Indolizidine and quinolizidine alkaloids

Natural Product Reports 25, 139-165

DOI: 10.1039/b612166g

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of the Benzo-fused Indolizidine Alkaloid Mimics. Beilstein Journal of Organic Chemistry, 2007, 3, 42.	1.3	13
2	Flexible synthetic routes to poison-frog alkaloids of the 5,8-disubstituted indolizidine-class I: synthesis of common lactam chiral building blocks and application to the synthesis of (-)- 203A , (-)- 205A , and (-)- 219F . Beilstein Journal of Organic Chemistry, 2007, 3, 29.	1.3	20
3	Synthesis of densely functionalized enantiopure indolizidines by ring-closing metathesis (RCM) of hydroxylamines from carbohydrate-derived nitrones. Beilstein Journal of Organic Chemistry, 2007, 3, 44.	1.3	11
4	Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds. Beilstein Journal of Organic Chemistry, 2007, 3, 48.	1.3	9
5	A chemoenzymatic-RCM strategy for the enantioselective synthesis of new dihydroxylated 5-hydroxymethyl-indolizidines and 6-hydroxymethyl-quinolizidines. Tetrahedron: Asymmetry, 2007, 18, 1948-1954.	1.8	23
6	New alkaloid-like heterocycles via formal aza-[3+2] cycloaddition reaction of cyclic enaminones with cyclopropenones. Tetrahedron Letters, 2007, 48, 5795-5798.	0.7	28
7	Synthesis of poison-frog alkaloids 233A, 235U, and 251AA and their inhibitory effects on neuronal nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5872-5875.	1.0	30
8	Synthesis of pyrrolizidine alkaloids via 1,3-dipolar cycloaddition involving cyclic nitrones and unsaturated lactones. Carbohydrate Research, 2008, 343, 2215-2220.	1.1	29
10	Synthesis and evaluation of sulfamide-type indolizidines as glycosidase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2805-2808.	1.0	39
11	Synthesis of alkylated indolizidine alkaloids via Pummerer mediated cyclization: synthesis of (±)-indolizidine 167B, (±)-5-butylindolizidine and (±)-monomorine I. Tetrahedron, 2008, 64, 1663-1670.	1.0	27
12	Rhodium-catalyzed intramolecular conjugate addition of vinylstannanes toÂdihydro-4-pyridones: a simple method for stereoselective construction of 1-azabicyclic alkaloids. Tetrahedron, 2008, 64, 3464-3470.	1.0	19
13	A new and simple method for the synthesis of highly functionalised pyrrolizidines, indolizidines and pyrroloazepines. Tetrahedron Letters, 2008, 49, 6316-6319.	0.7	22
14	Total Synthesis of $(\hat{A}\pm)$ - $\hat{I}\pm$ -Isosparteine, $(\hat{A}\pm)$ - \hat{I}^2 -Isosparteine, and $(\hat{A}\pm)$ -Sparteine from a Common Tetraoxobispidine Intermediate. Journal of Organic Chemistry, 2008, 73, 7939-7951.	1.7	43
15	Probing the Substrate Specificity of Golgi α-Mannosidase II by Use of Synthetic Oligosaccharides and a Catalytic Nucleophile Mutant. Journal of the American Chemical Society, 2008, 130, 8975-8983.	6.6	50
16	A Ruthenium-Catalyzed, Atom-Economical Synthesis of Nitrogen Heterocycles. Journal of the American Chemical Society, 2008, 130, 16502-16503.	6.6	71
17	Highly Regioselective Intermolecular Arylation of 1,2,3,4-Tetrahydropyridines. Organic Letters, 2008, 10, 4791-4794.	2.4	8
18	Bicyclic 6-6 Systems with One Bridgehead (Ring Junction) Nitrogen Atom: No Extra Heteroatom. , 2008, , 1-75.		4
19	Synthesis of (–)-Indolizidine 167B based on domino hydroformylation/cyclization reactions. Beilstein Journal of Organic Chemistry, 2008, 4, 2.	1.3	8

#	ARTICLE	IF	CITATIONS
20	Analogues of amphibian alkaloids: total synthesis of (5 <i>R</i> ,8 <i>S</i> ,8a <i>S</i>)-(â^²)-8-methyl-5-pentyloctahydroindolizine (8- <i>epi</i> -indolizidine) Tj ETQc	1000 <u>1.</u>	Overlock 10 T
	Beilstein Journal of Organic Chemistry, 2008, 4, 5. Total synthesis of the indolizidine alkaloid tashiromine. Beilstein Journal of Organic Chemistry, 2008,		
21	4, 8.	1.3	20
22	Facile synthesis of two diastereomeric indolizidines corresponding to the postulated structure of alkaloid 5,9E-259B from a Bufonid toad (Melanophryniscus). Beilstein Journal of Organic Chemistry, 2008, 4, 6.	1.3	2
23	Nuphar lutea thioalkaloids inhibit the nuclear factor κappaB pathway, potentiate apoptosis and are synergistic with cisplatin and etoposide. Cancer Biology and Therapy, 2009, 8, 1860-1868.	1.5	45
24	A General Approach to the Quinolizidine Alkaloids via an Intramolecular Aza-[3+3] Annulation: Synthesis of (\hat{A}_{\pm}) -2-Deoxylasubine II. Synlett, 2009, 2009, 237-240.	1.0	7
25	Synthesis, Determination of the Absolute Stereochemistry, and Evaluations at the Nicotinic Acetylcholine Receptors of a Hydroxyindolizidine Alkaloid from the Ant Myrmicaria melanogaster. Heterocycles, 2009, 79, 565.	0.4	6
26	Synthesis of the New 7 <i>S</i> à€Aminolentiginosine and Derivatives. Advanced Synthesis and Catalysis, 2009, 351, 1155-1161.	2.1	14
29	A Very Efficient Cerium(IV) Ammonium Nitrate Catalyzed, Fourâ€Component Synthesis of Tetrahydropyridines and Its Application in the Concise Generation of Functionalized Homoquinolizine Frameworks. Chemistry - A European Journal, 2009, 15, 4565-4572.	1.7	59
30	The Phenylsulfonyl Group as a Temporal Regiochemical Controller in the Catalytic Asymmetric 1,3â€Dipolar Cycloaddition of Azomethine Ylides. Angewandte Chemie - International Edition, 2009, 48, 340-343.	7.2	108
31	Total Synthesis of Indolizidine Alkaloid (â^)â€209D: Overriding Substrate Bias in the Asymmetric Rhodiumâ€Catalyzed [2+2+2] Cycloaddition. Angewandte Chemie - International Edition, 2009, 48, 2379-2382.	7.2	91
32	An enantioselective synthesis of (+)-azimic acid. Tetrahedron: Asymmetry, 2009, 20, 1181-1184.	1.8	8
33	Iminium ion cascade reactions: stereoselective synthesis of quinolizidines and indolizidines. Tetrahedron, 2009, 65, 3222-3231.	1.0	53
34	Efficient and structurally controlled synthesis of novel polyhydroxylated indolizidine derivatives with an amino group. Tetrahedron, 2009, 65, 2322-2328.	1.0	15
35	An approach towards the total synthesis of (+)-epiquinamide and (+)-α-conhydrine from Garner aldehyde. Tetrahedron, 2009, 65, 5322-5327.	1.0	44
36	Reductive cross-coupling reactions (RCCR) between C N and C O for \hat{l}^2 -amino alcohol synthesis. Tetrahedron, 2009, 65, 7333-7356.	1.0	78
37	Preparation of some angularly substituted and highly functionalized quinolizidines as building blocks for the synthesis of various alkaloids and related scaffolds of medicinal interest. Tetrahedron, 2009, 65, 8222-8230.	1.0	9
38	Polyhydroxylated indolizidine alkaloidsâ€"synthesis of dideoxycastanospermine. Tetrahedron, 2009, 65, 9285-9290.	1.0	6
39	Highly diastereoselective approach to novel phenylindolizidinols via benzothieno analogues of tylophorine based on reductive desulfurization of benzo[b]thiophene. Tetrahedron: Asymmetry, 2009, 20, 626-634.	1.8	22

#	Article	IF	CITATIONS
40	Ti(III)-mediated radical cyclization of \hat{i}^2 -aminoacrylate containing epoxy alcohol moieties: synthesis of highly substituted azacycles. Tetrahedron Letters, 2009, 50, 3306-3310.	0.7	17
41	Asymmetric, catalytic, vinylogous aldol reactions using pyrrole-based dienoxy silanes. Enantioselective synthesis of $\hat{l}\pm,\hat{l}^2$ -unsaturated \hat{l}^3 -butyrolactam synthons. Tetrahedron Letters, 2009, 50, 3428-3431.	0.7	43
42	Enantiopure alkaloid analogues and iminosugars from proline derivatives: stereocontrol in sequential processes. Tetrahedron Letters, 2009, 50, 3974-3977.	0.7	17
43	Enantioselective synthesis of (â^')-lasubine II. Tetrahedron Letters, 2009, 50, 5686-5688.	0.7	22
44	Synthesis of 3-Aryl-8-oxo-5,6,7,8-tetrahydroindolizines via a Palladium-Catalyzed Arylation and Heteroarylation. Journal of Organic Chemistry, 2009, 74, 3160-3163.	1.7	25
45	Stereo- and Enantioselective Synthesis of Acetylenic 2-Amino-1,3-diol Stereotriads. Organic Letters, 2009, 11, 931-934.	2.4	27
46	Asymmetric Total Synthesis of Alkaloids 223A and 6- <i>epi</i> -223A. Organic Letters, 2009, 11, 4140-4142.	2.4	29
47	Formal Alkyne Aza-Prins Cyclization: Gold(I)-Catalyzed Cycloisomerization of Mixed N,O-Acetals Generated from Homopropargylic Amines to Highly Substituted Piperidines. Journal of the American Chemical Society, 2009, 131, 14660-14661.	6.6	85
48	Synthesis of 3-Haloindolizines by Copper(II) Halide Mediated Direct Functionalization of Indolizines. Organic Letters, 2009, 11, 1187-1190.	2.4	52
49	Multi-component cycloaddition approaches in the catalytic asymmetric synthesis of alkaloid targets. Chemical Society Reviews, 2009, 38, 3149.	18.7	148
50	Intramolecular Pyridine Activationâ [^] 'Dearomatization Reaction: Highly Stereoselective Synthesis of Polysubstituted Indolizidines and Quinolizidines. Organic Letters, 2009, 11, 3398-3401.	2.4	54
51	An Enantioselective Organocatalytic Approach to Both Enantiomers of Lasubine II. Journal of Organic Chemistry, 2009, 74, 3207-3210.	1.7	32
52	One-Carbon Ring Expansion of Azetidines via Ammonium Ylide [1,2]-Shifts: A Simple Route to Substituted Pyrrolidines. Journal of Organic Chemistry, 2009, 74, 2832-2836.	1.7	62
53	Enantioselective Rhodium-Catalyzed [2 + 2 + 2] Cycloadditions of Terminal Alkynes and Alkenyl Isocyanates: Mechanistic Insights Lead to a Unified Model that Rationalizes Product Selectivity. Journal of the American Chemical Society, 2009, 131, 15717-15728.	6.6	73
54	GC-MS investigation and toxicological evaluation of alkaloids from <i>Leptadenia pyrotechnica</i> Pharmaceutical Biology, 2009, 47, 994-1003.	1.3	13
55	Cascade condensation, cyclization, intermolecular dipolar cycloaddition by multi-component coupling and application to a synthesis of $(\hat{A}\pm)$ -crispine A. Organic and Biomolecular Chemistry, 2009, 7, 1674.	1.5	54
56	Design and synthesis of some biologically interesting natural and unnatural products based on organosulfur and selenium chemistry. Canadian Journal of Chemistry, 2009, 87, 1657-1674.	0.6	41
57	Nonracemic Bicyclic Lactam Lactones via Regio- and cis-Diastereocontrolled Câ^'H Insertion. Asymmetric Synthesis of (8S,8aS)-Octahydroindolizidin-8-ol and (1S,8aS)-Octahydroindolizidin-1-ol. Journal of Organic Chemistry, 2009, 74, 8261-8271.	1.7	32

#	ARTICLE	IF	Citations
58	Synthesis and glycosidase-inhibitory activity of novel polyhydroxylated quinolizidines derived from d-glycals. Organic and Biomolecular Chemistry, 2009, 7, 2104.	1.5	35
59	Olefin Metathesis Based Approach to Diversely Functionalized Pyrrolizidines and Indolizidines; Total Synthesis of (+)-Monomorine. Journal of Organic Chemistry, 2009, 74, 590-596.	1.7	44
60	Formal Synthesis of (5R,8R,8aS)-Indolizidine 2091 via Enaminones Incorporating Weinreb Amides. Heterocycles, 2009, 79, 935.	0.4	20
61	The Isolated and Combined Effects of Folic Acid and Synthetic Bioactive Compounds against AÎ ² (25-35)-Induced Toxicity in Human Microglial Cells. Molecules, 2010, 15, 1632-1644.	1.7	8
62	Preparation of Enantiopure Substituted Piperidines Containing 2-Alkene or 2-Alkyne Chains: Application to Total Syntheses of Natural Quinolizidine-Alkaloids. Journal of Organic Chemistry, 2010, 75, 1911-1916.	1.7	72
63	An efficient approach to new dihydroxyquinolizidines. Tetrahedron: Asymmetry, 2010, 21, 2032-2036.	1.8	9
64	Organocatalytic asymmetric synthesis of (â^')-Î'-coniceine based on sequential proline-catalyzed asymmetric α-aminationâ€"HWE olefination. Tetrahedron: Asymmetry, 2010, 21, 2399-2401.	1.8	15
65	Total synthesis of 275A lehmizidine frog skin alkaloid (or of its enantiomer). Tetrahedron: Asymmetry, 2010, 21, 2329-2333.	1.8	5
66	First Asymmetric Synthesis of Boehmeriasin A. European Journal of Organic Chemistry, 2010, 2010, 1943-1950.	1.2	16
67	Asymmetric Synthesis of (–)â€Lentiginosine by Double Azaâ€Michael Reaction. European Journal of Organic Chemistry, 2010, 2010, 4771-4773.	1.2	29
69	Catalytic Asymmetric 1,3â€Dipolar Cycloaddition of αâ€Iminonitriles. Chemistry - A European Journal, 2010, 16, 5286-5291.	1.7	55
70	A Palladium/Copper Bimetallic Catalytic System: Dramatic Improvement for Suzuki–Miyauraâ€√ype Direct CH Arylation of Azoles with Arylboronic Acids. Chemistry - A European Journal, 2010, 16, 11836-11839.	1.7	105
71	Câ€2 Arylation of Piperidines through Directed Transitionâ€Metalâ€Catalyzed sp ³ CH Activation. Chemistry - A European Journal, 2010, 16, 13063-13067.	1.7	106
73	A Modular, Efficient, and Stereoselective Synthesis of Substituted Piperidinâ€4â€ols. Angewandte Chemie - International Edition, 2010, 49, 9178-9181.	7.2	55
74	Enantioselective synthesis of condensed and transannular ring skeletons containing pyrrolidine moiety. Tetrahedron, 2010, 66, 1274-1279.	1.0	20
75	Application of asymmetric phase-transfer catalysis in the enantioselective synthesis of cis-5-substituted proline esters. Tetrahedron, 2010, 66, 8832-8836.	1.0	24
76	Regioselective ring opening of the chiral non-racemic furoindolizidinols. New entry to alkylindolizidinediol derivatives. Tetrahedron: Asymmetry, 2010, 21, 623-630.	1.8	12
77	The synthesis of (1S,8aS)-1-hydroxyindolizidine using a stereoselective Grignard addition to an N-benzyl-3-deoxy sugar imine derived from D-Glucose. Tetrahedron: Asymmetry, 2010, 21, 2314-2318.	1.8	11

#	Article	IF	Citations
78	Diselenophosphinates of lupinine or anabasine via a new three-component reaction of secondary phosphines, elemental selenium, and amines. Tetrahedron Letters, 2010, 51, 1840-1843.	0.7	15
79	Straightforward synthesis of indolizidine alkaloid 167B. Tetrahedron Letters, 2010, 51, 6290-6293.	0.7	22
80	Synthesis of new derivatives of 11-thiolupinine. Journal of Sulfur Chemistry, 2010, 31, 493-498.	1.0	5
81	Aza-[3 + 3] Annulations: A New Unified Strategy in Alkaloid Synthesis. Current Organic Synthesis, 2010, 7, 363-401.	0.7	38
82	Synthesis of a Library of 5,6-Unsubstituted 1,4-Dihydropyridines Based on a One-Pot 4CR/Elimination Process and Their Application to the Generation of Structurally Diverse Fused Nitrogen Heterocycles. ACS Combinatorial Science, 2010, 12, 713-722.	3.3	38
84	Synthesis and biological activity of naturally occurring α-glucosidase inhibitors. Natural Product Reports, 2010, 27, 1431.	5.2	88
85	Quick Access to Druglike Heterocycles: Facile Silver-Catalyzed One-Pot Multicomponent Synthesis of Aminoindolizines. ACS Combinatorial Science, 2010, 12, 696-699.	3.3	67
86	Total Syntheses of Arylindolizidine Alkaloids (+)-Ipalbidine and (+)-Antofine. Journal of Organic Chemistry, 2010, 75, 6019-6022.	1.7	62
87	Synthesis of 6- and 7-Membered Cyclic Enaminones: Scope and Mechanism. Journal of Organic Chemistry, 2010, 75, 6793-6805.	1.7	60
88	Hydroformylation of Alkenylamines. Concise Approaches toward Piperidines, Quinolizidines, and Related Alkaloids. Journal of Organic Chemistry, 2010, 75, 8670-8673.	1.7	55
89	A Concise and Stereoselective Synthesis of Hydroxypyrrolidines: Rapid Synthesis of (+)-Preussin. Organic Letters, 2010, 12, 4034-4037.	2.4	42
90	Synthesis of Amino Acid Derived Enaminones via Wolff Rearrangement Using Vinylogous Amides as Carbon Nucleophiles. Journal of the American Chemical Society, 2010, 132, 15512-15513.	6.6	72
91	Stereoselective Synthesis of 2,3,6-Trisubstituted Tetrahydropyridines via Tf ₂ O-Mediated Grob Fragmentation: Access to Indolizidines (â^2)-2091 and (â^2)-223J. Journal of Organic Chemistry, 2010, 75, 7465-7467.	1.7	34
92	Cu-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with β-Phenylsulfonyl Enones. Ligand Controlled Diastereoselectivity Reversal. Journal of Organic Chemistry, 2010, 75, 233-236.	1.7	68
93	2,6-Disubstituted and 2,2,6-Trisubstituted Piperidines from Serine: Asymmetric Synthesis and Further Elaboration. Journal of Organic Chemistry, 2010, 75, 5223-5233.	1.7	19
94	Synthetic Approaches to Racemic Porantheridine and 8-Epihalosaline via a Nitroso Dielsâ 'Alder Cycloaddition/Ring-Rearrangement Metathesis Sequence. Journal of Organic Chemistry, 2010, 75, 4333-4336.	1.7	38
95	A new synthetic access to bicyclic polyhydroxylated alkaloid analogues from pyranosides. Organic and Biomolecular Chemistry, 2010, 8, 2639.	1.5	30
96	Synthesis of new pentacyclic chromophores through a highly regio- and diastereoselective cascade process. Organic and Biomolecular Chemistry, 2010, 8, 4815.	1.5	8

