Single molecule analysis by surfaced-enhanced Raman

Chemical Society Reviews 37, 946 DOI: 10.1039/b709739p

Citation Report

#	Article	IF	CITATIONS
1	SURFACE-ENHANCED RAMAN SPECTROSCOPY. Analytical Chemistry, 1989, 61, 401A-411A.	3.2	43
3	A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics, 2008, 10, 6079.	1.3	476
4	SURFACE-ENHANCED RAMAN SCATTERING: PRINCIPLES, NANOSTRUCTURES, FABRICATIONS, AND BIOMEDICAL APPLICATIONS. Journal of Innovative Optical Health Sciences, 2008, 01, 267-284.	0.5	25
5	Improving surface-enhanced Raman scattering effect using gold-coated hierarchical polystyrene bead substrates modified with postgrowth microwave treatment. Journal of Biomedical Optics, 2008, 13, 064040.	1.4	17
7	The effect of design parameters of metallic substrate on the reproducibility of SERS measurement for biosensing. Proceedings of SPIE, 2009, , .	0.8	5
8	Field-Enhanced Phenomena of Gold Nanoparticles. Journal of Physical Chemistry A, 2009, 113, 4416-4422.	1.1	25
9	Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube. Nanotechnology, 2009, 20, 434020.	1.3	67
11	A highâ€throughput method for controlled hotâ€spot fabrication in SERSâ€active gold nanoparticle dimer arrays. Journal of Raman Spectroscopy, 2009, 40, 2171-2175.	1.2	91
12	Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes. Angewandte Chemie - International Edition, 2009, 48, 2180-2184.	7.2	163
13	Designing plasmonic systems using optical coupling between nanoparticles. Physical Review B, 2009, 79, .	1.1	103
14	Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy. Analyst, The, 2009, 134, 1868.	1.7	82
15	Synthesis of Size-Controlled Faceted Pentagonal Silver Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods. ACS Nano, 2009, 3, 21-26.	7.3	300
16	Electrochemical Control of the Time-Dependent Intensity Fluctuations in Surface-Enhanced Raman Scattering (SERS). Journal of Physical Chemistry C, 2009, 113, 17737-17744.	1.5	62
17	Creating high density nanoantenna arrays via plasmon enhanced particle–cavity (PEP–C) architectures. Optics Express, 2009, 17, 6860.	1.7	12
18	Revealing the spatial distribution of the site enhancement for the surface enhanced Raman scattering on the regular nanoparticle arrays. Optics Express, 2009, 17, 13974.	1.7	18
19	Moleculeâ^'Surface Orientational Averaging in Surface Enhanced Raman Optical Activity Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 9445-9449.	1.5	19
20	Gold Nanoparticle-Assisted Laser Surface Modification of Borosilicate Glass Substrates. Journal of Physical Chemistry C, 2009, 113, 20640-20647.	1.5	26
21	Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. Journal of the American Chemical Society, 2009, 131, 14466-14472.	6.6	426

TATION REDO

#	ARTICLE	IF	CITATIONS
22	Silicon Nanowires Coated with Silver Nanostructures as Ultrasensitive Interfaces for Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2009, 1, 1396-1403.	4.0	133
23	Nanostructured thin films based on phthalocyanines: electrochromic displays and sensors. Journal of Porphyrins and Phthalocyanines, 2009, 13, 606-615.	0.4	62
24	Chromic materials for responsive surface-enhanced resonance Raman scattering systems: a nanometric pH sensor. Physical Chemistry Chemical Physics, 2009, 11, 7505.	1.3	15
25	Optical Properties of the Crescent-Shaped Nanohole Antenna. Nano Letters, 2009, 9, 1956-1961.	4.5	123
26	Subdiffraction Limited, Remote Excitation of Surface Enhanced Raman Scattering. Nano Letters, 2009, 9, 995-1001.	4.5	136
27	Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure. Physical Chemistry Chemical Physics, 2009, 11, 7484.	1.3	22
28	High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides. Physical Chemistry Chemical Physics, 2009, 11, 7491.	1.3	68
29	SERRS for Single-Molecule Detection of Dye-Labeled Phospholipids in Langmuirâ^'Blodgett Monolayers. Langmuir, 2009, 25, 11261-11264.	1.6	41
30	Plasmon-dispersion corrections and constraints for surface selection rules of single molecule SERS spectra. Physical Chemistry Chemical Physics, 2009, 11, 7406.	1.3	21
31	Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas. Physical Chemistry Chemical Physics, 2009, 11, 7350.	1.3	137
32	Self-assembly of α,ï‰-aliphatic diamines on Ag nanoparticles as an effective localized surface plasmon nanosensor based in interparticle hot spots. Physical Chemistry Chemical Physics, 2009, 11, 7363.	1.3	26
33	Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2009, 131, 4616-4618.	6.6	520
34	Epitaxially Driven Formation of Intricate Supported Gold Nanostructures on a Lattice-Matched Oxide Substrate. Nano Letters, 2009, 9, 4258-4263.	4.5	20
35	Plasmonic Nanoparticles. Series in Medical Physics and Biomedical Engineering, 2010, , 37-85.	0.1	13
36	The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chemical Science, 2010, 1, 151.	3.7	59
37	Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chemical Physics Letters, 2010, 484, 304-308.	1.2	107
41	Single Molecules as Optical Nanoprobes for Soft and Complex Matter. Angewandte Chemie - International Edition, 2010, 49, 854-866.	7.2	82
42	Physical mechanisms behind the SERS enhancement of pyramidal pit substrates. Journal of Raman Spectroscopy, 2010, 41, 1106-1111.	1.2	60

#	Article	IF	CITATIONS
43	Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1-35.	1.1	551
44	Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosensors and Bioelectronics, 2010, 25, 2270-2275.	5.3	123
45	Sensing of 2,4-dichlorophenoxyacetic acid by surface-enhanced Raman scattering. Vibrational Spectroscopy, 2010, 54, 133-136.	1.2	9
46	Multilayer Silver Nanoparticles Modified Optical Fiber Tip for High Performance SERS Remote Sensing. ECS Meeting Abstracts, 2010, , .	0.0	0
48	The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates. Nanotechnology, 2010, 21, 025502.	1.3	27
49	Optimally designed nanolayered metal-dielectric particles as probes for massively multiplexed and ultrasensitive molecular assays. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13620-13625.	3.3	28
50	Surface-enhanced Raman nanodomes. Nanotechnology, 2010, 21, 415301.	1.3	94
51	Surface-enhanced Raman scattering nanodomes fabricated by nanoreplica molding. , 2010, , .		1
52	Electrosynthesis of SER-Active Silver Nanopillar Electrode Arrays. Journal of Physical Chemistry C, 2010, 114, 7280-7284.	1.5	16
53	Environmental applications of plasmon assisted Raman scattering. Energy and Environmental Science, 2010, 3, 1011.	15.6	155
54	Single-molecule surface- and tip-enhanced raman spectroscopy. Molecular Physics, 2010, 108, 2039-2059.	0.8	98
55	Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chemical Science, 2010, 1, 174.	3.7	127
56	Sensitive Carbohydrate Detection Using Surface Enhanced Raman Tagging. Analytical Chemistry, 2010, 82, 10164-10171.	3.2	29
57	Quantifying Resonant Raman Cross Sections with SERS. Journal of Physical Chemistry A, 2010, 114, 5515-5519.	1.1	75
58	A Statistical Criterion for Evaluating the Single-Molecule Character of SERS Signals. Journal of Physical Chemistry C, 2010, 114, 7330-7335.	1.5	21
59	Super-resolution Optical Imaging of Single-Molecule SERS Hot Spots. Nano Letters, 2010, 10, 3777-3784.	4.5	294
60	Resolving Single Molecules in Surface-Enhanced Raman Scattering within the Inhomogeneous Broadening of Raman Peaks. Analytical Chemistry, 2010, 82, 2888-2892.	3.2	81
61	Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 7336-7340.	1.5	224

