Centronuclear (myotubular) myopathy

Orphanet Journal of Rare Diseases 3, 26 DOI: 10.1186/1750-1172-3-26

Citation Report

#	Article	IF	CITATIONS
1	T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18763-18768.	3.3	167
2	Phenotypic spectrum of dynamin 2 mutations in Charcot-Marie-Tooth neuropathy. Brain, 2009, 132, 1741-1752.	3.7	134
3	Loss of Myotubularin Function Results in T-Tubule Disorganization in Zebrafish and Human Myotubular Myopathy. PLoS Genetics, 2009, 5, e1000372.	1.5	201
4	Diverse roles of the actin cytoskeleton in striated muscle. Journal of Muscle Research and Cell Motility, 2009, 30, 187-197.	0.9	50
7	The role of muscle biopsy in the age of genetic testing. Current Opinion in Neurology, 2009, 22, 543-553.	1.8	9
9	Dynamin 2 and human diseases. Journal of Molecular Medicine, 2010, 88, 339-350.	1.7	112
10	Mutation studies in X-linked myotubular myopathy in three Indian families. Indian Journal of Pediatrics, 2010, 77, 431-433.	0.3	3
11	Ryanodine receptor calcium channels and their partners as drug targets. Biochemical Pharmacology, 2010, 79, 1535-1543.	2.0	69
12	STIM proteins: integrators of signalling pathways in development, differentiation and disease. Journal of Cellular and Molecular Medicine, 2010, 14, 1890-1903.	1.6	47
13	Vici syndrome associated with sensorineural hearing loss and evidence of neuromuscular involvement on muscle biopsy. American Journal of Medical Genetics, Part A, 2010, 152A, 741-747.	0.7	40
14	<i>RYR1</i> mutations are a common cause of congenital myopathies with central nuclei. Annals of Neurology, 2010, 68, 717-726.	2.8	230
15	Prenatal diagnosis of Xâ€linked myotubular myopathy. Prenatal Diagnosis, 2010, 30, 177-179.	1.1	2
16	A centronuclear myopathy-dynamin 2 mutation impairs skeletal muscle structure and function in mice. Human Molecular Genetics, 2010, 19, 4820-4836.	1.4	107
17	Dynamin 2 Mutants Linked to Centronuclear Myopathies Form Abnormally Stable Polymers. Journal of Biological Chemistry, 2010, 285, 22753-22757.	1.6	71
18	Zebrafish MTMR14 is required for excitation–contraction coupling, developmental motor function and the regulation of autophagy. Human Molecular Genetics, 2010, 19, 2668-2681.	1.4	73
19	Ryanodinopathies. Current Topics in Membranes, 2010, 66, 139-167.	0.5	6
20	Case report of intrafamilial variability in autosomal recessive centronuclear myopathy associated to a novel BIN1 stop mutation. Orphanet Journal of Rare Diseases, 2010, 5, 35.	1.2	51
21	Centronuclear myopathy with cataracts due to a novel dynamin 2 (DNM2) mutation. Neuromuscular Disorders, 2010, 20, 49-52.	0.3	37

