SEPARATING HABITAT INVASIBILITY BY ALIEN PLAN

Ecology 89, 1541-1553

DOI: 10.1890/07-0682.1

Citation Report

#	Article	IF	CITATIONS
1	Fifty years of invasion ecology $\hat{a} \in \text{``the legacy of Charles Elton. Diversity and Distributions, 2008, 14, 161-168.}$	1.9	254
2	Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology, 2009, 90, 2734-2744.	1.5	203
3	Human-related processes drive the richness of exotic birds in Europe. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 47-53.	1.2	61
4	Identifying hotspots for plant invasions and forecasting focal points of further spread. Journal of Applied Ecology, 2009, 46, 1219-1228.	1.9	72
5	Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology, 2009, 97, 393-403.	1.9	826
6	Local and landscape correlates of nonâ€native species invasion in restored wetlands. Ecography, 2009, 32, 1031-1039.	2.1	42
7	Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecology Letters, 2009, 12, 1174-1183.	3.0	100
8	Invasion success of alien plants: do habitat affinities in the native distribution range matter?. Global Ecology and Biogeography, 2009, 18, 372-382.	2.7	60
9	Floristic homogenization by native ruderal and alien plants in northâ€east Spain: the effect of environmental differences on a regional scale. Global Ecology and Biogeography, 2009, 18, 563-574.	2.7	19
10	European map of alien plant invasions based on the quantitative assessment across habitats. Diversity and Distributions, 2009, 15, 98-107.	1.9	205
11	The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diversity and Distributions, 2009, 15, 891-903.	1.9	246
12	Neophyte species richness at the landscape scale under urban sprawl and climate warming. Diversity and Distributions, 2009, 15, 928-939.	1.9	50
13	Species Accounts of 100 of the Most Invasive Alien Species in Europe., 2009,, 269-374.		6
14	Glossary of the Main Technical Terms Used in the Handbook. , 2009, , 375-379.		19
15	Alien Vascular Plants of Europe. , 2009, , 43-61.		97
16	Extraâ€regional residence time as a correlate of plant invasiveness: European archaeophytes in North America. Ecology, 2009, 90, 2589-2597.	1.5	33
17	Invasion level of alien plants in semi-natural agricultural habitats in boreal region. Agriculture, Ecosystems and Environment, 2010, 138, 109-115.	2.5	28
18	Differences in the trait compositions of non-indigenous and native plants across Germany. Biological Invasions, 2010, 12, 2001-2012.	1.2	25

#	ARTICLE	IF	CITATIONS
19	Impact assessment revisited: improving the theoretical basis for management of invasive alien species. Biological Invasions, 2010, 12, 2025-2035.	1.2	78
20	Hieracium pilosella invasion in the Tierra del Fuego steppe, Southern Patagonia. Biological Invasions, 2010, 12, 2523-2535.	1.2	30
21	Consistency in the habitat degree of invasion for three invasive plant species across Mediterranean islands. Biological Invasions, 2010, 12, 2537-2548.	1.2	33
22	Explaining the successful introduction of the alpine marmot in the Pyrenees. Biological Invasions, 2010, 12, 3205-3217.	1.2	11
23	Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biological Invasions, 2010, 12, 3913-3933.	1.2	93
26	Disentangling the relative effects of environmental versus human factors on the abundance of native and alien plant species in Mediterranean sandy shores. Diversity and Distributions, 2010, 16, 537-546.	1.9	62
27	Environmental factors determining invasibility of urban waters for exotic macroinvertebrates. Diversity and Distributions, 2010, 16, 1009-1021.	1.9	17
28	Are island plant communities more invaded than their mainland counterparts?. Journal of Vegetation Science, 2010, 21, 438-446.	1.1	20
29	Comparing naturalized alien plants and recipient habitats across an east–west gradient in the Mediterranean Basin. Journal of Biogeography, 2010, 37, 1811-1823.	1.4	30
30	Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecology and Biogeography, 2010, 19, 317-331.	2.7	154
31	Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12157-12162.	3.3	470
32	Invasive Species, Environmental Change and Management, and Health. Annual Review of Environment and Resources, 2010, 35, 25-55.	5.6	936
33	Risk analysis of potential invasive plants in Spain. Journal for Nature Conservation, 2010, 18, 34-44.	0.8	66
34	Nonâ€native flora of Italy: Species distribution and threats. Plant Biosystems, 2010, 144, 12-28.	0.8	103
35	The importance of quantifying propagule pressure to understand invasion: an examination of riparian forest invasibility. Ecology, 2011, 92, 1314-1322.	1.5	57
36	Mechanisms of Plant Invasions of North American and European Grasslands. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 133-153.	3.8	84
37	Desempenho germinativo da invasora Leucaena leucocephala (Lam.) de Wit. e comparação com Caesalpinia ferrea Mart. ex Tul. e Caesalpinia pulcherrima (L.) Sw. (Fabaceae). Acta Botanica Brasilica, 2011, 25, 191-197.	0.8	9
38	Alien and native plants show contrasting responses to climate and land use in Europe. Global Ecology and Biogeography, 2011, 20, 367-379.	2.7	36