#	Article	IF	CITATIONS
62	Probing surface and interface structure using optics. Journal of Physics Condensed Matter, 2010, 22, 084018.	0.7	23
63	A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex. Journal of Chemical Physics, 2010, 132, 214707.	1.2	64
64	Lanthanum Telluride Nanowires: Formation, Doping, and Raman Studies. Journal of Physical Chemistry C, 2010, 114, 5871-5878.	1.5	36
65	Coupling Surface-Enhanced Resonance Raman Scattering and Electronic Tongue as Characterization Tools to Investigate Biological Membrane Mimetic Systems. Analytical Chemistry, 2010, 82, 3537-3546.	3.2	28
66	Free-Standing Carbon Nanotube Films as Optical Accumulators for Multiplex SERRS Attomolar Detection. ACS Applied Materials & Interfaces, 2010, 2, 19-22.	4.0	18
67	Power-law statistics in blinking SERS of thiacyanine adsorbed on a single silver nanoaggregate. Physical Chemistry Chemical Physics, 2010, 12, 7457.	1.3	27
68	Combinatorial synthesis of a triphenylmethine library and their application in the development of Surface Enhanced Raman Scattering (SERS) probes. Chemical Communications, 2010, 46, 722-724.	2.2	31
69	Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. Journal of the Royal Society Interface, 2010, 7, S435-50.	1.5	180
70	SE(R)RS devices fabricated by a laser electrodispersion method. Analyst, The, 2011, 136, 3295.	1.7	8
71	Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy. Nanoscale, 2011, 3, 2134.	2.8	62
72	Gold–silver bimetallic porous nanowires for surface-enhanced Raman scattering. Chemical Communications, 2011, 47, 9606.	2.2	62
73	Power-law analysis of surface-plasmon-enhanced electromagnetic field dependence of blinking SERS of thiacyanine or thiacarbocyanine adsorbed on single silver nanoaggregates. Physical Chemistry Chemical Physics, 2011, 13, 7439.	1.3	24
74	Analysis of excitation laser intensity dependence of blinking SERRS of thiacarbocyanine adsorbed on single silver nanoaggregates by using a power law with an exponential function. Chemical Communications, 2011, 47, 3888.	2.2	13
75	Sombrero-Shaped Plasmonic Nanoparticles with Molecular-Level Sensitivity and Multifunctionality. ACS Nano, 2011, 5, 6449-6457.	7.3	32
76	Temperature Dependence of the Homogeneous Broadening of Resonant Raman Peaks Measured by Single-Molecule Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 3002-3005.	2.1	36
77	Mechanistic Aspect of Surface Modification on Glass Substrates Assisted by Single Shot Pulsed Laser-Induced Fragmentation of Gold Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 4986-4993.	1.5	25
78	Surface-Enhanced Raman Spectroscopy Hot-Spots on Ostwald Ripened Silver Nanoparticles Prepared by Galvanic Displacement. Journal of Physical Chemistry C, 2011, 115, 1444-1449.	1.5	17
79	Trinitrotoluene Explosive Lights up Ultrahigh Raman Scattering of Nonresonant Molecule on a Top-Closed Silver Nanotube Array. Analytical Chemistry, 2011, 83, 6913-6917.	3.2	123

#	Article	IF	CITATIONS
80	Understanding the Effect of Adsorption Geometry over Substrate Selectivity in the Surface-Enhanced Raman Scattering Spectra of Simazine and Atrazine. Journal of Physical Chemistry C, 2011, 115, 4184-4190.	1.5	49
81	Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Scientific Reports, 2011, 1, 112.	1.6	198
82	Fabrication of a Au Nanoporous Film by Self-Organization of Networked Ultrathin Nanowires and Its Application as a Surface-Enhanced Raman Scattering Substrate for Single-Molecule Detection. Analytical Chemistry, 2011, 83, 9131-9137.	3.2	52
83	Single clusters of self-assembled silver nanoparticles for surface-enhanced Raman scattering sensing of a dithiocarbamate fungicide. Journal of Materials Chemistry, 2011, 21, 16264.	6.7	74
84	Inherently Reproducible Fabrication of Plasmonic Nanoparticle Arrays for SERS by Combining Nanoimprint and Copolymer Lithography. ACS Applied Materials & Interfaces, 2011, 3, 1033-1040.	4.0	59
85	Comparative Study of Far-Field and Near-Field Raman Spectra from Silicon-Based Samples and Biological Nanostructures. Journal of Physical Chemistry C, 2011, 115, 24512-24520.	1.5	27
86	Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. Chemical Society Reviews, 2011, 40, 1296-1304.	18.7	185
87	Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation. Soft Matter, 2011, 7, 1321-1325.	1.2	39
88	Adsorption of 3-Thiophene Carboxylic Acid on Silver Nanocolloids: FTIR, Raman, and SERS Study Aided by Density Functional Theory. Journal of Physical Chemistry C, 2011, 115, 14309-14324.	1.5	30
89	Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates. Journal of Materials Chemistry, 2011, 21, 18817.	6.7	64
90	Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time. Journal of Physics Condensed Matter, 2011, 23, 503101.	0.7	16
91	Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area. Optics Express, 2011, 19, 3925.	1.7	166
92	Bi-analyte single molecule SERS technique with simultaneous spatial resolution. Physical Chemistry Chemical Physics, 2011, 13, 4500.	1.3	31
93	Phospholipid Membrane Encapsulation of Nanoparticles for Surface-Enhanced Raman Scattering. Langmuir, 2011, 27, 7024-7033.	1.6	52
94	Surface-Enhanced Raman Scattering Active Substrates. IEEE Nanotechnology Magazine, 2011, 5, 12-16.	0.9	1
95	Diversity-driven chemical probe development for biomolecules: beyond hypothesis-driven approach. Chemical Society Reviews, 2011, 40, 3613.	18.7	94
97	A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica Chimica Acta, 2011, 693, 7-25.	2.6	905
98	Manipulating the size distribution of supported gold nanostructures. Applied Physics Letters, 2012, 100, .	1.5	18

#	Article	IF	CITATIONS
99	Super-resolution imaging of diffusing analyte in surface-enhanced Raman scattering hot-spots. Proceedings of SPIE, 2012, , .	0.8	4
100	Superhydrophobicity, plasmonics and Raman spectroscopy for few/single molecule detection down to attomolar concentration. , 2012, , .		0
101	Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chemical Society Reviews, 2012, 41, 7085.	18.7	380
102	Genesis of Enhanced Raman Bands in SERS Spectra of 2-Mercaptoimidazole: FTIR, Raman, DFT, and SERS. Journal of Physical Chemistry A, 2012, 116, 10934-10947.	1.1	22
103	Single-Molecule, Single-Particle Approaches for Exploring the Structure and Kinetics of Nanocatalysts. Langmuir, 2012, 28, 8933-8943.	1.6	32
104	Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility. ACS Nano, 2012, 6, 249-255.	7.3	281
105	On the optical properties of copper nanocubes as a function of the edge length as modeled by the discrete dipole approximation. Chemical Physics Letters, 2012, 544, 64-69.	1.2	21
106	Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix. Physical Chemistry Chemical Physics, 2012, 14, 2050.	1.3	21
107	Silver–gold nanotubes containing hot spots on their surface: facile synthesis and surface-enhanced Raman scattering investigations. RSC Advances, 2012, 2, 9801.	1.7	21
108	Porous gold nanodisks with multiple internal hot spots. Physical Chemistry Chemical Physics, 2012, 14, 9131.	1.3	48
109	A simple and highly efficient route to the synthesis of NaLnF4–Ag hybrid nanorice with excellent SERS performances. Analyst, The, 2012, 137, 4584.	1.7	9
110	Distribution of the SERS enhancement factor on the surface of metallic nano-particles. , 2012, , .		0
111	Surface-Enhanced Resonance Raman Scattering on Gold Concentric Rings: Polarization Dependence and Intensity Fluctuations. Journal of Physical Chemistry C, 2012, 116, 2672-2676.	1.5	19
112	Mapping the Energy Distribution of SERRS Hot Spots from Anti-Stokes to Stokes Intensity Ratios. Journal of the American Chemical Society, 2012, 134, 13492-13500.	6.6	36
113	Shell Thickness-Dependent Raman Enhancement for Rapid Identification and Detection of Pesticide Residues at Fruit Peels. Analytical Chemistry, 2012, 84, 255-261.	3.2	399
114	Gold Nanorods Performing as Dual-Modal Nanoprobes via Metal-Enhanced Fluorescence (MEF) and Surface-Enhanced Raman Scattering (SERS). Journal of Physical Chemistry C, 2012, 116, 12240-12249.	1.5	121
115	Surface-enhanced raman scattering platforms on the basis of assembled gold nanorods. Nanotechnologies in Russia, 2012, 7, 359-369.	0.7	6
116	Raman Mapping for the Investigation of Nano-phased Materials. Springer Series in Optical Sciences, 2012, , 85-118.	0.5	13