#	Article	IF	CITATIONS
22	Adult course in dynamin 2 dominant centronuclear myopathy with neonatal onset. Neuromuscular Disorders, 2010, 20, 53-56.	0.3	28
23	Novel molecular diagnostic approaches for X-linked centronuclear (myotubular) myopathy reveal intronic mutations. Neuromuscular Disorders, 2010, 20, 375-381.	0.3	33
24	Sporadic centronuclear myopathy with muscle pseudohypertrophy, neutropenia, and necklace fibers due to a DNM2 mutation. Neuromuscular Disorders, 2010, 20, 801-804.	0.3	40
25	Inhibition of Activin Receptor Type IIB Increases Strength and Lifespan in Myotubularin-Deficient Mice. American Journal of Pathology, 2011, 178, 784-793.	1.9	63
26	Increased Expression of Wild-Type or a Centronuclear Myopathy Mutant of Dynamin 2 in Skeletal Muscle of Adult Mice Leads to Structural Defects and Muscle Weakness. American Journal of Pathology, 2011, 178, 2224-2235.	1.9	84
27	Dilated cardiomyopathy with centronuclear myopathy in a young male. International Journal of Cardiology, 2011, 150, 213-216.	0.8	4
28	Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathies. Neuromuscular Disorders, 2011, 21, 379-386.	0.3	96
29	Endplate structure and parameters of neuromuscular transmission in sporadic centronuclear myopathy associated with myasthenia. Neuromuscular Disorders, 2011, 21, 387-395.	0.3	39
31	Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nature Medicine, 2011, 17, 720-725.	15.2	299
32	Muscle Imaging in Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 221-229.	1.0	70
32 33	Muscle Imaging in Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 221-229. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266.	1.0 3.9	70
32 33 34	Muscle Imaging in Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 221-229. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266. Phenotype variability and histopathological findings in centronuclear myopathy due to DNM2 mutations. Journal of Neurology, 2011, 258, 1085-1090.	1.0 3.9 1.8	70 113 43
32 33 34 35	Muscle Imaging in Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 221-229. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266. Phenotype variability and histopathological findings in centronuclear myopathy due to DNM2 mutations. Journal of Neurology, 2011, 258, 1085-1090. Cellular self-organization by autocatalytic alignment feedback. Journal of Cell Science, 2011, 124, 4213-4220.	1.0 3.9 1.8 1.2	70 113 43 49
32 33 34 35 36	Muscle Imaging in Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 221-229. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266. Phenotype variability and histopathological findings in centronuclear myopathy due to DNM2 mutations. Journal of Neurology, 2011, 258, 1085-1090. Cellular self-organization by autocatalytic alignment feedback. Journal of Cell Science, 2011, 124, 4213-4220. Phosphatase-Dead Myotubularin Ameliorates X-Linked Centronuclear Myopathy Phenotypes in Mice. PLOS Genetics, 2012, 8, e1002965.	1.0 3.9 1.8 1.2 1.5	 70 113 43 49 49
32 33 34 35 36 37	Muscle Imaging in Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 221-229. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266. Phenotype variability and histopathological findings in centronuclear myopathy due to DNM2 mutations. Journal of Neurology, 2011, 258, 1085-1090. Cellular self-organization by autocatalytic alignment feedback. Journal of Cell Science, 2011, 124, 4213-4220. Phosphatase-Dead Myotubularin Ameliorates X-Linked Centronuclear Myopathy Phenotypes in Mice. PLoS Genetics, 2012, 8, e1002965. Myotubular myopathy caused by multiple abnormal splicing variants in the MTM1 RNA in a patient with a mild phenotype. European Journal of Human Genetics, 2012, 20, 701-704.	1.0 3.9 1.8 1.2 1.5 1.4	 70 113 43 49 49 3
32 33 34 35 36 37 38	Muscle Imaging in Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 221-229. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266. Phenotype variability and histopathological findings in centronuclear myopathy due to DNM2 mutations. Journal of Neurology, 2011, 258, 1085-1090. Cellular self-organization by autocatalytic alignment feedback. Journal of Cell Science, 2011, 124, 4213-4220. Phosphatase-Dead Myotubularin Ameliorates X-Linked Centronuclear Myopathy Phenotypes in Mice. PLoS Genetics, 2012, 8, e1002965. Myotubular myopathy caused by multiple abnormal splicing variants in the MTM1 RNA in a patient with a mild phenotype. European Journal of Human Genetics, 2012, 20, 701-704. Histopathological features in subsequent muscle biopsies in a warmblood mare with myotonic dystrophy. Veterinary Quarterly, 2012, 21, 187-192.	1.0 3.9 1.8 1.2 1.5 1.4 3.0	 70 113 43 49 49 3 5
32 33 34 35 36 37 38 38	Muscle Imaging in Congenital Myopathies. Seminars in Pediatric Neurology, 2011, 18, 221-229. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathologica, 2011, 121, 253-266. Phenotype variability and histopathological findings in centronuclear myopathy due to DNM2 mutations. Journal of Neurology, 2011, 258, 1085-1090. Cellular self-organization by autocatalytic alignment feedback. Journal of Cell Science, 2011, 124, 4213-4220. Phosphatase-Dead Myotubularin Ameliorates X-Linked Centronuclear Myopathy Phenotypes in Mice. PLoS Genetics, 2012, 8, e1002965. Myotubular myopathy caused by multiple abnormal splicing variants in the MTM1 RNA in a patient with a mild phenotype. European Journal of Human Genetics, 2012, 20, 701-704. Histopathological features in subsequent muscle biopsies in a warmblood mare with myotonic dystrophy. Veterinary Quarterly, 2012, 32, 187-192. Modeling the human MTM1 p.R69C mutation in murine Mtm1 results in exon 4 skipping and a less severe myotubular myopathy phenotype. Human Molecular Genetics, 2012, 21, 811-825.	1.0 3.9 1.8 1.2 1.5 1.4 3.0	 70 113 43 49 49 3 5 54