#	Article	IF	CITATIONS
39	Invasion patterns across multiple scales by Hieracium species over 25 years in tussock grasslands of New Zealand's South Island. Austral Ecology, 2011, 36, 559-570.	0.7	18
40	Impact of climate and land use type on the distribution of Finnish casual arable weeds in Europe. Weed Research, 2011, 51, 201-208.	0.8	24
41	The role of longâ€distance seed dispersal in the local population dynamics of an invasive plant species. Diversity and Distributions, 2011, 17, 725-738.	1.9	43
42	Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Diversity and Distributions, 2011, 17, 1099-1110.	1.9	95
43	Modelling the impact of climate and land use change on the geographical distribution of leaf anatomy in a temperate flora. Ecography, 2011, 34, 507-518.	2.1	10
44	Long-term persistence and spatial assortment of nonnative plant species in second-growth forests. Ecography, 2011, 34, 649-658.	2.1	16
45	Do biodiversity and human impact influence the introduction or establishment of alien mammals?. Oikos, 2011, 120, 57-64.	1.2	26
46	Management intensity affects the relationship between non-native and native species in subtropical wetlands. Applied Vegetation Science, 2011, 14, 210-220.	0.9	31
47	The Global Index of Vegetationâ€Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science, 2011, 22, 582-597.	1.1	251
48	Traits of winner and loser species indicate drivers of herb layer changes over two decades in forests of NW Germany. Journal of Vegetation Science, 2011, 22, 516-527.	1.1	30
49	Vegetation databases as a tool to analyse factors affecting the range expansion of the forest understory herb <i>Ceratocapnos claviculata</i> . Journal of Vegetation Science, 2011, 22, 726-740.	1.1	4
50	Floristic diversity patterns in the White Carpathians biosphere reserve, Czech Republic. Biologia (Poland), 2011, 66, 266-274.	0.8	22
51	Aquatic pollution increases the relative success of invasive species. Biological Invasions, 2011, 13, 165-176.	1.2	138
52	Ecological preferences of alien plant species in North-Eastern Germany. Biological Invasions, 2011, 13, 2691-2701.	1.2	32
53	Effective Control of Aquatic Invasive Species in Tropical Australia. Environmental Management, 2011, 48, 568-576.	1.2	5
54	Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecological Monographs, 2011, 81, 277-293.	2.4	83
56	The South African National Vegetation Database: History, development, applications, problems and future. South African Journal of Science, 2012, 108, .	0.3	23
57	Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytologist, 2012, 196, 383-396.	3.5	318

#	ARTICLE	IF	Citations
58	EU DAISIE Research Project: Wantedâ€"Death Penalty to Keep Native Species Competitive?. Journal of Agricultural and Environmental Ethics, 2012, 25, 597-606.	0.9	3
59	Diversity and distribution of the urban tree population in ten major Nordic cities. Urban Forestry and Urban Greening, 2012, 11, 31-39.	2.3	143
60	Statistical Learning in Palaeolimnology. Developments in Paleoenvironmental Research, 2012, , 249-327.	7. 5	41
61	Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types. Biological Conservation, 2012, 145, 179-184.	1.9	87
62	How do locally infrequent species influence numerical classification? A simulation study. Community Ecology, 2012, 13, 64-71.	0.5	5
63	Forest community survey and the structural characteristics of forests in China. Ecography, 2012, 35, 1059-1071.	2.1	96
64	Cleft, Crevice, or the Inner Thigh: â€~Another Place' for the Establishment of the Invasive Barnacle Austrominius modestus (Darwin, 1854). PLoS ONE, 2012, 7, e48863.	1.1	20
65	Relative roles of natural and anthropogenic drivers of watershed invasibility in riverine ecosystems. Biological Invasions, 2012, 14, 1931-1945.	1.2	19
66	Neophyte Invasion in Moldavia (Eastern Romania) in Different Habitat Types. Folia Geobotanica, 2012, 47, 215-229.	0.4	14
67	Ancient and recent alien species in temperate forests: steady state and time lags. Biological Invasions, 2012, 14, 1331-1342.	1.2	48
68	Plant traits across different habitats of the Italian Alps: a comparative analysis between native and alien species. Alpine Botany, 2012, 122, 11-21.	1.1	33
69	Positive diversity–invasibility relationships across multiple scales in Finnish agricultural habitats. Biological Invasions, 2012, 14, 1379-1391.	1.2	14
70	Landscapeâ€scale determinants of nonâ€native fish communities. Diversity and Distributions, 2012, 18, 282-293.	1.9	12
71	Projecting trends in plant invasions in Europe under different scenarios of future landâ€use change. Global Ecology and Biogeography, 2012, 21, 75-87.	2.7	89
72	Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Global Change Biology, 2012, 18, 44-62.	4.2	212
73	Regional context affects native and alien plant species richness across habitat types. Applied Vegetation Science, 2012, 15, 4-13.	0.9	22
74	Low persistence of a monocarpic invasive plant in historical sites biases our perception of its actual distribution. Journal of Biogeography, 2012, 39, 1293-1302.	1.4	18
75	Potential natural vegetation: reburying or reboring?. Journal of Vegetation Science, 2012, 23, 596-604.	1.1	85

#	Article	IF	Citations
76	Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Global Ecology and Biogeography, 2012, 21, 545-555.	2.7	96
77	The vulnerability of habitats to plant invasion: disentangling the roles of propagule pressure, time and sampling effort. Global Ecology and Biogeography, 2012, 21, 778-786.	2.7	43
78	Phylogenetic beta diversity of native and alien species in European urban floras. Global Ecology and Biogeography, 2012, 21, 751-759.	2.7	34
79	How to assess hydromorphology? A comparison of Ukrainian and German approaches. Environmental Earth Sciences, 2012, 65, 1483-1499.	1.3	32
80	Biological control as an invasion process: disturbance and propagule pressure affect the invasion success of Lythrum salicaria biological control agents. Biological Invasions, 2012, 14, 255-271.	1.2	25
81	Quantifying the landscape influence on plant invasions in Mediterranean coastal habitats. Landscape Ecology, 2013, 28, 891-903.	1.9	53
82	Hierarchical factors impacting the distribution of an invasive species: landscape context and propagule pressure. Landscape Ecology, 2013, 28, 81-93.	1.9	15
83	Invasion syndromes: hypotheses on relationships among invasive species attributes and characteristics of invaded sites. Journal of Arid Land, 2013, 5, 275-283.	0.9	33
84	The importance of roads, nutrients, and climate for invasive plant establishment in riparian areas in the northwestern United States. Biological Invasions, 2013, 15, 1601-1612.	1.2	33
85	Postâ€fire invasion and subsequent extinction of <i><scp>C</scp>onyza</i> spp. in <scp>M</scp> editerranean forests is mostly explained by local factors. Weed Research, 2013, 53, 470-478.	0.8	9
86	Experimental restoration of coppice-with-standards: Response of understorey vegetation from the conservation perspective. Forest Ecology and Management, 2013, 310, 234-241.	1.4	69
87	Assessing the level of plant invasion: A multi-scale approach based on vegetation plots. Plant Biosystems, 2013, 147, 1148-1162.	0.8	31
88	Many alien invasive plants disperse against the direction of stream flow in riparian areas. Ecological Complexity, 2013, 15, 26-32.	1.4	28
89	Current mismatch between research and conservation efforts: The need to study co-occurring invasive plant species. Biological Conservation, 2013, 160, 121-129.	1.9	148
90	Associations of invasive alien species and other threats to IUCN Red List species (Chordata:) Tj ETQq0 0 0 rgBT /C	Overlock 1	0 Tf 50 182 T
91	Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants. Nature Communications, 2013, 4, 2454.	5.8	32
93	Comparative Patterns of Plant Invasions in the Mediterranean Biome. PLoS ONE, 2013, 8, e79174.	1.1	50
94	Geographical Constraints Are Stronger than Invasion Patterns for European Urban Floras. PLoS ONE, 2014, 9, e85661.	1.1	22

