Global aerosol climatology from the MODIS satellite ser

Journal of Geophysical Research 113, DOI: 10.1029/2007jd009661

Citation Report

#	Article	IF	CITATIONS
1	Global cloudâ€systemâ€resolving simulation of aerosol effect on warm clouds. Geophysical Research Letters, 2008, 35, .	4.0	58
2	The potential of the synergistic use of passive and active remote sensing measurements for the validation of a regional dust model. Annales Geophysicae, 2009, 27, 3155-3164.	1.6	45
3	Machine Learning and Bias Correction of MODIS Aerosol Optical Depth. IEEE Geoscience and Remote Sensing Letters, 2009, 6, 694-698.	3.1	89
4	Analysis of the impact of the forest fires in August 2007 on air quality of Athens using multi-sensor aerosol remote sensing data, meteorology and surface observations. Atmospheric Environment, 2009, 43, 3310-3318.	4.1	50
5	Estimating PM2.5 over southern Sweden using space-borne optical measurements. Atmospheric Environment, 2009, 43, 5838-5846.	4.1	15
6	An imperative for climate change planning: tracking Earth's global energy. Current Opinion in Environmental Sustainability, 2009, 1, 19-27.	6.3	88
7	Toward unified satellite climatology of aerosol properties: What do fully compatible MODIS and MISR aerosol pixels tell us?. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110, 402-408.	2.3	51
8	The interpretation of satellite chlorophyll observations: The case of the Mozambique Channel. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 974-988.	1.4	16
9	An analysis of clear sky and contextual biases using an operational over ocean MODIS aerosol product. Geophysical Research Letters, 2009, 36, .	4.0	56
10	Consistency Between Satellite-Derived and Modeled Estimates of the Direct Aerosol Effect. Science, 2009, 325, 187-190.	12.6	260
11	The dark-land MODIS collection 5 aerosol retrieval: Algorithm development and product evaluation. , 2009, , 19-68.		13
12	A Critical Look at Deriving Monthly Aerosol Optical Depth From Satellite Data. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 2942-2956.	6.3	112
13	Variability of marine aerosol fineâ€mode fraction and estimates of anthropogenic aerosol component over cloudâ€free oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research, 2009, 114, .	3.3	86
14	Variations of meridional aerosol distribution and solar dimming. Journal of Geophysical Research, 2009, 114, .	3.3	20
15	Maritime Aerosol Network as a component of Aerosol Robotic Network. Journal of Geophysical Research, 2009, 114, .	3.3	258
16	Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Journal of Geophysical Research, 2009, 114, .	3.3	208
17	Heavy pollution suppresses light rain in China: Observations and modeling. Journal of Geophysical Research, 2009, 114, .	3.3	255
18	Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. Journal of Geophysical Research, 2009, 114, .	3.3	200

#	Article	IF	CITATIONS
19	Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Annales Geophysicae, 2009, 27, 2755-2770.	1.6	290
20	Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China. Atmospheric Chemistry and Physics, 2009, 9, 5461-5474.	4.9	94
21	Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmospheric Chemistry and Physics, 2009, 9, 543-556.	4.9	313
22	Testing aerosol properties in MODIS Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO. Atmospheric Chemistry and Physics, 2009, 9, 8159-8172.	4.9	33
23	Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile. Atmospheric Chemistry and Physics, 2009, 9, 8211-8221.	4.9	36
24	Estimating the maritime component of aerosol optical depth and its dependency on surface wind speed using satellite data. Atmospheric Chemistry and Physics, 2010, 10, 6711-6720.	4.9	31
25	Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields. Atmospheric Chemistry and Physics, 2010, 10, 10705-10716.	4.9	37
26	A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products. Atmospheric Chemistry and Physics, 2010, 10, 10949-10963.	4.9	328
27	An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08). Atmospheric Chemistry and Physics, 2010, 10, 11415-11438.	4.9	170
28	Evaluation of aerosol distributions in the GISS-TOMAS global aerosol microphysics model with remote sensing observations. Atmospheric Chemistry and Physics, 2010, 10, 2129-2144.	4.9	50
29	Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests. Atmospheric Chemistry and Physics, 2010, 10, 8037-8064.	4.9	87
30	Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmospheric Chemistry and Physics, 2010, 10, 5001-5010.	4.9	140
31	The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact?. Atmospheric Chemistry and Physics, 2010, 10, 8855-8872.	4.9	190
32	Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data. Remote Sensing of Environment, 2010, 114, 230-250.	11.0	56
33	Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager. Remote Sensing of Environment, 2010, 114, 1077-1088.	11.0	103
34	Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season. Environmental Pollution, 2010, 158, 3385-3391.	7.5	47
35	Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans. Atmospheric Environment, 2010, 44, 1219-1228.	4.1	43
36	PM10 remote sensing from geostationary SEVIRI and polar-orbiting MODIS sensors over the complex terrain of the European Alpine region. Remote Sensing of Environment, 2010, 114, 2485-2499.	11.0	78

_

#	Article	IF	CITATIONS
37	Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China. Remote Sensing of Environment, 2010, 114, 2575-2583.	11.0	86
38	Micro pulse lidar observations of mineral dust layer in the lower troposphere over the southwest coast of Peninsular India during the Asian summer monsoon season. Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72, 1251-1259.	1.6	35
39	Evaluation of sun glint models using MODIS measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 492-506.	2.3	104
40	Toward unified satellite climatology of aerosol properties Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 540-552.	2.3	73
41	Comparison of aerosol optical thickness with in situ visibility data over Cyprus. Natural Hazards and Earth System Sciences, 2010, 10, 421-428.	3.6	47
42	Hemispheric Aerosol Vertical Profiles: Anthropogenic Impacts on Optical Depth and Cloud Nuclei. Science, 2010, 329, 1488-1492.	12.6	94
45	Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmospheric Chemistry and Physics, 2010, 10, 10399-10420.	4.9	1,060
46	Aerosol Optical Depth measurements at 340 nm with a Brewer spectrophotometer and comparison with Cimel sunphotometer observations at Uccle, Belgium. Atmospheric Measurement Techniques, 2010, 3, 1577-1588.	3.1	17
47	Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe. Atmospheric Measurement Techniques, 2010, 3, 1255-1270.	3.1	47
48	Viewing Geometry Dependencies in MODIS Cloud Products. Journal of Atmospheric and Oceanic Technology, 2010, 27, 1519-1528.	1.3	93
50	Mapping High-Resolution Land Surface Radiative Fluxes from MODIS: Algorithms and Preliminary Validation Results. , 2010, , 141-176.		2
51	A northward shift of the North Atlantic Ocean Intertropical Convergence Zone in response to summertime Saharan dust outbreaks. Geophysical Research Letters, 2010, 37, .	4.0	51
52	Using airborne high spectral resolution lidar data to evaluate combined active plus passive retrievals of aerosol extinction profiles. Journal of Geophysical Research, 2010, 115, .	3.3	44
53	Winter interactions between aerosols and weather regimes in the North Atlantic European region. Journal of Geophysical Research, 2010, 115, .	3.3	5
54	Online simulations of global aerosol distributions in the NASA GEOSâ€4 model and comparisons to satellite and groundâ€based aerosol optical depth. Journal of Geophysical Research, 2010, 115, .	3.3	400
55	Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations. Journal of Geophysical Research, 2010, 115, .	3.3	218
56	Black carbon aerosols over an urban region: Radiative forcing and climate impact. Journal of Geophysical Research, 2010, 115, .	3.3	139
57	A geostatistical data fusion technique for merging remote sensing and groundâ€based observations of aerosol optical thickness. Journal of Geophysical Research, 2010, 115, .	3.3	57

#	Article	IF	CITATIONS
58	Impact of meteorological factors on the correlation between aerosol optical depth and cloud fraction. Geophysical Research Letters, 2010, 37, .	4.0	51
59	An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis. Journal of Geophysical Research, 2010, 115, .	3.3	37
60	Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. Journal of Geophysical Research, 2010, 115, .	3.3	459
61	Derivation of tropospheric aerosol properties from satellite observations. Comptes Rendus - Geoscience, 2010, 342, 403-411.	1.2	8
62	Aerosol layer properties over Kyiv from AERONET/PHOTONS sunphotometer measurements during 2008–2009. International Journal of Remote Sensing, 2011, 32, 657-669.	2.9	11
63	Properties of an Earth-Like Planet Orbiting a Sun-Like Star: Earth Observed by the EPOXI Mission. Astrobiology, 2011, 11, 907-930.	3.0	68
64	An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties. Journal of Geophysical Research, 2011, 116, 16.	3.3	67
65	A regional-to-global model of emission and transport of sea salt particles in the atmosphere. Journal of Geophysical Research, 2011, 116, .	3.3	109
66	Improving the CALIOP aerosol optical depth using combined MODIS-CALIOP observations and CALIOP integrated attenuated total color ratio. Journal of Geophysical Research, 2011, 116, .	3.3	38
67	Modulation of Atlantic aerosols by the Madden-Julian Oscillation. Journal of Geophysical Research, 2011, 116, .	3.3	27
68	Comparison of Moderate Resolution Imaging Spectroradiometer ocean aerosol retrievals with ship-based Sun photometer measurements from the Around the Americas expedition. Journal of Geophysical Research, 2011, 116, .	3.3	10
69	Downscaling aerosols and the impact of neglected subgrid processes on direct aerosol radiative forcing for a representative global climate model grid spacing. Journal of Geophysical Research, 2011, 116, .	3.3	33
70	Influences of the springtime northern Indian biomass burning over the central Himalayas. Journal of Geophysical Research, 2011, 116, .	3.3	131
71	AEOLIAN PROCESSES AND THE BIOSPHERE. Reviews of Geophysics, 2011, 49, .	23.0	230
72	Evaluating the impact of assimilating CALIOP-derived aerosol extinction profiles on a global mass transport model. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	70
73	Relationship between aerosol and cloud fraction over Australia. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	41
74	El Niño–Southern Oscillation correlated aerosol Ångström exponent anomaly over the tropical Pacific discovered in satellite measurements. Journal of Geophysical Research, 2011, 116, .	3.3	16
75	Aerosol properties over the Indo-Gangetic Plain: A mesoscale perspective from the TIGERZ experiment. Journal of Geophysical Research, 2011, 116, .	3.3	144

