Polyoxometalate Embedding of a Tetraruthenium(IV)-o Metalation of [Î³-SiW₁₀O₃₆]<s Oxygen-Evolving Catalyst

Journal of the American Chemical Society 130, 5006-5007 DOI: 10.1021/ja077837f

Citation Report

#	Article	IF	Citations
1	Photochemical energy conversion. , 0, , 112-190.		0
2	Ruâ€Hbppâ€Based Waterâ€Oxidation Catalysts Anchored on Conducting Solid Supports. Angewandte Chemie - International Edition, 2008, 47, 5830-5832.	7.2	108
3	Water Oxidation: A Robust Allâ€Inorganic Catalyst. Angewandte Chemie - International Edition, 2008, 47, 5888-5890.	7.2	41
6	Carbonyl–ruthenium substituted α-Keggin-tungstosilicate, [α-SiW11O39Rull(CO)]6â^: synthesis, structure, redox studies and reactivity. Dalton Transactions, 2008, , 6692.	1.6	47
7	The Mechanism of Water Oxidation Catalysis Promoted by [tpyRu(IV)â•O]2L3+: A Computational Study. Journal of the American Chemical Society, 2008, 130, 16231-16240.	6.6	79
8	Mononuclear Ruthenium(II) Complexes That Catalyze Water Oxidation. Inorganic Chemistry, 2008, 47, 11763-11773.	1.9	359
9	Mediator-assisted water oxidation by the ruthenium "blue dimerâ€ <i>cis</i> , <i>cis</i> -[(bpy) ₂ (H ₂ O)RuORu(OH ₂)(bpy) _{2Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17632-17635.}	bx].⊃>+	4+ k√s up>.
10	Hydrothermal Synthesis, Crystal Structure and Luminescent Properties of a Three Dimensional Polyoxometalate-Based Supramolecular Structure: [Cul(phen)2]4[HPW11.5 VICu0.5 IIO40]. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 410-415.	0.6	3
14	Vicinal Dinitridoruthenium‣ubstituted Polyoxometalates γâ€{XW ₁₀ 0 ₃₈ {RuN} ₂] ^{6â^'} (X=Si or Ge). Chemistry - A European Journal, 2009, 15, 10233-10243.	1.7	33
15	Iron‧ubstituted Polyoxotungstates as Inorganic Synzymes: Evidence for a Biomimetic Pathway in the Catalytic Oxygenation of Catechols. Chemistry - A European Journal, 2009, 15, 7854-7858.	1.7	32
16	Homo―and Heterovalent Polynuclear Cerium and Cerium/Manganese Aggregates. Helvetica Chimica Acta, 2009, 92, 2507-2524.	1.0	71
17	Palladium(II) Phosphotungstate Derivatives: Synthesis and Characterization of the [Pd <i>_x</i> {WO(H ₂ O}} _{3–<i>x</i>} {A,î±â€PW ₉ O _{34 Anions. European Journal of Inorganic Chemistry, 2009, 2009, 479-488.}	} <s< td=""><td>sub2x82 </td></s<>	sub2x82
18	Polyoxothiomolybdenum Wheels as Anionic Receptors for Recognition of Sulfate and Sulfonate Anions. European Journal of Inorganic Chemistry, 2009, 2009, 5233-5239.	1.0	13
19	Optically Active Polyoxotungstates Bearing Chiral Organophosphonate Substituents. European Journal of Inorganic Chemistry, 2009, 2009, 5164-5174.	1.0	49
21	Molecular Catalysts that Oxidize Water to Dioxygen. Angewandte Chemie - International Edition, 2009, 48, 2842-2852.	7.2	400
22	Water as an Oxygen Source in the Generation of Mononuclear Nonheme Iron(IV) Oxo Complexes. Angewandte Chemie - International Edition, 2009, 48, 1803-1806.	7.2	98
23	Discovery of Heteroatomâ€â€œEmbedded―TeâŠ,{W ₁₈ O ₅₄ } Nanofunctional Polyoxometalates by Use of Cryospray Mass Spectrometry. Angewandte Chemie - International Edition, 2009, 48, 4376-4380.	7.2	90
24	Water Splitting by Cooperative Catalysis. Angewandte Chemie - International Edition, 2009, 48, 8178-8181.	7.2	68

TATION REDO

#	Article	IF	CITATIONS
25	A new synthetic route towards a Ru(III) substituted heteropolytungstate anion. Inorganic Chemistry Communication, 2009, 12, 1042-1044.	1.8	24
26	Progress towards solar-powered homogeneous water photolysis. Journal of Materials Chemistry, 2009, 19, 3328.	6.7	143
27	Guestâ€Directed Supramolecular Architectures of {W ₃₆ } Polyoxometalate Crowns. Chemistry - an Asian Journal, 2009, 4, 1612-1618.	1.7	23
28	Acetate-controlled demetalation in multiiron polyoxometalates: A triiron cluster trapped between β- and γ-Keggin isomers. Dalton Transactions, 2009, , 5606.	1.6	18
29	Structurally Characterized Iridium(III)-Containing Polytungstate and Catalytic Water Oxidation Activity. Inorganic Chemistry, 2009, 48, 5596-5598.	1.9	88
30	Conformational Changes in a Flexible, Encapsulated Dicarboxylate: Evidence from Density Functional Theory Simulations. Journal of Physical Chemistry A, 2009, 113, 9075-9079.	1.1	4
31	Dynamic Properties of a Hexadecamolybdenum Wheel: Studies in Solution and Density Functional Theory Calculations. Inorganic Chemistry, 2009, 48, 6852-6859.	1.9	9
32	Nitrogen-Atom Transfer from [PW ₁₁ O ₃₉ Ru ^{VI} N] ^{4â^'} to PPh ₃ . Inorganic Chemistry, 2009, 48, 9436-9443.	1.9	18
33	Organo-Ruthenium Supported Heteropolytungstates: Synthesis, Structure, Electrochemistry, and Oxidation Catalysis. Inorganic Chemistry, 2009, 48, 10068-10077.	1.9	65
34	Intramolecular Electron Transfer Reactions Observed for Dawson-Type Polyoxometalates Covalently Linked to Porphyrin Residues. Journal of Physical Chemistry C, 2009, 113, 5834-5842.	1.5	104
35	Visible Light Sensitive Metal Oxide Nanocluster Photocatalysts: Photo-Induced Charge Transfer from Ce(III) to Keggin-Type Polyoxotungstates. Journal of Physical Chemistry C, 2009, 113, 17247-17253.	1.5	26
36	Isolated Seven-Coordinate Ru(IV) Dimer Complex with [HOHOH] ^{â^'} Bridging Ligand as an Intermediate for Catalytic Water Oxidation. Journal of the American Chemical Society, 2009, 131, 10397-10399.	6.6	461
37	Structural, Physicochemical, and Reactivity Properties of an All-Inorganic, Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation. Journal of the American Chemical Society, 2009, 131, 17360-17370.	6.6	162
38	Anorganische Chemie 2008. Nachrichten Aus Der Chemie, 2009, 57, 221-238.	0.0	0
39	A New Dinuclear Ruthenium Complex as an Efficient Water Oxidation Catalyst. Inorganic Chemistry, 2009, 48, 2717-2719.	1.9	143
40	The Ruâ~'Hbpp Water Oxidation Catalyst. Journal of the American Chemical Society, 2009, 131, 15176-15187.	6.6	253
41	Oxygenâ^'Oxygen Bond Formation Pathways Promoted by Ruthenium Complexes. Accounts of Chemical Research, 2009, 42, 1944-1953.	7.6	276
42	Nanoporous Crystals of Calixarene/Porphyrin Supramolecular Complex Functionalized by Diffusion and Coordination of Metal Ions. Journal of the American Chemical Society, 2009, 131, 2487-2489.	6.6	62

#	Article	IF	CITATIONS
43	Photochemical Activation of an Azido Manganese-Monosubstituted Keggin Polyoxometalate: On the Road to a Mn(V)â^'Nitrido Derivative. Inorganic Chemistry, 2009, 48, 11865-11870.	1.9	31
44	Rare Sandwich-Type Polyoxomolybdates Constructed from Di-/Tetra-Nuclear Transition-Metal Clusters and Trivacant Keggin Germanomolybdate Fragments. Inorganic Chemistry, 2009, 48, 9819-9830.	1.9	94
45	Homogeneous Light-Driven Water Oxidation Catalyzed by a Tetraruthenium Complex with All Inorganic Ligands. Journal of the American Chemical Society, 2009, 131, 7522-7523.	6.6	330
46	Water Oxidation at a Tetraruthenate Core Stabilized by Polyoxometalate Ligands: Experimental and Computational Evidence To Trace the Competent Intermediates. Journal of the American Chemical Society, 2009, 131, 16051-16053.	6.6	195
47	Dioxygen and Water Activation Processes on Multi-Ru-Substituted Polyoxometalates: Comparison with the "Blue-Dimer―Water Oxidation Catalyst. Journal of the American Chemical Society, 2009, 131, 6844-6854.	6.6	88
48	Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques. Journal of the American Chemical Society, 2009, 131, 16589-16605.	6.6	494
49	Assemblies of Copper Bis(triazole) Coordination Polymers Using the Same Keggin Polyoxometalate Template. Inorganic Chemistry, 2009, 48, 100-110.	1.9	188
50	Hydrothermal Syntheses and Structural Characterizations of Polyoxometalate (Mo/W) Compounds Consisting of M-L Cations, (M = Mn, Co, Ni, Cu, Zn; L = 3-(2-Pyridyl)pyrazole). Crystal Growth and Design, 2009, 9, 4424-4428.	1.4	47
51	An organo-ruthenium grafted zinc-substituted tungstoarsenate. CrystEngComm, 2009, 11, 1532.	1.3	27
52	Synthesis and crystal structure of pseudo-sandwich-type heteropolytungstates functionalized by organometallic ruthenium(ii). Dalton Transactions, 2009, , 6345.	1.6	23
53	Solar fuels: thermodynamics, candidates, tactics, and figures of merit. Dalton Transactions, 2010, 39, 10021.	1.6	156
54	Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems. Energy and Environmental Science, 2010, 3, 727.	15.6	192
55	The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem, 2010, 2, 724-761.	1.8	1,493
56	Hydrothermal syntheses and structural characterizations of three polyoxomolybdates frameworks linked by M(HL)2 units (M = Co, Ni, Zn; L = 3-(2-pyridyl)pyrazole). Science China Chemistry, 2010, 53, 2285-2290.	4.2	2
57	Green Oxidation Reactions by Polyoxometalate-Based Catalysts: From Molecular to Solid Catalysts. Topics in Catalysis, 2010, 53, 876-893.	1.3	89
58	Polyoxometalates: Powerful Catalysts for Atomâ€Efficient Cyclopropanations. Advanced Synthesis and Catalysis, 2010, 352, 2365-2370.	2.1	15
59	Photochemical Reduction of Carbon Dioxide Catalyzed by a Rutheniumâ€Substituted Polyoxometalate. Chemistry - A European Journal, 2010, 16, 1356-1364.	1.7	142
60	Chemical and Photochemical Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a Negatively Charged Tridentate Ligand. Chemistry - A European Journal, 2010, 16, 4659-4668.	1.7	154

