Supported gold nanoparticles as catalysts for organic re

Chemical Society Reviews 37, 2096 DOI: 10.1039/b707314n

Citation Report

#	Article	IF	CITATIONS
2	Aerobic Oxidation of Alcohols over Gold Catalysts: Role of Acid and Base. Catalysis Letters, 2008, 126, 213-217.	2.6	87
4	Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. Journal of Catalysis, 2008, 260, 384-386.	6.2	256
5	Gold—an introductory perspective. Chemical Society Reviews, 2008, 37, 1759.	38.1	384
6	Photochemical Strategies for the Synthesis of Gold Nanoparticles from Au(III) and Au(I) Using Photoinduced Free Radical Generation. Journal of the American Chemical Society, 2008, 130, 16572-16584.	13.7	162
7	Ceria-zirconia supported gold catalysts. Annales Universitatis Mariae Curie-Sklodowska Sectio AA – Chemia, 2009, 64, .	0.2	3
8	Heterogeneous Au and Rh catalysts for cycloisomerization reactions of Î ³ -acetylenic carboxylic acids. Pure and Applied Chemistry, 2009, 81, 2387-2396.	1.9	17
9	Activation of dimethyl gold complexes on MgO for CO oxidation: Removal of methyl ligands and formation of catalytically active gold clusters. Journal of Catalysis, 2009, 263, 83-91.	6.2	25
10	Highly active and selective gold catalysts for the aerobic oxidative condensation of benzylamines to imines and one-pot, two-step synthesis of secondary benzylamines. Journal of Catalysis, 2009, 264, 138-144.	6.2	185
11	Effect of pretreatment atmosphere on CO oxidation over α-Mn2O3 supported gold catalysts. Journal of Catalysis, 2009, 264, 145-153.	6.2	65
12	Biomass into chemicals: One pot-base free oxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate with gold on nanoparticulated ceria. Journal of Catalysis, 2009, 265, 109-116.	6.2	234
13	Solvated gold atoms in the preparation of efficient supported catalysts: Correlation between morphological features and catalytic activity in the hydrosilylation of 1-hexyne. Journal of Catalysis, 2009, 266, 250-257.	6.2	40
14	Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria. Journal of Catalysis, 2009, 266, 320-330.	6.2	115
15	Gold nanoparticles supported on ceria promote the selective oxidation of oximes into the corresponding carbonylic compounds. Journal of Catalysis, 2009, 268, 350-355.	6.2	45
16	Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis and Catalysis, 2009, 351, 2876-2886.	4.3	61
17	Semiconductorâ€Gold Nanocomposite Catalysts for the Efficient Threeâ€Component Coupling of Aldehyde, Amine and Alkyne in Water. Advanced Synthesis and Catalysis, 2009, 351, 2887-2896.	4.3	55
19	Direct Dehydrogenative Amide Synthesis from Alcohols and Amines Catalyzed by γâ€Alumina Supported Silver Cluster. Chemistry - A European Journal, 2009, 15, 9977-9980.	3.3	190
20	Liposomes by Polymerization of an Imidazolium Ionic Liquid: Use as Microreactors for Gold atalyzed Alcohol Oxidation. Chemistry - A European Journal, 2009, 15, 13082-13089.	3.3	25
21	Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution?. ChemSusChem, 2009, 2, 508-534.	6.8	485

#	Article	IF	CITATIONS
22	Biomass into Chemicals: Aerobic Oxidation of 5â€Hydroxymethylâ€2â€furfural into 2,5â€Furandicarboxylic Acid with Gold Nanoparticle Catalysts. ChemSusChem, 2009, 2, 1138-1144.	6.8	458
23	Perfluoroâ€Tagged Gold Nanoparticles Immobilized on Fluorous Silica Gel: A Reusable Catalyst for the Benign Oxidation and Oxidative Esterification of Alcohols. ChemSusChem, 2009, 2, 1036-1040.	6.8	23
25	Selective Isomerization of Epoxides to Allylic Alcohols Catalyzed by TiO ₂ ‣upported Gold Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 3133-3136.	13.8	92
26	Direct CC Crossâ€Coupling of Secondary and Primary Alcohols Catalyzed by a γâ€Aluminaâ€Supported Silver Subnanocluster. Angewandte Chemie - International Edition, 2009, 48, 3982-3986.	13.8	163
27	Performance of Gold Nanoparticles Supported on Carbon Nanotubes for Selective Oxidation of Cyclooctene with Use of O2 and TBHP. Catalysis Letters, 2009, 133, 33-40.	2.6	36
28	Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Research, 2009, 2, 975-983.	10.4	66
29	Influence of the exchange–correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles. Theoretical Chemistry Accounts, 2009, 123, 119-126.	1.4	47
30	PNIPAMâ€ <i>b</i> â€(PEAâ€ <i>g</i> â€PDMAEA) doubleâ€hydrophilic graft copolymer: Synthesis and its applicati for preparation of gold nanoparticles in aqueous media. Journal of Polymer Science Part A, 2009, 47, 1811-1824.	on 2.3	121
31	Epoxidation of styrene over gold nanoparticles supported on organic–inorganic hybrid mesoporous silicas with aqueous hydrogen peroxide. Microporous and Mesoporous Materials, 2009, 126, 159-165.	4.4	33
32	Size-controllable gold nanoparticles stabilized by PDEAEMA-based double hydrophilic graft copolymer. Polymer, 2009, 50, 3990-3996.	3.8	38
33	Sequential gold-catalyzed reactions of 1-phenylprop-2-yn-1-ol with 1,3-dicarbonyl compounds. Journal of Organometallic Chemistry, 2009, 694, 576-582.	1.8	33
34	Aerobic oxidation of glucose and 1-phenylethanol over gold nanoparticles directly deposited on ion-exchange resins. Applied Catalysis A: General, 2009, 353, 243-248.	4.3	42
35	Au–Pd/AC as catalysts for alcohol oxidation: Effect of reaction parameters on catalytic activity and selectivity. Applied Catalysis A: General, 2009, 364, 221-228.	4.3	149
36	Application of copper–gold alloys in catalysis: current status and future perspectives. Chemical Society Reviews, 2009, 38, 2231.	38.1	313
37	γâ€Alumina‧upported Silver Cluster for <i>N</i> â€Benzylation of Anilines with Alcohols. ChemCatChem, 2009, 1, 497-503.	3.7	132
38	Imaging Gold Atoms in Site-Isolated MgO-Supported Mononuclear Gold Complexes. Journal of Physical Chemistry C, 2009, 113, 16847-16849.	3.1	26
39	Gold Complexes with the Selenolate Ligand [2-(Me ₂ NCH ₂)C ₆ H ₄ Se] ^{â^'} . Inorganic Chemistry, 2009, 48, 4134-4142.	4.0	31
40	Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Physical Chemistry Chemical Physics, 2009, 11, 3805.	2.8	756

		REPORT	
#	ARTICLE Effect of Electronic Structures of Au Clusters Stabilized by Poly(<i>N</i> -vinyl-2-pyrrolidone) on	IF 13.7	CITATIONS
42	Aerobic Oxidation Catalysis. Journal of the American Chemical Society, 2009, 131, 7086-7093. Spin Trapping of Auâ^'H Intermediate in the Alcohol Oxidation by Supported and Unsupported Gold Catalysts. Journal of the American Chemical Society, 2009, 131, 7189-7196.	13.7	234
43	Selective formation of lactate by oxidation of 1,2-propanediol using gold palladium alloy supported nanocrystals. Green Chemistry, 2009, 11, 1209.	9.0	97
44	Time-tunable autocatalytic lucigenin chemiluminescence initiated by platinum nanoparticles and ethanol. Chemical Communications, 2009, , 2574.	4.1	34
45	Gold nanoparticles promote the catalytic activity of ceria for the transalkylation of propylene carbonate to dimethyl carbonate. Green Chemistry, 2009, 11, 949.	9.0	70
46	Metal nanoparticles or metal oxide nanoparticles, an efficient and promising family of novel heterogeneous catalysts in organic synthesis. Dalton Transactions, 2009, , 9363.	3.3	73
47	Preparation of â^¼1 nm Gold Clusters Confined within Mesoporous Silica and Microwave-Assisted Catalytic Application for Alcohol Oxidation. Journal of Physical Chemistry C, 2009, 113, 13457-13461.	3.1	136
48	Electrochemical reduction of oxygen on nanoparticulate gold electrodeposited on a molecular template. Physical Chemistry Chemical Physics, 2009, 11, 3463.	2.8	37
49	Photochemical Strategies for the Facile Synthesis of Goldâ ´´Silver Alloy and Coreâ ´`Shell Bimetallic Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 11861-11867.	3.1	143
50	In situ preparation of network forming gold nanoparticles in agarose hydrogels. Chemical Communications, 2009, , 6661.	4.1	22
51	Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst. Carbon, 2009, 47, 1146-1151.	10.3	76
52	Chemoselective Hydrogenation of Nitroaromatics by Supported Gold Catalysts: Mechanistic Reasons of Size- and Support-Dependent Activity and Selectivity. Journal of Physical Chemistry C, 2009, 113, 17803-17810.	3.1	202
53	AuBr3-Catalyzed Thiooxime-to-Carbonyl Conversion: From Chiral Aliphatic Nitro Compounds to Ketones without Racemization. Organic Letters, 2009, 11, 4414-4417.	4.6	14
54	Metalâ^'Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2010, 114, 13362-13369.	3.1	292
55	"Doubleâ€Peak―Catalytic Activity of Nanosized Gold Supported on Titania in Gasâ€Phase Selective Oxidation of Ethanol. ChemCatChem, 2010, 2, 1535-1538.	3.7	53
56	Photoswitchable Catalysis Mediated by Dynamic Aggregation of Nanoparticles. Journal of the American Chemical Society, 2010, 132, 11018-11020.	13.7	208
57	Long-Lived Charge Separation in Gold Nanoparticles Encapsulated inside Cucurbit[7]uril and Its Relevance for Photocatalysis. Journal of Physical Chemistry C, 2010, 114, 18847-18852.	3.1	14
58	Odd–even oscillations in structural and optical properties of gold clusters. Computational and Theoretical Chemistry, 2010, 945, 93-96.	1.5	36

#	Article	IF	CITATIONS
59	Silver nanoparticle-based chemiluminescence enhancement for the determination of norfloxacin. Mikrochimica Acta, 2010, 171, 17-22.	5.0	35
60	Comparison of the Catalytic Activity of Gold Nanoparticles Supported in Ceria and Incarcerated in Styrene Copolymer. Catalysis Letters, 2010, 134, 204-209.	2.6	27
61	Influence of Preparation Methods on the Performance of Metal Phosphate-Supported Gold Catalysts in CO Oxidation. Catalysis Letters, 2010, 138, 40-45.	2.6	16
62	Aerobic oxidation of cyclohexane by gold-based catalysts: New mechanistic insight by thorough product analysis. Journal of Catalysis, 2010, 270, 16-25.	6.2	156
63	Size- and support-dependent silver cluster catalysis for chemoselective hydrogenation of nitroaromatics. Journal of Catalysis, 2010, 270, 86-94.	6.2	200
64	Au on MgAl2O4 spinels: The effect of support surface properties in glycerol oxidation. Journal of Catalysis, 2010, 275, 108-116.	6.2	100
65	A Green and Highly Selective Oxidation of Alcohols by Fluorous Silica Gel‣upported Gold Nanoparticles in Aqueous H ₂ O ₂ under Baseâ€Free Conditions. ChemSusChem, 2010, 3, 1280-1284.	6.8	17
66	Mesoporous Nickel–Aluminum Mixed Oxide: A Promising Catalyst in Hydrideâ€Transfer Reactions. European Journal of Inorganic Chemistry, 2010, 2010, 5129-5134.	2.0	21
67	Waterâ€Soluble Palladium Nanoparticles: Click Synthesis and Applications as a Recyclable Catalyst in Suzuki Crossâ€Couplings in Aqueous Media. European Journal of Organic Chemistry, 2010, 2010, 5090-5099.	2.4	55
68	Thiolateâ€Protected Au _{<i>n</i>} Nanoclusters as Catalysts for Selective Oxidation and Hydrogenation Processes. Advanced Materials, 2010, 22, 1915-1920.	21.0	228
69	Redoxâ€Active Catalyst Based on Poly(Anilinesulfonic Acid)―Supported Gold Nanoparticles for Aerobic Alcohol Oxidation in Water. Advanced Synthesis and Catalysis, 2010, 352, 2177-2182.	4.3	40
70	An Atomic‣evel Strategy for Unraveling Gold Nanocatalysis from the Perspective of Au _{<i>n</i>} (SR) _{<i>m</i>} Nanoclusters. Chemistry - A European Journal, 2010, 16, 11455-11462.	3.3	146
75	Gold atalyzed Phosgeneâ€Free Synthesis of Polyurethane Precursors. Angewandte Chemie - International Edition, 2010, 49, 1286-1290.	13.8	62
76	Highly Selective Acylation of Dimethylamine Mediated by Oxygen Atoms on Metallic Gold Surfaces. Angewandte Chemie - International Edition, 2010, 49, 394-398.	13.8	69
77	Gold on Diamond Nanoparticles as a Highly Efficient Fenton Catalyst. Angewandte Chemie - International Edition, 2010, 49, 8403-8407.	13.8	175
78	Nanostructured Materials as Catalysts: Nanoporousâ€Goldâ€Catalyzed Oxidation of Organosilanes with Water. Angewandte Chemie - International Edition, 2010, 49, 10093-10095.	13.8	215
79	Evidence for and mitigation of the encapsulation of gold nanoparticles within silica supports upon high-temperature treatment of Au/SiO2 catalysts: Implication to catalyst deactivation. Applied Catalysis A: General, 2010, 386, 147-156.	4.3	32
80	Gold-catalyzed oxidation of substituted phenols by hydrogen peroxide. Applied Catalysis A: General, 2010, 387, 129-134.	4.3	27

#	Article	IF	CITATIONS
81	Au/ZrO2 catalysts for LT-WGSR: Active role of sulfates during gold deposition. Applied Catalysis B: Environmental, 2010, 96, 28-33.	20.2	25
82	Au NPs on anionic-exchange resin as catalyst for polyols oxidation in batch and fixed bed reactor. Applied Catalysis B: Environmental, 2010, 96, 541-547.	20.2	42
83	Synthesis and use of self-assembled rhamnolipid microtubules as templates for gold nanoparticles assembly to form gold microstructures. Journal of Colloid and Interface Science, 2010, 347, 332-335.	9.4	23
84	Selective hydrogenation of citral over gold nanoparticles on alumina. Powder Technology, 2010, 203, 412-414.	4.2	11
85	Ligand-promoted reaction on silver nanoparticles: phosphine-promoted, silver nanoparticle-catalyzed cyclization of 2-(1-hydroxy-3-arylprop-2-ynyl)phenols. Tetrahedron Letters, 2010, 51, 6722-6725.	1.4	38
86	Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Applied Catalysis B: Environmental, 2010, 99, 191-197.	20.2	110
87	Gold clusters supported on La(OH)3 for CO oxidation at 193K. Chemical Physics Letters, 2010, 493, 207-211.	2.6	37
88	Solvent-Free Oxidation of Alcohols Catalyzed by a Mn(III) Schiff-Base Complex Using Hydrogen Peroxide as an Oxidant. Chinese Journal of Catalysis, 2010, 31, 615-618.	14.0	9
89	Thermal and pHâ€sensitive gold nanoparticles from Hâ€shaped block copolymers of (PNIPAM/PDMAEMA)â€ <i>b</i> â€₽EGâ€ <i>b</i> â€{PNIPAM/PDMAEMA). Journal of Polymer Science Part A, 2010 5018-5029.), 483,	42
90	A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nature Chemistry, 2010, 2, 1062-1068.	13.6	103
91	Access granted. Nature Chemistry, 2010, 2, 1005-1006.	13.6	10
92	Detection by failure. Nature Chemistry, 2010, 2, 1006-1007.	13.6	1
93	Preparation of symmetric and asymmetric aromatic azo compounds from aromatic amines or nitro compounds using supported gold catalysts. Nature Protocols, 2010, 5, 429-438.	12.0	77
94	Degradation Mitigation in PEM Fuel Cells Using Metal Nanoparticle and Metal Oxide Additives. ACS Symposium Series, 2010, , 187-207.	0.5	6
95	Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis. Science, 2010, 330, 74-78.	12.6	888
96	Solvent-free microwave-assisted peroxidative oxidation of secondary alcohols to the corresponding ketones catalyzed by copper(ii) 2,4-alkoxy-1,3,5-triazapentadienato complexes. Chemical Communications, 2010, 46, 2766.	4.1	74
97	Cellular Uptake of Densely Packed Polymer Coatings on Gold Nanoparticles. ACS Nano, 2010, 4, 403-413.	14.6	171
98	Control of the catalytic properties and directed assembly on surfaces of MADIX/RAFT polymer-coated gold nanonarticles by tuning polymeric shell charge, Journal of Materials Chemistry, 2010, 20, 9433	6.7	37

#	Article	IF	CITATIONS
99	Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 2010, 46, 6476.	4.1	142
100	Inorganic–Organic Hybrid Nanoparticles for Medical Applications. Advanced Structured Materials, 2010, , 85-133.	0.5	0
101	Nanoparticle-nanotube electrostatic interactions in solution: the effect of pH and ionic strength. Physical Chemistry Chemical Physics, 2010, 12, 10775.	2.8	28
102	Remarkable Effect of Bimetallic Nanocluster Catalysts for Aerobic Oxidation of Alcohols: Combining Metals Changes the Activities and the Reaction Pathways to Aldehydes/Carboxylic Acids or Esters. Journal of the American Chemical Society, 2010, 132, 15096-15098.	13.7	156
103	Liquid injection atomic layer deposition of silver nanoparticles. Nanotechnology, 2010, 21, 405602.	2.6	50
104	Aerobic oxidative esterification of alcohols catalyzed by polymer-incarcerated gold nanoclusters under ambient conditions. Green Chemistry, 2010, 12, 776.	9.0	133
105	A DNA-templated catalyst: the preparation of metal-DNA nanohybrids and their application in organic reactions. Chemical Communications, 2010, 46, 7912.	4.1	47
106	Formal Lewis acidic character of gold nanocluster catalyst. Pure and Applied Chemistry, 2010, 82, 2005-2016.	1.9	17
107	Diazirine-Modified Gold Nanoparticle: Template for Efficient Photoinduced Interfacial Carbene Insertion Reactions. Langmuir, 2010, 26, 14958-14964.	3.5	28
108	Enhanced Oxygen Activation over Supported Bimetallic Auâ	3.1	61
109	Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles. ACS Nano, 2010, 4, 7451-7458.	14.6	534
110	On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1405-1453.	3.4	230
111	Synthesis, Reactivity, and Electrochemical Studies of Gold(I) and Gold(III) Complexes Supported by <i>N</i> -Heterocyclic Carbenes and Their Application in Catalysis. Organometallics, 2010, 29, 4448-4458.	2.3	149
112	Au Nanoparticles Supported on a Layered Double Hydroxide with Excellent Catalytic Properties for the Aerobic Oxidation of Alcohols. Chinese Journal of Catalysis, 2010, 31, 943-947.	14.0	23
113	Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology, 2010, 4, 120-137.	3.0	330
114	Aminoclay: a permselective matrix to stabilize copper nanoparticles. Chemical Communications, 2010, 46, 616-618.	4.1	87
115	Green Gold Catalysis. Science, 2010, 327, 278-279.	12.6	85
116	Formation of imines by selective gold-catalysed aerobic oxidative coupling of alcohols and amines under ambient conditions. Green Chemistry, 2010, 12, 1437.	9.0	123

#	Article	IF	CITATIONS
117	Electrochemical Size Discrimination of Gold Nanoparticles Attached to Glass/Indiumâ^'Tin-Oxide Electrodes by Oxidation in Bromide-Containing Electrolyte. Analytical Chemistry, 2010, 82, 5844-5850.	6.5	102
118	"Naked―Gold Nanoparticles: Synthesis, Characterization, Catalytic Hydrogen Evolution, and SERS. Journal of Physical Chemistry C, 2010, 114, 14811-14818.	3.1	42
119	Heterolytic and heterotopic dissociation of hydrogen on ceria-supported gold nanoparticles. Combined inelastic neutron scattering and FT-IR spectroscopic study on the nature and reactivity of surface hydrogen species. Chemical Science, 2010, 1, 731.	7.4	99
120	Nano-Jewels in Biology. Gold and Platinum on Diamond Nanoparticles as Antioxidant Systems Against Cellular Oxidative Stress. ACS Nano, 2010, 4, 6957-6965.	14.6	73
121	Pyrrolidone-modified SBA-15 supported Au nanoparticles with superior catalytic properties in aerobic oxidation of alcohols. Chemical Communications, 2010, 46, 5003.	4.1	57
122	Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials. Journal of Materials Chemistry, 2010, 20, 6780.	6.7	19
123	Degradation mitigation in PEM fuel cells using metal nanoparticle additives. Journal of Materials Chemistry, 2011, 21, 19381.	6.7	37
124	Opportunistic use of tetrachloroaurate photolysis in the generation of reductive species for the production of gold nanostructures. Physical Chemistry Chemical Physics, 2011, 13, 11914.	2.8	36
125	Synthesis of Pt@Fe2O3 nanorods as MRI probes for in vivo application. Chemical Communications, 2011, 47, 6320.	4.1	21
126	Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols. Green Chemistry, 2011, 13, 55-58.	9.0	48
127	Microstructured Au/Ni-fiber catalyst for low-temperature gas-phase selective oxidation of alcohols. Chemical Communications, 2011, 47, 9642.	4.1	60
128	An excellent Au/meso- \hat{I}^3 -Al2O3 catalyst for the aerobic selective oxidation of alcohols. Green Chemistry, 2011, 13, 3088.	9.0	33
129	Oxidative Cycloaddition of 1,1,3,3-Tetramethyldisiloxane to Alkynes Catalyzed by Supported Gold Nanoparticles. Journal of the American Chemical Society, 2011, 133, 10426-10429.	13.7	58
130	Colloidal Supported Metal Nanoparticles (CSMNs) as Effective Nanocatalysts for Liquid-Phase Suzuki Cross-Coupling Reactions. Journal of Physical Chemistry C, 2011, 115, 12716-12725.	3.1	22
131	Crystal-Face-Selective Supporting of Gold Nanoparticles on Layered Double Hydroxide as Efficient Catalyst for Epoxidation of Styrene. ACS Catalysis, 2011, 1, 232-237.	11.2	122
132	Transition Metal Catalyzed Cycloisomerizations of 1, <i>n</i> Allenynes and Allenenes. Chemical Reviews, 2011, 111, 1954-1993.	47.7	584
133	Mechano-Catalysis: Cyclohexane Oxidation in a Silver Nanowire Break Junction. Journal of Physical Chemistry C, 2011, 115, 8295-8299.	3.1	8
134	In-Situ Loading Ultrafine AuPd Particles on Ceria: Highly Active Catalyst for Solvent-Free Selective Oxidation of Benzyl Alcohol. Langmuir, 2011, 27, 1152-1157.	3.5	49

#	Article	IF	CITATIONS
135	Water-Medium and Solvent-Free Organic Reactions over a Bifunctional Catalyst with Au Nanoparticles Covalently Bonded to HS/SO ₃ H Functionalized Periodic Mesoporous Organosilica. Journal of the American Chemical Society, 2011, 133, 11632-11640.	13.7	159
136	Oxidation of benzylic compounds by gold nanowires at 1 atm O ₂ . Chemical Communications, 2011, 47, 1303-1305.	4.1	39
137	Titania supported gold nanoparticles as photocatalyst. Physical Chemistry Chemical Physics, 2011, 13, 886-910.	2.8	652
138	Catalytic Activity of Faceted Gold Nanoparticles Studied by a Model Reaction: Evidence for Substrate-Induced Surface Restructuring. ACS Catalysis, 2011, 1, 908-916.	11.2	504
139	Conversions of Cyclic Amines to Nylon Precursor Lactams Using Bulk Gold and Fumed Silica Catalysts. ACS Catalysis, 2011, 1, 703-708.	11.2	35
140	Reduction of resazurin to resorufin catalyzed by gold nanoparticles: dramatic reaction acceleration by laser or LED plasmon excitation. Catalysis Science and Technology, 2011, 1, 1506.	4.1	37
141	Effect of size of catalytically active phases in the dehydrogenation of alcohols and the challenging selective oxidation of hydrocarbons. Chemical Communications, 2011, 47, 9275.	4.1	96
142	Inhibition of gold and platinum catalysts by reactive intermediates produced in the selective oxidation of alcohols in liquid water. Green Chemistry, 2011, 13, 3484.	9.0	75
143	Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chemical Science, 2011, 2, 891.	7.4	81
144	Facile preparation of SERS-active nanogap-rich Au nanoleaves. Chemical Communications, 2011, 47, 6963.	4.1	16
145	Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metalâ^'Organic Frameworks Assisted by TEMPO. ACS Catalysis, 2011, 1, 48-53.	11.2	229
146	Origin and Activity of Gold Nanoparticles as Aerobic Oxidation Catalysts in Aqueous Solution. Journal of the American Chemical Society, 2011, 133, 9938-9947.	13.7	206
147	Co3O4 nanoparticles-enhanced luminol chemiluminescence and its application in H2O2 and glucose detection. Analytical Methods, 2011, 3, 1149.	2.7	47
148	Anion binding by metallo-receptors of 5,5′-dicarbamate-2,2′-bipyridine ligands. Dalton Transactions, 2011, 40, 5687.	3.3	15
149	Aerobic oxidation of alcohols over hydrotalcite-supported gold nanoparticles: the promotional effect of transition metal cations. Chemical Communications, 2011, 47, 11540.	4.1	90
150	Molecular interactions and structure of a supramolecular arrangement of glucose oxidase and palladium nanoparticles. Physical Chemistry Chemical Physics, 2011, 13, 12155.	2.8	17
151	Catalysis opportunities of atomically precise gold nanoclusters. Journal of Materials Chemistry, 2011, 21, 6793.	6.7	188
152	pH-Sensitive Gold Nanoparticle Catalysts for the Aerobic Oxidation of Alcohols. Inorganic Chemistry, 2011, 50, 11069-11074.	4.0	67

#	Article	IF	CITATIONS
153	Metal Nanoparticles in Microbiology. , 2011, , .		81
154	Synthesis of patterned nanogold and mesoporous CoFe2O4 nanoparticle assemblies and their application in clinical immunoassays. Nanoscale, 2011, 3, 2220.	5.6	35
155	Cold and Silver Complexes with Thiotriazoles and Thiotetrazoles. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 389-403.	1.6	7
156	Gold nanoparticles supported on TiO ₂ catalyse the cycloisomerisation/oxidative dimerisation of aryl propargyl ethers. Chemical Communications, 2011, 47, 803-805.	4.1	85
157	Yolkâ^'Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres. ACS Catalysis, 2011, 1, 207-211.	11.2	195
158	Selective reduction of 4,4′-dinitrostilbene-2,2′-disulfonic acid catalyzed by supported nano-sized gold with sodium formate as hydrogen source. Catalysis Communications, 2011, 12, 568-572.	3.3	10
159	Applications of Gold Nanoparticles: Current Trends and Future Prospects. , 2011, , 225-248.		5
160	Microbial Synthesis of Metal Nanoparticles. , 2011, , 153-175.		14
161	Simple one-pot synthesis of Rh–Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes. Chemical Communications, 2011, 47, 3601.	4.1	112
162	Enhancement of the Catalytic Activity of Supported Gold Nanoparticles for the Fenton Reaction by Light. Journal of the American Chemical Society, 2011, 133, 2218-2226.	13.7	235
163	A palladium chelating complex of ionic water-soluble nitrogen-containing ligand: the efficient precatalyst for Suzuki–Miyaura reaction in water. Green Chemistry, 2011, 13, 2100.	9.0	106
164	Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions. Catalysis Science and Technology, 2011, 1, 331.	4.1	92
165	Design of Novel Structured Gold Nanocatalysts. ACS Catalysis, 2011, 1, 805-818.	11.2	131
166	Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO ₂ Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 2011, 133, 6930-6933.	13.7	428
167	Atomically Monodisperse Gold Nanoclusters Catalysts with Precise Core-Shell Structure. Catalysts, 2011, 1, 3-17.	3.5	40
168	Aerobic Oxidation of Amines Catalyzed by Polymer-Incarcerated Au Nanoclusters: Effect of Cluster Size and Cooperative Functional Groups in the Polymer. Bulletin of the Chemical Society of Japan, 2011, 84, 588-599.	3.2	58
169	Silver Cluster Catalysts for Green Organic Synthesis. Journal of the Japan Petroleum Institute, 2011, 54, 347-360.	0.6	31
170	Aerobic Oxidation of Alcohols and Direct Oxidative Ester Formation Catalyzed by Polymer-Immobilized Bimetallic Nanocluster Catalysts, Kobunshi Ronbunshy, 2011, 68, 493-508	0.2	1

#	Article	IF	CITATIONS
171	Homocoupling of arylboronic acids catalyzed by simple gold salts. Tetrahedron Letters, 2011, 52, 4779-4781.	1.4	34
172	Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime by alumina-supported gold cluster catalysts. Journal of Molecular Catalysis A, 2011, 345, 54-59.	4.8	29
173	Dry photochemical synthesis of hydrotalcite, γ-Al2O3 and TiO2 supported gold nanoparticle catalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 224, 8-15.	3.9	23
174	Superior catalytic properties in aerobic oxidation of olefins over Au nanoparticles on pyrrolidone-modified SBA-15. Journal of Catalysis, 2011, 281, 30-39.	6.2	65
175	Aerobic oxidation of monoterpenic alcohols catalyzed by ruthenium hydroxide supported on silica-coated magnetic nanoparticles. Journal of Catalysis, 2011, 282, 209-214.	6.2	64
176	Molecular approaches to catalysis. Journal of Catalysis, 2011, 284, 138-147.	6.2	61
177	Preparation of magnetic microspheres with thiol-containing polymer brushes and immobilization of gold nanoparticles in the brush layer. European Polymer Journal, 2011, 47, 1877-1884.	5.4	23
178	Superior catalytic properties in aerobic oxidation of alcohols over Au nanoparticles supported on layered double hydroxide. Catalysis Today, 2011, 175, 404-410.	4.4	35
179	Direct one-pot reductive imination of nitroarenes using aldehydes and carbon monoxide by titania supported gold nanoparticles at room temperature. Green Chemistry, 2011, 13, 2672.	9.0	53
180	Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 2011, 133, 595-602.	13.7	927
181	Aerobic Oxidations Catalyzed by Colloidal Nanogold. Chemistry - an Asian Journal, 2011, 6, 736-748.	3.3	166
182	Rateâ€Acceleration in Goldâ€Nanocluster atalyzed Aerobic Oxidative Esterification Using 1,2―and 1,3â€Diols and Their Derivatives. Chemistry - an Asian Journal, 2011, 6, 621-627.	3.3	27
183	Fe ₃ O ₄ Nanoparticles: A Conveniently Reusable Catalyst for the Reduction of Nitroarenes Using Hydrazine Hydrate. Chemistry - an Asian Journal, 2011, 6, 1921-1925.	3.3	80
184	Silicaâ€5upported Gold Nanoparticles Catalyzed Oneâ€Pot, Tandem Aerobic Oxidative Cyclization Reaction for Nitrogenâ€Containing Polyheterocyclic Compounds. ChemCatChem, 2011, 3, 386-393.	3.7	31
185	Insight into Copperâ€Based Catalysts: Microwaveâ€Assisted Morphosynthesis, Inâ€Situ Reduction Studies, and Dehydrogenation of Ethanol. ChemCatChem, 2011, 3, 839-843.	3.7	25
186	Generation of Reactive Oxygen Species on Au/TiO ₂ after Treatment with Hydrogen: Testing the Link to Ethanol Lowâ€Temperature Oxidation. ChemCatChem, 2011, 3, 1422-1425.	3.7	22
187	Galvanic Deposition of Au on Paperlike Cu Fiber for Highâ€Efficiency, Lowâ€Temperature Gasâ€Phase Oxidation of Alcohols. ChemCatChem, 2011, 3, 1629-1636.	3.7	19
188	Facile one-pot synthesis of gold nanoparticles and their sensing protocol. Chemical Communications, 2011, 47, 11987.	4.1	14