		KLFOKT	
#	Article	IF	CITATIONS
117	Distinctive electronic structure, unusual magnetic properties and large enhancement in SERS of 1D gallium nanoribbons achieved by doping calix[6]arene. Journal of Materials Chemistry, 2012, 22, 6251.	6.7	7
118	Multifaceted prismatic silver nanoparticles: synthesis by chloride-directed selective growth from thiolate-protected clusters and SERS properties. Nanoscale, 2012, 4, 6981.	2.8	26
119	SERS Hot Spots. , 2012, , 215-260.		39
120	Single-Molecule Surface-Enhanced Raman Spectroscopy. Annual Review of Physical Chemistry, 2012, 63, 65-87.	4.8	632
121	Silver-coated magnetite–carbon core–shell microspheres as substrate-enhanced SERS probes for detection of trace persistent organic pollutants. Nanoscale, 2012, 4, 5210.	2.8	127
122	LSPR enhanced MSM UV photodetectors. Nanotechnology, 2012, 23, 444010.	1.3	31
123	Plasmonics and singleâ€molecule detection in evaporated silverâ€island films. Annalen Der Physik, 2012, 524, 697-704.	0.9	12
125	High quality gold nanorods and nanospheres for surface-enhanced Raman scattering detection of 2,4-dichlorophenoxyacetic acid. Nanotechnology, 2012, 23, 495710.	1.3	18
126	Individual nanostructured materials: fabrication and surface-enhanced Raman scattering. Chemical Communications, 2012, 48, 7003.	2.2	106
127	Surface-enhanced Raman spectroscopy studies of organophosphorous model molecules and pesticides. Physical Chemistry Chemical Physics, 2012, 14, 15645.	1.3	45
128	A Chemical Route To Increase Hot Spots on Silver Nanowires for Surface-Enhanced Raman Spectroscopy Application. Langmuir, 2012, 28, 14441-14449.	1.6	84
129	Raman Spectroscopy for Nanomaterials Characterization. , 2012, , .		101
130	Fractal of Gold Nanoparticles Controlled by Ambient Dielectricity: Synthesis by Laser Ablation as a Function of Permittivity. Journal of Physical Chemistry C, 2012, 116, 17252-17258.	1.5	30
131	Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chemical Science, 2012, 3, 2262.	3.7	52
132	Topographically controlled growth of silver nanoparticle clusters. Physica Status Solidi - Rapid Research Letters, 2012, 6, 202-204.	1.2	0
133	Plasmon-Controlled Fluorescence: Beyond the Intensity Enhancement. Journal of Physical Chemistry Letters, 2012, 3, 191-202.	2.1	388
134	Single Molecule Directivity Enhanced Raman Scattering using Nanoantennas. Nano Letters, 2012, 12, 2625-2630.	4.5	123
135	High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale, 2012, 4, 860-863.	2.8	43

#	Article	IF	CITATIONS
136	Functionalization of gold and silver nanoparticles with diphenyl dichalcogenides probed by surface enhanced Raman scattering. Journal of Raman Spectroscopy, 2012, 43, 712-717.	1.2	12
137	Effects of electrolytes on the fabrication of threeâ€dimensional nanoporous gold films by a rapid anodic potential step method for SERS. Journal of Raman Spectroscopy, 2012, 43, 842-847.	1.2	11
138	Distinguishable behavior of multiple and individual rhodamineâ€6G molecules on spherical Ag nanoparticles examined via time dependence of the SERS spectra. Journal of Raman Spectroscopy, 2012, 43, 1905-1912.	1.2	2
139	Surfaceâ€Enhanced Raman Scattering (SERS) of Nitrothiophenol Isomers Chemisorbed on TiO ₂ . Chemistry - an Asian Journal, 2012, 7, 975-981.	1.7	36
140	Comparative study on the far-field spectra and near-field amplitudes for silver and gold nanocubes irradiated at 514, 633 and 785 nm as a function of the edge length. European Physical Journal D, 2012, 66, 1.	0.6	19
141	A potential commercial surfaceâ€enhanced Raman scattering–active substrate: stability and usability. Journal of Raman Spectroscopy, 2013, 44, 1-5.	1.2	12
142	Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells. Nanoscale, 2013, 5, 9193.	2.8	49
143	Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosensors and Bioelectronics, 2013, 43, 193-199.	5.3	64
144	Tailoring the SERS Enhancement Mechanisms of Silver Nanowire Langmuir–Blodgett Films via Galvanic Replacement Reaction. Journal of Physical Chemistry C, 2013, 117, 16187-16194.	1.5	23
145	Defining and Using Very Small Crystals. , 2013, , 343-369.		6
146	Quantifying SERS enhancements. MRS Bulletin, 2013, 38, 631-640.	1.7	214
147	New Tools for Investigating Electromagnetic Hot Spots in Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. ChemPhysChem, 2013, 14, 3186-3195.	1.0	15
148	Triangular metal nanoprisms of Ag, Au, and Cu: Modeling the influence of size, composition, and excitation wavelength on the optical properties. Chemical Physics, 2013, 423, 142-150.	0.9	53
149	Quantification of Resonance Raman Enhancement Factors for Rhodamine 6G (R6G) in Water and on Gold and Silver Nanoparticles: Implications for Single-Molecule R6G SERS. Journal of Physical Chemistry C, 2013, 117, 27096-27104.	1.5	59
150	Large-area, well-ordered, uniform-sized bowtie nanoantenna arrays for surface enhanced Raman scattering substrate with ultra-sensitive detection. Applied Physics Letters, 2013, 103, .	1.5	39
151	Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing. Analytica Chimica Acta, 2013, 792, 86-92.	2.6	58
152	Ultraâ€5ensitive Grapheneâ€Plasmonic Hybrid Platform for Labelâ€Free Detection. Advanced Materials, 2013, 25, 4918-4924.	11.1	193
153	Single Cell Optical Imaging and Spectroscopy. Chemical Reviews, 2013, 113, 2469-2527.	23.0	250

#	Article	IF	CITATIONS
154	Combination of solid phase extraction and surface-enhanced Raman spectroscopy for rapid analysis. Analyst, The, 2013, 138, 2598.	1.7	20
155	Strong Correlation between Molecular Configurations and Charge-Transfer Processes Probed at the Single-Molecule Level by Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2013, 135, 2809-2815.	6.6	68
156	Surface-Enhanced Raman Scattering Chip for Femtomolar Detection of Mercuric Ion (II) by Ligand Exchange. Analytical Chemistry, 2013, 85, 3160-3165.	3.2	126
157	Plasmon enhanced spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 5355.	1.3	121
158	A new route to produce efficient surface-enhanced Raman spectroscopy substrates: gold-decorated CdSe nanowires. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
159	Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl. Nanoscale, 2013, 5, 5274.	2.8	33
160	Gap Size Reduction and Increased SERS Enhancement in Lithographically Patterned Nanoparticle Arrays by Templated Growth. Advanced Optical Materials, 2013, 1, 313-318.	3.6	34
161	Plasmon-enhanced chemical reactions. Journal of Materials Chemistry A, 2013, 1, 5790.	5.2	257
162	Macroscale Plasmonic Substrates for Highly Sensitive Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2013, 52, 6459-6463.	7.2	75
163	Recent developments in optofluidic-assisted Raman spectroscopy. Progress in Quantum Electronics, 2013, 37, 1-50.	3.5	25
164	Surface-Enhanced Raman Spectroscopy of Polyelectrolyte-Wrapped Gold Nanoparticles in Colloidal Suspension. Journal of Physical Chemistry C, 2013, 117, 10677-10682.	1.5	23
165	Cetylpyridinium Chloride Activated Trinitrotoluene Explosive Lights Up Robust and Ultrahigh Surfaceâ€Enhanced Resonance Raman Scattering in a Silver Sol. Chemistry - A European Journal, 2013, 19, 8789-8796.	1.7	39
166	Site-Specific Growth of Au–Pd Alloy Horns on Au Nanorods: A Platform for Highly Sensitive Monitoring of Catalytic Reactions by Surface Enhancement Raman Spectroscopy. Journal of the American Chemical Society, 2013, 135, 8552-8561.	6.6	226
167	Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method. Journal of Physical Chemistry Letters, 2013, 4, 1167-1171.	2.1	61
168	Bilayered Ramanâ€Intense Gold Nanostructures with Hidden Tags (BRIGHTs) for Highâ€Resolution Bioimaging. Advanced Materials, 2013, 25, 1022-1027.	11.1	144
169	Silver nanoclusters films for single molecule detection using Surface Enhanced Raman Scattering (SERS). Materials Chemistry and Physics, 2013, 137, 699-703.	2.0	62
170	Truncated Power Law Analysis of Blinking SERS of Thiacyanine Molecules Adsorbed on Single Silver Nanoaggregates by Excitation at Various Wavelengths. Journal of Physical Chemistry C, 2013, 117, 9397-9403.	1.5	17
171	Microsphere Lithography on Hydrophobic Surfaces for Generating Gold Films that Exhibit Infrared Localized Surface Plasmon Resonances. Journal of Physical Chemistry B, 2013, 117, 15313-15318.	1.2	6