#	Article	IF	CITATIONS
68	Polyoxometalates: Building Blocks for Functional Nanoscale Systems. Angewandte Chemie - International Edition, 2010, 49, 1736-1758.	7.2	2,013
69	Evolution of O ₂ in a Sevenâ€Coordinate Ru ^{IV} Dimer Complex with a [HOHOH] ^{â^²} Bridge: A Computational Study. Angewandte Chemie - International Edition, 2010, 49, 1773-1777.	7.2	155
70	Water as an Oxygen Source: Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(IV) Oxo Complex. Angewandte Chemie - International Edition, 2010, 49, 8190-8194.	7.2	90
71	Zinc(II) Containing γâ€Keggin Sandwichâ€Type Silicotungstate: Synthesis in Organic Media and Oxidation Catalysis. Angewandte Chemie - International Edition, 2010, 49, 6096-6100.	7.2	108
72	A Low‣pin Ruthenium(IV)–Oxo Complex: Does the Spin State Have an Impact on the Reactivity?. Angewandte Chemie - International Edition, 2010, 49, 8449-8453.	7.2	76
73	Chemical and Lightâ€Driven Oxidation of Water Catalyzed by an Efficient Dinuclear Ruthenium Complex. Angewandte Chemie - International Edition, 2010, 49, 8934-8937.	7.2	199
74	Water Oxidation Catalyzed by Strong Carbeneâ€Type Donorâ€Ligand Complexes of Iridium. Angewandte Chemie - International Edition, 2010, 49, 9765-9768.	7.2	342
75	An thin film of the di-decatungstosilicate with a tetra-ruthenium(IV)-oxo core and its electrochemical properties. Journal of Electroanalytical Chemistry, 2010, 648, 128-133.	1.9	20
76	Synthesis and characterisation of novel ruthenium multi-substituted polyoxometalates: α,β-[SiW9O37Ru4(H2O)3Cl3]7â^'. Polyhedron, 2010, 29, 3066-3073.	1.0	20
77	Two new polyoxometalate-based hybrids: Structural transformation played by a secondary bridging ligand. Inorganica Chimica Acta, 2010, 363, 3832-3837.	1.2	9
78	Electrocatalytic and photocatalytic water oxidation to dioxygen based on metal complexes. Coordination Chemistry Reviews, 2010, 254, 2483-2491.	9.5	136
79	Structural and Mechanistic Aspects of Mnâ€oxo and Coâ€based Compounds in Water Oxidation Catalysis and Potential Applications in Solar Fuel Production. Journal of Integrative Plant Biology, 2010, 52, 704-711.	4.1	58
80	Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nature Chemistry, 2010, 2, 826-831 Crystal Structure of a New Bisupporting Metal-Oxygen Cluster with	6.6	459
81	Bicapped Pseudo-Reggin Structure: [Cu ^{II} {Cl _{0.5} Cl(phen)}] ₂ {[PMo ^V ₆ Mo ^{VI} ₆ O ₄₀ (V ^{IV} O) ₂][Cu ^{II} (phen) ₂] <sub< td=""><td>0.6 >2}</td><td>9 Â∙2H≺sub>2</td></sub<>	0.6 >2}	9 Â∙2H≺sub>2
82	(phen = 1,10 Chenathroline). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Syntheses and crystal structures of two new heteropolyoxometalates consisting of octamolybdate anions. Journal of Coordination Chemistry, 2010, 63, 4226-4235.	0.8	5
83	Artificial photosynthesis – solar fuels: current status and future prospects. Biofuels, 2010, 1, 861-876.	1.4	56
84	Designing Multifunctional Expanded Pyridiniums: Properties of Branched and Fused Head-to-Tail Bipyridiniums. Journal of the American Chemical Society, 2010, 132, 16700-16713.	6.6	65
85	Ruthenium polyoxometalate water splitting catalyst: very fast hole scavenging from photogenerated oxidants. Chemical Communications, 2010, 46, 3152.	2.2	165

#	Article	IF	Citations
86	Electronic Modification of the [Ru ^{II} (tpy)(bpy)(OH ₂)] ²⁺ Scaffold: Effects on Catalytic Water Oxidation. Journal of the American Chemical Society, 2010, 132, 16094-16106.	6.6	299
87	Visible Light-Driven Water Oxidation by a Molecular Ruthenium Catalyst in Homogeneous System. Inorganic Chemistry, 2010, 49, 209-215.	1.9	244
88	Insight into Water Oxidation by Mononuclear Polypyridyl Ru Catalysts. Inorganic Chemistry, 2010, 49, 2202-2209.	1.9	256
89	Insights into Photoinduced Electron Transfer Between [Ru(mptpy) ₂] ⁴⁺ (mptpy) Tj ETC Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 6284-6297.	2q1 1 0.78 1.1	4314 rgBT /(27
90	Insights into the Mechanism of O ₂ Formation and Release from the Mn ₄ O ₄ L ₆ "Cubane―Cluster. Journal of Physical Chemistry A, 2010, 114, 11417-11424.	1.1	27
91	Computational Studies of the Geometry and Electronic Structure of an All-Inorganic and Homogeneous Tetra-Ru-Polyoxotungstate Catalyst for Water Oxidation and Its Four Subsequent One-Electron Oxidized Forms. Journal of Physical Chemistry A, 2010, 114, 535-542.	1.1	39
92	Two Heterometallic Aggregates Constructed from the {P ₂ W ₁₂ }-Based Trimeric Polyoxotungstates and 3d-4f Heterometals. Crystal Growth and Design, 2010, 10, 135-139.	1.4	67
93	In Pursuit of Water Oxidation Catalysts for Solar Fuel Production. Science, 2010, 328, 315-316.	6.0	197
94	Insights into Photoinduced Electron Transfer between [Ru(bpy)3]2+ and [S2O8]2â^' in Water: Computational and Experimental Studies. Journal of Physical Chemistry A, 2010, 114, 73-80.	1.1	51
95	A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals. Science, 2010, 328, 342-345.	6.0	1,354
96	A novel heptatungstovanadate fragment stabilized by organo-ruthenium group: [HVW7O28Ru(dmso)3]6â~'. CrystEngComm, 2010, 12, 3511.	1.3	14
97	Acidâ~'Base Mechanism for Ruthenium Water Oxidation Catalysts. Inorganic Chemistry, 2010, 49, 4543-4553.	1.9	139
98	Concerted Protonâ^'Electron Transfer to Dioxygen in Water. Journal of the American Chemical Society, 2010, 132, 11678-11691.	6.6	45
99	Mono-substituted Keggin, Wells-Dawson and {P2W21}-type polyoxometalates without positional disorder. CrystEngComm, 2010, 12, 1518.	1.3	22
100	A Highly Stable Rheniumâ^'Cobalt System for Photocatalytic H ₂ Production: Unraveling the Performance-Limiting Steps. Inorganic Chemistry, 2010, 49, 6453-6460.	1.9	200
101	Using Flexible and Rigid Organic Ligands to Tune Topology Structures Based on Keggin Polyoxometalates. Crystal Growth and Design, 2010, 10, 1104-1110.	1.4	116
102	Hydrothermal syntheses and characterizations of two novel frameworks constructed from polyoxometalates, metals and organic units. Dalton Transactions, 2010, 39, 1916.	1.6	55
103	Structural, Magnetic, EPR, and Electrochemical Characterizations of a Spin-Frustrated Trinuclear Cr ^{III} Polyoxometalate and Study of Its Reactivity with Lanthanum Cations. Inorganic Chemistry, 2010, 49, 2851-2858.	1.9	60

#	Article	IF	CITATIONS
104	Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chemical Communications, 2010, 46, 6506.	2.2	115
105	Cs9[(γ-PW10O36)2Ru4O5(OH)(H2O)4], a new all-inorganic, soluble catalyst for the efficient visible-light-driven oxidation of water. Chemical Communications, 2010, 46, 2784.	2.2	145
106	Iridium(iii) molecular catalysts for water oxidation: the simpler the faster. Chemical Communications, 2010, 46, 9218.	2.2	154
107	Two hexa-TM-containing (TM = Co2+ and Ni2+) {P2W12}-based trimeric tungstophosphates. Dalton Transactions, 2010, 39, 3884.	1.6	37
108	Photo-induced water oxidation with tetra-nuclear ruthenium sensitizer and catalyst: A unique 4 × 4 ruthenium interplay triggering high efficiency with low-energy visible light. Chemical Communications, 2010, 46, 4725.	2.2	162
109	A fully self-assembled non-symmetric triad for photoinduced charge separation. Chemical Science, 2011, 2, 676-685.	3.7	49
110	Hexameric polyoxometalates decorated by six 3d–4f heterometallic clusters. Dalton Transactions, 2011, 40, 6475.	1.6	74
111	A first principles study of water oxidation catalyzed by a tetraruthenium-oxo core embedded in polyoxometalate ligands. Physical Chemistry Chemical Physics, 2011, 13, 7666.	1.3	31
112	Highly active and tunable catalysts for O2 evolution from water based on mononuclear ruthenium(ii) monoaquo complexes. Dalton Transactions, 2011, 40, 3802.	1.6	97
113	lonic Liquid-Enhanced Photooxidation of Water Using the Polyoxometalate Anion [P ₂ W ₁₈ O ₆₂] ^{6–} as the Sensitizer. Inorganic Chemistry, 2011, 50, 5899-5909.	1.9	38
114	Theoretical Study of Oxidation of Cyclohexane Diol to Adipic Anhydride by [RuIV(O)(tpa)(H2O)]2+Complex (tpa â••Tris(2-pyridylmethyl)amine). Inorganic Chemistry, 2011, 50, 6200-6209.	1.9	10
115	Insights into the Coordination Chemistry of Phosphonate Derivatives of Heteropolyoxotungstates. Inorganic Chemistry, 2011, 50, 1164-1166.	1.9	29
116	Water Exchange Reactivity and Stability of Cobalt Polyoxometalates under Catalytically Relevant pH Conditions: Insight into Water Oxidation Catalysis. Inorganic Chemistry, 2011, 50, 9053-9058.	1.9	46
118	Oxygen evolution from BF3/MnO4â^'. Chemical Communications, 2011, 47, 4159.	2.2	14
119	Polyoxometalate-based solar cells for water splitting. Proceedings of SPIE, 2011, , .	0.8	1
120	Artificial photosynthetic systems. Using light and water to provide electrons and protons for the synthesis of a fuel. Energy and Environmental Science, 2011, 4, 2353.	15.6	99
121	Bifunctional Molecular Catalysis. Topics in Organometallic Chemistry, 2011, , .	0.7	40
122	Exploratory syntheses and structural characterizations of three organic–inorganic hybrid polyoxomolybdate frameworks linked by M(II)-L _n units (M = Ni, Co, Zn; L = 2,2â€ Journal of Coordination Chemistry, 2011, 64, 2531-2544.	²-b ima idazo	ole).o

7

#	Article	IF	CITATIONS
123	Unraveling the Roles of the Acid Medium, Experimental Probes, and Terminal Oxidant, (NH ₄) ₂ [Ce(NO ₃) ₆], in the Study of a Homogeneous Water Oxidation Catalyst. Inorganic Chemistry, 2011, 50, 3662-3672.	1.9	107
124	Divacant polyoxotungstates: Reactivity of the gamma-decatungstates [γ-XW10O36]8â^'(X = Si, Ge). Dalton Transactions, 2011, 40, 9649.	1.6	66
125	Tunable single-site ruthenium catalysts for efficient water oxidation. Chemical Communications, 2011, 47, 8058.	2.2	139
126	On the mechanism of water oxidation by a bimetallic manganese catalyst: A density functional study. Dalton Transactions, 2011, 40, 3859.	1.6	44
127	Electronic Structure of Oxidized Complexes Derived fromcis-[Rull(bpy)2(H2O)2]2+and Its Photoisomerization Mechanism. Inorganic Chemistry, 2011, 50, 11134-11142.	1.9	64
128	Photocatalysis. Topics in Current Chemistry, 2011, , .	4.0	13
129	A comparison between artificial and natural water oxidation. Dalton Transactions, 2011, 40, 11296.	1.6	34
130	Liquid-Phase Selective Oxidation by Multimetallic Active Sites of Polyoxometalate-Based Molecular Catalysts. Topics in Organometallic Chemistry, 2011, , 127-160.	0.7	27
131	Substituents dependent capability of bis(ruthenium-dioxolene-terpyridine) complexes toward water oxidation. Dalton Transactions, 2011, 40, 2225-2233.	1.6	36
134	Structural and mechanistic studies of tunable, stable, fast multi-cobalt water oxidation catalysts. Proceedings of SPIE, 2011, , .	0.8	1
136	Artificial Photosynthesis: From Molecular Catalysts for Lightâ€driven Water Splitting to Photoelectrochemical Cells. Photochemistry and Photobiology, 2011, 87, 946-964.	1.3	273
137	Self-assembly of 1D metalloporphyrin array within pseudo-hexagonal channels of polyoxometalates. Inorganica Chimica Acta, 2011, 375, 122-127.	1.2	10
138	Molecular devices featuring sequential photoinduced charge separations for the storage of multiple redox equivalents. Coordination Chemistry Reviews, 2011, 255, 2578-2593.	9.5	85
139	Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coordination Chemistry Reviews, 2011, 255, 2594-2601.	9.5	118
140	Hybrid Polyoxometalates: Merging Organic and Inorganic Domains for Enhanced Catalysis and Energy Applications. Israel Journal of Chemistry, 2011, 51, 259-274.	1.0	34
141	Polyoxometalates in the Design of Effective and Tunable Water Oxidation Catalysts. Israel Journal of Chemistry, 2011, 51, 238-246.	1.0	37
142	The Reduction of Dioxygen by Keggin Heteropolytungstates. Israel Journal of Chemistry, 2011, 51, 247-258.	1.0	6
143	High turnover catalysis of water oxidation by Mn(ii) complexes of monoanionic pentadentate ligands. Dalton Transactions, 2011, 40, 3849.	1.6	42