#	Article	IF	CITATIONS
189	CO bond cleavage on supported nano-gold during low temperature oxidation. Physical Chemistry Chemical Physics, 2011, 13, 2528-2538.	2.8	28
190	Metal–organic frameworks as heterogeneous catalysts for oxidation reactions. Catalysis Science and Technology, 2011, 1, 856.	4.1	281
191	Size-Controlled Synthesis of Gold Clusters as Efficient Catalysts for Aerobic Oxidation. Catalysis Surveys From Asia, 2011, 15, 230-239.	2.6	31
192	Synthesis of hydrophobic gold nanoclusters: growth mechanism study, luminescence property and catalytic application. Journal of Nanoparticle Research, 2011, 13, 1769-1780.	1.9	17
193	TEM characterization of chemically synthesized copper–gold nanoparticles. Journal of Nanoparticle Research, 2011, 13, 4229-4237.	1.9	13
194	Living fungal hyphae-templated porous gold microwires using nanoparticles as building blocks. Journal of Nanoparticle Research, 2011, 13, 6747-6754.	1.9	20
195	Cold Stabilized by Nanostructured Ceria Supports: Nature of the Active Sites and Catalytic Performance. Topics in Catalysis, 2011, 54, 424-438.	2.8	73
196	Mesostructured Au/C materials obtained by replication of functionalized SBA-15 silica containing highly dispersed gold nanoparticles. Microporous and Mesoporous Materials, 2011, 140, 89-96.	4.4	34
197	Development of novel supported gold catalysts: A materials perspective. Nano Research, 2011, 4, 3-32.	10.4	179
198	Recent advances in the heterogeneously catalysed aerobic selective oxidation of alcohols. Journal of Chemical Technology and Biotechnology, 2011, 86, 161-171.	3.2	160
204	Gold(III) Complexes Catalyze Deoximations/Transoximations at Neutral pH. Angewandte Chemie - International Edition, 2011, 50, 3275-3279.	13.8	26
205	A Yolk@Shell Nanoarchitecture for Au/TiO ₂ Catalysts. Angewandte Chemie - International Edition, 2011, 50, 10208-10211.	13.8	299
206	[Au(CF ₃)(CO)]: A Gold Carbonyl Compound Stabilized by a Trifluoromethyl Group. Angewandte Chemie - International Edition, 2011, 50, 6571-6574.	13.8	44
207	Highly Efficient Amide Synthesis from Alcohols and Amines by Virtue of a Waterâ€Soluble Gold/DNA Catalyst. Angewandte Chemie - International Edition, 2011, 50, 8917-8921.	13.8	217
208	Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization. Angewandte Chemie - International Edition, 2011, 50, 11994-11998.	13.8	306
209	Synthesis, spectral characterization, Ci£¿C coupling, oxidation reactions and antibacterial activities of new ruthenium(III) Schiff base complexes. Applied Organometallic Chemistry, 2011, 25, 87-97.	3.5	12
210	Ultrafine Gold Clusters Incorporated into a Metal–Organic Framework. Chemistry - A European Journal, 2011, 17, 78-81.	3.3	97
211	On the Stabilization of Gold Nanoparticles over Silicaâ€Based Magnetic Supports Modified with Organosilanes. Chemistry - A European Journal, 2011, 17, 4626-4631.	3.3	39

#	Article	IF	CITATIONS
212	Hydrotalciteâ€Supported Gold Catalyst for the Oxidantâ€Free Dehydrogenation of Benzyl Alcohol: Studies on Support and Gold Size Effects. Chemistry - A European Journal, 2011, 17, 1247-1256.	3.3	235
213	Stereoselective Single (Copper) or Double (Platinum) Boronation of Alkynes Catalyzed by Magnesia‣upported Copper Oxide or Platinum Nanoparticles. Chemistry - A European Journal, 2011, 17, 2467-2478.	3.3	99
214	Influence of the Preparation Procedure on the Catalytic Activity of Gold Supported on Diamond Nanoparticles for Phenol Peroxidation. Chemistry - A European Journal, 2011, 17, 9494-9502.	3.3	44
215	Gold Nanoparticles Stabilized by Thioether Dendrimers. Chemistry - A European Journal, 2011, 17, 13473-13481.	3.3	41
216	Heterostructured catalysts prepared by dispersing Au@Fe2O3 core–shell structures on supports and their performance in CO oxidation. Catalysis Today, 2011, 160, 87-95.	4.4	65
217	Synthesis of polypyridine derivatives using alumina supported gold nanoparticles under micro continuous flow conditions. Chemical Engineering Journal, 2011, 167, 519-526.	12.7	16
218	One-step microwave synthesis of palladium–carbon nanotube hybrids with improved catalytic performance. Carbon, 2011, 49, 652-658.	10.3	54
219	Nanocrystalline gold supported on Fe-, Ti- and Ce-modified hexagonal mesoporous silica as a catalyst for the aerobic oxidative esterification of benzyl alcohol. Applied Catalysis A: General, 2011, 397, 145-152.	4.3	48
220	Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins: Effects of pore architecture and surface modification method of the supports. Microporous and Mesoporous Materials, 2011, 143, 426-434.	4.4	28
221	Synthesis and bio-applications of carbohydrate–gold nanoconjugates with nanoparticle and nanolayer forms. Materials Science and Engineering C, 2011, 31, 1221-1229.	7.3	17
222	Addition of olefins to acetylacetone catalyzed by cooperation of BrÃ,nsted acid site of zeolite and gold cluster. Applied Catalysis A: General, 2011, 400, 171-175.	4.3	11
223	CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 1. Impact of the support composition on the performance for the preferential CO oxidation reaction. Applied Catalysis B: Environmental, 2011, 101, 256-265.	20.2	88
224	In situ loading of palladium nanoparticles on mica and their catalytic applications. Journal of Colloid and Interface Science, 2011, 353, 269-274.	9.4	12
225	Unexpected golden Ullmann reaction catalyzed by Au nanoparticles supported on periodic mesoporous organosilica (PMO). Chemical Communications, 2011, 47, 10452.	4.1	103
226	The decomposition of H ₂ O ₂ over the components of Au/TiO ₂ Âcatalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1885-1899.	2.1	35
227	Dehydrogenation inhibition on nano-Au/ZSM-5 catalyst: a novel route for anti-coking in methanol to propylene reaction. Chemical Communications, 2012, 48, 5787.	4.1	22
228	Immobilized Ionic Liquids in Organic Chemistry. Current Organic Chemistry, 2012, 16, 1680-1710.	1.6	28
229	Origin of Size Specific Catalysis by Polymer-stabilized Au Clusters for Aerobic Oxidation Reactions. Hyomen Kagaku, 2012, 33, 399-403.	0.0	1

# 230	ARTICLE Multiphase Flow Systems for Selective Aerobic Oxidation of Alcohols Catalyzed by Bimetallic Nanoclusters, Journal of Flow Chemistry, 2012, 2, 1-4	IF 1.9	Citations 33
231	The photoreaction of TiO _{2 and Au/TiO_{2 single crystal and powder with organic adsorbates. International Journal of Nanotechnology, 2012, 9, 121.}}	0.2	21
232	α-Hydroxylation of 1,3-Dicarbonyl Compounds Catalyzed by Polymer-incarcerated Gold Nanoclusters with Molecular Oxygen. Chemistry Letters, 2012, 41, 976-978.	1.3	17
233	Spontaneous Dispersion of Gold Nanoparticles Loaded on USY Zeolites as Analyzed by XAFS, XRD, and TEM. Chemistry Letters, 2012, 41, 337-339.	1.3	4
234	From molecular catalysts to nanostructured materials skeleton catalysts. Pure and Applied Chemistry, 2012, 84, 1771-1784.	1.9	28
235	Gold and iron oxide hybrid nanocomposite materials. Chemical Society Reviews, 2012, 41, 1911-1928.	38.1	250
236	Aerobic oxygenation of phenylboronic acid promoted by thiol derivatives under gold-free conditions: a warning against gold nanoparticle catalysis. Tetrahedron Letters, 2012, 53, 6104-6106.	1.4	18
237	Gold supported on ceria nanoparticles and nanotubes. Applied Catalysis A: General, 2012, 449, 96-104.	4.3	31
238	Heterogeneous Catalysis by Gold. Advances in Catalysis, 2012, 55, 1-126.	0.2	139
239	The electronic structure and chemical bonding in gold dihydride: AuH2â^' and AuH2. Chemical Science, 2012, 3, 3286.	7.4	49
240	Nano-Gold Catalysis in Fine Chemical Synthesis. Chemical Reviews, 2012, 112, 2467-2505.	47.7	619
241	Photochemical Strategies for the Seed-Mediated Growth of Gold and Gold–Silver Nanoparticles. Langmuir, 2012, 28, 16148-16155.	3.5	53
242	Synthesis of supported metal nanoparticle catalysts using ligand assisted methods. Nanoscale, 2012, 4, 5826.	5.6	79
243	Update on selective oxidation using gold. Chemical Society Reviews, 2012, 41, 350-369.	38.1	318
244	Selective gas-phase oxidation of ethanol by molecular oxygen over oxide and gold-containing catalysts. Catalysis in Industry, 2012, 4, 247-252.	0.7	7
246	Biomimetic Oxygen Activation by MoS ₂ /Ta ₃ N ₅ Nanocomposites for Selective Aerobic Oxidation. Angewandte Chemie - International Edition, 2012, 51, 11740-11744.	13.8	66
247	The Fluorideâ€Free Transmetalation of Organosilanes to Gold. Chemistry - A European Journal, 2012, 18, 14923-14928.	3.3	37
248	Baseâ€Free Direct Oxidation of 1â€Octanol to Octanoic Acid and its Octyl Ester over Supported Gold Catalysts. ChemSusChem, 2012, 5, 2243-2248.	6.8	52

#	Article	IF	CITATIONS
249	Highly efficient room-temperature oxidation of cyclohexene and d-glucose over nanogold Au/SiO2 in water. Journal of Catalysis, 2012, 295, 15-21.	6.2	56
250	A surface-confined Oî€MnV(salen) oxene catalyst and high turnover values in asymmetric epoxidation of unfunctionalized olefins. Journal of Materials Chemistry, 2012, 22, 20561.	6.7	26
251	Self-assembled monolayer coated gold-nanoparticle catalyzed aerobic oxidation of α-hydroxy ketones in water: an efficient one-pot synthesis of quinoxaline derivatives. Catalysis Science and Technology, 2012, 2, 2216.	4.1	28
252	Controlled synthesis of novel cyanopropyl polysilsesquioxane hollow spheres loaded with highly dispersed Au nanoparticles for catalytic applications. Chemical Communications, 2012, 48, 1108-1110.	4.1	93
253	Nitrogen-doped graphene stabilized gold nanoparticles for aerobic selective oxidation of benzylic alcohols. RSC Advances, 2012, 2, 12438.	3.6	84
254	Fundamental studies on the synthesis of supported metal nanoparticles: steric hindrance and coordination effects of anionic stabilizers. Journal of Materials Chemistry, 2012, 22, 15418.	6.7	14
255	Strong metal–molecular support interaction (SMMSI): Amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid. Journal of Materials Chemistry, 2012, 22, 12582.	6.7	137
256	Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation. Chemical Communications, 2012, 48, 3509.	4.1	110
257	In situ recyclable gold nanoparticles using CO2-switchable polymers for catalytic reduction of 4-nitrophenol. Chemical Communications, 2012, 48, 11510.	4.1	93
258	Photooxidation of 9-Anthraldehyde Catalyzed by Gold Nanoparticles: Solution and Single Nanoparticle Studies Using Fluorescence Lifetime Imaging. Journal of Physical Chemistry C, 2012, 116, 24373-24379.	3.1	42
259	Ion-Exchange Properties of Imidazolium-Grafted SBA-15 toward AuCl ₄ [–] Anions and Their Conversion into Supported Gold Nanoparticles. Langmuir, 2012, 28, 10281-10288.	3.5	36
260	Fabrication of Luminol and Lucigenin Bifunctionalized Gold Nnanoparticles/Graphene Oxide Nanocomposites with Dual-Wavelength Chemiluminescence. Journal of Physical Chemistry C, 2012, 116, 12953-12957.	3.1	40
261	Polymer Single Crystal As Magnetically Recoverable Support for Nanocatalysts. Journal of Physical Chemistry Letters, 2012, 3, 1346-1350.	4.6	74
262	Ultraclean Derivatized Monodisperse Gold Nanoparticles through Laser Drop Ablation Customization of Polymorph Gold Nanostructures. Langmuir, 2012, 28, 8183-8189.	3.5	24
263	NaBr Poisoning of Au/TiO ₂ Catalysts: Effects on Kinetics, Poisoning Mechanism, and Estimation of the Number of Catalytic Active Sites. ACS Catalysis, 2012, 2, 684-694.	11.2	29
264	Functionalization of Bolalipid Nanofibers by Silicification and Subsequent One-Dimensional Fixation of Gold Nanoparticles. Langmuir, 2012, 28, 11615-11624.	3.5	2
265	Origin of the selectivity in the gold-mediated oxidation of benzyl alcohol. Surface Science, 2012, 606, 1129-1134.	1.9	40
266	One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts. Chemical Communications, 2012, 48, 2427.	4.1	96

#	Article	IF	CITATIONS
267	Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties. Journal of Physical Chemistry C, 2012, 116, 10318-10324.	3.1	70
268	Monofunctionalized Gold Nanoparticles Stabilized by a Single Dendrimer Form Dumbbell Structures upon Homocoupling. Journal of the American Chemical Society, 2012, 134, 14674-14677.	13.7	41
269	Highly selective fluorescence turn-on sensing of gold ions by a nanoparticle generation/C–I bond cleavage sequence. Analyst, The, 2012, 137, 4411.	3.5	37
270	Commercial metal–organic frameworks as heterogeneous catalysts. Chemical Communications, 2012, 48, 11275.	4.1	378
271	Poly(o-phenylenediamine)-carried nanogold particles as signal tags for sensitive electrochemical immunoassay of prolactin. Analytica Chimica Acta, 2012, 728, 18-25.	5.4	48
272	Low temperature gas-phase oxidation of ethanol over Au/TiO2. Applied Catalysis A: General, 2012, 433-434, 88-95.	4.3	52
273	Nanosized gold-catalyzed selective oxidation of alkyl-substituted benzenes and n-alkanes. Applied Catalysis A: General, 2012, 435-436, 19-26.	4.3	47
274	Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au–Ag bimetallic catalyst. Applied Catalysis A: General, 2012, 439-440, 8-14.	4.3	68
275	Supported gold catalysts for the total oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2012, 125, 222-246.	20.2	289
276	Bismuth as a modifier of Au–Pd catalyst: Enhancing selectivity in alcohol oxidation by suppressing parallel reaction. Journal of Catalysis, 2012, 292, 73-80.	6.2	44
277	Gold nanoparticles supported on magnesium oxide as catalysts for the aerobic oxidation of alcohols under alkali-free conditions. Journal of Catalysis, 2012, 292, 148-156.	6.2	78
278	High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1,3-butadiene and cinnamaldehyde. Journal of Catalysis, 2012, 292, 213-226.	6.2	83
279	Au nanoparticles supported on Cr-based metal-organic framework as bimetallic catalyst for selective oxidation of cyclohexane to cyclohexanone and cyclohexanol. Catalysis Communications, 2012, 27, 200-205.	3.3	81
280	Enhanced Catalytic Activity of Selfâ€Assembledâ€Monolayerâ€Capped Gold Nanoparticles. Advanced Materials, 2012, 24, 6462-6467.	21.0	96
281	The Role of Metal Hydroxide Complexes in Late Transition Metalâ€Mediated Transmetalation Reaction: The Case of Gold. Advanced Synthesis and Catalysis, 2012, 354, 2380-2386.	4.3	39
282	Composite Metal–Oxide Nanocatalysts. ChemCatChem, 2012, 4, 1462-1484.	3.7	65
283	Efficient Tandem Synthesis of Methyl Esters and Imines by Using Versatile Hydrotalcite‧upported Gold Nanoparticles. Chemistry - A European Journal, 2012, 18, 12122-12129.	3.3	93
284	[2.2]Paracyclophanediyldiphosphane Complexes of Gold. European Journal of Inorganic Chemistry, 2012, 2012, 5033-5042.	2.0	32

#	Article	IF	CITATIONS
285	Silica-Supported Au–CuO _{<i>x</i>} Hybrid Nanocrystals as Active and Selective Catalysts for the Formation of Acetaldehyde from the Oxidation of Ethanol. ACS Catalysis, 2012, 2, 2537-2546.	11.2	105
286	Straightforward Synthesis of Gold Nanoparticles Supported on Commercial Silica-Polyethyleneimine Beads. Journal of Physical Chemistry C, 2012, 116, 25434-25443.	3.1	32
287	Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catalysis, 2012, 2, 1596-1606.	11.2	1,541
288	Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chemical Communications, 2012, 48, 4540.	4.1	82
289	Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chemical Communications, 2012, 48, 4798.	4.1	138
290	Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake. Nanotechnology, 2012, 23, 465602.	2.6	58
291	Nanoporous Pt@Au _{<i>x</i>} Cu _{100–<i>x</i>} by Hydrogen Evolution Assisted Electrodeposition of Au _{<i>x</i>} Cu _{100–<i>x</i>} and Galvanic Replacement of Cu with Pt: Electrocatalytic Properties. Langmuir, 2012, 28, 3306-3315.	3.5	67
292	Chemical Synthesis of Complex Molecules Using Nanoparticle Catalysis. ACS Catalysis, 2012, 2, 65-70.	11.2	117
293	Oxidative imination of toluenes catalyzed by Pd–Au/silica gel under mild reaction conditions. Chemical Communications, 2012, 48, 7586.	4.1	26
294	Magnetite–Polypeptide Hybrid Materials Decorated with Gold Nanoparticles: Study of Their Catalytic Activity in 4-Nitrophenol Reduction. Journal of Physical Chemistry C, 2012, 116, 24717-24725.	3.1	67
295	Pd immobilized on thiol-modified magnetic nanoparticles: A complete magnetically recoverable and highly active catalyst for hydrogenation reactions. Solid State Sciences, 2012, 14, 1256-1262.	3.2	16
296	The synergistic behavior of polyoxometalates and metal nanoparticles: from synthetic approaches to functional nanohybrid materials. Journal of Materials Chemistry, 2012, 22, 18091.	6.7	51
297	Synthesis of Stable Ligand-free Gold–Palladium Nanoparticles Using a Simple Excess Anion Method. ACS Nano, 2012, 6, 6600-6613.	14.6	128
298	Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives. Journal of the American Chemical Society, 2012, 134, 17536-17542.	13.7	201
299	Reductant-directed formation of PS–PAMAM-supported gold nanoparticles for use as highly active and recyclable catalysts for the aerobic oxidation of alcohols and the homocoupling of phenylboronic acids. Chemical Communications, 2012, 48, 6235.	4.1	71
300	Robust hybrid nanostructures comprising gold and thiol-functionalized polymer nanoparticles: facile preparation, diverse morphologies and unique properties. Journal of Materials Chemistry, 2012, 22, 14108.	6.7	24
301	Grafting submicron titania particles with gold nanoparticles using droplet microfluidics. RSC Advances, 2012, 2, 3599.	3.6	6
302	Effect of Crystallographic Phase (β vs. γ) and Surface Area on Gas Phase Nitroarene Hydrogenation Over Mo2N and Au/Mo2N. Topics in Catalysis, 2012, 55, 955-968.	2.8	22

#	Article	IF	CITATIONS
303	Facile synthesis of Au@TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy and Environmental Science, 2012, 5, 6914.	30.8	427
304	Catalytic Activity of Green and Recyclable Nanometric Tin Oxide-Doped Silica Nanospheres in the Synthesis of Imines. Industrial & Engineering Chemistry Research, 2012, 51, 15626-15632.	3.7	9
305	Nucleation and Island Growth of Alkanethiolate Ligand Domains on Gold Nanoparticles. ACS Nano, 2012, 6, 629-640.	14.6	72
306	Graphite oxide as an efficient and durable metal-free catalyst for aerobic oxidative coupling of amines to imines. Green Chemistry, 2012, 14, 930.	9.0	223
307	Structure and Surface Chemistry of Gold-Based Model Catalysts. Chemical Reviews, 2012, 112, 2987-3054.	47.7	229
308	Stabilizing gold clusters by heterostructured transition-metal oxide–mesoporous silica supports for enhanced catalytic activities for CO oxidation. Chemical Communications, 2012, 48, 11413.	4.1	80
309	The Art of Manufacturing Gold Catalysts. Catalysts, 2012, 2, 24-37.	3.5	55
310	Anti-Addition Mechanism in the Intramolecular Hydroalkoxylation of Alkenes Catalyzed by PVP-Stabilized Nanogold. Molecules, 2012, 17, 2579-2586.	3.8	4
311	Recent Developments in Heterogeneous Selective Hydrogenation of Halogenated Nitroaromatic Compounds to Halogenated Anilines. Current Organic Synthesis, 2012, 9, 470-487.	1.3	68
312	Gold Nanoparticles Supported on Nanoparticulate Ceria as a Powerful Agent against Intracellular Oxidative Stress. Small, 2012, 8, 1895-1903.	10.0	40
313	Resolving Heterogeneity Problems and Impurity Artifacts in Operationally Homogeneous Transition Metal Catalysts. Chemical Reviews, 2012, 112, 1536-1554.	47.7	576
314	High-density assembly of gold nanoparticles with zwitterionic carbon nanotubes and their electrocatalytic activity in oxygen reduction reaction. Chemical Communications, 2012, 48, 8940.	4.1	18
315	Physicochemical Characteristics of Protein–NP Bioconjugates: The Role of Particle Curvature and Solution Conditions on Human Serum Albumin Conformation and Fibrillogenesis Inhibition. Langmuir, 2012, 28, 9113-9126.	3.5	192
316	Catalysis by metal nanoparticles embedded on metal–organic frameworks. Chemical Society Reviews, 2012, 41, 5262.	38.1	929
317	Palladium Nanoparticles in Suzuki Crossâ€Couplings: Tapping into the Potential of Trisâ€Imidazolium Salts for Nanoparticle Stabilization. Advanced Synthesis and Catalysis, 2012, 354, 651-662.	4.3	59
318	Gold Nanoparticles Supported on the Periodic Mesoporous Organosilicas as Efficient and Reusable Catalyst for Room Temperature Aerobic Oxidation of Alcohols. Advanced Synthesis and Catalysis, 2012, 354, 1319-1326.	4.3	55
321	Imaging Isolated Gold Atom Catalytic Sites in Zeolite NaY. Angewandte Chemie - International Edition, 2012, 51, 5842-5846.	13.8	163
322	Simultaneous Generation of Mesoxalic Acid and Electricity from Glycerol on a Gold Anode Catalyst in Anionâ€Exchange Membrane Fuel Cells. ChemCatChem, 2012, 4, 1105-1114.	3.7	70

ARTICLE IF CITATIONS # Gold Nanoparticleâ€Catalyzed Formation of Nitrogenâ€containing Compoundsâ€"From Mechanistic 323 3.7 22 Understanding to Synthetic Exploitation. ChemCatChem, 2012, 4, 1037-1047. Mesoporous Au/TiO₂ Nanocomposite Microspheres for Visibleâ€Light Photocatalysis. 324 3.3 Chemistry - A European Journal, 2012, 18, 5361-5366. Click Ionic Liquids: A Family of Promising Tunable Solvents and Application in Suzuki–Miyaura 325 3.3 31 Crossâ€Coupling. Chemistry - A European Journal, 2012, 18, 7842-7851. Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. Chemical Reviews, 741 2012, 112, 4469-4506. Potential of Gold Nanoparticles for Oxidation in Fine Chemical Synthesis. Annual Review of Chemical 327 6.8 51 and Biomolecular Engineering, 2012, 3, 11-28. Following the Creation of Active Gold Nanocatalysts from Phosphine-Stabilized Molecular Clusters. 11.2 46 ACS Catalysis, 2012, 2, 957-963. Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chemical Communications, 2012, 48, 329 4.1 129 8961. High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage 330 38.1 and catalysis. Chemical Society Reviews, 2012, 41, 5313. 331 The reactions of ethanol on TiO2 and Au/TiO2 anatase catalysts. Catalysis Today, 2012, 182, 16-24. 4.4 54 Selective oxidation of CO in H2-rich stream over Au/CeO2 and Cu/CeO2 catalysts: An insight on the effect of preparation method and catalyst pretreatment. Applied Catalysis A: General, 2012, 417-418, 4.3 66-75. Microreactor containing platinum nanoparticles for nitrobenzene hydrogenation. Applied Catalysis A: 333 4.354 General, 2012, 427-428, 119-124. Gold catalysts supported on nanostructured Ce–Al–O mixed oxides prepared by organic sol–gel. Applied Catalysis B: Environmental, 2012, 115-116, 117-128. 334 Gold nanoparticles formation in the aqueous system of gold(III) chloride complex ions and hydrazine sulfateâ€"Kinetic studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 397, 335 4.7 58 63-72. Supported nano-sized gold catalysts for selective reduction of 4,4?-dinitrostilbene-2,2?-disulfonic 3.7 acid using different reductants. Dyes and Pigments, 2012, 95, 215-220. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of 337 6.2 107 acetylene in the presence of large excess of ethylene. Journal of Catalysis, 2012, 285, 152-159. Aerobic oxidation of cycloalkenes catalyzed by iron metal organic framework containing N-hydroxyphthalimide. Journal of Catalýsis, 2012, 289, 259-265. From woody biomass extractives to health-promoting substances: Selective oxidation of the lignan hydroxymatairesinol to oxomatairesinol over Au, Pd, and Auâ€"Pd heterogeneous catalysts. Journal of 339 6.2 21 Catalysis, 2012, 291, 95-103. Silver as an Example of the Applications of Photochemistry to the Synthesis and Uses of 340 58 Nanomaterials^{â€,â€;}. Photochemistry and Photobiology, 2012, 88, 762-768.