#	Article	IF	CITATIONS
41	Samaritan myopathy, an ultimately benign congenital myopathy, is caused by a RYR1 mutation. Acta Neuropathologica, 2012, 124, 575-581.	3.9	22
42	Establishing Clinical End Points of Respiratory Function in Large Animals for Clinical Translation. Physical Medicine and Rehabilitation Clinics of North America, 2012, 23, 75-94.	0.7	15
43	Myotubularin-Deficient Myoblasts Display Increased Apoptosis, Delayed Proliferation, and Poor Cell Engraftment. American Journal of Pathology, 2012, 181, 961-968.	1.9	37
44	Consensus Statement on Standard of Care for Congenital Myopathies. Journal of Child Neurology, 2012, 27, 363-382.	0.7	147
45	MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature, 2012, 484, 120-124.	13.7	249
46	A rapid immunohistochemical test to distinguish congenital myotonic dystrophy from X-linked myotubular myopathy. Neuromuscular Disorders, 2012, 22, 225-230.	0.3	10
47	X-linked myotubular myopathy due to a complex rearrangement involving a duplication of MTM1 exon 10. Neuromuscular Disorders, 2012, 22, 384-388.	0.3	11
49	Necklace fibers as histopathological marker in a patient with severe form of X-linked myotubular myopathy. Neuromuscular Disorders, 2012, 22, 541-545.	0.3	15
50	Primary T-tubule and autophagy defects in the phosphoinositide phosphatase Jumpy/MTMR14 knockout mice muscle. Advances in Biological Regulation, 2012, 52, 98-107.	1.4	22
51	Muscle function in A canine model of Xâ€ŀinked myotubular myopathy. Muscle and Nerve, 2012, 46, 588-591.	1.0	23
52	Dominant Mutation of CCDC78 in a Unique Congenital Myopathy with Prominent Internal Nuclei and Atypical Cores. American Journal of Human Genetics, 2012, 91, 365-371.	2.6	84
53	Clinical utility gene card for: Centronuclear and myotubular myopathies. European Journal of Human Genetics, 2012, 20, 1101-1101.	1.4	28
54	Myotubular myopathy and the neuromuscular junction: a novel therapeutic approach from mouse models. DMM Disease Models and Mechanisms, 2012, 5, 852-9.	1.2	43
55	Centronuclear Myopathy in Labrador Retrievers: A Recent Founder Mutation in the PTPLA Gene Has Rapidly Disseminated Worldwide. PLoS ONE, 2012, 7, e46408.	1.1	21
57	Congenital Myopathies: An Update. Current Neurology and Neuroscience Reports, 2012, 12, 165-174.	2.0	106
58	Barfly: Sculpting membranes at the <i>Drosophila</i> neuromuscular junction. Developmental Neurobiology, 2012, 72, 33-56.	1.5	5
59	Congenital (Structural) Myopathies. , 2013, , 1-51.		0
60	Defective Autophagy and mTORC1 Signaling in Myotubularin Null Mice. Molecular and Cellular Biology, 2013, 33, 98-110.	1.1	74

#	Article	IF	CITATIONS
61	Large duplication in MTM1 associated with myotubular myopathy. Neuromuscular Disorders, 2013, 23, 214-218.	0.3	9
62	Histopathologic changes in the extraocular muscle in centronuclear myopathy with aDynamin 2mutation. Ophthalmic Genetics, 2013, 34, 83-86.	0.5	1
63	Role of phosphatidylinositol 5-phosphate 4-kinase α in zebrafish development. International Journal of Biochemistry and Cell Biology, 2013, 45, 1293-1301.	1.2	17
64	Adult centronuclear myopathies: A hospital-based study. Revue Neurologique, 2013, 169, 625-631.	0.6	7
65	Congenital myopathies – Clinical features and frequency of individual subtypes diagnosed over a 5-year period in the United Kingdom. Neuromuscular Disorders, 2013, 23, 195-205.	0.3	113
66	Core myopathies and malignant hyperthermia susceptibility: a review. Paediatric Anaesthesia, 2013, 23, 834-841.	0.6	48
67	Recessive truncating titin gene, <i>TTN</i> , mutations presenting as centronuclear myopathy. Neurology, 2013, 81, 1205-1214.	1.5	177
68	A novel mutation in the DNM2 gene impairs dynamin 2 localization in skeletal muscle of a patient with late onset centronuclear myopathy. Neuromuscular Disorders, 2013, 23, 219-228.	0.3	23
69	Titin and centronuclear myopathy. Neurology, 2013, 81, 1189-1190.	1.5	7
70	Altered Splicing of the BIN1 Muscle-Specific Exon in Humans and Dogs with Highly Progressive Centronuclear Myopathy. PLoS Genetics, 2013, 9, e1003430.	1.5	60
71	Expanding the MTM1 mutational spectrum: novel variants including the first multi-exonic duplication and development of a locus-specific database. European Journal of Human Genetics, 2013, 21, 540-549.	1.4	29
72	Positioning nuclei within the cytoplasm of striated muscle fiber. Nucleus, 2013, 4, 18-22.	0.6	29
73	Enzyme replacement therapy rescues weakness and improves muscle pathology in mice with X-linked myotubular myopathy. Human Molecular Genetics, 2013, 22, 1525-1538.	1.4	71
74	Site-specific Mtm1 mutagenesis by an AAV-Cre vector reveals that myotubularin is essential in adult muscle. Human Molecular Genetics, 2013, 22, 1856-1866.	1.4	17
75	Muscle-specific function of the centronuclear myopathy and Charcot–Marie–Tooth neuropathy-associated dynamin 2 is required for proper lipid metabolism, mitochondria, muscle fibers, neuromuscular junctions and peripheral nerves. Human Molecular Genetics, 2013, 22, 4417-4429.	1.4	28
76	Two Cases of X-Linked Myotubular Myopathy with Novel <i>MTM1</i> Mutations. Journal of Clinical		