#	ARTICLE	IF	CITATIONS
97	Enantiopure 2,6-disubstituted piperidines bearing one alkene- or alkyne-containing substituent: preparation and application to total syntheses of indolizidine-alkaloids. Organic and Biomolecular Chemistry, 2010, 8, 1899.	1.5	34
98	Short Access to (+)-Lupinine and (+)-Epiquinamide via Double Hydroformylation. Organic Letters, 2010, 12, 528-531.	2.4	58
99	Dihydroxylation of Vinyl Sulfones: Stereoselective Synthesis of (+)- and (â^')-Febrifugine and Halofuginone. Journal of Organic Chemistry, 2010, 75, 518-521.	1.7	52
100	Photochemical Rearrangement of N-Chlorolactams: A Route to N-Heterocycles through Concerted Ring Contraction. Journal of Organic Chemistry, 2010, 75, 2610-2618.	1.7	40
101	Alkaloid Glycosidase Inhibitors. , 2010, , 225-260.		2
102	Asymmetric total synthesis of 1-deoxy-7,8-di-epi-castanospermine. Organic and Biomolecular Chemistry, 2010, 8, 1725.	1.5	25
103	The organocatalytic [3+2] cycloaddition of azomethine ylides and $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes as a convenient tool for the enantioselective synthesis of pyrrolizidines and indolizidines. Organic and Biomolecular Chemistry, 2010, 8, 2238.	1.5	40
104	Morita–Baylis–Hillman adducts as effective dipolarophiles in Copper(<scp>i</scp>)-catalyzed 1,3-dipolar cycloaddition with azomethine ylides: asymmetric construction of pyrrolidine derivatives containing quaternary stereogenic center. Chemical Communications, 2011, 47, 5494-5496.	2.2	56
105	Synthesis of 1,2-Dihydroxyindolizidines from 1-(2-Pyridyl)-2-propen-1-ol. Journal of Organic Chemistry, 2011, 76, 9536-9541.	1.7	14
106	Asymmetric total synthesis of (+)-swainsonine. Organic and Biomolecular Chemistry, 2011, 9, 531-537.	1.5	28
107	Total Syntheses of (â^') Epilupinine and (â^')-Tashiromine Using Imino-Aldol Reactions. Organic Letters, 2011, 13, 3988-3991.	2.4	40
108	Total Synthesis of (+)-Epilupinine via An Intramolecular Nitrile Oxide-Alkene Cycloaddition. Journal of Organic Chemistry, 2011, 76, 188-194.	1.7	26
109	Intramolecular Hydride Addition to Pyridinium Salts: New Routes to Enantiopure Dihydropyridones. Organic Letters, 2011, 13, 2074-2077.	2.4	15
110	Enantiodivergent Synthetic Entry to the Quinolizidine Alkaloid Lasubine II. Organic Letters, 2011, 13, 5128-5131.	2.4	31
111	Organocatalytic Direct Asymmetric Vinylogous Michael Reaction of an \hat{l}_{\pm} , \hat{l}_{-}^2 -Unsaturated \hat{l}_{-}^3 -Butyrolactam with Enones. Journal of Organic Chemistry, 2011, 76, 1472-1474.	1.7	84
112	Identification of a Naturally Occurring Quinazolin- $4(3 < i > H < /i >)$ -one Firefly Luciferase Inhibitor. Journal of Natural Products, 2011, 74, 1500-1502.	1.5	22
113	Enantiospecific Synthesis of Pyridinones as Versatile Intermediates toward Asymmetric Piperidines. Organic Letters, 2011, 13, 4371-4373.	2.4	46
114	Asymmetric construction of 3-vinylidene-pyrrolidine derivatives containing allene moiety via Ag(i)/TF-BiphamPhos-catalyzed 1,3-dipolar cycloaddition of azomethine ylides with diethyl 2-(3,3-diphenylpropa-1,2-dienylidene) malonate. Organic and Biomolecular Chemistry, 2011, 9, 3622.	1.5	36

#	Article	IF	CITATIONS
115	Silver-Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides with \hat{l}^2 -Boryl Acrylates. Journal of Organic Chemistry, 2011, 76, 1945-1948.	1.7	29
116	Asymmetric <i>Aza-</i> [3 + 3] Annulation in the Synthesis of Indolizidines: An Unexpected Reversal of Regiochemistry. Organic Letters, 2011, 13, 4402-4405.	2.4	28
117	Gold-Catalyzed Carbonâ^'Heteroatom Bond-Forming Reactions. Chemical Reviews, 2011, 111, 1657-1712.	23.0	1,222
118	Synthetic Applications of Sulfur-Substituted Indolizidines and Quinolizidines. Journal of Organic Chemistry, 2011, 76, 692-695.	1.7	43
119	Photochemical Rearrangement of N-Mesyloxylactams: Stereospecific Formation of N-Heterocycles. Journal of Organic Chemistry, 2011, 76, 164-169.	1.7	17
120	Highly efficient construction of spirocyclic chromanone–pyrrolidines via Cu(i)/TF–BiphamPhos-catalyzed asymmetric 1,3-dipolar cycloaddition. Chemical Communications, 2011, 47, 9600.	2.2	75
121	An enantioselective route to pyrrolidines: removal of the chiral template from homochiral pyrroloimidazoles. Tetrahedron, 2011, 67, 8925-8936.	1.0	5
122	Organocatalytic enantioselective synthesis of quinolizidine alkaloids (+)-myrtine, (â^')-lupinine, and (+)-epiepiquinamide. Tetrahedron, 2011, 67, 7412-7417.	1.0	34
123	Indolizidine (â^)-235B′ and related structural analogs: Discovery of nicotinic receptor antagonists that inhibit nicotine-evoked [3H]dopamine release. European Journal of Pharmacology, 2011, 658, 132-139.	1.7	15
124	Novel dipolarophiles and dipoles in the metal-catalyzed enantioselective 1,3-dipolar cycloaddition of azomethine ylides. Chemical Communications, 2011, 47, 6784.	2.2	385
126	Synthesis of Fused Bicyclic Systems with Nitrogen Atom at the Bridgehead, Including Indolizidines and Quinolizidines. Journal of Organic Chemistry, 2011, 76, 3527-3530.	1.7	24
127	Synthesis of iminosugars via 1,3-dipolar cycloaddition reactions of nitrones to \hat{l}_{\pm},\hat{l}^2 -unsaturated sugar aldonolactones. Comptes Rendus Chimie, 2011, 14, 102-125.	0.2	12
128	Enantiopure 2-piperidylacetaldehyde as a useful building block in the diversity-oriented synthesis of polycyclic piperidine derivatives. Tetrahedron: Asymmetry, 2011, 22, 264-269.	1.8	16
129	Asymmetric syntheses of (8R,8aS)- and (8R,8aR)-8-hydroxy-5-indolizidinones: Two promising oxygenated indolizidine building blocks. Science China Chemistry, 2011, 54, 737-744.	4.2	14
130	A Simple Enantioselective Route to Functionalized Indolizidines: Synthesis of (+)â€palbidine and (+)â€Antofine. European Journal of Organic Chemistry, 2011, 2011, 2235-2238.	1.2	25
136	Stereodivergent Synthesis of Substituted N,Oâ€Containing Bicyclic Compounds by Sequential Addition of Nucleophiles to <i>N</i> à€Alkoxybicyclolactams. Angewandte Chemie - International Edition, 2011, 50, 1350-1353.	7.2	84
137	An <i>exo</i> ―and Enantioselective 1,3â€Dipolar Cycloaddition of Azomethine Ylides with Alkylidene Malonates Catalyzed by a N,Oâ€Ligand/Cu(OAc) ₂ â€Derived Chiral Complex. Angewandte Chemie - International Edition, 2011, 50, 4897-4900.	7.2	69
138	A Palladiumâ€Catalyzed Aminoalkynylation Strategy towards Bicyclic Heterocycles: Synthesis of (±)â€Trachelanthamidine. Angewandte Chemie - International Edition, 2011, 50, 4680-4683.	7.2	168

#	Article	IF	CITATIONS
139	Branching Cascades: A Concise Synthetic Strategy Targeting Diverse and Complex Molecular Frameworks. Angewandte Chemie - International Edition, 2011, 50, 6900-6905.	7.2	78
140	Concise Total Synthesis of the Frog Alkaloid (â^')â€205 B. Angewandte Chemie - International Edition, 2011, 50, 8626-8628.	7.2	45
141	Synthesis of indolizidines from optically pure αâ€amino acids via stereocontrolled rhodiumâ€catalyzed hydroformylation of <i>N</i> à€allylpyrroles. Chirality, 2011, 23, 730-735.	1.3	15
142	Radical cyclizations of acylsilanes in the synthesis of $(+)$ -swainsonine and formal synthesis of (\hat{a}^{-}) -epiquinamide. Tetrahedron, 2011, 67, 1564-1574.	1.0	36
143	Synthesis of C1- and C8a-epimers of (+)-castanospermine from d-glucose derived \hat{i}^3 , \hat{i}' -epoxyazide: intramolecular 5-endo epoxide opening approach. Tetrahedron, 2011, 67, 2773-2778.	1.0	19
144	Synthesis and reactions of sulfur-substituted indolizidinones. Tetrahedron, 2011, 67, 5395-5401.	1.0	13
145	Synthesis and Crystal Structure of 6-trichloromethyl-9-oxa-5-azatricyclo[6.2.1.01,5]undecan-10-one. Journal of Chemical Research, 2011, 35, 167-168.	0.6	1
146	Lysine Decarboxylase Catalyzes the First Step of Quinolizidine Alkaloid Biosynthesis and Coevolved with Alkaloid Production in Leguminosae. Plant Cell, 2012, 24, 1202-1216.	3.1	115
147	\hat{l}_{\pm} -Oxo- \hat{l}_{3} -Butyrolactam, $\langle i \rangle$ N $\langle i \rangle$ -Containing Pronucleophile in Organocatalytic One-Pot Assembly of Butyrolactam-Fused Indoloquinolizidines. Journal of Organic Chemistry, 2012, 77, 7737-7743.	1.7	33
148	Synthesis of new 4-methyl-3-piperidones via an iron-catalyzed intramolecular tandem isomerization–aldolisation process. Tetrahedron, 2012, 68, 8863-8868.	1.0	4
149	One-Pot Catalytic Enantioselective Synthesis of Tetrahydropyridines via a Nitro-Mannich/Hydroamination Cascade. Organic Letters, 2012, 14, 5290-5293.	2.4	70
150	A General Organocatalytic Approach toward the Enantioselective Total Synthesis of Indolizidine Based Alkaloids. Organic Letters, 2012, 14, 5972-5975.	2.4	32
151	Highly Diastereoselective Synthesis of Tetrahydropyridines by a C–H Activation–Cyclization–Reduction Cascade. Journal of the American Chemical Society, 2012, 134, 4064-4067.	6.6	120
152	Directed MetalationCross oupling Strategies. Total Syntheses of the Alleged and the Revised Phenanthrene Natural Product Gymnopusin. Helvetica Chimica Acta, 2012, 95, 2680-2694.	1.0	12
153	A Facile Access to Enantioenriched Isoindolines <i>via</i> One-Pot Sequential Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition/Aromatization. Organic Letters, 2012, 14, 6230-6233.	2.4	55
155	Synthetic Strategy for Cyclic Amines: A Stereodefined Cyclic N,Oâ€Acetal as a Stereocontrol and Diversityâ€Generating Element. Angewandte Chemie - International Edition, 2012, 51, 12055-12058.	7.2	60
156	Total synthesis of 1-deoxy-7,8a-di-epi-castanospermine and formal synthesis of pumiliotoxin-251D. Tetrahedron Letters, 2012, 53, 5856-5858.	0.7	18
157	Enantioselective, protecting group-free synthesis of 1S-ethyl-4-substituted quinolizidines. Organic and Biomolecular Chemistry, 2012, 10, 6866.	1.5	7

#	Article	IF	Citations
158	Synthesis of Highly Oxidized Quinolizidine via Reduction of Acylpyridinium Cations, and Total Syntheses of Quinolizidines 2071 and 1- <i>epi</i> - 2071 . Organic Letters, 2012, 14, 1902-1905.	2.4	8
159	Copper acetate monohydrate: a cheap but efficient oxidant for synthesizing multi-substituted indolizines from pyridinium ylides and electron deficient alkenes. RSC Advances, 2012, 2, 8637.	1.7	51
160	Enantioselective approach to functionalized quinolizidines: synthesis of (+)-julandine and (+)-cryptopleurine. Organic and Biomolecular Chemistry, 2012, 10, 6776.	1.5	20
161	Synthesis, Molecular Structure, Conformational Analysis, and Chemical Properties of Silicon-Containing Derivatives of Quinolizidine. Journal of Organic Chemistry, 2012, 77, 2382-2388.	1.7	6
162	Stereoselective Multicomponent Assembly of Enantiopure Oxazolopiperidines and -azepines. Journal of Organic Chemistry, 2012, 77, 2246-2253.	1.7	23
163	Reductive transformations of unsaturated azabicyclic nitrolactams. Tetrahedron, 2012, 68, 5547-5553.	1.0	15
164	Convergent domino synthesis of 1,2,3-triaroylindolizines from methyl ketones and pyridines via self-division of labor strategy. Tetrahedron, 2012, 68, 7338-7344.	1.0	38
165	Achiral auxiliary-assisted chiral transfer via microwave-accelerated aza-Claisen rearrangement: a short synthesis of (+)-1-hydroxyquinolizidinone. Tetrahedron Letters, 2012, 53, 4813-4815.	0.7	9
166	A Diastereoselective Cyclic Imine Cycloaddition Strategy To Access Polyhydroxylated Indolizidine Skeleton: Concise Syntheses of (+)- $/(\hat{a}^{-})$ -Lentiginosines and (\hat{a}^{-}) -2- <i>epi</i> -Steviamine. Journal of Organic Chemistry, 2012, 77, 7891-7900.	1.7	39
169	Rhodium(III)â€Catalyzed Intramolecular Annulation through CH Activation: Total Synthesis of (±)â€Antofine, (±)â€Septicine, (±)â€₹ylophorine, and Rosettacin. Angewandte Chemie - International Edition, 2012, 51, 9372-9376.	7.2	275
170	Combined Chemical, Biological and Theoretical DFTâ€QTAIM Study of Potent Glycosidase Inhibitors Based on Quaternary Indolizinium Salts. European Journal of Organic Chemistry, 2012, 2012, 5498-5514.	1.2	22
171	Chemoenzymatic synthesis, structural study and biological activity of novel indolizidine and quinolizidine iminocyclitols. Organic and Biomolecular Chemistry, 2012, 10, 6309.	1.5	30
172	Straightforward Access to Enantioenriched 2-Allylpiperidine: Application to the Synthesis of Alkaloids. Journal of Organic Chemistry, 2012, 77, 780-784.	1.7	47
173	Cu-catalyzed asymmetric [3+2] cycloaddition of \hat{l} ±-iminoamides with activated olefins. Chemical Communications, 2012, 48, 2149.	2.2	47
174	Copper-Assisted Palladium(II)-Catalyzed Direct Arylation of Cyclic Enaminones with Arylboronic Acids. Journal of Organic Chemistry, 2012, 77, 9496-9503.	1.7	38
175	A convenient approach to β-heteroarylated (C–N bond) ketones from Cs2CO3 promoted reaction between propargyl alcohols and nitrogen-heterocycles. Organic and Biomolecular Chemistry, 2012, 10, 3538.	1.5	17
176	On the Biosynthetic Pathway of Papaverine via (S)-Reticuline $\hat{a}\in$ Theoretical vs. Experimental Study. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	2
177	Degradation of dichloromethane by bispidine. Journal of Physical Organic Chemistry, 2012, 25, 814-827.	0.9	18

#	Article	IF	Citations
178	Synthesis of Enantiopure Dehydropiperidinones from \hat{l}_{\pm} -Amino Acids and Alkynes via Azetidin-3-ones. Organic Letters, 2012, 14, 3898-3901.	2.4	51
179	Novel Synthesis of 2â€Alkylquinoliziniumâ€1â€olates and Their 1,3â€Dipolar Cycloaddition Reactions with Acetylenes. Helvetica Chimica Acta, 2012, 95, 737-760.	1.0	10
181	Chromium(0) atalyzed Tandem Cyclization of α,βâ€Unsaturated Thioimidates Containing an Enyne Moiety. Angewandte Chemie - International Edition, 2012, 51, 6214-6218.	7.2	24
182	Catalytic Asymmetric Synthesis of αâ€Quaternary Proline Derivatives by 1,3â€Dipolar Cycloaddition of αâ€Silylimines. Angewandte Chemie - International Edition, 2012, 51, 8854-8858.	7.2	80
183	Heckâ€Type Crossâ€Dehydrogenative Coupling Reactions of Indolizines at the 3â€Position with Electronâ€Deficient Alkenes through Palladiumâ€Catalyzed CH Activation. Chemistry - an Asian Journal, 2012, 7, 884-888.	1.7	39
184	A Novel Threeâ€Component [3+2] Cycloannulation Process for the Rapid and Highly Stereoselective Synthesis of Pyrrolobenzoxazoles. Chemistry - A European Journal, 2012, 18, 4185-4189.	1.7	23
185	A Versatile Enantioselective Synthesis of Azabicyclic Ring Systems: A Concise Total Synthesis of (+)â€Grandisineâ€D and Unnatural Analogues. Chemistry - A European Journal, 2012, 18, 5826-5831.	1.7	33
186	Grob Fragmentation of 2-Azabicyclo[2.2.2]oct-7-ene: Tool for the Stereoselective Synthesis of Polysubstituted Piperidines. Journal of Organic Chemistry, 2012, 77, 5832-5837.	1.7	24
187	Synthesis of indolizidinone analogues of cytotoxic alkaloids: Monocyclic precursors are also active. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3402-3407.	1.0	9
188	Enantioselective access to (â^')-indolizidines 167B, 209D, 239AB, 195B and (â^')-monomorine from a common chiral synthon. Tetrahedron, 2012, 68, 145-151.	1.0	22
189	An unexpected high erythro-selection in the Grignard reaction with an N,O-acetal: a concise asymmetric synthesis of indolizidine alkaloid (â°)-2-epi-lentiginosine. Tetrahedron, 2012, 68, 1750-1755.	1.0	13
190	Application of the intramolecular PIFA-mediated amidation of alkynes to the synthesis of substituted indolizidinones. Tetrahedron, 2012, 68, 3692-3700.	1.0	9
191	Chiral synthesis of indolizidines 209D and 167B via asymmetric oxidation of sulfides and sulfoxides. Tetrahedron, 2012, 68, 5025-5030.	1.0	19
192	Total synthesis of (\hat{a}^{\prime})-indolizidine 167B via an unusual Wolff rearrangement from an $\hat{l}\pm,\hat{l}^2$ -unsaturated diazoketone. Tetrahedron Letters, 2012, 53, 876-878.	0.7	29
193	Cu(I)/DTBM-BIPHEP-catalyzed exo-selective 1,3-dipolar cycloaddition of azomethine ylides with cis-trifluorocrotonate for asymmetric construction of trifluoromethylated pyrrolidines. Tetrahedron Letters, 2012, 53, 3650-3653.	0.7	45
194	The synthesis of hydroxy-pyrrolizidines and indolizidines from cyclopropenones: towards hyacinthacines, australines and jenamidines. Tetrahedron Letters, 2012, 53, 4100-4103.	0.7	13
195	Ionic liquid-catalyzed and microwave-assisted syntheses of pyrrolizine- and indolizinedione derivatives. Russian Journal of Organic Chemistry, 2012, 48, 788-792.	0.3	5
196	Discovery of a Fullâ€Colorâ€Tunable Fluorescent Core Framework through Direct CH (Hetero)arylation of Nâ€Heterocycles. Chemistry - A European Journal, 2012, 18, 1599-1603.	1.7	131