#	Article	IF	CITATIONS
76	Evaluating the assumptions of surface reflectance and aerosol type selection within the MODIS aerosol retrieval over land: the problem of dust type selection. Atmospheric Measurement Techniques, 2011, 4, 201-214.	3.1	38
77	Influence of Indian Summer Monsoon on Aerosol Loading in East Asia. Journal of Applied Meteorology and Climatology, 2011, 50, 523-533.	1.5	43
78	Role of fine mode aerosols in modulating cloud properties over industrial locations in north India. Annales Geophysicae, 2011, 29, 1605-1612.	1.6	11
79	A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data. Atmospheric Chemistry and Physics, 2011, 11, 1143-1154.	4.9	53
80	A reanalysis of MODIS fine mode fraction over ocean using OMI and daily GOCART simulations. Atmospheric Chemistry and Physics, 2011, 11, 5805-5817.	4.9	12
82	Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data. Atmospheric Chemistry and Physics, 2011, 11, 10637-10648.	4.9	54
83	Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem. Atmospheric Chemistry and Physics, 2011, 11, 11951-11975.	4.9	99
84	Analysis of linear long-term trend of aerosol optical thickness derived from SeaWiFS using BAER over Europe and South China. Atmospheric Chemistry and Physics, 2011, 11, 12149-12167.	4.9	54
85	Three-year ground based measurements of aerosol optical depth over the Eastern Mediterranean: the urban environment of Athens. Atmospheric Chemistry and Physics, 2011, 11, 2145-2159.	4.9	97
86	Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations. Atmospheric Chemistry and Physics, 2011, 11, 3137-3157.	4.9	503
87	An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation. Atmospheric Chemistry and Physics, 2011, 11, 557-565.	4.9	154
88	Investigating organic aerosol loading in the remote marine environment. Atmospheric Chemistry and Physics, 2011, 11, 8847-8860.	4.9	54
89	Global analysis of cloud field coverage and radiative properties, using morphological methods and MODIS observations. Atmospheric Chemistry and Physics, 2011, 11, 191-200.	4.9	18
90	Spatial features of rain frequency change and pollution and associated aerosols. Atmospheric Chemistry and Physics, 2011, 11, 7715-7726.	4.9	0
91	A search for large-scale effects of ship emissions on clouds and radiation in satellite data. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	29
92	Observation-based 3-D view of aerosol radiative properties over Indian Continental Tropical Convergence Zone: implications to regional climate. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 971.	1.6	36
93	Assessment of Temperature and Humidity Changes Associated With the September 2009 Dust Storm in Australia. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 268-272.	3.1	4
94	Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations. Atmospheric Environment, 2011, 45, 3277-3285.	4.1	43

#	Article	IF	Citations
# 95	Mapping particulate matter in alpine regions with satellite and ground-based measurements: An	4.1	17
	exploratory study for data assimilation. Atmospheric Environment, 2011, 45, 4344-4353.		
96	Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010. Atmospheric Environment, 2011, 45, 6225-6232.	4.1	143
97	Tropical cirrus cloud contamination in sun photometer data. Atmospheric Environment, 2011, 45, 6724-6731.	4.1	131
98	Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010. Atmospheric Environment, 2011, 45, 6317-6325.	4.1	56
99	Clobal and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 2011, 109, 191-212.	3.6	393
100	A modeling study of the effects of aerosols on clouds and precipitation over East Asia. Theoretical and Applied Climatology, 2011, 106, 343-354.	2.8	61
101	Role of dynamics in the advection of aerosols over the Arabian Sea along the west coast of peninsular India during pre-monsoon season: A case study based on satellite data and regional climate model. Journal of Earth System Science, 2011, 120, 269-279.	1.3	18
104	Intercomparison and combination of satellite retrieved aerosol optical depth over land. , 2011, , .		0
105	Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission. Atmospheric Measurement Techniques, 2011, 4, 1383-1395.	3.1	255
106	MERIS albedo climatology for FRESCO+ O ₂ A-band cloud retrieval. Atmospheric Measurement Techniques, 2011, 4, 463-483.	3.1	52
108	An improved tropospheric NO ₂ column retrieval algorithm for the Ozone Monitoring Instrument. Atmospheric Measurement Techniques, 2011, 4, 1905-1928.	3.1	550
109	Assessments of urban aerosol pollution in Moscow and its radiative effects. Atmospheric Measurement Techniques, 2011, 4, 367-378.	3.1	26
110	Impact of Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System. Weather and Forecasting, 2011, 26, 504-519.	1.4	52
111	Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals. Atmospheric Measurement Techniques, 2011, 4, 583-597.	3.1	152
113	Aerosol optical thickness trends and population growth in the Indian subcontinent. International Journal of Remote Sensing, 2011, 32, 9137-9149.	2.9	24
114	Study of MODIS derived AOD at three different locations in the Indo Gangetic Plain: Kanpur, Gandhi College and Nainital. Annales Geophysicae, 2012, 30, 1479-1493.	1.6	46
115	Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe. Atmospheric Measurement Techniques, 2012, 5, 1727-1740.	3.1	7
116	Multi-sensor Aerosol Products Sampling System (MAPSS). Atmospheric Measurement Techniques, 2012, 5, 913-926.	3.1	79

#	Article	IF	CITATIONS
118	Characterization of atmospheric aerosol in the US Southeast from ground- and space-based measurements over the past decade. Atmospheric Measurement Techniques, 2012, 5, 1667-1682.	3.1	25
120	Geographical and climatological characterization of aerosol optical depth distribution of MODIS in China. Proceedings of SPIE, 2012, , .	0.8	0
121	Comparing remotely sensed and modelled aerosol properties for a region of low aerosol optical depth. , 2012, , .		1
122	Ground-, satellite- and simulation-based analysis of a strong dust event over Abastumani, Georgia, during May 2009. International Journal of Remote Sensing, 2012, 33, 4886-4901.	2.9	14
123	Spatial and temporal variations of AOD over land at the global scale. International Journal of Remote Sensing, 2012, 33, 2097-2111.	2.9	2
126	Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis. Atmospheric Chemistry and Physics, 2012, 12, 4011-4032.	4.9	38
127	Estimating marine aerosol particle volume and number from Maritime Aerosol Network data. Atmospheric Chemistry and Physics, 2012, 12, 8889-8909.	4.9	29
128	Discernible rhythm in the spatio/temporal distributions of transatlantic dust. Atmospheric Chemistry and Physics, 2012, 12, 2253-2262.	4.9	52
129	Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010. Atmospheric Chemistry and Physics, 2012, 12, 2631-2640.	4.9	52
130	The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth. Atmospheric Chemistry and Physics, 2012, 12, 3025-3043.	4.9	87
131	Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database. Atmospheric Chemistry and Physics, 2012, 12, 7087-7102.	4.9	51
132	The direct effect of aerosols on solar radiation over the broader Mediterranean basin. Atmospheric Chemistry and Physics, 2012, 12, 7165-7185.	4.9	100
133	Distributions and regional budgets of aerosols and their precursors simulated with the EMAC chemistry-climate model. Atmospheric Chemistry and Physics, 2012, 12, 961-987.	4.9	130
134	Seasonal variability of atmospheric aerosol over the North Indian region during 2005–2009. Advances in Space Research, 2012, 50, 1220-1230.	2.6	27
135	The inter-comparison of MODIS, MISR and GOCART aerosol products against AERONET data over China. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 2135-2145.	2.3	66
136	Estimation and bias correction of aerosol abundance using data-driven machine learning and remote sensing. , 2012, , .		6
137	Comparison of contrast reduction based MODIS AOT estimates with AERONET measurements. Atmospheric Research, 2012, 116, 33-45.	4.1	8
138	Role of sea-surface wind and transport on enhanced aerosol optical depth observed over the Arabian Sea. International Journal of Remote Sensing, 2012, 33, 5105-5118.	2.9	6

#	Article	IF	CITATIONS
139	A global dataset of atmospheric aerosol optical depth and surface reflectance from AATSR. Remote Sensing of Environment, 2012, 116, 199-210.	11.0	66
140	Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research, 2012, 111, 1-28.	4.1	89
141	EMAC model evaluation and analysis of atmospheric aerosol properties and distribution with a focus on the Mediterranean region. Atmospheric Research, 2012, 114-115, 38-69.	4.1	48
142	Observational bounds on atmospheric heating by aerosol absorption: Radiative signature of transatlantic dust. Geophysical Research Letters, 2012, 39, .	4.0	13
143	SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets. Journal of Geophysical Research, 2012, 117, .	3.3	108
144	An Aâ€ŧrain and model perspective on the vertical distribution of aerosols and CO in the Northern Hemisphere. Journal of Geophysical Research, 2012, 117, .	3.3	37
145	On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from Clouds and the Earth's Radiant Energy System (CERES) data. Journal of Geophysical Research, 2012, 117, .	3.3	11
146	Correction to "On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from Clouds and the Earth's Radiant Energy System (CERES) data― Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	1
147	Unexpected increasing AOT trends over northwest Bay of Bengal in the early postmonsoon season. Journal of Geophysical Research, 2012, 117, .	3.3	5
148	Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environmental Research, 2012, 118, 8-15.	7.5	97
149	A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance—. Journal of the Meteorological Society of Japan, 2012, 90A, 23-64.	1.8	649
150	Synoptic conditions favouring the occurrence of aerosol episodes over the broader Mediterranean basin. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 932-949.	2.7	53
151	Aerosols from Overseas Rival Domestic Emissions over North America. Science, 2012, 337, 566-569.	12.6	213
152	Reducing the Uncertainties in Direct Aerosol Radiative Forcing. Surveys in Geophysics, 2012, 33, 701-721.	4.6	82
153	Overview of sun photometer measurements of aerosol properties in Scandinavia and Svalbard. Atmospheric Environment, 2012, 52, 18-28.	4.1	42
154	Aerosol optical depth trends over different regions of India. Atmospheric Environment, 2012, 49, 338-347.	4.1	142
155	Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009. Atmospheric Environment, 2012, 51, 75-85.	4.1	110
156	Evaluation and Wind Speed Dependence of MODIS Aerosol Retrievals Over Open Ocean. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 429-435.	6.3	31

#	Article	IF	CITATIONS
157	Biennial variability in aerosol optical depth associated with QBO modulated tropical tropopause. Atmospheric Science Letters, 2012, 13, 61-66.	1.9	9
158	The mixing state of aerosols over the Indoâ€Gangetic Plain and its impact on radiative forcing. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 137-151.	2.7	63
159	Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Science Reviews, 2013, 126, 321-357.	9.1	63
160	Aerosol, clouds and rainfall: inter-annual and regional variations over India. Climate Dynamics, 2013, 40, 1591-1610.	3.8	20
161	Short term variability of aerosol optical thickness at Belsk for the period 2002–2010. Atmospheric Environment, 2013, 79, 744-750.	4.1	7
162	Statistical analysis of single-track instrument sampling in spaceborne aerosol remote sensing for climate research. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 121, 69-77.	2.3	5
163	Enhanced Deep Blue aerosol retrieval algorithm: The second generation. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9296-9315.	3.3	803
164	On the differences of ultraviolet and visible irradiance calculations in the Mediterranean basin due to model- and satellite-derived climatologies of aerosol optical properties. International Journal of Climatology, 2013, 33, 2877-2888.	3.5	4
165	Assessment of the Aerosol Products From the SeaWiFS and MODIS Ocean-Color Missions. IEEE Geoscience and Remote Sensing Letters, 2013, 10, 1185-1189.	3.1	12
166	Satellite derived aerosol optical depth climatology over Bangalore, India. Advances in Space Research, 2013, 51, 2297-2308.	2.6	31
167	Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the Maritime Continent: The 2007–2009 view from CALIOP. Atmospheric Research, 2013, 122, 520-543.	4.1	79
168	Smoke aerosol transport patterns over the Maritime Continent. Atmospheric Research, 2013, 122, 469-485.	4.1	70
169	Satellite perspective of aerosol intercontinental transport: From qualitative tracking to quantitative characterization. Atmospheric Research, 2013, 124, 73-100.	4.1	81
170	Variability of aerosol optical depth and cloud parameters over North Eastern regions of India retrieved from MODIS satellite data. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 100-101, 34-49.	1.6	25
171	Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5380-5552.	3.3	4,319
172	Spatio-temporal variations in columnar aerosol optical properties over Bay of Bengal: Signatures of elevated dust. Atmospheric Environment, 2013, 69, 249-257.	4.1	20
173	MODIS aerosol optical depth observations over urban areas in Pakistan: quantity and quality of the data for air quality monitoring. Atmospheric Pollution Research, 2013, 4, 43-52.	3.8	85
174	Determination of a lower bound on Earth's climate sensitivity. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 21533.	1.6	16