		CITATION REPORT		
#	Article		IF	CITATIONS
79	Pathogenic Mechanisms in Centronuclear Myopathies. Frontiers in Aging Neuroscience	, 2014, 6, 339.	1.7	89
80	Reducing dynamin 2 expression rescues X-linked centronuclear myopathy. Journal of Cl Investigation, 2014, 124, 1350-1363.	inical	3.9	115
82	Congenital (Structural) Myopathies. , 2014, , .			2
83	Novel excitation-contraction coupling related genes reveal aspects of muscle weakness atrophy—new hopes for treatment of musculoskeletal diseases. Frontiers in Physiolog	beyond 39, 2014, 5, 37.	1.3	37
84	Gene Therapy for Inherited Muscle Diseases. American Journal of Physical Medicine and 2014, 93, S97-S107.	Rehabilitation,	0.7	19
85	Gene Therapy Prolongs Survival and Restores Function in Murine and Canine Models of Myopathy. Science Translational Medicine, 2014, 6, 220ra10.	Myotubular	5.8	141
86	Connecting the Nucleus to the Cytoskeleton for Nuclear Positioning and Cell Migratior Experimental Medicine and Biology, 2014, 773, 505-520.	ı. Advances in	0.8	17
87	Contraction versus contracture and centronuclear myopathy versus central part myopa malignant hyperthermia. Brazilian Journal of Anesthesiology (Elsevier), 2014, 64, 142-1	athy in 44.	0.2	0
88	Drosophila Nesprin-1 controls glutamate receptor density at neuromuscular junctions. Molecular Life Sciences, 2014, 71, 3363-3379.	Cellular and	2.4	28
89	Gait characteristics in a canine model of X-linked myotubular myopathy. Journal of the Sciences, 2014, 346, 221-226.	Neurological	0.3	16
90	Respiratory assessment in centronuclear myopathies. Muscle and Nerve, 2014, 50, 315	j-326 .	1.0	11
91	BIN1 Membrane Curvature Sensing and Generation Show Autoinhibition Regulated by Ligands and PI(4,5)P ₂ . Biochemistry, 2014, 53, 7297-7309.	Downstream	1.2	33
92	Triadopathies: An Emerging Class of Skeletal Muscle Diseases. Neurotherapeutics, 2014	4, 11, 773-785.	2.1	60
93	Contracción versus contractura y miopatÃa del núcleo central versus miopatÃa de la hipertermia maligna. Brazilian Journal of Anesthesiology (Edicion En Espanol), 2014, 64	parte central en , 142-144.	0.0	0
94	A mutation associated with centronuclear myopathy enhances the size and stability of complexes in cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 315-3	dynamin 2 321.	1.1	20
95	Differential Muscle Hypertrophy Is Associated with Satellite Cell Numbers and Akt Path Following Activin Type IIB Receptor Inhibition in Mtm1 p.R69C Mice. American Journal o 2014, 184, 1831-1842.	way Activation of Pathology,	1.9	29
96	Contração versus contratura e miopatia do núcleo central versus miopatia da parte hipertermia maligna. Revista Brasileira De Anestesiologia, 2014, 64, 142-144.	central em	0.6	0
97	Syngeneic Myoblast Transplantation Improves Muscle Function in a Murine Model of X Myotubular Myopathy. Cell Transplantation, 2015, 24, 1887-1900.	Linked	1.2	8

ARTICLE IF CITATIONS # A computational approach to detect and segment cytoplasm in muscle fiber images. Microscopy 1.2 1 98 Research and Technique, 2015, 78, 508-518. The kalaemic and neuromuscular effects of succinylcholine in centronuclear myopathy. European Journal of Anaesthesiology, 2015, 32, 666-671. Frequency and Phenotype of Myotubular Myopathy Amongst Danish Patients with Congenital 100 1.1 10 Myopathy Older than 5 Years. Journal of Neuromuscular Diseases, 2015, 2, 167-174. Review of Xâ€linked syndromes with arthrogryposis or early contracturesâ€"aid to diagnosis and pathway identification. American Journal of Medical Genetics, Part A, 2015, 167, 931-973. Regulation of Skeletal Muscle Development and Disease by microRNAs. Results and Problems in Cell 102 0.2 15 Differentiation, 2015, 56, 165-190. Validity of a Neurological Scoring System for Canine X-Linked Myotubular Myopathy. Human Gene Therapy Clinical Development, 2015, 26, 131-137. 3.2 Peripheral nerve and neuromuscular junction pathology in Pompe disease. Human Molecular Genetics, 104 1.4 63 2015, 24, 625-636. Clinical, pathological, and genetic features of dynamin-2-related centronuclear myopathy in China. Neurological Sciences, 2015, 36, 735-741. Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. DMM Disease 106 1.2 29 Models and Mechanisms, 2015, 8, 999-1009. <i>ECEL1</i> mutation causes fetal arthrogryposis multiplex congenita. American Journal of Medical Genetics, Part A, 2015, 167, 731-743. Congenital and Other Structural Myopathies., 2015, , 499-537. 108 3 Neuromuscular blocking effects of vecuronium in dogs with autosomal-recessive centronuclear 0.3 myopathy. American Journal of Veterinary Research, 2015, 76, 302-307. Clinical Phenotype of X‣inked Myotubular Myopathy in Labrador Retriever Puppies. Journal of 110 0.6 13 Veterinary Internal Medicine, 2015, 29, 254-260. <i>HACD1</i>, a regulator of membrane composition and fluidity, promotes myoblast fusion and 1.5 skeletal muscle growth. Journal of Molecular Cell Biology, 2015, 7, 429-440. Moving and positioning the nucleus in skeletal muscle $\hat{a} \in \hat{a}$ one step at a time. Nucleus, 2015, 6, 373-381. 112 93 0.6 Neuromuscular blocking effects of cisatracurium and its antagonism with neostigmine in a canine model of autosomal-recessive centronuclear myopathy. British Journal of Anaesthesia, 2015, 115, 927-931. Clinical, pathological and genetic characteristics of autosomal dominant inherited dynamin 2 115 1.1 0 centronuclear myopathy. Molecular Medicine Reports, 2016, 13, 4273-4278. Skeletal Muscle., 2016, , 677-682.