#	Article	IF	CITATIONS
144	Visible light-driven water oxidation—from molecular catalysts to photoelectrochemical cells. Energy and Environmental Science, 2011, 4, 3296.	15.6	209
145	Light-driven bioinspired water splitting: Recent developments in photoelectrode materials. Comptes Rendus Chimie, 2011, 14, 799-810.	0.2	20
146	Artificial Photosynthesis Challenges: Water Oxidation at Nanostructured Interfaces. Topics in Current Chemistry, 2011, 303, 121-150.	4.0	34
147	Synthesis and characterization of [PW11O39Ir(H2O)]4â^': successful incorporation of Ir into polyoxometalate framework and study of the substitutional lability at the Ir(iii) site. Chemical Communications, 2011, 47, 7833.	2.2	28
148	Oxygenic polyoxometalates: a new class of molecular propellers. Chemical Communications, 2011, 47, 1716.	2.2	47
149	Chapter 10. Molecular Ru and Ir Complexes Capable of Acting as Water Oxidation Catalysts. RSC Energy and Environment Series, 2011, , 273-287.	0.2	1
150	Redox Properties of Tanaka's Water Oxidation Catalyst: Redox Noninnocent Ligands Dominate the Electronic Structure and Reactivity. Inorganic Chemistry, 2011, 50, 5946-5957.	1.9	35
151	Efficient Light-Driven Carbon-Free Cobalt-Based Molecular Catalyst for Water Oxidation. Journal of the American Chemical Society, 2011, 133, 2068-2071.	6.6	336
152	Catalytic Mechanism of Water Oxidation with Single-Site Ruthenium–Heteropolytungstate Complexes. Journal of the American Chemical Society, 2011, 133, 11605-11613.	6.6	200
153	Molecular Design of Polyoxometalate-Based Compounds for Environmentally-Friendly Functional Group Transformations: From Molecular Catalysts to Heterogeneous Catalysts. Catalysis Surveys From Asia, 2011, 15, 68-79.	1.0	65
154	Current trends in the computational modelling of polyoxometalates. Theoretical Chemistry Accounts, 2011, 128, 393-404.	0.5	69
155	Recent trends in the use of polyoxometalate-based material for efficient water oxidation. Science China Chemistry, 2011, 54, 1877-1887.	4.2	23
156	Preparation and StructuralCharacterization of Ru ^{II} â€DMSO and Ru ^{III} â€DMSOâ€substituted αâ€Kegginâ€type Phosphotungstates, [PW ₁₁ O ₃₉ Ru ^{II} DMSO] ^{5–} and [PW ₁₁ O ₃₉ Ru ^{III} DMSO] ^{4–} , and Catalytic Activity for	0.6	31
157	Water Oxidation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1467-1474. Optically Active Tripodal Dendritic Polyoxometalates: Synthesis, Characterization and Their Use in Asymmetric Sulfide Oxidation with Hydrogen Peroxide. European Journal of Inorganic Chemistry, 2011, 2011, 727-738.	1.0	35
158	Chemical, Electrochemical, and Photochemical Catalytic Oxidation of Water to Dioxygen with Mononuclear Ruthenium Complexes. ChemSusChem, 2011, 4, 197-207.	3.6	20
159	Tailored Functionalization of Carbon Nanotubes for Electrocatalytic Water Splitting and Sustainable Energy Applications. ChemSusChem, 2011, 4, 1447-1451.	3.6	64
163	Splitting Water with Cobalt. Angewandte Chemie - International Edition, 2011, 50, 7238-7266.	7.2	1,231
164	A Mixedâ€Valence Manganese Cubane Trapped by Inequivalent Trilacunary Polyoxometalate Ligands. Angewandte Chemie - International Edition, 2011, 50, 9154-9157.	7.2	86

#	Article	IF	CITATIONS
165	Photosensitized Water Oxidation by Use of a Bioinspired Manganese Catalyst. Angewandte Chemie - International Edition, 2011, 50, 11715-11718.	7.2	214
166	Synthesis, Characterisation and Cytotoxicity of Polyoxometalate/Carboxymethyl Chitosan Nanocomposites. Chemistry - A European Journal, 2011, 17, 4619-4625.	1.7	65
167	Reactive Zr ^{IV} and Hf ^{IV} Butterfly Peroxides on Polyoxometalate Surfaces: Bridging the Gap between Homogeneous and Heterogeneous Catalysis. Chemistry - A European Journal, 2011, 17, 8371-8378.	1.7	77
168	Rates of Water Exchange for Two Cobalt(II) Heteropolyoxotungstate Compounds in Aqueous Solution. Chemistry - A European Journal, 2011, 17, 4408-4417.	1.7	52
169	Photocatalytic Hydrogen Generation from Water with Iron Carbonyl Phosphine Complexes: Improved Water Reduction Catalysts and Mechanistic Insights. Chemistry - A European Journal, 2011, 17, 6425-6436.	1.7	105
170	Synthesis and Catalytic Water Oxidation Activities of Ruthenium Complexes Containing Neutral Ligands. Chemistry - A European Journal, 2011, 17, 9520-9528.	1.7	33
171	Polyoxometalates containing late transition and noble metal atoms. Coordination Chemistry Reviews, 2011, 255, 1642-1685.	9.5	190
172	Multi-Electron-Transfer Catalysts Needed for Artificial Photosynthesis. Materials Research Society Symposia Proceedings, 2012, 1387, 1.	0.1	7
173	Inorganic Frameworks Made by Combining Paddle-wheel Diruthenium(II, III) Complexes and Polyoxometalate Clusters. Chemistry Letters, 2012, 41, 212-214.	0.7	4
174	Polyoxometalate-based molecular/nano composites: Advances in environmental remediation by photocatalysis and biomimetic approaches to solar energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 277-298.	5.6	132
175	New trends in polyoxometalate photoredox chemistry: From photosensitisation to water oxidation catalysis. Dalton Transactions, 2012, 41, 1651-1659.	1.6	242
176	Multielectron-transfer reactions at single Cu(ii) centers embedded in polyoxotungstates driven by photo-induced metal-to-metal charge transfer from anchored Ce(iii) to framework W(vi). Chemical Communications, 2012, 48, 2964.	2.2	25
177	Remarkable enhancement of catalytic activity of a 2 : 1 complex between a non-planar Mo(v)–porphyri and a ruthenium-substituted Keggin-type heteropolyoxometalate in catalytic oxidation of benzyl alcohols. Dalton Transactions, 2012, 41, 10006.	in 1.6	35
178	Efficient [WO ₄] ^{2–} -Catalyzed Chemical Fixation of Carbon Dioxide with 2-Aminobenzonitriles to Quinazoline-2,4(1 <i>H</i> ,3 <i>H</i>)-diones. Inorganic Chemistry, 2012, 51, 13001-13008.	1.9	97
179	Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chemical Society Reviews, 2012, 41, 7537.	18.7	392
180	Recent advances on polyoxometalate-based molecular and composite materials. Chemical Society Reviews, 2012, 41, 7384.	18.7	783
181	Oxygen evolution at functionalized carbon surfaces: a strategy for immobilization of molecular water oxidation catalysts. Chemical Communications, 2012, 48, 10025.	2.2	61
182	Mechanistic insight into catalytic oxidations of organic compounds by ruthenium(iv)-oxo complexes with pyridylamine ligands. Chemical Science, 2012, 3, 3421.	3.7	79

#	Article	IF	CITATIONS
183	Shaping the beating heart of artificial photosynthesis: oxygenic metal oxide nano-clusters. Energy and Environmental Science, 2012, 5, 5592.	15.6	93
184	Reaction Mechanisms of Water Splitting and H ₂ Evolution by a Ru(II)-Pincer Complex Identified with Ab Initio Metadynamics Simulations. ACS Catalysis, 2012, 2, 1500-1506.	5.5	39
185	Extended architectures built upon 3d–4f heterometals-containing silicotungstate clusters. Inorganic Chemistry Communication, 2012, 23, 70-73.	1.8	11
186	Connecting ruthenium substituted Keggin-type tungstophosphates by oxotungstic bridges: Evidence for the steric effect of {RuL3}2+ (L3â€=â€Î·6-arene, (DMSO)3) fragments. Comptes Rendus Chimie, 2012, 15, 135-142.	0.2	14
187	Molecular water oxidation catalysts based on transition metals and their decomposition pathways. Coordination Chemistry Reviews, 2012, 256, 1451-1467.	9.5	176
188	Water Oxidation Catalysis by Molecular Metal-Oxides. Energy Procedia, 2012, 22, 78-87.	1.8	4
189	Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy and Environmental Science, 2012, 5, 7606.	15.6	208
190	Structure and Electronic Configurations of the Intermediates of Water Oxidation in Blue Ruthenium Dimer Catalysis. Journal of the American Chemical Society, 2012, 134, 4625-4636.	6.6	68
192	Noble Metals in Polyoxometalates. Angewandte Chemie - International Edition, 2012, 51, 9492-9510.	7.2	361
193	New Perspectives on Polyoxometalate Catalysts: Alcohol Oxidation with Zn/Sbâ€Polyoxotungstates. Chemistry - A European Journal, 2012, 18, 13293-13298.	1.7	48
194	Oxygen evolution from water oxidation on molecular catalysts confined in the nanocages of mesoporous silicas. Energy and Environmental Science, 2012, 5, 8229.	15.6	58
195	Metal substitution in a Lindqvist polyoxometalate leads to improved photocatalytic performance. Dalton Transactions, 2012, 41, 9938.	1.6	76
196	Polyoxometalate water oxidation catalysts and the production of green fuel. Chemical Society Reviews, 2012, 41, 7572.	18.7	678
197	Functionalization and post-functionalization: a step towards polyoxometalate-based materials. Chemical Society Reviews, 2012, 41, 7605.	18.7	788
198	A nickel containing polyoxometalate water oxidation catalyst. Dalton Transactions, 2012, 41, 13043.	1.6	111
199	Photolytic water oxidation catalyzed by a molecular carbene iridium complex. Dalton Transactions, 2012, 41, 13074.	1.6	94
201	ls [Co4(H2O)2(α-PW9O34)2]10â^ a genuine molecular catalyst in photochemical water oxidation? Answers from time-resolved hole scavenging experiments. Chemical Communications, 2012, 48, 8808.	2.2	90
202	Detailed Electrochemical Studies of the Tetraruthenium Polyoxometalate Water Oxidation Catalyst in Acidic Media: Identification of an Extended Oxidation Series using Fourier Transformed Alternating Current Voltammetry. Inorganic Chemistry, 2012, 51, 11521-11532.	1.9	33