#	Article	IF	CITATIONS
176	The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 2013, 6, 2989-3034.	3.1	1,612
177	Aerosol-Precipitation Interactions over India: Review and Future Perspectives. Advances in Meteorology, 2013, 2013, 1-20.	1.6	32
179	The SPRINTARS version 3.80/4D-Var data assimilation system: development and inversion experiments based on the observing system simulation experiment framework. Geoscientific Model Development, 2013, 6, 2005-2022.	3.6	20
182	Environmental effects of the recent emission changes in China: implications for particulate matter pollution and soil acidification. Environmental Research Letters, 2013, 8, 024031.	5.2	101
183	Multiscale periodicities in aerosol optical depth over India. Environmental Research Letters, 2013, 8, 014034.	5.2	22
184	Validation and empirical correction of MODIS AOT and AE over ocean. Atmospheric Measurement Techniques, 2013, 6, 2455-2475.	3.1	26
185	Trajectory analysis of Saudi Arabian dust storms. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6028-6043.	3.3	141
186	Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,253.	3.3	70
187	Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 2013, 13, 1853-1877.	4.9	779
188	Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling. Atmospheric Chemistry and Physics, 2013, 13, 675-692.	4.9	87
189	Evaluation of spatio-temporal variability of Hamburg Aerosol Climatology against aerosol datasets from MODIS and CALIOP. Atmospheric Chemistry and Physics, 2013, 13, 8381-8399.	4.9	6
190	Characterisation of dust aerosols in the infrared from IASI and comparison with PARASOL, MODIS, MISR, CALIOP, and AERONET observations. Atmospheric Chemistry and Physics, 2013, 13, 6065-6082.	4.9	54
191	The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind. Atmospheric Chemistry and Physics, 2013, 13, 11235-11257.	4.9	98
192	Optimizing CALIPSO Saharan dust retrievals. Atmospheric Chemistry and Physics, 2013, 13, 12089-12106.	4.9	120
193	The regime of intense desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements. Atmospheric Chemistry and Physics, 2013, 13, 12135-12154.	4.9	103
194	Composite study of aerosol export events from East Asia and North America. Atmospheric Chemistry and Physics, 2013, 13, 1221-1242.	4.9	20
195	Modeling a typical winter-time dust event over the Arabian Peninsula and the Red Sea. Atmospheric Chemistry and Physics, 2013, 13, 1999-2014.	4.9	88
196	Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.	4.9	395

#	Article	IF	CITATIONS
197	The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmospheric Chemistry and Physics, 2013, 13, 3345-3361.	4.9	406
198	Coherent uncertainty analysis of aerosol measurements from multiple satellite sensors. Atmospheric Chemistry and Physics, 2013, 13, 6777-6805.	4.9	28
200	Solar and Planetary Oscillation Control on Climate Change: Hind-Cast, Forecast and a Comparison with the Cmip5 Gcms. Energy and Environment, 2013, 24, 455-496.	4.6	30
201	Northâ€south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2643-2655.	3.3	53
202	Suomiâ€NPP VIIRS aerosol algorithms and data products. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,673.	3.3	202
203	Application of spectral analysis techniques in the intercomparison of aerosol data: 1. An EOF approach to analyze the spatialâ€ŧemporal variability of aerosol optical depth using multiple remote sensing data sets. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8640-8648.	3.3	48
204	MODIS 3 km aerosol product: applications over land in an urban/suburban region. Atmospheric Measurement Techniques, 2013, 6, 1747-1759.	3.1	137
205	Aerosol Optical Properties over South Asia from Ground-Based Observations and Remote Sensing: A Review. Climate, 2013, 1, 84-119.	2.8	33
206	Exploring Aerosol Effects on Rainfall for Brisbane, Australia. Climate, 2013, 1, 120-147.	2.8	4
207	Aerosol optical depths over oceans: A view from MISR retrievals and collocated MAN and AERONET in situ observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,620.	3.3	27
208	Observations of aerosolâ€induced convective invigoration in the tropical east Atlantic. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3963-3975.	3.3	55
209	Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmospheric Measurement Techniques, 2014, 7, 4353-4365.	3.1	185
210	Accuracy assessment of Terra-MODIS aerosol optical depth retrievals. IOP Conference Series: Earth and Environmental Science, 2014, 20, 012059.	0.3	5
211	Modelâ€based estimation of samplingâ€caused uncertainty in aerosol remote sensing for climate research applications. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2353-2363.	2.7	11
212	Reassessment of satelliteâ€based estimate of aerosol climate forcing. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,394.	3.3	17
213	Looking through the haze: evaluating the CALIPSO level 2 aerosol optical depth using airborne high spectral resolution lidar data. Atmospheric Measurement Techniques, 2014, 7, 4317-4340.	3.1	69
214	Role of Coarse and Fine Mode Aerosols in MODIS AOD Retrieval: a case study over southern India. Atmospheric Measurement Techniques, 2014, 7, 907-917.	3.1	26
215	Variability and mechanisms of vertical distribution of aerosols over the Indian region. International Journal of Remote Sensing, 2014, 35, 7691-7705.	2.9	8

#	Article	IF	CITATIONS
216	AEROgui: A Graphical User Interface for the Optical Properties of Aerosols. Bulletin of the American Meteorological Society, 2014, 95, 1863-1871.	3.3	5
218	Impact of satellite viewing-swath width on global and regional aerosol optical thickness statistics and trends. Atmospheric Measurement Techniques, 2014, 7, 2313-2335.	3.1	37
219	The data fusion of aerosol optical thickness using universal kriging and stepwise regression in East China. Proceedings of SPIE, 2014, , .	0.8	7
220	An evaluation of CALIOP/CALIPSO's aerosolâ€aboveâ€cloud detection and retrieval capability over North America. Journal of Geophysical Research D: Atmospheres, 2014, 119, 230-244.	3.3	49
221	Preliminary evaluation of Sâ€NPP VIIRS aerosol optical thickness. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3942-3962.	3.3	108
222	Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements. Proceedings of SPIE, 2014, , .	0.8	3
223	Spatio-Temporal Variations of Aerosol Optical Depth over Areas Around Beijing in Recent 14 Years. Advanced Materials Research, 2014, 997, 843-846.	0.3	1
224	An Investigation of the Aerosol Indirect Effect on Convective Intensity Using Satellite Observations. Journals of the Atmospheric Sciences, 2014, 71, 430-447.	1.7	44
225	Aerosol interactions with African/Atlantic climate dynamics. Environmental Research Letters, 2014, 9, 075004.	5.2	14
227	Long-term Aerosol Characteristics over Eastern, Southeastern, and South Coalfield Regions in India. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	4
228	Aerosol optical and physical properties during winter monsoon pollution transport in an urban environment. Environmental Science and Pollution Research, 2014, 21, 4977-4994.	5.3	19
229	Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India. Climate Dynamics, 2014, 43, 2313-2331.	3.8	51
230	Assessment of the aerosol distribution over Indian subcontinent in CMIP5 models. Atmospheric Environment, 2014, 87, 123-137.	4.1	42
231	Long term (2003–2012) spatio-temporal MODIS (Terra/Aqua level 3) derived climatic variations of aerosol optical depth and cloud properties over a semi arid urban tropical region of Northern India. Atmospheric Environment, 2014, 83, 291-300.	4.1	22
232	Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements. Atmospheric Research, 2014, 138, 223-239.	4.1	37
233	Dust aerosol height estimation: A synergetic approach using passive remote sensing and modelling. Atmospheric Environment, 2014, 90, 16-22.	4.1	6
234	On the classification and sub-classification of aerosol key types over south central peninsular India: MODIS–OMI algorithm. Science of the Total Environment, 2014, 468-469, 1086-1092.	8.0	14
235	The empirical relationship between the PM2.5 concentration and aerosol optical depth over the background of North China from 2009 to 2011. Atmospheric Research, 2014, 138, 179-188.	4.1	97

#	Article	IF	CITATIONS
236	Global aerosol change in the last decade: An analysis based on MODIS data. Atmospheric Environment, 2014, 94, 680-686.	4.1	80
238	Interâ€annual variations in natural and anthropogenic aerosol loadings over the seas adjoining India using a hybrid approach. Atmospheric Science Letters, 2014, 15, 58-64.	1.9	2
239	Revisiting AVHRR tropospheric aerosol trends using principal component analysis. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3309-3320.	3.3	9
240	Statistical analysis of aerosols over the Gangetic–Himalayan region using ARIMA model based on long-term MODIS observations. Atmospheric Research, 2014, 149, 174-192.	4.1	46
241	The effect of aerosol optical depth on rainfall with reference to meteorology over metro cities in India. Environmental Science and Pollution Research, 2014, 21, 8188-8197.	5.3	23
242	Investigating the coupling between phytoplankton biomass, aerosol optical depth and sea-ice cover in the Greenland Sea. Dynamics of Atmospheres and Oceans, 2014, 66, 94-109.	1.8	10
243	China Collection 2.0: The aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmospheric Environment, 2014, 95, 45-58.	4.1	93
244	Application of spectral analysis techniques in the intercomparison of aerosol data: Part III. Using combined PCA to compare spatiotemporal variability of MODIS, MISR, and OMI aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4017-4042.	3.3	22
245	Latitudinal variation of aerosol properties from Indoâ€Gangetic Plain to central Himalayan foothills during TIGERZ campaign. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4750-4769.	3.3	52
246	Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide. Atmospheric Chemistry and Physics, 2014, 14, 1441-1461.	4.9	159
247	Comparing ECMWF AOD with AERONET observations at visible and UV wavelengths. Atmospheric Chemistry and Physics, 2014, 14, 593-608.	4.9	65
248	Radiative signature of absorbing aerosol over the eastern Mediterranean basin. Atmospheric Chemistry and Physics, 2014, 14, 7213-7231.	4.9	57
249	Estimation of mineral dust long-wave radiative forcing: sensitivity study to particle properties and application to real cases in the region of Barcelona. Atmospheric Chemistry and Physics, 2014, 14, 9213-9231.	4.9	58
250	AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth. Atmospheric Chemistry and Physics, 2014, 14, 11493-11523.	4.9	75
251	Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model. Atmospheric Chemistry and Physics, 2014, 14, 177-198.	4.9	32
252	The empirical relationship between satellite-derived tropospheric NO ₂ and fire radiative power and possible implications for fire emission rates of NO _x . Atmospheric Chemistry and Physics, 2014, 14, 2447-2466.	4.9	37
253	Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 2014, 14, 3657-3690.	4.9	240
254	Aerosol's optical and physical characteristics and direct radiative forcing during a shamal dust storm, a case study. Atmospheric Chemistry and Physics, 2014, 14, 3751-3769.	4.9	41