#	Article	IF	Citations
117	Clinical, Electrophysiology, and Pathology Features of Dynamin Centronuclear Myopathy: A Case Report and Review of Literature. Journal of Clinical Neuromuscular Disease, 2016, 18, 84-88.	0.3	3
118	Congenital myopathies: not only a paediatric topic. Current Opinion in Neurology, 2016, 29, 642-650.	1.8	37
119	<i>In vivo</i> imaging of skeletal muscle in mice highlights muscle defects in a model of myotubular myopathy. Intravital, 2016, 5, e1168553.	2.0	13
120	Diaphragm assessment in mice overexpressing phospholamban in slowâ€ŧwitch type <scp>I</scp> muscle fibers. Brain and Behavior, 2016, 6, e00470.	1.0	22
121	Structural Chromosomal Rearrangements Require Nucleotide-Level Resolution: Lessons from Next-Generation Sequencing in Prenatal Diagnosis. American Journal of Human Genetics, 2016, 99, 1015-1033.	2.6	53
122	Prenatal diagnosis of congenital myopathies and muscular dystrophies. Clinical Genetics, 2016, 90, 199-210.	1.0	20
123	Vici syndrome: a review. Orphanet Journal of Rare Diseases, 2016, 11, 21.	1.2	55
124	Canine-Inherited Dystrophinopathies and Centronuclear Myopathies. Pancreatic Islet Biology, 2016, , 309-329.	0.1	5
125	Mutation spectrum of the <i>MTM1</i> gene in XLMTM patients: 10 years of experience in prenatal and postnatal diagnosis. Clinical Genetics, 2016, 89, 93-98.	1.0	10
126	DNM2 mutations in Chinese Han patients with centronuclear myopathy. Neurological Sciences, 2016, 37, 995-998.	0.9	6
127	<i>EPG5</i> -related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy. Brain, 2016, 139, 765-781.	3.7	99
128	A Study of a Cohort of X-Linked Myotubular Myopathy at the Clinical, Histologic, and Genetic Levels. Pediatric Neurology, 2016, 58, 107-112.	1.0	13
129	Regenerative Medicine Approaches to Degenerative Muscle Diseases. Pancreatic Islet Biology, 2016, , 1-20.	0.1	0
130	219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April–1 May 2016. Neuromuscular Disorders, 2017, 27, 396-407.	0.3	29
131	Muscle MRI in pediatrics: clinical, pathological and genetic correlation. Pediatric Radiology, 2017, 47, 724-735.	1.1	12
132	Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs. Molecular Therapy, 2017, 25, 839-854.	3.7	81
133	Microtubule motors involved in nuclear movement during skeletal muscle differentiation. Molecular Biology of the Cell, 2017, 28, 865-874.	0.9	43
134	Longâ€ŧerm effects of systemic gene therapy On gait in a canine model of myotubular myopathy. Muscle and Nerve, 2017, 56, 839-840.	1.0	0