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
341	Gold Nanoparticles Incarcerated in Nanoporous Syndiotactic Polystyrene Matrices as New and Efficient Catalysts for Alcohol Oxidations. Chemistry - A European Journal, 2012, 18, 709-715.	3.3	71
342	Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 2012, 5, 46-64.	6.8	254
343	Selective Acceptorless Conversion of Primary Alcohols to Acetals and Dihydrogen Catalyzed by the Ruthenium(II) Complex Ru(PPh3)2(NCCH3)2(SO4). Advanced Synthesis and Catalysis, 2012, 354, 497-504.	4.3	48
344	Dual Roles of Polyhydroxy Matrices in the Homocoupling of Arylboronic Acids Catalyzed by Gold Nanoclusters under Acidic Conditions. Chemistry - an Asian Journal, 2012, 7, 55-59.	3.3	50
346	Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie - International Edition, 2012, 51, 68-89.	13.8	2,897
347	Similarities and Differences between the "Relativistic―Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie - International Edition, 2012, 51, 614-635.	13.8	184
348	Solution templating of Au and Ag nanoparticles by linear poly[2-(diethylamino)ethyl methacrylate]. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	4
349	Nanoporous Titania-Supported Gold Nanoparticle-Catalyzed Green Synthesis of 1,2,3-Triazoles in Aqueous Medium. ACS Sustainable Chemistry and Engineering, 2013, 1, 1405-1411.	6.7	70
350	Recyclable NiFe2O4–APTES/Pd Magnetic Nanocatalyst. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 937-943.	3.7	20
351	Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nature Chemistry, 2013, 5, 775-781.	13.6	394
352	Selective oxidative esterification of alcohols on Au/ZrO2 catalyst under ambient conditions. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 437-448.	1.7	7
353	Aggregation-Free Gold Nanoparticles in Ordered Mesoporous Carbons: Toward Highly Active and Stable Heterogeneous Catalysts. Journal of the American Chemical Society, 2013, 135, 11849-11860.	13.7	203
354	One-pot myrtenol amination over Au nanoparticles supported on different metal oxides. Applied Catalysis A: General, 2013, 464-465, 348-356.	4.3	34
355	Doped Graphene as a Metalâ€Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 2013, 19, 7547-7554.	3.3	138
356	Ultimate size control of encapsulated gold nanoparticles. Chemical Communications, 2013, 49, 8507.	4.1	77
357	NiO-doped Au/Ti-powder: A catalyst with dramatic improvement in activity for gas-phase oxidation of alcohols. Applied Catalysis A: General, 2013, 467, 171-177.	4.3	10
358	Controlling the selectivity of styrene oxidation over Aun superatoms with electron-rich core and electron-deficient shell. International Journal of Hydrogen Energy, 2013, 38, 16716-16721.	7.1	8
359	TRANSFORMATION OF OXYGENATED COMPOUNDS DERIVED FROM BIOMASS INTO VALUABLE CHEMICALS USING CERIA-BASED SOLID CATALYSTS. Catalytic Science Series, 2013, , 783-811.	0.0	1

#	Article	IF	CITATIONS
360	Palladium-, ligand-, and solvent-free synthesis of ynones by the coupling of acyl chlorides and terminal alkynes in the presence of a reusable copper nanoparticle catalyst. Green Chemistry, 2013, 15, 2356.	9.0	42
361	Aerobic Oxidative Esterification of Aldehydes with Alcohols by Gold–Nickel Oxide Nanoparticle Catalysts with a Core–Shell Structure. ACS Catalysis, 2013, 3, 1845-1849.	11.2	159
362	Aerobic oxidative coupling of alcohols and amines over Au–Pd/resin in water: Au/Pd molar ratios switch the reaction pathways to amides or imines. Green Chemistry, 2013, 15, 2680.	9.0	114
363	Shell-adjustable hollow â€`soft' silica spheres as a support for gold nanoparticles. Journal of Materials Chemistry A, 2013, 1, 3600.	10.3	58
364	Insights into the Mechanism of Cumene Peroxidation Using Supported Gold and Silver Nanoparticles. ACS Catalysis, 2013, 3, 2062-2071.	11.2	28
365	Promotional Effect of the Base Metal on Bimetallic Au–Ni/CeO ₂ Catalysts Prepared from Core–Shell Nanoparticles. ACS Catalysis, 2013, 3, 2169-2180.	11.2	36
367	Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyping Journal, 2013, 19, 353-364.	3.2	358
368	Protected but Accessible: Oxygen Activation by a Calixarene-Stabilized Undecagold Cluster. Journal of the American Chemical Society, 2013, 135, 12944-12947.	13.7	32
369	Catalysis by gold nanoparticles: carbon-carbon coupling reactions. Nanotechnology Reviews, 2013, 2, 529-545.	5.8	91
370	Strategies for the Synthesis of Supported Gold Palladium Nanoparticles with Controlled Morphology and Composition. Accounts of Chemical Research, 2013, 46, 1759-1772.	15.6	167
371	Highly stable PEGylated gold nanoparticles in water: applications in biology and catalysis. RSC Advances, 2013, 3, 21016.	3.6	49
372	Gold nanoparticle catalysts for selective hydrogenations. Green Chemistry, 2013, 15, 2636.	9.0	267
373	Gold nanoparticles supported on supramolecular ionic liquid grafted graphene: a bifunctional catalyst for the selective aerobic oxidation of alcohols. RSC Advances, 2013, 3, 22509.	3.6	54
374	Disentanglement of Donation and Backâ€Donation Effects on Experimental Observables: A Case Study of Gold–Ethyne Complexes. Angewandte Chemie - International Edition, 2013, 52, 11599-11602.	13.8	61
375	Shape ontrolled Nanostructures in Heterogeneous Catalysis. ChemSusChem, 2013, 6, 1797-1820.	6.8	142
376	Highly Efficient and Robust Au/MgCuCr ₂ O ₄ Catalyst for Gas-Phase Oxidation of Ethanol to Acetaldehyde. Journal of the American Chemical Society, 2013, 135, 14032-14035.	13.7	456
377	Carbon nanotube–gold nanohybrids for selective catalytic oxidation of alcohols. Nanoscale, 2013, 5, 6491.	5.6	68
378	Water–gas shift on gold catalysts: catalyst systems and fundamental studies. Physical Chemistry Chemical Physics, 2013, 15, 15260.	2.8	61

#	Article	IF	CITATIONS
379	Unsupported nanoporous gold for heterogeneous catalysis. Catalysis Science and Technology, 2013, 3, 2862.	4.1	82
380	Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles. Catalysis Science and Technology, 2013, 3, 3200.	4.1	85
381	Immobilization of gold nanoparticles on fused silica capillary surface for the development of catalytic microreactors. Chemical Engineering Journal, 2013, 227, 103-110.	12.7	29
382	Selective oxidation of alcohols over Ag-containing Si3N4 catalysts. Catalysis Today, 2013, 203, 127-132.	4.4	25
383	Influence of pretreatments on commercial diamond nanoparticles on the photocatalytic activity of supported gold nanoparticles under natural Sunlight irradiation. Applied Catalysis B: Environmental, 2013, 142-143, 259-267.	20.2	27
384	Effects of Pd on Catalysis by Au: CO Adsorption, CO Oxidation, and Cyclohexene Hydrogenation by Supported Au and Pd–Au Catalysts. ACS Catalysis, 2013, 3, 2644-2653.	11.2	70
385	Water-soluble Au(I) complexes, their synthesis and applications. Tetrahedron, 2013, 69, 10525-10533.	1.9	25
386	Half-encapsulated Au nanoparticles by nano iron oxide: promoted performance of the aerobic oxidation of 1-phenylethanol. Nanoscale, 2013, 5, 9546.	5.6	15
387	Enhanced optical, visible light catalytic and electrochemical properties of Au@TiO2 nanocomposites. Journal of Industrial and Engineering Chemistry, 2013, 19, 1845-1850.	5.8	29
388	Establishing a Au Nanoparticle Size Effect in the Oxidation of Cyclohexene Using Gradually Changing Au Catalysts. ACS Catalysis, 2013, 3, 2986-2991.	11.2	77
389	Cu nanoclusters supported on Co nanosheets for selective hydrogenation of CO. Chinese Journal of Catalysis, 2013, 34, 1998-2003.	14.0	9
390	Hybrid Nanomaterials: Anchoring Magnetic Molecules on Naked Gold Nanocrystals. Inorganic Chemistry, 2013, 52, 14411-14418.	4.0	25
391	Structure, stability, and electronic property of carbon-doped gold clusters AunCâ^' (n = 1–10): A density functional theory study. Journal of Chemical Physics, 2013, 139, 244312.	3.0	35
392	New Frontiers of Nanoparticles and Nanocomposite Materials. Advanced Structured Materials, 2013, , .	0.5	8
393	Size-Dependent Anodic Dissolution of Water-Soluble Palladium Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 26783-26789.	3.1	19
394	One-pot organometallic synthesis of well-controlled gold nanoparticles by gas reduction of Au(I) precursor: a spectroscopic NMR study. Gold Bulletin, 2013, 46, 291-298.	2.4	6
395	Facile deposition of gold nanoparticles on C60 microcrystals with unique shapes. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	6
396	DNAzyme-Functionalized Gold Nanoparticles for Biosensing. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 93-120.	1.1	20

#	Article	IF	CITATIONS
397	Direct Reductive Amination of Aldehydes Catalyzed by Carbon Nanotube/Gold Nanohybrids. ChemCatChem, 2013, 5, 3571-3575.	3.7	40
399	Direct Amidation from Alcohols and Amines through a Tandem Oxidation Process Catalyzed by Heterogeneousâ€Polymerâ€Incarcerated Gold Nanoparticles under Aerobic Conditions. Chemistry - an Asian Journal, 2013, 8, 2614-2626.	3.3	40
400	Simultaneous Synthesis of Polyoxometalates and Metal Nanoparticles from Molecular Precursors - Redox-Active Microreactors and Functional Nanomaterials. European Journal of Inorganic Chemistry, 2013, 2013, 5517-5522.	2.0	3
401	The room temperature formation of gold nanoparticles from the reaction of cyclohexanone and auric acid; a transition from dendritic particles to compact shapes and nanoplates. Journal of Materials Chemistry A, 2013, 1, 7351.	10.3	30
402	A poly(vinylidene fluoride)-graft-poly(dopamine acrylamide) copolymer for surface functionalizable membranes. RSC Advances, 2013, 3, 25204.	3.6	30
403	Remarkable Catalytic Property of Nanoporous Gold on Activation of Diborons for Direct Diboration of Alkynes. Organic Letters, 2013, 15, 5766-5769.	4.6	101
404	Gold nanoparticles assisted formation of cobalt species for intermolecular hydroaminomethylation and intramolecular cyclocarbonylation of olefins. Catalysis Science and Technology, 2013, 3, 3000.	4.1	8
405	Preparation and Characterization of Au/Al ₂ O ₃ and Au-Fe/Al ₂ O ₃ Materials, Active and Selective Catalysts in Oxidation of Cyclohexene. Advanced Materials Research, 0, 856, 48-52.	0.3	9
406	Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene. Journal of Catalysis, 2013, 297, 128-136.	6.2	139
407	Microwave-assisted synthesis of PtRu/CNT and PtSn/CNT catalysts and their applications in the aerobic oxidation of benzyl alcohol in base-free aqueous solutions. Catalysis Science and Technology, 2013, 3, 328-338.	4.1	27
408	A magnetically separable gold catalyst for chemoselective reduction of nitro compounds. Organic and Biomolecular Chemistry, 2013, 11, 395-399.	2.8	62
409	Palladium supported on an acidic metal–organic framework as an efficient catalyst in selective aerobic oxidation of alcohols. Green Chemistry, 2013, 15, 230-235.	9.0	148
410	The development of gold catalysts for use in hydrogenation reactions. Journal of Materials Science, 2013, 48, 543-564.	3.7	83
411	Efficient General Procedure To Access a Diversity of Gold(0) Particles and Gold(I) Phosphine Complexes from a Simple HAuCl ₄ Source. Localization of Homogeneous/Heterogeneous System's Interface and Field-Emission Scanning Electron Microscopy Study. Journal of the American Chemical Society, 2013, 135, 3550-3559.	13.7	40
412	Selective hydrogenation of crotonaldehyde on Au supported on mesoporous titania. Microporous and Mesoporous Materials, 2013, 168, 51-56.	4.4	10
413	Supramolecular hydrogels for creating gold and silver nanoparticles in situ. Soft Matter, 2013, 9, 2017.	2.7	48
414	Aerobic homocoupling of phenylboronic acid on Mg–Al mixed-oxides-supported Au nanoparticles. Journal of Catalysis, 2013, 298, 186-197.	6.2	44
415	Gold nanoparticle research before and after the Brust–Schiffrin method. Chemical Communications, 2013, 49, 16-18.	4.1	66

#	Article	IF	CITATIONS
416	Nanocrystalline gold supported on NaY as catalyst for the direct oxidation of primary alcohol to carboxylic acid with molecular oxygen in water. Applied Catalysis A: General, 2013, 451, 137-143.	4.3	12
417	On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chemical Reviews, 2013, 113, 2139-2181.	47.7	558
418	Highly selective epoxidation of styrene over gold–silica catalysts via one-pot synthesis: synthesis, characterization, and catalytic application. New Journal of Chemistry, 2013, 37, 769.	2.8	40
419	Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	58
420	Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem, 2013, 5, 28-45.	3.7	108
421	Influence of oxygen and pH on the selective oxidation of ethanol on Pd catalysts. Journal of Catalysis, 2013, 299, 261-271.	6.2	63
422	Microstructured Au/Ni-fiber catalyst for low-temperature gas-phase alcohol oxidation: Evidence of Ni2O3–Au+ hybrid active sites. Applied Catalysis B: Environmental, 2013, 140-141, 249-257.	20.2	30
423	Polymer shell as a protective layer for the sandwiched gold nanoparticles and their recyclable catalytic property. Journal of Colloid and Interface Science, 2013, 395, 91-98.	9.4	14
424	Chemical vapor deposition of ordered TiOx nanostructures on Au(111). Surface Science, 2013, 617, 211-217.	1.9	15
425	The effects of gold nanosize for the exploitation of furfural by selective oxidation. Catalysis Today, 2013, 203, 196-201.	4.4	65
426	Insights into support effects on Ce-Zr-O mixed oxide-supported gold catalysts in CO oxidation. Journal of Energy Chemistry, 2013, 22, 98-106.	12.9	16
427	Selective suppression of disproportionation reaction in solvent-less benzyl alcohol oxidation catalysed by supported Au–Pd nanoparticles. Catalysis Today, 2013, 203, 146-152.	4.4	57
428	CO Self-Promoting Oxidation on Nanosized Gold Clusters: Triangular Au ₃ Active Site and CO Induced O–O Scission. Journal of the American Chemical Society, 2013, 135, 2583-2595.	13.7	178
429	On the Impact of Solvation on a Au/TiO ₂ Nanocatalyst in Contact with Water. Journal of Physical Chemistry Letters, 2013, 4, 514-518.	4.6	37
430	Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013, 113, 1904-2074.	47.7	1,173
431	Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines. Organic Letters, 2013, 15, 1484-1487.	4.6	99
432	Synthesis and application of gold-carbon hybrids as catalysts for the hydroamination of alkynes. Applied Catalysis A: General, 2013, 456, 88-95.	4.3	34
433	Can Surface Plasmon Fields Provide a New Way to Photosensitize Organic Photoreactions? From Designer Nanoparticles to Custom Applications. Journal of Physical Chemistry Letters, 2013, 4, 1177-1187.	4.6	75

#	Article	IF	CITATIONS
434	Microstructured Au/Ni-fiber catalyst: Galvanic reaction preparation and catalytic performance for low-temperature gas-phase alcohol oxidation. Journal of Catalysis, 2013, 301, 46-53.	6.2	37
435	State of the art in gold nanoparticle synthesis. Coordination Chemistry Reviews, 2013, 257, 638-665.	18.8	766
436	Catalytic activation of hydrazine hydrate by gold nanoparticles: Chemoselective reduction of nitro compounds into amines. Catalysis Communications, 2013, 36, 48-51.	3.3	99
437	Au nanoparticles embedded into the inner wall of TiO2 hollow spheres as a nanoreactor with superb thermal stability. Chemical Communications, 2013, 49, 3116.	4.1	58
438	Enhanced performance of dye-sensitized solar cells using gold nanoparticles modified fluorine tin oxide electrodes. Journal Physics D: Applied Physics, 2013, 46, 024005.	2.8	31
439	Model studies of heterogeneous catalytic hydrogenation reactions with gold. Chemical Society Reviews, 2013, 42, 5002.	38.1	89
440	UV-Vis Spectroscopy for Characterization of Metal Nanoparticles Formed from Reduction of Metal lons During Ultrasonic Irradiation. , 2013, , 151-177.		10
441	Positively charged bulk Au particles as an efficient catalyst for oxidation of styrene with molecular oxygen. Chemical Communications, 2013, 49, 3449.	4.1	22
442	Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application. Chemical Communications, 2013, 49, 3757.	4.1	123
443	Impact of metal doping on the activity of Au/CeO2 catalysts for catalytic abatement of VOCs and CO in waste gases. Catalysis Communications, 2013, 35, 51-58.	3.3	19
444	Selectivity of gold nanoparticles on the photocatalytic activity of TiO2 for the hydroxylation of benzene by water. Catalysis Today, 2013, 206, 40-45.	4.4	28
445	Density Functional Theory study of electric field effects on CO and OH adsorption and co-adsorption on gold surfaces. Electrochimica Acta, 2013, 101, 244-253.	5.2	35
446	CC Cross oupling of Primary and Secondary Benzylic Alcohols Using Supported Goldâ€Based Bimetallic Catalysts. ChemSusChem, 2013, 6, 604-608.	6.8	55
447	Facile Reduction of Nitroarenes into Anilines and Nitroalkanes into Hydroxylamines <i>via</i> the Rapid Activation of Ammoniaâ Borane Complex by Supported Gold Nanoparticles. Advanced Synthesis and Catalysis, 2013, 355, 907-911.	4.3	68
448	Synthesis of quinolines and fused pyridocoumarins from N-propargylanilines or propargylaminocoumarins by catalysis with gold nanoparticles supported on TiO2. Tetrahedron, 2013, 69, 4612-4616.	1.9	46
449	Molecular Understanding of Reactivity and Selectivity for Methanol Oxidation at the Au/TiO ₂ Interface. Angewandte Chemie - International Edition, 2013, 52, 5780-5784.	13.8	63
450	Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Applied Catalysis B: Environmental, 2013, 132-133, 107-115.	20.2	199
451	Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chemical Communications, 2013, 49, 1732.	4.1	79

#	Article	IF	CITATIONS
452	CO2 switchable nanoparticles: reversible water/organic-phase exchange of gold nanoparticles by gas bubbling. RSC Advances, 2013, 3, 4867.	3.6	11
453	Gold Nanorod@Chiral Mesoporous Silica Core–shell Nanoparticles with Unique Optical Properties. Journal of the American Chemical Society, 2013, 135, 9659-9664.	13.7	182
454	Atomically precise Au25 superatoms immobilized on CeO2 nanorods for styrene oxidation. Nanoscale, 2013, 5, 3668.	5.6	39
455	Double Hydrophilic Block Copolymer Templated Au Nanoparticles with Enhanced Catalytic Activity toward Nitroarene Reduction. Journal of Physical Chemistry C, 2013, 117, 11686-11693.	3.1	103
456	Supported Gold Nanoparticles as Efficient Catalysts in the Solventless Plasmon Mediated Oxidation of <i>sec</i> -Phenethyl and Benzyl Alcohol. Journal of Physical Chemistry C, 2013, 117, 12279-12288.	3.1	56
457	Waterâ€Soluble Palladium Click Chelating Complex: An Efficient and Reusable Precatalyst for Suzuki–Miyaura and Hiyama Reactions in Water. ChemPlusChem, 2013, 78, 536-545.	2.8	24
458	Liquid-Phase Hydrogenation of Cinnamaldehyde: Enhancing Selectivity of Supported Gold Catalysts by Incorporation of Cerium into the Support. Industrial & Engineering Chemistry Research, 2013, 52, 288-296.	3.7	47
459	Local Conditions Influencing In Situ Formation of Different Shaped Silver Nanostructures and Subsequent Reorganizations in Ionomer Membrane. Journal of Physical Chemistry C, 2013, 117, 12026-12037.	3.1	9
460	Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions. Green Chemistry, 2013, 15, 1895.	9.0	168
461	Catecholic Chemistry To Obtain Recyclable and Reusable Hybrid Polymeric Particles as Catalytic Systems. Macromolecules, 2013, 46, 2951-2962.	4.8	18
462	Remarkably enhanced photocatalytic activity of laser ablated Au nanoparticle decorated BiFeO3 nanowires under visible-light. Chemical Communications, 2013, 49, 5856.	4.1	154
463	Catalytic activity of unsupported gold nanoparticles. Catalysis Science and Technology, 2013, 3, 58-69.	4.1	212
464	Iron(III) Triflimide as a Catalytic Substitute for Gold(I) in Hydroaddition Reactions to Unsaturated Carbon–Carbon Bonds. Chemistry - A European Journal, 2013, 19, 8627-8633.	3.3	34
465	Carbon nanofibers containing metal-doped porous carbon beads for environmental remediation applications. Chemical Engineering Journal, 2013, 229, 72-81.	12.7	39
466	A simple shape-controlled synthesis of gold nanoparticles using nonionic surfactants. RSC Advances, 2013, 3, 7726.	3.6	38
467	Theoretical tools for studying gold nanoparticles as catalysts for oxidation and hydrogenation reactions. Catalysis, 2013, , 50-76.	1.0	1
468	Laser-driven heterogeneous catalysis: efficient amide formation catalysed by Au/SiO2 systems. Green Chemistry, 2013, 15, 2043.	9.0	58
469	Au/ZrO2: an efficient and reusable catalyst for the oxidative esterification of renewable furfural. Applied Catalysis B: Environmental, 2013, 129, 287-293.	20.2	72

	CHAHON R	EPORT	
#	Article	IF	CITATIONS
470	Modeling of configurational transitions in atomic systems. Physics-Uspekhi, 2013, 56, 973-998.	2.2	11
471	Gold Nanoparticle Synthesis Using Spatially and Temporally Shaped Femtosecond Laser Pulses: Post-Irradiation Auto-Reduction of Aqueous [AuCl ₄] ^{â^'} . Journal of Physical Chemistry C, 2013, 117, 18719-18727.	3.1	52
472	Fabrication and Catalytic Activity of Thermally Stable Gold Nanoparticles on Ultrastable Y (USY) Zeolites. Catalysts, 2013, 3, 599-613.	3.5	11
473	Chlorine as an Indicator in the Controllable Preparation of Active Nano-Gold Catalyst. Scientific Reports, 2013, 3, 1503.	3.3	12
474	Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs). Catalysts, 2013, 3, 774-793.	3.5	28
475	New Endeavors in Gold Catalysis—Size Matters. Angewandte Chemie - International Edition, 2013, 52, 13146-13148.	13.8	9
477	Cycloisomerization of 2â€Alkynylanilines to Indoles Catalyzed by Carbon‣upported Gold Nanoparticles and Subsequent Homocoupling to 3,3′â€Biindoles. Angewandte Chemie - International Edition, 2013, 52, 11835-11839.	13.8	96
478	Aerobic Oxidation of Sulfides to Sulfoxides Catalyzed by Gold/Manganese Oxides. Bulletin of the Chemical Society of Japan, 2013, 86, 1412-1418.	3.2	11
482	Size Effect of Gold Nanoparticles in Catalytic Reduction of p-Nitrophenol with NaBH4. Molecules, 2013, 18, 12609-12620.	3.8	150
483	Heterogeneous Catalysis by Gold-based Bimetallic Catalysts. Recent Patents on Catalysis, 2013, 2, 2-46.	0.2	4
484	Gold Nanoparticles on Mesoporous SiO2-Coated Magnetic Fe3O4 Spheres: A Magnetically Separatable Catalyst with Good Thermal Stability. Molecules, 2013, 18, 14258-14267.	3.8	13
485	Development of nanotechnology experimental modules using ferrofluids for high school classrooms. Materials Research Society Symposia Proceedings, 2013, 1583, 1.	0.1	0
486	Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. Scientific World Journal, The, 2014, 2014, 1-21.	2.1	262
487	Allotropic Carbon Nanoforms as Advanced Metal-Free Catalysts or as Supports. Advances in Chemistry, 2014, 2014, 1-20.	1.1	12
489	Self-assembly of Au nanoparticles on graphene sheets as a catalyst with controlled grafting density and high reusability. RSC Advances, 2014, 4, 61823-61830.	3.6	18
490	Harnessing the Selective Catalytic Action of Supported Gold in Hydrogenation Applications. RSC Catalysis Series, 2014, , 424-461.	0.1	1
491	Hydrogen Atom Chemisorbed Gold Clusters as Highly Active Catalysts for Oxygen Activation and CO Oxidation. Journal of Physical Chemistry C, 2014, 118, 30057-30062.	3.1	27
493	Synthesis and bioactivities of silver nanoparticles capped with 5-Amino-?-resorcylic acid hydrochloride dihydrate. Journal of Nanobiotechnology, 2014, 12, 34.	9.1	2

#	Article	IF	CITATIONS
494	Lab-on-a-chip devices for gold nanoparticle synthesis and their role as a catalyst support for continuous flow catalysis. Nanotechnology Reviews, 2014, 3, 39-63.	5.8	20
495	Carbon Nanotube–Gold Nanohybrid Catalyzed Nâ€Formylation of Amines by using Aqueous Formaldehyde. ChemCatChem, 2014, 6, 2201-2205.	3.7	48
496	Manufactured nanomaterials: categorization and approaches to hazard assessment. Archives of Toxicology, 2014, 88, 2191-2211.	4.2	120
497	Single-Molecule Kinetics Reveals a Hidden Surface Reaction Intermediate in Single-Nanoparticle Catalysis. Journal of Physical Chemistry C, 2014, 118, 26902-26911.	3.1	47
498	Role of Oxygen Vacancies in Gold Oxidation Catalysis. RSC Catalysis Series, 2014, , 489-511.	0.1	3
500	Hierarchical PS/PANI nanostructure supported Cu(<scp>ii</scp>) complexes: facile synthesis and study of catalytic applications in aerobic oxidation. RSC Advances, 2014, 4, 55028-55035.	3.6	31
501	Gas-Phase Oxidation of Alcohols: Innovation in Industrial Technologies and Recent Developments. RSC Green Chemistry, 2014, , 203-230.	0.1	4
503	Bimetallic nanoalloys in heterogeneous catalysis of industrially important reactions: synergistic effects and structural organization of active components. Russian Chemical Reviews, 2014, 83, 718-732.	6.5	123
504	Normal and Abnormal N-Heterocyclic Carbene Ligands. Advances in Organometallic Chemistry, 2014, 62, 111-158.	1.0	44
505	Trinuclear Gold Clusters Supported by Cyclic (alkyl)(amino)carbene Ligands: Mimics for Gold Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2014, 53, 9059-9063.	13.8	89
506	Thiolâ€functionalized fructoseâ€derived nanoporous carbon as a support for gold nanoparticles and its application for aerobic oxidation of alcohols in water. Applied Organometallic Chemistry, 2014, 28, 576-583.	3.5	22
507	The Versatile Electrocatalytic Oxidation of Clucose on Bimetallic Nanoparticulate Film Electrode. Journal of the Electrochemical Society, 2014, 161, H3088-H3094.	2.9	6
508	Effect of Acidic Properties of Mesoporous Zeolites Supporting Pt Nanoparticles on Hydrogenative Conversion of Methylcyclopentane. Journal of the American Chemical Society, 2014, 136, 17207-17212.	13.7	62
509	Aspartame-Stabilized Gold–Silver Bimetallic Biocompatible Nanostructures with Plasmonic Photothermal Properties, Antibacterial Activity, and Long-Term Stability. Journal of the American Chemical Society, 2014, 136, 17394-17397.	13.7	140
510	On the Size Evolution of Monolayerâ€Protected Gold Clusters during Ligand Placeâ€Exchange Reactions: The Effect of Solvents. Chemistry - an Asian Journal, 2014, 9, 844-851.	3.3	4
511	Polymerâ€anchored Ru(II) complex as an efficient catalyst for the synthesis of primary amides from nitriles and of secondary amides from alcohols and amines. Applied Organometallic Chemistry, 2014, 28, 900-907.	3.5	13
512	Microreactors for Gold Nanoparticles Synthesis: From Faraday to Flow. Processes, 2014, 2, 466-493.	2.8	46
513	Gold nanoparticles-coated chemically-reactive polymer colloids and the study of their catalytic kinetics. Materials Research Society Symposia Proceedings, 2014, 1641, 1.	0.1	1

ARTICLE IF CITATIONS Preferential Oxidation of Carbon Monoxide in Hydrogen Stream over Gold Catalysts. RSC Catalysis 0.1 4 514 Series, 2014, , 73-110. Heterogeneous Gold Catalysts for Selective Oxidation Reactions. RSC Catalysis Series, 2014, , 288-400. 0.1 516 Ruthenium in Catalysis. Topics in Organometallic Chemistry, 2014, , . 0.7 15 Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of 0.1 Amine Additives. Springer Theses, 2014, , 55-91. Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation 518 9.0 92 of glucose to gluconic acid. Green Chemistry, 2014, 16, 719-726. Au nanoparticles decorated Kapok fiber by a facile noncovalent approach for efficient catalytic decoloration of Congo Red and hydrogen production. Chemical Engineering Journal, 2014, 237, 336-343. 519 12.7 Selective oxidation of 1-octanol over gold supported on mesoporous metal-modified HMS: The effect 520 4.4 22 of the support. Catalysis Today, 2014, 227, 65-70. Highly selective oxidation of organosilanes with a reusable nanoporous silver catalyst. Catalysis 521 3.3 29 Communications, 2014, 53, 53-56. Atomically well-defined Au25(SR)17/18 nanoclusters deposited on silica supports for the aerobic 522 4.4 15 epoxidatión of trans-stilbene. Catalysis Today, 2014, 235, 72-78. Dumbbells, Trikes and Quads: Organic–Inorganic Hybrid Nanoarchitectures Based on "Clicked―Gold 10.0 Nanoparticles. Small, 2014, 10, 349-359. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate. 524 5.019 Mikrochimica Acta, 2014, 181, 249-256. Reactivity of Oxygen Adatoms on Stepped Au(997) Surface toward NO and NO₂. Journal of 3.1 Physical Ćhemistry C, 2014, 118, 8397-8405. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using 526 12.4 74 functional ionic liquids. Journal of Hazardous Materials, 2014, 270, 11-17. Resin-trapped gold nanoparticles: An efficient catalyst for reduction of nitro compounds and Suzuki-Miyaura coupling. Journal of Molecular Catalysis A, 2014, 381, 70-76. 4.8 Noble metal nanoparticle@metal oxide core/yolkâ€"shell nanostructures as catalysts: recent progress 528 347 5.6 and perspective. Nanoscale, 2014, 6, 3995-4011. Efficient chemoselective reduction of nitro compounds and olefins using Pd–Pt bimetallic nanoparticles on functionalized multi-wall-carbon nanotubes. Catalysis Communications, 2014, 45, 529 25-29 Blue-shift of photoluminescence induced by coupling effect of a nanohybrid composed of 530 fluorophore–phenothiazine derivative and gold nanoparticles. Journal of Nanoparticle Research, 1.9 3 2014, 16, 1. Mesoporous silica nanoparticles with tunable pore size for tailored gold nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.