#	Article	IF	CITATIONS
255	Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmospheric Chemistry and Physics, 2014, 14, 6643-6667.	4.9	164
256	Changes in atmospheric aerosol loading retrieved from space-based measurements during the past decade. Atmospheric Chemistry and Physics, 2014, 14, 6881-6902.	4.9	72
257	Study of global cloud droplet number concentration with A-Train satellites. Atmospheric Chemistry and Physics, 2014, 14, 7125-7134.	4.9	45
258	A climatology of aerosol optical depth over China from recent 10 years of <scp>MODIS</scp> remote sensing data. International Journal of Climatology, 2014, 34, 863-870.	3.5	141
259	Application of spectral analysis techniques in the intercomparison of aerosol data. Part II: Using maximum covariance analysis to effectively compare spatiotemporal variability of satellite and AERONET measured aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2014, 119, 153-166.	3.3	29
260	Cyclone contribution to dust transport over the Mediterranean region. Atmospheric Science Letters, 2015, 16, 473-478.	1.9	41
261	Implications of MODIS impression of aerosol loading over urban and rural settlements in Nigeria: Possible links to energy consumption patterns in the country. Atmospheric Pollution Research, 2015, 6, 484-494.	3.8	8
262	Optical modeling of volcanic ash particles using ellipsoids. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4102-4116.	3.3	16
263	In situ measured seasonal characteristics of nearâ€surface aerosols over Bay of Bengal and MODISâ€retrieved columnar properties: A multicampaign analysis. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,548.	3.3	2
264	AERONET data–based determination of aerosol types. Atmospheric Pollution Research, 2015, 6, 682-695.	3.8	25
265	Dust aerosol feedback on the Indian summer monsoon: Sensitivity to absorption property. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9642-9652.	3.3	60
266	Evaluation of MODIS aerosol retrieval algorithms over the Beijingâ€Tianjinâ€Hebei region during low to very high pollution events. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7941-7957.	3.3	103
267	Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme. Journal of Advances in Modeling Earth Systems, 2015, 7, 865-914.	3.8	33
268	The impact of dust storms on the Arabian Peninsula and the Red Sea. Atmospheric Chemistry and Physics, 2015, 15, 199-222.	4.9	209
269	AOD trends during 2001–2010 from observations and model simulations. Atmospheric Chemistry and Physics, 2015, 15, 5521-5535.	4.9	123
270	Influence of aerosols and surface reflectance on satellite NO ₂ retrieval: seasonal and spatial characteristics and implications for NO _{<i>x</i>} emission constraints. Atmospheric Chemistry and Physics. 2015. 15. 11217-11241.	4.9	75
271	The regime of aerosol asymmetry parameter over Europe, the Mediterranean and the Middle East based on MODIS satellite data: evaluation against surface AERONET measurements. Atmospheric Chemistry and Physics, 2015, 15, 13113-13132.	4.9	18
272	A study of the impact of synoptic weather conditions and water vapor on aerosol–cloud relationships over major urban clusters of China. Atmospheric Chemistry and Physics, 2015, 15, 10955-10964.	4.9	44

#	Article	IF	CITATIONS
273	Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?. Atmospheric Chemistry and Physics, 2015, 15, 9997-10018.	4.9	37
274	Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: validation. Atmospheric Measurement Techniques, 2015, 8, 3297-3313.	3.1	64
275	Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance. Atmospheric Measurement Techniques, 2015, 8, 4083-4110.	3.1	104
276	Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data. Remote Sensing, 2015, 7, 12588-12605.	4.0	4
277	Optical Properties of the Urban Aerosol Particles Obtained from Ground Based Measurements and Satellite-Based Modelling Studies. Advances in Meteorology, 2015, 2015, 1-12.	1.6	5
278	Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations. Geoscientific Model Development, 2015, 8, 381-408.	3.6	38
279	Assessment of direct normal irradiance and cloud connections using satellite data over Australia. Applied Energy, 2015, 143, 301-311.	10.1	40
280	Time series model prediction and trend variability of aerosol optical depth over coal mines in India. Environmental Science and Pollution Research, 2015, 22, 3652-3671.	5.3	26
281	Impacts of aerosols on dynamics of Indian summer monsoon using a regional climate model. Climate Dynamics, 2015, 44, 1685-1697.	3.8	36
283	Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: methodology. Atmospheric Measurement Techniques, 2015, 8, 611-632.	3.1	108
285	Evaluation of the global aerosol microphysical ModelE2-TOMAS model against satellite and ground-based observations. Geoscientific Model Development, 2015, 8, 631-667.	3.6	26
286	Using phase-spaces to characterize land surface phenology in a seasonally snow-covered landscape. Remote Sensing of Environment, 2015, 166, 178-190.	11.0	27
287	Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean. International Journal of Remote Sensing, 2015, 36, 3423-3445.	2.9	15
288	Uncertainties of wild-land fires emission in AQMEII phase 2 case study. Atmospheric Environment, 2015, 115, 361-370.	4.1	45
289	Long-range atmospheric transport of particulate Polycyclic Aromatic Hydrocarbons and the incursion of aerosols to the southeast Tibetan Plateau. Atmospheric Environment, 2015, 115, 124-131.	4.1	58
290	Extension and statistical analysis of the GACP aerosol optical thickness record. Atmospheric Research, 2015, 164-165, 268-277.	4.1	4
291	Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sensing of Environment, 2015, 168, 276-285.	11.0	71
292	Spatiotemporal characteristics of aerosols in India: Observations and model simulations. Atmospheric Environment, 2015, 116, 225-244.	4.1	28

#	Article	IF	CITATIONS
295	Global aerosol mixtures and their multiyear and seasonal characteristics. Atmospheric Environment, 2015, 116, 112-129.	4.1	32
296	Co-variability of smoke and fire in the Amazon basin. Atmospheric Environment, 2015, 109, 97-104.	4.1	29
297	Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmospheric Research, 2015, 161-162, 25-35.	4.1	29
298	Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6575-6596.	3.3	83
299	An analysis of aerosol types in Southeast Asia. , 2015, , .		0
300	An integrated campaign for investigation of winter-time continental haze over Indo-Gangetic Basin and its radiative effects. Science of the Total Environment, 2015, 533, 370-382.	8.0	13
301	The direct radiative effect of wildfire smoke on a severe thunderstorm event in the Baltic Sea region. Atmospheric Research, 2015, 155, 87-101.	4.1	6
302	Estimating PM2.5 in Xi'an, China using aerosol optical depth: A comparison between the MODIS and MISR retrieval models. Science of the Total Environment, 2015, 505, 1156-1165.	8.0	94
303	Atmospheric circulation evolution related to desertâ€dust episodes over the Mediterranean. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1634-1645.	2.7	46
304	Global cloud top height retrieval using SCIAMACHY limb spectra: model studies and first results. Atmospheric Measurement Techniques, 2016, 9, 793-815.	3.1	7
305	Satellite assessment of sea spray aerosol productivity: Southern Ocean case study. Journal of Geophysical Research D: Atmospheres, 2016, 121, 872-894.	3.3	20
306	First implementation of secondary inorganic aerosols in the MOCAGE version R2.15.0 chemistry transport model. Geoscientific Model Development, 2016, 9, 137-160.	3.6	53
307	An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences. Geoscientific Model Development, 2016, 9, 1489-1522.	3.6	149
308	The Variations and Trends of MODIS C5 & C6 Products' Errors in the Recent Decade over the Background and Urban Areas of North China. Remote Sensing, 2016, 8, 754.	4.0	21
309	GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign. Atmospheric Measurement Techniques, 2016, 9, 1377-1398.	3.1	86
310	Satellite and Ground Observations of Severe Air Pollution Episodes in the Winter of 2013 in Beijing, China. Aerosol and Air Quality Research, 2016, 16, 977-989.	2.1	19
311	Impact of aerosols on the OMI tropospheric NO ₂ retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via aÅsimple cloud model?. Atmospheric Measurement Techniques, 2016, 9, 359-382.	3.1	37
312	A Method to Improve MODIS AOD Values: Application to South America. Aerosol and Air Quality Research, 2016, 16, 1509-1522.	2.1	18

#	ARTICLE	IF	CITATIONS
	Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia. Remote Sensing, 2016,		
313	8, 328.	4.0	103
314	Decreasing Aerosol Loading in the North American Monsoon Region. Atmosphere, 2016, 7, 24.	2.3	10
315	The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type. Journal of Atmospheric and Oceanic Technology, 2016, 33, 1185-1209.	1.3	19
316	A merged aerosol dataset based on MODIS and MISR Aerosol Optical Depth products. , 2016, , .		2
317	Aerosol radiative forcing efficiency in the UV-B region over central Argentina. Atmospheric Research, 2016, 176-177, 1-9.	4.1	4
318	Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations. Atmospheric Research, 2016, 178-179, 155-163.	4.1	43
319	Recent global aerosol optical depth variations and trends — A comparative study using MODIS and MISR level 3 datasets. Remote Sensing of Environment, 2016, 181, 137-150.	11.0	129
320	Differences between the MODIS Collection 6 and 5.1 aerosol datasets over the greater Mediterranean region. Atmospheric Environment, 2016, 147, 310-319.	4.1	46
321	Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9204-9209.	7.1	253
322	Satellite-measured atmospheric aerosol content in Korea: anthropogenic signals from decadal records. GIScience and Remote Sensing, 2016, 53, 634-650.	5.9	3
323	Validation and expected error estimation of Suomiâ€NPP VIIRS aerosol optical thickness and Ã…ngström exponent with AERONET. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7139-7160.	3.3	68
324	Overview of atmospheric aerosol studies in Malaysia: Known and unknown. Atmospheric Research, 2016, 182, 302-318.	4.1	31
325	Natural and Anthropogenic Aerosol Trends from Satellite and Surface Observations and Model Simulations over the North Atlantic Ocean from 2002 to 2012. Journals of the Atmospheric Sciences, 2016, 73, 4469-4485.	1.7	10
326	Impact of aerosol direct effect on East Asian air quality during the EASTâ€AIRE campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6534-6554.	3.3	29
327	Temporal variability of atmospheric turbidity and DNI attenuation in the sugarcane region, Botucatu/São Paulo/Brazil. Atmospheric Research, 2016, 181, 312-321.	4.1	9
328	Estimates of free-tropospheric NO ₂ and HCHO mixing ratios derived from high-altitude mountain MAX-DOAS observations at midlatitudes and in the tropics. Atmospheric Chemistry and Physics, 2016, 16, 2803-2817.	4.9	21
329	On the radiative impact of aerosols on photolysis rates: comparison of simulations and observations in the Lampedusa island during the ChArMEx/ADRIMED campaign. Atmospheric Chemistry and Physics, 2016, 16, 1219-1244.	4.9	34
330	Utilization of O ₄ slant column density to derive aerosol layer height from a space-borne UV–visible hyperspectral sensor: sensitivity and case study. Atmospheric Chemistry and Physics, 2016, 16, 1987-2006.	4.9	20