#	Article	IF	Citations
95	Assessing spatio-temporal rates, patterns and determinants of biological invasions in forest ecosystems. The case of Acacia species in NW Spain. Forest Ecology and Management, 2014, 329, 206-213.	1.4	39
96	Weak effects of habitat type on susceptibility to invasive freshwater species: an Italian case study. Aquatic Conservation: Marine and Freshwater Ecosystems, 2014, 24, 841-852.	0.9	17
97	Une liste des plantes vasculaires exotiques nuisibles du Québec: nouvelle approche pour la sélection des espÃ"ces et l'aide à la décision. Ecoscience, 2014, 21, 133-156.	0.6	7
98	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	2.7	32
99	Invasion trajectory of alien trees: the role of introduction pathway and planting history. Global Change Biology, 2014, 20, 1527-1537.	4.2	112
100	Alien species pool influences the level of habitat invasion in intercontinental exchange of alien plants. Global Ecology and Biogeography, 2014, 23, 1366-1375.	2.7	23
101	Patterns in understory woody diversity and soil nitrogen across native- and non-native-urban tropical forests. Forest Ecology and Management, 2014, 318, 34-43.	1.4	14
102	Habitat requirements, short-term population dynamics and coexistence of native and invasive Impatiens species: a field study. Biological Invasions, 2014, 16, 177-190.	1.2	39
103	Alien plant species distribution in the European Alps: influence of species' climatic requirements. Biological Invasions, 2014, 16, 815-831.	1.2	29
104	Fifty years of plant invasion dynamics in Slovakia along a 2,500Âm altitudinal gradient. Biological Invasions, 2014, 16, 1627-1638.	1.2	35
105	Substitutable habitats? The biophysical and anthropogenic drivers of an exotic bird's distribution. Biological Invasions, 2014, 16, 415-427.	1.2	32
106	Beta diversity of urban floras among <scp>E</scp> uropean and nonâ€ <scp>E</scp> uropean cities. Global Ecology and Biogeography, 2014, 23, 769-779.	2.7	90
107	Predicting the invadedness of protected areas. Diversity and Distributions, 2014, 20, 430-439.	1.9	15
108	Two coâ€occurring invasive woody shrubs alter soil properties and promote subdominant invasive species. Journal of Applied Ecology, 2014, 51, 124-133.	1.9	79
109	Patterns and Changes in the Nonnative Flora of Worcester County, Massachusetts. American Midland Naturalist, 2014, 172, 37-60.	0.2	23
110	Habitat invasion research: where vegetation science and invasion ecology meet. Journal of Vegetation Science, 2014, 25, 1181-1187.	1.1	29
111	Patterns of Privet: Urbanizing Watersheds, Invasive Ligustrum sinense, and Performance of Native Plant Species in Piedmont Floodplain Forests. Ecosystems, 2014, 17, 990-1001.	1.6	7
112	Scale-area curves: a tool for understanding the ecology and distribution of invasive tree species. Biological Invasions, 2014, 16, 553-563.	1.2	15

#	Article	IF	CITATIONS
113	Community invasibility and invasion by non-native Fraxinus pennsylvanica trees in a degraded tropical forest. Biological Invasions, 2014, 16, 2747-2755.	1.2	9
114	Plant invasions are contextâ€dependent: multiscale effects of climate, human activity and habitat. Diversity and Distributions, 2014, 20, 720-731.	1.9	77
115	Effects of built landscape on taxonomic homogenization: Two case studies of private gardens in the French Mediterranean. Landscape and Urban Planning, 2014, 129, 12-21.	3.4	13
116	Quantifying invasion resistance: the use of recruitment functions to control for propagule pressure. Ecology, 2014, 95, 920-929.	1.5	25
117	Succession of Saline Vegetation in Slovakia after a Large-Scale Disturbance. Annales Botanici Fennici, 2014, 51, 285-296.	0.0	10
118	Identifying areas of high invasion risk: a general model and an application to Mexico. Revista Mexicana De Biodiversidad, 2015, 86, 208-216.	0.4	15
119	Stream Structural Limitations on Invasive Communities in Urban Riparian Areas. Invasive Plant Science and Management, 2015, 8, 353-362.	0.5	7
120	Intercontinental comparison of habitat levels of invasion between temperate North America and Europe. Ecology, 2015, 96, 3363-3373.	1.5	23
121	Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban–rural tropical forest gradient. Global Change Biology, 2015, 21, 4481-4496.	4.2	14
122	A review on the animal xenodiversity in Sicilian inland waters (Italy). Advances in Oceanography and Limnology, 2015, 6, .	0.2	14
123	High diversity in an urban habitat: are some animal assemblages resilient to long-term anthropogenic change?. Urban Ecosystems, 2015, 18, 449-463.	1.1	35
124	Identification of invasion status using a habitat invasibility assessment model: The case of Prosopis species in the dry zone of Myanmar. Journal of Arid Environments, 2015, 120, 87-94.	1.2	12
125	An analysis of weed floras in nurseries: Do polytunnels serve as ports of entry for alien plant species?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2015, 213, 6-11.	0.6	2
126	The phytosociology and ecology of saline vegetation with <i>Scorzonera parviflora</i> across the Pannonian-Western Balkan gradient. Phytocoenologia, 2015, 45, 33-47.	1.2	9
127	Nativeâ€range habitats of invasive plants: are they similar to invadedâ€range habitats and do they differ according to the geographical direction of invasion?. Diversity and Distributions, 2015, 21, 312-321.	1.9	43
128	The response of plant community diversity to alien invasion: evidence from a sand dune time series. Biodiversity and Conservation, 2015, 24, 371-392.	1.2	53
129	Alien plant species: A real fear for urban ecosystems in Europe?. Urban Ecosystems, 2015, 18, 355-370.	1.1	20
130	Comparison of the floodplain forest floristic composition of two riparian corridors: species richness, alien species and the effect of water regime changes. Biologia (Poland), 2015, 70, 208-217.	0.8	17