#	Article	IF	Citations
197	Enantioconvergent Cross-Couplings of Racemic Alkylmetal Reagents with Unactivated Secondary Alkyl Electrophiles: Catalytic Asymmetric Negishi \hat{l} ±-Alkylations of $\langle i \rangle N \langle j \rangle$ -Boc-pyrrolidine. Journal of the American Chemical Society, 2013, 135, 10946-10949.	6.6	166
198	A direct method for the synthesis of indolizine derivatives from easily available aromatic ketones, pyridines, and acrylonitrile derivatives. Canadian Journal of Chemistry, 2013, 91, 414-419.	0.6	11
199	Divergent Synthesis of $4-\langle i\rangle$ epi $\langle i\rangle$ -Fagomine, 3,4-Dihydroxypipecolic Acid, and a Dihydroxyindolizidine and Their \hat{l}^2 -Galactosidase Inhibitory and Immunomodulatory Activities. Journal of Organic Chemistry, 2013, 78, 7406-7413.	1.7	20
200	Catalytic Asymmetric Syntheses of Quinolizidines by Dirhodium-Catalyzed Dearomatization of Isoquinolinium/Pyridinium Methylides–The Role of Catalyst and Carbene Source. Journal of the American Chemical Society, 2013, 135, 12439-12447.	6.6	127
201	Direct asymmetric aldol addition $\hat{a} \in \hat{a}$ isomerization of $\hat{a} = \hat{a}$ unsaturated \hat{a} butyrolactam with aryl \hat{a} ketoesters: synthesis of MBH-type products. Chemical Communications, 2013, 49, 3300.	2.2	31
202	Highly efficient asymmetric construction of quaternary carbon-containing homoallylic and homopropargylic amines. Chemical Communications, 2013, 49, 5402.	2.2	54
203	Palladium―and Ruthenium atalyzed Cycloisomerization of Enynamides and Enynhydrazides: A Rapid Approach to Diverse Azacyclic Frameworks. Angewandte Chemie - International Edition, 2013, 52, 9139-9143.	7.2	58
204	A metal-free tandem cycloaddition strategy for the synthesis of indolizines from pyridine derivatives and \hat{l}^3 -bromo-crotonates under mild conditions. RSC Advances, 2013, 3, 21418.	1.7	6
205	Total Synthesis of the Tetracyclic Lupin Alkaloid (+)-Allomatrine. Organic Letters, 2013, 15, 4596-4599.	2.4	16
206	Ti(iii)-mediated radical cyclization of epoxy- \hat{l}^2 -aminoacrylate in the synthesis of the substituted pyrrolidine core of necine bases: synthesis of 2-epi-rosmarinecine. RSC Advances, 2013, 3, 13630.	1.7	14
207	A Direct and General Method for the Reductive Alkylation of Tertiary Lactams/Amides: Application to the Step Economical Synthesis of Alkaloid (â°')-Morusimic Acid D. Journal of Organic Chemistry, 2013, 78, 8305-8311.	1.7	46
208	RCM Approach to Complex Polycyclic αâ€Hydroxy γâ€Lactams: Synthesis of Indolizinones and Pyrroloazepinones. European Journal of Organic Chemistry, 2013, 2013, 6722-6732.	1.2	11
209	Catalytic Asymmetric β,γâ€Activation of α,βâ€Unsaturated γâ€Butyrolactams: Direct Approach to β,γâ€Fun Dihydropyranopyrrolidinâ€2â€ones. Angewandte Chemie - International Edition, 2013, 52, 11329-11333.	ctionalize 7.2	d ₈₁
210	Metal-Free $[3+2+1]/[2+2+1]$ Biscyclization: Stereospecific Construction with Concomitant Functionalization of Indolizin-5(1H)-one. Journal of Organic Chemistry, 2013, 78, 11414-11420.	1.7	7
211	Convenient synthesis of epimeric indolizidines by the intramolecular 1,3-dipolar cycloaddition of a sugar derived N-(3-alkenyl)nitrone. Tetrahedron, 2013, 69, 9826-9831.	1.0	15
212	Synthesis of Nitrogenated Heterocycles by Asymmetric Transfer Hydrogenation of N-(tert-Butylsulfinyl)haloimines. Journal of Organic Chemistry, 2013, 78, 9181-9189.	1.7	40
213	Synthesis of unnatural indolizidines, pyrrolizidine and C-alkyl iminosugars from sugar derived hemiaminals. RSC Advances, 2013, 3, 23242.	1.7	14
214	Stereoselective Synthesis of Amido and Phenyl Azabicyclic Derivatives via a Tandem Aza Prins-Ritter/Friedel–Crafts Type Reaction of Endocyclic N-Acyliminium Ions. Journal of Organic Chemistry, 2013, 78, 10629-10641.	1.7	53

#	Article	IF	CITATIONS
215	Organocatalysts and sequential asymmetric cascade reactions in the synthesis of functionalized isoindolinones and benzoindolizidinones. RSC Advances, 2013, 3, 19380.	1.7	40
216	Synthesis of Polyhydroxylated Quinolizidines and Azaspiro[4.5]decanes from d-Xylose. Organic Letters, 2013, 15, 6214-6217.	2.4	34
217	Molecular Biology and Biotechnology of Quinolizidine Alkaloid Biosynthesis in Leguminosae Plants., 2013,, 263-273.		6
218	A hydrozirconation/iodination-mediated access to tetrahydroquinolizinium salts. Application to the synthesis of Lupinine and (â°')-Epiquinamide. Tetrahedron Letters, 2013, 54, 1029-1031.	0.7	13
219	Arylglyoxals in Synthesis of Heterocyclic Compounds. Chemical Reviews, 2013, 113, 2958-3043.	23.0	324
220	A general, enantioselective synthesis of 1-azabicyclo[m.n.0]alkane ring systems. Tetrahedron Letters, 2013, 54, 1645-1648.	0.7	23
221	Simplification of antitumoral phenanthroindolizidine alkaloids: ShortÂsynthesis of cytotoxic indolizidinone and pyrrolidine analogs. European Journal of Medicinal Chemistry, 2013, 66, 540-554.	2.6	12
222	Rutheniumâ€Catalyzed αâ€(Hetero)Arylation of Saturated Cyclic Amines: Reaction Scope and Mechanism. Chemistry - A European Journal, 2013, 19, 10378-10387.	1.7	54
223	Synthetic studies of quinolizidine 195C and derivatives. Tetrahedron, 2013, 69, 1499-1508.	1.0	18
224	Intramolecular Carbolithiation Reactions in the Construction of Mediumâ€Sized Rings. Synthesis of Pyrroloisoquinolines, Benzazepines, and Benzazocines. European Journal of Organic Chemistry, 2013, 2013, 1460-1470.	1.2	11
225	Applications to Alkaloid Synthesis. , 2013, , 459-496.		2
226	Perfluorinated Taddol phosphoramidite as an L,Z-ligand on Rh(i) and Co(â^i): evidence for bidentate coordination via metal–C6F5 interaction. Chemical Science, 2013, 4, 2062.	3.7	28
227	Diastereoselective synthesis of pyrrolidine derivatives via a one-pot nitro-Mannich/hydroamination cascade using base and gold catalysis. Chemical Communications, 2013, 49, 2777.	2.2	21
228	One-Pot Organocatalytic Enantioselective Domino Double-Michael Reaction and Pictet-Spengler–Lactamization Reaction. A Facile Entry to the "Inside Yohimbane―System with Five Contiguous Stereogenic Centers. Organic Letters, 2013, 15, 468-471.	2.4	49
229	A Short, Organocatalytic Formal Synthesis of (â^')-Swainsonine and Related Alkaloids. Organic Letters, 2013, 15, 1914-1917.	2.4	36
230	Catalytic Asymmetric Construction of Quaternary αâ€Amino Acid Containing Pyrrolidines through 1,3â€Dipolar Cycloaddition of Azomethine Ylides to αâ€Aminoacrylates. Chemistry - A European Journal, 2013, 19, 6739-6745.	1.7	51
231	Design, synthesis, and evaluation of a water-soluble antofine analogue with high antiproliferative and antitumor activity. Bioorganic and Medicinal Chemistry, 2013, 21, 1006-1017.	1.4	15
232	Sml2-Mediated Couplings of α-Amino Acid Derivatives. Formal Synthesis of (â^)-Pumiliotoxin 251D and (±)-Epiquinamide. Organic Letters, 2013, 15, 2434-2437.	2.4	23

#	Article	IF	CITATIONS
233	Amineâ€Promoted Asymmetric (4+2) Annulations for the Enantioselective Synthesis of Tetrahydropyridines: A Traceless and Recoverable Auxiliary Strategy. Angewandte Chemie - International Edition, 2013, 52, 5319-5322.	7.2	48
234	A Catalytic Asymmetric Synthesis of Polysubstituted Piperidines Using a Rhodium(I)â€Catalyzed [2+2+2] Cycloaddition Employing a Cleavable Tether. Angewandte Chemie - International Edition, 2013, 52, 5368-5371.	7.2	29
235	Ringâ€Rearrangement Metathesis of 7â€AzaÂnorbornenes as an Entry to 1â€Azabicyclo[<i>n</i> .3.0]alkenones. European Journal of Organic Chemistry, 2013, 2013, 3817-3824.	1.2	12
236	Theoretical Studies on Nickel-Catalyzed Cycloaddition of 3-Azetidinone with Alkynes. Organometallics, 2013, 32, 3003-3011.	1.1	36
237	Ruthenium–NHCâ€Catalyzed Asymmetric Hydrogenation of Indolizines: Access to Indolizidine Alkaloids. Angewandte Chemie - International Edition, 2013, 52, 9500-9503.	7.2	107
238	Synthesis of Indolizines and Heterocyclic Chalcones Catalyzed by Supported Copper Nanoparticles. Chemistry - A European Journal, 2013, 19, 5242-5245.	1.7	77
239	Alkaloids Derived from Lysine: Quinolizidine (a Focus on Lupin Alkaloids)., 2013,, 381-403.		24
240	Facile [7C+1C] Annulation as an Efficient Route to Tricyclic Indolizidine Alkaloids. Angewandte Chemie - International Edition, 2013, 52, 9271-9274.	7.2	90
241	An enantioselective tandem reduction/nitro-Mannich reaction of nitroalkenes using a simple thiourea organocatalyst. Chemical Science, 2013, 4, 2897.	3.7	28
242	A highly expeditious synthesis of a bicyclic iminosugar using the novel key step of [NMM]+[HSO4]â^' promoted conjugate addition and Mitsunobu reaction. RSC Advances, 2013, 3, 5794.	1.7	9
243	A New Access to 4 <i>H</i> à€Quinolizines from 2â€Vinylpyridine and Alkynes Promoted by Rhodium–Nâ€Heterocyclic arbene Catalysts. Chemistry - A European Journal, 2013, 19, 3812-3816.	1.7	33
244	New synthesis and reactions of indolizidine 167E and indolizidine derivatives. Tetrahedron, 2013, 69, 274-283.	1.0	18
245	Synthesis of Functionalized Indolizidines through Pauson–Khand Cycloaddition of 2-Allylpyrrolidines. Journal of Organic Chemistry, 2013, 78, 1176-1183.	1.7	10
246	A General Approach to 1â€Hydroxymethylquinolizidine and 8â€Hydroxymethylindolizidine Stereoisomers: Synthesis of (+)â€Epitashiromine and Formal Syntheses of (+)â€Epilupinine and (+)â€Tashiromine. European Journal of Organic Chemistry, 2013, 2013, 7282-7285.	1.2	15
247	Enantioselective Synthesis of the Tricyclic Core of FR901483 Featuring a Rhodium-Catalyzed [2+2+2] Cycloaddition. Synthesis, 2013, 45, 719-728.	1.2	16
248	Synthesis and Interleukin-6 Inhibitory Activities of 3-Alkyloxylindolizine Derivatives. Advanced Materials Research, 0, 781-784, 1089-1092.	0.3	1
250	Synthesis of Highly Functionalized Aminoindolizines by Titanium(IV) Chloride Mediated Cycloisomerization and Phosphine atalyzed Azaâ€Michael Addition Reactions. Asian Journal of Organic Chemistry, 2013, 2, 480-485.	1.3	12
251	Rhodium-Catalyzed Hydroformylation in Fused Azapolycycles Synthesis. Topics in Current Chemistry, 2013, 342, 151-186.	4.0	4

#	Article	IF	CITATIONS
257	Novel One-Pot Green Synthesis of Indolizines Biocatalysed by Candida antarctica Lipases. Marine Drugs, 2013, 11, 431-439.	2.2	23
258	Editorial (Thematic issue: "Alkaloids in Nature: Synthesis, Isolation and Pharmacological) Tj ETQq1 1	0.784314	rgBT /Overl
259	FJU-C4, a New 2-Pyridone Compound, Attenuates Lipopolysaccharide-Induced Systemic Inflammation via p38MAPK and NF-κB in Mice. PLoS ONE, 2013, 8, e82877.	1.1	4
260	Studies toward the First Stereoselective Total Synthesis of $(\hat{A}\pm)$ -Quinolizidine 195C and Other Transformations. Molecules, 2013, 18, 8243-8256.	1.7	6
261	Ligandâ€Controlled Regiodivergent Nickelâ€Catalyzed Annulation of Pyridones. Angewandte Chemie - International Edition, 2015, 54, 633-637.	7.2	109
263	Cellular target recognition of perfluoroalkyl acids: In vitro evaluation of inhibitory effects on lysine decarboxylase. Science of the Total Environment, 2014, 496, 381-388.	3.9	5
264	Facile Synthesis, Characterization and Anti-Inflammatory Effect of 3-Aminoindolizine Derivatives. Advanced Materials Research, 2014, 881-883, 446-449.	0.3	0
265	A highly efficient asymmetric synthesis of quaternary stereocenter-containing indolizidine and quinolizidine alkaloids using aldehydes, nitroalkenes, and unactivated cyclic ketimines. Chemical Communications, 2014, 50, 15913-15915.	2.2	19
266	Unexpected rearrangements of rhodium carbenoids containing a pyrrolidin-1-yl group. Tetrahedron Letters, 2014, 55, 2629-2632.	0.7	6
267	An expedient approach for the regio- and stereoselective synthesis of novel spiroindolizidines via [3+2] cycloaddition. Comptes Rendus Chimie, 2014, 17, 156-163.	0.2	10
268	A General Strategy for the Catalytic, Highly Enantio―and Diastereoselective Synthesis of Indolizidineâ€Based Alkaloids. Chemistry - A European Journal, 2014, 20, 1964-1979.	1.7	43
269	Synthesis of functionalized 2-vinyl-2,3-dihydropyrroles and 3-methylene-1,2,3,4-tetrahydropyridines by palladium-catalyzed cyclization of \hat{l}^2 -enaminocarbonyl compounds with allylic bisacetates. Organic and Biomolecular Chemistry, 2014, 12, 2394-2403.	1.5	23
270	Synthesis of 3-substituted N-allylisoindolinone derivatives by the acetate method. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2014, 145, 803-810.	0.9	3
271	Formal aza-[3+3] versus aza-[3+2] cycloadditions of heterocyclic enaminones with maleic anhydride and maleimides: skeletally diverse synthesis of pyrrolizidinones, indolizidinones, and pyrroloazepinones. Tetrahedron, 2014, 70, 3284-3290.	1.0	8
272	Synthesis of Substituted Tetrahydroindoloisoquinoline Derivatives via Intramolecular Pd-Catalyzed Alkene Carboamination Reactions. Journal of Organic Chemistry, 2014, 79, 4212-4217.	1.7	16
273	Regio―and Stereoselective 1,2â€Dihydropyridine Alkylation/Addition Sequence for the Synthesis of Piperidines with Quaternary Centers. Angewandte Chemie - International Edition, 2014, 53, 3877-3880.	7.2	55
274	Ketones as electrophiles in two component Baylisâ€"Hillman reaction: a facile one-pot synthesis of substituted indolizines. Organic and Biomolecular Chemistry, 2014, 12, 1551.	1.5	35
275	lminium Ion–Enamine Cascade Cyclizations: Facile Access to Structurally Diverse Azacyclic Compounds and Natural Products. Organic Letters, 2014, 16, 232-235.	2.4	26

#	Article	IF	CITATIONS
276	(â^')-Cytisine and Derivatives: Synthesis, Reactivity, and Applications. Chemical Reviews, 2014, 114, 712-778.	23.0	113
278	Rh(iii)-Catalyzed intramolecular redox-neutral cyclization of alkenes via C–H activation. Chemical Communications, 2014, 50, 2650.	2.2	97
279	One-Pot Asymmetric Nitro-Mannich/Hydroamination Cascades for the Synthesis of Pyrrolidine Derivatives: Combining Organocatalysis and Gold Catalysis. ACS Catalysis, 2014, 4, 634-638.	5 . 5	47
280	Sustainable and selective synthesis of 3,4-dihydroquinolizin-2-one and quinolizin-2-one derivatives via the reactions of penta-3,4-dien-2-ones. Green Chemistry, 2014, 16, 1393-1398.	4.6	18
281	Synthesis of Polyhydroxylated Quinolizidine and Indolizidine Scaffolds from Sugar-Derived Lactams via a One-Pot Reduction/Mannich/Michael Sequence. Journal of Organic Chemistry, 2014, 79, 10487-10503.	1.7	33
282	Recent advances in the synthesis of naturally occurring pyrrolidines, pyrrolizidines and indolizidine alkaloids using proline as a unique chiral synthon. RSC Advances, 2014, 4, 5405.	1.7	127
283	A biomimetic approach for bicyclic alkaloids using acetal pro-nucleophile: total synthesis of $(\hat{A}\pm)$ -epilupinine and formal syntheses of $(\hat{A}\pm)$ -laburnine, $(\hat{A}\pm)$ -isoretronecanol, $(\hat{A}\pm)$ -tashiromine. RSC Advances, 2014, 4, 3934-3937.	1.7	32
284	Total synthesis of (+)-swainsonine and (+)-8-epi-swainsonine. RSC Advances, 2014, 4, 53722-53724.	1.7	15
285	Directed functionalization of 1,2-dihydropyridines: stereoselective synthesis of 2,6-disubstituted piperidines. Chemical Communications, 2014, 50, 6883-6885.	2.2	27
286	A versatile two-step method for the reductive alkylation and formal $[4+2]$ annulation of secondary lactams: step economical syntheses of the ant venom alkaloids $(2R,5S)$ -2-butyl-5-propylpyrrolidine and $(+)$ -monomorine I. Organic Chemistry Frontiers, 2014, 1, 258.	2.3	30
287	Intramolecular 5-endo-trig aminopalladation of \hat{l}^2 -hydroxy- \hat{l}^3 -alkenylamine: efficient route to a pyrrolidine ring and its application for the synthesis of (\hat{a}^2) -8,8a-di-epi-swainsonine. RSC Advances, 2014, 4, 2161-2166.	1.7	13
288	Silver-catalyzed dynamic systemic resolution of \hat{l} ±-iminonitriles in a 1,3-dipolar cycloaddition process. Chemical Communications, 2014, 50, 3792-3794.	2.2	31
289	A stereoselective approach to indolizidine and pyrrolizidine alkaloids: total synthesis of $(\hat{a}^{"})$ -lentiginosine, $(\hat{a}^{"})$ -epi-lentiginosine and $(\hat{a}^{"})$ -dihydroxypyrrolizidine. Organic and Biomolecular Chemistry, 2014, 12, 4454-4460.	1.5	21
290	Silver-catalyzed cyclization of 2-pyridyl alkynyl carbinols with isocyanides: divergent synthesis of indolizines and pyrroles. Chemical Communications, 2014, 50, 11837-11839.	2.2	82
291	A concise diastereoselective approach to enantioenriched substituted piperidines and their in vitro cytotoxicity evaluation. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4439-4443.	1.0	11
292	Carboxybenzyl Group as an <i>O</i> -Nucleophile in the Câ€"H Allylic Oxidation: Total Synthesis of (â^')-Castanospermine. Organic Letters, 2014, 16, 3816-3819.	2.4	27
293	Stereoselective synthesis of O-tosyl azabicyclic derivatives via aza Prins reaction of endocyclic N-acyliminium ions: application to the total synthesis of $(\hat{A}\pm)$ -epi-indolizidine 167B and 209D. Organic and Biomolecular Chemistry, 2014, 12, 7026-7035.	1.5	34
294	Copper(II)-Catalyzed Indolizines Formation Followed by Dehydrogenative Functionalization Cascade to Synthesize 1-Bromoindolizines. Journal of Organic Chemistry, 2014, 79, 9556-9566.	1.7	51