#	Article	IF	CITATIONS
172	Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120026.	1.8	96
173	SERS Mapping in Langmuir–Blodgett Films and Single-Molecule Detection. Applied Spectroscopy, 2013, 67, 563-569.	1.2	18
174	Macroscale Plasmonic Substrates for Highly Sensitive Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie, 2013, 125, 6587-6591.	1.6	12
175	HIGH-ORDERED AND ULTRA-SENSITIVE PARTICLE-IN-BOWL METALLIC ARRAYS FOR SURFACE ENHANCED RAMAN SPECTROSCOPY. Nano, 2014, 09, 1450050.	0.5	3
176	Ordered Nanocap Array Composed of SiO ₂ -Isolated Ag Islands as SERS Platform. Langmuir, 2014, 30, 15285-15291.	1.6	38
179	Nanogaps for SERS applications. MRS Bulletin, 2014, 39, 163-168.	1.7	99
180	Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Mikrochimica Acta, 2014, 181, 23-43.	2.5	239
181	Surfaceâ€Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angewandte Chemie - International Edition, 2014, 53, 4756-4795.	7.2	1,894
182	A new calibration concept for a reproducible quantitative detection based on SERS measurements in a microfluidic device demonstrated on the model analyte adenine. Physical Chemistry Chemical Physics, 2014, 16, 9056.	1.3	38
186	Nanoporous silver with tunable pore characteristics and superior surface enhanced Raman scattering. Corrosion Science, 2014, 84, 159-164.	3.0	58
187	3D Nanostar Dimers with a Subâ€10â€nm Gap for Singleâ€/Fewâ€Molecule Surfaceâ€Enhanced Raman Scatterin Advanced Materials, 2014, 26, 2353-2358.	g. 11.1	263
188	Influence of the interaction between two Ag nanoparticles on optical properties of Ag/PGMEA nanocomposite materials. Journal of Modern Optics, 2014, 61, 271-275.	0.6	1
189	Nanoporous Au/SnO/Ag heterogeneous films for ultrahigh and uniform surface-enhanced Raman scattering. Journal of Materials Chemistry C, 2014, 2, 7216.	2.7	38
190	Surface-enhanced Raman scattering substrate based on a Ag coated monolayer array of SiO2 spheres for organic dye detection. RSC Advances, 2014, 4, 10043.	1.7	36
191	Temperature-dependent formation of Ru-based nanocomposites: structures and properties. RSC Advances, 2014, 4, 26847.	1.7	3
192	Synthesis of gold nanoparticles within silica monoliths through irradiation techniques using Au(<scp>i</scp>) and Au(<scp>iii</scp>) precursors. RSC Advances, 2014, 4, 26038-26045.	1.7	6
193	Enhancement of fluorescence intensity by silicon particles and its size effect. Chemical Communications, 2014, 50, 1137-1140.	2.2	18
195	Surface-enhanced Raman scattering (SERS) nanoparticle sensors for biochemical and environmental sensing. , 2014, , 197-230.		2

#	Article	IF	CITATIONS
196	Competition between Molecular Adsorption and Diffusion: Dramatic Consequences for SERS in Colloidal Solutions. Journal of the American Chemical Society, 2014, 136, 10965-10973.	6.6	71
197	Micro–Nanosized Nontraditional Evaporated Structures Based on Closely Packed Monolayer Binary Colloidal Crystals and Their Fine Structure Enhanced Properties. Journal of Physical Chemistry C, 2014, 118, 20521-20528.	1.5	22
198	Silicon nanoparticles as Raman scattering enhancers. Nanoscale, 2014, 6, 5666-5670.	2.8	60
199	Nanostructured materials for applications in surface-enhanced Raman scattering. CrystEngComm, 2014, 16, 9959-9973.	1.3	31
200	Single-molecule surface-enhanced Raman spectroscopy with nanowatt excitation. Physical Chemistry Chemical Physics, 2014, 16, 23895-23899.	1.3	21
201	Structure-selective hot-spot Raman enhancement for direct identification and detection of trace penicilloic acid allergen in penicillin. Biosensors and Bioelectronics, 2014, 58, 165-171.	5.3	42
202	A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Analytica Chimica Acta, 2014, 816, 41-49.	2.6	61
203	Self-Assembly of Au Nanoparticles on PMMA Template as Flexible, Transparent, and Highly Active SERS Substrates. Analytical Chemistry, 2014, 86, 6262-6267.	3.2	179
204	Plasmonic nanoparticles: fabrication, simulation and experiments. Journal Physics D: Applied Physics, 2014, 47, 213001.	1.3	81
205	Rapid Synthesis of Cypress-like Gold Dendrites and Their Applications in Surface-enhanced Raman Scattering and Catalysis. Chemistry Letters, 2014, 43, 895-897.	0.7	2
206	From nucleotides to DNA analysis by a SERS substrate of a self similar chain of silver nanospheres. Journal of Optics (United Kingdom), 2015, 17, 114021.	1.0	22
207	Numerical simulation of field enhancement property of surface enhanced Raman spectroscopy active substrates. , 2015, , .		0
208	Sensitivity and Reusability of SiO2 NRs@ Au NPs SERS Substrate in Trace Monochlorobiphenyl Detection. Nanoscale Research Letters, 2015, 10, 444.	3.1	15
209	Gold-based SERS tags for biomedical imaging. Journal of Optics (United Kingdom), 2015, 17, 114002.	1.0	70
210	Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO–Ag nanorod hybrids. Nanoscale, 2015, 7, 8619-8626.	2.8	56
211	Fabrication of a trans-scale bimetallic synergistic enhanced Raman scattering substrate with high surface-enhanced Raman scattering activity. Analytical Methods, 2015, 7, 1676-1679.	1.3	8
212	X-ray scattering characterisation of nanoparticles. Crystallography Reviews, 2015, 21, 229-303.	0.4	126
213	Controllable-density nanojunctions as SERS substrates for highly sensitive detection. Applied Surface	3.1	8