#	Δρτιςι ε	IF	CITATIONS
π	Identification of a Nonanuclear {Co ^{II} ₉ } Polyoxometalate Cluster as a	1.0	196
203	Homogeneous Catalyst for Water Oxidation. Inorganic Chemistry, 2012, 51, 11707-11715.	1.9	126
204	Ru complexes containing pyridine dicarboxylate ligands: electronic effects on their catalytic activity toward wateroxidation. Faraday Discussions, 2012, 155, 267-275.	1.6	34
205	Organic–Inorganic Hybrids Based on Monovacant Keggin-type Silicotungstates and 3d-4f Heterometals. Crystal Growth and Design, 2012, 12, 1263-1272.	1.4	71
206	Synthesis, characterisation and catalytic activity of non-crystalline organic–inorganic hybrid material comprising Keggin-type manganese(II)-substituted phosphotungstate and salen. Supramolecular Chemistry, 2012, 24, 149-156.	1.5	6
207	Uranyl Heteropolyoxometalate: Synthesis, Structure, and Spectroscopic Properties. Inorganic Chemistry, 2012, 51, 4885-4887.	1.9	36
208	Light-driven wateroxidation with a molecular tetra-cobalt(iii) cubanecluster. Faraday Discussions, 2012, 155, 177-190.	1.6	110
209	Self-assembly of polyoxotungstate with tetrarhodium-oxo core: synthesis, structure and 183W NMR studies. Chemical Communications, 2012, 48, 6666.	2.2	25
210	Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO ₂ Electrocatalysts. Journal of the American Chemical Society, 2012, 134, 1519-1527.	6.6	476
211	Enzymes and bio-inspired electrocatalysts in solar fuel devices. Energy and Environmental Science, 2012, 5, 7470.	15.6	127
212	Wateroxidation catalyzed by a new tetracobalt-substituted polyoxometalate complex: [{Co4(μ-OH)(H2O)3}(Si2W19O70)]11 ^{â^'} . Dalton Transactions, 2012, 41, 2084-2090.	1.6	87
213	Engineering polyoxometalates with emergent properties. Chemical Society Reviews, 2012, 41, 7403.	18.7	804
214	An NMR Study of the Oxidative Degradation of Cp*lr Catalysts for Water Oxidation: Evidence for a Preliminary Attack on the Quaternary Carbon Atom of the –C–CH ₃ Moiety. European Journal of Inorganic Chemistry, 2012, 2012, 1462-1468.	1.0	80
215	Biomimetic molecular water splitting catalysts for hydrogen generation. International Journal of Hydrogen Energy, 2012, 37, 8787-8799.	3.8	33
216	Recent advances in hybrid photocatalysts for solar fuel production. Energy and Environmental Science, 2012, 5, 5902.	15.6	563
217	Photoinduced Water Oxidation by a Tetraruthenium Polyoxometalate Catalyst: Ion-pairing and Primary Processes with Ru(bpy) ₃ ²⁺ Photosensitizer. Inorganic Chemistry, 2012, 51, 7324-7331.	1.9	98
219	Chemical and Photochemical Functionality of the First Molecular Bismuth Vanadium Oxide. Chemistry - A European Journal, 2012, 18, 10949-10953.	1.7	74
220	Polyoxometalates Immobilized in Ordered Mesoporous Carbon Nitride as Highly Efficient Water Oxidation Catalysts. ChemSusChem, 2012, 5, 1207-1212.	3.6	66
221	Organometallic derivatives of Rh- and Ir-substituted polyoxotungstates with Keggin structure: reactivity screening by electrospray ionization mass-spectrometry. Dalton Transactions, 2012, 41, 9889.	1.6	21

#	ARTICLE Bis[tetraruthenium(IV)]-Containing Polyoxometalates:	IF	CITATIONS
222	[{Ru ^{IV} ₄ O ₆ (H ₂ O) ₉ } ₂ 2and [{Ru ^{IV} ₄ O ₆ (H ₂ O) ₉ } ₂ 22 [Ru ^{IV} ₄ O ₆ (H ₂ O) ₉ } ₂ 2 [Increanic Chemistry 2012 51 7442-7444]	sub>W <su 1.9 2O)</su 	b>2038 ₂
223	Spectroscopic Studies of Light-driven Water Oxidation Catalyzed by Polyoxometalates. Industrial & amp; Engineering Chemistry Research, 2012, 51, 11850-11859.	1.8	37
224	Transition metal complexes that catalyze oxygen formation from water: 1979–2010. Coordination Chemistry Reviews, 2012, 256, 1115-1136.	9.5	212
225	Catalytic Fourâ€Electron Oxidation of Water by Intramolecular Coupling of the Oxo Ligands of a Bis(ruthenium–bipyridine) Complex. Chemistry - A European Journal, 2012, 18, 2374-2381.	1.7	39
226	<scp>L</scp> â€Prolineâ€Derived Dendritic Tetrakis(diperoxotungsto)phosphate: Synthesis and Enantioselective Oxidation Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 833-840.	1.0	14
227	Organicâ€Inorganic Molecular Nanoâ€Sensors: A Bisâ€Dansylated Tweezerâ€Like Fluoroionophore Integrating a Polyoxometalate Core. European Journal of Organic Chemistry, 2012, 2012, 281-289.	1.2	23
229	The Mechanism of OO Bond Formation in Tanaka's Water Oxidation Catalyst. Angewandte Chemie - International Edition, 2012, 51, 1221-1224.	7.2	39
230	Cyclodextrinâ€Induced Autoâ€Healing of Hybrid Polyoxometalates. Angewandte Chemie - International Edition, 2012, 51, 487-490.	7.2	54
231	Powering the future of molecular artificial photosynthesis with light-harvesting metallosupramolecular dye assemblies. Chemical Society Reviews, 2013, 42, 1847-1870.	18.7	544
232	Synthesis and Structure of [Co2Bi2(α or β-β-CoW9O34)2]14â^² Isomers and Their Catalytic Water Oxidation. Journal of Cluster Science, 2013, 24, 549-558.	1.7	10
233	Dynamic Motion of Ruâ€Polyoxometalate Ions (POMs) on Functionalized Few‣ayer Graphene. Small, 2013, 9, 3922-3927.	5.2	22
234	Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous?. Inorganic Chemistry, 2013, 52, 9522-9531.	1.9	164
235	New {RuNO} Polyoxometalate [PW11O39Rull(NO)]4-: Synthesis and Reactivity. Inorganic Chemistry, 2013, 52, 9675-9682.	1.9	27
236	Visible-light-driven hydrogen evolution from water using a noble-metal-free polyoxometalate catalyst. Journal of Catalysis, 2013, 307, 48-54.	3.1	95
237	Role of Advanced Analytical Techniques in the Design and Characterization of Improved Catalysts for Water Oxidation. , 2013, , 305-339.		3
238	Water oxidation catalysts based on abundant 1st row transition metals. Coordination Chemistry Reviews, 2013, 257, 2607-2622.	9.5	367
239	Visible light sensitized photocurrent generation from electrostatically assembled thin films of [Ru(bpy)3]2+ and the polyoxometalate î³*-[W18O54(SO4)2]4â^': Optimizing performance in a low electrolyte medium. Journal of Electroanalytical Chemistry, 2013, 706, 93-101.	1.9	19
240	Polyoxometalates: Synthesis and Structure – From Building Blocks to Emergent Materials. , 2013, , 241-269.		35

#	Article	IF	CITATIONS
241	Heteropoly Compounds. , 2013, , 185-204.		7
242	Water Oxidation. , 2013, , 505-523.		3
243	Structure and Reactivity of Polyoxometalates. , 2013, , 887-906.		2
244	Photocatalytic water oxidation with cobalt-containing tungstobismutates: tuning the metal core. Catalysis Science and Technology, 2013, 3, 3117.	2.1	47
245	Photochemical Oxidation of a Manganese(III) Complex with Oxygen and Toluene Derivatives to Form a Manganese(V)-Oxo Complex. Inorganic Chemistry, 2013, 52, 13594-13604.	1.9	34
246	Closer to Photosystem II: A Co ₄ O ₄ Cubane Catalyst with Flexible Ligand Architecture. Journal of the American Chemical Society, 2013, 135, 18734-18737.	6.6	154
247	Designing artificial photosynthetic devices using hybrid organic–inorganic modules based on polyoxometalates. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20110411.	1.6	28
248	Catalysis-Material Crosstalk at Tailored Nano-Carbon Interfaces. Topics in Current Chemistry, 2013, 348, 139-180.	4.0	11
249	Differentiating Homogeneous and Heterogeneous Water Oxidation Catalysis: Confirmation that [Co ₄ (H ₂ O) ₂ (α-PW ₉ O ₃₄) ₂] <sup Is a Molecular Water Oxidation Catalyst. Journal of the American Chemical Society, 2013, 135, 14110-14118.</sup 	>10– <td>up> 196</td>	up> 196
250	Heterometallic appended {MMn ^{III} ₄ } cubanes encapsulated by lacunary polytungstate ligands. Dalton Transactions, 2013, 42, 342-346.	1.6	43
251	Graphene-supported [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10â^' for highly efficient electrocatalytic water oxidation. Energy and Environmental Science, 2013, 6, 2654.	15.6	124
252	Knitting the Catalytic Pattern of Artificial Photosynthesis to a Hybrid Graphene Nanotexture. ACS Nano, 2013, 7, 811-817.	7.3	93
253	A 1D polyoxometalate chain built from {Mo16Ni16P24} wheels: Synthesis, structure and magnetism. Inorganic Chemistry Communication, 2013, 28, 70-74.	1.8	5
254	Homogeneous water oxidation catalysts containing a single metal site. Chemical Communications, 2013, 49, 218-227.	2.2	184
255	K7[CollIColI(H2O)W11O39]: a molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation. Energy and Environmental Science, 2013, 6, 1170.	15.6	285
256	Molecular Catalytic Assemblies for Electrodriven Water Splitting. ChemPlusChem, 2013, 78, 35-47.	1.3	47
257	Reactions of rhodium (II) acetate with non-lacunary Keggin and Dawson polyoxoanions and related catalytic studies. Inorganica Chimica Acta, 2013, 394, 656-662.	1.2	19
258	Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters. Chemical Science, 2013, 4, 418-424.	3.7	57

ARTICLE IF CITATIONS Tetrametallic molecular catalysts for photochemical water oxidation. Chemical Society Reviews, 2013, 259 18.7 310 42, 2262-2280. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical 18.7 1,846 Society Reviews, 2013, 42, 2294-2320. Electron Transfer Dynamics in Semiconductor–Chromophore–Polyoxometalate Catalyst 261 1.5 108 Photoanodes. Journal of Physical Chemistry C, 2013, 117, 918-926. All-inorganic 1D chain-based architecture of a novel dimanganese-substituted Keggin polyoxotungstate. Polyhedron, 2013, 52, 151-158. A Hexanuclear Cobalt(II) Cluster Incorporated in a Bananaâ€Shaped Tungstovanadate: [(Co(OH₂)Co₂VW₉O₃₄)₂(VW₆O₂₆)]<sup 263 European Journal of Inorganic Chemistry, 2013, 2013, 1720-1725. Charge photo-accumulation and photocatalytic hydrogen evolution under visible light at an 264 15.6 iridium(iii)-photosensitized polyoxotungstate. Energy and Environmental Science, 2013, 6, 1504. Cobalt Polyoxometalates as Heterogeneous Water Oxidation Catalysts. Inorganic Chemistry, 2013, 52, 265 1.9 118 4753-4755. Parameterization of Reactive Force Field: Dynamics of the [Nb6O19Hx](8–x)– Lindqvist Polyoxoanion in 1.1 266 Bulk Water. Journal of Physical Chemistry Á, 2013, 117, 6967-6974. Water Oxidation Catalysis Beginning with 2.5 μM [Co₄(H₂0)₂(PW₉0₃₄)₂]<sup>10afer</sub>:124267 Investigation of the True Electrochemically Driven Catalyst at ≥600 mV Overpotential at a Glassy Carbon Electrode. ACS Catalysis, 2013, 3, 1209-1219. DFT characterization on the mechanism of water splitting catalyzed by single-Ru-substituted 1.6 polyoxometalates. Dalton Transactions, 2013, 42, 10617 Polyoxometalate-based frameworks with a linker of paddlewheel diruthenium(ii, iii) complexes. 269 3 1.3 CrystEngComm, 2013, 15, 4852. The synthesis of polyoxometalate-based metal-organic frameworks under ionothermal conditions. 0.8 Journal of Coordination Chemistry, 2013, 66, 2930-2939. Exploring the Assembly of Supramolecular Polyoxometalate Triangular Morphologies with Johnson Solid Cores: 271[(Mn^{II}(H₂O)₃)₂(KâŠ,{α-GeW₁₀Mn^{II}¹ sub>2</sub>O<sub> Inorganic Chemistry, 2013, 52, 9284-9289. Voltammetric Determination of the Reversible Potentials for [{Ru₄O₄O(Sub>O₄O(OH)₂(H₂O)₄}(γ-SiW₁₀O₃₆)<s over the pH Range of 2–12: Electrolyte Dependence and Implications for Water Oxidation Catalysis. Inorganic Chemistry, 2013, 52, 11986-11996. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical 273 18.7 495 cells. Chemical Society Reviews, 2013, 42, 2357-2387. 13 Polyoxometalates in photocatalysis., 2013, , 247-262. 274 Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium–oxo molecular 275 complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3.3 80 4917-4922. Organorutheniumâ€Containing Heteropolyâ€23â€Tungstate Family [{Ru(L)}₂(l±â€XW₁₁O₃₉)₂WO₂]<i><sup>m–{/sup></i>(L = benzene, <i>p</i>ê€cymene; X = Ge^{IV}, Si^{IV}, <i>m</i> = 10; B^{III},) Tj ETQq1 1 0.784314 rgE 276