#	Article	IF	CITATIONS
295	Divergent total synthesis of 1,6,8a-tri-epi-castanospermine and 1-deoxy-6,8a-di-epi-castanospermine from substituted azetidin-2-one (\hat{l}^2 -lactam), involving a cascade sequence of reactions as a key step. Organic and Biomolecular Chemistry, 2014, 12, 7389-7396.	1.5	12
296	I ₂ -Mediated Oxidative Cyclization for Synthesis of Substituted Indolizines. Journal of Organic Chemistry, 2014, 79, 10641-10647.	1.7	68
297	An efficient asymmetric synthesis of (â^')-lupinine. Chemical Communications, 2014, 50, 8309.	2.2	20
298	Cyclohexane-Fused Octahydroquinolizine Alkaloids from <i>Myrioneuron faberi</i> with Activity against Hepatitis C Virus. Journal of Organic Chemistry, 2014, 79, 7945-7950.	1.7	33
299	Scope and limitations of the synthesis of functionalized quinolizidinones and related compounds by a simple precursor approach via addition of lithium allylmagnesates to 2-pyridones andÂRCM as key steps. Tetrahedron, 2014, 70, 8624-8635.	1.0	21
300	Convergent Synthesis of Diverse Tetrahydropyridines via Rh(I)-Catalyzed C–H Functionalization Sequences. Organic Process Research and Development, 2014, 18, 1097-1104.	1.3	81
301	Organocatalytic Asymmetric Mannich Cyclization of Hydroxylactams with Acetals: Total Syntheses of (â^)â€Epilupinine, (â^)â€Tashiromine, and (â^)â€Trachelanthamidine. Angewandte Chemie - International Edition, 2014, 53, 13196-13200.	7.2	52
302	Synthesis of 1,2,3â€Trisubstituted Indolizines, Pyrrolo[1,2â€∢i>a⟨li>]quinolines, and Pyrrolo[2,1â€∢i>a⟨li>]isoquinolines from 1,2â€Allenyl Ketones. European Journal of Organic Chemistry, 2014, 2014, 713-717.	1.2	22
303	Synthesis of a Series of Enantiopure Polyhydroxylated Bicyclic Nâ∈Heterocycles from an <scp>L</scp> â∈Erythroseâ€Derived Nitrone and Alkoxyallenes. European Journal of Organic Chemistry, 2014, 2014, 442-454.	1.2	26
304	Ringâ€Closing Metathesis of Vinyl Fluorides towards αâ€Fluorinated α,βâ€Unsaturated Lactams and Lactones. European Journal of Organic Chemistry, 2014, 2014, 5777-5785.	1.2	21
305	Flexible Synthesis of Planar Chiral Azoninones and Optically Active Indolizidinones. European Journal of Organic Chemistry, 2014, 2014, 6272-6284.	1.2	9
306	Total Synthesis of Alkaloid 205B. Journal of Organic Chemistry, 2014, 79, 9074-9085.	1.7	20
307	Natural Tetraponerines: A General Synthesis and Antiproliferative Activity. Journal of Organic Chemistry, 2014, 79, 3982-3991.	1.7	41
308	Boron–Heck Reaction of Cyclic Enaminones: Regioselective Direct Arylation via Oxidative Palladium(II) Catalysis. Organic Letters, 2014, 16, 1574-1577.	2.4	31
309	A concise synthesis of (â^')-lentiginosine via an anti,syn-oxazine. Tetrahedron: Asymmetry, 2014, 25, 87-91.	1.8	19
310	Design and concise synthesis of gem-difluoromethylenated analogue of 7-epi-castanospermine. Chinese Chemical Letters, 2014, 25, 1115-1120.	4.8	9
311	Kinetic Resolution of 2-Substituted 2,3-Dihydro-4-pyridones by Palladium-Catalyzed Asymmetric Allylic Alkylation: Catalytic Asymmetric Total Synthesis of Indolizidine (â°')-2091. Organic Letters, 2014, 16, 1944-1947.	2.4	29
312	Metal-Free Decarboxylative Hetero-Diels–Alder Synthesis of 3-Hydroxypyridines: A Rapid Access to <i>N</i> -Fused Bicyclic Hydroxypiperidine Scaffolds. Journal of Organic Chemistry, 2014, 79, 1303-1319.	1.7	34

#	Article	IF	Citations
313	Bispidine Analogues of Cisplatin, Carboplatin, and Oxaliplatin. Synthesis, Structures, and Cytotoxicity. Inorganic Chemistry, 2014, 53, 3371-3384.	1.9	38
314	Total synthesis of (â^')-lentiginosine. Tetrahedron: Asymmetry, 2014, 25, 860-863.	1.8	7
317	Synthesis of Quinolizidinone and Indolizidinone Using N-Acyliminium Ion Cyclization and a One-Pot Procedure for Preparation of Benzoquinolizidinone. Heterocycles, 2014, 89, 437.	0.4	9
319	Externalâ€Photocatalystâ€Free Visibleâ€Lightâ€Mediated Synthesis of Indolizines. Angewandte Chemie - International Edition, 2015, 54, 15545-15549.	7.2	67
321	Synthesis of (â^')â€Deoxynupharidine by Allenic Hydroxylamine Cyclisation. Asian Journal of Organic Chemistry, 2015, 4, 652-658.	1.3	6
322	Chiral N,Oâ€Ligand/[Cu(OAc) ₂]â€Catalyzed Asymmetric Construction of 4â€Aminopyrrolidine Derivatives by 1,3â€Dipolar Cycloaddition of Azomethine Ylides with αâ€Phthalimidoacrylates. Chemistry - A European Journal, 2015, 21, 10457-10465.	1.7	28
323	Synthesis of Alkaloids Containing a Quinolizidine Core by Means of Strategies Based on a Hydroformylation Reaction. Strategies and Tactics in Organic Synthesis, 2015, 11, 235-252.	0.1	0
324	Novel stereocontrolled syntheses of tashiromine and epitashiromine. Beilstein Journal of Organic Chemistry, 2015, 11, 596-603.	1.3	13
325	Synthesis of Indolizines through Oxidative Linkage of C–C and C–N Bonds from 2-Pyridylacetates. Journal of Organic Chemistry, 2015, 80, 6846-6855.	1.7	45
326	Synthesis of multiply substituted 1,6-dihydropyridines through Cu(<scp>i</scp>)-catalyzed 6-endo cyclization. Organic and Biomolecular Chemistry, 2015, 13, 5955-5963.	1.5	34
327	First efficient synthesis of SF ₅ -substituted pyrrolidines using 1,3-dipolar cycloaddition of azomethine ylides with pentafluorosulfanyl-substituted acrylic esters and amides. RSC Advances, 2015, 5, 6864-6868.	1.7	31
328	Ugi-derived dehydroalanines as a pivotal template in the diversity oriented synthesis of aza-polyheterocycles. Chemical Communications, 2015, 51, 11669-11672.	2.2	30
329	Biomimetic Approach toward the Total Synthesis of <i>rac</i> -2-(Acylmethylene)pyrrolidine Alkaloids. Journal of Organic Chemistry, 2015, 80, 6669-6678.	1.7	11
330	A concise synthetic method towards (\hat{a}^{\prime})-swainsonine and its 8-epimer by using palladium-catalyzed asymmetric hydroamination of alkoxyallene as the key strategy. Tetrahedron, 2015, 71, 5939-5945.	1.0	10
331	Synthesis of tricyclic indolizidines from ethyl isocyanoacetate. Heterocyclic Communications, 2015, 21, 153-157.	0.6	1
332	Merging Asymmetric Henry Reaction with Organocatalytic Cascade Reaction for the Construction of a Chiral Indolizidine Alkaloid Skeleton. Journal of Organic Chemistry, 2015, 80, 1446-1456.	1.7	18
334	Total Synthesis of Indolizidine Alkaloids (â€")â€167B, (â€")â€209I, and (â€")â€223A by Using a Common Tricyclic Lactone. European Journal of Organic Chemistry, 2015, 2015, 1659-1663.	1.2	7
335	New insights into the old reaction between acryloyl chlorides and pyridine. Tetrahedron Letters, 2015, 56, 1124-1127.	0.7	6

#	Article	IF	CITATIONS
336	Synthesis of (â€") ryptopleurine by Combining Gold(I) Catalysis with a Free Radical Cyclization. European Journal of Organic Chemistry, 2015, 2015, 2149-2156.	1.2	14
337	Concise Synthesis of Alkaloid (â^')-205B. Journal of the American Chemical Society, 2015, 137, 2243-2246.	6.6	43
338	Selective Hydrogenation of Indolizines: An Expeditious Approach To Derive Tetrahydroindolizines and Indolizidines from Morita–Baylis–Hillman Adducts. Journal of Organic Chemistry, 2015, 80, 2529-2538.	1.7	44
339	Highly Selective Copperâ€Catalyzed Asymmetric [3+2] Cycloaddition of Azomethine Ylides with Acyclic 1,3â€Dienes. Chemistry - A European Journal, 2015, 21, 4561-4565.	1.7	35
340	Synthesis of functionalized 1,2-dihydropyridines bearing quaternary carbon centers via an organocatalytic allylic alkylation. Tetrahedron Letters, 2015, 56, 937-940.	0.7	6
341	Cobalt-catalyzed arylation and alkenylation of alpha-bromo eneformamides and enecarbamates by cross-coupling with organic bromides: Application to the synthesis of functionalized piperidines and azepanes. Journal of Organometallic Chemistry, 2015, 780, 6-12.	0.8	16
342	Organocatalytic Enantioselective Direct Vinylogous Michael Addition of $\hat{l}\pm,\hat{l}^2$ -Unsaturated \hat{l}^3 -Butyrolactam to \hat{l}^2 -Acyl Acrylates and 1,2-Diacylethylenes. Journal of Organic Chemistry, 2015, 80, 1985-1992.	1.7	41
343	Synthesis of novel indolizine, diazepinoindolizine and Pyrimidoindolizine derivatives as potent and selective anticancer agents. Research on Chemical Intermediates, 2015, 41, 9687-9701.	1.3	9
345	Alkaloid variation in New Zealand kåwhai, Sophora species. Phytochemistry, 2015, 118, 9-16.	1.4	11
346	Ruthenium-catalyzed cyclization of N-carbamoyl indolines with alkynes: an efficient route to pyrroloquinolinones. Organic and Biomolecular Chemistry, 2015, 13, 9276-9284.	1.5	25
347	Regio- and Diastereoselective Synthesis of Highly Substituted, Oxygenated Piperidines from Tetrahydropyridines. Journal of Organic Chemistry, 2015, 80, 6660-6668.	1.7	25
348	Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-quinolones by a Protecting-Group-Free Approach. Organic Letters, 2015, 17, 3202-3205.	2.4	50
349	Synthesis of Enantiopure 3-Hydroxypiperidines from Sulfinyl Dienyl Amines by Diastereoselective Intramolecular Cyclization and [2,3]-Sigmatropic Rearrangement. Journal of Organic Chemistry, 2015, 80, 7674-7692.	1.7	13
350	A convenient entry to indolizidine alkaloids using Kharasch type reactions. Tetrahedron Letters, 2015, 56, 4892-4894.	0.7	9
351	Divergent Method to <i>trans</i> -5-Hydroxy-6-alkynyl/alkenyl-2-piperidinones: Syntheses of (â^3)-Epiquinamide and (+)-Swainsonine. Journal of Organic Chemistry, 2015, 80, 5824-5833.	1.7	43
352	Proline catalyzed, one-pot three component Mannich reaction and sequential cyclization toward the synthesis of 2-substituted piperidine and pyrrolidine alkaloids. Tetrahedron Letters, 2015, 56, 2023-2026.	0.7	12
353	Diastereoselective Overman Rearrangement of an <scp>L</scp> â€Ascorbicâ€Acidâ€Derived Allylic Alcohol: Application in the Synthesis of (+)â€1,2â€Diâ€∢i>epiêswainsonine and a Tetrahydroxypyrrolizidine. European Journal of Organic Chemistry, 2015, 2015, 2902-2913.	1.2	11
354	One-pot synthesis of indolizine via 1,3-dipolar cycloaddition using a sub-equivalent amount of K ₂ Cr ₂ Csub>C ₇ as an efficient oxidant under base free conditions. RSC Advances, 2015, 5, 41255-41258.	1.7	30

#	Article	IF	CITATIONS
355	Stereoselective Syntheses of (+)-2- <i>epi</i> -Deoxoprosopinine, (\hat{a}°)-Deoxoprosophylline, (+)- <i>cis</i> -195A, and 2,5-Di- <i>epi</i> -ci>cis-195A from a Common Chiral Nonracemic Building Block. Journal of Organic Chemistry, 2015, 80, 5236-5251.	1.7	13
356	Enantioselective Construction of 3â€Hydroxypiperidine Scaffolds by Sequential Action of Light and Rhodium upon Nâ€Allylglyoxylamides. Angewandte Chemie - International Edition, 2015, 54, 7418-7421.	7.2	30
357	Au-catalyzed ring-opening reactions of 2-(1-alkynyl-cyclopropyl)pyridines with nucleophiles. Organic and Biomolecular Chemistry, 2015, 13, 4855-4858.	1.5	26
358	Asymmetric Construction of Spirocyclic Pyrrolidine-thia(oxa)zolidinediones via N,O-Ligand/Cu(I) Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides with 5-Alkylidene Thia(oxa)zolidine-2,4-diones. Organic Letters, 2015, 17, 4822-4825.	2.4	55
359	Asymmetric Construction of 3,4-Diamino Pyrrolidines via Chiral N,O-Ligand/Cu(I) Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides with β-Phthalimidonitroethene. Organic Letters, 2015, 17, 4988-4991.	2.4	28
360	Cyclopentadiene-Phosphine/Palladium-Catalyzed Synthesis of Indolizines from Pyrrole and 1,4-Dibromo-1,3-butadienes. Organic Letters, 2015, 17, 5674-5677.	2.4	28
361	Enantioselective Synthesis of $\langle i \rangle N \langle i \rangle$ -PMP-1,2-dihydropyridines via Formal [4 + 2] Cycloaddition between Aqueous Glutaraldehyde and Imines. Organic Letters, 2015, 17, 5582-5585.	2.4	30
362	Identification of the Polyketide Biosynthetic Machinery for the Indolizidine Alkaloid Cyclizidine. Organic Letters, 2015, 17, 5344-5347.	2.4	34
363	Synthesis and photophysics of selective functionalized π-conjugated, blue light emitting, highly fluorescent C7-imidazo indolizine derivatives. Organic and Biomolecular Chemistry, 2015, 13, 11674-11686.	1.5	18
364	Palladium-catalyzed direct and regioselective C–H acyloxylation of indolizines. Organic and Biomolecular Chemistry, 2015, 13, 10236-10243.	1.5	13
365	Directed Metalation–Suzuki–Miyaura Cross-Coupling Strategies: Regioselective Synthesis of Hydroxylated 1-Methyl-phenanthrenes. Journal of Organic Chemistry, 2015, 80, 9410-9424.	1.7	28
366	Switchable selectivity in an NHC-catalysed dearomatizing annulation reaction. Nature Chemistry, 2015, 7, 842-847.	6.6	161
367	Synthesis of Indolizine Derivatives by Pd-Catalyzed Oxidative Carbonylation. Organic Letters, 2015, 17, 4526-4529.	2.4	52
368	Broad Spectrum Enolate Equivalent for Catalytic Chemo-, Diastereo-, and Enantioselective Addition to <i>N</i> -Boc Imines. Journal of the American Chemical Society, 2015, 137, 15940-15946.	6.6	41
369	One-Pot Dichotomous Construction of Inside-Azayohimban and Pro-Azayohimban Systems via an Enantioselective Organocatalytic Cascade; Their Use as a Model to Probe the (Aza-)Indole Local Solvent Environment. Organic Letters, 2015, 17, 5816-5819.	2.4	14
370	Diastereoselective synthesis of quinolizidin-4-one and indolizidin-3-one derivatives with a spirocyclic motif via cascade cyclization using a gold(I)/Brønsted acid relay catalysis. Tetrahedron Letters, 2015, 56, 6266-6268.	0.7	4
371	Synthesis and biological evaluation of (\hat{a}°)-6-O-desmethylcryptopleurine and analogs. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 184-187.	1.0	6
372	Ruthenium-catalyzed one-pot ring-closing metathesis/syn-dihydroxylation in the synthesis of bicyclic iminosugars. Tetrahedron: Asymmetry, 2015, 26, 29-34.	1.8	23