#	Article	IF	CITATIONS
532	Catalytic epoxidation of propylene with CO/O2 over Au/TiO2. Applied Catalysis A: General, 2014, 476, 197-203.	4.3	18
533	Metal-Organic Frameworks as Selective or Chiral Oxidation Catalysts. Catalysis Reviews - Science and Engineering, 2014, 56, 1-56.	12.9	85
534	Aerobic Oxidation of Phenols and Related Compounds using Carbon Nanotube–Gold Nanohybrid Catalysts. ChemCatChem, 2014, 6, 719-723.	3.7	43
535	Aerobic oxidation of benzyl alcohol in methanol solutions over Au nanoparticles: Mg(OH)2 vs MgO as the support. Applied Catalysis A: General, 2014, 473, 96-103.	4.3	47
536	Controlling formation of gold nanoparticles generated in situ at a polymeric surface. Applied Surface Science, 2014, 292, 128-136.	6.1	22
537	Unraveling the synergy between gold nanoparticles and chromium-hydrotalcites in aerobic oxidation of alcohols. Journal of Catalysis, 2014, 313, 80-91.	6.2	57
538	Reusable Oxidation Catalysis Using Metal-Monocatecholato Species in a Robust Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 4965-4973.	13.7	264
539	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. Tetrahedron, 2014, 70, 6162-6168.	1.9	13
540	Magnetically recoverable and reusable CuFe ₂ O ₄ nanoparticle-catalyzed synthesis of benzoxazoles, benzothiazoles and benzimidazoles using dioxygen as oxidant. RSC Advances, 2014, 4, 17832-17839.	3.6	68
541	Reductive Deprotection of Monolayer Protected Nanoclusters: An Efficient Route to Supported Ultrasmall Au Nanocatalysts for Selective Oxidation. Small, 2014, 10, 1473-1478.	10.0	61
542	Highly Efficient Direct Aerobic Oxidative Esterification of Cinnamyl Alcohol with Alkyl Alcohols Catalysed by Gold Nanoparticles Incarcerated in a Nanoporous Polymer Matrix: A Tool for Investigating the Role of the Polymer Host. Chemistry - A European Journal, 2014, 20, 5478-5486.	3.3	42
543	Heck, Sonogashira, and Hiyama Reactions Catalyzed by Palladium Nanoparticles Stabilized by Trisâ€Imidazolium Salt. European Journal of Organic Chemistry, 2014, 2014, 3001-3008.	2.4	28
544	Magnesia-supported gold nanoparticles as efficient catalysts for oxidative esterification of aldehydes or alcohols with methanol to methyl esters. Catalysis Today, 2014, 233, 147-154.	4.4	57
545	Highly Stable, Waterâ€Dispersible Metalâ€Nanoparticleâ€Decorated Polymer Nanocapsules and Their Catalytic Applications. Angewandte Chemie - International Edition, 2014, 53, 6414-6418.	13.8	74
546	Aerobic Oxidation of Alcohols on Au Nanocatalyst: Insight to the Roles of the Ni–Al Layered Double Hydroxides Support. ChemCatChem, 2014, 6, 1737-1747.	3.7	37
547	High-Coordinate Gold(I) Complexes with Dithiocarboxylate Ligands. Inorganic Chemistry, 2014, 53, 4491-4499.	4.0	7
548	Synthesis of gold nanoparticles with glycosides: synthetic trends based on the structures of glycones and aglycones. Carbohydrate Research, 2014, 386, 57-61.	2.3	25
549	Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles. ACS Catalysis, 2014, 4, 2175-2185.	11.2	353

#	Article	IF	CITATIONS
550	Supported Gold Catalysis: From Small Molecule Activation to Green Chemical Synthesis. Accounts of Chemical Research, 2014, 47, 793-804.	15.6	167
551	Phage Based Green Chemistry for Gold Ion Reduction and Gold Retrieval. ACS Applied Materials & Interfaces, 2014, 6, 910-917.	8.0	34
552	Nonscalable Oxidation Catalysis of Gold Clusters. Accounts of Chemical Research, 2014, 47, 816-824.	15.6	520
553	Colloidal gold immobilized on mesoporous silica as a highly active and selective catalyst for styrene epoxidation with H2O2. Catalysis Communications, 2014, 44, 50-53.	3.3	31
554	Green oxidation of fatty alcohols: Challenges and opportunities. Applied Catalysis A: General, 2014, 474, 211-223.	4.3	57
555	Incorporation of Cu, Fe, Ag, and Au nanoparticles in mercapto-silica (MOS) and their CO2 adsorption capacities. Journal of CO2 Utilization, 2014, 5, 17-23.	6.8	19
556	Epoxidation of olefins with molecular oxygen as the oxidant using gold catalysts supported on polyoxometalates. Green Chemistry, 2014, 16, 1586.	9.0	42
557	Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, 2014,	1.1	8
558	Gold nanoparticle decorated reduced graphene oxide sheets with high catalytic activity for Ullmann homocoupling. RSC Advances, 2014, 4, 5243.	3.6	75
559	Chiral metal nanoparticle-catalyzed asymmetric C–C bond formation reactions. Chemical Society Reviews, 2014, 43, 1450-1461.	38.1	157
560	Synthesis and catalytic performance of multiple gold nanodots core–mesoporous silica shell nanoparticles. Microporous and Mesoporous Materials, 2014, 185, 107-112.	4.4	20
561	A way to realize controllable preparation of active nickel oxide supported nano-Au catalyst for CO oxidation. Applied Catalysis A: General, 2014, 473, 7-12.	4.3	8
562	Facile Synthesis and Intraparticle Self-Catalytic Oxidation of Dextran-Coated Hollow Au–Ag Nanoshell and Its Application for Chemo-Thermotherapy. ACS Nano, 2014, 8, 467-475.	14.6	77
563	Ce-V loaded metal oxides as catalysts for dechlorination of chloronitrophenol by ozone. Applied Catalysis B: Environmental, 2014, 150-151, 305-314.	20.2	32
564	DNA Nanocages Swallow Gold Nanoparticles (AuNPs) to Form AuNP@DNA Cage Core–Shell Structures. ACS Nano, 2014, 8, 1130-1135.	14.6	87
565	Gold(<scp>i</scp>) complexes with heteroaryl phosphine ligands. Dalton Transactions, 2014, 43, 2397-2405.	3.3	12
566	Physico-Chemical Characteristics of Gold Nanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 81-152.	1.3	25
567	New multicomponent catalysts for the selective aerobic oxidative condensation of benzylamine to N-benzylidenebenzylamine. Catalysis Science and Technology, 2014, 4, 4340-4355.	4.1	21

#	Article	IF	CITATIONS
568	Oxidations of Allylic and Benzylic Alcohols under Inductivelyâ€Heated Flow Conditions with Goldâ€Doped Superparamagnetic Nanostructured Particles as Catalyst and Oxygen as Oxidant. Advanced Synthesis and Catalysis, 2014, 356, 3530-3538.	4.3	40
569	Time resolved growth of membrane stabilized silver NPs and their catalytic activity. RSC Advances, 2014, 4, 59379-59386.	3.6	15
570	Atomically Precise Gold Catalysis. RSC Catalysis Series, 2014, , 87-122.	0.1	0
571	Water-dispersible and magnetically separable gold nanoparticles supported on a magnetite/s-graphene nanocomposite and their catalytic application in the Ullmann coupling of aryl iodides in aqueous media. RSC Advances, 2014, 4, 39428-39434.	3.6	26
572	Three dimensionally ordered macroporous Au/CeO2 catalysts synthesized via different methods for enhanced CO preferential oxidation in H2-rich gases. RSC Advances, 2014, 4, 5975.	3.6	50
573	The synergistic effect of nanoporous AuPd alloy catalysts on highly chemoselective 1,4-hydrosilylation of conjugated cyclic enones. Chemical Communications, 2014, 50, 3344.	4.1	31
574	Icosahedral gold–platinum alloy nanocrystals in hollow silica: a highly active and stable catalyst for Ullmann reactions. Chemical Communications, 2014, 50, 539-541.	4.1	35
575	Plasmonic bipyramids for fluorescence enhancement and protection against photobleaching. Nanoscale, 2014, 6, 5138.	5.6	29
576	Au@TiO2 double-shelled octahedral nanocages with improved catalytic properties. Dalton Transactions, 2014, 43, 15111-15118.	3.3	10
577	Ordered mesoporous V ₂ O ₅ /WO ₃ composite catalysts for efficient oxidation of aryl alcohols. RSC Advances, 2014, 4, 46170-46178.	3.6	16
578	Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today, 2014, 9, 631-667.	11.9	158
579	Mechanistic Studies of the Reduction of Nitroarenes by NaBH ₄ or Hydrosilanes Catalyzed by Supported Gold Nanoparticles. ACS Catalysis, 2014, 4, 3504-3511.	11.2	257
580	A Facile Preparation of Highly Active Au/MgO Catalysts for Aerobic Oxidation of Benzyl Alcohol. Catalysis Letters, 2014, 144, 1919-1929.	2.6	23
581	Programmed synthesis of Pd@hTiO ₂ hollow core–shell nanospheres as an efficient and reusable catalyst for the reduction of p-nitrophenol. RSC Advances, 2014, 4, 33055.	3.6	8
582	Plasma synthesis of carbon nanotube-gold nanohybrids: efficient catalysts for green oxidation of silanes in water. Journal of Materials Chemistry A, 2014, 2, 245-250.	10.3	44
583	Tuning the selectivity of a supported gold catalyst in solvent- and radical initiator-free aerobic oxidation of cyclohexene. Catalysis Science and Technology, 2014, 4, 752-757.	4.1	28
584	A used battery supported Ag catalyst for efficient oxidation of alcohols and carbon oxide. RSC Advances, 2014, 4, 25384-25388.	3.6	12
585	Stabilizing Gold Nanoparticles by Solid Supports. RSC Catalysis Series, 2014, , 1-26.	0.1	5

#	Article	IF	CITATIONS
586	Structural evaluation and catalytic performance of nano-Au supported on nanocrystalline Ce _{0.9} Fe _{0.1} O _{2â^îl} solid solution for oxidation of carbon monoxide and benzylamine. RSC Advances, 2014, 4, 43460-43469.	3.6	46
587	Organosilane oxidation by water catalysed by large gold nanoparticles in a membrane reactor. Catalysis Science and Technology, 2014, 4, 2156-2160.	4.1	12
588	Silicate anion intercalated cobalt-aluminium hydrotalcite (CoAl-HT-Si): a potential catalyst for alcohol oxidation. RSC Advances, 2014, 4, 11188.	3.6	38
589	Formation of supported rhodium clusters from mononuclear rhodium complexes controlled by the support and ligands on rhodium. Physical Chemistry Chemical Physics, 2014, 16, 1262-1270.	2.8	24
590	Synthesis of CO ₂ /N ₂ -Triggered Reversible Stability-Controllable Poly(2-(diethylamino)ethyl methacrylate)- <i>grafted</i> -AuNPs by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2014, 30, 12684-12689.	3.5	16
591	Core–Shell and Asymmetric Polystyrene–Gold Composite Particles via One-Step Pickering Emulsion Polymerization. Langmuir, 2014, 30, 75-82.	3.5	38
592	Synergistic effect of interfacial lattice Ag ⁺ and Ag ⁰ clusters in enhancing the photocatalytic performance of TiO ₂ . Physical Chemistry Chemical Physics, 2014, 16, 19358.	2.8	40
593	Cyclopropanation of diazoesters with styrene derivatives catalyzed by magnetically recoverable copper-plated iron nanoparticles. Tetrahedron, 2014, 70, 8952-8958.	1.9	7
594	A mechanism of gas-phase alcohol oxidation at the interface of Au nanoparticles and a MgCuCr ₂ O ₄ spinel support. Catalysis Science and Technology, 2014, 4, 2997-3003.	4.1	23
595	Nanoporous Ag–ZrO 2 composites prepared by chemical dealloying for borohydride electro-oxidation. International Journal of Hydrogen Energy, 2014, 39, 15646-15655.	7.1	20
596	Waterâ€6oluble Ionic Palladium Complexes: Effect of Pendant Ionic Groups on Palladium Nanoparticles and Suzuki–Miyaura Reaction in Neat Water. ChemPlusChem, 2014, 79, 257-265.	2.8	12
597	Green synthesis of noble metal nanoparticles using cysteine-modified silk fibroin: catalysis and antibacterial activity. RSC Advances, 2014, 4, 46285-46292.	3.6	28
598	Synthesis of an amino-functionalized metal–organic framework at a nanoscale level for gold nanoparticle deposition and catalysis. Journal of Materials Chemistry A, 2014, 2, 20588-20596.	10.3	130
599	Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions. ACS Sustainable Chemistry and Engineering, 2014, 2, 1699-1706.	6.7	75
600	Highly dispersed platinum nanoparticles supported on silica as catalyst for hydrogen production. RSC Advances, 2014, 4, 50114-50122.	3.6	18
601	Facile and rapid synthesis of Pd nanodendrites for electrocatalysis and surface-enhanced Raman scattering applications. Nanoscale, 2014, 6, 11169-11176.	5.6	40
602	Cryogelation of Chitosan Using Noble-Metal Ions: In Situ Formation of Nanoparticles. Biomacromolecules, 2014, 15, 2246-2255.	5.4	27
603	Polymer supported palladium nanocrystals as efficient and recyclable catalyst for the reduction of nitroarenes to anilines under mild conditions in water. Journal of Molecular Catalysis A, 2014, 395, 307-314.	4.8	63

# 604	ARTICLE Poly(<i>N</i> -isopropylacrylamide)/Gold Hybrid Hydrogels Prepared by Catechol Redox Chemistry. Characterization and Smart Tunable Catalytic Activity. Macromolecules, 2014, 47, 6028-6036.	IF 4.8	Citations 85
605	GOLD-CATALYZED SYNTHESIS OF HETEROCYCLES. Catalytic Science Series, 2014, , 175-224.	0.0	3
606	Promotional Effects of Mesoporous Zeolites with Pt Nanoparticle Catalysts during Reforming of Methylcyclopentane. Journal of Physical Chemistry A, 2014, 118, 8446-8452.	2.5	20
607	Au anchored to (α-Fe2O3)-MCM-41-HS as a novel magnetic nanocatalyst for water-medium and solvent-free alkyne hydration. Catalysis Communications, 2014, 57, 29-35.	3.3	17
608	Room Temperature Hydroamination of Alkynes Catalyzed by Gold Clusters in Interfacially Cross-Linked Reverse Micelles. ACS Catalysis, 2014, 4, 688-691.	11.2	39
609	Coupling reaction between $\hat{1}\pm,\hat{1}^2$ -unsaturated aldehyde and methanol catalysed by gold-supported on mesostructured cerias. Applied Catalysis A: General, 2014, 484, 64-73.	4.3	7
610	Organometallic Ruthenium Nanoparticles and Catalysis. Topics in Organometallic Chemistry, 2014, , 319-370.	0.7	20
611	Synergetic Approach for Simple and Rapid Conjugation of Gold Nanoparticles with Oligonucleotides. ACS Applied Materials & Interfaces, 2014, 6, 16800-16807.	8.0	47
612	Mechanism of Improved Au Nanoparticle Size Distributions Using Simultaneous Spatial and Temporal Focusing for Femtosecond Laser Irradiation of Aqueous KAuCl ₄ . Journal of Physical Chemistry C, 2014, 118, 23986-23995.	3.1	33
613	Electronic Structure of Gold Carbonyl Compounds RAuL (R = CF ₃ , BO, Br, Cl,) Tj ETQq1 1 0.784314 Interactions in the Clusters [RAuL] _{<i>n</i>} (<i>n</i> < = $2\hat{a}\in$ "4): A Theoretical Study. Organometallics 2014 33 5101-5110	rgBT /Ove 2.3	rlock 10 Tf 5 13
614	Magnetic solid phase extraction using gold immobilized magnetic mesoporous silica nanoparticles coupled with dispersive liquid–liquid microextraction for determination of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2014, 1364, 20-27.	3.7	49
615	Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chemical Communications, 2014, 50, 14194-14196.	4.1	228
616	One-Pot Synthesis of Au@SiO ₂ Catalysts: A Click Chemistry Approach. ACS Combinatorial Science, 2014, 16, 513-517.	3.8	16
617	Redox Decomposition of Silver Citrate Complex in Nanoscale Confinement: An Unusual Mechanism of Formation and Growth of Silver Nanoparticles. Langmuir, 2014, 30, 2460-2469.	3.5	50
618	Gold nanoparticles stabilized by task-specific ionic complexes: Quasi-homogeneous catalysts with self-separating nature for aerobic epoxidation of styrene. Journal of Catalysis, 2014, 319, 163-173.	6.2	13
619	Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. ACS Applied Materials & Interfaces, 2014, 6, 16449-16465.	8.0	1,018
620	Transformation of Au3M/SiO2 (MÂ=ÂNi, Co, Fe) into Au–MO x /SiO2 Catalysts for the Reduction of p-Nitrophenol. Catalysis Letters, 2014, 144, 1001-1008.	2.6	9
621	Au/TiO2 nanotube catalysts prepared by combining sol–gel method with hydrothermal treatment and their catalytic properties for CO oxidation. Journal of Sol-Gel Science and Technology, 2014, 71, 406-412.	2.4	15

#	Article	IF	CITATIONS
622	Tandem Oxidative Processes Catalyzed by Polymer-Incarcerated Multimetallic Nanoclusters with Molecular Oxygen. Accounts of Chemical Research, 2014, 47, 1054-1066.	15.6	90
623	Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions. Green Chemistry, 2014, 16, 4137-4143.	9.0	75
624	Atomic and molecular adsorption on Au(111). Surface Science, 2014, 627, 57-69.	1.9	78
625	Design of novel indium oxide supported gold nanocatalysts and their application in homocoupling of arylboronic acids. Journal of Molecular Catalysis A, 2014, 386, 101-107.	4.8	14
626	Two-phase synthesis of hydrophobic ionic liquid-capped gold nanoparticles and their application for sensing cholesterol. Electrochimica Acta, 2014, 132, 465-471.	5.2	13
627	Cold Nanoparticles Bifunctionalized by Chemiluminescence Reagent and Catalyst Metal Complexes: Synthesis and Unique Chemiluminescence Property. Analytical Chemistry, 2014, 86, 2857-2861.	6.5	62
628	Photochemistry at the Surface of Gold Nanoprisms from Surface-Enhanced Raman Scattering Blinking. Journal of Physical Chemistry C, 2014, 118, 17956-17967.	3.1	30
629	State of the Art and Perspectives in the "Molecular Approach―Towards Well-Defined Heterogeneous Catalysts. Topics in Catalysis, 2014, 57, 843-851.	2.8	30
630	A turn-on fluorescent probe for Au3+ based on rodamine derivative and its bioimaging application. Science China Chemistry, 2014, 57, 1043-1047.	8.2	25
631	Citrate–hydrazine hydrogen-bonding driven single-step synthesis of tunable near-IR plasmonic, anisotropic silver nanocrystals: implications for SERS spectroscopy of inorganic oxoanions. Dalton Transactions, 2014, 43, 11826-11833.	3.3	21
632	DNA Hydrogel as a Template for Synthesis of Ultrasmall Gold Nanoparticles for Catalytic Applications. ACS Applied Materials & amp; Interfaces, 2014, 6, 3226-3232.	8.0	119
634	The Late Start and Amazing Upswing in Gold Chemistry. Journal of Chemical Education, 2014, 91, 2024-2036.	2.3	57
635	Distinguishing Localized Surface Plasmon Resonance and Schottky Junction of Au–Cu ₂ O Composites by Their Molecular Spacer Dependence. ACS Applied Materials & Interfaces, 2014, 6, 10958-10962.	8.0	63
636	Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chemical Communications, 2014, 50, 3169-3172.	4.1	307
637	Water-Induced Adsorption of Carbon Monoxide and Oxygen on the Gold Dimer Cation. Journal of Physical Chemistry A, 2014, 118, 8293-8297.	2.5	9
638	Cold nanoparticles as electron reservoir redox catalysts for 4-nitrophenol reduction: a strong stereoelectronic ligand influence. Chemical Communications, 2014, 50, 10126-10129.	4.1	101
639	Isomerization of bicyclic terpene epoxides into allylic alcohols without changing of the initial structure. Journal of Molecular Catalysis A, 2014, 388-389, 162-166.	4.8	17
640	Alumina-grafted SBA-15 as a high performance support for Pd-catalysed cinnamyl alcohol selective oxidation. Catalysis Today, 2014, 229, 46-55.	4.4	68

#	Article	IF	CITATIONS
641	Au–Pd alloy nanoparticle catalyzed selective oxidation of benzyl alcohol and tandem synthesis of imines at ambient conditions. Catalysis Today, 2014, 235, 152-159.	4.4	37
642	Preparation of polymer incarcerated gold nanocluster catalysts (PI-Au) and their application to aerobic oxidation reactions of boronic acids, alcohols, and silyl enol ethers. Tetrahedron, 2014, 70, 6039-6049.	1.9	9
643	Application of Automated Reaction Path Search Methods to a Systematic Search of Single-Bond Activation Pathways Catalyzed by Small Metal Clusters: A Case Study on H–H Activation by Gold. Journal of Chemical Theory and Computation, 2014, 10, 1623-1630.	5.3	28
644	Facile Synthesis of Au/gâ€C ₃ N ₄ Nanocomposites: An Inorganic/Organic Hybrid Plasmonic Photocatalyst with Enhanced Hydrogen Gas Evolution Under Visibleâ€Light Irradiation. ChemCatChem, 2014, 6, 1453-1462.	3.7	208
645	Metalloenzyme-Mimicking Supramolecular Catalyst for Highly Active and Selective Intramolecular Alkyne Carboxylation. Journal of the American Chemical Society, 2014, 136, 5579-5582.	13.7	29
646	Size effect of gold nanoparticles supported on carbon nanotube as catalysts in selected organic reactions. Tetrahedron, 2014, 70, 6140-6145.	1.9	39
647	Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications. Nanotechnology, 2014, 25, 055208.	2.6	67
648	Facile synthesis of water-soluble Au25–xAgx nanoclusters protected by mono- and bi-thiolate ligands. Chemical Communications, 2014, 50, 7459.	4.1	59
649	A streptavidin functionalized graphene oxide/Au nanoparticles composite for the construction of sensitive chemiluminescent immunosensor. Analytica Chimica Acta, 2014, 839, 67-73.	5.4	26
650	"Click―Synthesis of Nona-PEG-branched Triazole Dendrimers and Stabilization of Gold Nanoparticles That Efficiently Catalyze <i>p</i> -Nitrophenol Reduction. Inorganic Chemistry, 2014, 53, 6954-6961.	4.0	49
651	Highly active gold catalysts loaded on NiAl-oxide derived from layered double hydroxide for aerobic alcohol oxidation. Applied Catalysis A: General, 2014, 482, 294-299.	4.3	16
652	Amplified electrochemical detection of protein kinase activity based on gold nanoparticles/multi-walled carbon nanotubes nanohybrids. Talanta, 2014, 129, 328-335.	5.5	39
653	Aerobic oxidative transformation of primary alcohols and amines to amides promoted by a hydroxyapatite-supported gold catalyst in water. Tetrahedron Letters, 2014, 55, 124-127.	1.4	31
654	Theoretical and Experimental Insights into the Origin of the Catalytic Activity of Subnanometric Gold Clusters: Attempts to Predict Reactivity with Clusters and Nanoparticles of Gold. Accounts of Chemical Research, 2014, 47, 834-844.	15.6	210
655	Bi- and tetrametallic complexes of the noble metals with PNP-ligands. Journal of Organometallic Chemistry, 2014, 751, 343-350.	1.8	7
657	Three-component Au—Chitosan—SiO2 systems as heterogeneous catalysts for intramolecular cyclization of 2-(2-phenylethynyl)aniline. Russian Chemical Bulletin, 2015, 64, 2816-2820.	1.5	3
658	Intramolecular hydroamination of 2-(2-phenylethynyl)aniline catalyzed by gold nanoparticles. Russian Chemical Bulletin, 2015, 64, 2821-2829.	1.5	4
659	Simple Homopolymer-incarcerated Gold Nanoclusters Prepared by Self-assembled Encapsulation with Aluminum Reagents as Crosslinkers: Catalysts for Aerobic Oxidation Reactions. Chemistry Letters, 2015, 44, 50-52.	1.3	2
ARTICLE IF CITATIONS Structure and bonding in Au(<scp>i</scp>) chloride species: a critical examination of X-ray absorption 660 3.6 42 spectroscopy (XAS) data. RSC Advances, 2015, 5, 6912-6918. Design Principles of Inert Substrates for Exploiting Gold Clusters' Intrinsic Catalytic Reactivity. 3.3 Scientific Reports, 2015, 5, 15095. Reversible Size Control of Liquidâ€Metal Nanoparticles under Ultrasonication. Angewandte Chemie -664 13.8 168 International Edition, 2015, 54, 12809-12813. Waterâ€Soluble Gold Nanoparticles: From Catalytic Selective Nitroarene Reduction in Water to Refractive Index Sensing. Chemistry - an Asian Journal, 2015, 10, 2437-2443. Efficient Synthesis of Amides and Esters from Alcohols under Aerobic Ambient Conditions Catalyzed 666 6.8 33 by a Au/Mesoporous Al₂O₃ Nanocatalyst. ChemSusChem, 2015, 8, 1916-1925. Nanocatalysts Fabricated by a Dealloying Method. Chemical Record, 2015, 15, 964-978. 5.8 Nanocatalysis in Flow. ChemSusChem, 2015, 8, 2586-2605. 668 6.8 57 Size of Gold Nanoparticles Driving Selective Amide Synthesis through Aerobic Condensation of 13.8 Aldehydes and Amines. Angewandte Chemie - International Edition, 2015, 54, 7564-7567. Gold nanoparticles supported on threeâ€dimensional nitrogenâ€doped graphene: an efficient catalyst for 670 selective aerobic oxidation of hydrocarbons under mild conditions. Applied Organometallic 3.5 21 Chemistry, 2015, 29, 456-461. Copper Nanoparticles Stabilized in a Porous Chitosan Aerogel as a Heterogeneous Catalyst for Câ'S 671 Crossâ€coupling. ChemCatChem, 2015, 7, 3307-3315. Nonâ€Oxidative Dehydrogenation Pathways for the Conversion of C₂–C₄ 672 6.8 11 Alcohols to Carbonyl Compounds. ChemSusChem, 2015, 8, 3959-3962. Gold atalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and 6.8 94 Versatile. ChemSusChem, 2015, 8, 3029-3035. Design and Synthesis of an Au@MILâ€53(NH₂) Catalyst for a Oneâ€Pot Aerobic Oxidation/Knoevenagel Condensation Reaction. European Journal of Inorganic Chemistry, 2015, 2015, 674 2.0 36 5099-5105. Palladium immobilized on amidoximeâ€functionalized magnetic Fe₃O₄ nanoparticles: a highly stable and efficient magnetically recoverable nanocatalyst for sonogashira coupling reaction. Applied Organometallic Chemistry, 2015, 29, 834-839. 3.5 68 Novel Metal Nanomaterials and Their Catalytic Applications. Molecules, 2015, 20, 17070-17092. 676 90 3.8 Continuous Flow Controlled Synthesis of Gold Nanoparticles Using Pulsed Mixing Microfluidic 1.8 System. Advances in Materials Science and Engineering, 2015, 2015, 1-11. Enhanced Catalytic Activity of Supported Gold Catalysts for Oxidation of Noxious Environmental 678 0.6 8 Pollutant CO. Indian Journal of Materials Science, 2015, 2015, 1-10. Mesoporous Silica Supported Au Nanoparticles with Controlled Size as Efficient Heterogeneous 679 Catalyst for Aerobic Oxidation of Alcohols. Journal of Chemistry, 2015, 2015, 1-7.

#	Article	IF	CITATIONS
680	Gold and silver catalysis: from organic transformation to bioconjugation. Organic and Biomolecular Chemistry, 2015, 13, 6667-6680.	2.8	57
681	Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase. Journal of Physical Chemistry Letters, 2015, 6, 2345-2349.	4.6	32
682	Interplay between zirconium addition and morphology/catalytic performance of HPW/PEHA/SBA-15 composites towards selective oxidation of benzyl alcohol. Journal of Porous Materials, 2015, 22, 997-1008.	2.6	8
683	Deoxygenative coupling of nitroarenes for the synthesis of aromatic azo compounds with CO using supported gold catalysts. Chemical Communications, 2015, 51, 11217-11220.	4.1	41
684	Noble metal ion substituted CeO2 catalysts: Electronic interaction between noble metal ions and CeO2 lattice. Catalysis Today, 2015, 253, 40-50.	4.4	79
685	One-pot synthesis of porous monolith-supported gold nanoparticles as an effective recyclable catalyst. Journal of Materials Chemistry A, 2015, 3, 13519-13525.	10.3	59
686	Effect of Mg2+ on the catalytic activities of CoMgAl hydrotalcites in the selective oxidation of benzyl alcohol to benzaldehyde. Catalysis Communications, 2015, 69, 1-4.	3.3	32
687	Selective Oxidation of Raw Glycerol Using Supported AuPd Nanoparticles. Catalysts, 2015, 5, 131-144.	3.5	28
688	Fragmentation of supported gold nanoparticles@agarose film by thiols and the role of their synergy in efficient catalysis. RSC Advances, 2015, 5, 101860-101870.	3.6	1
689	The growth pattern of Au (n= 1–20) clusters absorbed on rutile TiO2 (1 1 0) surfaces. Applied Surface Science, 2015, 359, 729-735.	6.1	10
690	Discovery, Development, and Commercialization of Gold Catalysts for Acetylene Hydrochlorination. Journal of the American Chemical Society, 2015, 137, 14548-14557.	13.7	283
691	Engineering microencapsulation of highly catalytic gold nanoclusters for an extreme thermal stability. Nanoscale, 2015, 7, 20584-20592.	5.6	8
692	Accelerated nanoparticles synthesis in alcohol–water-mixture-based solution plasma. Physical Chemistry Chemical Physics, 2015, 17, 30255-30259.	2.8	25
693	The assembly of polyethyleneimine-entrapped gold nanoparticles onto filter paper for catalytic applications. RSC Advances, 2015, 5, 104239-104244.	3.6	14
694	Highly Active Heterogeneous 3 nm Gold Nanoparticles on Mesoporous Carbon as Catalysts for Low-Temperature Selective Oxidation and Reduction in Water. ACS Catalysis, 2015, 5, 797-802.	11.2	48
695	Au 25 (SPh- p NH 2) 17 nanoclusters deposited on SBA-15 as catalysts for aerobic benzyl alcohol oxidation. Journal of Catalysis, 2015, 322, 130-138.	6.2	51
696	Sustainable catalytic oxidation of alcohols over the interface between air and water. Green Chemistry, 2015, 17, 2325-2329.	9.0	22
697	Microspheres with Au@SiO2 core and mesoporous aluminosilica shell as superior heterogeneous catalysts for the aerobic epoxidation of cis-cyclooctene. Chemical Communications, 2015, 51, 4259-4262.	4.1	10

#	ARTICLE	IF	CITATIONS
698	organic molecules and a revealing fluorescence and X-ray absorption study. Nanoscale, 2015, 7, 4978-4983.	5.6	18
699	Study of ethanol reactions on H ₂ reduced Au/TiO ₂ anatase and rutile: effect of metal loading on reaction selectivity. Journal of Lithic Studies, 2015, 1, 61-70.	0.5	19
700	Adding Two Active Silver Atoms on Au ₂₅ Nanoparticle. Nano Letters, 2015, 15, 1281-1287.	9.1	171
701	Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordination Chemistry Reviews, 2015, 287, 114-136.	18.8	657
702	Synthesis of Single and Multipatch Particles by Dip-Coating Method and Self-Assembly Thereof. Langmuir, 2015, 31, 1255-1261.	3.5	14
703	A comparative study between post-Hartree–Fock methods and density functional theory in closed-shell aurophilic attraction. Computational and Theoretical Chemistry, 2015, 1057, 74-79.	2.5	18
704	Industrial applications of nanoparticles. Chemical Society Reviews, 2015, 44, 5793-5805.	38.1	636
705	Chemoselective Hydrogenation of Nitrobenzaldehyde to Nitrobenzyl Alcohol with Unsupported Au Nanorod Catalysts in Water. Journal of Physical Chemistry C, 2015, 119, 11143-11147.	3.1	31
706	Ferritin: A Versatile Building Block for Bionanotechnology. Chemical Reviews, 2015, 115, 1653-1701.	47.7	330
707	Promoting effects of lanthanum on the catalytic activity of Au/TiO ₂ nanotubes for CO oxidation. RSC Advances, 2015, 5, 11989-11995.	3.6	22
708	Selective 1,3-butadiene hydrogenation by gold nanoparticles on novel nano-carbon materials. Catalysis Today, 2015, 249, 117-126.	4.4	17
709	Solvent-free oxidation of dec-1-ene using gold/graphite catalyst using an in situ generated oxidant. Catalysis Science and Technology, 2015, 5, 1307-1313.	4.1	3
710	Gold Nanoparticles Supported in Zirconia–Ceria Mesoporous Thin Films: A Highly Active Reusable Heterogeneous Nanocatalyst. ACS Applied Materials & Interfaces, 2015, 7, 1114-1121.	8.0	35
711	Aerobic Oxidative Esterification of Benzyl Alcohol and Acetaldehyde over Gold Supported on Nanostructured Ceria–Alumina Mixed Oxides. ChemCatChem, 2015, 7, 1011-1017.	3.7	18
712	Fullerene–Ionicâ€Liquid Conjugates: A New Class of Hybrid Materials with Unprecedented Properties. Chemistry - A European Journal, 2015, 21, 3327-3334.	3.3	40
713	Dual-immobilized copper catalyst: carbon nitride-supported copper nanoparticles catalyzed oxidation of propargylic alcohols. Tetrahedron Letters, 2015, 56, 1312-1316.	1.4	17
714	Catalytic activity of various pepsin reduced Au nanostructures towards reduction of nitroarenes and resazurin. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	11
715	A highly sensitive and selective fluorescein-based fluorescence probe for Au3+ and its application in living cell imaging. Sensors and Actuators B: Chemical, 2015, 209, 1005-1010.	7.8	52