#	Article	IF	CITATIONS
135	Antisense oligonucleotide-mediated Dnm2 knockdown prevents and reverts myotubular myopathy in mice. Nature Communications, 2017, 8, 15661.	5.8	77
136	Longâ€ŧerm effects of systemic gene therapy in a canine model of myotubular myopathy. Muscle and Nerve, 2017, 56, 943-953.	1.0	50
137	Novel intronic mutation in <i>MTM1</i> detected by RNA analysis in a case of X-linked myotubular myopathy. Neurology: Genetics, 2017, 3, e182.	0.9	9
138	X-linked myotubular myopathy. Neurology, 2017, 89, 1316-1317.	1.5	1
139	Downregulation of myostatin pathway in neuromuscular diseases may explain challenges of anti-myostatin therapeutic approaches. Nature Communications, 2017, 8, 1859.	5.8	102
140	Current and future therapeutic approaches to the congenital myopathies. Seminars in Cell and Developmental Biology, 2017, 64, 191-200.	2.3	29
141	WANTED – Dead or alive: Myotubularins, a large disease-associated protein family. Advances in Biological Regulation, 2017, 63, 49-58.	1.4	44
142	Congenital Myopathies. , 2017, , 1123-1130.		0
144	Single Intramuscular Injection of AAV-shRNA Reduces DNM2 and Prevents Myotubular Myopathy in Mice. Molecular Therapy, 2018, 26, 1082-1092.	3.7	35
145	Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction. Nature Reviews Neurology, 2018, 14, 151-167.	4.9	212
146	Myopathies of the Newborn. , 0, , 91-98.		0
147	Nuclear positioning in skeletal muscle. Seminars in Cell and Developmental Biology, 2018, 82, 51-56.	2.3	143
148	A multicenter, retrospective medical record review of Xâ€linked myotubular myopathy: The recensus study. Muscle and Nerve, 2018, 57, 550-560.	1.0	54
149	Reducing dynamin 2 (DNM2) rescues <i>DNM2</i> -related dominant centronuclear myopathy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11066-11071.	3.3	50
150	Satellite cells fail to contribute to muscle repair but are functional in Pompe disease (glycogenosis) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
151	Neuromuscular Disorders in Newborns. , 2018, , 2323-2335.		0
152	Some DNM2 mutations cause extremely severe congenital myopathy and phenocopy myotubular myopathy. Acta Neuropathologica Communications, 2018, 6, 93.	2.4	14

153 C	Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opinion on Orphan Drugs, 2018, 6, 375-384.	0.5	0
-------	---	-----	---

	CITATION I	LEPOKI	
#	Article	IF	CITATIONS
154	Hereditary Neuropathies. Deutsches Ärzteblatt International, 2018, 115, 91-97.	0.6	41
155	Centronuclear myopathies under attack: A plethora of therapeutic targets. Journal of Neuromuscular Diseases, 2018, 5, 387-406.	1.1	34
156	Novel Variants in Individuals with RYR1-Related Congenital Myopathies: Genetic, Laboratory, and Clinical Findings. Frontiers in Neurology, 2018, 9, 118.	1.1	11
157	Neonatal Neuromuscular Disorders. , 2018, , 952-960.e2.		3
158	Neonatal hypotonia and neuromuscular conditions. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 162, 435-448.	1.0	13
159	Different in vivo impact of Dynamin 2 mutations implicated in Charcot-Marie-Tooth neuropathy or Centronuclear Myopathy. Human Molecular Genetics, 2019, 28, 4067-4077.	1.4	14
160	Insights into wild-type dynamin 2 and the consequences of DNM2 mutations from transgenic zebrafish. Human Molecular Genetics, 2019, 28, 4186-4196.	1.4	21
161	Gene Therapy for X-Linked Myotubular Myopathy. , 2019, , 565-577.		0
162	An autopsy case of peliosis hepatis with X-linked myotubular myopathy. Legal Medicine, 2019, 38, 77-82.	0.6	13
163	Molecular Basis of Muscle Disease. , 2019, , 13-39.		1
164	Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. Science Translational Medicine, 2019, 11, .	5.8	29
165	Three novel MTM1 pathogenic variants identified in Japanese patients with Xâ€linked myotubular myopathy. Molecular Genetics & Genomic Medicine, 2019, 7, e621.	0.6	4
166	Allele-Specific CRISPR/Cas9 Correction of a Heterozygous DNM2 Mutation Rescues Centronuclear Myopathy Cell Phenotypes. Molecular Therapy - Nucleic Acids, 2019, 16, 246-256.	2.3	22
167	The expanding spectrum of neurological disorders of phosphoinositide metabolism. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	23
168	Mutations in genes associated with either myopathy or noncompaction. Herz, 2019, 44, 756-758.	0.4	2
169	Mortality and respiratory support in X-linked myotubular myopathy: a RECENSUS retrospective analysis. Archives of Disease in Childhood, 2020, 105, 332-338.	1.0	24
170	Centronuclear Myopathy with Abundant Nemaline Rods in a Japanese Black and Hereford Crossbred Calf. Journal of Comparative Pathology, 2020, 174, 8-12.	0.1	0
171	Clinical Reasoning: Bilateral ptosis, dysphagia, and progressive weakness in a patient of French-Canadian background. Neurology, 2020, 95, 933-938.	1.5	2

