runoff model in a nested catchment. Hydrological Processes, 2017, 31, 3962-3978.	1.1	17
215	Evaluation of the Runoff and River Routing Schemes in the Community Land Model of the Yellow River Basin. Journal of Advances in Modeling Earth Systems, 2017, 9, 2993-3018.	1.3	24
216	Reliability of Semiarid Flash Flood Modeling Using Bayesian Framework. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	11
217	Assessing Parameter Uncertainty of a Semiâ€Distributed Hydrology Model for a Shallow Aquifer Dominated Environmental System. Journal of the American Water Resources Association, 2017, 53, 1368-1389.	1.0	17
218	Assessment of the suitability of rainfall–runoff models by coupling performance statistics and sensitivity analysis. Hydrology Research, 2017, 48, 1192-1213.	1.1	14
219	On the value of water quality data and informative flow states in karst modelling. Hydrology and Earth System Sciences, 2017, 21, 5971-5985.	1.9	28
220	Hydrological Appraisal of Climate Change Impacts on the Water Resources of the Xijiang Basin, South China. Water (Switzerland), 2017, 9, 793.	1.2	14

#	Article	IF	CITATIONS
221	Global evaluation of runoff from 10 state-of-the-art hydrological models. Hydrology and Earth System Sciences, 2017, 21, 2881-2903.	1.9	146
222	HESS Opinions: The complementary merits of competing modelling philosophies in hydrology. Hydrology and Earth System Sciences, 2017, 21, 3953-3973.	1.9	134
223	The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 2017, 21, 3427-3440.	1.9	177
224	Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model. Hydrology and Earth System Sciences, 2017, 21, 879-896.	1.9	37
225	Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding. Hydrology and Earth System Sciences, 2017, 21, 3325-3352.	1.9	49
226	Attributing uncertainty in streamflow simulations due to variable inputs via the Quantile Flow Deviation metric. Advances in Water Resources, 2018, 116, 40-55.	1.7	7
227	Highâ€Elevation Evapotranspiration Estimates During Drought: Using Streamflow and NASA Airborne Snow Observatory SWE Observations to Close the Upper Tuolumne River Basin Water Balance. Water Resources Research, 2018, 54, 746-766.	1.7	24
228	Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range. Journal of Hydrology, 2018, 556, 993-1012.	2.3	34
229	Structural Universality of the Distributed Hydrological Model for Small- and Medium-Scale Basins with Different Topographies. Journal of Hydrologic Engineering - ASCE, 2018, 23, 04017054.	0.8	1
230	Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States. Journal of Hydrology, 2018, 556, 359-370.	2.3	70
231	Clobal Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin. Water Resources Research, 2018, 54, 132-149.	1.7	27
232	Derivation of the Spatial Distribution of Free Water Storage Capacity Based on Topographic Index. Water (Switzerland), 2018, 10, 1407.	1.2	2
233	Evaluating post-processing approaches for monthly and seasonal streamflow forecasts. Hydrology and Earth System Sciences, 2018, 22, 6257-6278.	1.9	34
234	Efficient River Management using Stochastic MPC and Ensemble Forecast of Uncertain In-flows ⎠âŽThe first and the third authors acknowledge the financial support from the Australian Research Council Linkage Project (LP130100605) and the Brescia Smart Living Project (MIURSCN00416) respectively IFAC-PapersOnLine, 2018, 51, 37-42.	0.5	4
235	Does the Complexity of Evapotranspiration and Hydrological Models Enhance Robustness?. Sustainability, 2018, 10, 2837.	1.6	17
236	DOs and DON'Ts for using climate change information for water resource planning and management: guidelines for study design. Climate Services, 2018, 12, 1-13.	1.0	21
237	How can expert knowledge increase the realism of conceptual hydrological models? A case study based on the concept of dominant runoff process in the Swiss Pre-Alps. Hydrology and Earth System Sciences, 2018, 22, 4425-4447.	1.9	22
238	Using a multi-hypothesis framework to improve the understanding of flow dynamics during flash floods. Hydrology and Earth System Sciences, 2018, 22, 5317-5340.	1.9	13