#	Article	IF	CITATIONS
716	Effect of thermal treatments on the morphology, chemical state and lattice structure of gold nanoparticles deposited onto carbon structured monoliths. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 140-150.	4.7	12
717	Degradation of Methylene Blue Using Porous WO ₃ , SiO ₂ –WO ₃ , and Their Au-Loaded Analogs: Adsorption and Photocatalytic Studies. ACS Applied Materials & Interfaces, 2015, 7, 1987-1996.	8.0	108
718	Green synthesis of gold nanoparticles under sunlight irradiation and their colorimetric detection of Ni ²⁺ and Co ²⁺ ions. RSC Advances, 2015, 5, 11458-11468.	3.6	71
719	Plasmon induced self-assembly of gold nanorods in polymer films. Chemical Communications, 2015, 51, 1911-1913.	4.1	5
720	Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. Journal of Materials Chemistry A, 2015, 3, 4586-4594.	10.3	129
721	High-yield synthesis of gold nanoribbons by using binary surfactants. Journal of Materials Chemistry C, 2015, 3, 1447-1451.	5.5	14
722	Bimetallic Au–Ag/SiO2 catalysts: comparison in glucose, benzyl alcohol and CO oxidation reactions. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 45-65.	1.7	20
723	Au@UiO-66: a base free oxidation catalyst. RSC Advances, 2015, 5, 22334-22342.	3.6	59
724	The support effect on the size and catalytic activity of thiolated Au ₂₅ nanoclusters as precatalysts. Nanoscale, 2015, 7, 6325-6333.	5.6	142
725	Doped graphenes in catalysis. Journal of Molecular Catalysis A, 2015, 408, 296-309.	4.8	70
726	Organic Synthesis Catalyzed by Supported Gold Nanoparticles. , 2015, , .		0
727	A highly active recyclable gold–graphene nanocomposite material for oxidative esterification and Suzuki cross-coupling reactions in green pathway. Journal of Colloid and Interface Science, 2015, 459, 97-106.	9.4	38
728	Heterogeneous Gold Catalyst: Synthesis, Characterization, and Application in 1,4-Addition of Boronic Acids to Enones. ACS Catalysis, 2015, 5, 5060-5067.	11.2	19
729	Biologically active l-cysteine as a reducing/capping agent for controlled tuning of gold nanoparticles. Journal of Alloys and Compounds, 2015, 649, 11-18.	5.5	16
730	Nanoporous Metals as Novel Catalysts for Chemical Transformations \hat{a} ⁺ , , 2015, , .		1
731	Effective immobilization of gold nanoparticles on core–shell thiol-functionalized GO coated TiO2 and their catalytic application in the reduction of 4-nitrophenol. Applied Catalysis A: General, 2015, 502, 239-245.	4.3	36
732	Supported gold-catalyzed and ammonia-promoted selective synthesis of quinazolines in aqueous media. Organic Chemistry Frontiers, 2015, 2, 114-118.	4.5	38
733	Synthesis and characterization of Cu2O/Au and its application in catalytic reduction of 4-nitrophenol. Russian Journal of Physical Chemistry A, 2015, 89, 1374-1380.	0.6	10

#	Article	IF	CITATIONS
734	Catalytic stereoselective addition to alkynes. Borylation or silylation promoted by magnesia-supported iron oxide and cis-diboronation or silaboration by supported platinum nanoparticles. Journal of Catalysis, 2015, 329, 401-412.	6.2	38
735	Recent Advances in Metal Nanoparticles Stabilization into Nanopores of Montmorillonite and Their Catalytic Applications for Fine Chemicals Synthesis. Catalysis Reviews - Science and Engineering, 2015, 57, 257-305.	12.9	46
736	Poly(2-aminothiazole) as a unique precursor for nitrogen and sulfur co-doped porous carbon: immobilization of very small gold nanoparticles and its catalytic application. RSC Advances, 2015, 5, 63421-63428.	3.6	14
737	Highly sensitive and selective carbon nanotube-based gas sensor arrays functionalized with different metallic nanoparticles. Sensors and Actuators B: Chemical, 2015, 220, 1288-1296.	7.8	76
738	[Au ₅ Mes ₅]: improved gram-scale synthesis and its use as a convenient precursor for halide-free supported gold nanoparticles. Dalton Transactions, 2015, 44, 14349-14353.	3.3	10
739	Gas-phase oxidation of alcohols with dioxygen over an Au/TiO2 catalyst: The role of reactive oxygen species. Kinetics and Catalysis, 2015, 56, 343-346.	1.0	2
740	Graphite-supported ultra-small copper nanoparticles – Preparation, characterization and catalysis applications. Carbon, 2015, 93, 974-983.	10.3	55
741	Synergistic cascade catalysis by metal nanoparticles and Lewis acids in hydrogen autotransfer. Chemical Science, 2015, 6, 1719-1727.	7.4	45
742	Heterogeneous photocatalytic C–C coupling: mechanism of plasmon-mediated reductive dimerization of benzyl bromides by supported gold nanoparticles. Catalysis Science and Technology, 2015, 5, 4336-4340.	4.1	30
743	Palladium encapsulated within magnetic hollow mesoporous TiO ₂ spheres (Pd/Fe ₃ O ₄ @hTiO ₂) as a highly efficient and recyclable catalysts for hydrodechlorination of chlorophenols. RSC Advances, 2015, 5, 54816-54821.	3.6	3
744	A facile synthesis of thermo-responsive Au–polymer hybrid microgels through temperature-induced co-aggregation and self-crosslinking. Polymer Chemistry, 2015, 6, 5989-5992.	3.9	6
745	Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Science and Technology of Advanced Materials, 2015, 16, 034903.	6.1	104
746	Engineering ligands on the Au center: discovering broadly applicable gold catalysis with high turnover numbers. Organic Chemistry Frontiers, 2015, 2, 995-998.	4.5	17
747	Self-reducing asymmetric polymer membrane for in situ formation and containment of noble metal nanocatalysts. Green Chemistry, 2015, 17, 4157-4161.	9.0	14
748	Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green Chemistry, 2015, 17, 3271-3275.	9.0	124
749	Halogen bonding in polymer science: from crystal engineering to functional supramolecular polymers and materials. Polymer Chemistry, 2015, 6, 3559-3580.	3.9	213
750	Heterogeneous catalysis for green chemistry based on nanocrystals. National Science Review, 2015, 2, 150-166.	9.5	59
751	Synthesis and characterization of gold complexes with pyridine-based SNS ligands and as homogeneous catalysts for reduction of 4-nitrophenol. RSC Advances, 2015, 5, 294 <u>91-29496.</u>	3.6	33

#	Article	IF	CITATIONS
752	Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. Nanoscale, 2015, 7, 10559-10583.	5.6	150
753	A facile UV-light mediated synthesis of l-histidine stabilized silver nanocluster for efficient photodegradation of methylene blue. Journal of Molecular Catalysis A, 2015, 404-405, 27-35.	4.8	14
754	Engineering noble metal nanomaterials for environmental applications. Nanoscale, 2015, 7, 7502-7519.	5.6	116
755	Synthesis and photophysical properties of GemPhos noble metal complexes. Journal of Organometallic Chemistry, 2015, 795, 11-17.	1.8	7
756	Ru-modified Au catalysts supported on ceria–zirconia for the selective oxidation of glycerol. Catalysis Today, 2015, 253, 178-189.	4.4	45
757	Carbon nanotube-supported gold nanoparticles as efficient catalyst for the selective hydrogenation of nitroaromatic derivatives to anilines. Materials Today Communications, 2015, 3, 104-113.	1.9	20
758	Au/graphene oxide/carbon nanotube flexible catalyst film: synthesis, characterization and its application for catalytic reduction of 4-nitrophenol. RSC Advances, 2015, 5, 37710-37715.	3.6	34
759	Direct electrochemiluminescence of gold nanoparticles bifunctionalized by luminol analogue–metal complexes in neutral and alkaline media. Chemical Communications, 2015, 51, 11366-11369.	4.1	39
760	Nanocomposites of Gold and Semiconductors. , 2015, , 31-91.		0
761	Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst. ACS Catalysis, 2015, 5, 2529-2533.	11.2	79
762	Gold/Ceria. , 2015, , 133-158.		2
763	Growth of TiO2(B)(001) on Au(111) by chemical vapor deposition. Surface Science, 2015, 633, 102-108.	1.9	9
764	Supported gold nanoparticles as efficient and reusable heterogeneous catalyst for cycloisomerization reactions. Green Chemistry, 2015, 17, 3314-3318.	9.0	40
765	Identifying the Role of Nâ€Heteroatom Location in the Activity of Metal Catalysts for Alcohol Oxidation. ChemCatChem, 2015, 7, 1338-1346.	3.7	22
766	Fluorescence and room temperature activity of Y ₂ O ₃ :(Eu ³⁺ ,Au ³⁺)/palygorskite nanocomposite. Dalton Transactions, 2015, 44, 1673-1679.	3.3	23
767	Gold aerogel supported on graphitic carbon nitride: an efficient electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 23120-23135.	10.3	57
768	Gold Nanoparticles: Synthesis and Biological Applications. Nano LIFE, 2015, 05, 1542007.	0.9	19
769	Hierarchical structures based on gold nanoparticles embedded into hollow ceria spheres and mesoporous silica layers with high catalytic activity and stability. New Journal of Chemistry, 2015, 39,	2.8	25

ARTICLE IF CITATIONS Gold particle size effect in biomass-derived lignan hydroxymatairesinol oxidation over Au/Al2O3 770 4.3 7 catalysts. Applied Catalysis A: General, 2015, 504, 248-255. A theoretical study of O₂ activation by the Au₇-cluster on Mg(OH) < sub>2 </sub>: roles of surface hydroxyls and hydroxyl defects. Physical Chemistry Chemical 771 2.8 Physics, 2015, 17, 30736-30743. Hollow Ag/carbon microporous spheres with high catalytic activity based on a bio-inspiration 772 9 3.6 polydopamine reaction platform. RSC Advances, 2015, 5, 91056-91061. Ammonia-assisted synthesis towards a phyllosilicate-derived highly-dispersed and long-lived Ni/SiO₂catalyst. Catalysis Science and Technology, 2015, 5, 5095-5099. Au–ZnO prepared by simple in situ reduction and spontaneous of gold nanoparticles on the surface of the layered zinc hydroxide using a novel one-pot method. Materials Chemistry and Physics, 2015, 167, 774 4.0 5 152-159. Nanosize Gold Promoted Vanadium Oxide Catalysts for Ammoxidation of 2-Methylpyrazine to 2-Cyanopyrazine. Topics in Catalysis, 2015, 58, 1062-1068. 2.8 776 Catalysis Applications of Size-Selected Cluster Deposition. ACS Catalysis, 2015, 5, 7152-7176. 11.2 240 Dipeptide recognition in water mediated by mixed monolayer protected gold nanoparticles. Chemical 4.1 Communications, 2015, 51, 14247-14250. Auâ€"ZnO Nanocomposite Films for Plasmonic Photocatalysis. Advanced Materials Interfaces, 2015, 2, 778 3.7 51 1500156. Noble metal ions in CeO₂ and TiO₂: synthesis, structure and catalytic 779 3.6 properties. RSC Advances, 2015, 5, 94949-94979. Controlled nitridation of tantalum (oxy)nitride nanoparticles towards optimized metal-support 780 12 3.6 interactions with gold nanocatalysts. RSC Advances, 2015, 5, 89282-89289. Mycofabrication of common plasmonic colloids, theoretical considerations, mechanism and potential 14.7 applications. Advances in Colloid and Interface Science, 2015, 225, 37-52. Surfactant Directed Growth of Gold Metal Nanoplates by Chemical Vapor Deposition. Chemistry of 782 6.7 35 Materials, 2015, 27, 6116-6124. Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in solâ \in 'gel derived silica glass. Materials Research Express, 2015, 2, 055009. 1.6 Fabrication of Ag/Ĵ³-Fe₂O₃@TiO₂ hollow magnetic coreâ€"shell nanospheres as highly efficient catalysts for the synthesis of Î²-enaminones. RSC Advances, 2015, 5, 784 12 3.6 73612-73618. One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability. Journal of Colloid and Interface Science, 2015, 460, 47-54. Dense Deposition of Gold Nanoclusters Utilizing a Porphyrin/Inorganic Layered Material Complex as 786 3.59 the Template. Langmuir, 2015, 31, 9142-9147. Sonogashira cross-coupling on the $Au(1 \ 1 \ 1)$ and $Au(1 \ 0 \ 0)$ facets of gold nanorod catalysts: 6.2 Experimental and computational investigation. Journal of Catalysis, 2015, 330, 354-361.

#	Article	IF	CITATIONS
788	Amphiphilic gold nanoparticles supported on carbon nanotubes: Catalysts for the oxidation of lipophilic compounds by wet peroxide in biphasic systems. Applied Catalysis A: General, 2015, 505, 566-574.	4.3	21
789	Effect of Seed Age on Gold Nanorod Formation: A Microfluidic, Real-Time Investigation. Chemistry of Materials, 2015, 27, 6442-6449.	6.7	34
790	Facile â€~embedding' of Au nanocrystals into silica spheres with controllable quantity for improved catalytic reduction of p-nitrophenol. Inorganic Chemistry Frontiers, 2015, 2, 938-944.	6.0	5
791	Dual functionalized task specific ionic liquid promoted in situ generation of palladium nanoparticles in water: synergic catalytic system for Suzuki–Miyaura cross coupling. RSC Advances, 2015, 5, 79061-79069.	3.6	20
792	Dendritic Amphiphile Mediated One-Pot Preparation of 3D Pt Nanoparticles-Decorated PolyHIPE as a Durable and Well-Recyclable Catalyst. ACS Applied Materials & Interfaces, 2015, 7, 20885-20892.	8.0	43
793	Imparting magnetic functionality to iron-based MIL-101 via facile Fe ₃ O ₄ nanoparticle encapsulation: an efficient and recoverable catalyst for aerobic oxidation. RSC Advances, 2015, 5, 78962-78970.	3.6	25
794	Silver(I) oxide nanoparticles as a catalyst in the azide–alkyne cycloaddition. Tetrahedron Letters, 2015, 56, 5727-5730.	1.4	33
795	Ligandless Regioselective Hydrosilylation of Allenes Catalyzed by Gold Nanoparticles. Organic Letters, 2015, 17, 4538-4541.	4.6	73
796	Multipetal-Structured and Dumbbell-Structured Gold–Polymer Composite Particles with Self-Modulated Catalytic Activity. Langmuir, 2015, 31, 13191-13200.	3.5	3
797	A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect. Applied Surface Science, 2015, 328, 536-547.	6.1	112
798	Metal-Based Composite Nanomaterials. , 2015, , .		6
799	Self-Organization of Nanorods into Ultra-Long Range Two-Dimensional Monolayer End-to-End Network. Nano Letters, 2015, 15, 714-720.	9.1	32
800	Demonstrating the Many Possible Colors of Gold-Supported Solid Nanoparticles. Journal of Chemical Education, 2015, 92, 336-338.	2.3	6
801	Catalytic oxygen activation versus autoxidation for industrial applications: a physicochemical approach. Physical Chemistry Chemical Physics, 2015, 17, 715-731.	2.8	32
802	Robust, Efficient, and Recyclable Catalysts from the Impregnation of Preformed Dendrimers Containing Palladium Nanoparticles on a Magnetic Support. ChemCatChem, 2015, 7, 303-308.	3.7	41
803	Highly active Au-CeO2@ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol. Applied Catalysis B: Environmental, 2015, 166-167, 518-528.	20.2	109
804	Chiral nematic cellulose–gold nanoparticle composites from mesoporous photonic cellulose. Chemical Communications, 2015, 51, 530-533.	4.1	97
805	Stabilization of Cu ₂ O nanoparticles on a 2D metal–organic framework for catalytic Huisgen 1,3-dipolar cycloaddition reaction. Dalton Transactions, 2015, 44, 83-86.	3.3	36

#	Article	IF	CITATIONS
806	Selective carvone hydrogenation to dihydrocarvone over titania supported gold catalyst. Catalysis Today, 2015, 241, 189-194.	4.4	15
807	Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis. Journal of Colloid and Interface Science, 2015, 439, 21-27.	9.4	17
808	Synthesis of Quinoxalines by a Carbon Nanotube–Gold Nanohybrid atalyzed Cascade Reaction of Vicinal Diols and Keto Alcohols with Diamines. ChemCatChem, 2015, 7, 57-61.	3.7	32
809	A novel signal-off electrochemiluminescence biosensor for the determination of glucose based on double nanoparticles. Biosensors and Bioelectronics, 2015, 63, 519-524.	10.1	69
810	Gas-phase Oxidation of Alcohols with O2 and N2O Catalyzed by Au/TiO2: A Comparative Study. Catalysis Letters, 2015, 145, 583-588.	2.6	4
811	Fabrication of composite particles by liquid–liquid interfacial crystallization using an ultrasonic spray nozzle. Powder Technology, 2015, 269, 401-408.	4.2	16
812	Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology. Catalysis Science and Technology, 2015, 5, 1412-1427.	4.1	220
813	Synthesis of small water-soluble diazirine-functionalized gold nanoparticles and their photochemical modification. Canadian Journal of Chemistry, 2015, 93, 98-105.	1.1	2
814	Olefin epoxidation by a (salen)Mn(iii) catalyst covalently grafted on glass beads. Catalysis Science and Technology, 2015, 5, 673-679.	4.1	28
815	Mesoporous material AlPS-BrPPAS derivatives supported chiral Mn(III) salen complex and highly efficient epoxidation of olefins as a recoverable catalyst. Research on Chemical Intermediates, 2015, 41, 6169-6183.	2.7	2
816	One-pot deposition of gold on hybrid TiO2 nanoparticles and catalytic application in the selective oxidation of benzyl alcohol. Materials Chemistry and Physics, 2015, 149-150, 59-68.	4.0	10
817	MOLYBDENUM TRIOXIDE THIN FILMS DOPED WITH GOLD NANOPARTICLES GROWN BY A SEQUENTIAL METHODOLOGY: PHOTOCHEMICAL METAL-ORGANIC DEPOSITION (PMOD) AND DC-MAGNETRON SPUTTERING. Journal of the Chilean Chemical Society, 2016, 61, 2816-2820.	1.2	21
818	Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases. Beilstein Journal of Nanotechnology, 2016, 7, 22-31.	2.8	39
819	Au/CeO2 Catalysts: Structure and CO Oxidation Activity. Catalysts, 2016, 6, 158.	3.5	58
820	Clean Transformation of Ethanol to Useful Chemicals. The Behavior of a Gold-Modified Silicalite Catalyst. Molecules, 2016, 21, 379.	3.8	4
821	Evaluation of PVP/Au Nanocomposite Fibers as Heterogeneous Catalysts in Indole Synthesis. Molecules, 2016, 21, 1218.	3.8	18
822	Facile synthesis of Au@PNIPAMâ€ <i>b</i> â€PPy nanocomposites with thermosensitive and photothermal effects. Journal of Polymer Science Part A, 2016, 54, 3079-3085.	2.3	6
823	Heterogeneous Goldâ€Catalyzed Cascade Hydrogenâ€Transfer Strategy for Selective Synthesis of Quinazolinones in Water. Asian Journal of Organic Chemistry, 2016, 5, 335-339.	2.7	17

#	Article	IF	CITATIONS
824	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie - International Edition, 2016, 55, 3091-3095.	13.8	130
825	Facile synthesis of thermo-responsive episulfide group-containing diblock copolymers as robust protecting ligands of gold nanoparticles for catalytic applications. RSC Advances, 2016, 6, 37487-37499.	3.6	12
826	Facile Synthesis of Au or Ag Nanoparticles-Embedded Hollow Carbon Microspheres from Metal-Organic Framework Hybrids and Their Efficient Catalytic Activities. Small, 2016, 12, 2425-2431.	10.0	45
827	Gold on Different Manganese Oxides: Ultra-Low-Temperature CO Oxidation over Colloidal Gold Supported on Bulk-MnO ₂ Nanomaterials. Journal of the American Chemical Society, 2016, 138, 9572-9580.	13.7	88
828	Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio. Chemical Communications, 2016, 52, 9522-9525.	4.1	24
829	Gold Nanoparticle–Polydopamine–Reduced Graphene Oxide Ternary Nanocomposite as an Efficient Catalyst for Selective Oxidation of Benzylic C(sp ³)â^'H Bonds Under Mild Conditions. ChemCatChem, 2016, 8, 1825-1835.	3.7	46
830	Periodicity and Covalency of [MX ₂] [–] (M = Cu, Ag, Au, Rg; X = H, Cl, CN) Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 1395-1404.	2.0	9
831	Heterogeneous Goldâ€Catalyzed Selective Semireduction of Alkynes using Formic Acid as Hydrogen Source. Advanced Synthesis and Catalysis, 2016, 358, 1410-1416.	4.3	28
832	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie, 2016, 128, 3143-3147.	2.0	23
833	Non-Hydrothermal Synthesis of Cu(I)-Microleaves from Cu(II)-Nanorods. ChemistrySelect, 2016, 1, 6606-6615.	1.5	3
834	A magnetically recyclable iron oxide-supported copper oxide nanocatalyst (Fe ₃ O ₄ –CuO) for one-pot synthesis of S-aryl dithiocarbamates under solvent-free conditions. RSC Advances, 2016, 6, 32018-32024.	3.6	23
835	Dendrimer-like core cross-linked micelle stabilized ultra-small gold nanoclusters as a robust catalyst for aerobic oxidation of α-hydroxy ketones in water. Green Chemistry, 2016, 18, 3647-3655.	9.0	38
836	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	47.7	2,051
837	Nearly atomic precise gold nanoclusters on nickel-based layered double hydroxides for extraordinarily efficient aerobic oxidation of alcohols. Catalysis Science and Technology, 2016, 6, 4090-4104.	4.1	32
838	Efficient recovery of ultrafine catalysts from oil/water/solid three-phase system by ceramic microfiltration membrane. Korean Journal of Chemical Engineering, 2016, 33, 2453-2459.	2.7	2
839	Ultrastable and Biofunctionalizable Gold Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 14096-14101.	8.0	127
840	Catalytic oxidation of volatile organic compounds (VOCs) – A review. Atmospheric Environment, 2016, 140, 117-134.	4.1	1,137
841	Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates. ACS Catalysis, 2016, 6, 4025-4033.	11.2	133

#	ARTICLE	IF	CITATIONS
842	Fermi Level Control of Gold Nanoparticle by the Support: Activation of the Catalysis for Selective Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2016, 120, 12440-12445.	3.1	23
843	Aerobic oxidation of alcohols on Au/TiO2 catalyst: new insights on the role of active sites in the oxidation of primary and secondary alcohols. Monatshefte Für Chemie, 2016, 147, 391-403.	1.8	5
844	Revisiting the Au Particle Size Effect on TiO ₂ -Coated Au/TiO ₂ Catalysts in CO Oxidation Reaction. Journal of Physical Chemistry C, 2016, 120, 9174-9183.	3.1	76
845	Fe ₃ O ₄ (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chemistry, 2016, 18, 3184-3209.	9.0	342
846	Supported gold nanoparticles catalyzed cis-selective semihydrogenation of alkynes using ammonium formate as the reductant. Chemical Communications, 2016, 52, 6013-6016.	4.1	39
847	Au–polymer hybrid microgels easily prepared by thermo-induced self-crosslinking and in situ reduction. RSC Advances, 2016, 6, 48927-48932.	3.6	11
848	Catalytic CO Oxidation Using Bimetallic M _{<i>x</i>} Au _{25–<i>x</i>} Clusters: A Combined Experimental and Computational Study on Doping Effects. Journal of Physical Chemistry C, 2016, 120, 10261-10267.	3.1	58
849	Carbon nanotube-supported Au–Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines. Chemical Communications, 2016, 52, 6805-6808.	4.1	40
850	Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Research, 2016, 9, 1763-1774.	10.4	57
851	"Green―gold nanotriangles: synthesis, purification by polyelectrolyte/micelle depletion flocculation and performance in surface-enhanced Raman scattering. RSC Advances, 2016, 6, 33561-33568.	3.6	48
852	Magnetic Core–Shell Nanostructured Palladium Catalysts for Green Oxidation of Benzyl Alcohol. Catalysis Letters, 2016, 146, 1321-1330.	2.6	16
853	Ï€ Activation of Alkynes in Homogeneous and Heterogeneous Gold Catalysis. Journal of Physical Chemistry A, 2016, 120, 5239-5247.	2.5	49
854	Efficient catalytic oxidation of alcohol to carbonyl compounds over CoFe hydrotalcites. RSC Advances, 2016, 6, 84106-84112.	3.6	6
855	Selectivity control in oxidation of 1-tetradecanol on supported nano Au catalysts. Catalysis Today, 2016, 278, 113-119.	4.4	1
856	Cu(0) onto sulfonic acid functionalized silica/carbon composites as bifunctional heterogeneous catalysts for the synthesis of polysubstituted pyridines and nitriles under benign reaction media. RSC Advances, 2016, 6, 99604-99614.	3.6	10
857	Green, Multiâ€Gram Oneâ€5tep Synthesis of Core–Shell Nanocomposites in Water and Their Catalytic Application to Chemoselective Hydrogenations. Chemistry - A European Journal, 2016, 22, 17962-17966.	3.3	20
858	Spontaneous Electroless Deposition of Ultrafine Pd Nanoparticles on Poly(phenylene butadiynylene)s for the Hydroxycarbonylation of Aryl Iodides. ChemistrySelect, 2016, 1, 1832-1836.	1.5	3
859	Compositional Effect in AuPd Bimetallic Nanoparticles Towards Product Selectivity during Aerobic Oxidation of α-Hydroxy Esters and Phosphonates. ChemistrySelect, 2016, 1, 5265-5269.	1.5	1

#	ARTICLE Small Gold Nanoparticles Interfaced to Electrodes through Molecular Linkers: A Platform to	IF	Citations
860	Enhance Electron Transfer and Increase Electrochemically Active Surface Area. Journal of the American Chemical Society, 2016, 138, 13975-13984.	13.7	71
861	Water-compatible gold and silver nanoparticles as catalysts for the oxidation of alkenes. Polyhedron, 2016, 120, 82-87.	2.2	7
862	Thiolate-protected Gold Nanoclusters Au ₂₅ (phenylethanethiol) ₁₈ : An Efficient Catalyst for the Synthesis of Propargylamines from Aldehydes, Amines, and Alkynes. Chemistry Letters, 2016, 45, 1457-1459.	1.3	28
863	Surface-exposed Pd nanoparticles supported over nanoporous carbon hollow tubes as an efficient heterogeneous catalyst for the C C bond formation and hydrogenation reactions. Journal of Molecular Catalysis A, 2016, 425, 147-156.	4.8	36
864	Synthesis of Ag/gâ€C ₃ N ₄ Composite as Highly Efficient Visibleâ€Light Photocatalyst for Oxidative Amidation of Aromatic Aldehydes. Advanced Synthesis and Catalysis, 2016, 358, 2631-2641.	4.3	53
865	Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?. Nanotechnology for Environmental Engineering, 2016, 1, 1.	3.3	182
866	Cold nanoparticles supported on layered TiO ₂ –RGO hybrid as an enhanced and recyclable catalyst for microwave-assisted hydration reaction. RSC Advances, 2016, 6, 76151-76157.	3.6	13
867	Electrocatalytic Efficiency Analysis of Catechol Molecules for NADH Oxidation during Nanoparticle Collision. Analytical Chemistry, 2016, 88, 8375-8379.	6.5	42
868	Controlled Synthesis of Carbonâ€Supported Gold Clusters for Rational Catalyst Design. Chemical Record, 2016, 16, 2338-2348.	5.8	40
869	Catalytic Hydroamination of Unsaturated Hydrocarbons. Topics in Catalysis, 2016, 59, 1196-1206.	2.8	30
870	Hierarchical hollow nanostructured core@shell recyclable catalysts γ-Fe ₂ O ₃ @LDH@Au ₂₅ -x for highly efficient alcohol oxidation. Green Chemistry, 2016, 18, 5900-5914.	9.0	48
871	Anchoring and promotion effects of metal oxides on silica supported catalytic gold nanoparticles. Journal of Colloid and Interface Science, 2016, 482, 135-141.	9.4	12
872	Mechanism of the Transmetalation of Organosilanes to Gold. ChemistryOpen, 2016, 5, 60-64.	1.9	11
873	A One-Step and Scalable Continuous-Flow Nanoprecipitation for Catalytic Reduction of Organic Pollutants in Water. Industrial & Engineering Chemistry Research, 2016, 55, 9851-9856.	3.7	11
874	Oxygen vacancies dependent Au nanoparticle deposition and CO oxidation. RSC Advances, 2016, 6, 87978-87987.	3.6	30
875	Soft-Nanocomposites of Nanoparticles and Nanocarbons with Supramolecular and Polymer Gels and Their Applications. Chemical Reviews, 2016, 116, 11967-12028.	47.7	259
876	Methanol electro-oxidation on nanoporous metals formed by dealloying of Ag–Au–Pt alloys. Journal of Applied Electrochemistry, 2016, 46, 995-1010.	2.9	20
877	Differential role of PVP on the synthesis of plasmonic gold nanostructures and their catalytic and SERS properties. RSC Advances, 2016, 6, 80342-80353.	3.6	33

ARTICLE IF CITATIONS Gold-containing metal nanoparticles for catalytic hydrogen generation from liquid chemical 878 14.0 31 hydrides. Chinese Journal of Catalysis, 2016, 37, 1594-1599. Reactivity of Metal Clusters. Chemical Reviews, 2016, 116, 14456-14492. 879 359 Reaction and Mechanistic Studies of Heterogeneous Hydroamination over Supportâ€Stabilized Gold 880 3.7 17 Nanoparticles. ChemCatChem, 2016, 8, 3121-3130. Green synthesis of gold nanoparticles reduced and stabilized by squaric acid and supported on cellulosé fibers for the catalytic reduction of 4-nitrophenol in water. RSC Advances, 2016, 6, 91185-91191. Supported Gold Nanoparticles as Heterogeneous Catalysts for C–C Coupling Reactions Ana Primo and 882 0 Hermenegildo Garcı´a. , 2016, , 407-432. 883 FTIR Techniques for the Characterization of Au(-Ceria)-Based Catalysts., 2016, 223-270. PTFE supported gold nanoparticles as photocatalysts for oxidative esterification of aldehydes. New 884 2.8 9 Journal of Chemistry, 2016, 40, 9460-9470. Commercial Supported Gold Nanoparticles Catalyzed Alkyne Hydroamination and Indole Synthesis. 885 4.3 39 Advanced Synthesis and Catalysis, 2016, 358, 3313-3318. Mechanistic exploration and controlled synthesis of precise thiolate-gold nanoclusters. 886 18.8 161 Coordination Chemistry Reviews, 2016, 329, 1-15. Homocoupling reactions of terminal alkynes and arylboronic compounds catalyzed by in situ formed Al(OH) 3 -supported palladium nanoparticles. Tetrahedron, 2016, 72, 6996-7002. Synthesis, Characterization and Aerobic Alcohol Oxidation Catalysis of Palladium(II) Complexes with a 888 7 2.0 Bis(imidazolyl)borate Ligand. European Journal of Inorganic Chemistry, 2016, 2016, 2603-2608. Catalytic Proton Dynamics at the Water/Solid Interface of Ceria-Supported Pt Clusters. Journal of the American Chemical Society, 2016, 138, 11560-11567. Advances in Gold Catalysis and Understanding the Catalytic Mechanism. Chemical Record, 2016, 16, 890 5.8 55 2278-2293. Cold(III) Mediated Activation and Transformation of Methane on Au₁-Doped Vanadium Oxide Cluster Cations AuV₂O₆⁺. Journal of the American 13.7 Chemical Society, 2016, 138, 9437-9443. Ligand-Based Toolboxes for Tuning of the Optical Properties of Subnanometer Gold Clusters. Journal 892 50 4.6 of Physical Chemistry Letters, 2016, 7, 4267-4274. Au_n (n = $1\hat{a}\in$ 16) clusters on the ZrO₂(111) surface: a DFT+U investigation. Physical Chemistry Chemical Physics, 2016, 18, 30491-30497. Gold on carbon and titanium oxides composites: Highly efficient and stable acetylene hydrogenation 894 6.2 26 in large excess of ethylene. Journal of Catalysis, 2016, 344, 194-201. High Activity Methanol/H₂O₂ Catalyst of Nanoporous Gold from Al–Au Ribbon Precursors with Various Circumferential Speeds. Journal of Physical Chemistry C, 2016, 120, 895 3.1 25296-25305.