#	Article	IF	CITATIONS
172	X-linked myotubular myopathy mimics hereditary spastic paraplegia in two female manifesting carriers of pathogenic MTM1 variant. European Journal of Medical Genetics, 2020, 63, 104040.	0.7	1
173	The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adhesion and Migration, 2020, 14, 139-152.	1.1	46
174	Muscle Microbiopsy to Delineate Stem Cell Involvement in Young Patients: A Novel Approach for Children With Cerebral Palsy. Frontiers in Physiology, 2020, 11, 945.	1.3	13
175	From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. International Journal of Molecular Sciences, 2020, 21, 8935.	1.8	10
176	rAAV-related therapy fully rescues myonuclear and myofilament function in X-linked myotubular myopathy. Acta Neuropathologica Communications, 2020, 8, 167.	2.4	12
177	Diagnosing X-linked Myotubular Myopathy – A German 20-year Follow Up Experience. Journal of Neuromuscular Diseases, 2021, 8, 79-90.	1.1	12
178	Hierarchical Bayesian modelling of disease progression to inform clinical trial design in centronuclear myopathy. Orphanet Journal of Rare Diseases, 2021, 16, 3.	1.2	21
179	Mutant BIN1-Dynamin 2 complexes dysregulate membrane remodeling in the pathogenesis of centronuclear myopathy. Journal of Biological Chemistry, 2021, 296, 100077.	1.6	21
180	Respiratory care in myotubular myopathy. ERJ Open Research, 2021, 7, 00641-2020.	1.1	0
181	A Case of X-linked Myotubular Myopathy with Dysphasia. Journal of Otolaryngology of Japan, 2021, 124, 218-224.	0.1	0
183	A novel mutation in MTM1 gene in newborn, resulting in centronuclear myopathy phenotype: a case report. Egyptian Journal of Medical Human Genetics, 2021, 22, .	0.5	0
184	Costs and health resource use in patients with X-linked myotubular myopathy: insights from U.S. commercial claims. Journal of Managed Care & Specialty Pharmacy, 2021, 27, 1-8.	0.5	0
185	Spectrum of Clinical Features in X-Linked Myotubular Myopathy Carriers. Neurology, 2021, 97, e501-e512.	1.5	9
186	Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. International Journal of Molecular Sciences, 2021, 22, 5732.	1.8	12
187	MICAL2 enhances branched actin network disassembly by oxidizing Arp3B-containing Arp2/3 complexes. Journal of Cell Biology, 2021, 220, .	2.3	34
188	mRNA distribution in skeletal muscle is associated with mRNA size. Journal of Cell Science, 2021, 134, .	1.2	27
189	Mice with muscle-specific deletion of Bin1 recapitulate centronuclear myopathy and acute downregulation of dynamin 2 improves their phenotypes. Molecular Therapy, 2022, 30, 868-880.	3.7	20
190	Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Molecular Therapy, 2021, 29, 2514-2534.	3.7	12

#	ARTICLE	IF	Citations
191	Mutational and clinical spectrum of centronuclear myopathy in 9 cases and a literature review of Chinese patients. Neurological Sciences, 2021, , 1.	0.9	1
192	Myotubularin Phosphoinositide Phosphatases in Human Diseases. Current Topics in Microbiology and Immunology, 2012, 362, 209-233.	0.7	37
193	Abnormalities of Amniotic Fluid Volume. , 2011, , 197-207.e5.		1
194	SPEC binds with desmin and its deficiency causes defects in triad and focal adhesion proteins. Human Molecular Genetics, 2021, 29, 3882-3891.	1.4	6
195	Mice lacking microRNA 133a develop dynamin 2–dependent centronuclear myopathy. Journal of Clinical Investigation, 2011, 121, 3258-3268.	3.9	138
196	An Overview of Congenital Myopathies. CONTINUUM Lifelong Learning in Neurology, 2016, 22, 1932-1953.	0.4	11
197	Constitutive Expression of Yes-Associated Protein (Yap) in Adult Skeletal Muscle Fibres Induces Muscle Atrophy and Myopathy. PLoS ONE, 2013, 8, e59622.	1.1	61
198	Stac3 Is a Novel Regulator of Skeletal Muscle Development in Mice. PLoS ONE, 2013, 8, e62760.	1.1	31
199	Sarcolipin deletion exacerbates soleus muscle atrophy and weakness in phospholamban overexpressing mice. PLoS ONE, 2017, 12, e0173708.	1.1	18
200	X-linked recessive myotubular myopathy with <i>MTM1</i> mutations. Korean Journal of Pediatrics, 2013, 56, 139.	1.9	7
201	The coexistence of dynamin 2 mutation and multiple mitochondrial DNA (mtDNA) deletions in the background of severe cardiomyopathy and centronuclear myopathy. , 2015, 34, 89-95.		10
202	Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. International Journal of Molecular Sciences, 2021, 22, 11377.	1.8	21
205	Myotonic Dystrophy Type 1: Focus on the RNA Pathology and Therapy. , 0, , .		0
206	Bridging Integrator 1 (BIN1). , 2013, , 103-133.		0
207	Validity of a neurological scoring system for canine X-linked myotubular myopathy. Human Gene Therapy Clinical Development, 0, , 150513062900008.	3.2	0
208	Pathophysiological events induced by alteration of microRNA biogenesis pathway Hikaku Seiri Seikagaku(Comparative Physiology and Biochemistry), 2016, 33, 183-190.	0.0	0
209	A family with dynamin 2-related centronuclear myopathy without ocular involvement. Journal of Genetic Medicine, 2016, 13, 51-54.	0.1	0
210	Neuromuscular Disorders in Newborns. , 2017, , 1-13.		0