#	Article	IF	CITATIONS
214	SERS investigation of ciprofloxacin drug molecules on TiO ₂ nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 17809-17815.	1.3	53
215	Leaky Mode Resonance of Polyimide Waveguide Couples Metal Plasmon Resonance for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2015, 119, 24942-24949.	1.5	10
216	Quantitative Label-Free and Real-Time Surface-Enhanced Raman Scattering Monitoring of Reaction Kinetics Using Self-Assembled Bifunctional Nanoparticle Arrays. Analytical Chemistry, 2015, 87, 8702-8708.	3.2	34
217	Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection. Applied Spectroscopy, 2015, 69, 1417-1424.	1.2	45
218	Enhancement mechanism of fluorescence intensity in presence of plasmonic nanoparticles. Proceedings of SPIE, 2015, , .	0.8	1
219	Different behaviour of molecules in dark SERS state on colloidal Ag nanoparticles estimated by truncated power law analysis of blinking SERS. Physical Chemistry Chemical Physics, 2015, 17, 21204-21210.	1.3	18
220	A novel surface-enhanced Raman spectroscopy substrate based on hybrid structure of monolayer graphene and Cu nanoparticles for adenosine detection. Applied Surface Science, 2015, 332, 614-619.	3.1	38
221	Dependence of Raman intensity on the surface coverage of silver nanocubes in SERS active monolayers. Applied Surface Science, 2015, 325, 242-250.	3.1	18
222	Two-step-route to Ag–Au nanoparticles grafted on Ge wafer for extra-uniform SERS substrates. Journal of Materials Chemistry C, 2015, 3, 559-563.	2.7	9
223	Fabrication of highly-specific SERS substrates by co-precipitation of functional nanomaterials during the self-sedimentation of silver nanowires into a nanoporous film. Chemical Communications, 2015, 51, 1309-1312.	2.2	26
224	Selective Capture and Quick Detection of Targeting Cells with SERSâ€Coding Microsphere Suspension Chip. Small, 2015, 11, 2200-2208.	5.2	36
225	New insight of squaraine-based biocompatible surface-enhanced Raman scattering nanotag for cancer-cell imaging. Nanomedicine, 2015, 10, 561-571.	1.7	20
226	MnO2/Au hybrid nanowall film for high-performance surface-enhanced Raman scattering substrate. Applied Surface Science, 2015, 333, 78-85.	3.1	13
227	Rapid and label-free Raman detection of azodicarbonamide with asthma risk. Sensors and Actuators B: Chemical, 2015, 216, 535-541.	4.0	17
228	Nanoplasmonic monitoring of odorants binding to olfactory proteins from honeybee as biosensor for chemical detection. Sensors and Actuators B: Chemical, 2015, 221, 341-349.	4.0	21
229	Thin nanoporous alumina-based SERS platform for single cell sensing. Applied Surface Science, 2015, 351, 738-745.	3.1	31
230	Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. Analytica Chimica Acta, 2015, 893, 1-13.	2.6	252
231	Catalytic oxidation of cinnamyl alcohol using Au–Ag nanotubes investigated by surface-enhanced Raman spectroscopy. Nanoscale, 2015, 7, 8536-8543.	2.8	23

#	Article	IF	CITATIONS
232	Selective determination of o-phenylenediamine by surface-enhanced Raman spectroscopy using silver nanoparticles decorated with α-cyclodextrin. Mikrochimica Acta, 2015, 182, 167-174.	2.5	25
233	Gold Nanoisland Films as Reproducible SERS Substrates for Highly Sensitive Detection of Fungicides. ACS Applied Materials & Interfaces, 2015, 7, 6518-6529.	4.0	158
234	Engineering of SERS Substrates Based on Noble Metal Nanomaterials for Chemical and Biomedical Applications. Applied Spectroscopy Reviews, 2015, 50, 499-525.	3.4	89
235	Plasmonics and Ultrasensitive Detection. NATO Science for Peace and Security Series C: Environmental Security, 2015, , 21-44.	0.1	0
236	Surfaceâ€Enhanced Raman Scattering Based on Controllableâ€Layer Graphene Shells Directly Synthesized on Cu Nanoparticles for Molecular Detection. ChemPhysChem, 2015, 16, 2953-2960.	1.0	21
237	Portable SERS-enabled Micropipettes for Microarea Sampling and Reliably Quantitative Detection of Surface Organic Residues. Analytical Chemistry, 2015, 87, 9217-9224.	3.2	83
238	Statistical and Fourier Analysis for In-line Concentration Sensitivity in Single Molecule Dynamic-SERS. ACS Photonics, 2015, 2, 1266-1271.	3.2	16
239	Nanomaterials and Nanoarchitectures. NATO Science for Peace and Security Series C: Environmental Security, 2015, , .	0.1	8
240	Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Progress in Polymer Science, 2015, 42, 1-41.	11.8	270
241	Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chemistry, 2015, 169, 80-84.	4.2	128
242	Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties. Beilstein Journal of Nanotechnology, 2016, 7, 1028-1032.	1.5	12
243	Early Warning of Biological Threats via Surface-Enhanced Raman Spectroscopy: A Case Study of Bacillus Spores. Challenges, 2016, 7, 24.	0.9	0
244	Optical Aptasensors for Adenosine Triphosphate. Theranostics, 2016, 6, 1683-1702.	4.6	43
245	A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. Journal of Raman Spectroscopy, 2016, 47, 662-667.	1.2	49
246	Probing single molecules and molecular aggregates: Raman spectroscopic advances. Journal of Raman Spectroscopy, 2016, 47, 623-635.	1.2	19
247	Reliable SERS detection of nitrite based on pH and laser irradiance-dependent diazotization through a convenient sampling micro-chamber. Analyst, The, 2016, 141, 5195-5201.	1.7	16
248	Truncated Power Law Analysis of Blinking SERS. ACS Symposium Series, 2016, , 55-94.	0.5	0
250	Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples. Scientific Reports, 2016, 6, 22870.	1.6	31

#	Article	IF	CITATIONS
251	PSA Detection with Femtomolar Sensitivity and a Broad Dynamic Range Using SERS Nanoprobes and an Area-Scanning Method. ACS Sensors, 2016, 1, 645-649.	4.0	74
252	Au nanocluster arrays on self-assembled block copolymer thin films as highly active SERS substrates with excellent reproducibility. RSC Advances, 2016, 6, 38716-38723.	1.7	9
253	On-Demand Surface- and Tip-Enhanced Raman Spectroscopy Using Dielectrophoretic Trapping and Nanopore Sensing. ACS Photonics, 2016, 3, 1036-1044.	3.2	38
254	On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap. Nanoscale, 2016, 8, 15730-15736.	2.8	20
255	Controlled and Stabilized Light–Matter Interaction in Graphene: Plasmonic Film with Largeâ€Scale 10â€nm Lithography. Advanced Optical Materials, 2016, 4, 1811-1823.	3.6	28
256	The effect of TiO2 phase on the surface plasmon resonance of silver thin film. , 2016, , .		0
257	Excellent surface enhanced Raman scattering obtained with nanoporous gold fabricated by chemical de-alloying. Chemical Physics Letters, 2016, 665, 6-9.	1.2	26
258	Noble Metal Nanoparticles as SERS Tags: Fundamentals and Biomedical Applications. , 2016, , 67-101.		0
259	Orientation Dependence of Plasmonically Enhanced Spontaneous Emission. Journal of Physical Chemistry C, 2016, 120, 21037-21046.	1.5	7
260	Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets. Nanotechnology, 2016, 27, 315301.	1.3	12
261	Bi-functional Au/FeS (Au/Co3O4) composite for in situ SERS monitoring and degradation of organic pollutants. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	19
262	SERS based point-of-care detection of food-borne pathogens. Mikrochimica Acta, 2016, 183, 697-707.	2.5	87
263	Fluorescence intensity enhancement mechanism in presence of plasmonic nanoparticles. Proceedings of SPIE, 2016, , .	0.8	0
264	Sensitive Detection of Polycyclic Aromatic Molecules: Surface Enhanced Raman Scattering via π–π Stacking. Analytical Chemistry, 2016, 88, 4328-4335.	3.2	19
265	A simple preparation of Ag@graphene nanocomposites for surface-enhanced Raman spectroscopy of fluorescent anticancer drug. Chemical Physics Letters, 2016, 651, 84-87.	1.2	14
266	A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst, The, 2016, 141, 1966-1972.	1.7	70
267	Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing. Nanoscale, 2016, 8, 8008-8016.	2.8	31
268	Few-layer MoS2-encapsulated Cu nanoparticle hybrids fabricated by two-step annealing process for surface enhanced Raman scattering. Sensors and Actuators B: Chemical, 2016, 230, 645-652.	4.0	38