#	Article	IF	CITATIONS
373	One-pot synthesis of indolizine functionalized nanohyperbranched polyesters with different nano morphologies and their fluorescent response to anthracene. Polymer Chemistry, 2015, 6, 1044-1051.	1.9	5
374	Formal [3+2] cycloaddition of Ugi adducts towards pyrrolines. Chemical Communications, 2015, 51, 1116-1119.	2.2	16
375	Highly Regioselective and Diastereoselective, Oneâ€Pot, Fourâ€Component Synthesis of Novel Spiroindenoquinoxalineindolizidine Derivatives. Journal of Heterocyclic Chemistry, 2015, 52, 944-948.	1.4	4
376	Experimental and quantum-chemical studies of anabasine complexes with copper(II) and zinc(II) ions. Polyhedron, 2015, 85, 841-848.	1.0	4
377	Gold(I)â€Catalyzed Nâ€Desulfonylative Amination versus Nâ€toâ€O 1,5â€Sulfonyl Migration: A Versatile Approach to 1â€Azabicycloalkanes. Angewandte Chemie, 2016, 128, 9234-9238.	h 1.6	4
378	Enantiodivergent Combination of Natural Product Scaffolds Enabled by Catalytic Enantioselective Cycloaddition. Angewandte Chemie - International Edition, 2016, 55, 7761-7765.	7.2	57
379	Putrescine Transaminases for the Synthesis of Saturated Nitrogen Heterocycles from Polyamines. ChemCatChem, 2016, 8, 1038-1042.	1.8	35
380	Stereoselective Agâ€Catalyzed 1,3â€Dipolar Cycloaddition of Activated Trifluoromethylâ€Substituted Azomethine Ylides. Chemistry - A European Journal, 2016, 22, 4952-4959.	1.7	53
381	Synthesis of Strained γâ€Lactams by Palladium(0)â€Catalyzed C(sp ³)â^'H Alkenylation and Application to Alkaloid Synthesis. Angewandte Chemie, 2016, 128, 2855-2859.	1.6	23
382	Photooxygenation of Furylalkylamines: Easy Access to Pyrrolizidine and Indolizidine Scaffolds. Angewandte Chemie, 2016, 128, 4681-4685.	1.6	13
383	Stereoselective Synthesis of Tetrahydroindolizines through the Catalytic Formation of Pyridinium Ylides from Diazo Compounds. Angewandte Chemie - International Edition, 2016, 55, 5809-5813.	7.2	67
384	Synthesis of Strained γâ€Lactams by Palladium(0)â€Catalyzed C(sp ³)â^'H Alkenylation and Application to Alkaloid Synthesis. Angewandte Chemie - International Edition, 2016, 55, 2805-2809.	7.2	54
385	Gold(I)â€Catalyzed Nâ€Desulfonylative Amination versus Nâ€toâ€O 1,5â€Sulfonyl Migration: A Versatile Approach to 1â€Azabicycloalkanes. Angewandte Chemie - International Edition, 2016, 55, 9088-9092.	h _{7.2}	45
386	Development of a Modified Julia Olefination of Imides for the Synthesis of Alkaloids. European Journal of Organic Chemistry, 2016, 2016, 2944-2953.	1.2	15
387	Diastereo―and Enantioselective Copper(I)â€Catalyzed Intermolecular [3+2] Cycloaddition of Azomethine Ylides with βâ€Trifluoromethyl β,βâ€Disubstituted Enones. Angewandte Chemie - International Edition, 2016, 55, 6324-6328.	7.2	129
388	Synthesis of Substituted Quinolizidines <i>via</i> a Goldâ€Catalyzed Double Cyclization Cascade. Advanced Synthesis and Catalysis, 2016, 358, 380-385.	2.1	12
389	Stereoselective Synthesis of Tetrahydroindolizines through the Catalytic Formation of Pyridinium Ylides from Diazo Compounds. Angewandte Chemie, 2016, 128, 5903-5907.	1.6	22
390	Diastereo―and Enantioselective Copper(I)â€Catalyzed Intermolecular [3+2] Cycloaddition of Azomethine Ylides with βâ€Trifluoromethyl β,βâ€Disubstituted Enones. Angewandte Chemie, 2016, 128, 6432-6436.	1.6	38

#	Article	IF	CITATIONS
391	Nickel(II)-Catalyzed Cascade Vinylogous Mukaiyama 1,6-Michael/Michael Addition of 2-Silyloxyfuran with N-Sulfonyl-1-aza-1,3-dienes: Access to Fused Piperidine/Butyrolactone Skeletons. Organic Letters, 2016, 18, 6288-6291.	2.4	12
392	Catalytic Dearomatization Approach to Quinolizidine Alkaloids: Five Step Total Synthesis of $(\hat{A}\pm)$ -Lasubine II. Organic Letters, 2016, 18, 6256-6259.	2.4	36
393	Gold(I)-Catalyzed Hydroaminaloxylation and Petasis–Ferrier Rearrangement Cascade of Aminaloalkynes. Organic Letters, 2016, 18, 1844-1847.	2.4	22
394	Correlation of the alkaloid content and composition of narrow-leafed lupins (Lupinus angustifolius) Tj ETQq1 1	0.784314 1.9	rgBT /Overloc
395	Organocatalytic one-pot asymmetric synthesis of 2-aryl-2,3-dihydro-4-quinolones. RSC Advances, 2016, 6, 25375-25378.	1.7	11
396	Carbonyl-assisted reverse regioselective cascade annulation of 2-acetylenic ketones triggered by Ru-catalyzed C–H activation. Chemical Science, 2016, 7, 4748-4753.	3.7	75
397	3,4-Dihydro-2H-pyrrole-2-carbonitriles: Useful Intermediates in the Synthesis of Fused Pyrroles and 2,2′-Bipyrroles. Journal of Organic Chemistry, 2016, 81, 4112-4121.	1.7	19
398	Optimization and multigram scalability of a catalytic enantioselective borylative migration for the synthesis of functionalized chiral piperidines. Organic and Biomolecular Chemistry, 2016, 14, 4739-4748.	1.5	25
399	Silver(I)â€Catalyzed Enantioselective [3+2]â€Cycloaddition Reaction of αâ€Silylimines: A Facile Route to Quaternaryâ€Carbonâ€Rich Scaffolds. Chemistry - A European Journal, 2016, 22, 18373-18377.	1.7	14
400	Synthesis of Aminoindolizidines through the Chemoselective and Diastereoselective Catalytic Hydrogenation of Indolizines. Journal of Organic Chemistry, 2016, 81, 9707-9717.	1.7	13
401	Flexible synthesis of fused piperidinones and application in the synthesis of $(\hat{A}\pm)$ -myrtine. Tetrahedron, 2016, 72, 7125-7134.	1.0	3
402	Synthesis of \hat{l}^2 -Amino-Substituted Enones by Addition of Substituted Methyl Enones to Sulfinimines: Application to the Total Synthesis of Alkaloids (+)-Lasubine II and (+)-241D and the Formal Total Synthesis of (\hat{a}^{*} ')-Lasubine I. Journal of Organic Chemistry, 2016, 81, 11363-11371.	1.7	24
403	Synthesis of Dihydropyrrolizine and Tetrahydroindolizine Scaffolds from Pyrroles by Titanocene(III) Catalysis. Angewandte Chemie - International Edition, 2016, 55, 9719-9722.	7.2	40
404	Synthesis of Dihydropyrrolizine and Tetrahydroindolizine Scaffolds from Pyrroles by Titanocene(III) Catalysis. Angewandte Chemie, 2016, 128, 9871-9874.	1.6	12
405	Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron, 2016, 72, 6191-6281.	1.0	112
406	Catalytic Asymmetric Synthesis of Chiral \hat{I}^3 -Amino Ketones via Umpolung Reactions of Imines. Journal of the American Chemical Society, 2016, 138, 15817-15820.	6.6	74
407	Au(<scp>i</scp>)/Ag(<scp>i</scp>) co-operative catalysis: interception of Ag-bound carbocations with α-gold(<scp>i</scp>) enals in the imino-alkyne cyclizations with N-allenamides. Chemical Communications, 2016, 52, 14462-14465.	2.2	32
408	Synthesis of ferrocene[c]pyridin-2(1H)-one derivatives via Pd(II)-catalyzed C–H activation reaction under air. Tetrahedron Letters, 2016, 57, 4676-4679.	0.7	14

#	Article	IF	CITATIONS
409	Synthesis of 1â€Deoxyâ€8,8a–di–epi–castanospermine, 1â€Deoxyâ€6,7,8a–tri–epi–castanospermin Synthesis of Pumilotoxin 251D. ChemistrySelect, 2016, 1, 4458-4462.	e and Forr 0.7	nal
410	New Regio- and Stereoselective Cascades via Unstabilized Azomethine Ylide Cycloadditions for the Synthesis of Highly Substituted Tropane and Indolizidine Frameworks. Journal of the American Chemical Society, 2016, 138, 12664-12670.	6.6	26
411	Highly Chemoselective Synthesis of Indolizidine Lactams by SmI ₂ â€Induced Umpolung of the Amide Bond via Aminoketyl Radicals: Efficient Entry to Alkaloid Scaffolds. Chemistry - A European Journal, 2016, 22, 11949-11953.	1.7	33
412	Pyrrolizidines, indolizidines and quinolizidines via a double reductive cyclisation protocol: concise asymmetric syntheses of $\hat{A}(+)$ -trachelanthamidine, (+)-tashiromine and (+)-epilupinine. Tetrahedron, 2016, 72, 7417-7429.	1.0	16
413	Alkenyl Arenes as Dipolarophiles in Catalytic Asymmetric 1,3â€Dipolar Cycloaddition Reactions of Azomethine Ylides. Angewandte Chemie, 2016, 128, 15560-15564.	1.6	19
414	Alkenyl Arenes as Dipolarophiles in Catalytic Asymmetric 1,3â€Dipolar Cycloaddition Reactions of Azomethine Ylides. Angewandte Chemie - International Edition, 2016, 55, 15334-15338.	7.2	73
415	Iridium-Catalyzed Cyclization of Isoxazolines and Alkenes: Divergent Access to Pyrrolidines, Pyrroles, and Carbazoles. Organic Letters, 2016, 18, 5672-5675.	2.4	25
416	Enantioselective Aza-Sakurai Cyclizations: Dual Role of Thiourea as H-Bond Donor and Lewis Base. Journal of the American Chemical Society, 2016, 138, 14848-14851.	6.6	52
417	Deciphering Piperidine Formation in Polyketide-Derived Indolizidines Reveals a Thioester Reduction, Transamination, and Unusual Imine Reduction Process. ACS Chemical Biology, 2016, 11, 3278-3283.	1.6	40
418	Enantiodivergent Combination of Natural Product Scaffolds Enabled by Catalytic Enantioselective Cycloaddition. Angewandte Chemie, 2016, 128, 7892-7896.	1.6	20
419	Synthesis of (±)‣asubine II Using <i>N</i> à€Methoxyamines. Chemistry - an Asian Journal, 2016, 11, 470-473.	1.7	10
420	Metalâ€Free C(sp ³)â€O Bond Formation through Radical Translocation: A Mild, Efficient, and Practical Approach to αâ€Alkoxybenzamides. Asian Journal of Organic Chemistry, 2016, 5, 192-195.	1.3	7
421	Photooxygenation of Furylalkylamines: Easy Access to Pyrrolizidine and Indolizidine Scaffolds. Angewandte Chemie - International Edition, 2016, 55, 4605-4609.	7.2	55
422	Direct Catalytic Asymmetric Mannichâ€type Reaction of α,βâ€Unsaturated γâ€Butyrolactam with Ketimines. Chemistry - A European Journal, 2016, 22, 3296-3299.	1.7	24
423	Phosphine-catalyzed [4+2] annulations of \hat{l}_{\pm} -aminonitriles with allenoates: Synthesis of functionalized tetrahydropyridines. Chemical Research in Chinese Universities, 2016, 32, 385-389.	1.3	7
424	Enantioselective synthesis of 1,2,5,6-tetrahydropyridines (THPs) via proline-catalyzed direct Mannich-cyclization/domino oxidation–reduction sequence: application for medicinally important N-heterocycles. RSC Advances, 2016, 6, 60422-60432.	1.7	18
425	Stereoselection in Intramolecular Diels–Alder Reactions of 2-Cyano-1-azadienes: Indolizidine and Quinolizidine Synthesis. Organic Letters, 2016, 18, 3050-3053.	2.4	9
426	Synthesis of 3-substituted indolizidines from amino-ynones derivatives. Tetrahedron Letters, 2016, 57, 3036-3038.	0.7	7

#	ARTICLE	IF	Citations
427	Catalytic Asymmetric Synthesis of Bicycloprolines by a 1,3-Dipolar Cycloaddition/Intramolecular Alkylation Strategy. Journal of Organic Chemistry, 2016, 81, 6128-6135.	1.7	14
428	Recent advances in the synthesis of indolizines and their π-expanded analogues. Organic and Biomolecular Chemistry, 2016, 14, 7804-7828.	1.5	176
429	IM-133N modulates cytokine secretion by RAW264.7 and THP-1 cells. Journal of Immunotoxicology, 2016, 13, 217-225.	0.9	7
430	Diverse Natural Products from Dichlorocyclobutanones: An Evolutionary Tale. Accounts of Chemical Research, 2016, 49, 252-261.	7.6	36
431	Metal-free synthesis of indolizines through oxidative C C and C N bond formations of C (sp 3) H bonds. Tetrahedron Letters, 2016, 57, 1074-1078.	0.7	23
432	Catalytic σ-activation of carbon–carbon triple bonds: reactions of propargylic alcohols and alkynes. Chemical Communications, 2016, 52, 853-868.	2.2	41
433	Palladium-catalyzed C-3 desulfitative arylation of indolizines with sodium arylsulfinates and arylsulfonyl hydrazides. RSC Advances, 2016, 6, 21814-21821.	1.7	31
434	Magnetic nanoscale core–shell structured Fe ₃ O ₄ @ <scp>I</scp> -proline: an efficient, reusable and eco-friendly nanocatalyst for diastereoselective synthesis of fulleropyrrolidines. New Journal of Chemistry, 2016, 40, 3289-3299.	1.4	19
435	Oxidative Rearrangement via in Situ Generated <i>N</i> -Chloroamine: Synthesis of Fused Tetrahydroisoquinolines. Organic Letters, 2016, 18, 1314-1317.	2.4	23
436	Visible-light photocatalytic α-amino C(sp3)–H activation through radical translocation: a novel and metal-free approach to α-alkoxybenzamides. Tetrahedron Letters, 2016, 57, 1600-1604.	0.7	25
437	Spermine modulates the expression of two probable polyamine transporter genes and determines growth responses to cadaverine in Arabidopsis. Plant Cell Reports, 2016, 35, 1247-1257.	2.8	10
438	Enantioselective Synthesis of Chiral Piperidines via the Stepwise Dearomatization/Borylation of Pyridines. Journal of the American Chemical Society, 2016, 138, 4338-4341.	6.6	133
439	Synthesis of polyhydroxylated pyrrolidines from sugar-derived bromonitriles through a cascade addition of allylmagnesium bromide/cyclization/reduction. Organic and Biomolecular Chemistry, 2016, 14, 1764-1776.	1.5	9
440	A new synthetic access to bicyclic iminosugars—derivatives of polyhydroxy decahydropyrido[1,2-a]azepine. Tetrahedron Letters, 2016, 57, 199-202.	0.7	5
441	Simple Indolizidine and Quinolizidine Alkaloids. The Alkaloids Chemistry and Biology, 2016, 75, 1-498.	0.8	48
442	Synthesis of dendrobatid alkaloid (+)-167B and (+)-209D and the investigation of diastereoselectivity using DFT calculations. RSC Advances, 2017, 7, 684-687.	1.7	10
443	Organoselenium atalyzed Regioselective Câ^'H Pyridination of 1,3â€Dienes and Alkenes. Angewandte Chemie - International Edition, 2017, 56, 3201-3205.	7.2	84
444	Organoseleniumâ€Catalyzed Regioselective Câ^'H Pyridination of 1,3â€Dienes and Alkenes. Angewandte Chemie, 2017, 129, 3249-3253.	1.6	20

#	Article	IF	Citations
445	Facile one-pot synthesis of 2,3-dihydro-1H-indolizinium derivatives by rhodium(<scp>iii</scp>)-catalyzed intramolecular oxidative annulation via C–H activation: application to ficuseptine synthesis. Chemical Communications, 2017, 53, 2491-2494.	2.2	22
446	Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes. Journal of the American Chemical Society, 2017, 139, 1774-1777.	6.6	142
447	Copperâ€Catalyzed Multicomponent Amination/Alkynylative Cycloisomerization Cascade: Facile Access to Ferroceneâ€Containing Indolizine Derivatives. Asian Journal of Organic Chemistry, 2017, 6, 686-689.	1.3	13
448	CuBr-Catalyzed Aerobic Decarboxylative Cycloaddition for the Synthesis of Indolizines under Solvent-Free Conditions. Journal of Organic Chemistry, 2017, 82, 2835-2842.	1.7	52
449	Recent Developments in Pd ⁰ â€Catalyzed Alkeneâ€Carboheterofunctionalization Reactions. Asian Journal of Organic Chemistry, 2017, 6, 636-653.	1.3	118
450	Asymmetric Synthesis of α-Trifluoromethyl Pyrrolidines through Organocatalyzed 1,3-Dipolar Cycloaddition Reaction. Journal of Organic Chemistry, 2017, 82, 3482-3490.	1.7	20
451	Enantioselective Formal $[3+1+1]$ Cycloaddition Reaction by Ru(II)/Iminium Cocatalysis for Construction of Multisubstituted Pyrrolidines. Organic Letters, 2017, 19, 1290-1293.	2.4	14
452	Stereo-controlled synthesis of functionalized tetrahydropyridines based on the cyanomethylation of 1,6-dihydropyridines and generation of anti-hepatitis C virus agents. Bioorganic and Medicinal Chemistry, 2017, 25, 2851-2855.	1.4	16
453	Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated Terminal and Internal Alkenes with 2-Pyridones. Organic Letters, 2017, 19, 1466-1469.	2.4	22
454	Pd(0)-Catalysed asymmetric reductive Heck-type cyclization of (Z)-1-iodo-1,6-dienes and enantioselective synthesis of quaternary tetrahydropyridines. Organic and Biomolecular Chemistry, 2017, 15, 4803-4806.	1.5	26
455	Squaramide-catalyzed domino Michael/aza-Henry [3 + 2] cycloaddition: asymmetric synthesis of functionalized 5-trifluoromethyl and 3-nitro substituted pyrrolidines. Organic Chemistry Frontiers, 2017, 4, 1416-1419.	2.3	22
456	Control of Vicinal Stereocenters through Nickelâ€Catalyzed Alkyl–Alkyl Crossâ€Coupling. Angewandte Chemie - International Edition, 2017, 56, 5821-5824.	7.2	74
457	Control of Vicinal Stereocenters through Nickelâ€Catalyzed Alkyl–Alkyl Crossâ€Coupling. Angewandte Chemie, 2017, 129, 5915-5918.	1.6	21
458	Synthesis of Benzoquinolizinium Salts by Rh(III)-Catalyzed Cascade Double <i>N</i> Annulation Reactions of Allylamines, Diarylacetylenes, and HBF ₄ . Organic Letters, 2017, 19, 2941-2944.	2.4	36
459	Acyl Radical Addition onto Azaâ€Baylisâ€"Hillman Adducts: A Stereocontrolled Access to 2,3,5â€Trisubstituted Pyrrolidines. Advanced Synthesis and Catalysis, 2017, 359, 2434-2441.	2.1	12
460	Synthesis of Indolizine Derivatives Utilizing [1,2]-Phospha-Brook Rearrangement/Cycloisomerization Sequence. Chemistry Letters, 2017, 46, 1020-1023.	0.7	11
461	Enantio- and Diastereoselective Synthesis of 1,5-syn-(Z)-Amino Alcohols via Imine Double Allylboration: Synthesis of trans-1,2,3,6-Tetrahydropyridines and Total Synthesis of Andrachcine. Organic Letters, 2017, 19, 2646-2649.	2.4	17
462	Stereoselective strategies for the construction of polysubstituted piperidinic compounds and their applications in natural products' synthesis. Organic Chemistry Frontiers, 2017, 4, 1655-1704.	2.3	27