#	Article	IF	CITATIONS
212	A Systematic Review and Meta-Analysis of the Prevalence of Congenital Myopathy. Frontiers in Neurology, 2021, 12, 761636.	1.1	12
213	X-linked myotubular myopathy. Neuromuscular Disorders, 2021, 31, 1004-1012.	0.3	36
214	Severe phenotype of a patient with autosomal recessive centronuclear myopathy due to a BIN1 mutation. Acta Myologica, 2009, 28, 91-3.	1.5	13
215	Gene therapy in myotubular myopathy: promising progress and future directions. Annals of Translational Medicine, 2015, 3, 61.	0.7	2
216	Muscle pathology, limb strength, walking gait, respiratory function and neurological impairment establish disease progression in the p.N155K canine model of X-linked myotubular myopathy. Annals of Translational Medicine, 2015, 3, 262.	0.7	8
217	Imagingâ€based evaluation of pathogenicity by novel <i>DNM2</i> variants associated with centronuclear myopathy. Human Mutation, 2022, 43, 169-179.	1.1	4
218	Hereditary myopathies associated with hematological abnormalities. Muscle and Nerve, 2022, 65, 374-390.	1.0	7
219	Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 754110.	1.8	16
220	Interorganellar Communication: Components $\hat{a} \in \space{-1mu}$ Bar Domains and BAR Domain Superfamily Proteins. , 2022, , .		0
221	BIN1 modulation inÂvivo rescues dynamin-related myopathy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
222	Characterization of a novel zebrafish model of <i>SPEG</i> -related centronuclear myopathy. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	3
231	A Case Series on Central Core Disease in Pregnancy. Open Journal of Obstetrics and Gynecology, 2022, 12, 337-348.	0.1	0
232	Pulmonary lymphangiectasia in myotubular myopathy: a novel unrecognized association?. Neuromuscular Disorders, 2022, 32, 512-515.	0.3	2
233	Centronuclear Myopathy Caused by Defective Membrane Remodelling of Dynamin 2 and BIN1 Variants. International Journal of Molecular Sciences, 2022, 23, 6274.	1.8	12
234	Clinical Characteristics and Neurologic Outcomes of X-Linked Myotubular Myopathy. Annals of Child Neurology, 0, , .	0.0	0
235	Senescence diversity in muscle aging. Nature Aging, 2022, 2, 570-572.	5.3	2
236	Skeletal Muscle. , 2022, , .		0
237	Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. Journal of General Physiology, 2022, 154, .	0.9	3

#	Article	IF	CITATIONS
238	Xâ€linked myotubular myopathy associated with an <i>MTM1</i> variant in a Maine coon cat. Journal of Veterinary Internal Medicine, 2022, 36, 1800-1805.	0.6	5
239	A case of giant dental calculus in a patient with centronuclear myopathy. Special Care in Dentistry, 0, ,	0.4	2
240	Targeted transcript analysis in muscles from patients with genetically diverse congenital myopathies. Brain Communications, 2022, 4, .	1.5	0
241	Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Science Advances, 2022, 8, .	4.7	28
242	Neuromuscular Features in XL-MTM Carriers. Neurology, 2022, 99, .	1.5	2
243	Myotubularinâ€Related Protein14 Prevents Neointima Formation and Vascular Smooth Muscle Cell Proliferation by Inhibiting Poloâ€Like Kinase1. Journal of the American Heart Association, 2022, 11, .	1.6	1
244	Therapeutic approaches in different congenital myopathies. Current Opinion in Pharmacology, 2023, 68, 102328.	1.7	9
245	Skeletal and cardiac muscle calcium transport regulation in health and disease. Bioscience Reports, 2022, 42, .	1.1	9
246	Tamoxifen improves muscle structure and function of <i>Bin1</i> - and <i>Dnm2</i> -related centronuclear myopathies. Brain, 2023, 146, 3029-3048.	3.7	3
247	CaV1.1 Calcium Channel Signaling Complexes in Excitation–Contraction Coupling: Insights from Channelopathies. Handbook of Experimental Pharmacology, 2023, , 3-39.	0.9	1
248	Dynamin 2-Related Centronuclear Myopathy with Electrical Myotonia. Daehan Sin-gyeong Geunyuk Jilhwan Hakoeji, 2022, 14, 50-52.	0.0	0
249	Genetic Muscle Disorders. , 2017, , 1178-1187.e3.		0
250	Insights into Cell-Specific Functions of Microtubules in Skeletal Muscle Development and Homeostasis. International Journal of Molecular Sciences, 2023, 24, 2903.	1.8	3
251	Inactivating the lipid kinase activity of PI3KC2β is sufficient to rescue myotubular myopathy in mice. JCI Insight, 2023, 8, .	2.3	6
253	Transition of Sleep Care in Patients with Neuromuscular and Neurodegenerative Disorders. , 2023, , 225-246.		0