#	Article	IF	CITATIONS
277	Surfactant Hydrogels for the Dispersion of Carbonâ€Nanotubeâ€Based Catalysts. Chemistry - A European Journal, 2013, 19, 16415-16423.	1.7	27
278	Cerium(IV)-driven oxidation of water catalyzed by mononuclear ruthenium complexes. Research on Chemical Intermediates, 2014, 40, 3169-3182.	1.3	10
279	Catalytic water oxidation based on Ag(<scp>i</scp>)-substituted Keggin polyoxotungstophosphate. Dalton Transactions, 2014, 43, 17406-17415.	1.6	17
280	Polyoxometalates Catalysts for Sustainable Oxidations and Energy Applications. , 2014, , 586-630.		2
281	Oxygenation by Ruthenium Monosubstituted Polyoxotungstates in Aqueous Solution: Experimental and Computational Dissection of a Ru(III)–Ru(V) Catalytic Cycle. Chemistry - A European Journal, 2014, 20, 10932-10943.	1.7	11
282	Gas-Phase Fragmentation Reactions of Keggin-Type {PW11O39M} (M = Rh, Ir, and Ru) Polyoxometalates as Fingerprints of the Ligands Attached at the Noble Metal Site. European Journal of Inorganic Chemistry, 2014, 2014, 5618-5624.	1.0	15
283	Water activation by small free ruthenium oxide clusters. Physical Chemistry Chemical Physics, 2014, 16, 26578-26583.	1.3	11
284	Formation of a Nanoparticulate Birnessiteâ€Like Phase in Purported Molecular Water Oxidation Catalyst Systems. ChemCatChem, 2014, 6, 2028-2038.	1.8	29
285	Synthesis and Electronâ€Transfer Processes in a New Family of Ligands for Coupled Ruâ^'Mn ₂ Complexes. ChemPlusChem, 2014, 79, 936-950.	1.3	33
286	Mechanistic Aspects of Water Oxidation Catalyzed by Organometallic Iridium Complexes. European Journal of Inorganic Chemistry, 2014, 2014, 690-697.	1.0	59
287	Nâ€Heterocyclic Dicarbene Iridium(III) Catalysts Enabling Water Oxidation under Visible Light Irradiation. European Journal of Inorganic Chemistry, 2014, 2014, 665-675.	1.0	44
288	Mechanistic Approaches to Molecular Catalysts for Water Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 607-618.	1.0	43
289	Homogeneous versus Heterogeneous Catalysts in Water Oxidation. European Journal of Inorganic Chemistry, 2014, 2014, 645-659.	1.0	119
290	Environmental friendly Fe substitutive of Ru in water oxidation catalysis. Catalysis Communications, 2014, 44, 2-5.	1.6	21
291	Interface structure and reactivity of water-oxidation Ru–polyoxometalate catalysts on functionalized graphene electrodes. Physical Chemistry Chemical Physics, 2014, 16, 5333-5341.	1.3	3
292	A fast metal–metal bonded water oxidation catalyst. Journal of Catalysis, 2014, 315, 25-32.	3.1	20
293	Polyoxometalate Multiâ€Electronâ€Transfer Catalytic Systems for Water Splitting. European Journal of Inorganic Chemistry, 2014, 2014, 635-644.	1.0	85
294	Application of Pulse Radiolysis to Mechanistic Investigations of Water Oxidation Catalysis. European Journal of Inorganic Chemistry, 2014, 2014, 619-634.	1.0	10

#	Article	IF	CITATIONS
295	Ultrathin Graphitic C ₃ N ₄ Nanosheets/Graphene Composites: Efficient Organic Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2014, 7, 2125-2130.	3.6	232
296	Water Oxidation Chemistry of a Synthetic Dinuclear Ruthenium Complex Containing Redox-Active Quinone Ligands. Inorganic Chemistry, 2014, 53, 3973-3984.	1.9	38
297	Positive graphene by chemical design: tuning supramolecular strategies for functional surfaces. Chemical Communications, 2014, 50, 885-887.	2.2	26
298	Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews, 2014, 114, 11863-12001.	23.0	1,161
299	Collecting meaningful early-time kinetic data in homogeneous catalytic water oxidation with a sacrificial oxidant. Physical Chemistry Chemical Physics, 2014, 16, 11942-11949.	1.3	16
300	Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 11950.	1.3	64
301	Catalytic oxygen production mediated by smart capsules to modulate elastic turbulence under a laminar flow regime. Lab on A Chip, 2014, 14, 4391-4397.	3.1	13
302	Radical O–O coupling reaction in diferrate-mediated water oxidation studied using multireference wave function theory. Physical Chemistry Chemical Physics, 2014, 16, 11988-11999.	1.3	25
303	Photocatalytic reactivity tuning by heterometal and addenda metal variation in Lindqvist polyoxometalates. Dalton Transactions, 2014, 43, 17029-17033.	1.6	30
304	Visibleâ€Lightâ€Induced Water Oxidation Mediated by a Mononuclearâ€Cobalt(II)â€Substituted Silicotungstate. Chemistry - an Asian Journal, 2014, 9, 3228-3237.	1.7	33
306	Carbene iridium complexes for efficient water oxidation: scope and mechanistic insights. Energy and Environmental Science, 2014, 7, 2316-2328.	15.6	102
307	A computational study of the mechanism for water oxidation by (bpc)(bpy)Ru ^{II} OH ₂ . Dalton Transactions, 2014, 43, 13776-13782.	1.6	9
308	Self-assembly and structural transformations of high-nuclearity palladium-rich polyoxometalates. Inorganic Chemistry Frontiers, 2014, 1, 178-185.	3.0	49
309	Simple procedure for vacant POM-stabilized palladium (0) nanoparticles in water: structural and dispersive effects of lacunary polyoxometalates. RSC Advances, 2014, 4, 26491-26498.	1.7	28
311	Mediator Enhanced Water Oxidation Using Rb ₄ [Ru ^{II} (bpy) ₃] ₅ [{Ru ^{III} ₄ O _{4 Film Modified Electrodes. Inorganic Chemistry, 2014, 53, 7561-7570.}	<∦søb>(O	H)2xcsub>2
312	Carbon Quantum Dot/Silver Nanoparticle/Polyoxometalate Composites as Photocatalysts for Overall Water Splitting in Visible Light. ChemCatChem, 2014, 6, 2634-2641.	1.8	70
313	Kinetics of water oxidation with cerium(IV) compounds catalyzed by a tetranuclear ruthenium complex. Kinetics and Catalysis, 2014, 55, 422-427.	0.3	4
315	Surface Immobilization of a Tetra-Ruthenium Substituted Polyoxometalate Water Oxidation Catalyst Through the Employment of Conducting Polypyrrole and the Layer-by-Layer (LBL) Technique. ACS Applied Materials & Interfaces, 2014, 6, 8022-8031.	4.0	54

#	APTICLE	IF	CITATIONS
317	Charge transfer interactions in self-assembled single walled carbon nanotubes/Dawson–Wells polyoxometalate hybrids. Chemical Science, 2014, 5, 4346-4354	3.7	49
318	Polyoxometalate-Based Cobalt–Phosphate Molecular Catalysts for Visible Light-Driven Water Oxidation. Journal of the American Chemical Society, 2014, 136, 5359-5366.	6.6	414
319	A Noble-Metal-Free, Tetra-nickel Polyoxotungstate Catalyst for Efficient Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2014, 136, 14015-14018.	6.6	213
321	The Use of a Vanadium Species As a Catalyst in Photoinduced Water Oxidation. Journal of the American Chemical Society, 2014, 136, 8189-8192.	6.6	93
322	Grafting Transition Metal–Organic Fragments onto W/Ta Mixedâ€Addendum Nanoclusters for Broad‧pectrumâ€Ðriven Photocatalysis. ChemPlusChem, 2014, 79, 1153-1158.	1.3	11
323	Super-Reduced Polyoxometalates: Excellent Molecular Cluster Battery Components and Semipermeable Molecular Capacitors. Journal of the American Chemical Society, 2014, 136, 9042-9052.	6.6	162
324	Distinguishing Homogeneous from Heterogeneous Water Oxidation Catalysis when Beginning with Polyoxometalates. ACS Catalysis, 2014, 4, 909-933.	5.5	195
325	A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency. Journal of the American Chemical Society, 2014, 136, 4201-4211.	6.6	136
327	An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. Journal of the American Chemical Society, 2014, 136, 9268-9271.	6.6	260
329	Systematic assembly of {LnMnIII4} appended cubanes with inorganic polyoxometalate ligands and their electrocatalytic property. Inorganic Chemistry Communication, 2014, 46, 155-158.	1.8	16
330	Kegginâ€ŧype Polyoxometalates [PW ₁₁ O ₃₉ <i>M</i> Cl] ^{5–} with Noble Metals (<i>M</i> = Rh and Ir): Novel Synthetic Entries and ESIâ€MS Directed Reactivity Screening. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 122-127.	0.6	17
331	Nickelâ€Containing Kegginâ€Type Polyoxometalates as Hydrogen Evolution Catalysts: Photochemical Structure–Activity Relationships. ChemPlusChem, 2015, 80, 1389-1398.	1.3	45
332	Morphologyâ€Controlled Selfâ€Assembly and Nanostructured NiO: An Ei¬ƒcient and Robust Photocatalytic Waterâ€Oxidation Catalyst. ChemCatChem, 2015, 7, 2370-2376.	1.8	16
333	Sequential Synthesis of 3 d–3 d, 3 d–4 d, and 3 d–5 d Hybrid Polyoxometalates Electrocatalytic Oxygen Reduction Reactions. Chemistry - A European Journal, 2015, 21, 12153-12160.	s and App	lication to th
334	Dynamic Antifouling of Catalytic Pores Armed with Oxygenic Polyoxometalates. Advanced Materials Interfaces, 2015, 2, 1500034.	1.9	11
335	A Bioinspired Molecular Polyoxometalate Catalyst with Two Cobalt(II) Oxide Cores for Photocatalytic Water Oxidation. ChemSusChem, 2015, 8, 2630-2634.	3.6	78
336	[{Ni ₄ (OH) ₃ AsO ₄ } ₄ (<i>B</i> â€Î±â€PW ₉ O <sub A New Polyoxometalate Structural Family with Catalytic Hydrogen Evolution Activity. Chemistry - A European Journal, 2015, 21, 17363-17370.</sub 	>341.7	>) ₄₅₂
337	Water Oxidation by Ru-Polyoxometalate Catalysts: Overpotential Dependency on the Number and Charge of the Metal Centers. Inorganics, 2015, 3, 374-387.	1.2	8

#	Article	IF	CITATIONS
338	Dawson-type Polyoxometalate Covalently Linked to Naphthalene: Synthesis, Characterisation and Material Properties. Australian Journal of Chemistry, 2015, 68, 106.	0.5	3
339	Manganese-Oxide Solids as Water-Oxidation Electrocatalysts: The Effect of Intercalating Cations. ACS Symposium Series, 2015, , 135-153.	0.5	1
340	Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy and Environmental Science, 2015, 8, 661-674.	15.6	279
342	Influence of Ligand Architecture on Oxidation Reactions by Highâ€Valent Nonheme Manganese Oxo Complexes Using Water as a Source of Oxygen. Angewandte Chemie - International Edition, 2015, 54, 2095-2099.	7.2	59
343	Electron transfer and catalysis with high-valent metal-oxo complexes. Dalton Transactions, 2015, 44, 6696-6705.	1.6	41
344	A novel transition-metal-linked hexaniobate cluster with photocatalytic H2 evolution activity. Inorganic Chemistry Communication, 2015, 54, 19-20.	1.8	21
345	Assembly of cyanometalate-functionalized phosphotungstates with magnetic properties and bifunctional electrocatalytic activities. Dalton Transactions, 2015, 44, 4504-4511.	1.6	6
346	Working the Other Way Around: Photocatalytic Water Oxidation Triggered by Reductive Quenching of the Photoexcited Chromophore. Journal of Physical Chemistry C, 2015, 119, 2371-2379.	1.5	29
347	How a [Co ^{IV} \${^{underline{}}}\$O] ²⁺ Fragment Oxidizes Water: Involvement of a Biradicaloid [Co ^{II} –(â <oâ<)]<sup>2+ Species in Forming the OO Bor ChemSusChem, 2015, 8, 844-852.</oâ<)]<sup>	nd3.6	46
348	Photosensitizing Metal–Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells–Dawson-Type Polyoxometalate. Journal of the American Chemical Society, 2015, 137, 3197-3200.	6.6	374
349	Synthesis and Characterization of First 3-D Inorganic–Organic Hybrids Based on Keggin Polyoxometalate and Melamine with Three Layers Solvent Diffusion Method. Journal of Cluster Science, 2015, 26, 1619-1631.	1.7	3
350	Polyoxometalate – conductive polymer composites for energy conversion, energy storage and nanostructured sensors. Dalton Transactions, 2015, 44, 7092-7104.	1.6	202
351	Water splitting with polyoxometalate-treated photoanodes: enhancing performance through sensitizer design. Chemical Science, 2015, 6, 5531-5543.	3.7	67
352	Artificial photosynthesis: a molecular approach to photo-induced water oxidation. Pure and Applied Chemistry, 2015, 87, 583-599.	0.9	3
353	Computational Study of Metal–Dinitrogen Keggin-Type Polyoxometalate Complexes Bonding Nature and Dinitrogen Splitting. Inorganic Chemistry, 2015, 54, 7929-7935.	1.9	19
354	Molecular Catalysts for Water Oxidation. Chemical Reviews, 2015, 115, 12974-13005.	23.0	964
355	Highly Active Hydrogen Evolution Electrodes via Co-Deposition of Platinum and Polyoxometalates. ACS Applied Materials & Interfaces, 2015, 7, 11648-11653.	4.0	46
356	Unusual 1,2-dichloroethane dehydrochlorination over ruthenium-oxychloride catalyst. Catalysis Communications, 2015, 67, 95-97.	1.6	6