#	Article	IF	CITATIONS
896	Synthesis of a hollow CeO2/Au/C hierarchical nanostructure for high catalytic activity and recyclability. RSC Advances, 2016, 6, 100427-100436.	3.6	4
897	Investigating the Influence of Au Nanoparticles on Porous SiO ₂ –WO ₃ and WO ₃ Methanol Transformation Catalysts. Journal of Physical Chemistry C, 2016, 120, 27954-27963.	3.1	20
898	Precise localization of metal nanoparticles in dendrimer nanosnakes or inner periphery and consequences in catalysis. Nature Communications, 2016, 7, 13152.	12.8	99
899	Lewis acid-driven reaction pathways in synergistic cooperative catalysis over gold/palladium bimetallic nanoparticles for hydrogen autotransfer reaction between amide and alcohol. Chinese Journal of Catalysis, 2016, 37, 1662-1668.	14.0	3
900	Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chinese Journal of Catalysis, 2016, 37, 1619-1650.	14.0	107
901	Gold nanoparticles supported on nanoscale amine-functionalized MIL-101(Cr) as a highly active catalyst for epoxidation of styrene. RSC Advances, 2016, 6, 106856-106865.	3.6	22
902	In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles. Nanoscale Research Letters, 2016, 11, 180.	5.7	9
903	A disposable biosensor for noninvasive diabetic diagnosis rest on the Au/TiO2 nano-composite intensified electrochemiluminescence. Electrochimica Acta, 2016, 211, 27-35.	5.2	27
904	Harnessing self-supported Au nanoparticles on layered double hydroxides comprising Zn and Al for enhanced phenol decomposition under solar light. Applied Catalysis B: Environmental, 2016, 199, 260-271.	20.2	43
905	Fe3O4@RGO@Au@C Composite with Magnetic Core and Au Enwrapped in Double-Shelled Carbon: An Excellent Catalyst in the Reduction of Nitroarenes and Suzuki–Miyaura Cross-Coupling. Catalysis Letters, 2016, 146, 1674-1686.	2.6	22
906	Robust Polymer-Coated Diamond Supports for Noble-Metal Nanoparticle Catalysts. ACS Catalysis, 2016, 6, 4729-4738.	11.2	24
907	In Situ Confinement of Ultrasmall Pd Clusters within Nanosized Silicalite-1 Zeolite for Highly Efficient Catalysis of Hydrogen Generation. Journal of the American Chemical Society, 2016, 138, 7484-7487.	13.7	507
908	Au/LaPO4 nanowires: Synthesis, characterization, and catalytic CO oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62, 275-282.	5.3	14
909	Surface chemistry of Au/TiO2: Thermally and photolytically activated reactions. Surface Science Reports, 2016, 71, 77-271.	7.2	106
910	Electrostatic assembly of gold nanorods on a glass substrate for sustainable photocatalytic reduction via sodium borohydride. RSC Advances, 2016, 6, 59113-59123.	3.6	6
911	Characterisation of gold catalysts. Chemical Society Reviews, 2016, 45, 4953-4994.	38.1	140
912	From Mono to Tris-1,2,3-triazole-Stabilized Gold Nanoparticles and Their Compared Catalytic Efficiency in 4-Nitrophenol Reduction. Inorganic Chemistry, 2016, 55, 6776-6780.	4.0	33
913	Reuseable Monolithic Nanoporous Graphite-Supported Nanocatalysts (Fe, Au, Pt, Pd, Ni, and Rh) from Pyrolysis and Galvanic Transmetalation of Ferrocene-Based Polyamide Aerogels. Chemistry of Materials, 2016, 28, 4867-4877.	6.7	33

#	Article	IF	CITATIONS
914	Titania‣upported Gold Nanoparticles Catalyze the Selective Oxidation of Amines into Nitroso Compounds in the Presence of Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2016, 358, 1500-1508.	4.3	30
915	Nanogold mesoporous iron promoted ceria catalysts for total and preferential CO oxidation reactions. Journal of Molecular Catalysis A, 2016, 414, 62-71.	4.8	13
916	Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. ACS Applied Materials & Interfaces, 2016, 8, 3250-3257.	8.0	64
917	Au@Void@TiO2 yolk–shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surface Science, 2016, 648, 150-155.	1.9	17
918	Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science and Technology, 2016, 6, 320-338.	4.1	122
919	Inverse miniemulsion-based preparation of raspberry-like Au/SiO 2 nanocomposite particles with high catalytic activity towards reduction of p -nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 223-233.	4.7	18
920	Atomic level tuning of the catalytic properties: Doping effects of 25-atom bimetallic nanoclusters on styrene oxidation. Catalysis Today, 2016, 278, 187-191.	4.4	32
921	Gold nanoparticles stabilized by amphiphilic hyperbranched polymers for catalytic reduction of 4-nitrophenol. Journal of Catalysis, 2016, 337, 65-71.	6.2	89
922	Enhanced immunotherapy of SM5-1 in hepatocellular carcinoma by conjugating with gold nanoparticles and its inÁvivo bioluminescence tomographic evaluation. Biomaterials, 2016, 87, 46-56.	11.4	40
923	Palladium Nanoparticle–Graphitic Carbon Nitride Porous Synergistic Catalyst for Hydrogen Evolution/Oxidation Reactions over a Broad Range of pH and Correlation of Its Catalytic Activity with Measured Hydrogen Binding Energy. ACS Catalysis, 2016, 6, 1929-1941.	11.2	251
924	Nanostructure in energy conversion. Journal of Energy Chemistry, 2016, 25, 171-190.	12.9	73
925	Hollow mesoporous SiO ₂ sphere nanoarchitectures with encapsulated silver nanoparticles for catalytic reduction of 4-nitrophenol. Inorganic Chemistry Frontiers, 2016, 3, 663-670.	6.0	27
926	Mechanism of Isomerization and Methyl Migration in Heterobimetallic Rhenium–Iridium Complexes: Experimental and DFT Study. Organometallics, 2016, 35, 605-611.	2.3	5
927	Oxidative Addition of CH ₃ I to Au [–] in the Gas Phase. Journal of Physical Chemistry A, 2016, 120, 957-963.	2.5	19
928	Surface clean gold nanoflower obtained by complete removal of capping agents: an active catalyst for alcohol oxidation. RSC Advances, 2016, 6, 17222-17227.	3.6	26
929	Au/TiO ₂ catalyzed reductive amination of aldehydes and ketones using formic acid as reductant. Organic Chemistry Frontiers, 2016, 3, 505-509.	4.5	45
930	CO oxidation over gold nanoparticles on Mg(OH) _{2 and MgO subjected to different redox treatments. International Journal of Nanotechnology, 2016, 13, 208.}	0.2	2
931	Oxidation of benzyl alcohol catalyzed by gold nanoparticles under alkaline conditions: weak vs. strong bases. RSC Advances, 2016, 6, 25279-25285.	3.6	59

#	Article	IF	CITATIONS
932	Growth behavior of gold nanoparticles synthesized in unsaturated fatty acids by vacuum evaporation methods. Physical Chemistry Chemical Physics, 2016, 18, 5464-5470.	2.8	15
933	On the formation of gold nanoparticles from [Au ^{III} Cl ₄] ^{â^'} and a non-classical reduced polyoxomolybdate as an electron source: a quantum mechanical modelling and experimental study. New Journal of Chemistry, 2016, 40, 1029-1038.	2.8	9
934	Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Carbohydrate Polymers, 2016, 140, 66-73.	10.2	67
935	Carbon nanotube anions for the preparation of gold nanoparticle–nanocarbon hybrids. Chemical Communications, 2016, 52, 1934-1937.	4.1	19
936	Perspectives on zeolite-encapsulated metal nanoparticles and their applications in catalysis. New Journal of Chemistry, 2016, 40, 3933-3949.	2.8	222
937	Fabrication of Au nanoparticles supported on CoFe2O4 nanotubes by polyaniline assisted self-assembly strategy and their magnetically recoverable catalytic properties. Applied Surface Science, 2016, 363, 578-585.	6.1	49
938	Layered crystalline chiral salen Mn(III) complexes immobilized on organic polymer–inorganic hybrid zinc phosphonate-phosphate as efficient and reusable catalysts for the unfunctionalized olefin epoxidation. Inorganic Chemistry Communication, 2016, 65, 4-8.	3.9	7
939	Promising nanostructured gold/metal oxide catalysts for oxidative coupling of benzylamines under eco-friendly conditions. Journal of Molecular Catalysis A, 2016, 412, 47-55.	4.8	29
940	Metal nanoparticles supported on two-dimensional graphenes as heterogeneous catalysts. Coordination Chemistry Reviews, 2016, 312, 99-148.	18.8	270
941	Selective gas phase hydrogenation of p-nitrobenzonitrile to p-aminobenzonitrile over zirconia supported gold. Applied Catalysis A: General, 2016, 510, 171-179.	4.3	12
942	Fe ₃ O ₄ and Au nanoparticles dispersed on the graphene support as a highly active catalyst toward the reduction of 4-nitrophenol. Physical Chemistry Chemical Physics, 2016, 18, 615-623.	2.8	74
943	New approach for the simultaneous determination fungicide residues in food samples by using carbon nanofiber packed microcolumn coupled with HPLC. Food Control, 2016, 60, 1-6.	5.5	29
944	Highly efficient Au hollow nanosphere catalyzed chemo-selective oxidation of alcohols. Journal of Molecular Catalysis A, 2016, 411, 87-94.	4.8	16
945	Overview of the Field. , 2016, , 113-174.		1
946	Polythene glycol (PEG) as a reusable solvent system for the synthesis of 1,3,5-triazines via aerobic oxidative tandem cyclization of benzylamines and N-substituted benzylamines with amidines under transition metal-free conditions. Green Chemistry, 2016, 18, 144-149.	9.0	45
947	Preparation of hollow multiple-Ag-nanoclustes-C-shell nanostructures and their catalytic properties. Applied Catalysis B: Environmental, 2016, 180, 13-19.	20.2	31
948	Photocatalyzed ozonation: effective degradation and mineralization of pesticide, chlorothalonil. Desalination and Water Treatment, 2016, 57, 14506-14517.	1.0	5
949	"Naked―Iridium(IV) Oxide Nanoparticles as Expedient and Robust Catalysts for Hydrogenation of Nitrogen Heterocycles: Remarkable Vicinal Substitution Effect and Recyclability. Advanced Synthesis and Catalysis, 2017, 359, 933-940.	4.3	45

#	Article	IF	CITATIONS
950	Simultaneous Au ^{III} Extraction and Inâ€Situ Formation of Polymeric Membrane‧upported Au Nanoparticles: A Sustainable Process with Application in Catalysis. ChemSusChem, 2017, 10, 1482-1493.	6.8	10
951	Organosilane oxidation with a half million turnover number using fibrous nanosilica supported ultrasmall nanoparticles and pseudo-single atoms of gold. Journal of Materials Chemistry A, 2017, 5, 1935-1940.	10.3	69
952	Enhanced Activity of Ag Nanoplatelets on Few Layers of Graphene Film with Preferential Orientation for Dehydrogenative Silane–Alcohol Coupling. ACS Sustainable Chemistry and Engineering, 2017, 5, 2400-2406.	6.7	11
953	Supramolecular Gels from Conjugates of Bile Acids and Amino Acids and Their Applications. European Journal of Organic Chemistry, 2017, 2017, 1713-1720.	2.4	23
954	Aerobic oxidation of benzyl alcohol in water catalyzed by gold nanoparticles supported on imidazole containing crosslinked polymer. Applied Catalysis A: General, 2017, 536, 27-34.	4.3	22
955	Screen-printed carbon electrodes doped with TiO2-Au nanocomposites with improved electrocatalytic performance. Materials Today Communications, 2017, 11, 11-17.	1.9	14
956	Directed selfâ€assembly of block copolymerâ€based nanocomposites in thin films. Polymers for Advanced Technologies, 2017, 28, 613-622.	3.2	9
957	Aggregation Behavior of Ligand-Protected Au ₉ Clusters on Sputtered Atomic Layer Deposition TiO ₂ . Journal of Physical Chemistry C, 2017, 121, 10781-10789.	3.1	19
958	Colloidal Metal Nanoparticles Prepared by Laser Ablation and their Applications. ChemPhysChem, 2017, 18, 986-1006.	2.1	76
959	Optimization of Au0–Cu+ synergy in Au/MgCuCr2O4 catalysts for aerobic oxidation of ethanol to acetaldehyde. Journal of Catalysis, 2017, 347, 45-56.	6.2	27
960	Utilization of Human Hair as a Synergistic Support for Ag, Au, Cu, Ni, and Ru Nanoparticles: Application in Catalysis. Industrial & Engineering Chemistry Research, 2017, 56, 1926-1939.	3.7	19
961	How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids – quantification of their volume, dwell dynamics, and gas composition. Physical Chemistry Chemical Physics, 2017, 19, 7112-7123.	2.8	85
962	Imparting Catalytic Activity to a Covalent Organic Framework Material by Nanoparticle Encapsulation. ACS Applied Materials & Interfaces, 2017, 9, 7481-7488.	8.0	157
963	Au–Carbon Electronic Interaction Mediated Selective Oxidation of Styrene. ACS Catalysis, 2017, 7, 3483-3488.	11.2	92
964	<i>In Situ</i> High Temperature Synthesis of Single-Component Metallic Nanoparticles. ACS Central Science, 2017, 3, 294-301.	11.3	34
965	Silver and palladium alloy nanoparticle catalysts: reductive coupling of nitrobenzene through light irradiation. Dalton Transactions, 2017, 46, 10665-10672.	3.3	16
966	Highly Stable Silica-Coated Gold Nanoflowers Supported on Alumina. Langmuir, 2017, 33, 4313-4318.	3.5	22
967	Successful synthesis and thermal stability of immiscible metal Au–Rh, Au–Ir andAu–Ir–Rh nanoalloys. Nanotechnology, 2017, 28, 205302.	2.6	26

#	Article	IF	CITATIONS
968	Nitrilotriacetate-stabilized gold nanoparticles: a novel strategy for the colorimetric detection of Cr(<scp>iii</scp>)/Cr(<scp>vi</scp>) and the mechanistic aspects. Analytical Methods, 2017, 9, 2805-2811.	2.7	10
969	A Novel Photochemical Method for the Synthesis of Au Triangular Nanoplates inside Nanocavity of Mesoporous Silica Shells. Journal of Physical Chemistry C, 2017, 121, 9572-9578.	3.1	18
970	Gold nanoparticles immobilized on porous monoliths obtained from disulfide-based dimethacrylate: Application to supported catalysis. Polymer, 2017, 126, 455-462.	3.8	13
971	3-Aminopropyltrimethoxysilane mediated solvent induced synthesis of gold nanoparticles for biomedical applications. Materials Science and Engineering C, 2017, 79, 45-54.	7.3	9
972	A Titanium Dioxide Supported Gold Nanoparticle Catalyst for the Selective Nâ€Formylation of Functionalized Amines with Carbon Dioxide and Hydrogen. ChemCatChem, 2017, 9, 3632-3636.	3.7	53
973	Supported Gold Nanoparticles for Alcohols Oxidation in Continuous-Flow Heterogeneous Systems. ACS Sustainable Chemistry and Engineering, 2017, 5, 4746-4756.	6.7	35
974	Orientation Selection during Heterogeneous Nucleation: Implications for Heterogeneous Catalysis. Journal of Physical Chemistry C, 2017, 121, 10027-10037.	3.1	13
975	Metal Nanoparticle Loaded Magnetic-Chitosan Microsphere: Water Dispersible and Easily Separable Hybrid Metal Nano-biomaterial for Catalytic Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 489-501.	6.7	95
976	Anchoring Small Au Clusters on the Dehydroxylated and Hydroxylated SiO2 α-Quartz (001) Surface via Ti-Alloying. Journal of Physical Chemistry C, 2017, 121, 14717-14724.	3.1	9
977	Surfactant-free gold nanoparticles: rapid and green synthesis and their greatly improved catalytic activities for 4-nitrophenol reduction. Inorganic Chemistry Frontiers, 2017, 4, 1268-1272.	6.0	30
978	Synthesis, characterization, and catalytic applications of hematite (<i>$\hat{l} \pm \langle i \rangle$ -Fe ₂ O) Tj ETQq0 0 0 r Nanotechnology, 2017, 8, 025017.</i>	gBT /Over 1.5	ock 10 Tf 50 54
979	Synthesis of Gold Nanoparticles Using the Interface of an Emulsion Droplet. Langmuir, 2017, 33, 5464-5472.	3.5	21
980	Gold nanoparticle and graphene oxide incorporated strontium crosslinked alginate/carboxymethyl cellulose composites for o-nitroaniline reduction and Suzuki-Miyaura cross-coupling reactions. Journal of Colloid and Interface Science, 2017, 505, 115-129.	9.4	46
981	Fluidic Manufacture of Starâ€Shaped Gold Nanoparticles. Chemistry - A European Journal, 2017, 23, 9732-9735.	3.3	26
982	The effect of pyridinic- and pyrrolic-nitrogen in nitrogen-doped carbon nanotubes used as support for Pd-catalyzed nitroarene reduction: an experimental and theoretical study. Journal of Materials Science, 2017, 52, 10751-10765.	3.7	17
983	Stabilisation of gold nanoparticles by N-heterocyclic thiones. Dalton Transactions, 2017, 46, 8367-8371.	3.3	19
984	Heterocyclic bismuth(<scp>iii</scp>) compounds with transannular N→Bi interactions as catalysts for the oxidation of thiophenol to diphenyldisulfide. Catalysis Science and Technology, 2017, 7, 5343-5353.	4.1	25
985	Reduction of methylene blue with Ag nanoparticle-modified microporous polypropylene membranes in a flow-through reactor. New Journal of Chemistry, 2017, 41, 6076-6082.	2.8	15

#	Article	IF	CITATIONS
986	Metal–Ligand Complexation through Redox Assembly at Surfaces Characterized by Vibrational Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 13183-13190.	3.1	16
987	Catalytic hydrogenation performance of an in situ assembled Au@g-C ₃ N ₄ –PANI nanoblend: synergistic inter-constituent interactions boost the catalysis. New Journal of Chemistry, 2017, 41, 7123-7132.	2.8	49
988	Highly Chemoselective Reduction of Nitroarenes Using a Titania‣upported Platinumâ€Nanoparticle Catalyst under a <scp>CO</scp> Atmosphere. Chinese Journal of Chemistry, 2017, 35, 591-595.	4.9	10
989	Polydopamine Coatings with Nanopores for Versatile Molecular Separation. ACS Applied Materials & Interfaces, 2017, 9, 14437-14444.	8.0	107
990	Surfactant free synthesis of gold nanoparticles within meso-channels of non-functionalized SBA-15 for its promising catalytic activity. Powder Technology, 2017, 315, 147-156.	4.2	27
991	A step forward towards sustainable aerobic alcohol oxidation: new and revised catalysts based on transition metals on solid supports. Green Chemistry, 2017, 19, 2030-2050.	9.0	156
992	Gold nanoparticles supported on ionic liquidâ€modified cellulose as an efficient and recyclable catalyst for the oxidation of alcohols to aldehydes/ketones and reduction of nitroarenes. Applied Organometallic Chemistry, 2017, 31, e3783.	3.5	8
993	Facile formation of gold nanoparticles on periodic mesoporous bipyridine-silica. Catalysis Today, 2017, 298, 258-262.	4.4	20
994	Synthesis of MoS ₂ /graphene hybrid supported Au and Ag nanoparticles with multi-functional catalytic properties. Nanotechnology, 2017, 28, 205603.	2.6	15
995	Self-supported copper (Cu) and Cu-based nanoparticle growth by bottom-up process onto borophosphate glasses. Journal of Materials Science, 2017, 52, 6635-6646.	3.7	9
996	Zn(II) Chloride Promoted Benzannulation Strategy for Oneâ€Pot Regioselective Synthesis of 6 <i>H</i> â€Benzo[<i>c</i>]chromenes. ChemistrySelect, 2017, 2, 2539-2543.	1.5	7
997	Thiacalix[4]arene functionalized gold nano-assembly for recognition of isoleucine in aqueous solution and its antioxidant study. Chemical Physics Letters, 2017, 667, 137-145.	2.6	11
998	Fully Reversible Quantitative Phase Transfer of Gold Nanoparticles Using Bifunctional PNIPAM Ligands. Langmuir, 2017, 33, 253-261.	3.5	17
999	A ratiometric nanoarchitecture for the simultaneous detection of pH and halide ions using UV plasmon-enhanced fluorescence. Chemical Communications, 2017, 53, 755-758.	4.1	15
1000	In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine. Sensors and Actuators B: Chemical, 2017, 243, 1231-1239.	7.8	34
1001	New Insights into Aldol Reactions of Methyl Isocyanoacetate Catalyzed by Heterogenized Homogeneous Catalysts. Nano Letters, 2017, 17, 584-589.	9.1	22
1002	Synthesis, properties, and application of polymeric carbon nitrides. Russian Chemical Bulletin, 2017, 66, 782-807.	1.5	7
1003	Synthesis of late transition-metal nanoparticles by Na naphthalenide reduction of salts and their catalytic efficiency. Inorganic Chemistry Frontiers, 2017, 4, 2037-2044	6.0	5

		CITATION REPO	RT	
#	Article	IF		CITATIONS
1004	Enantioselective hydrogenation of N-heteroaromatics catalyzed by chiral diphosphine modified binaphthyl palladium nanoparticles. Catalysis Science and Technology, 2017, 7, 5515-5520.	4.	.1	21
1005	Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisc surface plasmon resonance. Physical Chemistry Chemical Physics, 2017, 19, 27397-27405.	tropic 2.	.8	20
1006	Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts wit enhanced stability. Journal of Materials Chemistry A, 2017, 5, 21560-21569.	h 10	0.3	53
1007	RuO 2 supported NaY zeolite catalysts: Effect of preparation methods on catalytic performanc aerobic oxidation of benzyl alcohol. Solid State Sciences, 2017, 72, 150-155.	e during 3.	.2	11
1009	Variability of surface components in gold catalysts – The role of hydroxyls and state of gold activity and selectivity of Au-Nb2O5 and Au-ZnNb2O6 in methanol oxidation. Journal of Cataly 354, 100-112.	on sis, 2017, 6.	.2	32
1010	Morphology Adjustable Silica Nanosheets for Immobilization of Gold Nanoparticles. Chemistry 2017, 2, 5793-5799.	Select, 1.	5	9
1011	pHâ€Responsive Supported and Unsupported Gold Nanocrystals. ChemistrySelect, 2017, 2, 56	;95-5700. 1.	5	5
1012	Gold nanoparticles stabilized with sulphonated imidazolium salts in water and reverse micelles Society Open Science, 2017, 4, 170481.	. Royal 2.	.4	26
1013	Gold nanospheres and gold nanostars immobilized onto thiolated eggshell membranes as high robust and recyclable catalysts. New Journal of Chemistry, 2017, 41, 9406-9413.	ly 2.	.8	8
1014	Water as a catalytic switch in the oxidation of aryl alcohols by polymer incarcerated rhodium nanoparticles. Catalysis Science and Technology, 2017, 7, 3985-3998.	4.	.1	14
1015	Selective Reduction of Azines to Benzyl Hydrazones with Sodium Borohydride Catalyzed by Mesoporous Silica‣upported Silver Nanoparticles: A Catalytic Route towards Pyrazole Synth Advanced Synthesis and Catalysis, 2017, 359, 2949-2960.	esis. 4.	.3	28
1016	Goldâ€Triggered Uncaging Chemistry in Living Systems. Angewandte Chemie - International Ec 56, 12548-12552.	lition, 2017, 13	3.8	128
1017	Enhancement of gold catalytic activity and stability by immobilization on the surface of graphe Journal of Catalysis, 2017, 352, 498-504.	ne. 6.	.2	26
1018	Superior Stability of Au/SiO ₂ Compared to Au/TiO ₂ Catalysts for the Hydrogenation of Butadiene. ACS Catalysis, 2017, 7, 5594-5603.	Selective 11	1.2	56
1019	Gold‶riggered Uncaging Chemistry in Living Systems. Angewandte Chemie, 2017, 129, 127	22-12726. 2.	.0	30
1020	An Efficient and Environmentally Benign Bentonite–Gold Nanohybrid atalyzed Oxidative Crossâ€Coupling of Ketones with Benzylic Primary Alcohols. Asian Journal of Organic Chemistr 6, 1486-1491.	y, 2017, 2.	.7	6
1021	Scalable creation of gold nanostructures on high performance engineering polymeric substrate Applied Surface Science, 2017, 426, 579-586.	<i></i>	.1	4
1022	In situ synthesis of gold nanoparticles on cotton fabric for multifunctional applications. Cellulo 2017, 24, 4547-4560.	se,4.	.9	36

#	Article	IF	CITATIONS
1023	Crystal Plane Effect of ZnO on the Catalytic Activity of Gold Nanoparticles for the Acetylene Hydrogenation Reaction. Journal of Physical Chemistry C, 2017, 121, 19727-19734.	3.1	17
1024	In situ assembly of ultrafine Mn ₃ O ₄ nanoparticles into MIL-101 for selective aerobic oxidation. Catalysis Science and Technology, 2017, 7, 4136-4144.	4.1	20
1025	Understanding the cooperative atomic motion and shape change of ultrasmall Au nanoparticles below the premelting temperature. RSC Advances, 2017, 7, 55807-55811.	3.6	1
1026	Trends in Adhesion Energies of Gold on MgO(100), Rutile TiO ₂ (110), and CeO ₂ (111) Surfaces: A Comparative DFT Study. Journal of Physical Chemistry C, 2017, 121, 28328-28338.	3.1	29
1028	The key role of Au-substrate interactions in catalytic gold subnanoclusters. Nature Communications, 2017, 8, 1657.	12.8	35
1029	CO ₂ -switchable polymer-hybrid silver nanoparticles and their gas-tunable catalytic activity. RSC Advances, 2017, 7, 49777-49786.	3.6	6
1030	Halide Effects on the Sublimation Temperature of X–Au–L Complexes: Implications for Their Use as Precursors in Vapor Phase Deposition Methods. ACS Applied Materials & Interfaces, 2017, 9, 40998-41005.	8.0	17
1032	One-pot synthesis of Au@TiO2 yolk-shell nanoparticles with enhanced photocatalytic activity under visible light. Journal of Colloid and Interface Science, 2017, 505, 884-891.	9.4	43
1033	Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans. Applied and Environmental Microbiology, 2017, 83, .	3.1	16
1034	A series of intrinsically chiral gold nanocage structures. Nanoscale, 2017, 9, 10321-10326.	5.6	8
1035	Aerobic Oxidation of Diverse Primary Alcohols to Carboxylic Acids with a Heterogeneous Pd–Bi–Te/C (PBT/C) Catalyst. Organic Process Research and Development, 2017, 21, 1388-1393.	2.7	62
1036	Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chemical Reviews, 2017, 117, 8208-8271.	47.7	1,694
1037	Zeolite-Encapsulated Catalysts. , 2017, , 335-386.		9
1038	Copper nanoparticles catalyzed economical synthesis of 3-substituted isocoumarins from 2-chlorobenzoic acids/amides and 1,3-diketones. Tetrahedron Letters, 2017, 58, 3164-3167.	1.4	10
1039	Recent Progress of Synthesis and Application in Au@MOFs Hybrid Materials. Catalysis Surveys From Asia, 2017, 21, 130-142.	2.6	1
1040	Improving catalytic activity of supported Au nanoparticles depending on its density. Molecular Catalysis, 2017, 427, 18-24.	2.0	7
1041	Structureâ€Dependent Baseâ€Free Aerobic Oxidation of Benzyl Alcohol over Highâ€6urfaceâ€Area Mgâ€Doped ZnAl ₂ O ₄ Spinel Supported Gold Nanoparticles. ChemPlusChem, 2017, 82, 270-279.	2.8	5
1042	Red mud based gold catalysts in the oxidation of benzyl alcohol with molecular oxygen. Catalysis Today, 2017, 289, 89-95.	4.4	20