#	Article	IF	CITATIONS
131	Invasion patterns in riparian habitats: The role of anthropogenic pressure in temperate streams. Plant Biosystems, 2015, 149, 289-297.	0.8	29
132	Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Global Ecology and Biogeography, 2015, 24, 786-794.	2.7	66
133	The role of roads and urban area in occurrence of an ornamental invasive weed: a case of Rudbeckia laciniata L. Urban Ecosystems, 2015, 18, 1021-1030.	1.1	21
134	Combining the effects of surrounding land-use and propagule pressure to predict the distribution of an invasive plant. Biological Invasions, 2015, 17, 477-495.	1.2	25
135	Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology, 2015, 96, 762-774.	1.5	166
136	The importance of globalisation in driving the introduction and establishment of alien species in Europe. Ecography, 2016, 39, 1118-1128.	2.1	11
137	Drivers of Plant Invasion at Broad and Fine Scale in Short Temperate Streams. River Research and Applications, 2016, 32, 1730-1739.	0.7	14
138	Comparing an exotic shrub's impact with that of a native life form analogue: $\langle i \rangle$ Baccharis halimifolia $\langle i \rangle$ vs $\langle i \rangle$ Tamarix gallica $\langle i \rangle$ in Mediterranean salt marsh communities. Journal of Vegetation Science, 2016, 27, 812-823.	1.1	8
139	Food Web Theory and Ecological Restoration. , 2016, , 301-329.		13
140	Accounting for residential propagule pressure improves prediction of urban plant invasion. Ecosphere, 2016, 7, e01232.	1.0	15
141	Do Landscape Structure and Socio-Economic Variables Explain the Solidago Invasion?. Folia Geobotanica, 2016, 51, 13-25.	0.4	14
142	Tree plantations are hot-spots of plant invasion in a landscape with heterogeneous land-use. Agriculture, Ecosystems and Environment, 2016, 226, 88-98.	2.5	32
143	The role of habitat, landscape structure and residence time on plant species invasions in a neotropical landscape. Journal of Tropical Ecology, 2016, 32, 240-249.	0.5	4
144	Alien wetland annual Lindernia dubia (Scrophulariaceae): the first recently mentioned localities in Slovakia and their central European context. Biologia (Poland), 2016, 71, 281-286.	0.8	4
145	Testing alien plant distribution and habitat invasibility in mountain ecosystems: growth form matters. Biological Invasions, 2016, 18, 2017-2028.	1.2	30
146	Landscape structure and climate affect plant invasion in subtropical grasslands. Applied Vegetation Science, 2016, 19, 600-610.	0.9	46
147	Thyme travels: ¹⁵ <scp>N</scp> isoscapes of <scp><i>T</i></scp> <i>hymus vulgaris</i> ê€ <scp>L</scp> . invasion in lightly grazed pastoral communities. Austral Ecology, 2016, 41, 28-39.	0.7	1
148	Contrasting historical and current land-use correlation with diverse components of current alien plant invasions in Mediterranean habitats. Biological Invasions, 2016, 18, 2897-2909.	1.2	11

#	Article	IF	CITATIONS
149	Invasion of the Alien Moss <i>Campylopus introflexus</i> ii Cutaway Peatlands. Herzogia, 2016, 29, 35-51.	0.1	7
150	Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics, 2016, 54, 523-610.	9.0	73
151	Invasibility of alien Impatiens parviflora in temperate forest understories. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 14-23.	0.6	17
152	Historical contingency and spatial processes rather than ecological niche differentiation explain the distribution of invasive goldenrods (Solidago and Euthamia). Plant Ecology, 2016, 217, 565-582.	0.7	13
153	Alien and native plant richness and abundance respond to different environmental drivers across multiple gravel floodplain ecosystems. Diversity and Distributions, 2016, 22, 823-835.	1.9	49
154	On the island biogeography of aliens: a global analysis of the richness of plant and bird species on oceanic islands. Global Ecology and Biogeography, 2016, 25, 859-868.	2.7	67
155	Invasive spread dynamics of Anthriscus caucalis at an ecosystem scale: propagule pressure, grazing disturbance and plant community susceptibility in canyon grasslands. Biological Invasions, 2016, 18, 145-157.	1.2	6
156	Effective seed distribution pattern of an upward shift species in alpine tundra of Changbai Mountains. Chinese Geographical Science, 2016, 26, 48-58.	1.2	3
157	A multi-scale approach to identify invasion drivers and invaders' future dynamics. Biological Invasions, 2016, 18, 411-426.	1.2	47
158	Patterns of plant species diversity in deciduous woodlands of Kyiv, Ukraine. Urban Ecosystems, 2016, 19, 489-503.	1.1	3
159	Predicting the presence and cover of management relevant invasive plant species on protected areas. Journal of Environmental Management, 2016, 166, 537-543.	3.8	5
160	Distribution of invasive plants in urban environment is strongly spatially structured. Landscape Ecology, 2017, 32, 681-692.	1.9	48
161	Ecology and Space: A Case Study in Mapping Harmful Invasive Species. , 2017, , 63-81.		1
162	Diversity patterns of alien and native plant species in Trieste port area: exploring the role of urban habitats in biodiversity conservation. Urban Ecosystems, 2017, 20, 1151-1160.	1.1	19
163	Manipulating propagule pressure to test the invasibility of subtidal marine habitats. Biological Invasions, 2017, 19, 1565-1575.	1.2	12
164	Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions. Biological Invasions, 2017, 19, 3287-3299.	1.2	48
165	14 Questions for Invasion in Ecological Networks. Advances in Ecological Research, 2017, , 293-340.	1.4	15
166	British plants as aliens in New Zealand cities: residence time moderates their impact on the beta diversity of urban floras. Biological Invasions, 2017, 19, 3589-3599.	1.2	7