#	Article	IF	Citations
239	Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment. Hydrology and Earth System Sciences, 2018, 22, 4125-4143.	1.9	25
240	Hydrologic Observation, Model, and Theory Congruence on Evapotranspiration Variance: Diagnosis of Multiple Observations and Land Surface Models. Water Resources Research, 2018, 54, 9074-9095.	1.7	11
241	Estimating spatial catchment natural hydrological response characteristics in Swaziland. Physics and Chemistry of the Earth, 2018, 106, 29-36.	1.2	0
242	Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models. Environmental Research, 2018, 166, 363-376.	3.7	77
243	New Observed Data Sets for the Validation of Hydrology and Land Surface Models in Cold Climates. Water Resources Research, 2018, 54, 5190-5197.	1.7	10
244	The temporally varying roles of rainfall, snowmelt and soil moisture for debris flow initiation in a snow-dominated system. Hydrology and Earth System Sciences, 2018, 22, 3493-3513.	1.9	45
245	What Did Really Improve Our Mesoscale Hydrological Model? A Multidimensional Analysis Based on Real Observations. Water Resources Research, 2018, 54, 8594-8612.	1.7	12
246	Potential Changes in Runoff of California's Major Water Supply Watersheds in the 21st Century. Water (Switzerland), 2019, 11, 1651.	1.2	6
247	Hydrological post-processing of streamflow forecasts issued from multimodel ensemble prediction systems. Journal of Hydrology, 2019, 578, 124002.	2.3	20
248	DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology. Geoscientific Model Development, 2019, 12, 2285-2306.	1.3	51
249	Analysis of the Effect of Uncertainty in Rainfall-Runoff Models on Simulation Results Using a Simple Uncertainty-Screening Method. Water (Switzerland), 2019, 11, 1361.	1.2	2
250	Using R in hydrology: a review of recent developments and future directions. Hydrology and Earth System Sciences, 2019, 23, 2939-2963.	1.9	50
251	Ageâ€Ranked Storageâ€Discharge Relations: A Unified Description of Spatially Lumped Flow and Water Age in Hydrologic Systems. Water Resources Research, 2019, 55, 7143-7165.	1.7	26
252	Modular Assessment of Rainfall–Runoff Models Toolbox (MARRMoT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous state-space formulations. Geoscientific Model Development, 2019, 12, 2463-2480.	1.3	74
253	Sensitivity Analysis and Calibration of an Integrated Hydrologic Model in an Irrigated Agricultural Basin With a Groundwaterâ€Dependent Ecosystem. Water Resources Research, 2019, 55, 7876-7901.	1.7	21
254	The Representation of Hydrological Dynamical Systems Using Extended Petri Nets (EPN). Water Resources Research, 2019, 55, 8895-8921.	1.7	7
255	Method for Probabilistic Flood Forecasting Considering Rainfall and Model Parameter Uncertainties. Journal of Hydrologic Engineering - ASCE, 2019, 24, .	0.8	7
256	Parameter Estimation and Predictive Uncertainty Quantification in Hydrological Modelling. , 2019, , 481-522.		4

#	Article	IF	CITATIONS
257	Simplifying the deployment of OGC web processing services (WPS) for environmental modelling – Introducing Tethys WPS Server. Environmental Modelling and Software, 2019, 115, 38-50.	1.9	18
258	Evaluating Hydrological Models for Deriving Water Resources in Peninsular Spain. Sustainability, 2019, 11, 2872.	1.6	45
259	Equifinality and Flux Mapping: A New Approach to Model Evaluation and Process Representation Under Uncertainty. Water Resources Research, 2019, 55, 8922-8941.	1.7	57
260	Enabling Collaborative Numerical Modeling in Earth Sciences using Knowledge Infrastructure. Environmental Modelling and Software, 2019, 120, 104424.	1.9	19
261	Exploring parsimonious daily rainfall-runoff model structure using the hyperbolic tangent function and Tank model. Journal of Hydrology, 2019, 574, 574-587.	2.3	22
262	Parametric and Structural Sensitivities of Turbineâ€Height Wind Speeds in the Boundary Layer Parameterizations in the Weather Research and Forecasting Model. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5951-5969.	1.2	23
263	Prediction of Reservoir Storage Anomalies in India. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3822-3838.	1.2	15