#	ARTICLE	IF	CITATIONS
463	Synthesis of fused tricyclic indolizines by intramolecular silver-mediated double cyclization of 2-(pyridin-2-yl)acetic acid propargyl esters. RSC Advances, 2017, 7, 24011-24014.	1.7	9
464	Copper(I)/Ming-Phos-Catalyzed Asymmetric Intermolecular $[3+2]$ Cycloaddition of Azomethine Ylides with α-Trifluoromethyl α, β-Unsaturated Esters. ACS Catalysis, 2017, 7, 210-214.	5.5	71
465	Highly Enantioselective Synthesis of 11â€Substituted 10,11â€Dihydrodibenzo[<i>b,f</i>][1,4]thiazepines through a Prolineâ€Catalyzed Mannich Reaction of Sevenâ€Membered Cyclic Imines with Ketones. Asian Journal of Organic Chemistry, 2017, 6, 1460-1469.	1.3	11
466	Application of primary halogenated hydrocarbons for the synthesis of 3-aryl and 3-alkyl indolizines. Organic and Biomolecular Chemistry, 2017, 15, 5016-5024.	1.5	38
467	Katalytische asymmetrische konjugierte Addition von Indolizinen an α,βâ€ungesätigte Ketone. Angewandte Chemie, 2017, 129, 8075-8078.	1.6	13
468	Copper(i)-catalyzed asymmetric exo-selective [3+2] cycloaddition of azomethine ylides with \hat{l}^2 -trifluoromethyl \hat{l}^2 , \hat{l}^2 -disubstituted enones. Chemical Communications, 2017, 53, 8152-8155.	2.2	25
469	Cu($\langle scp \rangle i \langle scp \rangle$)-catalyzed Michael addition of ketiminoesters to \hat{i}^2 -trifluoromethyl \hat{i}^2 , \hat{i}^2 -disubstituted enones: rapid access to 1-pyrrolines bearing a quaternary all-carbon stereocenter. Organic Chemistry Frontiers, 2017, 4, 1772-1776.	2.3	12
470	Catalytic Asymmetric Conjugate Addition of Indolizines to α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2017, 56, 7967-7970.	7.2	64
471	Sequential Nucleophilic <i>C</i> (sp ³)â€Benzylation/C(sp ²)â€"H Arylation for the Synthesis of Spiro[oxindoleâ€3,5′â€pyrrolo[2,1â€ <i>a</i>]isoquinolines]. European Journal of Organic Chemistry, 2017, 2017, 3179-3186.	1.2	13
472	A Two-Directional Synthesis of (+)- \hat{l}^2 -Isosparteine. Organic Letters, 2017, 19, 3502-3504.	2.4	7
473	Senobtusin, a novel alkaloid with amidine moiety from <i>Senecio obtusatus</i> Wall. ex DC. Natural Product Research, 2017, 31, 2450-2453.	1.0	3
474	Enantioselective construction of quaternary tetrahydropyridines by palladium-catalyzed vinylborylation of alkenes. Chemical Communications, 2017, 53, 4270-4273.	2.2	45
475	Synthesis of 7-cyanoindolizine derivatives via a tandem reaction. Heterocyclic Communications, 2017, 23, 71-74.	0.6	2
476	Visibleâ€Lightâ€Mediated Twoâ€Fold Unsymmetrical C(sp ³)â^H Functionalization and Double Câ^F Substitution. Chemistry - A European Journal, 2017, 23, 2249-2254.	1.7	85
477	Transition Metal Free Visible Light-Mediated Synthesis of Polycyclic Indolizines. Springer Theses, 2017, , 81-107.	0.0	0
478	Pd-Catalyzed Intramolecular Aminoalkylation of Unactivated Alkenes: Access to Diverse <i>N</i> Heterocycles. Organic Letters, 2017, 19, 308-311.	2.4	40
479	One-pot synthesis of N-heterocycles and enimino carbocycles by tandem dehydrative coupling–reductive cyclization of halo-sec-amides and dehydrative cyclization of olefinic sec-amides. Organic Chemistry Frontiers, 2017, 4, 431-444.	2.3	24
480	Ketene Aminal Phosphates: Competent Substrates for Enantioselective Pd(0)-Catalyzed C–H Functionalizations. ACS Catalysis, 2017, 7, 7417-7420.	5.5	48

#	Article	lF	Citations
481	Dearomatization of electron poor six-membered N-heterocycles through $[3+2]$ annulation with aminocyclopropanes. Chemical Science, 2017, 8, 7112-7118.	3.7	87
482	Enantioselective construction of tricyclic pyrrolidine-fused benzo[b]thiophene 1,1-dioxide derivatives via copper(<scp>i</scp>)-catalyzed asymmetric 1,3-dipolar cycloaddition. Organic Chemistry Frontiers, 2017, 4, 2343-2347.	2.3	14
483	A unique indolizinium alkaloid streptopertusacin A and bioactive bafilomycins from marine-derived Streptomyces sp. HZP-2216E. Phytochemistry, 2017, 144, 119-126.	1.4	29
484	In Situ Generation of Quinolinium Ylides from Diazo Compounds: Copper-Catalyzed Synthesis of Indolizine. Journal of Organic Chemistry, 2017, 82, 9291-9304.	1.7	61
485	Iminosugar <i>C</i> -Nitromethyl Glycosides and Divergent Synthesis of Bicyclic Iminosugars. Organic Letters, 2017, 19, 4403-4406.	2.4	32
486	Hydroxy-Assisted Regio- and Stereoselective Synthesis of Functionalized 4-Methylenepyrrolidine Derivatives via Phosphine-Catalyzed [3 + 2] Cycloaddition of Allenoates with <i>o</i> hydroxyaryl Azomethine Ylides. Journal of Organic Chemistry, 2017, 82, 12726-12734.	1.7	37
487	Organocatalytic Asymmetric Mannich/Aza-Michael Cascade Reaction of \hat{l} -Formyl- $\hat{l}\pm,\hat{l}^2$ -unsaturated Ketones with Cyclic <i>N</i> -Sulfimines: Enantioselective Synthesis of Benzosulfamidate-Fused Pyrrolidines. Journal of Organic Chemistry, 2017, 82, 8179-8185.	1.7	24
488	Enantioselective synthesis of spirooxindole benzoquinolizines via organo-catalyzed cascade reactions. Organic and Biomolecular Chemistry, 2017, 15, 778-781.	1.5	19
490	The Role of Natural Products in the Prevention and Treatment of Multiple Sclerosis., 2017,, 249-260.		10
491	FeCl ₃ â€Mediated Carbenium Ionâ€Induced Intramolecular Cyclization of <i>N</i> â€Tethered Alkyneâ€Benzyl Alkanols. ChemistrySelect, 2018, 3, 2162-2166.	0.7	7
492	Potential Mechanisms of Action of Dietary Phytochemicals for Cancer Prevention by Targeting Cellular Signaling Transduction Pathways. Journal of Agricultural and Food Chemistry, 2018, 66, 3260-3276.	2.4	88
493	Regioâ€; Diastereo―and Enantioselective Synthesis of Piperidines with Three Stereogenic Centers from Isoxazolinones by Palladium/Iridium Relay Catalysis. European Journal of Organic Chemistry, 2018, 2018, 1797-1805.	1,2	25
494	Cu(I)â€Mingâ€phos Catalyzed Enantioselective [3+2] Cycloadditions of Glycine ketimines to <i>1²</i> i>‶rifluoromethyl Enones. Advanced Synthesis and Catalysis, 2018, 360, 2144-2150.	2.1	19
495	Total synthesis of complex alkaloids by nucleophilic addition to amides. Organic and Biomolecular Chemistry, 2018, 16, 3864-3875.	1.5	95
496	Superacid-promoted synthesis of indolizidine derivatives. Tetrahedron Letters, 2018, 59, 1932-1935.	0.7	4
497	A simple and fast quantitative analysis of quinolizidine alkaloids and their biosynthetic precursor, lysine, in <i>Sophora alopecuroides</i> by hydrophilic interaction chromatography coupled with tripleâ€quadrupole tandem mass spectroscopy. Phytochemical Analysis, 2018, 29, 500-506.	1.2	8
498	Synthesis of highly functionalized 1,6-dihydropyridines <i>via</i> the Zn(OTf) ₂ -catalyzed three-component cascade reaction of aldimines and two alkynes (IA ² -coupling). Organic and Biomolecular Chemistry, 2018, 16, 3241-3247.	1.5	9
499	Synthesis of the diarylindolizidine alkaloid (+)-Fistulopsine B: Application of an organocatalytic Michael addition reaction. Tetrahedron, 2018, 74, 1422-1429.	1.0	9

#	Article	IF	CITATIONS
500	Catalytic Enantioselective Synthesis of Highly Functionalized Pentafluorosulfanylated Pyrrolidines. Chemistry - A European Journal, 2018, 24, 5644-5651.	1.7	18
501	Silicaâ€Supported Silver as a Green and Sustainable Catalyst for the [3+2]â€Cycloaddition Reaction of Azomethine Ylides with 2′â€Hydroxychalcone Derivatives. ChemCatChem, 2018, 10, 2014-2018.	1.8	10
502	Cyclizidine-Type Alkaloids from <i>Streptomyces</i> sp. HNA39. Journal of Natural Products, 2018, 81, 394-399.	1.5	36
503	3-Aryl-2,5-Dihydropyrroles via Catalytic Carbonyl-Olefin Metathesis. ACS Catalysis, 2018, 8, 2006-2011.	5.5	51
504	Efficient synthesis and characterization of novel indolizines: exploration of <i>in vitro</i> cox-2 inhibitory activity and molecular modelling studies. New Journal of Chemistry, 2018, 42, 4893-4901.	1.4	32
505	Ag(I)-Catalyzed Synthesis of Azabicyclic Alkaloid Frameworks from Ketimine-Tethered Ynones: Total Synthesis of Indolizidine 209D. Organic Letters, 2018, 20, 1439-1443.	2.4	19
506	Stereo- and Regioselective Synthesis of 4-Vinylpyrrolidine from N-Tethered Alkyne-Alkenol. ACS Omega, 2018, 3, 576-584.	1.6	2
507	Efficient and Direct Synthesis of γâ€Aminoâ€Î±,βâ€Unsaturated Amides by Catalyzed Allylic Substitution of αâ€Fluoroenamides: Toward to Synthesis of Hybrid Peptides and Indolizidines. European Journal of Organic Chemistry, 2018, 2018, 1455-1459.	1.2	10
508	Redox-Neutral α-C–H Functionalization of Pyrrolidin-3-ol. Organic Letters, 2018, 20, 668-671.	2.4	27
509	Novel Hybrid Prins/Azaâ€Prins Oxocarbenium/ <i>N</i> à€Acyliminium Cascade: Expedient Access to Complex Indolizidines. Chemistry - A European Journal, 2018, 24, 1278-1282.	1.7	11
510	Synthesis of indolizine derivatives containing eight-membered rings <i>via</i> a gold-catalyzed two-fold hydroarylation of diynes. Chemical Communications, 2018, 54, 1225-1228.	2,2	32
511	One-pot cascade synthesis of azabicycles via the nitro-Mannich reaction and N-alkylation. Organic and Biomolecular Chemistry, 2018, 16, 707-711.	1.5	9
512	Recent advances in the intramolecular Mannich reaction in natural products total synthesis. Organic Chemistry Frontiers, 2018, 5, 1049-1066.	2.3	59
513	Iron-Catalyzed Aerobic Oxidation and Annulation Reaction of Pyridine and α-Substituted Allenoate toward Functionalized Indolizine. Organic Letters, 2018, 20, 413-416.	2.4	50
514	Enantioselective Regiodivergent Synthesis of Chiral Pyrrolidines with Two Quaternary Stereocenters via Ligand-Controlled Copper(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloadditions. Journal of the American Chemical Society, 2018, 140, 2272-2283.	6.6	108
515	Organocatalytic [3 + 2] cycloaddition of oxindole-based azomethine ylides with 3-nitrochromenes: a facile approach to enantioenriched polycyclic spirooxindole-chromane adducts. Organic and Biomolecular Chemistry, 2018, 16, 807-815.	1.5	23
516	Synthesis of New Indolizidine Derivatives from 1-(2-Quinolyl)-2-propen-1-ol. ACS Omega, 2018, 3, 3183-3189.	1.6	4
517	Morita-Baylis-Hillman enal-based triple cascade strategy for anti-selective synthesis of highly functionalized tetrahydropyridines using iminium-enamine catalysis. Tetrahedron Letters, 2018, 59, 1783-1786.	0.7	6

#	Article	IF	CITATIONS
518	<i>N</i> -Heterocyclic Carbene Catalyzed Enantioselective [3 + 2] Dearomatizing Annulation of Saturated Carboxylic Esters with <i>N</i> -Iminoisoquinolinium Ylides. Journal of Organic Chemistry, 2018, 83, 3879-3888.	1.7	20
519	A DFT mechanistic study on gold(I)-catalyzed cascade reaction of aminaloalkyne involving Petasis-Ferrier cyclization. Journal of Organometallic Chemistry, 2018, 864, 136-142.	0.8	2
520	Metabolic Engineering of Microorganisms for the Production of Natural Compounds. Advanced Biology, 2018, 2, 1700190.	3.0	83
521	Synthesis of Functionalized Nitriles by Microwaveâ€Promoted Fragmentations of Cyclic Iminyl Radicals. Chemistry - A European Journal, 2018, 24, 594-598.	1.7	62
522	Access to 2,6-Disubstituted 4-Oxopiperidines Using a 6- <i>Endo</i> - <i>trig</i> Cyclization: Stereoselective Synthesis of Spruce Alkaloid and (+)-241D. Journal of Organic Chemistry, 2018, 83, 535-542.	1.7	9
523	The Diverse Reactivity of Homopropargylic Amines as "Masked―1C Synthons for the Azaâ€Friedel–Crafts Alkylation of Indoles. European Journal of Organic Chemistry, 2018, 2018, 470-476.	1.2	8
524	Enantioselective approach to indolizidine and quinolizidine scaffolds. Application to the synthesis of peptide mimics. Tetrahedron, 2018, 74, 104-116.	1.0	6
525	Direct and highly stereoselective synthesis of quinolizidine iminosugars promoted by l-proline-Et3N. Organic and Biomolecular Chemistry, 2018, 16, 9230-9236.	1.5	3
526	Chemo-selective couplings of anilines and acroleins/enones under substrate control and condition control. Chinese Journal of Catalysis, 2018, 39, 1782-1791.	6.9	5
527	Mannichâ€type Reactions of Cyclic Nitrones: Effective Methods for the Enantioselective Synthesis of Piperidineâ€containing Alkaloids. Angewandte Chemie - International Edition, 2018, 57, 15162-15166.	7.2	39
528	Baseâ€Promoted Cycloisomerization for the Synthesis of Indolizines and Related Heterocycles. ChemistrySelect, 2018, 3, 11270-11272.	0.7	16
529	The Energetic Viability of Δ1-Piperideine Dimerization in Lysine-derived Alkaloid Biosynthesis. Metabolites, 2018, 8, 48.	1.3	11
530	Mannichâ€type Reactions of Cyclic Nitrones: Effective Methods for the Enantioselective Synthesis of Piperidineâ€containing Alkaloids. Angewandte Chemie, 2018, 130, 15382-15386.	1.6	13
531	The Reactivity of Enantiopure (<i>S</i>)â€6â€Oxopipecolic Acid and Corresponding Pyridoisoquinolines Under Acidic Conditions. European Journal of Organic Chemistry, 2018, 2018, 5499-5511.	1.2	3
532	Rhodiumâ€Catalyzed Domino Hydroformylation/Doubleâ€Cyclization Reaction of Arylacetylenecarboxamides: Diastereoselectivity Studies and Application in the Synthesis of 1â€Azabicyclo[<i>x.y</i> .0]alkanes. Chemistry - an Asian Journal, 2018, 13, 3190-3197.	1.7	7
533	Piperidine Alkaloids with Diverse Skeletons from <i>Anacyclus pyrethrum</i> . Journal of Natural Products, 2018, 81, 1474-1482.	1.5	23
534	Metalâ€Free [3+2] Tandem Cyclization Synthesis of Unique 11 <i>>H</i> à€Pyrido[3′,2′:4,5]Pyrrolo[3,2â€∢i>b]Indolizine from 7â€Azaindoles and Pyridotriazoles. Eur Journal of Organic Chemistry, 2018, 2018, 4197-4201.	opean	11
535	Rhodium– <i>N</i> -Heterocyclic Carbene Catalyzed Hydroalkenylation Reactions with 2-Vinylpyridine and 2-Vinylpyrazine: Preparation of Nitrogen-Bridgehead Heterocycles. Organometallics, 2018, 37, 1695-1707.	1.1	19

#	ARTICLE	IF	Citations
536	Pd ^{II} â€Catalyzed Oxidative Tandem azaâ€Wacker/Heck Cyclization for the Construction of Fused 5,6â€Bicyclic N,Oâ€Heterocycles. Chemistry - an Asian Journal, 2018, 13, 1897-1901.	1.7	11
537	Asymmetric Construction of Bispiro[oxindole-pyrrolidine-rhodanine]s via Squaramide-Catalyzed Domino Michael/Mannich [3 + 2] Cycloaddition of Rhodanine Derivatives with <i>N</i> -(2,2,2-Trifluoroethyl)isatin Ketimines. Journal of Organic Chemistry, 2018, 83, 9278-9290.	1.7	56
538	Synthesis of novel <i>N</i> functionalized 4-aryl-tetrahydrobiquinoline-2,5-(1 <i>H</i> ,3 <i>H</i>)-diones via one-pot three-component reaction: a joint experimental and computational study. Canadian Journal of Chemistry, 2018, 96, 1071-1078.	0.6	4
539	Synthesis of 1,3,4-Oxa(Thia)Diazole Derivatives of Amidomethylcytisine. Chemistry of Natural Compounds, 2018, 54, 826-827.	0.2	2
540	Stereoselective synthesis of 2,6- <i>trans</i> -4-oxopiperidines using an acid-mediated 6- <i>endo-trig</i> cyclisation. Organic and Biomolecular Chemistry, 2018, 16, 6410-6422.	1.5	5
541	One-Pot Strategies for the Synthesis of Nitrogen-Containing Heteroaromatics. Current Green Chemistry, 2018, 5, 22-39.	0.7	7
542	Cul-Catalyzed Asymmetric $[3+2]$ Cycloaddition of Azomethine Ylides with Cyclobutenones. Organic Letters, 2018, 20, 3179-3182.	2.4	35
543	Isothiourea-Catalyzed Enantioselective Functionalization of 2-Pyrrolyl Acetic Acid: Two-Step Synthesis of Stereodefined Dihydroindolizinones. Organic Letters, 2018, 20, 5482-5485.	2.4	24
544	Direct \hat{l}^2 -selectivity of \hat{l}_{\pm},\hat{l}^2 -unsaturated \hat{l}^3 -butyrolactam for asymmetric conjugate additions in an organocatalytic manner. RSC Advances, 2018, 8, 28874-28878.	1.7	3
545	\hat{l}^2 -Silyl Acrylates in Asymmetric $[3+2]$ Cycloadditions Affording Pyrrolidine Azasugar Derivatives. Organic Letters, 2018, 20, 3838-3842.	2.4	15
546	Synthesis of substituted piperidines by enantioselective desymmetrizing intramolecular aza-Michael reactions. Organic and Biomolecular Chemistry, 2018, 16, 4650-4658.	1.5	17
547	Synthesis, characterization, and crystal structure of 6,7a-dichloro-3a-hydroxyoctahydro-1H-indene-2,5-diyl diacetates. Journal of the Iranian Chemical Society, 2018, 15, 1969-1974.	1.2	2
548	Intramolecular azavinyl carbene-triggered rearrangement of furans. Chemical Science, 2019, 10, 8583-8588.	3.7	13
549	Synthesis of Indolizine and Pyrrolo $[1,2-\langle i\rangle a\langle i\rangle]$ azepine Derivatives via a Gold (I)-Catalyzed Three-Step Cascade. Organic Letters, 2019, 21, 8997-9000.	2.4	20
550	Synthesis of Functionalized Tetrahydropyridines by SnCl ₄ â€Mediated [4+2] Cycloaddition between Donor–Acceptor Cyclobutanes and Nitriles. Chemistry - A European Journal, 2019, 25, 15244-15247.	1.7	19
551	Azideâ€Triggered Bicyclization of <i>o</i> â€Alkynylisocyanobenzenes: Synthesis of Tetrazolo[1,5â€ <i>a</i>]quinolines. European Journal of Organic Chemistry, 2019, 2019, 7050-7057.	1.2	10
552	Asymmetric Three-Component Cyclizations toward Structurally Spiro Pyrrolidines via Bifunctional Phosphonium Salt Catalysis. Organic Letters, 2019, 21, 8667-8672.	2.4	36
553	A new trifluoromethylated sulfonamide phosphine ligand for Ag(<scp>i</scp>)-catalyzed enantioselective [3 + 2] cycloaddition of azomethine ylides. Organic and Biomolecular Chemistry, 2019, 17, 1395-1401.	1.5	9