#	Article	IF	Citations
167	Alien Plants and their Influence on Vegetation. Plant and Vegetation, 2017, , 499-531.	0.6	2
168	Are urban systems beneficial, detrimental, or indifferent for biological invasion?. Biological Invasions, 2017, 19, 3489-3503.	1.2	117
169	The role of bioclimatic features, landscape configuration and historical land use in the invasion of an Asian tree in subtropical Argentina. Landscape Ecology, 2017, 32, 2167-2185.	1.9	25
170	Alien plant invasions in European woodlands. Diversity and Distributions, 2017, 23, 969-981.	1.9	98
171	Naturalization of European plants on other continents: The role of donor habitats. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13756-13761.	3.3	57
172	Plant Invasions in the Czech Republic. Plant and Vegetation, 2017, , 339-399.	0.6	7
173	Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Current Forestry Reports, 2017, 3, 223-243.	3.4	279
174	Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Global Change Biology, 2017, 23, 269-282.	4.2	110
175	Factors Affecting Alien and Native Plant Species Richness in Temperate Nature Reserves of Northern China. Polish Journal of Ecology, 2017, 65, 320-333.	0.2	4
176	Factors responsible for the distribution of invasive plant species in the surroundings of railway areas. A case study from SE Poland. Biologia (Poland), 2017, 72, 1275-1284.	0.8	11
177	Buying Time: Preliminary Assessment of Biocontrol in the Recovery of Native Forest Vegetation in the Aftermath of the Invasive Emerald Ash Borer. Forests, 2017, 8, 369.	0.9	18
178	Vegetation shift after a clear-cut of non-native dwarf pine (Pinus mugo). Biologia (Poland), 2018, 73, 113-119.	0.8	5
179	Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of alien plant invasion at regional scale. Science of the Total Environment, 2018, 626, 1373-1381.	3.9	23
180	Distribution of alien animal species richness in the Czech Republic. Ecology and Evolution, 2018, 8, 4455-4464.	0.8	10
181	Plant invasions in Italy: An integrative approach using the European LifeWatch infrastructure database. Ecological Indicators, 2018, 91, 182-188.	2.6	18
182	The role of protected area zoning in invasive plant management. Biodiversity and Conservation, 2018, 27, 1811-1829.	1.2	14
183	Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant and Soil, 2018, 429, 77-90.	1.8	71
184	Environmental and anthropogenic determinants of the spread of alien plant species: insights from South Africa's quaternary catchments. Plant Ecology, 2018, 219, 277-297.	0.7	11

#	Article	IF	CITATIONS
185	Logging, exotic plant invasions, and native plant reassembly in a lowland tropical rain forest. Biotropica, 2018, 50, 254-265.	0.8	14
186	Habitat properties and plant traits interact as drivers of nonâ€native plant species' seed production at the local scale. Ecology and Evolution, 2018, 8, 4209-4223.	0.8	12
187	Relationship between native and exotic plant species at multiple savannah sites. African Journal of Ecology, 2018, 56, 81-90.	0.4	2
188	Abiotic constraints and biotic resistance control the establishment success and abundance of invasive Humulus japonicus in riparian habitats. Biological Invasions, 2018, 20, 315-331.	1.2	6
189	Modeling plant invasion on Mediterranean coastal landscapes: An integrative approach using remotely sensed data. Landscape and Urban Planning, 2018, 171, 98-106.	3.4	43
190	Widely distributed native and alien plant species differ in arbuscular mycorrhizal associations and related functional trait interactions. Ecography, 2018, 41, 1583-1593.	2.1	9
191	What drives Eucalyptus globulus natural establishment outside plantations? The relative importance of climate, plantation and site characteristics. Biological Invasions, 2018, 20, 1129-1146.	1.2	12
192	The Edge Effect on the Herb–Dwarf Shrub Layer of Urbanized Southern Taiga Forests. Russian Journal of Ecology, 2018, 49, 465-474.	0.3	5
193	Biotic resistance and vegetative propagule pressure co-regulate the invasion success of a marine clonal macrophyte. Scientific Reports, 2018, 8, 16621.	1.6	16
194	Urban forests form isolated archipelagos. Journal of Urban Ecology, 2018, 4, .	0.6	11
195	Global terrestrial biomes at risk of cacti invasion identified for four species using consensual modelling. Journal of Arid Environments, 2018, 156, 77-86.	1.2	11
196	From individuals to communities: How singleton invasive pine saplings lead to biodiversity change in the Brazilian Cerrado hotspot. Journal of Vegetation Science, 2018, 29, 824-834.	1.1	6
197	Regeneration and colonization abilities of the invasive species Elodea canadensis and Elodea nuttallii under a salt gradient: implications for freshwater invasibility. Hydrobiologia, 2018, 817, 193-203.	1.0	16
198	Large generative and vegetative reproduction independently increases global success of perennial plants from Central Europe. Journal of Biogeography, 2018, 45, 1550-1559.	1.4	10
199	Indicators of Ventenata (Ventenata dubia) Invasion in Sagebrush Steppe Rangelands. Invasive Plant Science and Management, 2018, 11, 1-9.	0.5	29
200	Invasive alien plants along roadsides in Europe. EPPO Bulletin, 2018, 48, 256-265.	0.6	25
201	Twelve-year dynamics of alien and native understorey plants following variable retention harvesting in Nothofagus pumilio forests in Southern Patagonia. Forest Ecology and Management, 2019, 449, 117447.	1.4	7
202	Garlic mustard (<i>Alliaria petiolata</i>) is associated with an overall reduction in plant diversity, but is more likely to co-exist with native than alien species. Plant Ecology and Diversity, 2019, 12, 427-439.	1.0	4