#	Article	IF	CITATIONS
331	Mediterranean intense desert dust outbreaks and their vertical structure based on remote sensing data. Atmospheric Chemistry and Physics, 2016, 16, 8609-8642.	4.9	85
332	Variability of mineral dust deposition in the western Mediterranean basin and south-east of France. Atmospheric Chemistry and Physics, 2016, 16, 8749-8766.	4.9	51
333	X _{CO2} retrieval error over deserts near critical surface albedo. Earth and Space Science, 2016, 3, 36-45.	2.6	11
334	Modeling the reactive halogen plume from Ambrym and its impact on the troposphere with the CCATT-BRAMS mesoscale model. Atmospheric Chemistry and Physics, 2016, 16, 12099-12125.	4.9	14
335	Spatiotemporal variability and contribution of different aerosol types to the aerosol optical depth over the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2016, 16, 13853-13884.	4.9	71
336	Sensitivity of nitrate aerosols to ammonia emissions and to nitrate chemistry: implications for present and future nitrate optical depth. Atmospheric Chemistry and Physics, 2016, 16, 1459-1477.	4.9	79
337	Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter. Atmospheric Chemistry and Physics, 2016, 16, 3499-3523.	4.9	40
338	Factors Controlling Cloud Albedo in Marine Subtropical Stratocumulus Regions in Climate Models and Satellite Observations. Journal of Climate, 2016, 29, 3559-3587.	3.2	32
339	An AERONET-based aerosol classification using the Mahalanobis distance. Atmospheric Environment, 2016, 140, 213-233.	4.1	74
340	Orbital Observations of Dust Lofted by Daytime Convective Turbulence. Space Science Reviews, 2016, 203, 89-142.	8.1	35
341	Long-term (2002–2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta. Atmospheric Research, 2016, 181, 29-43.	4.1	91
342	Discussion on linear long-term trends in aerosol and cloud properties over India and its surrounding waters. Advances in Space Research, 2016, 57, 2104-2114.	2.6	9
343	Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia. Atmospheric Environment, 2016, 138, 191-204.	4.1	17
344	Mixing states of aerosols over four environmentally distinct atmospheric regimes in Asia: coastal, urban, and industrial locations influenced by dust. Environmental Science and Pollution Research, 2016, 23, 11109-11128.	5.3	9
345	New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean*. Journals of the Atmospheric Sciences, 2016, 73, 821-837.	1.7	13
346	Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems. Remote Sensing of Environment, 2016, 174, 56-68.	11.0	65
347	A nonlinear model for estimating ground-level PM10 concentration in Xi'an using MODIS aerosol optical depth retrieval. Atmospheric Research, 2016, 168, 169-179.	4.1	33
348	Spatioâ€ŧemporal variations of black carbon and optical properties in a regional climate model. International Journal of Climatology, 2017, 37, 1432-1443.	3.5	6

#	Article	IF	CITATIONS
349	Trends in aerosol optical properties over South Asia. International Journal of Climatology, 2017, 37, 371-380.	3.5	30
350	Quantifying the low bias of CALIPSO's column aerosol optical depth due to undetected aerosol layers. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1098-1113.	3.3	41
351	Effect of temperature-dependent cross sections on O4 slant column density estimation by a space-borne UV–visible hyperspectral sensor. Atmospheric Environment, 2017, 152, 98-110.	4.1	4
352	Land–atmosphere–aerosol coupling in North China during 2000–2013. International Journal of Climatology, 2017, 37, 1297-1306.	3.5	8
353	Ambient PM 2.5 exposure and premature mortality burden in the holy city Varanasi, India. Environmental Pollution, 2017, 226, 182-189.	7.5	22
354	Comprehensive study on AOD trends over the Indian subcontinent: a statistical approach. International Journal of Remote Sensing, 2017, 38, 5127-5149.	2.9	17
355	Estimating Particulate Matter using satellite based aerosol optical depth and meteorological variables in Malaysia. Atmospheric Research, 2017, 193, 142-162.	4.1	68
356	Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and mass loading. Remote Sensing of Environment, 2017, 201, 297-313.	11.0	133
357	Investigating the relationship between Aerosol Optical Depth and Precipitation over Southeast Asia with Relative Humidity as an influencing factor. Scientific Reports, 2017, 7, 13395.	3.3	25
358	Satellite remote sensing of fine particulate air pollutants over Indian mega cities. Advances in Space Research, 2017, 60, 2268-2276.	2.6	17
359	Lightning enhancement over major oceanic shipping lanes. Geophysical Research Letters, 2017, 44, 9102-9111.	4.0	113
360	Observationâ€Based Study on Aerosol Optical Depth and Particle Size in Partly Cloudy Regions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 10013-10024.	3.3	11
361	Assimilation of AERONET and MODIS AOT observations using variational and ensemble data assimilation methods and its impact on aerosol forecasting skill. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4967-4992.	3.3	47
362	Spatiotemporal patterns of correlation between atmospheric nitrogen dioxide and aerosols over South Asia. Meteorology and Atmospheric Physics, 2017, 129, 507-527.	2.0	21
363	Study on Regional Variations of Aerosol Loading Using Long Term Satellite Data Over Indian Region. Journal of the Indian Society of Remote Sensing, 2017, 45, 685-697.	2.4	3
364	Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015). Atmospheric Chemistry and Physics, 2017, 17, 3987-4003.	4.9	34
365	Impact of the choice of the satellite aerosol optical depth product in a sub-regional dust emission inversion. Atmospheric Chemistry and Physics, 2017, 17, 7111-7126.	4.9	26
366	Developing a Dust Emission Procedure for Central Asia. Air, Soil and Water Research, 2017, 10, 117862211771193.	2.5	8

#	Article	IF	CITATIONS
367	Validation of VIIRS AOD through a Comparison with a Sun Photometer and MODIS AODs over Wuhan. Remote Sensing, 2017, 9, 403.	4.0	43
368	Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM2.5 Concentrations in the Northeastern United States. Remote Sensing, 2017, 9, 620.	4.0	29
369	Aerosol Optical Properties and Associated Direct Radiative Forcing over the Yangtze River Basin during 2001–2015. Remote Sensing, 2017, 9, 746.	4.0	32
370	Long-Term, High-Resolution Survey of Atmospheric Aerosols over Egypt with NASA's MODIS Data. Remote Sensing, 2017, 9, 1027.	4.0	18
371	A Geostatistics-Based Method to Determine the Pixel Distance in a Structure Function Model for Aerosol Optical Depth Inversion. Atmosphere, 2017, 8, 6.	2.3	1
372	Insights Into the Morphology of the East Asia PM _{2.5} Annual Cycle Provided by Machine Learning. Environmental Health Insights, 2017, 11, 117863021769961.	1.7	10
373	Bayesian Merging of MISR and MODIS Aerosol Optical Depth Products Using Error Distributions From AERONET. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 5186-5200.	4.9	13
374	Assimilation of MODIS Dark Target and Deep Blue observations in the dust aerosol component of NMMB-MONARCH version 1.0. Geoscientific Model Development, 2017, 10, 1107-1129.	3.6	44
375	Spatial and temporal variations of satellite-based aerosol optical depth over Iran in Southwest Asia: Identification of a regional aerosol hot spot. Atmospheric Pollution Research, 2018, 9, 849-856.	3.8	29
376	Mitigating Satelliteâ€Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRFâ€Chem Model Over the Northern subâ€Saharan African Region. Journal of Geophysical Research D: Atmospheres, 2018, 123, 507-528.	3.3	29
377	The Nexus between Sea Ice and Polar Emissions of Marine Biogenic Aerosols. Bulletin of the American Meteorological Society, 2018, 99, 61-81.	3.3	34
378	Relationship between AOD and synoptic circulation over the Eastern Mediterranean: A comparison between subjective and objective classifications. Atmospheric Environment, 2018, 177, 253-261.	4.1	8
379	Aerosols and Climate Change: Present Understanding, Challenges, and Future Outlook. Springer Remote Sensing/photogrammetry, 2018, , 341-378.	0.4	3
380	Improving MISR AOD Retrievals With Low-Light-Level Corrections for Veiling Light. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 1251-1268.	6.3	7
381	Global, diffuse and direct solar radiation of the infrared spectrum in Botucatu / SP / Brazil. Renewable and Sustainable Energy Reviews, 2018, 82, 448-459.	16.4	17
382	Aerosols characteristics, trends and their climatic implications over Northeast India and adjoining South Asia. International Journal of Climatology, 2018, 38, 1234-1256.	3.5	31
383	Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmospheric Research, 2018, 208, 4-44.	4.1	85
384	Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. Journal of Climate, 2018, 31, 895-918.	3.2	514

#	Article	IF	CITATIONS
385	Global and regional evaluation of a global model simulated AODs with AERONET and MODIS observations. International Journal of Climatology, 2018, 38, e269.	3.5	10
386	Mesoscale Simulations of Australian Direct Normal Irradiance, Featuring an Extreme Dust Event. Journal of Applied Meteorology and Climatology, 2018, 57, 493-515.	1.5	9
387	Validation of Modis Aerosol Optical Depth Over South China Sea. , 2018, , .		1
388	Quantifying uncertainty from aerosol and atmospheric parameters and their impact on climate sensitivity. Atmospheric Chemistry and Physics, 2018, 18, 17529-17543.	4.9	9
389	Development of a Regression Model for Estimating Daily Radiative Forcing Due to Atmospheric Aerosols from Moderate Resolution Imaging Spectrometers (MODIS) Data in the Indo Gangetic Plain (IGP). Atmosphere, 2018, 9, 405.	2.3	3
390	How Long should the MISR Record Be when Evaluating Aerosol Optical Depth Climatology in Climate Models?. Remote Sensing, 2018, 10, 1326.	4.0	11
391	Remote Sensing of Tropospheric Aerosol Optical Depth From Multispectral Monodirectional Space-Based Observations. , 2018, , 137-196.		3
392	Exploring systematic offsets between aerosol products from the two MODIS sensors. Atmospheric Measurement Techniques, 2018, 11, 4073-4092.	3.1	81
393	Earth-Observation-Based Estimation and Forecasting of Particulate Matter Impact on Solar Energy in Egypt. Remote Sensing, 2018, 10, 1870.	4.0	39
394	Validation of SOAR VIIRS Overâ€Water Aerosol Retrievals and Context Within the Global Satellite Aerosol Data Record. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,496.	3.3	34
395	Remote sensing of aerosols with small satellites in formation flight. Atmospheric Measurement Techniques, 2018, 11, 3935-3954.	3.1	9
396	Black carbon aerosols over urban and high altitude remote regions: Characteristics and radiative implications. Atmospheric Environment, 2018, 194, 110-122.	4.1	26
397	Simulation of Severe Dust Events over Egypt Using Tuned Dust Schemes in Weather Research Forecast (WRF-Chem). Atmosphere, 2018, 9, 246.	2.3	18
398	Post-Monsoon Season Precipitation Reduction over South Asia: Impacts of Anthropogenic Aerosols and Irrigation. Atmosphere, 2018, 9, 311.	2.3	8
399	Earth's Top-of-Atmosphere Radiation Budget. , 2018, , 67-84.		20
400	Comparison of aerosol optical depth between observation and simulation from MIROC-SPRINTARS: Effects of temporal inhomogeneous sampling. Atmospheric Environment, 2018, 186, 56-73.	4.1	4
401	Low Cloud Cover Sensitivity to Biomass-Burning Aerosols and Meteorology over the Southeast Atlantic. Journal of Climate, 2018, 31, 4329-4346.	3.2	41
402	Mass concentration, optical depth and carbon composition of particulate matter in the major southern West African cities of Cotonou (Benin) and Abidjan (CA´te d'Ivoire). Atmospheric Chemistry and Physics, 2018, 18, 6275-6291.	4.9	34