#	Article	IF	CITATIONS
357	A Bioinspired System for Light-Driven Water Oxidation with a Porphyrin Sensitizer and a Tetrametallic Molecular Catalyst. European Journal of Inorganic Chemistry, 2015, 2015, 3467-3477.	1.0	22
358	Polyoxometalate-Based Nickel Clusters as Visible Light-Driven Water Oxidation Catalysts. Journal of the American Chemical Society, 2015, 137, 5486-5493.	6.6	341
359	Wellâ€Defined Palladium Nanoparticles Supported on Siliceous Mesocellular Foam as Heterogeneous Catalysts for the Oxidation of Water. Chemistry - A European Journal, 2015, 21, 5909-5915.	1.7	15
360	Recent Advances in Polyoxometalate-Catalyzed Reactions. Chemical Reviews, 2015, 115, 4893-4962.	23.0	1,674
361	Controlled Reactivity Tuning of Metalâ€Functionalized Vanadium Oxide Clusters. Chemistry - A European Journal, 2015, 21, 7686-7689.	1.7	53
362	Hybrid Gel Electrolytes Derived from Keggin-Type Polyoxometalates and Imidazolium-Based Ionic Liquid with Enhanced Electrochemical Stability and Fast Ionic Conductivity. Journal of Physical Chemistry C, 2015, 119, 7621-7630.	1.5	34
363	Polyoxomolybdate-Calix[4]arene Hybrid: A Catalyst for Sulfoxidation Reactions with Hydrogen Peroxide. Organic Letters, 2015, 17, 5100-5103.	2.4	42
364	High Stability of Immobilized Polyoxometalates on TiO ₂ Nanoparticles and Nanoporous Films for Robust, Light-Induced Water Oxidation. Chemistry of Materials, 2015, 27, 5886-5891.	3.2	69
365	Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nature Communications, 2015, 6, 8253.	5.8	352
366	Reactivity of Dimeric Tetrazirconium(IV) Wells–Dawson Polyoxometalate toward Dipeptide Hydrolysis Studied by a Combined Experimental and Density Functional Theory Approach. Inorganic Chemistry, 2015, 54, 11477-11492.	1.9	32
367	Self-assembled IrO ₂ nanoparticles on a DNA scaffold with enhanced catalytic and oxygen evolution reaction (OER) activities. Journal of Materials Chemistry A, 2015, 3, 24463-24478.	5.2	133
368	Environmentally benign polyoxometalate materials. Coordination Chemistry Reviews, 2015, 286, 17-29.	9.5	209
369	Chemical, electrochemical and photochemical molecular water oxidation catalysts. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 71-81.	1.7	13
370	The kinetics and mechanism of photo-assisted Ag(<scp>i</scp>)-catalysed water oxidation with S ₂ O ₈ ^{2â^'} . Dalton Transactions, 2015, 44, 710-717.	1.6	7
371	Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru ^V (O)(Py ₂ ^{Me} tacn)] Intermediate. Chemistry - A European Journal, 2016, 22, 10111-10126.	1.7	21
372	Lichtinduzierte Wasseroxidation durch ein molekulares Manganvanadiumoxid. Angewandte Chemie, 2016, 128, 6437-6441.	1.6	33
373	Visibleâ€Lightâ€Driven Water Oxidation by a Molecular Manganese Vanadium Oxide Cluster. Angewandte Chemie - International Edition, 2016, 55, 6329-6333.	7.2	132
374	Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Transactions, 2016, 45, 14421-14461.	1.6	211

# 375	ARTICLE Highly efficient electrochemically driven water oxidation by graphene-supported mixed-valent Mn16-containing polyoxometalate. Green Energy and Environment, 2016, 1, 138-143.	IF 4.7	CITATIONS
376	A review of harvesting clean fuels from enzymatic CO ₂ reduction. RSC Advances, 2016, 6, 44170-44194.	1.7	87
377	Heterogenization of heteropoly compounds: a review of their structure and synthesis. RSC Advances, 2016, 6, 46433-46466.	1.7	82
378	Unraveling the Key Features of the Reactive State of Decatungstate Anion in Hydrogen Atom Transfer (HAT) Photocatalysis. ACS Catalysis, 2016, 6, 7174-7182.	5.5	124
379	Coordination of {C5Me5Ir}2+to [M6O19]8-(M = Nb, Ta) - Analogies and Differences between Rh and Ir, Nb and Ta. European Journal of Inorganic Chemistry, 2016, 2016, 154-160.	1.0	27
380	Synthesis and structural organization of ruthenium(IV) cluster Li8Ru2OCl14 and its catalytic properties in the water oxidation reaction. Russian Journal of Inorganic Chemistry, 2016, 61, 688-694.	0.3	6
381	Probing Polyoxometalate–Protein Interactions Using Molecular Dynamics Simulations. Chemistry - A European Journal, 2016, 22, 15280-15289.	1.7	50
382	Supramolecular Artificial Photosynthesis. Lecture Notes in Quantum Chemistry II, 2016, , 1-66.	0.3	5
383	CrIII-Substituted Heteropoly-16-Tungstates [CrIII2(B-β-XIVW8O31)2]14– (X = Si, Ge): Magnetic, Biological, and Electrochemical Studies. Inorganic Chemistry, 2016, 55, 10936-10946.	1.9	11
384	Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate. Chemistry - an Asian Journal, 2016, 11, 1138-1150.	1.7	67
385	Incorporation of a ruthenium–bis(pyridine)pyrazolate (Ru–bpp) water oxidation catalyst in a hexametallic macrocycle. Catalysis Science and Technology, 2016, 6, 6697-6704.	2.1	6
386	Carbon Nanoparticles and Nanostructures. Carbon Nanostructures, 2016, , .	0.1	18
387	Catalytic Applications of Carbon Dots. Carbon Nanostructures, 2016, , 257-298.	0.1	12
388	Cu-based Polyoxometalate Catalyst for Efficient Catalytic Hydrogen Evolution. Inorganic Chemistry, 2016, 55, 6750-6758.	1.9	50
389	Investigating the Transformations of Polyoxoanions Using Mass Spectrometry and Molecular Dynamics. Journal of the American Chemical Society, 2016, 138, 8765-8773.	6.6	50
390	A carbon-free polyoxometalate molecular catalyst with a cobalt–arsenic core for visible light-driven water oxidation. Chemical Communications, 2016, 52, 9514-9517.	2.2	37
391	A heterogeneous catalyst containing tetraruthenium (IV)-substituted silicotungstate: Preparation, characterization and catalytic performance toward oxidation of n-tetradecane with air. Inorganica Chimica Acta, 2016, 443, 218-223.	1.2	7
392	What Influences the Water Oxidation Activity of a Bioinspired Molecular Co ^{II} ₄ O ₄ Cubane? An In-Depth Exploration of Catalytic Pathways. ACS Catalysis, 2016, 6, 1505-1517.	5.5	53

		CITATION REPO	KI	
				<u></u>
#	ARTICLE	IF		CITATIONS
393	Enhancement of photochemical heterogeneous water oxidation by a manganese based soft oxometalate immobilized on a graphene oxide matrix. New Journal of Chemistry, 2016, 40, 994-10	03. ^{1.}	4	22
394	Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Applied Catalysis A: General, 2016, 521, 83-89.	2.	2	70
395	Electrooxidation of Ethanol and Methanol Using the Molecular Catalyst [{Ru ₄ O ₄ (OH) ₂ (H ₂ O) ₄ }(γ-SiW< Journal of the American Chemical Society, 2016, 138, 2617-2628.	sub>1006	a‱ub>36∢	< 8⊒u b>) <sut< td=""></sut<>
396	Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochimica Acta, 2016, 194, 59-66.	2.	6	128
397	Transition Metal-Based Photofunctional Materials: Recent Advances and Potential Applications. Structure and Bonding, 2016, , 201-289.	1.	0	1
398	Hybrid polyoxometalate materials for photo(electro-) chemical applications. Coordination Chemist Reviews, 2016, 306, 217-234.	ry 9.	5	314
399	Ruthenium based photosensitizer/catalyst supramolecular architectures in light driven water oxidation. Inorganica Chimica Acta, 2017, 454, 171-175.	1.	2	18
400	Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Ox Evolution Catalyst. Inorganic Chemistry, 2017, 56, 1742-1756.	ygen 1.	9	102
401	Heptanuclear Co ^{II} ₅ Co ^{III} ₂ Cluster as Efficient V Oxidation Catalyst. Inorganic Chemistry, 2017, 56, 1591-1598.	Vater 1.	9	39
402	Cobalt based water oxidation catalysis with photogenerated Ru(bpy) 3 3+ : Different kinetics and competent species starting from a molecular polyoxometalate and metal oxide nanoparticles capp with a bisphosphonate alendronate pendant. Catalysis Today, 2017, 290, 39-50.	ed 2.	2	20
403	Tetracobalt-polyoxometalate catalysts for water oxidation: Key mechanistic details. Journal of Catalysis, 2017, 350, 56-63.	3.	1	59
404	Self-powered catalytic microfluidic platforms for fluid delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 257-262.	2.	3	3
405	Exploring Self-Assembly and the Self-Organization of Nanoscale Inorganic Polyoxometalate Cluster Advances in Inorganic Chemistry, 2017, 69, 1-28.	s. 0.	.4	14
406	Polyoxometalate Multielectron Catalysts in Solar Fuel Production. Advances in Inorganic Chemistry 2017, , 117-154.	^{1,} 0.	.4	14
407	[Co9(H2O)6(OH)3(HPO4)2(PW9O34)3]16â^'. Advances in Inorganic Chemistry, 2017, , 155-179.	0.	.4	2
408	Robust Polyoxometalate/Nickel Foam Composite Electrodes for Sustained Electrochemical Oxygen Evolution at High pH. Angewandte Chemie - International Edition, 2017, 56, 4941-4944.	7.	2	131
409	Photochemical Water Oxidation Using {PMo12O40@Mo72Fe30} _{<i>n</i>} Based Soft Oxometalate. Journal of Molecular and Engineering Materials, 2017, 05, 1750001.	: 0.	.9	7
410	Effects of Competitive Active-Site Ligand Binding on Proton- and Electron-Transfer Properties of the [Co4(H2O)2(PW9O34)2]10â^ Polyoxometalate Water Oxidation Catalyst. Journal of Cluster Scier 2017, 28, 839-852.	e 1ce, 1.	7	6