#	Article	IF	CITATIONS
269	Noble metal plasmonic nanostructure related chromisms. Inorganic Chemistry Frontiers, 2016, 3, 203-217.	3.0	12
270	Large-scale growth of sharp gold nano-cones for single-molecule SERS detection. RSC Advances, 2016, 6, 2882-2887.	1.7	36
271	Basics of Surface-Enhanced Raman Scattering (SERS). Biological and Medical Physics Series, 2016, , 21-59.	0.3	4
272	Coupling SPP with LSPR for Enhanced Field Confinement: A Simulation Study. Journal of Physical Chemistry C, 2016, 120, 527-533.	1.5	27
273	Silver coated gold nanocolloids entrapped in organized Langmuir–Blodgett Film of stearic acid: Potential evidence of a new SERS active substrate. Applied Surface Science, 2016, 362, 364-373.	3.1	18
274	Highly sensitive detection of glucose: A quantitative approach employing nanorods assembled plasmonic substrate. Talanta, 2017, 165, 516-521.	2.9	35
275	Analysis of blinking from multicoloured SERSâ€active Ag colloidal nanoaggregates with polyâ€Lâ€lysine via truncated power law. Journal of Raman Spectroscopy, 2017, 48, 570-577.	1.2	9
276	Plasmonic Particles with Unique Optical Interaction and Mechanical Motion Properties. Particle and Particle Systems Characterization, 2017, 34, 1600380.	1.2	7
277	A needle probe to detect surface enhanced Raman scattering (SERS) within solid specimen. Review of Scientific Instruments, 2017, 88, 023107.	0.6	4
278	In Situ Hot-Spot Assembly as a General Strategy for Probing Single Biomolecules. Analytical Chemistry, 2017, 89, 4776-4780.	3.2	42
279	Detection of complex molecular samples by low-cost surface enhanced raman spectroscopy (SERS) substrate. Proceedings of SPIE, 2017, , .	0.8	0
280	Reliable molecular trace-detection based on flexible SERS substrate of graphene/Ag-nanoflowers/PMMA. Sensors and Actuators B: Chemical, 2017, 249, 439-450.	4.0	83
281	SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chemical Reviews, 2017, 117, 7910-7963.	23.0	467
282	Plasmonic nanoparticles and their analytical applications: A review. Applied Spectroscopy Reviews, 2017, 52, 774-820.	3.4	81
283	Heterostructured cube Au–Ag composites for rapid Raman detection of antibiotic ciprofloxacin. Journal of Raman Spectroscopy, 2017, 48, 525-529.	1.2	25
284	Preparation of Silver Nanocap Arrays and Their Surfaceâ€enhanced Raman Scattering Activity. Bulletin of the Korean Chemical Society, 2017, 38, 1179-1182.	1.0	1
285	Microsphere Assisted Super-resolution Optical Imaging of Plasmonic Interaction between Gold Nanoparticles. Scientific Reports, 2017, 7, 13789.	1.6	20
286	Gold nanoparticles modified double-tapered fiber for SERS detection. Journal of Physics: Conference Series, 2017, 844, 012055.	0.3	2

#	Article	IF	CITATIONS
287	Smart supramolecular sensing with cucurbit[<i>n</i>]urils: probing hydrogen bonding with SERS. Faraday Discussions, 2017, 205, 505-515.	1.6	20
288	Investigation of simultaneously existed Raman scattering enhancement and inhibiting fluorescence using surface modified gold nanostars as SERS probes. Scientific Reports, 2017, 7, 6813.	1.6	44
289	High performance SERS on nanoporous gold substrates synthesized by chemical de-alloying a Au-based metallic glass. Applied Surface Science, 2017, 426, 1113-1120.	3.1	26
290	Single fiber surface enhanced Raman scattering probe. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 06GF01.	0.6	2
291	Surface enhanced Raman spectroscopic substrate utilizing gold nanoparticles on carbon nanotubes. Journal of Applied Physics, 2017, 122, .	1.1	7
292	Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. Sensors and Actuators B: Chemical, 2017, 242, 260-268.	4.0	39
293	Current Status and Future Direction of Nanomedicine: Focus on Advanced Biological and Medical Applications. Nuclear Medicine and Molecular Imaging, 2017, 51, 106-117.	0.6	24
294	A label-free SERRS-based nanosensor for ultrasensitive detection of mercury ions in drinking water and wastewater effluent. Analytical Methods, 2017, 9, 154-162.	1.3	15
295	Advances in single-particle detection for DNA sensing. Science China Chemistry, 2017, 60, 1285-1292.	4.2	12
296	Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers. Biosensors, 2017, 7, 7.	2.3	79
297	SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition. Sensors, 2017, 17, 467.	2.1	17
298	Surface Plasmon Resonance or Biocompatibility—Key Properties for Determining the Applicability of Noble Metal Nanoparticles. Materials, 2017, 10, 836.	1.3	32
299	A Fast and Cost-Effective Detection of Melamine by Surface Enhanced Raman Spectroscopy Using a Novel Hydrogen Bonding-Assisted Supramolecular Matrix and Gold-Coated Magnetic Nanoparticles. Applied Sciences (Switzerland), 2017, 7, 475.	1.3	15
300	Observation and Analysis of Blinking Surface-enhanced Raman Scattering. Journal of Visualized Experiments, 2018, , .	0.2	2
301	Rapid Detection of Tetrodotoxin Using Surface-Enhanced Raman Spectroscopy and Fe3O4/SiO2/Au Gold/Magnetic Nanoparticles. Journal of Applied Spectroscopy, 2018, 85, 160-165.	0.3	6
302	Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique. AIP Advances, 2018, 8, .	0.6	20
303	TDDFT Study of Charge-Transfer Raman Spectra of 4-Mercaptopyridine on Various ZnSe Nanoclusters as a Model for the SERS of 4-Mpy on Semiconductors. Journal of Physical Chemistry C, 2018, 122, 4908-4927.	1.5	13
304	Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection. Applied Surface Science, 2018, 450, 451-460.	3.1	63

#	Article	IF	CITATIONS
305	Fast and Quantitative Analysis of Ediphenphos Residue in Rice Using Surfaceâ€Enhanced Raman Spectroscopy. Journal of Food Science, 2018, 83, 1179-1185.	1.5	19
306	Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chemical Communications, 2018, 54, 10-25.	2.2	195
307	Hierarchical MoS2-microspheres decorated with 3D AuNPs arrays for high-efficiency SERS sensing. Sensors and Actuators B: Chemical, 2018, 255, 1407-1414.	4.0	40
308	Digital Protocol for Chemical Analysis at Ultralow Concentrations by Surface-Enhanced Raman Scattering. Analytical Chemistry, 2018, 90, 1248-1254.	3.2	63
309	Photochemical Formation of Tunable Gold Nanostructures Using Versatile Waterâ€Soluble Thiolate Au(I) Precursor. Particle and Particle Systems Characterization, 2018, 35, 1800285.	1.2	5
310	Extraordinary Field Enhancement of TiO ₂ Porous Layer up to 500â€Fold. Advanced Optical Materials, 2018, 6, 1800462.	3.6	17
311	Selective Plasmonic Sensing and Highly Ordered Metallodielectrics via Encapsulation of Plasmonic Metal Nanoparticles with Metal Oxides. ACS Applied Nano Materials, 2018, 1, 6514-6524.	2.4	12
312	Synthesis and Characterization of Tunable, pH-Responsive Nanoparticle–Microgel Composites for Surface-Enhanced Raman Scattering Detection. ACS Omega, 2018, 3, 10572-10588.	1.6	12
313	Fabrication of thioflavinâ€ <scp>T</scp> â€modified nanopillared <scp>SERS</scp> substrates for ultrasensitive betaâ€amyloid peptide detection. Journal of Raman Spectroscopy, 2018, 49, 1247-1256.	1.2	21
314	Rapid fabrication of flexible and transparent gold nanorods/poly (methyl methacrylate) membrane substrate for SERS nanosensor application. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 376-381.	2.0	23
315	Investigation of charge-transfer between a 4-mercaptobenzoic acid monolayer and TiO ₂ nanoparticles under high pressure using surface-enhanced Raman scattering. Chemical Communications, 2018, 54, 6280-6283.	2.2	27
316	Omnidispersible Hedgehog Particles with Multilayer Coatings for Multiplexed Biosensing. Journal of the American Chemical Society, 2018, 140, 7835-7845.	6.6	37
317	From Fundamental toward Applied SERS: Shared Principles and Divergent Approaches. Advanced Optical Materials, 2018, 6, 1800292.	3.6	65
318	A simple gold nanoplasmonic SERS method for trace Hg ²⁺ based on aptamerâ€regulating graphene oxide catalysis. Luminescence, 2018, 33, 1113-1121.	1.5	15
319	Decoration of Cu films on the microstructural mantis wing as flexible substrates for surface enhanced Raman scattering. Optik, 2018, 172, 49-56.	1.4	10
320	Shape controlled gold nanostructures on de-alloyed nanoporous gold with excellent SERS performance. Chemical Physics Letters, 2018, 709, 46-51.	1.2	23
321	A Cost-Efficient Surface Enhanced Raman Spectroscopy (SERS) Molecular Detection Technique for Clinical Applications. Journal of Electronic Materials, 2018, 47, 5378-5385.	1.0	4
322	Hierarchical Nanoporous Copper Fabricated by Oneâ€Step Dealloying Toward Ultrasensitive Surfaceâ€Enhanced Raman Sensing. Advanced Materials Interfaces, 2018, 5, 1800332.	1.9	22