#	Article	IF	CITATIONS
403	Increased aerosol content in the atmosphere over Ukraine during summer 2010. Atmospheric Measurement Techniques, 2018, 11, 2101-2118.	3.1	20
404	New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water. Atmospheric Measurement Techniques, 2018, 11, 429-439.	3.1	36
405	Remote Sensing of Aerosols From Space: Retrieval of Properties and Applications. , 2018, , 45-83.		22
406	Validation of satellite and model aerosol optical depth and precipitable water vapour observations with AERONET data over Pune, India. International Journal of Remote Sensing, 2018, 39, 7643-7663.	2.9	6
407	Atmospheric Aerosol Over Ukraine Region: Current Status of Knowledge and Research Efforts. Frontiers in Environmental Science, 2018, 6, .	3.3	13
408	From Tropospheric Folding to Khamsin and Foehn Winds: How Atmospheric Dynamics Advanced a Record-Breaking Dust Episode in Crete. Atmosphere, 2018, 9, 240.	2.3	49
409	Validation of MODIS C6 Dark Target Aerosol Products at 3 km and 10 km Spatial Resolutions Over the China Seas and the Eastern Indian Ocean. Remote Sensing, 2018, 10, 573.	4.0	9
410	A New MODIS C6 Dark Target and Deep Blue Merged Aerosol Product on a 3 km Spatial Grid. Remote Sensing, 2018, 10, 463.	4.0	47
411	Aerosol Optical Depth variability over the Arabian Peninsula as inferred from satellite measurements. Atmospheric Environment, 2018, 187, 346-357.	4.1	28
412	Long-term study of aerosol–cloud–precipitation interaction over the eastern part of India using satellite observations during pre-monsoon season. Theoretical and Applied Climatology, 2019, 136, 605-626.	2.8	27
413	A Dark Target Method for Himawari-8/AHI Aerosol Retrieval: Application and Validation. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 381-394.	6.3	40
414	Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era. Frontiers in Earth Science, 2019, 7, .	1.8	98
415	High-Performance Time-Series Quantitative Retrieval From Satellite Images on a GPU Cluster. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2810-2821.	4.9	33
416	Using machine learning to understand the temporal morphology of the PM2.5 annual cycle in East Asia. Environmental Monitoring and Assessment, 2019, 191, 272.	2.7	11
417	Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm updates and validation with ORACLES field campaign data. Atmospheric Measurement Techniques, 2019, 12, 3595-3627.	3.1	15
418	Characterization of carbonaceous aerosols in Asian outflow in the spring of 2015: Importance of non-fossil fuel sources. Atmospheric Environment, 2019, 214, 116858.	4.1	10
419	Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument. Frontiers in Earth Science, 2019, 7, .	1.8	31
420	Oceanic Aerosol Loading Derived From MISR's 4.4 km (V23) Aerosol Product. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10154-10174.	3.3	6

#	Article	IF	Citations
421	Evaluating the use of satellite observations to supplement ground-level air quality data in selected cities in low- and middle-income countries. Atmospheric Environment, 2019, 218, 117016.	4.1	9
422	Analyzing the impacts of urban expansion on air pollution in Vietnam using the SEAP platform. IOP Conference Series: Earth and Environmental Science, 0, 266, 012008.	0.3	0
423	Spatial, seasonal, and altitudinal heterogeneity in single scattering albedo of aerosols over an urban and a remote site: Radiative implications. Atmospheric Environment, 2019, 218, 116954.	4.1	4
424	Trends in MODIS and AERONET derived aerosol optical thickness over Northern Europe. Tellus, Series B: Chemical and Physical Meteorology, 2022, 71, 1554414.	1.6	11
425	Aerosol Optical Thickness over Large Urban Environments of the Arabian Peninsula—Speciation, Variability, and Distributions. Atmosphere, 2019, 10, 228.	2.3	20
426	Quantitative Aerosol Optical Depth Detection during Dust Outbreaks from Meteosat Imagery Using an Artificial Neural Network Model. Remote Sensing, 2019, 11, 1022.	4.0	18
427	Global vertically resolved aerosol direct radiation effect from three years of CALIOP data using the FORTH radiation transfer model. Atmospheric Research, 2019, 224, 138-156.	4.1	26
428	VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Longâ€Term Aerosol Data Records. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4026-4053.	3.3	128
429	Changing aerosol loadings over Central Himalayan region (2007–2016) – A satellite perspective. Atmospheric Environment, 2019, 207, 117-128.	4.1	4
430	Aerosol optical depth climatology over Central Asian countries based on Aqua-MODIS Collection 6.1 data: Aerosol variations and sources. Atmospheric Environment, 2019, 207, 205-214.	4.1	58
431	Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4658-4688.	3.3	140
432	Discriminating between clouds and aerosols in the CALIOP version 4.1 data products. Atmospheric Measurement Techniques, 2019, 12, 703-734.	3.1	80
433	Characterizing the 2015 Indonesia fire event using modified MODIS aerosol retrievals. Atmospheric Chemistry and Physics, 2019, 19, 259-274.	4.9	45
434	Whitecap Fraction From Satellite Measurements: Algorithm Description. Journal of Geophysical Research: Oceans, 2019, 124, 1827-1857.	2.6	28
435	Aerosol radiative effects from observations and modelling over the Yangtze River Basin, China from 2001 to 2015. International Journal of Climatology, 2019, 39, 3476-3491.	3.5	12
436	Interactive effects of changing stratospheric ozone and climate on tropospheric composition and air quality, and the consequences for human and ecosystem health. Photochemical and Photobiological Sciences, 2019, 18, 775-803.	2.9	45
437	Effect of Climate Change on Cloud Properties Over Arabian Sea and Central India. Pure and Applied Geophysics, 2019, 176, 2729-2738.	1.9	7
438	How should we aggregate data? Methods accounting for the numerical distributions, with an assessment of aerosol optical depth. Atmospheric Chemistry and Physics, 2019, 19, 15023-15048.	4.9	32

#	Article	IF	CITATIONS
439	Effects of Anthropogenic and Natural Forcings on the Summer Temperature Variations in East Asia during the 20th Century. Atmosphere, 2019, 10, 690.	2.3	4
440	Optimal Band Analysis of a Space-Based Multispectral Sensor for Urban Air Pollutant Detection. Atmosphere, 2019, 10, 631.	2.3	2
441	Investigation of CATS aerosol products and application toward global diurnal variation of aerosols. Atmospheric Chemistry and Physics, 2019, 19, 12687-12707.	4.9	20
442	Recent Increase in Winter Hazy Days over Central India and the Arabian Sea. Scientific Reports, 2019, 9, 17406.	3.3	47
443	Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign. Atmospheric Measurement Techniques, 2019, 12, 6557-6577.	3.1	39
444	The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry–climate model. Atmospheric Chemistry and Physics, 2019, 19, 15447-15466.	4.9	34
445	Investigations of MODIS AOD and cloud properties with CERES sensor based net cloud radiative effect and a NOAA HYSPLIT Model over Bangladesh for the period 2001–2016. Atmospheric Research, 2019, 215, 268-283.	4.1	26
446	Satellites See the World's Atmosphere. Meteorological Monographs, 2019, 59, 4.1-4.53.	5.0	36
447	Obtaining best parameterization scheme of RegCM 4.4 for aerosols and chemistry simulations over the CORDEX South Asia. Climate Dynamics, 2019, 53, 329-352.	3.8	19
448	Effects of Monsoon, Shamal and Levar winds on dust accumulation over the Arabian Sea during summer – The July 2016 case. Aeolian Research, 2019, 36, 27-44.	2.7	72
449	A seasonal analysis of aerosol-cloud-radiation interaction over Indian region during 2000–2017. Atmospheric Environment, 2019, 201, 212-222.	4.1	30
450	Evaluation and modification of SARA high-resolution AOD retrieval algorithm during high dust loading conditions over bright desert surfaces. Atmospheric Pollution Research, 2019, 10, 1005-1014.	3.8	14
451	Dynamics of Asian Summer Monsoon Response to Anthropogenic Aerosol Forcing. Journal of Climate, 2019, 32, 843-858.	3.2	40
452	Satellite remote sensing of aerosol optical depth: advances, challenges, and perspectives. Critical Reviews in Environmental Science and Technology, 2020, 50, 1640-1725.	12.8	68
453	Variation of the aerosol optical properties and validation of MODIS AOD products over the eastern edge of the Tibetan Plateau based on ground-based remote sensing in 2017. Atmospheric Environment, 2020, 223, 117257.	4.1	11
454	A New Satellite-Based Global Climatology of Dust Aerosol Optical Depth. Journal of Applied Meteorology and Climatology, 2020, 59, 83-102.	1.5	40
455	Developing a dust storm detection method combining Support Vector Machine and satellite data in typical dust regions of Asia. Advances in Space Research, 2020, 65, 1263-1278.	2.6	21
456	Role of Cyclone "Ockhi―in the re-distribution of aerosols and its impact on the precipitation over the Arabian Sea. Atmospheric Research, 2020, 235, 104797.	4.1	4

#	Article	IF	CITATIONS
457	Interdecadal variation in aerosol optical properties and their relationships to meteorological parameters over northeast China from 1980 to 2017. Chemosphere, 2020, 247, 125737.	8.2	15
458	Refining aerosol optical depth retrievals over land by constructing the relationship of spectral surface reflectances through deep learning: Application to Himawari-8. Remote Sensing of Environment, 2020, 251, 112093.	11.0	14
459	Dust Aerosol Retrieval Over the Oceans With the MODIS/VIIRS Dark Target Algorithm: 2. Nonspherical Dust Model. Earth and Space Science, 2020, 7, e2020EA001222.	2.6	12
460	Observation and quantification of aerosol outflow from southern Africa using spaceborne lidar. South African Journal of Science, 2020, 116, .	0.7	4
461	Investigation of Aerosol Climatology, Optical Characteristics and Variability over Egypt Based on Satellite Observations and In-Situ Measurements. Atmosphere, 2020, 11, 714.	2.3	7
462	Spatio-temporal distribution of aerosol optical depth and cloud properties over Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Remote Sensing Applications: Society and Environment, 2020, 20, 100401.	1.5	4
463	The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. Remote Sensing, 2020, 12, 2900.	4.0	43
464	Himawari-8 Aerosol Optical Depth (AOD) Retrieval Using a Deep Neural Network Trained Using AERONET Observations. Remote Sensing, 2020, 12, 4125.	4.0	31
465	Synergistic Use of Hyperspectral UV-Visible OMI and Broadband Meteorological Imager MODIS Data for a Merged Aerosol Product. Remote Sensing, 2020, 12, 3987.	4.0	9
466	The Impacts of Aerosol Emissions on Historical Climate in UKESM1. Atmosphere, 2020, 11, 1095.	2.3	5
467	Relationship between Remotely Sensed Ambient PM10 and PM2.5 and Urban Forest in Seoul, South Korea. Forests, 2020, 11, 1060.	2.1	6
468	Aerosol Effects on Lightning Characteristics: A Comparison of Polluted and Clean Regimes. Geophysical Research Letters, 2020, 47, e2019GL086825.	4.0	14
469	Spatiotemporal Trends of Aerosols over Urban Regions in Pakistan and Their Possible Links to Meteorological Parameters. Atmosphere, 2020, 11, 306.	2.3	31
470	Recent trend in the global distribution of aerosol direct radiative forcing from satellite measurements. Atmospheric Science Letters, 2020, 21, e975.	1.9	16
471	Inter-comparison of multi-satellites and Aeronet AOD over Indian Region. Atmospheric Research, 2020, 240, 104950.	4.1	21
472	Aerosol climatology and determination of different types over the semi-arid urban area of Tehran, Iran: Application of multi-platform remote sensing satellite data. Atmospheric Pollution Research, 2020, 11, 1625-1636.	3.8	19
473	Trends in aerosol optical properties over Eastern Europe based on MODIS-Aqua. Geoscience Frontiers, 2020, 11, 2169-2181.	8.4	28
474	Spatio-temporal variations in satellite based aerosol optical depths & aerosol index over Indian subcontinent: Impact of urbanization and climate change. Urban Climate, 2020, 32, 100598.	5.7	13