264	Systematic increase in model complexity helps to identify dominant streamflow mechanisms in two small forested basins. Hydrological Sciences Journal, 2019, 64, 455-472.	1.2	4
265	Flow Prediction in Ungauged Catchments Using Probabilistic Random Forests Regionalization and New Statistical Adequacy Tests. Water Resources Research, 2019, 55, 4364-4392.	1.7	57
266	A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions. Hydrology and Earth System Sciences, 2019, 23, 1211-1244.	1.9	24
267	Evaluating the Effect of Numerical Schemes on Hydrological Simulations: HYMOD as A Case Study. Water (Switzerland), 2019, 11, 329.	1.2	4
268	Uncertainty in Calibration of Variable Infiltration Capacity Model. Springer Water, 2019, , 89-108.	0.2	6
269	How Important Are Model Structural and Contextual Uncertainties when Estimating the Optimized Performance of Water Resource Systems?. Water Resources Research, 2019, 55, 2170-2193.	1.7	15
270	A simple topography-driven and calibration-free runoff generation module. Hydrology and Earth System Sciences, 2019, 23, 787-809.	1.9	37
271	Comparing Watershed Scale P Losses from Manure Spreading in Temperate Climates across Mechanistic Soil P Models. Journal of Hydrologic Engineering - ASCE, 2019, 24, 04019009.	0.8	4
272	Assessing the Impact of Climate Change on Water Resources: The Challenge Posed by a Multitude of Options. Springer Water, 2019, , 185-204.	0.2	2
274	Benchmarking the predictive capability of hydrological models for river flow and flood peak predictions across over 1000Âcatchments in Great Britain. Hydrology and Earth System Sciences, 2019, 23, 4011-4032.	1.9	63
275	Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrology and Earth System Sciences, 2019, 23, 5089-5110.	1.9	276

#	Article	IF	CITATIONS
276	Widening the Circle of Engagement Around Environmental Issues using Cloud-based Tools. , 2019, , .		1
277	Hydrogeological conceptual model building and testing: A review. Journal of Hydrology, 2019, 569, 310-329.	2.3	97
278	Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models. Water Resources Research, 2019, 55, 378-390.	1.7	111
279	Model inter-comparison design for large-scale water quality models. Current Opinion in Environmental Sustainability, 2019, 36, 59-67.	3.1	34
280	Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments. Journal of Hydrology, 2019, 570, 863-874.	2.3	15
281	Investigating the appropriate model structure for simulation of a karst catchment from the aspect of spatial complexity. Environmental Earth Sciences, 2019, 78, 1.	1.3	4
282	Identification of factors influencing hydrologic model performance using a topâ€down approach in a large number of U.S. catchments. Hydrological Processes, 2020, 34, 4-20.	1.1	15
283	Near-term impacts of climate variability and change on hydrological systems in West and Central Africa. Climate Dynamics, 2020, 54, 2041-2070.	1.7	21
284	Quantification of predictive uncertainty in hydrological modelling by harnessing the wisdom of the crowd: A large-sample experiment at monthly timescale. Advances in Water Resources, 2020, 136, 103470.	1.7	25
285	Exploring Hydrologic Model Process Connectivity at the Continental Scale Through an Information Theory Approach. Water Resources Research, 2020, 56, e2020WR027340.	1.7	13
286	Equifinality in the modelling of ammonia volatilisation from a flooded rice system. Environmental Modelling and Software, 2020, 133, 104752.	1.9	3
287	Stepwise modeling and the importance of internal variables validation to test model realism in a data scarce glacier basin. Journal of Hydrology, 2020, 591, 125457.	2.3	19
288	Improving Information Extraction From Simulated Discharge Using Sensitivityâ€Weighted Performance Criteria. Water Resources Research, 2020, 56, e2019WR025605.	1.7	2
289	A Brief Analysis of Conceptual Model Structure Uncertainty Using 36 Models and 559 Catchments. Water Resources Research, 2020, 56, e2019WR025975.	1.7	72
290	A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. Journal of Hydrology, 2020, 590, 125440.	2.3	120