#	Article	IF	CITATIONS
203	Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB PLANTS, 2019, 11, plz051.	1.2	72
205	No evidence for local adaptation and an epigenetic underpinning in native and nonâ€native ruderal plant species in Germany. Ecology and Evolution, 2019, 9, 9412-9426.	0.8	12
206	Environmental drivers of plant assemblages: are there differences between palustrine and lacustrine wetlands? A case study from the northern Apennines (Italy). Knowledge and Management of Aquatic Ecosystems, 2019, , 34.	0.5	8
207	Diversity of the Grass Layer of Urbanized Communities Dominated by Invasive Acer negundo. Russian Journal of Ecology, 2019, 50, 413-421.	0.3	21
208	Has the frequency of invasive higher plants stabilized? Results from a longâ€ŧerm monitoring program of Danish habitats. Applied Vegetation Science, 2019, 22, 292-299.	0.9	3
209	First insights into the evolution of genome size in the borage family: a complete data set for Boraginaceae from the Czech Republic. Botanical Journal of the Linnean Society, 2019, 189, 115-131.	0.8	8
210	Postâ€burning germination responses of woody invaders in a fireâ€prone ecosystem. Austral Ecology, 2019, 44, 1163-1173.	0.7	8
211	Similar responses of native and alien floras in European cities to climate. Journal of Biogeography, 2019, 46, 1406-1418.	1.4	10
212	Diversity and drivers of plant species on Turkish university campuses. Biologia (Poland), 2019, 74, 1115-1123.	0.8	3
213	Context-Dependence of Urban Forest Vegetation Invasion Level and Alien Species' Ecological Success. Forests, 2019, 10, 26.	0.9	26
214	Multiple pattern analysis reveals insights about drivers of hawkweed invasion into the Fuegian steppe at different scales. Biological Invasions, 2019, 21, 2385-2399.	1.2	2
215	Ungulate browsing on introduced pines differs between plant communities: Implications for invasion process and management. Austral Ecology, 2019, 44, 973-982.	0.7	1
216	Differences in landscape drivers of garlic mustard invasion within and across ecoregions. Biological Invasions, 2019, 21, 1249-1258.	1.2	5
217	Habitat-dependent seed dispersal of an introduced tree species by native rodents. Forest Ecology and Management, 2019, 433, 563-568.	1.4	16
218	Multiple mechanisms in woodland plant species invasion. Journal of Plant Ecology, 2019, 12, 201-209.	1.2	18
219	Surrounding landscape influences functional diversity of plant species in urban parks. Urban Forestry and Urban Greening, 2020, 47, 126525.	2.3	18
220	A Suitable Method for Assessing Invasibility of Habitats in the Ramsar Sites - an Example of the Southern Part of the Pannonian Plain. Wetlands, 2020, 40, 745-755.	0.7	5
221	Habitat type drives the distribution of nonâ€indigenous species in fouling communities regardless of associated maritime traffic. Diversity and Distributions, 2020, 26, 62-75.	1.9	17

#	ARTICLE	IF	CITATIONS
222	Similar factors underlie tree abundance in forests in native and alien ranges. Global Ecology and Biogeography, 2020, 29, 281-294.	2.7	21
223	Plant Community Assembly in Invaded Recipient Californian Grasslands and Putative Donor Grasslands in Spain. Diversity, 2020, 12, 193.	0.7	4
224	Evaluating landscape characteristics of predicted hotspots for plant invasions. Invasive Plant Science and Management, 2020, 13, 163-175.	0.5	9
225	Do Habitats Show a Different Invasibility Pattern by Alien Plant Species? A Test on a Wetland Protected Area. Diversity, 2020, 12, 267.	0.7	9
226	Nonnative oldâ€field species inhabit early season phenological niches and exhibit unique sensitivity to climate. Ecosphere, 2020, 11, e03217.	1.0	12
227	A comparison of the flora of the Chop (Ukraine) and ÄŒierna nad Tisou (Slovakia) border railway stations. Biologia (Poland), 2020, 76, 1969.	0.8	7
228	Plant species diversity and vegetation in urban grasslands depending on disturbance levels. Biologia (Poland), 2020, 75, 1231-1240.	0.8	8
229	Contrasting patterns of native and non-native plants in a network of protected areas across spatial scales. Biodiversity and Conservation, 2020, 29, 2035-2053.	1.2	9
230	Invasion syndromes: a systematic approach for predicting biological invasions and facilitating effective management. Biological Invasions, 2020, 22, 1801-1820.	1.2	83
231	Expansion dynamics of introduced Pinus halepensis Miller plantations in an oceanic island (La Gomera,) Tj ETQq1	l 0.78431 1.4	4 ₅ rgBT /Ove
232	Grassland ecosystem services: a systematic review of research advances and future directions. Landscape Ecology, 2020, 35, 793-814.	1.9	173
233	Understanding the importance of spatial scale in the patterns of grassland invasions. Science of the Total Environment, 2020, 727, 138669.	3.9	13
234	A habitatâ€based assessment of the role of competition in plant invasions. Journal of Ecology, 2021, 109, 1263-1274.	1.9	10
235	Latitudinal patterns of alien plant invasions. Journal of Biogeography, 2021, 48, 253-262.	1.4	28
236	Differential responses to fertilization and competition among invasive, noninvasive alien, and native Bidens species. Ecology and Evolution, 2021, 11, 516-525.	0.8	0
237	Long-term effects of mechanical site preparation on understorey plant communities in lowland floodplain forests. Forest Ecology and Management, 2021, 480, 118651.	1.4	9
238	Converting agricultural lands into heathlands: the relevance of soil processes., 2021,, 357-372.		3
239	Effects of abiotic factors on plant diversity and species distribution of alpine meadow plants. Ecological Informatics, 2021, 61, 101210.	2.3	11