#	ARTICLE	IF	CITATIONS
475	Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar. Atmospheric Measurement Techniques, 2020, 13, 1-11.	3.1	15
476	Simulated polarization as a signature of aerosol type. Atmospheric Environment, 2020, 224, 117348.	4.1	3
477	Longâ€Term Trends of High Aerosol Pollution Events and Their Climatic Impacts in North America Using Multiple Satellite Retrievals and Modernâ€Era Retrospective Analysis for Research and Applications version 2. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031137.	3.3	16
478	Validation and Accuracy Analysis of the Collection 6.1 <scp>MODIS</scp> Aerosol Optical Depth Over the Westernmost City in China Based on the Sunâ€Sky Radiometer Observations From SONET. Earth and Space Science, 2020, 7, e2019EA001041.	2.6	22
479	The Distribution of Aerosols and Their Impacts on Chlorophyll―a Distribution in the South China Sea. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005490.	3.0	13
480	Study of aerosol-cloud-precipitation-meteorology interaction during a distinct weather event over the Indian region using WRF-Chem. Atmospheric Research, 2021, 247, 105144.	4.1	19
481	Estimation of global solar radiation data based on satellite-derived atmospheric parameters over the urban area of Mashhad, Iran. Environmental Science and Pollution Research, 2021, 28, 7167-7179.	5.3	19
482	Revisiting the levels of Aerosol Optical Depth in south-southeast Asia, Europe and USA amid the COVID-19 pandemic using satellite observations. Environmental Research, 2021, 193, 110514.	7.5	39
483	A High-Precision Aerosol Retrieval Algorithm (HiPARA) for Advanced Himawari Imager (AHI) data: Development and verification. Remote Sensing of Environment, 2021, 253, 112221.	11.0	58
484	CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 2744-2780.	6.3	75
485	Seasonal distribution and vertical structure of different types of aerosols in southwest China observed from CALIOP. Atmospheric Environment, 2021, 246, 118145.	4.1	26
486	Modls Dust AeroSol (MIDAS): a global fine-resolution dust optical depth data set. Atmospheric Measurement Techniques, 2021, 14, 309-334.	3.1	51
487	Uncertainty in Observational Estimates of the Aerosol Direct Radiative Effect and Forcing. Journal of Climate, 2021, 34, 195-214.	3.2	16
488	SEVIRI Aerosol Optical Depth Validation Using AERONET and Intercomparison with MODIS in Central and Eastern Europe. Remote Sensing, 2021, 13, 844.	4.0	3
489	Aerosol—Cloud Interaction with Summer Precipitation over Major Cities in Eritrea. Remote Sensing, 2021, 13, 677.	4.0	6
490	PM _{2.5} surface concentrations in southern West African urban areas based on sun photometer and satellite observations. Atmospheric Chemistry and Physics, 2021, 21, 1815-1834.	4.9	9
491	Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations. Remote Sensing, 2021, 13, 1151.	4.0	3
492	Aerosol Trends during the Dusty Season over Iran. Remote Sensing, 2021, 13, 1045.	4.0	12

#	Article	IF	CITATIONS
493	Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeolian Research, 2021, 50, 100679.	2.7	37
494	Global Aerosol Classification Based on Aerosol Robotic Network (AERONET) and Satellite Observation. Remote Sensing, 2021, 13, 1114.	4.0	8
495	Satellite remote sensing of atmospheric particulate matter mass concentration: Advances, challenges, and perspectives. Fundamental Research, 2021, 1, 240-258.	3.3	40
496	Assessment of the relative influences of long-range transport, fossil fuel and biomass burning from aerosol pollution under restricted anthropogenic emissions: A national scenario in India. Atmospheric Environment, 2021, 255, 118423.	4.1	9
497	Geospatial Distribution and Projection of Aerosol over Sub-Saharan Africa: Assessment from Remote Sensing and Other Platforms. Aerosol Science and Engineering, 2021, 5, 357-372.	1.9	1
498	The EMIT mission information yield for mineral dust radiative forcing. Remote Sensing of Environment, 2021, 258, 112380.	11.0	19
499	Lightning Enhancement in Moist Convection With Smoke‣aden Air Advected From Australian Wildfires. Geophysical Research Letters, 2021, 48, e2020GL092355.	4.0	8
500	City-level variations in aerosol optical properties and aerosol type identification derived from long-term MODIS/Aqua observations in the Sichuan Basin, China. Urban Climate, 2021, 38, 100886.	5.7	9
501	Long-term change in aerosol characteristics over Indo-Gangetic Basin: How significant is the impact of emerging anthropogenic activities?. Urban Climate, 2021, 38, 100880.	5.7	15
502	Modeling study of the impact of SO ₂ volcanic passive emissions on the tropospheric sulfur budget. Atmospheric Chemistry and Physics, 2021, 21, 11379-11404.	4.9	10
503	Climatological variations in aerosol optical depth and aerosol type identification in Liaoning of Northeast China based on MODIS data from 2002 to 2019. Science of the Total Environment, 2021, 781, 146810.	8.0	23
504	Adapting the Dark Target Algorithm to Advanced MERSI Sensor on the FengYun-3-D Satellite: Retrieval and Validation of Aerosol Optical Depth Over Land. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 8781-8797.	6.3	16
505	Assessment of aerosol burden over Ghana. Scientific African, 2021, 14, e00971.	1.5	1
506	Multi-scale Simulations of Atmospheric Pollutants Using a Non-hydrostatic Icosahedral Atmospheric Model. Springer Remote Sensing/photogrammetry, 2018, , 277-302.	0.4	4
507	Ocean–Atmosphere Interactions of Particles. Springer Earth System Sciences, 2014, , 171-246.	0.2	29
508	Perspectives and Integration in SOLAS Science. Springer Earth System Sciences, 2014, , 247-306.	0.2	2
509	Reducing the Uncertainties in Direct Aerosol Radiative Forcing. Space Sciences Series of ISSI, 2011, , 369-389.	0.0	2
510	Simulating and Evaluating Global Aerosol Distributions With the Online Aerosol oupled CASâ€FGOALS Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032097.	3.3	5

#	Article	IF	CITATIONS
511	The Impact of Winter Heating on Air Pollution in China. PLoS ONE, 2015, 10, e0117311.	2.5	101
513	Aerosol optical properties and direct radiative effect over Gobabeb, Namibia. Clean Air Journal, 2019, 29, .	0.5	3
514	MODIS Summer SUHI Cross-sections Anomalies over the Megacities of the Monsoon Asia Region and Global Trends. The Open Atmospheric Science Journal, 2017, 11, 121-136.	0.5	7
515	The ACCESS coupled model: documentation of core CMIP5 simulations and initial results. Australian Meteorological Magazine, 2013, 63, 83-99.	0.4	75
516	Study of Aerosol Optical Properties Based on Ground Measurements over Sichuan Basin, China. Aerosol and Air Quality Research, 2014, 14, 905-915.	2.1	27
517	Aerosol Climatology over the Bay of Bengal and Arabian Sea Inferred from Space-Borne Radiometers and Lidar Observations. Aerosol and Air Quality Research, 2016, 16, 2855-2868.	2.1	34
518	Evaluating Spatial and Temporal Variations of Aerosol Optical Depth and Biomass Burning over Southeast Asia Based on Satellite Data Products. Aerosol and Air Quality Research, 2015, 15, 2625-2640.	2.1	10
519	An Improved Aerosol Optical Depth Map Based on Machine-Learning and MODIS Data: Development and Application in South America. Aerosol and Air Quality Research, 2017, 17, 1623-1636.	2.1	20
520	Anatomy of a Severe Dust Storm in the Middle East: Impacts on Aerosol Optical Properties and Radiation Budget. Aerosol and Air Quality Research, 2020, 20, 155-165.	2.1	8
521	AOD Trends over Megacities Based on Space Monitoring Using MODIS and MISR. American Journal of Climate Change, 2012, 01, 117-131.	0.9	49
522	Analysis of the Aerosol Optical Depth and the Air Quality in Qingdao, China. Journal of Software, 2011, 6, .	0.6	3
523	Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. Atmospheric Chemistry and Physics, 2020, 20, 11955-11977.	4.9	52
568	Seasonal distribution of aerosol properties over Europe and their impact on UV irradiance. Atmospheric Measurement Techniques, 2009, 2, 593-608.	3.1	30
569	The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties. Atmospheric Measurement Techniques, 2016, 9, 3893-3910.	3.1	8
577	Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring. Earth System Science Data, 2020, 12, 3573-3620.	9.9	90
580	LONG-TERM VARIABILITY OF MODIS 3 KM AEROSOL OPTICAL DEPTH OVER INDIAN REGION. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, IV-5, 359-366.	0.0	8
581	Hemispheric black carbon increase after the 13th-century MÄori arrival in New Zealand. Nature, 2021, 598, 82-85.	27.8	20
602	Characteristics of Haze Days Variation of Beijing in Recent 33 Years and Its Causative Factors. , 2015, , .		0

#	Article	IF	CITATIONS
605	Energy-Efficiency and Performance Comparison of Aerosol Optical Depth Retrieval on Distributed Embedded SoC Architectures. , 2017, , 341-358.		0
606	Orbital Observations of Dust Lofted by Daytime Convective Turbulence. Space Sciences Series of ISSI, 2017, , 89-142.	0.0	0
607	Trend Analysis of Aerosol Optical Depth and Ångström Exponent Anomaly over East Africa. Atmospheric and Climate Sciences, 2017, 07, 588-603.	0.3	4
608	Incorporating Local Road Grades and Times-of-Day Traffic into Vehicle Specific Power Profiling for Urban Freeway Vehicle Emission Estimation. International Journal of Environmental Sciences & Natural Resources, 2017, 7, .	0.1	0
609	Error analysis of the greenhouse-gases monitor instrument short wave infrared XCO2 retrieval algorithm. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	4
610	Optical Characterization of Atmospheric Aerosols via Airborne Spectral Imaging and Self-Organizing Map for Climate Change Diagnostics. Open Access Library Journal (oalib), 2018, 05, 1-10.	0.2	1
611	VARIABILIDADE ESPAÇO-TEMPORAL DA PROFUNDIDADE ÓTICA DE AEROSSÓIS EM REGIÕES DE CERRADO E PANTANAL NA REGIÃ∱O CENTRAL DO BRASIL. Nativa, 2018, 6, 56.	0.4	3
612	An improved dense dark vegetation based algorithm for aerosol optical thickness retrieval from hyperspectral data. , 2019, , .		0
613	Monitoring and Assessment of Air Pollution. Environmental Chemistry for A Sustainable World, 2020, , 9-35.	0.5	1
615	Comparison of MODIS Cloud Mask Products with Ground-Based Millimeter-Wave Radar. , 2020, , .		1
616	Evaluation and comparison of MODIS and VIIRS aerosol optical depth (AOD) products over regions in the Eastern Mediterranean and the Black Sea. Atmospheric Environment, 2022, 268, 118784.	4.1	15
617	Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations. Atmospheric Measurement Techniques, 2020, 13, 1387-1412.	3.1	7
618	Spatio-temporal distribution of aerosol direct radiative forcing over mid-latitude regions in north hemisphere estimated from satellite observations. Atmospheric Research, 2022, 266, 105938.	4.1	12
619	15-year variability of desert dust optical depth on global and regional scales. Atmospheric Chemistry and Physics, 2021, 21, 16499-16529.	4.9	22
620	Long-term multidataset direct aerosol radiative forcing and its efficiencies: Intercomparisons and uncertainties. Atmospheric Research, 2022, 267, 105964.	4.1	5
621	Prediction of Solar Irradiance over the Arabian Peninsula: Satellite Data, Radiative Transfer Model, and Machine Learning Integration Approach. Applied Sciences (Switzerland), 2022, 12, 717.	2.5	6
622	Comparison of the Anthropogenic Emission Inventory for CMIP6 Models with a Country-Level Inventory over China and the Simulations of the Aerosol Properties. Advances in Atmospheric Sciences, 2022, 39, 80-96.	4.3	10
623	Quantifying the impact of biomass burning and dust storm activities on aerosol characteristics over the Indo-Gangetic Basin. Atmospheric Environment, 2022, 270, 118893.	4.1	8