291	Integrating field observations and process-based modeling to predict watershed water quality under environmental perturbations. Journal of Hydrology, 2021, 602, 125762.	2.3	22
292	Can model structure families be inferred from model output?. Environmental Modelling and Software, 2020, 133, 104817.	1.9	7
293	Automatic Model Structure Identification for Conceptual Hydrologic Models. Water Resources Research, 2020, 56, e2019WR027009.	1.7	25

#	Article	IF	CITATIONS
294	Hydrological system modeling: Approach for analysis with dynamical systems. Journal of Physics: Conference Series, 2020, 1514, 012013.	0.3	1
295	A Systematic Approach to Hydrogeological Conceptual Model Testing, Combining Remote Sensing and Geophysical Data. Water Resources Research, 2020, 56, e2020WR027578.	1.7	14
296	Historical development of rainfallâ€runoff modeling. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1471.	2.8	37
297	How to Tailor My Processâ€Based Hydrological Model? Dynamic Identifiability Analysis of Flexible Model Structures. Water Resources Research, 2020, 56, e2020WR028042.	1.7	9
298	Improved Estimators of Model Performance Efficiency for Skewed Hydrologic Data. Water Resources Research, 2020, 56, e2020WR027101.	1.7	44
299	Room for improvement: A review and evaluation of 24 soil thermal conductivity parameterization schemes commonly used in land-surface, hydrological, and soil-vegetation-atmosphere transfer models. Earth-Science Reviews, 2020, 211, 103419.	4.0	47
300	The influence of regional hydrometric data incorporation on the accuracy of gridded reconstruction of monthly runoff. Hydrological Sciences Journal, 2020, , 1-12.	1.2	8
301	Assessment of the Future Climate Change Projections on Streamflow Hydrology and Water Availability over Upper Xijiang River Basin, China. Applied Sciences (Switzerland), 2020, 10, 3671.	1.3	16
302	Hydrologically Informed Machine Learning for Rainfallâ€Runoff Modeling: A Genetic Programmingâ€Based Toolkit for Automatic Model Induction. Water Resources Research, 2020, 56, e2019WR026933.	1.7	60
303	A Perspective on the Future of Transient Storage Modeling: Let's Stop Chasing Our Tails. Water Resources Research, 2020, 56, e2019WR026257.	1.7	19
304	The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview. Geoscientific Model Development, 2020, 13, 225-247.	1.3	28
305	Dynamic Trends of Urban Flooding Mitigation Services in Shenzhen, China. Sustainability, 2020, 12, 4799.	1.6	11
306	Global Sensitivity Analysis for Multiple Interpretive Models With Uncertain Parameters. Water Resources Research, 2020, 56, e2019WR025754.	1.7	17
307	Inverting Topography for Landscape Evolution Model Process Representation: 1. Conceptualization and Sensitivity Analysis. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2018JF004961.	1.0	19
308	Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach. Environmental Pollution, 2020, 263, 114570.	3.7	19
309	Flexible watershed simulation with the Raven hydrological modelling framework. Environmental Modelling and Software, 2020, 129, 104728.	1.9	62
310	A review of hydrologic signatures and their applications. Wiley Interdisciplinary Reviews: Water, 2021, 8, .	2.8	55
311	Timeâ€Varying Sensitivity Analysis Reveals Relationships Between Watershed Climate and Variations in Annual Parameter Importance in Regions With Strong Interannual Variability. Water Resources Research, 2021, 57, .	1.7	6

#	Article	IF	CITATIONS
312	Hydrometeorological Observations and Modeling of an Extreme Rainfall Event Using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina. Journal of Hydrometeorology, 2021, 22, 331-351.	0.7	14
313	A history of TOPMODEL. Hydrology and Earth System Sciences, 2021, 25, 527-549.	1.9	54
314	Behind the scenes of streamflow model performance. Hydrology and Earth System Sciences, 2021, 25, 1069-1095.	1.9	26
315	Challenges in modeling and predicting floods and droughts: A review. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1520.	2.8	96
316	The impact of hydrological model structure on the simulation of extreme runoff events. Natural Hazards and Earth System Sciences, 2021, 21, 961-976.	1.5	21