#	Article	IF	CITATIONS
1043	Goldâ€nanoparticleâ€decorated thermoplastic polyurethane electrospun fibers prepared through a chitosan linkage for catalytic applications. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
1044	Insight into chemoselectivity of nitroarene hydrogenation: A DFT-D3 study of nitroarene adsorption on metal surfaces under the realistic reaction conditions. Applied Surface Science, 2017, 392, 456-471.	6.1	25
1045	Atomic and molecular layer deposition: off the beaten track. Chemical Communications, 2017, 53, 45-71.	4.1	173
1046	Magnetically Recoverable Gold Nanorods as a Novel Catalyst for the Facile Reduction of Nitroarenes Under Aqueous Conditions. Catalysis Letters, 2017, 147, 491-501.	2.6	30
1047	Au@Cu 7 S 4 yolk@shell nanocrystal-decorated TiO 2 nanowires as an all-day-active photocatalyst for environmental purification. Nano Energy, 2017, 31, 286-295.	16.0	167
1049	Metal nanostructures: from clusters to nanocatalysis and sensors. Physics-Uspekhi, 2017, 60, 1236-1267.	2.2	15
1051	Gas phase chemoselective hydrogenation of p-nitrobenzonitrile over gold: effect of metal particle size, support and the metal-support interface. Journal of Lithic Studies, 2017, 3, 165-173.	0.5	1
1052	The role of aqueous leaf extract of Tinospora crispa as reducing and capping agents for synthesis of gold nanoparticles. IOP Conference Series: Materials Science and Engineering, 2017, 188, 012013.	0.6	12
1053	Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde. Nanomaterials, 2017, 7, 440.	4.1	6
1054	Green Method for Synthesis of Gold Nanoparticles Using <i> Polyscias scutellaria</i> Leaf Extract under UV Light and Their Catalytic Activity to Reduce Methylene Blue. Journal of Nanomaterials, 2017, 2017, 1-6.	2.7	44
1055	The Preparation of Au@TiO2 Yolk–Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue. Nanoscale Research Letters, 2017, 12, 535.	5.7	33
1056	Recent Advances in the Reduction of Nitro Compounds by Heterogenous Catalysts. Current Organic Chemistry, 2017, 21, 794-820.	1.6	94
1057	Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 2457-2468.	6.7	108
1058	Discovering and Utilizing Structure Sensitivity. Studies in Surface Science and Catalysis, 2017, 177, 613-641.	1.5	1
1059	Ab initio studies of ethanol dehydrogenation at binary AuPd nanocatalysts. Molecular Catalysis, 2018, 449, 8-13.	2.0	14
1060	DFT-Computed Trends in the Properties of Bimetallic Precious Metal Nanoparticles with Core@Shell Segregation. Journal of Physical Chemistry C, 2018, 122, 5721-5730.	3.1	19
1061	Morphological control of gold nanoparticles on exfoliated layers of layered double hydroxide: A reusable hybrid catalyst for the reduction of p -nitrophenol. Applied Clay Science, 2018, 156, 187-194.	5.2	19
1062	Ultrathin and Vacancy-Rich CoAl-Layered Double Hydroxide/Graphite Oxide Catalysts: Promotional Effect of Cobalt Vacancies and Oxygen Vacancies in Alcohol Oxidation. ACS Catalysis, 2018, 8, 3104-3115.	11.2	149

#	Article	IF	CITATIONS
1063	CO Oxidation Kinetics over Au/TiO ₂ and Au/Al ₂ O ₃ Catalysts: Evidence for a Common Water-Assisted Mechanism. Journal of the American Chemical Society, 2018, 140, 3712-3723.	13.7	106
1064	Assembly of carboxylated zinc phthalocyanine with gold nanoparticle for colorimetric detection of calcium ion. Journal of Materials Science: Materials in Electronics, 2018, 29, 8380-8389.	2.2	7
1065	Gold as a modifier of metal nanoparticles: effect on structure and catalysis. Faraday Discussions, 2018, 208, 395-407.	3.2	11
1066	Dual effects of water vapor on ceria-supported gold clusters. Nanoscale, 2018, 10, 6558-6565.	5.6	26
1067	Thiolated Gold Nanoclusters for Light Energy Conversion. ACS Energy Letters, 2018, 3, 840-854.	17.4	158
1068	Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis, 2018, 360, 187-200.	6.2	4
1069	Complexes of gold and imidazole formed in helium nanodroplets. Physical Chemistry Chemical Physics, 2018, 20, 7739-7745.	2.8	8
1070	Pt incorporated mesoporous carbon spheres: controllable structure with enhanced catalytic activity and stability. RSC Advances, 2018, 8, 13964-13969.	3.6	4
1071	Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic g-C ₃ N ₄ nanostructures towards improved photoelectrochemical performances. RSC Advances, 2018, 8, 13898-13909.	3.6	50
1072	Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chemical Society Reviews, 2018, 47, 4112-4155.	38.1	117
1073	Synthesis and characterization of gold-containing oxides of K2NiF4 or Nd2CuO4 structure type. Gold Bulletin, 2018, 51, 35-44.	2.4	1
1074	Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis. Nature Communications, 2018, 9, 1543.	12.8	223
1075	DNA metallization: principles, methods, structures, and applications. Chemical Society Reviews, 2018, 47, 4017-4072.	38.1	156
1076	Concerted Catalysis by Adjacent Palladium and Gold in Alloy Nanoparticles for the Versatile and Practical [2+2+2] Cycloaddition of Alkynes. Angewandte Chemie - International Edition, 2018, 57, 6136-6140.	13.8	35
1077	Room-Temperature Turkevich Method: Formation of Gold Nanoparticles at the Speed of Mixing Using Cyclic Oxocarbon Reducing Agents. Journal of Physical Chemistry C, 2018, 122, 5105-5118.	3.1	44
1078	Solvationâ€Induced Changes in the Mechanism of Alcohol Oxidation at Gold/Titania Nanocatalysts in the Aqueous Phase versus Gas Phase. Angewandte Chemie, 2018, 130, 3385-3389.	2.0	1
1079	Magnesium surface enrichment of CoFe ₂ O ₄ magnetic nanoparticles immobilized with gold: reusable catalysts for green oxidation of benzyl alcohol. RSC Advances, 2018, 8, 3903-3909.	3.6	13
1080	Nearâ€Infrared Photoluminescence from Small Copper, Silver, and Gold Nanoparticles. ChemNanoMat, 2018, 4, 265-268.	2.8	12

#	Article	IF	CITATIONS
1081	Positively Charged Gold Nanoparticles for Hydrogen Peroxide Detection. BioNanoScience, 2018, 8, 537-543.	3.5	11
1082	Luminol, horseradish peroxidase and antibody ternary codified gold nanoparticles for a label-free homogenous chemiluminescent immunoassay. Analytical Methods, 2018, 10, 722-729.	2.7	14
1083	Naked Au nanoparticles monodispersed onto multifunctional cellulose nanocrystal–graphene hybrid sheets: towards efficient and sustainable heterogeneous catalysts. New Journal of Chemistry, 2018, 42, 2197-2203.	2.8	17
1084	Decolorization of textile dyes by combination of gold nanocatalysts obtained from Acinetobacter sp. SW30 and <mml:math <br="" display="inline" id="mml19" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll" altimg="si19.gif"> <mml:msub> <mml:mrow> <mml:mi mathvariant="normal">NaBH </mml:mi </mml:mrow> <mml:mrow> <mml:mn>4</mml:mn> </mml:mrow> <td>6.1 Isub><td>19 nl:math>.</td></td></mml:msub></mml:math>	6.1 Isub> <td>19 nl:math>.</td>	19 nl:math>.
1085	Fabrication of Pd/CuFe ₂ O ₄ hybrid nanowires: a heterogeneous catalyst for Heck couplings. New Journal of Chemistry, 2018, 42, 1646-1654.	2.8	18
1086	Sinter-Resistant and Highly Active Sub-5 nm Bimetallic Au–Cu Nanoparticle Catalysts Encapsulated in Silica for High-Temperature Carbon Monoxide Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 4776-4785.	8.0	35
1087	Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today, 2018, 18, 86-102.	11.9	150
1088	Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies. Nature Chemistry, 2018, 10, 268-274.	13.6	78
1089	Protein-mimicking nanoparticle (Protmin)-based nanosensor for intracellular analysis of metal ions. Nuclear Science and Techniques/Hewuli, 2018, 29, 1.	3.4	8
1090	Human nitric oxide biomarker as potential NO donor in conjunction with superparamagnetic iron oxide @ gold core shell nanoparticles for cancer therapeutics. Colloids and Surfaces B: Biointerfaces, 2018, 163, 246-256.	5.0	23
1091	Size Regulation of Platinum Nanoparticles by Using Confined Spaces for the Low-Temperature Oxidation of Ethylene. Inorganic Chemistry, 2018, 57, 1645-1650.	4.0	37
1092	Solvationâ€Induced Changes in the Mechanism of Alcohol Oxidation at Gold/Titania Nanocatalysts in the Aqueous Phase versus Gas Phase. Angewandte Chemie - International Edition, 2018, 57, 3327-3331.	13.8	25
1093	Waterâ€Mediated Oneâ€pot Threeâ€Component Synthesis of Hydrazinylâ€Thiazoles Catalyzed by Copper Oxide Nanoparticles Dispersed on Titanium Dioxide Support: A Green Catalytic Process. Advanced Synthesis and Catalysis, 2018, 360, 995-1006.	4.3	26
1094	Amine facilitates the synthesis of silica-supported ultrasmall bimetallic nanoparticles. Science China Materials, 2018, 61, 1129-1131.	6.3	2
1095	Rational construction of metal nanoparticles fixed in zeolite crystals as highly efficient heterogeneous catalysts. Nano Today, 2018, 20, 74-83.	11.9	94
1096	CO oxidation over supported gold nanoparticles as revealed by <i>operando</i> grazing incidence X-ray scattering analysis. Faraday Discussions, 2018, 208, 243-254.	3.2	13
1097	Concerted Catalysis by Adjacent Palladium and Gold in Alloy Nanoparticles for the Versatile and Practical [2+2+2] Cycloaddition of Alkynes. Angewandte Chemie, 2018, 130, 6244-6248.	2.0	8
1098	Subnanometric Gold Clusters on CeO ₂ with Maximized Strong Metal–Support Interactions for Aerobic Oxidation of Carbon–Hydrogen Bonds. ACS Sustainable Chemistry and Engineering, 2018, 6, 6418-6424.	6.7	15

#	Article	IF	CITATIONS
1099	Laserâ€Assisted Synthesis of Colloidal FeW _x O _y and Fe/Fe _x O _y Nanoparticles in Water and Ethanol. ChemPhysChem, 2018, 19, 1414-1419.	2.1	21
1100	Plasmonic photocatalysts based on silver nanoparticles – layered double hydroxides for efficient removal of toxic compounds using solar light. Applied Surface Science, 2018, 444, 407-413.	6.1	24
1101	Individually Dispersed Gold Nanoshell-Bearing Cellulose Nanocrystals with Tailorable Plasmon Resonance. Langmuir, 2018, 34, 4427-4436.	3.5	11
1102	Role of oxygen vacancies in Ag/Au doped CeO2 nanoparticles for fast photocatalysis. Solar Energy, 2018, 165, 206-216.	6.1	139
1104	Enhanced catalytic reduction of 4-nitrophenol over titania nanotube supported gold nanoparticles by weak ultraviolet light irradiation: Role of gold surface charge. Applied Surface Science, 2018, 445, 535-541.	6.1	28
1105	3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction. Carbohydrate Polymers, 2018, 192, 166-175.	10.2	52
1106	l-serine-functionalized montmorillonite decorated with Au nanoparticles: A new highly efficient catalyst for the reduction of 4-nitrophenol. Journal of Catalysis, 2018, 361, 143-155.	6.2	31
1107	Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Scientific Reports, 2018, 8, 4589.	3.3	281
1108	The adsorption of helium atoms on small cationic gold clusters. Physical Chemistry Chemical Physics, 2018, 20, 9554-9560.	2.8	11
1109	Polyethylenimine-assisted seed-mediated synthesis of gold nanoparticles for surface-enhanced Raman scattering studies. Applied Surface Science, 2018, 444, 243-252.	6.1	24
1110	A Stable Plasmonic Cu@Cu ₂ O/ZnO Heterojunction for Enhanced Photocatalytic Hydrogen Generation. ChemSusChem, 2018, 11, 1505-1511.	6.8	91
1111	Aerobic oxidative esterification of primary alcohols over Pd-Au bimetallic catalysts supported on mesoporous silica nanoparticles. Catalysis Today, 2018, 306, 81-88.	4.4	24
1112	Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO ₂ . Environmental Technology (United Kingdom), 2018, 39, 2353-2364.	2.2	38
1113	Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous and Mesoporous Materials, 2018, 256, 111-127.	4.4	255
1114	Gold nanoclusters prepared from an eighteenth century two-phases procedure supported on thiol-containing SBA-15 for liquid phase oxidation of cyclohexene with molecular oxygen. Catalysis Today, 2018, 304, 172-180.	4.4	14
1115	Chitosan and gold nanoparticles-based thermal history indicators and frozen indicators for perishable and temperature-sensitive products. Food Control, 2018, 85, 186-193.	5.5	53
1116	Compared Catalytic Efficiency of Click-Dendrimer-Stabilized Late Transition Metal Nanoparticles in 4-Nitrophenol Reduction. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 399-406.	3.7	18
1117	Cerium phosphate-supported Au catalysts for CO oxidation. Chinese Journal of Chemical Engineering, 2018, 26, 2055-2063.	3.5	4

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1118	Literature Survey on Magnetic, Gold, and Core-Shell Nanoparticles. Springer Theses, 20	18, , 37-72.	0.1	1
1119	Plasmonic enhancement of light-harvesting efficiency in tandem dye-sensitized solar ce multiplexed gold core/silica shell nanorods. Journal of Power Sources, 2018, 376, 26-32	lls using ·	7.8	20
1120	Effect of Au nanoparticles on the activity of TiO 2 for ethanol upgrading reactions. App A: General, 2018, 551, 23-33.	ied Catalysis	4.3	27
1121	<i>In situ</i> synthesis of sub-nanometer metal particles on hierarchically porous metal. frameworks <i>via</i> interfacial control for highly efficient catalysis. Chemical Science, 1339-1343.	–organic 2018, 9,	7.4	28
1122	Theoretical insights into acetylene adsorption on nanoporous gold surfaces: Role of res Applied Surface Science, 2018, 434, 735-743.	idual silver.	6.1	0
1123	Oxygen-Driven Surface Evolution of Nanoporous Gold: Insights from Ab Initio Molecular and Auger Electron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 5349-53	Dynamics 57.	3.1	25
1124	Gold-Titania Catalysts for Low-Temperature Oxidation and Water Splitting. Topics in Ca 336-347.	talysis, 2018, 61,	2.8	13
1125	Preparation gold nanoparticles using herb leaf extract for electro-oxidation determination ascorbic acid. Inorganic and Nano-Metal Chemistry, 2018, 48, 449-453.	on of	1.6	20
1126	A convenient and efficient precursor transformation route to well-dispersed, stable, and accessible supported Au nanocatalysts with excellent catalytic hydrogenation performa Advances, 2018, 8, 39384-39393.	l highly nces. RSC	3.6	1
1127	lodide-mediated templating synthesis of highly porous rhodium nanospheres for enhan dehydrogenation of ammonia borane. Journal of Materials Chemistry A, 2018, 6, 24166	ced -24174.	10.3	26
1128	A direct electron transfer biosensor based on a horseradish peroxidase and gold nanotr modified electrode and electrocatalysis. Analytical Methods, 2018, 10, 5297-5304.	angle	2.7	23
1129	Origins of the High Reactivity of Au Nanostructures Deduced from the Structure and Pr Model Surfaces. , 0, , .	operties of		1
1131	Clay mineral catalysts. Developments in Clay Science, 2018, 9, 289-329.		0.5	5
1132	Robust and accurate measurements of gold nanoparticle concentrations using UV-visib spectrophotometry. Biointerphases, 2018, 13, 061002.	le	1.6	19
1133	Application of Silver Nanoparticles in the Multicomponent Reaction Domain: A Combine Reduction Methodology to Efficiently Access Potential Hypertension or Inflammation Ir Omega, 2018, 3, 16005-16013.	ed Catalytic hibitors. ACS	3.5	17
1134	The role of incidence angle in the morphology evolution of Ge surfaces irradiated by me Au ions. Journal of Physics Condensed Matter, 2018, 30, 324001.	dium-energy	1.8	5
1135	Reaction of Aromatic Carbonyl Compounds with Silylborane Catalyzed by Au Nanoparti Pinacol-type Reductive Dimerization via a Radical Pathway. Journal of Organic Chemistr 15553-15557.	cles: Silylative y, 2018, 83,	3.2	9
1136	TDDFT Study of the Optical Spectra of Free and Supported Binary Coinage Metal Hexar Doping and Support. Journal of Physical Chemistry C, 2018, 122, 23143-23152.	ners: Effect of	3.1	5

ARTICLE IF CITATIONS Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and 1137 14 1.6 C-C coupling reaction. Inorganic and Nano-Metal Chemistry, 2018, 48, 176-181. A Hollow Porous CdS Photocatalyst. Advanced Materials, 2018, 30, e1804368. 21.0 204 Enhancement of Catalytic Properties by Adjusting Molecular Diffusion in Nanoporous Catalysts. 1139 0.2 3 Advances in Catalysis, 2018, , 1-47. Dry Powder Assay Rapidly Detects Metallic Nanoparticles in Water by Measuring Surface Catalytic 1140 Reactivity. Environmental Science & amp; Technology, 2018, 52, 13289-13297. Soluble Pt Nanoparticles Stabilized by a Trisâ€imidazolium Tetrafluoroborate as Efficient and Recyclable 1141 1.5 10 Catalyst for the Stereoselective Hydrosilylation of Alkynes. ChemistrySelect, 2018, 3, 11486-11493. Gold-silver catalysts: Effect of catalyst structure on the selectivity of glycerol oxidation. Journal of Catalysis, 2018, 368, 324-335. 6.2 One Pot Synthesis of Au_ZnO Coreâ€Shell Nanoparticles Using a Zn Complex Acting as ZnO Precursor, 1143 Capping and Reducing Agent During the Formation of Au NPs. European Journal of Inorganic 2.0 11 Chemistry, 2018, 2018, 4678-4683. Mechanistic Variants in Methane Activation Mediated by Gold(I) Supported on Silicon Oxide Clusters. 1144 3.3 10 Chemistry - A European Journal, 2018, 24, 17506-17512. Copper(I) and gold(I) thiolate precursors to bimetallic nanoparticles. Polyhedron, 2018, 155, 359-365. 2.2 1145 6 Development of Easily Separable ZnOâ€Supported Au Nanocatalyst for the Oxidative Esterification of 1146 1.5 Alcohols and Reduction of Nitroarenes. ChemistrySelect, 2018, 3, 9414-9421. 4. Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. , 2018, , 157-220. 2 1147 Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green 1148 9.0 114 Chemistry, 2018, 20, 2933-2952. A New Defect Pyrochlore Oxide Sn_{1.06}Nb₂O_{5.59}F_{0.97}: Synthesis, Noble Metal Hybrids, and Photocatalytic Applications. Inorganic Chemistry, 2018, 57, 1149 4.0 11 6641-6647. Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol. Journal of Environmental Chemical Engineering, 2018, 6, 3827-3836. 6.7 Solar light active plasmonic Au@TiO₂ nanocomposite with superior photocatalytic performance for H₂ production and pollutant degradation. New Journal of Chemistry, 1151 2.8 67 2018, 42, 10958-10968. CO Oxidation on a Au/TiO₂ Nanoparticle Catalyst via the Au-Assisted Mars–van Krevelen 11.2 103 Mechanism. ACS Catalysis, 2018, 8, 6513-6525. A Versatile AuNP Synthetic Platform for Decoupled Control of Size and Surface Composition. 1153 3.526 Langmuir, 2018, 34, 6820-6826. A candidate material for mercury control in energy production processes: Carbon foams loaded with 1154 8.8 gold. Energy, 2018, 159, 630-637.

#	Article	IF	CITATIONS
1155	Multifunctional Heterogeneous Catalysts for the Selective Conversion of Glycerol into Methyl Lactate. ACS Sustainable Chemistry and Engineering, 2018, 6, 10923-10933.	6.7	32
1156	A model for the formation of gold nanoparticles in the citrate synthesis method. Chemical Engineering Science, 2018, 191, 318-331.	3.8	41
1157	MOF Templated Nitrogen Doped Carbon Stabilized Pt–Co Bimetallic Nanoparticles: Low Pt Content and Robust Activity toward Electrocatalytic Oxygen Reduction Reaction. ACS Applied Nano Materials, 2018, 1, 3331-3338.	5.0	53
1158	In Situ Synthesis of Gold Nanoparticles/Metal–Organic Gels Hybrids with Excellent Peroxidase-Like Activity for Sensitive Chemiluminescence Detection of Organophosphorus Pesticides. ACS Applied Materials & Interfaces, 2018, 10, 28868-28876.	8.0	119
1159	Nanoparticle Fabrication on Bacterial Microcompartment Surface for the Development of Hybrid Enzyme-Inorganic Catalyst. ACS Catalysis, 2018, 8, 7742-7748.	11.2	22
1160	Nano–silica functionalized with thiol–based dendrimer as a host for gold nanoparticles: An efficient and reusable catalyst for chemoselective oxidation of alcohols. Applied Organometallic Chemistry, 2018, 32, e4440.	3.5	11
1161	Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 339-350.	2.9	57
1162	Hydrogenation of (–)-Carvone in Presence of Gold Catalysts: Role of the Support. Catalysis in Industry, 2018, 10, 159-165.	0.7	1
1163	Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties. Nanotechnology, 2018, 29, 375602.	2.6	9
1164	Understanding Thermal and Photochemical Aryl–Aryl Cross oupling by the Au ^I /Au ^{III} Redox Couple. Chemistry - A European Journal, 2018, 24, 13636-13646.	3.3	21
1165	Iron Oxide-Cobalt Nanocatalyst for O-tert-Boc Protection and O-Arylation of Phenols. Nanomaterials, 2018, 8, 246.	4.1	8
1166	Galvanic-Cell-Reaction-Driven Deposition of Large-Area Au Nanourchin Arrays for Surface-Enhanced Raman Scattering. Nanomaterials, 2018, 8, 265.	4.1	5
1167	Waterâ€PEGâ€400 Mediated an Efficient Oneâ€Pot Ecoâ€Friendly Synthesis of Functionalized Isoxazole Substituted Chromeno[2, 3―b]pyridineâ€3â€carboxylate Derivatives. ChemistrySelect, 2018, 3, 7766-777(). ^{1.5}	6
1168	Novel zwitterionic Natural Deep Eutectic Solvents as environmentally friendly media for spontaneous self-assembly of gold nanoparticles. Journal of Molecular Liquids, 2018, 268, 371-375.	4.9	28
1169	Extracellular mycosynthesis of gold nanoparticles using <i>Trichoderma hamatum</i> : optimization, characterization and antimicrobial activity. Letters in Applied Microbiology, 2018, 67, 465-475.	2.2	59
1170	A bioinspired polydopamine approach toward the preparation of goldâ€modified magnetic nanoparticles for the magnetic solidâ€phase extraction of steroids in multiple samples. Journal of Separation Science, 2018, 41, 2774-2782.	2.5	9
1171	Prevention of the Aggregation of Nanoparticles during the Synthesis of Nanogold-Containing Silica Aerogels. Gels, 2018, 4, 55.	4.5	14
1172	Self-assembly of DNA–tetraphenylethylene amphiphiles into DNA-grafted nanosheets as a support for the immobilization of gold nanoparticles: a recyclable catalyst with enhanced activity. Nanoscale, 2018, 10, 17174-17181.	5.6	17

#	Article	IF	CITATIONS
1173	Nickel Nanoparticles Stabilized by Trisimidazolium Salts: Synthesis, Characterization and Application as Recyclable Catalysts for the Reduction of Nitroarenes. ChemistrySelect, 2018, 3, 8597-8603.	1.5	9
1174	Growth of Au–Pd ₂ Sn Nanorods via Galvanic Replacement and Their Catalytic Performance on Hydrogenation and Sonogashira Coupling Reactions. Langmuir, 2018, 34, 10634-10643.	3.5	13
1175	Light-activated Ullmann homocoupling of aryl halides catalyzed using gold nanoparticle-functionalized potassium niobium oxides. Catalysis Science and Technology, 2018, 8, 4907-4915.	4.1	30
1176	Gold decoration of silica by decomposition of aqueous gold(<scp>iii</scp>) hydroxide at low temperatures. RSC Advances, 2018, 8, 19979-19989.	3.6	4
1177	First achieving highly selective oxidation of aliphatic alcohols to aldehydes over photocatalysts. Journal of Materials Chemistry A, 2018, 6, 13236-13243.	10.3	35
1178	Activation of formyl C H and hydroxyl O H bonds in HMF by the CuO(1â€ ⁻ 1â€ ⁻ 1) and Co3O4(1â€ ⁻ 1â€ ⁻ 0) surfaces: study. Applied Surface Science, 2018, 456, 174-183.	A DFT	39
1179	Tailored Macroporous Hydrogels with Nanoparticles Display Enhanced and Tunable Catalytic Activity. ACS Applied Materials & Interfaces, 2018, 10, 21073-21078.	8.0	26
1180	Aerobic oxidative amidation of alkynes using titanium oxide encapsulated cuprous iodide nanoparticles (Cul@TiO ₂). New Journal of Chemistry, 2018, 42, 12062-12071.	2.8	14
1181	Electron/gamma radiation-induced synthesis and catalytic activity of gold nanoparticles supported on track-etched poly(ethylene terephthalate) membranes. Materials Chemistry and Physics, 2018, 217, 31-39.	4.0	21
1182	Multipronged Validation of Oxalate C–C Bond Cleavage Driven by Au-TiO ₂ Interfacial Charge Transfer Using Operando DRIFTS. ACS Catalysis, 2018, 8, 7158-7163.	11.2	8
1183	Silver catalysts for liquid-phase oxidation of alcohols in green chemistry: Challenges and outlook. Catalysis Today, 2019, 333, 81-88.	4.4	17
1184	Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free oxidation of benzyl alcohol under low metal loadings. Journal of Materials Science, 2019, 54, 238-251.	3.7	34
1185	Dendronized triazolyl-containing ferrocenyl polymers as stabilizers of gold nanoparticles for recyclable two-phase reduction of 4-nitrophenol. Journal of Colloid and Interface Science, 2019, 533, 161-170.	9.4	85
1186	Molecular and Dissociative Adsorption of Oxygen on Au–Pd Bimetallic Clusters: Role of Composition and Spin State of the Cluster. ACS Omega, 2019, 4, 12687-12695.	3.5	12
1187	Supercritical water assisted preparation of recyclable gold nanoparticles and their catalytic utility in cross-coupling reactions under sustainable conditions. Nanoscale Advances, 2019, 1, 3177-3191.	4.6	18
1188	Determining the role of redox-active materials during laser-induced water decomposition. Physical Chemistry Chemical Physics, 2019, 21, 18636-18651.	2.8	41
1189	Metal Oxide Gas Sensors with Au Nanocluster Catalytic Overlayer: Toward Tuning Gas Selectivity and Response Using a Novel Bilayer Sensor Design. ACS Applied Materials & amp; Interfaces, 2019, 11, 32169-32177.	8.0	83
1190	Levulinic Acid Derived Reusable Cobalt-Nanoparticles-Catalyzed Sustainable Synthesis of \hat{I}^3 -Valerolactone. ACS Sustainable Chemistry and Engineering, 2019, 7, 14756-14764.	6.7	42

#	Article	IF	CITATIONS
1191	Kinetic Control of [AuCl ₄] ^{â^`} Photochemical Reduction and Gold Nanoparticle Size with Hydroxyl Radical Scavengers. Journal of Physical Chemistry B, 2019, 123, 7204-7213.	2.6	45
1192	Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale, 2019, 11, 18946-18967.	5.6	61
1193	Descriptor for the Efficacy of Aliovalent Doping of Oxides and Its Application for the Charging of Supported Au Clusters. Journal of Physical Chemistry C, 2019, 123, 19794-19805.	3.1	4
1194	Noble Metal Particles Confined in Zeolites: Synthesis, Characterization, and Applications. Advanced Science, 2019, 6, 1900299.	11.2	127
1195	Recent Advances in Design of Gold-Based Catalysts for H2 Clean-Up Reactions. Frontiers in Chemistry, 2019, 7, 517.	3.6	27
1196	Versatile Sensor Modified with Gold Nanoparticles Carbon Paste Electrode for Anodic Stripping Determination of Brexpiprazole: A Voltammetric Study. Journal of the Electrochemical Society, 2019, 166, B948-B955.	2.9	17
1197	New Strategies for the Preparation of Sinterâ€Resistant Metalâ€Nanoparticleâ€Based Catalysts. Advanced Materials, 2019, 31, e1901905.	21.0	203
1198	Intramolecular Oâ€arylation using nanoâ€magnetite supported <i>N</i> â€heterocyclic carbeneâ€copper complex with wingtip ferrocene. Applied Organometallic Chemistry, 2019, 33, e5066.	3.5	4
1199	Femtosecond laser-assisted synthesis of Ni/Au BONs in various alcoholic solvents. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	9
1200	Catalytic performance of bulk and colloidal Co/Al layered double hydroxide with Au nanoparticles in aerobic olefin oxidation. Applied Catalysis A: General, 2019, 584, 117155.	4.3	12
1201	Efficient imine synthesis from oxidative coupling of alcohols and amines under air atmosphere catalysed by Zn-doped Al2O3 supported Au nanoparticles. Journal of Catalysis, 2019, 377, 110-121.	6.2	54
1202	Silica-Supported Gold Nanocatalyst for CO Oxidation. , 2019, , .		3
1203	Tunable affinity separation enables ultrafast solvent permeation through layered double hydroxide membranes. Journal of Membrane Science, 2019, 591, 117318.	8.2	23
1204	A simple one-step procedure to synthesise gold nanostars in concentrated aqueous surfactant solutions. RSC Advances, 2019, 9, 23633-23641.	3.6	27
1205	The non-innocent role of graphene in the formation/immobilization of ultra-small gold nanoparticles functionalized with N-heterocyclic carbene ligands. Journal of Catalysis, 2019, 375, 419-426.	6.2	16
1206	Highly Robust but Surfaceâ€Active: An Nâ€Heterocyclic Carbeneâ€6tabilized Au ₂₅ Nanocluster. Angewandte Chemie - International Edition, 2019, 58, 17731-17735.	13.8	125
1207	One‣tep Photochemical Green Synthesis of Waterâ€Dispersible Ag, Au, and Au@Ag Core–Shell Nanoparticles. Chemistry - A European Journal, 2019, 25, 14638-14643.	3.3	9
1208	Highly Robust but Surfaceâ€Active: An Nâ€Heterocyclic Carbeneâ€6tabilized Au ₂₅ Nanocluster. Angewandte Chemie, 2019, 131, 17895-17899.	2.0	39