#	Article	IF	CITATIONS
411	Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. Journal of Energy Chemistry, 2017, 26, 219-240.	7.1	48
412	Spontaneous linker-free binding of polyoxometalates on nitrogen-doped carbon nanotubes for efficient water oxidation. Journal of Materials Chemistry A, 2017, 5, 1941-1947.	5.2	46
413	Synthesis and Characterization of 0D–3D Copper-Containing Tungstobismuthates Obtained from the Lacunary Precursor Na ₉ [B-α-BiW ₉ O ₃₃]. Inorganic Chemistry, 2017, 56, 327-335.	1.9	30
414	Development of a ruthenium multi-pyridine complex as photosensitizer for highly efficient light driven water oxidation. Inorganic Chemistry Communication, 2017, 86, 10-13.	1.8	2
415	From molecular to colloidal manganese vanadium oxides for water oxidation catalysis. Chemical Communications, 2017, 53, 11576-11579.	2.2	17
416	{Co ₄ O ₄ } and {Co _{<i>x</i>} Ni _{4–<i>x</i>} O ₄ } Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. Journal of the American Chemical Society, 2017, 139, 14198-14208.	6.6	94
417	Polyoxometalate-based catalysts for photocatalytic, chemical catalytic and electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2017, 42, 24169-24175.	3.8	8
418	Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nature Reviews Materials, 2017, 2, .	23.3	191
419	Hetero-metallic, functionalizable polyoxomolybdate clusters via a "top-down―synthetic method. Chemical Communications, 2017, 53, 10660-10663.	2.2	5
420	Synthesis and photo-/electro-catalytic properties of Keggin polyoxometalate inorganic–organic hybrid layers based on d ¹⁰ metal and rigid benzo-diazole/-triazole ligands. New Journal of Chemistry, 2017, 41, 12459-12469.	1.4	19
421	Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. ChemSusChem, 2017, 10, 4236-4263.	3.6	59
422	Two New Sandwich-Type Manganese {Mn5}-Substituted Polyoxotungstates: Syntheses, Crystal Structures, Electrochemistry, and Magnetic Properties. Inorganic Chemistry, 2017, 56, 8759-8767.	1.9	43
423	Na14[(H2P4W6O34)2Co2Na2(H2O)2]·26H2O: A New, Carbon-Free, Polyoxometalate Catalyst for Water Oxidation. Journal of Cluster Science, 2017, 28, 3087-3101.	1.7	2
424	Frontiers of water oxidation: the quest for true catalysts. Chemical Society Reviews, 2017, 46, 6124-6147.	18.7	198
425	Stabile Polyoxometallatâ€Nickelschaumâ€Elektroden für elektrochemische Sauerstoffentwicklung im alkalischen Milieu. Angewandte Chemie, 2017, 129, 5023-5026.	1.6	22
427	Synthesis, crystal structure and spectroscopic properties of ethanol solvated α-Keggin heteropolymolybdate. Journal of Molecular Structure, 2017, 1147, 622-628.	1.8	2
428	Photostimulated oxidation of water catalyzed by a tetranuclear ruthenium complex with lithium countercations. High Energy Chemistry, 2017, 51, 215-218.	0.2	3
429	In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chemical Society Reviews, 2017, 46, 102-125.	18.7	172

		CITATION R	EPORT	
#	Article		IF	Citations
430	50 Years of Structure and Bonding $\hat{a} \in$ "The Anniversary Volume. Structure and Bonding	, 2017, , .	1.0	2
431	High-valent metal-oxo complexes generated in catalytic oxidation reactions using water source. Coordination Chemistry Reviews, 2017, 333, 44-56.	as an oxygen	9.5	62
432	Electrochemical Water Oxidation Catalysis Beginning with Co(II) Polyoxometalates: The Precatalyst Co ₄ V ₂ W ₁₈ O ₆₈ ^{Catalysis, 2017, 7, 7-16.}	Case of the 10–. ACS	5.5	54
433	Organically Encapsulated Polyoxometalate Catalysts. , 2017, , 1-33.			3
434	Mechanism of Water Oxidation Catalyzed by a Dinuclear Ruthenium Complex Bridged b Anthraquinone. Catalysts, 2017, 7, 56.	у	1.6	11
436	WO ₃ /Conducting Polymer Heterojunction Photoanodes for Efficient and S Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2018, 1	stable 0, 8036-8044.	4.0	100
437	Metal-Free Oxygen Evolution and Oxygen Reduction Reaction Bifunctional Electrocataly Media: From Mechanisms to Structure–Catalytic Activity Relationship. ACS Sustainab Engineering, 2018, 6, 4973-4980.	rst in Alkaline le Chemistry and	3.2	62
438	Oxidation of Water to Molecular Oxygen by One-Electron Oxidants on Transition Metal Kinetics and Catalysis, 2018, 59, 23-47.	Hydroxides.	0.3	6
439	Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution re Catalysis, 2018, 1, 208-213.	action. Nature	16.1	97
440	Optimization of Synthetically Versatile Pyridylidene Amide Ligands for Efficient Iridiumâ Water Oxidation. Chemistry - A European Journal, 2018, 24, 6386-6398.	€Catalyzed	1.7	29
441	A series of unprecedented triol-stabilized [H ₃ MW ₆ O ₂₄] ^{nâ^'} : the missing pie B-type Anderson–Evans polyoxometalates. Chemical Communications, 2018, 54, 137	ce between A- and '5-1378.	2.2	17
442	Boosting photocatalytic water oxidation achieved by BiVO4 coupled with iron-containir polyoxometalate: Analysis the true catalyst. Journal of Catalysis, 2018, 363, 109-116.	g	3.1	67
443	Catalytic effects of [Ag(H2O)(H3PW11O39)]3â^' on a TiO2 anode for water oxidation. Catalysis, 2018, 39, 534-541.	Chinese Journal of	6.9	13
444	Activation of a Ni electrocatalyst through spontaneous transformation of nickel sulfide hydroxide in an oxygen evolution reaction. Applied Catalysis B: Environmental, 2018, 23	to nickel 3, 130-135.	10.8	103
445	From Enzymes to Functional Materials—Towards Activation of Small Molecules. Chem European Journal, 2018, 24, 1471-1493.	istry - A	1.7	55
446	Metal Oxide Cluster and Polyoxometallate Supports for Noble Metal Nanoparticles in Ef Electrocatalysis. , 2018, , 207-216.	ficient		3
447	Design of an inherently-stable water oxidation catalyst. Nature Communications, 2018,	9, 4896.	5.8	60
448	Speciation and Dynamics in the [Co ₄ V ₂ W ₁₈ O ₆₈] ^{10–Catalytic Water Oxidation System. ACS Catalysis, 2018, 8, 11952-11959.}	p>/Co(II) _{aq}	/CơQx sub	><109x

#	Article	IF	CITATIONS
449	Mechanism of Water Oxidation by Ferrate(VI) at pHâ€7–9. Chemistry - A European Journal, 2018, 24, 18735-18742.	1.7	23
450	Two Keggin-Based Isostructural POMOF Hybrids: Synthesis, Crystal Structure, and Catalytic Properties. Inorganic Chemistry, 2018, 57, 12078-12092.	1.9	67
451	Electrochemically Driven Water-Oxidation Catalysis Beginning with Six Exemplary Cobalt Polyoxometalates: Is It Molecular, Homogeneous Catalysis or Electrode-Bound, Heterogeneous CoO _{<i>x</i>} Catalysis?. Journal of the American Chemical Society, 2018, 140, 12040-12055.	6.6	63
452	Polyoxotungstate@Carbon Nanocomposites As Oxygen Reduction Reaction (ORR) Electrocatalysts. Langmuir, 2018, 34, 6376-6387.	1.6	41
453	Highly Sensitive Membrane-Based Pressure Sensors (MePS) for Real-Time Monitoring of Catalytic Reactions. Analytical Chemistry, 2018, 90, 7659-7665.	3.2	7
454	Catalysts Based on Earthâ€Abundant Metals for Visible Lightâ€Driven Water Oxidation Reaction. Chemical Record, 2018, 18, 1531-1547.	2.9	16
455	Homogeneous and heterogeneous photocatalytic water oxidation by polyoxometalates containing the most earth-abundant transition metal, iron. Applied Catalysis B: Environmental, 2018, 237, 1091-1100.	10.8	47
456	Self-Organization of a Binuclear Ruthenium Complex to Tetra- and Octanuclear Catalysts for Water Oxidation for "Artificial Photosynthesis― Kinetics and Catalysis, 2018, 59, 123-127.	0.3	2
457	Recent advances in the field of light-driven water oxidation catalyzed by transition-metal substituted polyoxometalates. Dalton Transactions, 2018, 47, 8180-8188.	1.6	56
458	A Novel Ruthenium-Decorating Polyoxomolybdate Cs3Na6H[MoVI14RuIV2O50(OH)2]·24H2O: An Active Heterogeneous Oxidation Catalyst for Alcohols. Materials, 2018, 11, 178.	1.3	11
459	Multi-Tasking POM Systems. Frontiers in Chemistry, 2018, 6, 365.	1.8	22
460	Photoinduced Oxygen Evolution Catalysis Promoted by Polyoxometalate Salts of Cationic Photosensitizers. Frontiers in Chemistry, 2018, 6, 302.	1.8	8
461	Recent advances in visible light-driven water oxidation and reduction in suspension systems. Materials Today, 2018, 21, 897-924.	8.3	157
462	9-Cobalt(II)-Containing 27-Tungsto-3-germanate(IV): Synthesis, Structure, Computational Modeling, and Heterogeneous Water Oxidation Catalysis. Inorganic Chemistry, 2019, 58, 11308-11316.	1.9	23
463	Evidence of two-state reactivity in water oxidation catalyzed by polyoxometalate-based complex [Mn3(H2O)3(SbW9O33)2]12â^'. Journal of Catalysis, 2019, 376, 146-149.	3.1	13
464	Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem, 2019, 1, 100021.	10.1	183
465	Isolation and Study of Ruthenium–Cobalt Oxo Cubanes Bearing a High-Valent, Terminal Ru ^V –Oxo with Significant Oxyl Radical Character. Journal of the American Chemical Society, 2019, 141, 19859-19869.	6.6	21
466	Theoretical Insight into the Performance of Mn ^{II/III} -Monosubstituted Heteropolytungstates as Water Oxidation Catalysts. Inorganic Chemistry, 2019, 58, 15751-15757.	1.9	11

#	Article	IF	Citations
467	Critical Hammett Electron-Donating Ability of Substituent Groups for Efficient Water Oxidation Catalysis by Mononuclear Ruthenium Aquo Complexes. Inorganic Chemistry, 2019, 58, 12716-12723.	1.9	27
468	Radio frequency alternating electromagnetic field enhanced tetraruthenium polyoxometalate electrocatalytic water oxidation. Chemical Communications, 2019, 55, 1032-1035.	2.2	8
469	Discovery of Polyoxo-Noble-Metalate-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 3385-3389.	6.6	43
470	Assembly, disassembly and reassembly: a "top-down―synthetic strategy towards hybrid, mixed-metal {Mo ₁₀ Co ₆ } POM clusters. Dalton Transactions, 2019, 48, 3018-3027.	1.6	7
471	Kinetics and mechanisms of catalytic water oxidation. Dalton Transactions, 2019, 48, 779-798.	1.6	42
472	Electrochemical surface modification of carbon for enhanced water electrolysis. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	5
473	Anchored Silicotungstates: Effect of Supports on Catalytic Activity. Catalysis Surveys From Asia, 2019, 23, 257-264.	1.0	3
474	Preparation, characterization and electrocatalysis performance of a trimeric ruthenium-substituted isopolytungstate. Dalton Transactions, 2019, 48, 10327-10336.	1.6	9
475	Heterogeneous photocatalytic water reduction using a QD-cluster pentacobalt polyoxotungstate complex. New Journal of Chemistry, 2019, 43, 8085-8092.	1.4	2
476	Monoâ€∤Multinuclear Water Oxidation Catalysts. ChemSusChem, 2019, 12, 3209-3235.	3.6	22
477	Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews, 2019, 48, 2216-2264.	18.7	629
478	Polyoxometalates in photocatalysis. Physical Sciences Reviews, 2019, 4, .	0.8	14
479	Polyoxometalate/Lead Composite Anode for Efficient Oxygen Evolution in Zinc Electrowinning. Journal of the Electrochemical Society, 2019, 166, E129-E136.	1.3	14
480	Synthesis, Structure, and Electrochemical Properties of [Na(SO3)2(RPO3)4MoV4MoVI14O49]5â^ (R =) Tj ETQq1	1.0,7843 2.0	14 rgBT /O∨
481	Synthesis and Catalytic Properties of a Sandwichâ€Type Tungstogermanate [Co 4 (H 2 O) 2 (GeW 9 O 34) 2] 12â^'. ChemistrySelect, 2019, 4, 3855-3861.	0.7	0
482	Early photophysical events of a ruthenium(II) molecular dyad capable of performing photochemical water oxidation and of its model compounds. Photochemical and Photobiological Sciences, 2019, 18, 2164-2173.	1.6	15
483	Axial Ligand Effects of Ruâ€BDA Complexes in the O–O Bond Formation via the I2M Bimolecular Mechanism in Water Oxidation Catalysis. European Journal of Inorganic Chemistry, 2019, 2019, 2101-2108.	1.0	26
484	Light Driven Water Oxidation Coupled With Câ€N Coupling Reaction Using a Hybrid Cuâ€PW ₁₂ O ₄₀ Based Softâ€Oxometalate. ChemistrySelect, 2019, 4, 1994-2000.	0.7	5