317	Genetic programming for hydrological applications: to model or to forecast that is the question. Journal of Hydroinformatics, 2021, 23, 740-763.	1.1	20
318	Rapid development of fast and flexible environmental models: the Mobius framework v1.0. Geoscientific Model Development, 2021, 14, 1885-1897.	1.3	6
319	Technical note: Diagnostic efficiency – specific evaluation of model performance. Hydrology and Earth System Sciences, 2021, 25, 2187-2198.	1.9	12
320	Simultaneous Calibration of Hydrologic Model Structure and Parameters Using a Blended Model. Water Resources Research, 2021, 57, e2020WR029229.	1.7	14
321	Mimicry of a Conceptual Hydrological Model (HBV): What's in a Name?. Water Resources Research, 2021, 57, e2020WR029143.	1.7	7
322	Understanding the Information Content in the Hierarchy of Model Development Decisions: Learning From Data. Water Resources Research, 2021, 57, e2020WR027948.	1.7	22
323	Watershed cale Effective Hydraulic Properties of the Continental United States. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002440.	1.3	8
324	Regional Patterns and Physical Controls of Streamflow Generation Across the Conterminous United States. Water Resources Research, 2021, 57, e2020WR028086.	1.7	20
325	When does a parsimonious model fail to simulate floods? Learning from the seasonality of model bias. Hydrological Sciences Journal, 2021, 66, 1288-1305.	1.2	5
326	Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geoscientific Model Development, 2021, 14, 3843-3878.	1.3	41
327	Strategies for smarter catchment hydrology models: incorporating scaling and better process representation. Geoscience Letters, 2021, 8, .	1.3	19
328	Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective. Hydrology and Earth System Sciences, 2021, 25, 3937-3973.	1.9	17
329	Detection of hidden model errors by combining single and multi-criteria calibration. Science of the Total Environment, 2021, 777, 146218.	3.9	4

#	Article	IF	CITATIONS
330	Impact of rainfall spatiotemporal variability and model structures on flood simulation in semi-arid regions. Stochastic Environmental Research and Risk Assessment, 2022, 36, 785-809.	1.9	7
331	VISCOUS: A Varianceâ€Based Sensitivity Analysis Using Copulas for Efficient Identification of Dominant Hydrological Processes. Water Resources Research, 2021, 57, e2020WR028435.	1.7	14
332	Ensemble Skill Gains Obtained From the Multiâ€Physics Versus Multiâ€Model Approaches for Continentalâ€Scale Hydrological Simulations. Water Resources Research, 2021, 57, e2020WR028846.	1.7	1
333	Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0. Geoscientific Model Development, 2021, 14, 4865-4890.	1.3	4
334	Identification of Dominant Hydrological Mechanisms Using Bayesian Inference, Multiple Statistical Hypothesis Testing, and Flexible Models. Water Resources Research, 2021, 57, e2020WR028338.	1.7	7
335	Component Combination Test to Investigate Improvement of the IHACRES and GR4J Rainfall–Runoff Models. Water (Switzerland), 2021, 13, 2126.	1.2	2
336	Experimental Coupling of TOPMODEL with the National Water Model: Effects of Coupling Interface Complexity on Model Performance. Journal of the American Water Resources Association, 0, , .	1.0	1
337	Hydrologically informed machine learning for rainfall–runoff modelling: towards distributed modelling. Hydrology and Earth System Sciences, 2021, 25, 4373-4401.	1.9	56
338	Incorporating Uncertainty Into Multiscale Parameter Regionalization to Evaluate the Performance of Nationally Consistent Parameter Fields for a Hydrological Model. Water Resources Research, 2021, 57, e2020WR028393.	1.7	9
339	Increasing the spatial and temporal impact of ecological research: A roadmap for integrating a novel terrestrial process into an Earth system model. Global Change Biology, 2022, 28, 665-684.	4.2	27
340	The Abuse of Popular Performance Metrics in Hydrologic Modeling. Water Resources Research, 2021, 57, e2020WR029001.	1.7	76
341	Hierarchical systems integration for coordinated urban-rural water quality management at a catchment scale. Science of the Total Environment, 2022, 806, 150642.	3.9	5