#	Article	IF	CITATIONS
554	Extensive literature search and selection for relevance of studies related to the chemistry and toxicity of glycoalkaloids and quinolizidine alkaloids in food and feed $\hat{a} \in$ Final Report. EFSA Supporting Publications, 2019, 16, 1348E.	0.3	2
555	Copper-Catalyzed Alkynylation/Cyclization/Isomerization Cascade for Synthesis of 1,2-Dihydrobenzofuro[3,2- <i>b</i>)pyridines and Benzofuro[3,2- <i>b</i>)pyridines. Journal of Organic Chemistry, 2019, 84, 15498-15507.	1.7	19
556	Ligandâ€Controlled Regiodivergent Hydroalkylation of Pyrrolines. Angewandte Chemie, 2019, 131, 18690-18694.	1.6	26
557	Ligandâ€Controlled Regiodivergent Hydroalkylation of Pyrrolines. Angewandte Chemie - International Edition, 2019, 58, 18519-18523.	7.2	91
558	Formal Synthesis of Indolizidine and Quinolizidine Alkaloids from Vinyl Cyclic Carbonates. Chemistry - A European Journal, 2019, 25, 15055-15058.	1.7	12
559	Total Synthesis of Phenanthroquinolizidine Alkaloids Using a Building Block Strategy. Journal of Organic Chemistry, 2019, 84, 11902-11910.	1.7	10
560	Stereochemical diversity in pyrrolidine synthesis by catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chemical Communications, 2019, 55, 11979-11991.	2.2	111
561	A Route to (Het)arene-Annulated Pyrrolo[1,2- <i>d</i>][1,4]diazepines via the Expanded Intramolecular Paal–Knorr Reaction: Nitro Group and Furan Ring as Equivalents of Amino Group and 1,4-Diketone. Journal of Organic Chemistry, 2019, 84, 13707-13720.	1.7	12
562	Controllable synthesis of 3-iodo-2 <i>H</i> -quinolizin-2-ones and 1,3-diiodo-2 <i>H</i> -quinolizin-2-ones <i>via</i> electrophilic cyclization of azacyclic ynones. Chemical Communications, 2019, 55, 12607-12610.	2.2	11
563	Intramolecular Mannich and Michael Annulation Reactions of Lactam Derivatives Bearing Enals To Afford Bicyclic N-Heterocycles. Organic Letters, 2019, 21, 8444-8448.	2.4	14
564	A metal-catalyzed new approach for α-alkynylation of cyclic amines. Chemical Science, 2019, 10, 1796-1801.	3.7	15
565	Stereoselective synthesis of cis-2,6-disubstituted piperidines from 1,2-cyclic sulfamidates. Tetrahedron, 2019, 75, 1214-1222.	1.0	3
566	Rhodium-Catalyzed Regiodivergent $[3+2]$ and $[5+2]$ Cycloadditions of Quinolinium Ylides with Alkynes. Organic Letters, 2019, 21, 5167-5171.	2.4	29
567	Functionalisation of isoindolinones ⟨i>via⟨ i> a calcium catalysed Hosomi–Sakurai allylation. Chemical Communications, 2019, 55, 8317-8320.	2.2	16
568	Catalytic Ring Expansions of Cyclic Alcohols Enabled by Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2019, 141, 8752-8757.	6.6	85
569	Gold-catalyzed bicyclic annulations of 4-methoxy-1,2-dienyl-5-ynes with isoxazoles to form indolizine derivatives <i>via</i> an Au-ï€-allene intermediate. Chemical Science, 2019, 10, 6437-6442.	3.7	34
570	Pd ^{II} /Novel Chiral Cinchona Alkaloid Oxazolineâ€Catalyzed Enantioselective Oxidative Cyclization of Aromatic Alkenyl Amides. European Journal of Organic Chemistry, 2019, 2019, 3850-3855.	1.2	10
571	Palladium Catalyzed Câ^'H Olefination of Indolizines at the 1â€Position with Molecular Oxygen as the Terminal Oxidant. Asian Journal of Organic Chemistry, 2019, 8, 1555-1560.	1.3	9

#	Article	IF	CITATIONS
572	Ultrasound-Promoted One-Pot Synthesis of Mono- or Bis-Substituted Organylselanyl Pyrroles. Journal of Organic Chemistry, 2019, 84, 5471-5482.	1.7	22
573	One-shot access to isoquinolone and (hetero)izidinone architectures using cyclic î±-chloro eneformamides and cyclic anhydrides. New Journal of Chemistry, 2019, 43, 5282-5286.	1.4	8
575	N-heterocyclic carbene based ruthenium complexes for selective \hat{l}^2 -C(sp3)-H functionalization of N-fused saturated cyclic amines. Tetrahedron, 2019, 75, 2265-2272.	1.0	11
576	Synthesis of Chiral, Densely Substituted Pyrrolidones via Phosphine-Catalyzed Cycloisomerization. Organic Letters, 2019, 21, 1890-1894.	2.4	17
577	A Concise Asymmetric Total Synthesis of (+)-Epilupinine. Organic Letters, 2019, 21, 2620-2624.	2.4	6
578	<i>P</i> -Stereogenic Phosphines Directed Copper(I)-Catalyzed Enantioselective 1,3-Dipolar Cycloadditions. Organic Letters, 2019, 21, 2782-2785.	2.4	53
579	Practical enantioselective synthesis of (3S, 4R)-3-hydroxypiperidine-4-carboxylic acid. Tetrahedron Letters, 2019, 60, 1357-1358.	0.7	1
580	Ag/P-Stereogenic Phosphine-Catalyzed Enantioselective 1,3-Dipolar Cycloadditions: A Method to Optically Active Pyrrolidines. Organic Letters, 2019, 21, 3210-3213.	2.4	35
581	A AgOAc/quinine-derived aminophosphine complex as an efficient catalyst for diastereo- and enantioselective 1,3-dipolar cycloaddition of $\hat{l}\pm,\hat{l}^2$ -unsaturated 7-azaindoline amides and azomethine ylides. Organic Chemistry Frontiers, 2019, 6, 1879-1884.	2.3	11
582	A unified and straightforward total synthesis of (+)-porantheridine and (â°')-6- <i>epi</i> -porantheridine. Organic Chemistry Frontiers, 2019, 6, 1599-1602.	2.3	5
583	Recent Advances in the Application of Ring-Closing Metathesis for the Synthesis of Unsaturated Nitrogen Heterocycles. Synthesis, 2019, 51, 1100-1114.	1.2	43
584	The study of metabolites from fermentation culture of Alternaria oxytropis. BMC Microbiology, 2019, 19, 35.	1.3	14
585	Ruthenium(II) Catalysed Highly Regioselective Câ€3 Alkenylation of Indolizines and Pyrrolo[1,2â€ <i>a</i>)quinolines. European Journal of Organic Chemistry, 2019, 2019, 7831-7835.	1.2	7
586	¹ H and ¹³ C NMR assignments for (<i>N</i> â€Methyl)â€(â^')â€(α)â€isosparteinium ioc and (<i>N</i> â€Methyl)â€(â^')â€sparteinium iodide. Magnetic Resonance in Chemistry, 2019, 57, 55-64.	lide 1.1	1
587	Alkoxyallene-based syntheses of preussin and its analogs and their cytotoxicity. Organic and Biomolecular Chemistry, 2019, 17, 122-134.	1.5	8
588	Synthesis of 1-Amino-2 <i>H</i> -quinolizin-2-one Scaffolds by Tandem Silver Catalysis. Organic Letters, 2019, 21, 724-728.	2.4	9
589	Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Rutheniumâ€Catalyzed Asymmetric Cascade Hydrogenation/Reductive Amination. Angewandte Chemie - International Edition, 2019, 58, 3809-3813.	7.2	67
590	An Unusual Route to Synthesize Indolizines through a Domino SN 2/Michael Addition Reaction Between 2-Mercaptopyridine and Nitroallylic Acetates. European Journal of Organic Chemistry, 2019, 2019, 765-769.	1.2	9

#	Article	IF	CITATIONS
591	Rapid Construction of Structurally Diverse Quinolizidines, Indolizidines, and Their Analogues via Ruthenium atalyzed Asymmetric Cascade Hydrogenation/Reductive Amination. Angewandte Chemie, 2019, 131, 3849-3853.	1.6	48
592	Synthesis of 2,3â€Dihydroâ€4â€pyridones, 4â€Quinolones, and 2,3â€Dihydroâ€4â€azocinones by Visibleâ€Light Photocatalytic Aerobic Dehydrogenation. European Journal of Organic Chemistry, 2020, 2020, 1505-1514.	1.2	6
593	TEMPOâ€catalyzed decarboxylation reactions for the synthesis of 1,2â€unsubstituted indolizines. Journal of Heterocyclic Chemistry, 2020, 57, 210-217.	1.4	2
594	Organocatalytic enantioselective synthesis of 2,5,5-trisubstituted piperidines bearing a quaternary stereocenter. Vinyl sulfonamide as a new amine protecting group. Chemical Communications, 2020, 56, 1425-1428.	2.2	13
595	Synthesis of 1,2-amino alcohols by decarboxylative coupling of amino acid derived $\hat{l}\pm$ -amino radicals to carbonyl compounds <i>via</i>) visible-light photocatalyst in water. Green Chemistry, 2020, 22, 336-341.	4.6	43
596	Pyridoxal-5′-phosphate–dependent bifunctional enzyme catalyzed biosynthesis of indolizidine alkaloids in fungi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1174-1180.	3.3	23
597	Activating Imides with Triflic Acid: A General Intramolecular Aldol Condensation Strategy Toward Indolizidine, Quinolizidine, and Valmerin Alkaloids. Organic Letters, 2020, 22, 239-243.	2.4	15
598	Construction of Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 3â€Arylpiperidinâ€2â€ones Under Phaseâ€Transfer Conditions. Angewandte Chemie - International Edition, 2020, 59, 2211-2214.	7.2	16
599	Construction of Quaternary Carbon Center by Catalytic Asymmetric Alkylation of 3â€Arylpiperidinâ€2â€ones Under Phaseâ€Transfer Conditions. Angewandte Chemie, 2020, 132, 2231-2234.	1.6	6
600	Collacyclumines A–D from the endophytic fungus Colletotrichum salsolae SCSIO 41021 isolated from the mangrove Kandelia candel. Phytochemistry, 2020, 171, 112237.	1.4	11
601	Synthesis of heterocyclic compounds through nucleophilic phosphine catalysis. Chemical Communications, 2020, 56, 15235-15281.	2.2	80
602	Base-mediated 1,3-dipolar cycloaddition of pyridinium bromides with bromoallyl sulfones: a facile access to indolizine scaffolds. Organic and Biomolecular Chemistry, 2020, 18, 8694-8701.	1.5	2
603	Catalyst-free construction of spiro [benzoquinolizidine-chromanones] <i>via</i> a tandem condensation/1,5-hydride transfer/cyclization process. Organic and Biomolecular Chemistry, 2020, 18, 8839-8843.	1.5	7
604	Catalyst-Free [3+2] Cycloaddition of Electron-Deficient Alkynes and <i>o</i> -Hydroxyaryl Azomethine Ylides in Water. ACS Omega, 2020, 5, 18244-18253.	1.6	6
605	Inhibitory activities of indolizine derivatives: a patent review. Expert Opinion on Therapeutic Patents, 2020, 30, 695-714.	2.4	31
606	Synthesis of Indolizines from Pyridinium Salts and Ethyl Bromodifluoroacetate. Organic Letters, 2020, 22, 9313-9318.	2.4	33
607	An efficient method for the synthesis of 2-pyridones <i>via</i> Câ€"H bond functionalization. Chemical Communications, 2020, 56, 15020-15023.	2.2	15
608	Unveiling of Swainsonine Biosynthesis via a Multibranched Pathway in Fungi. ACS Chemical Biology, 2020, 15, 2476-2484.	1.6	37

#	Article	IF	CITATIONS
609	Synthesis of Pyrrolo[1,2- <i>b</i>]isoquinolines via Gold(I)-Catalyzed Cyclization/Enyne Cycloisomerization/1,2-Migration Cascade. Organic Letters, 2020, 22, 6537-6542.	2.4	18
610	Origin of the Diastereoselectivity of the Heterogeneous Hydrogenation of a Substituted Indolizine. Journal of Organic Chemistry, 2020, 85, 11541-11548.	1.7	0
611	Recent applications of the Wittig reaction in alkaloid synthesis. The Alkaloids Chemistry and Biology, 2020, 84, 201-334.	0.8	16
612	Synthesis and sequential diastereoselective incorporation of hydroxyl groups into hexahydrofuro[3,2-f]indolizin-7(2H)-one to give mono-, di- and tetra-hydroxyfuroindolizidines. Organic and Biomolecular Chemistry, 2020, 18, 6384-6393.	1.5	2
613	Denitrogenative Transformations of Pyridotriazoles and Related Compounds: Synthesis of <i>N</i> -Containing Heterocyclic Compounds and Beyond. Journal of Organic Chemistry, 2020, 85, 11030-11046.	1.7	68
614	Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Organic and Biomolecular Chemistry, 2020, 18, 8294-8345.	1.5	18
615	A new indolizinium alkaloid from marine-derived <i>Streptomyces</i> sp. HNA39. Journal of Asian Natural Products Research, 2021, 23, 913-918.	0.7	8
616	Antioxidant and cytotoxic activity of isoindole compounds in breast cancer cells (MCF-7). Journal of Molecular Structure, 2020, 1217, 128366.	1.8	0
617	Exo/endo stereocontrolled synthesis of spiroindoloindolizidines by using classical and microwave conditions via the 1,3â€dipolar cycloaddition reaction. Journal of Heterocyclic Chemistry, 2020, 57, 3222-3229.	1.4	3
618	The Rutheniumâ€Catalyzed Domino Cross Enyne Metathesis/Ringâ€Closing Metathesis in the Synthesis of Enantioenriched Nitrogenâ€Containing Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 4193-4207.	1.2	9
619	[3+2]â€Cycloaddition of Catalytically Generated Pyridinium Ylide: A General Access to Indolizine Derivatives. Asian Journal of Organic Chemistry, 2020, 9, 1133-1143.	1.3	39
620	The Synthesis of Chiral Allyl Carbamates via Merger of Photoredox and Nickel Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 3213-3222.	2.1	13
621	A Concise, Enantiospecific Total Synthesis of Chilocorine C Fueled by a Reductive Cyclization/Mannich Reaction Cascade. Journal of the American Chemical Society, 2020, 142, 12027-12033.	6.6	10
622	Regio- and stereoselective synthesis of spiropyrrolidine-oxindole and bis-spiropyrrolizidine-oxindole grafted macrocycles through $[3+2]$ cycloaddition of azomethine ylides. RSC Advances, 2020, 10, 10263-10276.	1.7	4
623	Catalyst and solvent switched divergent C–H functionalization: oxidative annulation of <i>N</i> -aryl substituted quinazolin-4-amine with alkynes. Organic and Biomolecular Chemistry, 2020, 18, 3032-3037.	1.5	8
624	Catalytic asymmetric synthesis of diazabicyclo[3.1.0]hexanes by 1,3-dipolar cycloaddition of azomethine ylides with azirines. Chemical Communications, 2020, 56, 5050-5053.	2.2	12
625	Plant Alkaloids: Structures and Bioactive Properties. , 2020, , 85-117.		22
626	Chiral Trifluoromethylated Pyrrolidines via Cu–Catalyzed Asymmetric 1,3â€Dipolar Cycloaddition. Asian Journal of Organic Chemistry, 2020, 9, 1567-1570.	1.3	16

#	Article	IF	CITATIONS
627	Copper-catalyzed formation of indolizine derivatives via one-pot reactions of chalcones, benzyl bromides and pyridines. Tetrahedron, 2020, 76, 131347.	1.0	2
628	One-Pot Synthesis and Antioxidant Properties of Highly Substituted Piperidine Derivatives Promoted by Choline Chloride/Urea. Polycyclic Aromatic Compounds, 2022, 42, 1560-1569.	1.4	3
629	Copper in Efficient Synthesis of Aromatic Heterocycles with Single Heteroatom. European Journal of Organic Chemistry, 2020, 2020, 6859-6869.	1.2	15
630	Endo-Selective Construction of Spiro-[butyrolactone-pyrrolidine] via Ag(I)/CAAA-Amidphos-Catalyzed 1,3-Dipolar Cycloaddition between Azomethine Ylides and $\hat{l}\pm$ -Methylene- \hat{l}^3 -Butyrolactone. Catalysts, 2020, 10, 28.	1.6	9
631	Strategic approaches to the synthesis of pyrrolizidine and indolizidine alkaloids. Tetrahedron, 2020, 76, 131031.	1.0	39
632	Synthesis of trifluoromethyl and trifluoroacetyl substituted dihydropyrrolizines and tetrahydroindolizines. Tetrahedron Letters, 2020, 61, 151633.	0.7	2
633	A [bmim]Cl-promoted domino protocol using an isocyanide-based [4+1]-cycloaddition reaction for the synthesis of diversely functionalized 3-alkylamino-2-alkyl/aryl/hetero-aryl indolizine-1-carbonitriles under solvent-free conditions. New Journal of Chemistry, 2020, 44, 3241-3248.	1.4	6
634	lodine Mediated Baseâ€Controlled Regioâ€Selective Annulation of 2â€(Pyridinâ€2â€yl)acetate Derivatives with Acrylic Esters for the Synthesis of Indolizines. Advanced Synthesis and Catalysis, 2020, 362, 1333-1344.	2.1	12
635	Applications of Knoevenagel condensation reaction in the total synthesis of natural products. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2020, 151, 439-482.	0.9	48
636	Recent developments towards the synthesis of paroxetine: A 3,4-disubstituted piperidine. Tetrahedron, 2020, 76, 131215.	1.0	5
637	Biologically active indolizidine alkaloids. Medicinal Research Reviews, 2021, 41, 928-960.	5.0	46
638	Highly stereoselective dearomative [3 + 2] cycloadditon of cyclic pyridinium ylides to access spiro-indolizidine scaffolds. Organic Chemistry Frontiers, 2021, 8, 5847-5851.	2.3	5
639	Synthesis of Natural Compounds Based on the [3,7]â€Diazabicyclo[3.3.1]nonane (Bispidine) Core. European Journal of Organic Chemistry, 2021, 2021, 1491-1507.	1.2	8
640	Concise synthesis of bicyclic iminosugars via reductive functionalization of sugar-derived lactams and subsequent RCM reaction. Organic and Biomolecular Chemistry, 2021, 19, 6842-6846.	1.5	3
641	Ni-Catalyzed direct iminoalkynylation of unactivated olefins with terminal alkynes: facile access to alkyne-labelled pyrrolines. Organic Chemistry Frontiers, 2021, 8, 6522-6529.	2.3	12
642	Recent advances of chromone-based reactants in the catalytic asymmetric domino annulation reaction. Organic Chemistry Frontiers, 2021, 8, 3968-3989.	2.3	33
643	De Novo Approach to Izidines via A Gold-Catalyzed Hydroaminationâ€"N-acyliminium Ion Cyclization of Acyclic Ynamides. Heterocycles, 2021, 103, 526.	0.4	1
644	Indolizine synthesis <i>via</i> radical cyclization and demethylation of sulfoxonium ylides and 2-(pyridin-2-yl)acetate derivatives. Organic Chemistry Frontiers, 2021, 8, 4177-4182.	2.3	15