#	Article	IF	Citations
240	Neophyte invasions in European grasslands. Journal of Vegetation Science, 2021, 32, e12994.	1.1	25
241	Alien plant invasion hotspots and invasion debt in European woodlands. Journal of Vegetation Science, 2021, 32, e13014.	1.1	19
242	Investigating the Invasion Pattern of the Alien Plant Solanum elaeagnifolium Cav. (Silverleaf) Tj ETQq0 0 0 rgBT	Overlock 1 1.6	10 Tf 50 662 T
243	The impact of Acacia saligna on the composition and structure of the Mediterranean maquis. Biodiversity, 2021, 22, 53-66.	0.5	6
244	Agricultural land use curbs exotic invasion but sustains native plant diversity at intermediate levels. Scientific Reports, 2021, 11, 8385.	1.6	21
245	Quantifying invasion degree by alien plants species in Reunion Island. Austral Ecology, 2021, 46, 1025-1037.	0.7	16
246	Biogeographical origin effects on exotic plants colonization in the insular flora of Japan. Biological Invasions, 2021, 23, 2973-2984.	1.2	5
247	Trait-Environment Relationships Reveal the Success of Alien Plants Invasiveness in an Urbanized Landscape. Plants, 2021, 10, 1519.	1.6	3
248	Drivers of <i>Solidago</i> species invasion in Central Europeâ€"Case study in the landscape of the Carpathian Mountains and their foreground. Ecology and Evolution, 2021, 11, 12429-12444.	0.8	8
249	Exploring expert perception of protected areas' vulnerability to biological invasions. Journal for Nature Conservation, 2021, 62, 126008.	0.8	6
250	Native and alien species suffer from late arrival, while negative effects of multiple alien species on natives vary. Oecologia, 2021, 197, 271-281.	0.9	6
251	We Can Better Manage Ecosystems by Connecting Solutions to Constraints: Learning from Wetland Plant Invasions. Frontiers in Environmental Science, 2021, 9, .	1.5	7
252	Explaining the Geographic Pattern of Plant Invasion in 67 Nature Reserves in China. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
253	New and old invaders in forests in eastern Austria: The role of species attributes and invasion history. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 283, 151922.	0.6	5
254	An assessment of biological control of Rubus alceifolius invasion on Réunion Island (Mascarene) Tj ETQq0 0 0	rgBT ₄ /Ovei	rlo <u>ç</u> k 10 Tf 50
255	The successive trend of vegetation confirms the removal of non-indigenous woody species as an insufficient restoration action. Biodiversity and Conservation, 2021, 30, 699-717.	1.2	5
256	Giant invasive <i>Heracleum persicum</i> : Friend or foe of plant diversity?. Ecology and Evolution, 2017, 7, 4936-4950.	0.8	18
257	Alien Species and the Impact on Sand Dunes Along the NE Adriatic Coast. Coastal Research Library, 2019, , 113-143.	0.2	2

#	Article	IF	CITATIONS
258	Manipulating Alien Plant Species Propagule Pressure as a Prevention Strategy for Protected Areas. , 2013, , 473-486.		5
259	Plant diversity in a water-meadow landscape: the role of irrigation ditches. Plant Ecology, 2017, 218, 971-981.	0.7	17
260	Chapter 6 Habitats and Land Use as Determinants of Plant Invasions in the Temperate Zone of Europe., 2009,,66-80.		7
261	Predicting Incursion of Plant Invaders into Kruger National Park, South Africa: The Interplay of General Drivers and Species-Specific Factors. PLoS ONE, 2011, 6, e28711.	1.1	21
262	Visibility from Roads Predict the Distribution of Invasive Fishes in Agricultural Ponds. PLoS ONE, 2014, 9, e99709.	1.1	14
263	Getting the Right Traits: Reproductive and Dispersal Characteristics Predict the Invasiveness of Herbaceous Plant Species. PLoS ONE, 2015, 10, e0123634.	1.1	88
264	The complexity underlying invasiveness precludes the identification of invasive traits: A comparative study of invasive and non-invasive heterocarpic Atriplex congeners. PLoS ONE, 2017, 12, e0176455.	1.1	14
265	Dynamics of the species diversity and composition of the ruderal vegetation of Slovak and Czech cities. Hacquetia, 2018, 17, 171-188.	0.2	5
267	Non-native plant species in alder-dominated forests in Slovakia: what does the regional- and the local-scale approach bring?. Folia Oecologica, 2020, 47, 100-108.	0.4	3
268	Level of invasion by alien plants across habitats in the basin of the PlouÄnice River. Geografie-Sbornik CGS, 2013, 118, 356-371.	0.3	1
269	Alien plants in urban nature reserves: from red-list species to future invaders?. NeoBiota, 0, 10, 27-46.	1.0	28
270	Potential distribution range of invasive plant species in Spain. NeoBiota, 0, 12, 25-40.	1.0	56
271	Does residence time affect responses of alien species richness to environmental and spatial processes?. NeoBiota, 0, 14, 47-66.	1.0	8
272	Correlations between global and regional measures ofÂinvasiveness vary with region size. NeoBiota, 0, 16, 59-80.	1.0	9
273	How the Yellowhammer became a Kiwi: the history of an alien bird invasion revealed. NeoBiota, 0, 24, 1-31.	1.0	13
274	Trait–environment relationships of plant species at different stages of the introduction process. NeoBiota, 0, 58, 55-74.	1.0	20
275	The Epidemiological Framework for Biological Invasions (EFBI): an interdisciplinary foundation for the assessment of biosecurity threats. NeoBiota, 0, 62, 161-192.	1.0	22
276	MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota, 0, 62, 407-461.	1.0	66