342	Estimation of subâ€annual interâ€catchment groundwater flow using shortâ€term water balance method. Hydrological Processes, 2021, 35, e14368.	1.1	4
343	Evaluation of 14 frozen soil thermal conductivity models with observations and SHAW model simulations. Geoderma, 2021, 403, 115207.	2.3	24
344	Achieving high-quality probabilistic predictions from hydrological models calibrated with a wide range of objective functions. Journal of Hydrology, 2021, 603, 126578.	2.3	9
345	Bayes Linear Emulation, History Matching, and Forecasting for Complex Computer Simulators. , 2017, , 9-32.		3
346	Parameter Estimation and Predictive Uncertainty Quantification in Hydrological Modelling. , 2018, , 1-42.		9
347	Informationâ€Based Machine Learning for Tracer Signature Prediction in Karstic Environments. Water Resources Research, 2020, 56, e2018WR024558.	1.7	12

		CITATION REPORT		
#	Article		IF	CITATIONS
348	fuse: An R package for ensemble Hydrological Modelling. Journal of Open Source Softw	vare, 2016, 1, 52.	2.0	8
349	Análisis comparativo de modelos hidrológicos de simulación continua en cuencas d caso del RÃo Chinchiná. Revista IngenierÃas Universidad De MedellÃn, 2014, 13, 43-5	e alta montaña: 8.	0.1	7
350	Model independence in multi-model ensemble prediction. Australian Meteorological M 59, 3-6.	agazine, 2010,	0.4	37
351	Computational environment HYDRO-PATH as a flexible tool for the operational rainfall- design. Meteorology Hydrology and Water Management, 2016, 4, 65-77.	runoff model	0.4	3
352	Catchment scale hydrological modelling: A review of model types, calibration approach uncertainty analysis methods in the context of recent developments in technology and Global Nest Journal, 2013, 13, 193-214.	es and I applications.	0.3	58
353	Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis. W (Switzerland), 2021, 13, 28.	Vater	1.2	93
354	The Hillslope Length Impact on SWAT Streamflow Prediction in Large Basins. Journal of Informatics, 0, , .	Environmental	6.0	9
355	Assessing the Performance of Two Hydrologic Models for Forecasting Daily Streamflow Cazones River Basin (Mexico). Open Journal of Modern Hydrology, 2016, 06, 168-181.	rs in the	0.4	2
356	A distributed simple dynamical systems approach (dS2 v1.0) for computationally efficient modelling at high spatio-temporal resolution. Geoscientific Model Development, 2020,	ent hydrological 13, 6093-6110.	1.3	4
360	Climate elasticity of evapotranspiration shifts the water balance of Mediterranean clim multi-year droughts. Hydrology and Earth System Sciences, 2020, 24, 4317-4337.	ates during	1.9	41
361	Simultaneously determining global sensitivities of model parameters and model struct and Earth System Sciences, 2020, 24, 5835-5858.	ure. Hydrology	1.9	26
381	Numerical daemons of hydrological models are summoned by extreme precipitation. H Earth System Sciences, 2021, 25, 5425-5446.	ydrology and	1.9	8
382	Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of lo memory (LSTM)-based models with four lumped conceptual models. Hydrology and Ea Sciences, 2021, 25, 5517-5534.	ng short-term rth System	1.9	69
383	Identifying sensitivities in flood frequency analyses using a stochastic hydrologic mode Hydrology and Earth System Sciences, 2021, 25, 5603-5621.	ling system.	1.9	8
384	Achieving Breakthroughs in Global Hydrologic Science by Unlocking the Power of Mult Multidisciplinary Earth Observations. AGU Advances, 2021, 2, e2021AV000455.	isensor,	2.3	10
389	Theory and Framework of Hydrological Modeling Based on Multiple Working Hypothes Water Resources Research, 2014, 03, 395-403.	es. Journal of	0.1	0
392	Spatial combination model for semi-humid and semi-arid watersheds. Hupo Kexue/Journ Sciences, 2020, 32, 826-839.	nal of Lake	0.3	1
393	Impacts of precipitation and topographic conditions on the model simulation in the no Water Science and Technology: Water Supply, 2021, 21, 1025-1035.	rth of China.	1.0	4

# 394	ARTICLE SuperflexPy 1.3.0: an open-source Python framework for building, testing, and improving conceptual hydrological models. Geoscientific Model Development, 2021, 14, 7047-7072.	IF 1,3	CITATIONS 6
395	On the selection of precipitation products for the regionalisation of hydrological model parameters. Hydrology and Earth System Sciences, 2021, 25, 5805-5837.	1.9	17