#	Article	IF	Citations
645	Double asymmetric intramolecular aza-Michael reaction: a convenient strategy for the synthesis of quinolizidine alkaloids. Organic and Biomolecular Chemistry, 2021, 19, 8740-8745.	1.5	1
646	The reaction of prop-2-ynylsulfonium salts and sulfonyl-protected \hat{I}^2 -amino ketones to epoxide-fused 2-methylenepyrrolidines and S-containing pyrroles. Chemical Communications, 2021, 57, 2657-2660.	2.2	7
647	Copper catalysis for saturated N-heterocycles via C–H functionalization. , 2021, , 363-398.		0
648	Preparation of Cu cluster catalysts by simultaneous cooling–microwave heating: application in radical cascade annulation. Nanoscale Advances, 2021, 3, 1087-1095.	2.2	4
649	Origins of ligand-controlled diastereoselectivity in dirhodium-catalysed direct amination of aliphatic C(sp ³)â€"H bonds. Catalysis Science and Technology, 2021, 11, 6960-6964.	2.1	2
650	Catalytic asymmetric umpolung reaction of imines to synthesize isoindolinones and tetrahydroisoquinolines. Green Synthesis and Catalysis, 2021, 2, 70-73.	3.7	8
651	Indolizidine Alkaloids: Prospective Lead Molecules in Medicinal Chemistry. Current Traditional Medicine, 2021, 7, 45-56.	0.1	5
652	The traditional uses, secondary metabolites, and pharmacology of Lycopodium species. Phytochemistry Reviews, 0 , 1 .	3.1	16
653	Î ² -Substituted Alkenyl Heteroarenes as Dipolarophiles in the Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides Empowered by a Dual Activation Strategy: Stereoselectivity and Mechanistic Insight. Journal of the American Chemical Society, 2021, 143, 3519-3535.	6.6	34
654	Diastereoselective and Stereodivergent Synthesis of 2â€Cinnamylpyrrolines Enabled by Photoredoxâ€Catalyzed Iminoalkenylation of Alkenes. Angewandte Chemie, 2021, 133, 9758-9765.	1.6	5
655	Rhodium-Catalyzed C–H Alkenylation/Electrocyclization Cascade Provides Dihydropyridines That Serve as Versatile Intermediates to Diverse Nitrogen Heterocycles. Accounts of Chemical Research, 2021, 54, 1766-1778.	7.6	50
656	Diastereoselective and Stereodivergent Synthesis of 2â€Cinnamylpyrrolines Enabled by Photoredoxâ€Catalyzed Iminoalkenylation of Alkenes. Angewandte Chemie - International Edition, 2021, 60, 9672-9679.	7.2	40
657	Enantioselective Construction of the Cycl $[3.2.2]$ azine Core via Organocatalytic $[12 + 2]$ Cycloadditions. Journal of the American Chemical Society, 2021, 143, 6140-6151.	6.6	24
658	Synthesis and evaluation of the anticancer activity of some semisynthetic derivatives of rutaecarpine and evodiamine. Synthetic Communications, 2021, 51, 3237-3245.	1.1	5
659	Iridium Catalysed Asymmetric Allylic Substitution Reaction of Indolizine Derivatives. Asian Journal of Organic Chemistry, 2021, 10, 1500-1507.	1.3	13
660	Bu3P-mediated acylation of (E)-7-arylidene-6,7-dihydroindolizin-8(5H)-ones with acyl chlorides. Chemistry of Heterocyclic Compounds, 2021, 57, 538-542.	0.6	0
661	Organocatalytic Enantioselective Friedelâ€Crafts Alkylation Reactions of Pyrroles. Advanced Synthesis and Catalysis, 2021, 363, 3439-3470.	2.1	30
662	Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. Chinese Chemical Letters, 2021, 32, 4029-4032.	4.8	13

#	Article	IF	CITATIONS
663	Efficient synthesis of novel indolizine C-nucleoside analogues via coupling of sugar alkynes, pyridines and \hat{l}_{\pm} -bromo carbonyl compounds in one pot. Carbohydrate Research, 2021, 505, 108337.	1.1	1
664	Stereodivergent Total Syntheses of (+)â€Monomorine I and (+)â€Indolizidine 195B. European Journal of Organic Chemistry, 2021, 2021, 3850-3853.	1.2	5
665	Chiral Indolizidine Synthesis through the Ir-Catalyzed Asymmetric Hydrogenation of Cyclic Pyridinium Salts. Journal of Organic Chemistry, 2021, 86, 10773-10781.	1.7	6
666	Acyclic Twisted Amides. Chemical Reviews, 2021, 121, 12746-12783.	23.0	107
667	Catalytic Functionalization of Metallocarbenes Derived from <i>α</i> ê€Diazocarbonyl Compounds and Their Precursors. Chemical Record, 2021, 21, 3872-3883.	2.9	12
668	Blue Light-Emitting Diode-Mediated <i>In Situ</i> Generation of Pyridinium and Isoquinolinium Ylides from Aryl Diazoesters: Their Application in the Synthesis of Diverse Dihydroindolizine. Journal of Organic Chemistry, 2021, 86, 11736-11747.	1.7	13
669	Synthesis of benzo $[f]$ pyrido $[1,2-a]$ indole-6,11-diones via the I2-promoted reactions of methyl ketones with pyridines and 1,4-naphthoquinone. Tetrahedron Letters, 2021, 77, 153235.	0.7	1
670	Silver-Promoted (4 + 1) Annulation of Isocyanoacetates with Alkylpyridinium Salts: Divergent Regioselective Synthesis of 1,2-Disubstituted Indolizines. Organic Letters, 2021, 23, 7555-7560.	2.4	14
671	Metal-Catalyzed Metathesis of Fluorinated Alkenes: Still a Current Major Challenge. ACS Catalysis, 2021, 11, 12307-12323.	5.5	7
672	[3 + 2]-Annulation of pyridinium ylides with 1-chloro-2-nitrostyrenes unveils a tubulin polymerization inhibitor. Organic and Biomolecular Chemistry, 2021, 19, 7234-7245.	1.5	13
673	Proline and proline-derived organocatalysts in the synthesis of heterocycles., 2021,, 215-251.		1
674	Recent advances in applications of Mannich reaction in total synthesis of alkaloids. , 2021, , 153-190.		0
675	Copper-catalyzed formal $[1 + 2 + 2]$ -annulation of alkyne-tethered diazoacetates and pyridines: access to polycyclic indolizines. Organic and Biomolecular Chemistry, 2020, 18, 1926-1932.	1.5	15
676	Lewis Acid Mediated Synthesis of Indolizidine Derivatives. Heterocycles, 2020, 101, 717.	0.4	1
677	Gold(I)-catalyzed Cycloisomerization of the Mixed N,S-acetals Generated from Homopropargylic Amines; Mechanistic Implication for the Formal Alkyne Prins Reaction. Bulletin of the Korean Chemical Society, 2010, 31, 1465-1466.	1.0	7
678	A New Approach toward Azabicyclic Frameworks Using Gold(I)-catalyzed Cycloisomerization of Mixed N,O-acetals of Homopropargylic Amines. Bulletin of the Korean Chemical Society, 2011, 32, 2867-2868.	1.0	5
679	An acyltransferase-like gene obtained by differential gene expression profiles of quinolizidine alkaloid-producing and nonproducing cultivars of Lupinus angustifolius. Plant Biotechnology, 2011, 28, 89-94.	0.5	25
680	Synthesis and analgesic activity of $1-[(1,2,3-\text{triazol-}1-\text{yl})\text{methyl}]$ quinolizines based on the alkaloid lupinine. Chemistry of Heterocyclic Compounds, 2021, 57, 911-919.	0.6	6

#	Article	IF	CITATIONS
681	Silver/ThioClickFerrophos-Catalyzed 1,3-Dipolar Cycloaddition and Tandem Addition–Elimination Reaction of Morita–Baylis–Hillman Adducts. Journal of Organic Chemistry, 2021, 86, 14586-14596.	1.7	10
682	Copper(I)-Catalyzed Regio- and Enantioselective Borylation of 1,2-Dihydropyridines. Springer Theses, 2017, , 179-207.	0.0	0
683	Piperidine and Azetidine Formation by Direct Cyclization of Diols with N-Nonsubstituted Sulfonamide under the Mitsunobu Conditions Utilizing (Cyanomethylene)tributylphosphorane (CMBP) and Its Application to the Synthesis of Lupinine. Heterocycles, 2019, 98, 1525.	0.4	1
684	Clarification of Swainsonine Biosynthesis by a Multi-Branched Pathway and Non-Accumulation of Mycotoxin in Plants after Fungal Colonization. SSRN Electronic Journal, 0, , .	0.4	0
685	Diverse Cancer Therapeutic Interactions: Complexities in Cancer Management. , 2020, , 47-66.		1
686	Ag(I)/sec-Amine-Amidphos-Catalyzed endo-Stereoselective Synthesis of Fully Substituted Pyrrolidines via 1,3-Dipolar Cycloaddition Based on Azomethine Ylides. Heterocycles, 2020, 100, 585.	0.4	1
688	Cascade carbopalladation-annulation approach toward polycylic derivatives of indole and indolizine. Arkivoc, 2010, 2011, 76-91.	0.3	0
689	Biosynthesis of cyclopropane in natural products. Natural Product Reports, 2022, 39, 926-945.	5.2	30
690	Synthesis of Pyrrolidine―and γâ€Lactamâ€Containing Natural Products and Related Compounds from Pyrrole Scaffolds. Chemical Record, 2022, 22, .	2.9	10
691	Synthesis of bioactive fluoropyrrolidines <i>via</i> copper(<scp>i</scp>)-catalysed asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chemical Science, 2022, 13, 1398-1407.	3.7	12
692	Chiral 1,2-Diaminocyclohexane-α-Amino Acid-Derived Amidphos/Ag(I)-Catalyzed Divergent Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides. Heterocycles, 2022, 104, 123.	0.4	36
693	Samarium Diiodide Promoted the Addition-Ring-Opening Reaction of 2-Piperidinone with \hat{l}_{\pm},\hat{l}^2 -Unsaturated Esters. Chinese Journal of Organic Chemistry, 2021, 41, 4320.	0.6	1
694	BrÃ, nsted acid-enhanced copper-catalyzed atroposelective cycloisomerization to axially chiral arylquinolizones via dearomatization of pyridine. Nature Communications, 2022, 13, 373.	5.8	9
695	Synthesis of pyrimidine-containing alkaloids. The Alkaloids Chemistry and Biology, 2022, 88, 49-367.	0.8	3
696	Electro-Oxidative sp ³ Câ€"H Bond Functionalization and Annulation Cascade: Synthesis of Novel Heterocyclic Substituted Indolizines. Journal of Organic Chemistry, 2022, 87, 2898-2911.	1.7	15
697	Tetrahydroxydiboron and Nickel Chloride Cocatalyzed Rapid Radical Cyclization toward Pyrrolizidine and Indolizidine Alkaloids. Journal of Organic Chemistry, 2022, 87, 3788-3793.	1.7	11
698	Diastereoselective Synthesis of Tetrahydrofurano [2,3-g] indolizidine and 8-Aminoindolizidines from L-Asparagine. Synlett, 0, 0, .	1.0	2
699	Synthesis of 5-Fluoro-dihydroindolizines from Pyrrole-2-acetic Acids and Trifluoromethyl Alkenes via Dual C–F Bond Cleavage in a CF ₃ Group. Journal of Organic Chemistry, 2022, 87, 4801-4812.	1.7	19

#	Article	IF	CITATIONS
700	Novel Alkaloids from Marine Actinobacteria: Discovery and Characterization. Marine Drugs, 2022, 20, 6.	2.2	8
701	Recent progress in rare-earth metal-catalyzed sp ² and sp ³ C–H functionalization to construct C–C and C–heteroelement bonds. Organic Chemistry Frontiers, 2022, 9, 3102-3141.	2.3	20
702	Visible Lightâ€Promoted, Photocatalystâ€Free C(sp ⁾²)â^'H Bond Functionalization of Indolizines <i>via</i> EDA Complexes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
703	P ₄ O ₁₀ /TfOH mediated domino condensation–cyclization of amines with diacids: a route to indolizidine alkaloids under catalyst- and solvent-free conditions. RSC Advances, 2022, 12, 17701-17705.	1.7	4
704	Recent Advances in the Synthesis of 5â€Membered <i>N</i> à€Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect, 2022, 7, .	0.7	8
705	Entropyâ€Induced Selectivity Switch in Gold Catalysis: Fast Access to Indolo[1,2â€a]quinolines. Chemistry - A European Journal, 0, , .	1.7	11
706	Acid-promoted intra- and intermolecular [2+2] cycloaddition of indoles to aryl alkynes to access cyclobutene-fused indolines. Chemical Communications, 2022, 58, 9270-9273.	2.2	1
707	Modified Julia Olefination on Pyrrolidinone: Application to the Total Synthesis of Indolizidine 209D. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
708	Diastereoselective and <i>E/Z</i> -Selective Synthesis of Functionalized Quinolizine Scaffolds via the Dearomative Annulation of 2-Pyridylacetates with Nitroenynes. Journal of Organic Chemistry, 2022, 87, 9507-9517.	1.7	2
709	Total Synthesis of Bipolamine I. Journal of the American Chemical Society, 2022, 144, 12638-12641.	6.6	3
710	Recent developments in the synthesis of polyhydroxylated indolizidines. European Journal of Organic Chemistry, $0, , .$	1.2	1
711	Generation and [2,3]-Sigmatropic Rearrangement of Ammonium Ylides from Cyclopropyl Ketones for Chiral Indolizidines with Bridgehead Quaternary Stereocenters. Organic Letters, 2022, 24, 6957-6961.	2.4	3
712	The biological activities of quinolizidine alkaloids. The Alkaloids Chemistry and Biology, 2022, , .	0.8	2
713	Visible-light photocatalytic radical addition–translocation–cyclization to construct sulfonyl-containing azacycles. Chemical Communications, 2022, 58, 10206-10209.	2.2	1
714	Recent Advances in Transitionâ€Metal atalyzed Câ^'H Functionalization of Ferrocene Amides. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
715	Enantioselective Synthesis of Functionalized Tetrahydropyridines through Iridium-Catalyzed Formal [5+1] Annulation. Organic Letters, 2022, 24, 6945-6950.	2.4	1
716	I ₂ -Promoted In Situ Cyclization–Rethiolation Reaction: Synthesis of 2-Aliphatic- or Aromatic-Substituted Indolizines. Journal of Organic Chemistry, 2022, 87, 15197-15209.	1.7	10
717	AgOTf/Et ₃ N Cooperative Catalysis Enabled Oneâ€Pot Access to αâ€(Indolizinylethyl)â€Substituted Nâ€Sulfonyl Ketimines via an Iminoâ€Alkyne Cyclization. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4

#	ARTICLE	IF	CITATIONS
718	Combinatorial biosynthesis yields novel hybrid argimycin P alkaloids with diverse scaffolds in <i>Streptomyces argillaceus</i> . Microbial Biotechnology, 2022, 15, 2905-2916.	2.0	3
719	Remotely controlled flow photo-Fries-type rearrangement of $\langle i \rangle N \langle i \rangle$ -vinylazetidinones: an efficient route to structurally diverse 2,3-dihydro-4-pyridones. Reaction Chemistry and Engineering, 0, , .	1.9	O
720	Diastereoselective Radical Aminoacylation of Olefins through N-Heterocyclic Carbene Catalysis. Journal of the American Chemical Society, 2022, 144, 22767-22777.	6.6	33
721	Nickel-Catalyzed Formation of \hat{l}_{\pm} -Substituted \hat{l}_{\pm} -Amino Ketones via Alkene Carboacylation. Organic Letters, 2022, 24, 8959-8963.	2.4	2
722	Enantioselective transformations of 5-hydroxymethylfurfural <i>via</i> catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chemical Communications, 2023, 59, 4336-4339.	2.2	3
723	Metal/catalyst/alkyne/ <scp>alkeneâ€free oneâ€pot</scp> synthesis of indolizines from 2â€(pyridinâ€⊋â€yl)acetate, <scp>DMFâ€DMA</scp> and <scp>αâ€halomethylenes</scp> . Journal of Heterocycle Chemistry, 2023, 60, 825-833.	ia.4	2
724	A facile and robust approach for synthesis and structural characterization of an unprecedented ring system of 4H-pyrazolo[3,4-f]indolizine-4,9(2H)-dione derivatives. Tetrahedron, 2023, 134, 133303.	1.0	4
725	Visible-Light-Induced Regio-selective Oxidative Coupling of Quinoxalinones with Pyrrole Derivatives. Chinese Journal of Organic Chemistry, 2023, 43, 697.	0.6	2
726	Catalyst-Free α-Allylation of Dihydroisoquinolines with Morita–Baylis–Hillman Carbonates and Its Applications in the Construction of Benzo[<i>a</i>]quinolizidines. Journal of Organic Chemistry, 2023, 88, 3636-3649.	1.7	0
727	Stereoselective Synthesis of 1-Substituted Homotropanones, including Natural Alkaloid (â^')-Adaline. Molecules, 2023, 28, 2414.	1.7	1
728	Accessing secondary amine containing fine chemicals and polymers with an earth-abundant hydroaminoalkylation catalyst. Green Chemistry, 2023, 25, 2629-2639.	4.6	3
729	Rhodium-catalyzed double hydroboration of pyridine: the origin of the chemo- and regioselectivities. Catalysis Science and Technology, 2023, 13, 2735-2747.	2.1	3
730	Cascade Oxidative Trifluoromethylthiolation and Cyclization of 3-Alkyl-1-(2-(alkynyl)phenyl)indoles. Journal of Organic Chemistry, 2023, 88, 5403-5419.	1.7	3
731	Renewable ultrathin carbon nitride nanosheets and its practical utilization for photocatalytic decarboxylation free radical coupling reaction. Chemical Engineering Journal, 2023, 466, 142990.	6.6	6
759	Synthesis of indolizines and azaindoles. , 2024, , 145-170.		0