		Citation Report	
#	Article	IF	CITATIONS
624	Intensification of sub-daily rainfall extremes in a low-rise urban area. Urban Climate, 2022, 42, 10	01124. 5.7	20
625	Global estimation of clear-sky shortwave aerosol direct radiative effects based on CALIPSO observations. International Journal of Remote Sensing, 2022, 43, 1514-1548.	2.9	1
626	The Influence of Underlying Land Cover on the Accuracy of MODIS C6.1 Aerosol Products—A C Study over the Yangtze River Delta Region of China. Remote Sensing, 2022, 14, 938.	Case 4.0	3
627	Variability of Aerosols and Clouds Over North Indian and Myanmar During the COVID-19 Lockdo Period. Frontiers in Environmental Science, 2022, 10, .	wn 3.3	2
628	Spatial distribution of aerosol optical depth over India during COVID-19 lockdown phase-1. Spat Information Research, 2022, 30, 417-426.	ial 2.2	4
629	Aerosol emissions and gravity waves of Taal volcano. Scientific Reports, 2022, 12, 5292.	3.3	0
630	Sources of aerosol optical depth and its distribution in Abbay basin, Ethiopia. Applied Geomatics	5, 0, , 1. 2.5	0
631	TROPOMI-Retrieved Underwater Light Attenuation in Three Spectral Regions in the Ultraviolet a Blue. Frontiers in Marine Science, 2022, 9, .	nd 2.5	5
632	A Deep-Neural-Network-Based Aerosol Optical Depth (AOD) Retrieval from Landsat-8 Top of Atn Data. Remote Sensing, 2022, 14, 1411.	nosphere 4.0	8
633	Automatic boat detection based on diffusion and radiation characterization of boat lights during night for VIIRS DNB imaging data. Optics Express, 2022, 30, 13024.	g 3.4	5
634	Validation of Terra/MODIS 3KM and 10KM Aerosol Optical Depth Over Yuan Island in the North Sea. , 2021, , .	Yellow	1
635	A novel method of identifying and analysing oil smoke plumes based on MODIS and CALIPSO sa data. Atmospheric Chemistry and Physics, 2022, 22, 5071-5098.	tellite 4.9	1
638	Global maps of aerosol single scattering albedo using combined CERES-MODIS retrieval. Atmosp Chemistry and Physics, 2022, 22, 5365-5376.	oheric 4.9	5
639	Zonal variations in the vertical distribution of atmospheric aerosols over the Indian region and th consequent radiative effects. Atmospheric Chemistry and Physics, 2022, 22, 6067-6085.	ne 4.9	4
640	New estimates of aerosol radiative effects over India from surface and satellite observations. Atmospheric Research, 2022, 276, 106254.	4.1	7
641	Influence of Dust Aerosols on Snow Cover Over the Tibetan Plateau. Frontiers in Environmental Science, 2022, 10, .	3.3	3
642	Effect of Spectral Variability of Aerosol Optical Properties on Direct Aerosol Radiative Effect. Frontiers in Remote Sensing, 0, 3, .	3.5	0
643	Climatology of aerosol component concentrations derived from multi-angular polarimetric POLE observations using GRASP algorithm. Earth System Science Data, 2022, 14, 3439-3469.	DER-3 9.9	16

#	Article	IF	CITATIONS
644	Evaluation of aerosol optical depths and clear-sky radiative fluxes of the CERES EditionÂ4.1 SYN1deg data product. Atmospheric Chemistry and Physics, 2022, 22, 10115-10137.	4.9	3
645	A deep insight into state-level aerosol pollution in India: Long-term (2005–2019) characteristics, source apportionment, and future projection (2023). Atmospheric Environment, 2022, 289, 119312.	4.1	4
646	Climatology and model prediction of aerosol optical properties over the Indo-Gangetic Basin in north India. Environmental Monitoring and Assessment, 2022, 194, .	2.7	0
647	Dust emission and transport in the Aral Sea region. Geoderma, 2022, 428, 116177.	5.1	5
648	Additional characterization of Libya-4 in support of post-launch vicarious calibration of satellite imagers. , 2022, , .		2
649	Investigating the impact of drought and dust on oak trees decline in the West of Iran. Arabian Journal of Geosciences, 2022, 15, .	1.3	1
650	Circular polarization in atmospheric aerosols. Atmospheric Chemistry and Physics, 2022, 22, 13581-13605.	4.9	9
651	Evaluation of MODIS Dark Target AOD Product with 3 and 10 km Resolution in Amazonia. Atmosphere, 2022, 13, 1742.	2.3	4
652	Global validation and comparison of MODIS DT and POLDER-3 GRASP aerosol products over ocean. Atmospheric Research, 2023, 281, 106480.	4.1	1
653	Overview of aerosol–cloud interactions over Indian summer monsoon region using remote sensing observations. , 2023, , 171-190.		0
654	A bibliometric and scientometric: analysis towards global pattern and trends related to aerosol and precipitation studies from 2002 to 2022. Air Quality, Atmosphere and Health, 2023, 16, 613-628.	3.3	7
655	Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters. Energies, 2022, 15, 9406.	3.1	2
656	Quantitative Evaluation of Dust and Black Carbon Column Concentration in the MERRA-2 Reanalysis Dataset Using Satellite-Based Component Retrievals. Remote Sensing, 2023, 15, 388.	4.0	2
658	Seasonal evolution of aerosol loading and its vertical distribution in northeastern China from long-term satellite observations and model reanalysis. Atmospheric Environment, 2023, 302, 119720.	4.1	3
659	The global spatial-temporal distribution and EOF analysis of AOD based on MODIS data during 2003–2021. Atmospheric Environment, 2023, 302, 119722.	4.1	8
660	Climatology, trend of aerosol-cloud parameters and their correlation over the Northern Indian Ocean. Geoscience Frontiers, 2023, 14, 101563.	8.4	4
661	Long-term comparison of near-surface and columnar aerosols over two contrasting environments in peninsular India. , 2022, , .		0
662	Assessing the Aerosols, Clouds and Their Relationship Over the Northern Bay of Bengal Using a Global Climate Model. Earth and Space Science, 2023, 10, .	2.6	3

#	Article	IF	CITATIONS
663	First assessment of Aeolus Standard Correct Algorithm particle backscatter coefficient retrievals in the eastern Mediterranean. Atmospheric Measurement Techniques, 2023, 16, 1017-1042.	3.1	5
664	The Role of Midlatitude Cyclones in the Emission, Transport, Production, and Removal of Aerosols in the Northern Hemisphere. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	0
665	A new experimental set-up for aerosol stability investigations in microgravity conditions. Comptes Rendus - Mecanique, 2023, 351, 183-197.	0.7	0
666	A study on optical properties, classification, and transport of aerosols during the smog period over South Asia using remote sensing. Environmental Science and Pollution Research, 2023, 30, 69096-69121.	5.3	0
667	Retrieval uncertainty and consistency of Suomi-NPP VIIRS Deep Blue and Dark Target aerosol products under diverse aerosol loading scenarios over South Asia. Environmental Pollution, 2023, 331, 121913.	7.5	0
668	Impact of Vegetation Fires on Regional Aerosol Black Carbon Over South and East Asia. , 2023, , 465-481.		1
669	Relationship Between the Aerosol Loadings Over the Bay of Bengal and the Arabian Sea in the Early Summer and Asian Monsoon Rainfall Anomalies, and the Role of SST Anomalies in the Indian Ocean. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	0
670	Satellite-based, top-down approach for the adjustment of aerosol precursor emissions over East Asia: the TROPOspheric Monitoring Instrument (TROPOMI) NO ₂ product and the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical depth (AOD) data fusion product and its proxy. Atmospheric Measurement Techniques. 2023. 16. 3039-3057.	3.1	2
671	Assessment of severe aerosol events from NASA MODIS and VIIRS aerosol products for data assimilation and climate continuity. Atmospheric Measurement Techniques, 2023, 16, 2547-2573.	3.1	0
672	A satellite-observation based study on responses of clouds to aerosols over South Asia during IOD events of south-west monsoon season. Atmospheric Pollution Research, 2023, 14, 101861.	3.8	0
674	Assessment of spatio-temporal variation in AOD over four coal mine sites of Assam through satellite observation. Journal of Environmental Studies and Sciences, 0, , .	2.0	0
675	Retrieval of Aerosol Optical Properties via an All-Sky Imager and Machine Learning: Uncertainty in Direct Normal Irradiance Estimations. , 0, , .		0
676	Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean. Toxics, 2023, 11, 813.	3.7	1
677	Aerosol Optical Properties and Type Retrieval via Machine Learning and an All-Sky Imager. Atmosphere, 2023, 14, 1266.	2.3	0
678	Aerosol processes perturb cloud trends over Bay of Bengal: observational evidence. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	0
679	The Polluted Boundary Layer. Springer Atmospheric Sciences, 2023, , 295-320.	0.3	0
681	Frontiers in Satelliteâ€Based Estimates of Cloudâ€Mediated Aerosol Forcing. Reviews of Geophysics, 2023, 61, .	23.0	0
682	Anthropogenic Aerosols Weaken Land–Atmosphere Coupling Over North China. Geophysical Research Letters, 2023, 50, .	4.0	1

#	Article	IF	CITATIONS
683	Review of methods to account for the solar spectral influence on photovoltaic device performance. Energy, 2023, , 129461.	8.8	0
684	Satellite Observation Based Air Quality Study. Journal of Korean Society for Atmospheric Environment, 2023, 39, 571-587.	1.1	1
685	Estimation of high-resolution aerosol optical depth (AOD) from Landsat and Sentinel images using SEMARA model over selected locations in South Asia. Atmospheric Research, 2024, 298, 107141.	4.1	0
686	An intercomparison of SEMARA high-resolution AOD and MODIS operational AODs. Atmospheric Pollution Research, 2024, 15, 102023.	3.8	0
687	Aerosol radiative forcing of forest fires unprecedented in South Korea (2022) captured by Korean geostationary satellites, GK-2A AMI and GK-2B GEMS. Environmental Pollution, 2024, 346, 123464.	7.5	0
688	Two decadal (2003–2022) based trend analysis of aerosol optical depth (AOD) and its impact on cloud properties over a highly polluted region of India. Arabian Journal of Geosciences, 2024, 17, .	1.3	0
689	A CloudSat and CALIPSOâ€Based Evaluation of the Effects of Thermodynamic Instability and Aerosol Loading on Amazon Basin Deep Convection and Lightning. Journal of Geophysical Research D: Atmospheres, 2024, 129, .	3.3	0
690	Opinion: Aerosol remote sensing over the next 20 years. Atmospheric Chemistry and Physics, 2024, 24, 2113-2127.	4.9	Ο