396	Assessing water system vulnerabilities under changing climate conditions using different representations of a hydrological system. Hydrological Sciences Journal, 2022, 67, 287-303.	1.2	2
397	A multiâ€objective approach to select hydrological models and constrain structural uncertainties for climate impact assessments. Hydrological Processes, 2022, 36, .	1.1	7
398	Two decades of ensemble flood forecasting: a state-of-the-art on past developments, present applications and future opportunities. Hydrological Sciences Journal, 2022, 67, 477-493.	1.2	15
399	Diagnosing structural deficiencies of a hydrological model by time-varying parameters. Journal of Hydrology, 2022, 605, 127305.	2.3	11
400	Diagnosis of Model Errors With a Sliding Timeâ€Window Bayesian Analysis. Water Resources Research, 2022, 58, .	1.7	7
401	Untangling harvestâ€streamflow responses in foothills conifer forests: Nexus of teleconnections, summerâ€dominated precipitation, and storage. Hydrological Processes, 2022, 36, .	1.1	6
402	Hydrological process knowledge in catchment modelling – Lessons and perspectives from 60 years development. Hydrological Processes, 2022, 36, .	1.1	14
403	The sensitivity of simulated streamflow to individual hydrologic processes across North America. Nature Communications, 2022, 13, 455.	5.8	15
404	GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geoscientific Model Development, 2021, 14, 7545-7571.	1.3	38
405	Differences analysis of flood simulations and response evaluation of impact factors in semi-arid areas. Hupo Kexue/Journal of Lake Sciences, 2022, 34, 652-663.	0.3	0
406	Climate Resilience and Environmental Sustainability: How to Integrate Dynamic Dimensions of Water Security Modeling. Agriculture (Switzerland), 2022, 12, 303.	1.4	1
407	Process Interactions Can Change Process Ranking in a Coupled Complex System Under Process Model and Parametric Uncertainty. Water Resources Research, 2022, 58, .	1.7	3
408	Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters. Hydrology and Earth System Sciences, 2022, 26, 1295-1318.	1.9	14
409	A multiple hydrograph separation technique for identifying hydrological model structures and an interpretation of dominant process controls on flow duration curves. Hydrological Processes, 2022, 36, .	1.1	1
410	A comprehensive intercomparison study between a lumped and a fully distributed hydrological model across a set of 50 catchments in the <scp>United Kingdom</scp> . Hydrological Processes, 2022, 36, .	1.1	2
411	An Exploration of Bayesian Identification of Dominant Hydrological Mechanisms in Ungauged Catchments. Water Resources Research, 2022, 58, .	1.7	5

#	Article	IF	CITATIONS
412	A new multi-model absolute difference-based sensitivity (MMADS) analysis method to screen non-influential processes under process model and parametric uncertainty. Journal of Hydrology, 2022, 608, 127609.	2.3	3
413	Improving Operational Short- to Medium-Range (SR2MR) Streamflow Forecasts in the Upper Zambezi Basin and Its Sub-Basins Using Variational Ensemble Forecasting. Hydrology, 2021, 8, 188.	1.3	3
414	Why do we have so many different hydrological models? A review based on the case of Switzerland. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	2.8	16
415	A database system for querying of river networks: facilitating monitoring and prediction applications. Water Science and Technology: Water Supply, 2022, 22, 2832-2846.	1.0	2
416	Towards an Extension of the Model Conditional Processor: Predictive Uncertainty Quantification of Monthly Streamflow via Gaussian Mixture Models and Clusters. Water (Switzerland), 2022, 14, 1261.	1.2	3
417	Rainfall Runoff Balance Enhanced Model Applied to Tropical Hydrology. Water (Switzerland), 2022, 14, 1958.	1.2	4
418	More Complex is Not Necessarily Better in Large-Scale Hydrological Modeling: A Model Complexity Experiment across the Contiguous United States. Bulletin of the American Meteorological Society, 2022, 103, E1947-E1967.	1.7	2