#	Article	IF	CITATIONS
323	2,2,6,6-Tetramethylpiperidine-1-oxy-Oxidized Cellulose Nanofiber-Based Nanocomposite Papers for Facile In Situ Surface-Enhanced Raman Scattering Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 15640-15647.	3.2	41
324	Core–Shell-Structured Gold Nanocone Array for Label-Free DNA Sensing. ACS Applied Nano Materials, 2019, 2, 4983-4990.	2.4	33
325	Recyclable three-dimensional Ag nanorod arrays decorated with O-g-C3N4 for highly sensitive SERS sensing of organic pollutants. Journal of Hazardous Materials, 2019, 379, 120823.	6.5	47
326	Detection of Lignin Motifs with RuO ₂ -DNA as an Active Catalyst via Surface-Enhanced Raman Scattering Studies. ACS Sustainable Chemistry and Engineering, 2019, 7, 18463-18475.	3.2	18
327	Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications. , 2019, , 181-203.		15
328	Size-Selected Submicron Gold Spheres: Controlled Assembly onto Metal, Carbon, and Plastic Substrates. ACS Omega, 2019, 4, 14307-14311.	1.6	7
329	Analytical control of Rhodamine B by SERS using reduced graphene decorated with copper selenide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117302.	2.0	17
330	Rapid detection of trace methylene blue and malachite green in four fish tissues by ultra-sensitive surface-enhanced Raman spectroscopy coated with gold nanorods. Food Control, 2019, 106, 106720.	2.8	48
331	Gold Nanoparticle-Decorated Ag@SiO ₂ Nanocomposite-Based Plasmonic Affinity Sandwich Assay of Circulating MicroRNAs in Human Serum. ACS Applied Nano Materials, 2019, 2, 3960-3970.	2.4	18
332	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	5.2	69
333	Nanomedicine in Gastric Cancer. Current Clinical Pathology, 2019, , 213-247.	0.0	0
334	A Review on Surface-Enhanced Raman Scattering. Biosensors, 2019, 9, 57.	2.3	545
335	Gastric Cancer In The Precision Medicine Era. Current Clinical Pathology, 2019, , .	0.0	2
336	Fabrication of 3D wax/silica/Ag(Au) colloidosomes as surface-enhanced Raman spectroscopy substrates based on Pickering emulsion and seed-mediated growth method of noble metal nanoparticles. Journal of Materials Research, 2019, 34, 2137-2145.	1.2	2
337	Ultrasensitive SERS detection of specific oligonucleotides based on Au@AgAg bimetallic nanorods. Analyst, The, 2019, 144, 2929-2935.	1.7	23
338	Functionalized nanoporous gold as a new biosensor platform for ultra-low quantitative detection of human serum albumin. Sensors and Actuators B: Chemical, 2019, 288, 460-468.	4.0	21
339	Synthesis of MBA-Encoded Silver/Silica Core-Shell Nanoparticles as Novel SERS Tags for Biosensing Gibberellin A3 Based on Au@Fe3O4 as Substrate. Sensors, 2019, 19, 5152.	2.1	6
340	SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nature Communications, 2019, 10, 5321.	5.8	151

#	Article	IF	Citations
341	GalvanicÂdisplacement-induced codeposition of reduced-graphene-oxide/silver on alloy fibers for non-destructive SPME@SERS analysis of antibiotics. Mikrochimica Acta, 2019, 186, 19.	2.5	16
342	Aptasensors for pesticide detection. Biosensors and Bioelectronics, 2019, 130, 174-184.	5.3	210
343	A nanosol SERS method for quantitative analysis of trace potassium based on aptamer recognition and silver nanorod catalysis of Ag(I)-glucose reaction. Sensors and Actuators B: Chemical, 2019, 281, 53-59.	4.0	33
344	Quantitative Drug Dynamics Visualized by Alkyne-Tagged Plasmonic-Enhanced Raman Microscopy. ACS Nano, 2020, 14, 15032-15041.	7.3	39
345	Hierarchical Particle-In-Quasicavity Architecture for Ultratrace <i>In Situ</i> Raman Sensing and Its Application in Real-Time Monitoring of Toxic Pollutants. Analytical Chemistry, 2020, 92, 14754-14761.	3.2	118
346	Immunoassay of Tumor Markers Based on Graphene Surface-Enhanced Raman Spectroscopy. ACS Applied Bio Materials, 2020, 3, 8012-8022.	2.3	17
347	ZrO ₂ @Ag@SiO ₂ Sandwich Structure with High SERS Enhancement Effect and Stability. Journal of Physical Chemistry C, 2020, 124, 25967-25974.	1.5	12
348	A disposable paper-based hydrophobic substrate for highly sensitive surface-enhanced Raman scattering detection. Talanta, 2020, 220, 121340.	2.9	11
349	ZIF-8-modified Au–Ag/Si nanoporous pillar array for active capture and ultrasensitive SERS-based detection of pentachlorophenol. Analytical Methods, 2020, 12, 4064-4071.	1.3	10
350	Nano-substructured plasmonic pore arrays: a robust, low cost route to reproducible hierarchical structures extended across macroscopic dimensions. Nanoscale Advances, 2020, 2, 4740-4756.	2.2	6
351	SERS Blinking on Anisotropic Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 20328-20339.	1.5	5
352	Recent advances in cellulose-based membranes for their sensing applications. Cellulose, 2020, 27, 9157-9179.	2.4	56
353	Fine Determination of Monoclinic Phase in Zirconia-Based Implants: A Surface-Enhanced Raman Spectroscopy (SERS) Study. Journal of Nanoscience and Nanotechnology, 2020, 20, 2430-2435.	0.9	1
354	Siliconâ€Based Integrated Labelâ€Free Optofluidic Biosensors: Latest Advances and Roadmap. Advanced Materials Technologies, 2020, 5, 1901138.	3.0	62
355	Applications of Raman spectroscopy in two-dimensional materials. Journal of Innovative Optical Health Sciences, 2020, 13, .	0.5	10
356	Ag-Coated Au Nanopetals: Dual-Type Single-Nanoparticle Detection of Gap-Enhanced Resonance Raman Tags. ACS Applied Nano Materials, 2020, 3, 6987-6995.	2.4	10
357	Fabrication and SERS properties of complex and organized nanoparticle plasmonic clusters stable in solution. Nanoscale, 2020, 12, 14948-14956.	2.8	39
358	Plasmonic resonators: fundamental properties and applications. Journal Physics D: Applied Physics, 2020, 53, 443002.	1.3	21