#	Article	IF	CITATIONS
485	Recent Advances in the Development of Molecular Catalystâ€Based Anodes for Water Oxidation toward Artificial Photosynthesis. ChemSusChem, 2019, 12, 1775-1793.	3.6	60
486	Revisiting O–O Bond Formation through Outerâ€Sphere Water Molecules versus Bimolecular Mechanisms in Waterâ€Oxidation Catalysis (WOC) by Cp*Ir Based Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 2093-2100.	1.0	4
487	Recent advances in photoinduced catalysis for water splitting and environmental applications. Journal of Industrial and Engineering Chemistry, 2019, 72, 31-49.	2.9	43
488	Multi-electron reduction of Wells–Dawson polyoxometalate films onto metallic, semiconducting and dielectric substrates. Physical Chemistry Chemical Physics, 2019, 21, 427-437.	1.3	17
489	Multi-potential-step chronocoulospectrometry for electrocatalytic water oxidation by a mononuclear ruthenium aquo complex immobilized on a mesoporous ITO electrode. Dalton Transactions, 2020, 49, 1416-1423.	1.6	9
490	Catalytic processing in ruthenium-based polyoxometalate coacervate protocells. Nature Communications, 2020, 11, 41.	5.8	63
491	The Reactivity and Stability of Polyoxometalate Water Oxidation Electrocatalysts. Molecules, 2020, 25, 157.	1.7	47
492	Tricopper-polyoxometalate catalysts for water oxidation: Redox-inertness of copper center. Journal of Catalysis, 2020, 381, 402-407.	3.1	12
493	Preparation of the copper-based polyoxometalate/polyurethane composites and their dielectric properties. Polymers and Polymer Composites, 2020, 28, 473-483.	1.0	7
494	Mixing enhancement induced by viscoelastic micromotors in microfluidic platforms. Chemical Engineering Journal, 2020, 391, 123572.	6.6	15
495	Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives. Nano Energy, 2020, 78, 105392.	8.2	86
496	Synthesis of tetraruthenium (IV)-substituted tungstogermanate and catalytic oxidation of n-tetradecane under mild solvent-free conditions. Journal of Coordination Chemistry, 2020, 73, 2462-2478.	0.8	0
497	Study two kind different catalytic behaviors for K4H1.2[Co0.6(H2O)0.6SiW11.4O39.4]-cocatalyzed visible light driven water oxidation in pH 1–7 media. Journal of Catalysis, 2020, 392, 29-38.	3.1	4
498	Palladium(II)-Containing Tungstoarsenate(V), [Pd ^{II} ₄ (As ₂ W ₁₅ O ₅₆) ₂ 16â€ [€] and Its Catalytic Properties. Inorganic Chemistry, 2020, 59, 13042-13049.	ʻ ₄¦s up>,	5
499	Synthesis and applications of amino-functionalized carbon nanomaterials. Chemical Communications, 2020, 56, 12698-12716.	2.2	36
500	Efficient Electrocatalytic Water Oxidation by a Dinuclear Ruthenium(II) Complex with Vicinal Aquo and Hydroxo Groups Adsorbed on a TiO2 Electrode. ACS Applied Energy Materials, 2020, 3, 12172-12184.	2.5	5
501	Computational Study on O–O Bond Formation on a Mononuclear Nonâ€Heme Iron Center. European Journal of Inorganic Chemistry, 2020, 2020, 2573-2581.	1.0	2
502	Vanadium doped polyoxometalate: induced active sites and increased hydrogen adsorption. Journal of Physics Condensed Matter, 2020, 32, 195001.	0.7	4

#	Article	IF	CITATIONS
503	15. Polyoxometalates in photocatalysis. , 2020, , 363-378.		3
504	Tetraruthenium Polyoxometalate as an Atom-Efficient Bifunctional Oxygen Evolution Reaction/Oxygen Reduction Reaction Catalyst and Its Application in Seawater Batteries. ACS Applied Materials & Interfaces, 2020, 12, 32689-32697.	4.0	23
505	Polyoxometalateâ€Based Compounds for Photo―and Electrocatalytic Applications. Angewandte Chemie, 2020, 132, 20963-20977.	1.6	38
506	Polyoxometalateâ€Based Compounds for Photo―and Electrocatalytic Applications. Angewandte Chemie - International Edition, 2020, 59, 20779-20793.	7.2	222
507	A Facile Grinding Method for the Synthesis of 3D Ag Metal–Organic Frameworks (MOFs) Containing Ag ₆ Mo ₇ O ₂₄ for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2020, 26, 4613-4619.	1.7	34
508	Zwitterionic Conjugated Surfactant Functionalization of Graphene with pHâ€Independent Dispersibility: An Efficient Electron Mediator for the Oxygen Evolution Reaction in Acidic Media. Small, 2020, 16, 1906635.	5.2	8
509	Photoanodes for water oxidation with visible light based on a pentacyclic quinoid organic dye enabling proton-coupled electron transfer. Chemical Communications, 2020, 56, 2248-2251.	2.2	19
510	Biomimetic Water Oxidation Catalyzed by a Binuclear Ruthenium (IV) Nitrido-Chloride Complex with Lithium Counter-Cations. Biomimetics, 2020, 5, 3.	1.5	2
511	Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production. Science Advances, 2020, 6, eaaz3944.	4.7	76
512	Coordination Chemistry in Polyoxometalates and Metal Clusters. , 2021, , 118-154.		1
513	Study of Polyoxometalates as Electrode Materials for Lithiumâ€Ion Batteries: Thermal Stability Paves the Way to Improved Cycle Stability. ChemElectroChem, 2021, 8, 656-664.	1.7	6
514	Fundamental insights and rational design of low-cost polyoxometalates for the oxygen evolution reaction. Journal of Catalysis, 2021, 393, 202-206.	3.1	10
515	Co/Ni-polyoxotungstate photocatalysts as precursor materials for electrocatalytic water oxidation. RSC Advances, 2021, 11, 11425-11436.	1.7	3
516	Understanding polyoxometalates as water oxidation catalysts through iron <i>vs.</i> cobalt reactivity. Chemical Science, 2021, 12, 8755-8766.	3.7	23
517	Toward Molecular Mechanisms of Solar Water Splitting in Semiconductor/Manganese Materials and Photosystem II. Advances in Photosynthesis and Respiration, 2021, , 105-129.	1.0	1
518	Ligandâ€Directed Approach in Polyoxometalate Synthesis: Formation of a New Divacant Lacunary Polyoxomolybdate [l³â€PMo ₁₀ O ₃₆] ^{7â^'} . Angewandte Chemie - International Edition, 2021, 60, 6960-6964.	7.2	34
520	Ligandâ€Ðirected Approach in Polyoxometalate Synthesis: Formation of a New Divacant Lacunary Polyoxomolybdate [l³â€₽Mo 10 O 36] 7âr'. Angewandte Chemie, 2021, 133, 7036-7040.	1.6	6
521	Phosphateâ€Templated Encapsulation of a {Co ^{II} ₄ O ₄ } Cubane in Germanotungstates as Carbonâ€Free Homogeneous Water Oxidation Photocatalysts. ChemSusChem, 2021, 14, 2529-2536.	3.6	10

#	Article	IF	CITATIONS
522	Isolation of a Ru(iv) side-on peroxo intermediate in the water oxidation reaction. Nature Chemistry, 2021, 13, 800-804.	6.6	35
523	A polyoxometalate-based self-cleaning smart material with oxygenic activity for water remediation with membrane technology. Applied Materials Today, 2021, 23, 101002.	2.3	10
524	Energy catalysis needs ligands with high oxidative stability. Chem Catalysis, 2021, 1, 32-43.	2.9	16
525	Single Metal Atom Supported on N-Doped 2D Nitride Black Phosphorus: An Efficient Electrocatalyst for the Oxygen Evolution and Oxygen Reduction Reactions. Journal of Physical Chemistry C, 2021, 125, 12541-12550.	1.5	24
526	Synthesis of an oxo-bridged diruthenium diazene complex and its catalytic light-driven water oxidation. Polyhedron, 2021, 202, 115201.	1.0	1
527	Noble metals in polyoxometalates. Inorganica Chimica Acta, 2021, 523, 120410.	1.2	10
528	A Rull,III2 diphosphonato complex with a metal–metal bond for water oxidation. Dalton Transactions, 2021, 50, 2018-2022.	1.6	3
529	Polyoxometalates (POMs): from electroactive clusters to energy materials. Energy and Environmental Science, 2021, 14, 1652-1700.	15.6	184
530	Bio-Inspired Water Oxidation Catalysts. , 2021, , 589-610.		0
531	Tafel Slope Analyses for Homogeneous Catalytic Reactions. Catalysts, 2021, 11, 87.	1.6	16
532	Selective photocatalytic production of CH ₄ using Zn-based polyoxometalate as a nonconventional CO ₂ reduction catalyst. Nanoscale Horizons, 2021, 6, 379-385.	4.1	14
533	Heterogeneous photocatalysts based on iso- and heteropolytungstates. , 2021, , 301-318.		0
534	Activation by oxidation and ligand exchange in a molecular manganese vanadium oxide water oxidation catalyst. Chemical Science, 2021, 12, 12918-12927.	3.7	10
535	Photo-induced water oxidation: New photocatalytic processes and materials. Photochemistry, 0, , 274-294.	0.2	7
536	Quantum Chemical Studies on All-Inorganic Catalyst for the Oxidation of Water to Dioxygen ([{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10 â^'): Electronic Property and Redox Tunability. Communications Computer and Information Science, 2011, , 487-494.	i 0. 4	0
537	Converting Photons to Electron and Proton Shifts from Water for Fuel Production. RSC Energy and Environment Series, 2011, , 39-84.	0.2	0
538	New Development of molecular catalysts for water oxidation. Bulletin of Japan Society of Coordination Chemistry, 2011, 57, 67-74.	0.1	0
539	Multi-electron Transfer Catalysts for Air-Based Organic Oxidations and Water Oxidation. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 229-242.	0.2	0

#	Article	IF	CITATIONS
540	Polyoxometalate-based materials: quasi-homogeneous single-atom catalysts with atomic-precision structures. Journal of Materials Chemistry A, 2022, 10, 5758-5770.	5.2	17
541	Porous Polymeric Membranes Doped with Halloysite Nanotubes and Oxygenic Polyoxometalates. Advanced Materials Interfaces, 2022, 9, .	1.9	6
542	Polyoxometalate systems to probe catalyst environment and structure in water oxidation catalysis. Advances in Inorganic Chemistry, 2022, , 351-372.	0.4	0
543	Molecular water oxidation catalysts based on first-row transition metal complexes. Nature Catalysis, 2022, 5, 79-82.	16.1	30
544	Inorganic Ruthenium Catalyst for Photoinduced Oxidation of Water in Artificial Photosynthesis. High Energy Chemistry, 2022, 56, 38-41.	0.2	0
545	Synthesis,Âcharacterization, and multielectron redox propertyÂof pyridine oordinated tetraâ€Ruâ€oxo		

#	Article	IF	CITATIONS
560	Recent advances on the synthesis, structure, and properties of polyoxotantalates. , 2023, 2, 9140023.		13
562	Overview of recent advances in photosynthesis and nanotechnology. , 2023, , 3-8.		1
563	Semiconductor nanomaterials in mimicking photosynthesis. , 2023, , 353-376.		0
565	A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chemical Science, 0, , .	3.7	1
569	Molecular Metal Nanoclusters for Water Oxidation Catalysis and Future Potential. , 0, , .		0