419	Formulation of Wavelet Based Multiâ€Scale Multiâ€Objective Performance Evaluation (WMMPE) Metric for Improved Calibration of Hydrological Models. Water Resources Research, 2022, 58, .	1.7	10
420	Evaluating Ecohydrological Model Sensitivity to Input Variability with an Information-Theory-Based Approach. Entropy, 2022, 24, 994.	1.1	4
421	Observational Evidence for Multivariate Drought Hazard Amplifications Across Disparate Climate Regimes. Earth's Future, 2022, 10, .	2.4	1
422	Evaluation of the Impact of Multi-Source Uncertainties on Meteorological and Hydrological Ensemble Forecasting. Engineering, 2023, 24, 212-228.	3.2	2
423	CREST-VEC: a framework towards more accurate and realistic flood simulation across scales. Geoscientific Model Development, 2022, 15, 6181-6196.	1.3	5
424	Catchment response to intense rainfall: Evaluating modelling hypotheses. Hydrological Processes, 2022, 36, .	1.1	1
425	Hydrological model preselection with a filter sequence for the national flood forecasting system in Kenya. Journal of Flood Risk Management, 0, , .	1.6	2
426	Comparative Evaluation of Five Hydrological Models in a Large-Scale and Tropical River Basin. Water (Switzerland), 2022, 14, 3013.	1.2	7
427	RavenR v2.1.4: an open-source R package to support flexible hydrologic modelling. Geoscientific Model Development, 2022, 15, 7017-7030.	1.3	0
428	Streamflow forecasting in a climate change perspective using E-FUSE. Journal of Water and Climate Change, 0, , .	1.2	2
429	Improving hydrologic models for predictions and process understanding using neural ODEs. Hydrology and Earth System Sciences, 2022, 26, 5085-5102	1.9	17

#	Article	IF	CITATIONS
430	Ground truthing global-scale model estimates of groundwater recharge across Africa. Science of the Total Environment, 2023, 858, 159765.	3.9	4
431	The Treatment of Uncertainty in Hydrometric Observations: A Probabilistic Description of Streamflow Records. Water Resources Research, 2022, 58, .	1.7	5
432	Enhancing predictive skills in physically-consistent way: Physics Informed Machine Learning for hydrological processes. Journal of Hydrology, 2022, 615, 128618.	2.3	17
433	How can we benefit from regime information to make more effective use of long short-term memory (LSTM) runoff models?. Hydrology and Earth System Sciences, 2022, 26, 5793-5816.	1.9	11
434	Feature importance measures to dissect the role of sub-basins in shaping the catchment hydrological response: a proof of concept. Stochastic Environmental Research and Risk Assessment, 2023, 37, 1247-1264.	1.9	6
435	Improving structure identifiability of hydrological processes by temporal sensitivity with a flexible modeling framework. Journal of Hydrology, 2023, 616, 128843.	2.3	0
436	How well do the multi-satellite and atmospheric reanalysis products perform in hydrological modelling. Journal of Hydrology, 2023, 617, 128920.	2.3	2
437	UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python. Geoscientific Model Development, 2022, 15, 9177-9196.	1.3	1
438	The Numerical Formulation of Simple Hysteretic Models to Simulate the Large cale Hydrological Impacts of Prairie Depressions. Water Resources Research, 2022, 58, .	1.7	3
439	Exploring the Implications of Modeling Choices on Prediction of Irrigation Water Savings. Water Resources Research, 2023, 59, .	1.7	1
440	Comparing the Runoff Decompositions of Small Experimental Catchments: End-Member Mixing Analysis (EMMA) vs. Hydrological Modelling. Water (Switzerland), 2023, 15, 752.	1.2	1
441	State updating in a distributed hydrological model by ensemble Kalman filtering with error estimation. Journal of Hydrology, 2023, 620, 129450.	2.3	1
442	Skew-normal distribution model for rainfall uncertainty estimation in a distributed hydrological model. Hydrological Sciences Journal, 2023, 68, 542-551.	1.2	0
443	Incorporating experimentally derived streamflow contributions into model parameterization to improve discharge prediction. Hydrology and Earth System Sciences, 2023, 27, 1325-1341.	1.9	0
447	AI for physics-inspired hydrology modeling. , 2023, , 157-203.		2
452	Process-based modelling. , 2024, , 427-476.		0