		CITATION REPORT		
#	Article		IF	CITATIONS
359	Plasmonic Properties of Thin Annealed Gold Films. Plasmonics, 2020, 15, 2011-2017.		1.8	1
360	Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assort of the Total Environment, 2020, 720, 137601.	essment. Science	3.9	111
361	3D Ultrasensitive Polymers-Plasmonic Hybrid Flexible Platform for In-Situ Detection. Pc 12, 392.	lymers, 2020,	2.0	9
362	Surface-enhanced Raman scattering-active AuNR array cellulose films for multi-hazard Journal of Hazardous Materials, 2021, 402, 123505.	detection.	6.5	27
363	Silver melamine thin film as a flexible platform for SERS analysis. Nanoscale, 2021, 13,	7375-7380.	2.8	5
364	Towards practical and sustainable SERS: a review of recent developments in the constr multifunctional enhancing substrates. Journal of Materials Chemistry C, 2021, 9, 1151	uction of 7-11552.	2.7	85
365	Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Subst Expanded Hot Spots. ACS Applied Nano Materials, 2021, 4, 2614-2620.	crate with	2.4	8
366	Dynamic electrical measurement of biomolecule behavior via plasmonically-excited nar fabricated by electromigration. Nano Express, 2021, 2, 010032.	logap	1.2	2
367	Ultra-High-Speed Dynamics in Surface-Enhanced Raman Scattering. Journal of Physical 2021, 125, 7523-7532.	Chemistry C,	1.5	11
368	Microporous Oxide-Based Surface-Enhanced Raman Scattering Film for Quadrillionth D Mercury Ion (II). Processes, 2021, 9, 794.	etection of	1.3	5
369	Surface-enhanced Raman spectroscopy chips based on two-dimensional materials bey Journal of Semiconductors, 2021, 42, 051001.	ond graphene.	2.0	11
370	Combined Paper Centrifugal Chromatographic Separation and SERS Detection for Mul Substances. Analytical Chemistry, 2021, 93, 8693-8697.	ticomponent	3.2	11
371	Trimetallic nanotubes: A bifunctional substrate for the catalytic and spectroscopic stud Surface-enhanced Raman Spectroscopy. Vibrational Spectroscopy, 2021, 115, 103274	dy using I.	1.2	0
372	Hyperbolic Nanoparticles on Substrate with Separate Optical Scattering and Absorptic Dual Function Platform for SERS and Thermoplasmonics. Advanced Optical Materials, 2	n Resonances: A 2021, 9, 2100888.	3.6	21
373	Bio-inspired Nanoenzyme Synthesis and Its Application in A Portable Immunoassay for Proteins. Journal of Agricultural and Food Chemistry, 2021, 69, 14751-14760.	Food Allergy	2.4	29
374	Validation of SERS enhancement factor measurements. Journal of Raman Spectroscop 462-471.	y, 2018, 49,	1.2	15
375	Ehrlich Reaction Evoked Multiple Spectral Resonances and Gold Nanoparticle Hotspots Detection of Plant Hormone. Analytical Chemistry, 2017, 89, 8836-8843.	s for Raman	3.2	26
376	Excellent Trace Detection of Proteins on TiO ₂ Nanotube Substrates throu Topography Optimization. Journal of Physical Chemistry C, 2020, 124, 27790-27800.	igh Novel	1.5	10

# 377	ARTICLE Alkyne-tag SERS imaging for visualizing small molecule drugs in live cells. , 2020, , .	IF	CITATIONS 2
378	Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2021, 13, 51618-51627.	4.0	26
379	Simulation and Optimization of Nanoparticle Patterned Substrates for SERS Effect. Lecture Notes in Electrical Engineering, 2014, , 133-139.	0.3	0
381	Generation of surface plasmonic resonance mode on highly ordered diverse conformation of Au nanostructures. , 2019, , .		0
382	Plasmonic nanoparticle-analyte nanoarchitectronics combined with efficient analyte deposition method on regenerated cellulose-based SERS platform. Cellulose, 2021, 28, 11493-11502.	2.4	25
383	Construct high-precise SERS sensor by hierarchical superhydrophobic Si/Cu(OH)2 platform for ultratrace detection of food contaminants. Sensors and Actuators B: Chemical, 2022, 352, 131056.	4.0	8
384	Eco-friendly copper nanomaterials-based dual-mode optical nanosensors for ultrasensitive trace determination of amoxicillin antibiotics residue in tap water samples. Materials Research Bulletin, 2022, 147, 111649.	2.7	13
385	Controllable synthesis of siliconâ€based nanohybrids for reliable surfaceâ€enhanced Raman scattering sensing. Chinese Journal of Chemistry, 0, , .	2.6	4
386	Influence of bulky substituents on single-molecule SERS sensitivity. Journal of Chemical Physics, 2022, 156, 014201.	1.2	4
387	Development of spray-drying-based surface-enhanced Raman spectroscopy. Scientific Reports, 2022, 12, 4511.	1.6	4
388	Flexible microsphereâ€coupled surfaceâ€enhanced Raman spectroscopy (McSERS) by dielectric microsphere cavity array with random plasmonic nanoparticles. Journal of Raman Spectroscopy, 2022, 53, 1238-1248.	1.2	5
389	Novel Clarification of Surface Plasmon Coupling Reactions of Aromatic Alkynamine and Nitro Compounds. ACS Omega, 2022, 7, 1165-1172.	1.6	1
390	Fabrication and Applications of Wrinkled Soft Substrates: An Overview. ChemistrySelect, 2022, 7, .	0.7	6
391	Dimensional Design for Surface-Enhanced Raman Spectroscopy. ACS Materials Au, 2022, 2, 552-575.	2.6	16
392	Breaking Down SERS Detection Limit: Engineering of a Nanoporous Platform for High Sensing and Technology. Nanomaterials, 2022, 12, 1737.	1.9	2
393	Optical Metasurfaces for Energy Conversion. Chemical Reviews, 2022, 122, 15082-15176.	23.0	52
394	Single-Molecule Surface-Enhanced Raman Spectroscopy. Sensors, 2022, 22, 4889.	2.1	25
395	In Situ Collection and Rapid Detection of Pathogenic Bacteria Using a Flexible SERS Platform Combined with a Portable Raman Spectrometer. International Journal of Molecular Sciences, 2022, 23, 7340.	1.8	6

#	Article	IF	CITATIONS
396	Miniaturized Raman Instruments for SERS-Based Point-of-Care Testing on Respiratory Viruses. Biosensors, 2022, 12, 590.	2.3	18
397	Au ETHH@ZIF-8 based "three-in-one―multifunctional substrate with analyte enrichment, filtration and enhanced SERS performance. Applied Surface Science, 2022, 606, 154914.	3.1	1
398	Single-Molecule Detection-Enabled Plasmonic Ag Nanogap for Unmasking Vibrational Properties in 0D SnO ₂ . ACS Applied Nano Materials, 2022, 5, 12413-12422.	2.4	6
399	DNA functionalized plasmonic nanoassemblies as SERS sensors for environmental analysis. Aggregate, 2023, 4, .	5.2	5
400	Preparation of silver nanosheet-assembled film as a surface-enhanced Raman scattering substrate. Reviews in Analytical Chemistry, 2022, 41, 256-266.	1.5	1
401	Sustainable nanoporous gold with excellent SERS performances. Materials Chemistry and Physics, 2023, 293, 126883.	2.0	3
402	Highly porous gold supraparticles as surface-enhanced Raman spectroscopy (SERS) substrates for sensitive detection of environmental contaminants. RSC Advances, 2022, 12, 32803-32812.	1.7	4
403	Raman Spectroscopy for Fresh Fruits and Vegetables. , 2022, , 163-188.		0
404	Rapid Fabrication of Fe and Pd Thin Films as SERS-Active Substrates via Dynamic Hydrogen Bubble Template Method. Nanomaterials, 2023, 13, 135.	1.9	1
405	Nanowire-based integrated photonics for quantum information and quantum sensing. Nanophotonics, 2023, 12, 339-358.	2.9	16
406	Nanospray-assisted deposition of silver nanoparticles for mapping of a peptide in nanofibrous layers via surface-enhanced Raman spectrometry. Talanta, 2023, 256, 124313.	2.9	0
407	Selective recognition of the amyloid marker single thioflavin T using DNA origami-based gold nanobipyramid nanoantennas. Nanoscale, 2023, 15, 6170-6178.	2.8	3
408	Nanogap-Rich Surface-Enhanced Raman Spectroscopy-Active Substrate Based on Double-Step Deposition and Annealing of the Au Film over the Back Side of Polished Si. ACS Applied Materials & Interfaces, 2023, 15, 10250-10260.	4.0	3