#	Article	IF	Citations
277	A first checklist of the alien-dominated vegetation in Italy. Plant Sociology, 2020, 57, 29-54.	0.9	37
278	A transnationalÂcooperation for sustainable use and management of non-native trees in urban, peri-urban and forest ecosystems in the Alpine region (ALPTREES)Â. Research Ideas and Outcomes, 0, 6, .	1.0	4
279	An assessment of the information content of South African alien species databases. Bothalia, 2015, 45, .	0.2	10
280	The spread of Impatiens parviflora DC. in Central European oak forests – another stage of invasion?. Acta Societatis Botanicorum Poloniae, 2015, 84, 401-411.	0.8	14
281	Analysis of the riparian habitat invasion by three tree exotic species in Spain. Ecosistemas, 2014, 24, 18-28.	0.2	4
282	An overview of biological invasions at the landscape scale. Ecosistemas, 2014, 24, 84-92.	0.2	4
283	Elevated <scp>CO₂</scp> affects the rhizosphere microbial community and the growth of two invader plant species differently in semiarid Mediterranean soils. Land Degradation and Development, 2022, 33, 117-132.	1.8	6
284	Native-exotic richness relationships in second-growth forests differ along a gradient of land-use history. Landscape Ecology, 2022, 37, 847-859.	1.9	3
285	Changes in the invasion level, and impact of alien plants in Finnish semi-natural agricultural habitats. Agricultural and Food Science, 2012, 21, 100-117.	0.3	0
286	Researches on non-native plants in Japan: Current state of understanding and forthcoming challenges. Journal of Weed Science and Technology, 2014, 59, 81-92.	0.1	4
287	Invasive plant species – threat to grasslands in river valleys. Steciana, 2015, 18, 89-94.	0.1	0
288	How the Management May Affect Dispersal of Slender Speedwell (<i>Veronica filiformis</i> Meadows and Pastures. Acta Environmentalica Universitatis Comenianae, 2016, 24, 32-40.	0.1	0
289	Allochthonous plant species in the vegetation of the Great War Island. Acta Herbologica, 2020, 29, 111-155.	0.2	1
290	An uphill battle? The elevational distribution of alien plant species along rivers and roads in the Austrian Alps. NeoBiota, 0, 63, 1-24.	1.0	9
291	Semi-desert fruit farms harbor more native flora than Mediterranean climate farms in central Chile. Acta Botanica Brasilica, 2021, 35, 352-360.	0.8	0
292	Do Invasive Species Provide a Refuge from Browsers?: A Test of Associational Resistance in a Peri-Urban Habitat Plagued by Deer. SSRN Electronic Journal, 0, , .	0.4	0
293	Plant invasions in riparian areas of the Middle Danube Basin in Serbia. NeoBiota, 0, 71, 23-48.	1.0	6
294	Alien flora of Oman: invasion status, taxonomic composition, habitats, origin, and pathways of introduction. Biological Invasions, 2022, 24, 955-970.	1.2	10

#	Article	IF	CITATIONS
295	Accidental Introduction and Spread of Top Invasive Alien Plants in the European Union through Human-Mediated Agricultural Pathways: What Should We Expect?. Agronomy, 2022, 12, 423.	1.3	12
296	Assessment of Plant Invasions in Agroecosystems of Kashmir Himalaya for Better Management. Frontiers in Agronomy, 2022, 3, .	1.5	2
297	Composition, Distribution, and Factors Affecting Invasive Plants in Grasslands of Guizhou Province of Southwest China. Diversity, 2022, 14, 167.	0.7	5
298	Do invasive species provide a refuge from browsers? A test of associational resistance in a peri-urban habitat plagued by deer. Forest Ecology and Management, 2022, 510, 120086.	1.4	1
300	Leaf morpho-physiological comparison between native and non-native plant species in a Mediterranean island. Biological Invasions, 0, , .	1.2	0
301	Determinants of invasion by single versus multiple plant species in temperate lowland forests. Biological Invasions, 2022, 24, 2513-2528.	1.2	7
302	Invasive Milk Thistle (Silybum marianum (L.) Gaertn.) Causes Habitat Homogenization and Affects the Spatial Distribution of Vegetation in the Semi-Arid Regions of Northern Pakistan. Agriculture (Switzerland), 2022, 12, 687.	1.4	6
303	Alien plants tend to occur in species-poor communities. NeoBiota, 0, 73, 39-56.	1.0	7
304	Predicting the Risk of Exotic Plant Invasions in the Orinoco Region: Importance of Distribution Models, Climatic Niche and Functional Richness. Frontiers in Environmental Science, 2022, 10, .	1.5	0
305	Invasive Species as Rivals: Invasive Potential and Distribution Pattern of Xanthium strumarium L Sustainability, 2022, 14, 7141.	1.6	9
306	Catchment area, environmental variables and habitat type as predictors of the distribution and abundance of Portulaca oleracea L. in the riparian areas of Serbia. Acta Agriculturae Serbica, 2022, 27, 9-15.	0.1	1
307	Rapid monitoring of Ambrosia artemisiifolia in semi-arid regions based on ecological convergence and phylogenetic relationships. Frontiers in Ecology and Evolution, 0, 10, .	1.1	2
308	Drivers of Systematic Bias in Alien Plant Species Distribution Data. SSRN Electronic Journal, 0, , .	0.4	0
309	Mapping the Distribution and Dispersal Risks of the Alien Invasive Plant Ageratina adenophora in China. Diversity, 2022, 14, 915.	0.7	5
311	Spatial patterns and hotspots of plant invasion in China. Global Ecology and Conservation, 2023, 43, e02424.	1.0	4
312	Why Are Invasive Plants Successful?. Annual Review of Plant Biology, 2023, 74, 635-670.	8.6	19
313	Neophyte invasions in European heathlands and scrub. Biological Invasions, 2023, 25, 1739-1765.	1.2	0
314	Assessment of Habitat Selection by Invasive Plants and Conditions with the Best Performance of Invasiveness Traits. Diversity, 2023, 15, 333.	0.7	2

CITATION REPORT

#	ARTICLE	IF	CITATIONS
325	Plant Invasions. , 2024, , 680-695.		0
327	The â€~WATTLES' Invasion Syndrome. , 2023, , 514-525.		O