#	Article	IF	CITATIONS
1209	Combination of Experimental and Computational Approaches: Recent Developments in Catalytic Organic and Bioorganic Reactions. Current Organic Chemistry, 2019, 23, 1379-1380.	1.6	0
1210	Cold Nanoparticles on 3D-Printed Filters: From Waste to Catalysts. ACS Omega, 2019, 4, 16891-16898.	3.5	21
1211	Modifying Ligand Chemistry To Enhance Reusability of pH-Responsive Colloidal Gold Nanoparticle Catalyst. Journal of Physical Chemistry C, 2019, 123, 26450-26459.	3.1	12
1212	Reductive Activation of Small Molecules by Anionic Coinage Metal Atoms and Clusters in the Gas Phase. Chemistry - an Asian Journal, 2019, 14, 3763-3772.	3.3	9
1213	Supported Gold Nanoparticles as Catalysts for the Oxidation of Alcohols and Alkanes. Frontiers in Chemistry, 2019, 7, 702.	3.6	77
1214	Nickel Nanoparticle-catalyzed Carboxylation of Unsaturated Hydrocarbon with CO ₂ Using Sulfur-modified Au-supported Nickel Material. Chemistry Letters, 2019, 48, 1406-1409.	1.3	7
1215	Shape dependent catalytic activity of unsupported gold nanostructures for the fast reduction of 4-nitroaniline. Colloids and Interface Science Communications, 2019, 29, 9-16.	4.1	33
1216	Development of titania-supported iridium catalysts with excellent low-temperature activities for the synthesis of benzimidazoles via hydrogen transfer. Molecular Catalysis, 2019, 477, 110550.	2.0	8
1217	Effect of noble metal addition to alkali-exchanged cryptomelane on the simultaneous soot and VOC combustion activity. Catalysis Communications, 2019, 132, 105807.	3.3	15
1218	Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes. Green Chemistry, 2019, 21, 614-626.	9.0	36
1219	Catalytic farming: reaction rotation extends catalyst performance. Chemical Science, 2019, 10, 1419-1425.	7.4	18
1220	Linear polyethylenimine-decorated gold nanoparticles: One-step electrodeposition and studies of interaction with viral and animal proteins. Electrochimica Acta, 2019, 301, 126-135.	5.2	9
1221	Chlorideâ€Induced Highly Active Au Catalyst for Methyl Esterification of Alcohols. Chinese Journal of Chemistry, 2019, 37, 249-254.	4.9	2
1222	Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase. Sensors and Actuators B: Chemical, 2019, 285, 607-616.	7.8	49
1223	One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors. Sensors and Actuators B: Chemical, 2019, 286, 429-436.	7.8	42
1224	Fabrication of Au Nanoparticles Supported on One-Dimensional La ₂ O ₃ Nanorods for Selective Esterification of Methacrolein to Methyl Methacrylate with Molecular Oxygen. ACS Sustainable Chemistry and Engineering, 2019, 7, 3982-3994.	6.7	27
1225	Heterogeneous gold catalysts for selective hydrogenation: from nanoparticles to atomically precise nanoclusters. Nanoscale, 2019, 11, 11429-11436.	5.6	36
1226	Carbon‣upportâ€Based Heterogeneous Nanocatalysts: Synthesis and Applications in Organic Reactions. Asian Journal of Organic Chemistry, 2019, 8, 1263-1305.	2.7	59

#	Article	IF	CITATIONS
1227	Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. Chinese Journal of Catalysis, 2019, 40, 980-1002.	14.0	68
1228	Citric Acid/MCMâ€48 Catalyzed Multicomponent Reaction: An Efficient Method for the Novel Synthesis of Quinoline Derivatives. ChemistrySelect, 2019, 4, 7003-7009.	1.5	17
1229	In Situ Gold Nanoparticle Synthesis Mediated by a Water-Soluble Leaning Pillar[6]arene for Self-Assembly, Detection, and Catalysis. Organic Letters, 2019, 21, 5215-5218.	4.6	52
1230	Performance study of modified Pt catalysts for the complete oxidation of acetone. Chemical Engineering Science, 2019, 206, 499-506.	3.8	20
1231	Organic-Inorganic Hybrid Pillarene-Based Nanomaterial for Label-Free Sensing and Catalysis. Matter, 2019, 1, 848-861.	10.0	59
1232	Well dispersive Ni nanoparticles embedded in core-shell supports as efficient catalysts for 4-nitrophenol reduction. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	5
1233	Ultrafine AuPd Nanoclusters on Layered Double Hydroxides by the Capt-Capped AuPd Cluster Precursor Method: Synergistic Effect for Highly Efficient Aerobic Oxidation of Alcohols. Journal of Physical Chemistry C, 2019, 123, 15483-15494.	3.1	17
1234	Study on physisorption between phycocyanin and gold nanoparticles. Luminescence, 2019, 34, 623-627.	2.9	6
1235	<p>Rifampicin conjugated silver nanoparticles: a new arena for development of antibiofilm potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae</p> . International Journal of Nanomedicine, 2019, Volume 14, 3983-3993.	6.7	43
1236	Synthesis of gold nanoparticles supported at graphene derivatives using green reductants and evaluation of their catalytic activity in 4-nitrophenol reduction. Gold Bulletin, 2019, 52, 165-174.	2.4	2
1237	Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon. Nature Communications, 2019, 10, 2583.	12.8	48
1238	Laser Ablation Technique for Synthesis of Metal Nanoparticle in Liquid. , 0, , .		18
1239	Tuning the Microenvironment of Gold Nanoparticles Encapsulated within MILâ€101(Cr) for the Selective Oxidation of Alcohols with O ₂ : Influence of the Amino Terephthalate Linker. Chemistry - A European Journal, 2019, 25, 9280-9286.	3.3	15
1240	In situ erzeugte Goldnanopartikel auf Aktivkohle als wiederverwendbare hocheffiziente Katalysatoren für eine Câ€Câ€Stilleâ€Kupplung. Angewandte Chemie, 2019, 131, 10437-10442.	2.0	1
1241	In Situ Generated Gold Nanoparticles on Active Carbon as Reusable Highly Efficient Catalysts for a Câ^'C Stille Coupling. Angewandte Chemie - International Edition, 2019, 58, 10330-10334.	13.8	16
1242	Theoretical investigation of the anchoring and activity of a gold cluster on two-dimensional substrates. Materials Research Express, 2019, 6, 075069.	1.6	2
1243	A Study of Catalytic Oxidation of a Library of C2 to C4 Alcohols in the Presence of Nanogold. Nanomaterials, 2019, 9, 442.	4.1	1
1244	Heterogeneous Gold Catalysis: From Discovery to Applications. Catalysts, 2019, 9, 402.	3.5	29

#	Article	IF	CITATIONS
1245	Silica-Encapsulated Gold Nanoclusters for Efficient Acetylene Hydrogenation to Ethylene. ACS Applied Nano Materials, 2019, 2, 2999-3006.	5.0	23
1246	Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO ₂ . ACS Catalysis, 2019, 9, 5462-5473.	11.2	28
1247	Colorimetric detection of mercury ions based on anti-aggregation of gold nanoparticles using 3, 5-dimethyl-1-thiocarboxamidepyrazole. Microchemical Journal, 2019, 148, 299-305.	4.5	37
1248	Phosphine-based porous aromatic frameworks for gold nanoparticle immobilization with superior catalytic activities. Journal of Materials Chemistry A, 2019, 7, 10004-10009.	10.3	38
1249	Dexterity of gold catalysis in controlling the regioselectivity of cycloaddition reactions. Catalysis Reviews - Science and Engineering, 2019, 61, 406-446.	12.9	23
1250	Green synthesis and <i>in situ</i> immobilization of gold nanoparticles and their application for the reduction of <i>p</i> -nitrophenol in continuous-flow mode. RSC Advances, 2019, 9, 9193-9197.	3.6	9
1251	Synthesis of a novel graphene-based gold nanocomposite using PVEIM- <i>b</i> -PNIPAM as a stabilizer and its thermosensitivity for the catalytic reduction of 4-nitrophenol. Inorganic Chemistry Frontiers, 2019, 6, 903-913.	6.0	21
1252	Deposition of gold nanoparticles upon bare and indium tin oxide film coated glass based on annealing process. Journal of Experimental Nanoscience, 2019, 14, 13-22.	2.4	12
1253	Synthesis and Application of Au–Fe3O4 Dumbbell-Like Nanoparticles. , 2019, , 625-644.		0
1254	Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251, 57-65.	20.2	89
1254 1255	Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251, 57-65. Atypical catalytic function of embedded gold nanoparticles by controlling structural features of polymer particle in alcohol-rich solvents. Nanotechnology, 2019, 30, 285704.	20.2 2.6	89 12
1254 1255 1256	Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251, 57-65. Atypical catalytic function of embedded gold nanoparticles by controlling structural features of polymer particle in alcohol-rich solvents. Nanotechnology, 2019, 30, 285704. Morphology-Controlled Versatile One-Pot Synthesis of Hydrophobic Gold Nanodots, Nanobars, Nanorods, and Nanowires and Their Applications in Surface-Enhanced Raman Spectroscopy. Applied Sciences (Switzerland), 2019, 9, 935.	20.2 2.6 2.5	89 12 5
1254 1255 1256 1257	Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251, 57-65. Atypical catalytic function of embedded gold nanoparticles by controlling structural features of polymer particle in alcohol-rich solvents. Nanotechnology, 2019, 30, 285704. Morphology-Controlled Versatile One-Pot Synthesis of Hydrophobic Gold Nanodots, Nanobars, Nanorods, and Nanowires and Their Applications in Surface-Enhanced Raman Spectroscopy. Applied Sciences (Switzerland), 2019, 9, 935. Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie - International Edition, 2019, 58, 6327-6332.	20.2 2.6 2.5 13.8	89 12 5 64
1254 1255 1256 1257 1258	Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251, 57-65. Atypical catalytic function of embedded gold nanoparticles by controlling structural features of polymer particle in alcohol-rich solvents. Nanotechnology, 2019, 30, 285704. Morphology-Controlled Versatile One-Pot Synthesis of Hydrophobic Gold Nanodots, Nanobars, Nanorods, and Nanowires and Their Applications in Surface-Enhanced Raman Spectroscopy. Applied Sciences (Switzerland), 2019, 9, 935. Unveiling the Intrinsic Catalytic Activities of Singleâ€Coldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie - International Edition, 2019, 58, 6327-6332. Unveiling the Intrinsic Catalytic Activities of Singleâ€Coldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie - International Edition, 2019, 58, 6327-6332.	20.2 2.6 2.5 13.8 2.0	 89 12 5 64 30
1254 1255 1256 1257 1258 1259	Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251, 57-65. Atypical catalytic function of embedded gold nanoparticles by controlling structural features of polymer particle in alcohol-rich solvents. Nanotechnology, 2019, 30, 285704. Morphology-Controlled Versatile One-Pot Synthesis of Hydrophobic Gold Nanodots, Nanobars, Nanorods, and Nanowires and Their Applications in Surface-Enhanced Raman Spectroscopy. Applied Sciences (Switzerland), 2019, 9, 935. Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie - International Edition, 2019, 58, 6327-6332. Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie, 2019, 131, 6393-6398. Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. Materials Science and Engineering C, 2019, 100, 453-465.	 20.2 2.6 2.5 13.8 2.0 7.3 	 89 12 5 64 30 28
1254 1255 1256 1257 1258 1259 1260	Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251, 57-65. Atypical catalytic function of embedded gold nanoparticles by controlling structural features of polymer particle in alcohol-rich solvents. Nanotechnology, 2019, 30, 285704. Morphology-Controlled Versatile One-Pot Synthesis of Hydrophobic Gold Nanodots, Nanobars, Nanorods, and Nanowires and Their Applications in Surface-Enhanced Raman Spectroscopy. Applied Sciences (Switzerland), 2019, 9, 935. Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie - International Edition, 2019, 58, 6327-6332. Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie, 2019, 131, 6393-6398. Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. Materials Science and Engineering C, 2019, 100, 453-465. Homogeneous and Nanoparticle Gold-Catalyzed Hydrothiocyanation of Haloalkynes. Organic Letters, 2019, 21, 2772-2776.	 20.2 2.6 2.5 13.8 2.0 7.3 4.6 	 89 12 5 64 30 28 33
1254 1255 1256 1257 1258 1259 1260	Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Applied Catalysis B: Environmental, 2019, 251, 57-65. Atypical catalytic function of embedded gold nanoparticles by controlling structural features of polymer particle in alcohol-rich solvents. Nanotechnology, 2019, 30, 285704. Morphology-Controlled Versatile One-Pot Synthesis of Hydrophobic Gold Nanodots, Nanobars, Nanorods, and Nanowires and Their Applications in Surface-Enhanced Raman Spectroscopy. Applied Sciences (Switzerland), 2019, 9, 935. Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie - International Edition, 2019, 58, 6327-6332. Unveiling the Intrinsic Catalytic Activities of Singleâ€Goldâ€Nanoparticleâ€Based Enzyme Mimetics. Angewandte Chemie, 2019, 131, 6393-6398. Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH controlled release of DOX. Materials Science and Engineering C, 2019, 100, 453-465. Homogeneous and Nanoparticle Gold-Catalyzed Hydrothiocyanation of Haloalkynes. Organic Letters, 2019, 21, 2772-2776. Direct low-temperature hydrothermal synthesis of uniform Pd nanoparticles encapsulated mesoporous TS-1 and its excellent catalytic capability. Microporous and Mesoporous Materials, 2019, 23, 82-87.	 20.2 2.6 2.5 13.8 2.0 7.3 4.6 4.4 	 89 12 5 64 30 28 33 10

#	Article	IF	CITATIONS
1263	Carbon Nanotubes Modified With Au for Electrochemical Detection of Prostate Specific Antigen: Effect of Au Nanoparticle Size Distribution. Frontiers in Chemistry, 2019, 7, 147.	3.6	31
1264	Tailoring the Size and Shape of Colloidal Noble Metal Nanocrystals as a Valuable Tool in Catalysis. Catalysis Surveys From Asia, 2019, 23, 127-148.	2.6	23
1265	Improving the Photostability of Ultrasmall Au Clusters via a Combined Strategy of Surface Engineering and Interfacial Modification. Langmuir, 2019, 35, 5728-5736.	3.5	11
1266	Nanoporous block copolymer membranes immobilized with gold nanoparticles for continuous flow catalysis. Polymer Chemistry, 2019, 10, 1642-1649.	3.9	33
1267	The Key Role of Nanocasting in Goldâ€based Fe ₂ O ₃ Nanocasted Catalysts for Oxygen Activation at the Metalâ€support Interface. ChemCatChem, 2019, 11, 1915-1927.	3.7	13
1268	Biosynthesis of Copper Nanoparticles Supported on Zeolite Y and its Application in Catalytic Câ€N Cross Coupling Reactions between Amines and Aryl halides. ChemistrySelect, 2019, 4, 1964-1970.	1.5	9
1269	Dynamic Modulation of Plasmonic Structures. Journal of Self-Assembly and Molecular Electronics (SAME), 2019, 7, 1-22.	0.0	0
1270	Catalytic Performance of Nanoporous Metal Skeleton Catalysts for Molecular Transformations. ChemSusChem, 2019, 12, 2936-2954.	6.8	28
1271	Highly Efficient Supported Palladium–Gold Alloy Catalysts for Hydrogen Storage Based on Ammonium Bicarbonate/Formate Redox Cycle. ACS Sustainable Chemistry and Engineering, 2019, 7, 6522-6530.	6.7	37
1272	Nano-Cellulose/MOF Derived Carbon Doped CuO/Fe3O4 Nanocomposite as High Efficient Catalyst for Organic Pollutant Remedy. Nanomaterials, 2019, 9, 277.	4.1	36
1273	Nanospherical mesoporous carbon-supported gold as an efficient heterogeneous catalyst in the elimination of mass transport limitations. Applied Catalysis B: Environmental, 2019, 248, 22-30.	20.2	36
1274	Reusable Nickel Nanoparticlesâ€Catalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angewandte Chemie - International Edition, 2019, 58, 5064-5068.	13.8	94
1275	Reusable Nickel Nanoparticles atalyzed Reductive Amination for Selective Synthesis of Primary Amines. Angewandte Chemie, 2019, 131, 5118-5122.	2.0	32
1276	Synthesis of a Novel Magnetically Retrievable Nanocomposite with Au Nanocatalysts for Hydration Reaction. Catalysts, 2019, 9, 789.	3.5	3
1277	Nanostructured Materials for Treating Aquatic Pollution. Engineering Materials, 2019, , .	0.6	4
1278	Toxic Effects of Metal Nanoparticles in Marine Invertebrates. Engineering Materials, 2019, , 175-224.	0.6	4
1279	Near-Field Enhancement Contribution to the Photoactivity in Magnetite–Gold Hybrid Nanostructures. Journal of Physical Chemistry C, 2019, 123, 29891-29899.	3.1	6
1280	Synthesis of Zn ₂ TiO ₄ @CdS Coreâ€shell Heteronanostructures by Novel Thermal Decomposition Approach for Photocatalytic Application. ChemistrySelect, 2019, 4, 12580-12591.	1.5	6

			0
#		IF	CITATIONS
1281	Synthesis of Gold Nanoparticles. ChemistrySelect, 2019, 4, 13677-13688.	1.5	2
1282	Supported gold cluster catalysts prepared by solid grinding using a non-volatile organogold complex for low-temperature CO oxidation and the effect of potassium on gold particle size. Applied Catalysis B: Environmental, 2019, 241, 539-547.	20.2	27
1283	Synthesis of gold particles at room temperature ionic liquid–ethylene glycol interfaces: effect of processing time and concentration. Journal of Materials Science, 2019, 54, 274-285.	3.7	2
1284	Elucidating the interaction of Spathodea campanulata leaf extracts mediated potential bactericidal gold nanoparticles with human serum albumin: spectroscopic analysis. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3536-3549.	3.5	6
1285	Enhanced X-RAYS degradation of methylene blue in the presence of gold microspheres. Radiation Physics and Chemistry, 2019, 156, 73-80.	2.8	8
1286	Synthesis of decorated carbon nanotubes with Fe3O4 and Au nanoparticles and their application in catalytic oxidation of alcohols in water. Journal of Organometallic Chemistry, 2019, 882, 64-69.	1.8	11
1287	Thermoplasmonic-induced energy-efficient catalytic oxidation of glycerol over gold supported catalysts using visible light at ambient temperature. Applied Catalysis A: General, 2019, 572, 9-14.	4.3	10
1288	PMOs for Catalytic Applications. Springer Series in Materials Science, 2019, , 125-187.	0.6	4
1289	One Pot Green Synthesis of Si Quantum Dots and Catalytic Au Nanoparticle–Si Quantum Dot Nanocomposite. ACS Sustainable Chemistry and Engineering, 2019, 7, 3309-3318.	6.7	38
1290	In Situ Formation of Gold Nanoparticles within a Polymer Particle and Their Catalytic Activities in Various Chemical Reactions. ChemPhysChem, 2019, 20, 70-77.	2.1	17
1291	Chemistry of gold(I, III) complexes with organic ligands as potential MOCVD precursors for fabrication of thin metallic films and nanoparticles. Coordination Chemistry Reviews, 2019, 380, 58-82.	18.8	20
1292	Photoassisted CO ₂ Conversion to Fuels. ChemCatChem, 2019, 11, 342-356.	3.7	41
1293	CO Adsorption on Au(332): Combined Infrared Spectroscopy and Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 8187-8197.	3.1	7
1294	Photocatalysis with Reduced TiO ₂ : From Black TiO ₂ to Cocatalyst-Free Hydrogen Production. ACS Catalysis, 2019, 9, 345-364.	11.2	495
1295	Sub-nanometric Rh decorated magnetic nanoparticles as reusable catalysts for nitroarene reduction in water. Catalysis Communications, 2019, 119, 134-138.	3.3	19
1296	Discrimination of effects leading to gas formation during pulsed laser ablation in liquids. Applied Surface Science, 2019, 465, 1096-1102.	6.1	30
1297	Role of sterics in phosphine-ligated gold clusters. Physical Chemistry Chemical Physics, 2019, 21, 1689-1699.	2.8	17
1298	Catalysis by Supported Gold Nanoparticles. , 2019, , 91-108.		2

ARTICLE IF CITATIONS Formation of reactive oxygen species upon interaction of Au/ZnO with H2O2 and their activity in 1299 4.4 79 methylene blue degradation. Catalysis Today, 2019, 333, 54-62. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as 98 heterogeneous catalysts. Arabian Journal of Chemistry, 2020, 13, 1142-1178. X-ray and optical characterization of the intermediate products in the Au3+ reduction process by 1301 2.8 4 oleylamine. Radiation Physics and Chemistry, 2020, 175, 108067. Titania-supported iridium catalysts for dehydrogenative synthesis of benzimidazoles. Chinese Chemical 9.0 Letters, 2020, 31, 605-608. Solvent-free oxidation of 1-phenylethanol catalysed by gold nanoparticles supported on carbon 1303 4.4 7 powder materials. Catalysis Todáy, 2020, 357, 22-31. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511. 47.7 1,505 NiAu single atom alloys for the selective oxidation of methacrolein with methanol to methyl 1305 4.4 31 methacrylate. Catalysis Today, 2020, 355, 804-814. Formaldehyde CWO with gold nanoparticles in a forced through flow catalytic-membrane reactor. Catalysis Today, 2020, 349, 42-47. 1306 4.4 Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. 1307 2.4 86 Biochimica Et Biophysica Ácta - General Subjects, 2020, 1864, 129435. Immobilization of gold on short-channel mesoporous SBA-15 functionalized with thiol and 4.4 hydrophobic groups for oxidation reactions. Catalysis Today, 2020, 354, 77-89. High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au 1309 12.7 68 nanocatalysts. Chemical Engineering Journal, 2020, 381, 122599. MXenes as promising catalysts for water dissociation. Applied Catalysis B: Environmental, 2020, 260, 20.2 94 118191. Nanocatalytic Assemblies for Catalytic Reduction of Nitrophenols: A Critical Review. Critical Reviews 1311 3.5 118 in Analytical Chemistry, 2020, 50, 322-338. Goldâ€Catalyzed Crossâ€Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and 3.3 128 Applications. Chemistry - A European Journal, 2020, 26, 1442-1487 1313 Ultraviolet–visible spectrophotometry. , 2020, , 185-196. 7 Light Gold: A Colloidal Approach Using Latex Templates. Advanced Functional Materials, 2020, 30, 1314 14.9 1908458. Hemolysis tendency of anticancer nanoparticles changes with type of blood group antigen: An insight 1315 7.3 27 into blood nanoparticle interactions. Materials Science and Engineering C, 2020, 109, 110645. The Geode Process: Hollow Silica Microcapsules as a High Surface Area Substrate for Semiconductor Nanowire Growth. ACS Applied Nano Materials, 2020, 3, 905-913.
#	Article	IF	CITATIONS
1317	Regioselective thiocyanation of corroles and the synthesis of gold nanoparticle–corrole assemblies. Nanoscale Advances, 2020, 2, 166-170.	4.6	9
1318	PEGylated gold nanoparticles promoted rapid macromolecular chain-end transformation and formation of injectable hydrogels. Journal of Materials Chemistry B, 2020, 8, 465-477.	5.8	6
1319	Synthesis and characterization of size controlled alloy nanoparticles. Physical Sciences Reviews, 2020, 5, .	0.8	1
1320	Polymer particles with controllable and complex structures for high immobilization of noble-metal nanoparticles. Journal of Industrial and Engineering Chemistry, 2020, 82, 439-447.	5.8	5
1321	Gold nanoparticles immobilised in a superabsorbent hydrogel matrix: facile synthesis and application for the catalytic reduction of toxic compounds. Chemical Communications, 2020, 56, 1263-1266.	4.1	15
1322	Gold(I) carboxylates and [Au(C(NH2)2(=S))2][SO3Me] for the deposition of gold and gold-doped SiOX materials by the atmospheric pressure combustion CVD process. Inorganica Chimica Acta, 2020, 502, 119355.	2.4	4
1323	Unusual Stability and Catalytic Activity of Gold Nanoparticles in Polyoxyethylene Cholesteryl Ether. Journal of Nanoscience and Nanotechnology, 2020, 20, 2171-2178.	0.9	4
1324	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	2.6	52
1325	Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chemical Reviews, 2020, 120, 464-525.	47.7	386
1326	Cu ²⁺ -Modified Boron Nitride Nanosheets-Supported Subnanometer Gold Nanoparticles: An Oxidase-Mimicking Nanoenzyme with Unexpected Oxidation Properties. Analytical Chemistry, 2020, 92, 1236-1244.	6.5	58
1327	Comparative Catalytic Properties of Supported and Encapsulated Gold Nanoparticles in Homocoupling Reactions. Frontiers in Chemistry, 2020, 8, 834.	3.6	10
1328	Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nature Catalysis, 2020, 3, 775-786.	34.4	385
1329	Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination. Nanomaterials, 2020, 10, 2027.	4.1	28
1330	Electrochemical Determination of Nicotine in Tobacco Products Based on Biosynthesized Gold Nanoparticles. Frontiers in Chemistry, 2020, 8, 593070.	3.6	7
1331	Regio―and Siteâ€selective Molecular Rearrangements by Homogeneous Gold Catalysis. Asian Journal of Organic Chemistry, 2020, 9, 1953-1998.	2.7	8
1332	Supramolecular Twoâ€Dimensional Systems and Their Biological Applications. Advanced Materials, 2020, 32, e2002405.	21.0	32
1333	Dialdehyde cellulose nanocrystals act as multi-role for the formation of ultra-fine gold nanoparticles with high efficiency. International Journal of Biological Macromolecules, 2020, 163, 788-800.	7.5	17
1334	Highly fluorescent silicon quantum dots decorated silica microspheres for selective detection and removal of Au3+ and subsequent catalytic application. Journal of Industrial and Engineering Chemistry, 2020, 84, 375-383.	5.8	17

#	Article	IF	CITATIONS
1335	Highly Crystalline Mesoporous Titania Loaded with Monodispersed Gold Nanoparticles: Controllable Metal–Support Interaction in Porous Materials. ACS Applied Materials & Interfaces, 2020, 12, 9617-9627.	8.0	24
1336	Photometric Detection of Heavy Metals Using Biosynthesized Gold Nanoparticles. Solid State Phenomena, 0, 301, 118-123.	0.3	2
1337	Controlling the formation of encapsulated gold nanoparticles for highly reactive catalysts in the homocoupling of phenylboronic acid. Catalysis Today, 2020, , .	4.4	6
1338	Catalytic reduction of 4-nitrophenol with gold nanoparticles stabilized by large-ring cyclodextrins. New Journal of Chemistry, 2020, 44, 21007-21011.	2.8	17
1339	Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catalysis, 2020, 10, 14419-14450.	11.2	71
1340	Plasmon-driven protodeboronation reactions in nanogaps. Nanoscale, 2020, 12, 24062-24069.	5.6	12
1341	Structural characterization, reactivity, and vibrational properties of silver clusters: a new global minimum for Ag ₁₆ . Physical Chemistry Chemical Physics, 2020, 22, 27255-27262.	2.8	12
1342	Stimuli-responsive microgels for controlled deposition of gold nanoparticles on surfaces. Nanoscale Advances, 2020, 2, 5242-5253.	4.6	4
1343	General Strategy for Designing Highly Selective Gas-Sensing Nanoreactors: Morphological Control of SnO ₂ Hollow Spheres and Configurational Tuning of Au Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 51607-51615.	8.0	42
1344	Affinity Immobilization of Semiconductor Quantum Dots and Metal Nanoparticles on Cellulose Paper Substrates. ACS Applied Materials & Interfaces, 2020, 12, 53462-53474.	8.0	9
1345	Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chemistry, 2020, 22, 5902-5936.	9.0	75
1346	Mechanochemical redox: a calcination-free process to support CoMnO _x catalysts. Catalysis Science and Technology, 2020, 10, 6525-6532.	4.1	1
1347	Gold Nanoparticle Promoted Formation and Biological Properties of Injectable Hydrogels. Biomacromolecules, 2020, 21, 3782-3794.	5.4	36
1348	Nanoscale Spatial Distribution of Supported Nanoparticles Controls Activity and Stability in Powder Catalysts for CO Oxidation and Photocatalytic H ₂ Evolution. Journal of the American Chemical Society, 2020, 142, 14481-14494.	13.7	25
1349	Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chemical Society Reviews, 2020, 49, 6273-6328.	38.1	240
1350	Tailoring materials by high-energy ball milling: TiO2 mixtures for catalyst support application. Materials Today Chemistry, 2020, 17, 100340.	3.5	12
1351	Magnetic Fe ₃ O ₄ -Supported Gold Nanoflowers with Lattice-Selected Surfaces: Preparation and Catalytic Performance. ACS Omega, 2020, 5, 15755-15760.	3.5	6
1352	Synthesis of stable gold nanoparticles using linear polyethyleneimines and catalysis of both anionic and cationic azo dye degradation. Materials Advances, 2020, 1, 2407-2417.	5.4	15

ARTICLE IF CITATIONS Precisely modulating the surface sites on atomically monodispersed gold-based nanoclusters for 1353 5.6 17 controlling their catalytic performances. Nanoscale, 2020, 12, 18004-18012. Crystal Phase Control of Gold Nanomaterials by Wet-Chemical Synthesis. Accounts of Chemical 1354 15.6 Research, 2020, 53, 2106-2118. Mechanistic Study of Silane Alcoholysis Reactions with Self-Assembled Monolayer-Functionalized 1355 3.54 Gold Nanoparticle Catalysts. Catalysts, 2020, 10, 908. Novel marineâ€based gold nanocatalyst in solventâ€free synthesis of polyhydroquinoline derivatives: 1356 Green and sustainable protocol. Applied Organometallic Chemistry, 2020, 34, e6000. Selective Synthesis of Benzimidazoles from o-Phenylenediamine and Aldehydes Promoted by Supported 1358 4.1 36 Gold Nanoparticles. Nanomaterials, 2020, 10, 2405. Homogeneous and Heterogeneous Gold Catalysis for Materials Science. Chemical Reviews, 2021, 121, 9113-9163. 47.7 139 Modulation of the Activity of Gold Clusters Immobilized on Functionalized Mesoporous Materials in 1360 the Oxidation of Cyclohexene via the Functional Group. The Case of Aminopropyl Moiety. Molecules, 3.8 3 2020, 25, 5756. Rhodium Nanoparticles Stabilized by PEG-Tagged Imidazolium Salts as Recyclable Catalysts for the 3.5 Hydrosilylation of Internal Alkynes and the Reduction of Nitroarenes. Catalysts, 2020, 10, 1195. Advances in Heterogeneous Catalysis: Concepts of Nanocatalysis and Single-Atom Catalysis. ACS 1362 0.5 1 Symposium Series, 2020, , 1-49. Transportable Mononuclear Metal Atoms as Building Blocks for Bottomâ€up Material Fabrication: Pt 1 2.8 (0) and Au 1 (0) Atoms in Stock Solutions. ChemNanoMat, 2020, 6, 1191-1199. A new way to prepare gold nanoparticles by sputtering – Sterilization, stability and other properties. 1364 7.314 Materials Science and Engineering C, 2020, 115, 111087. Nanoparticle number concentration measurements by multi-angle dynamic light scattering. Journal of 44 Nanoparticle Research, 2020, 22, 1. In Situ Grown Monolithic Au/TiO 2 Catalysts on Flexible Ti Mesh for Efficient Lowâ€Temperature CO 1366 5.8 6 Oxidation. Advanced Materials Technologies, 2020, 5, 2000115. Plant Extracts Activated by Cold Atmospheric Pressure Plasmas as Suitable Tools for Synthesis of 4.1 Gold Nanostructures with Catalytic Use's. Nanomaterials, 2020, 10, 1088. Catalytic oxidation of cyclohexene by supported gold nanoclusters synthesized in a two-liquid phases 1368 2.08 system containing eucalyptus essential oil. Molecular Catalysis, 2020, 488, 110922. Unusual Pd nanoparticle dispersion in microenvironment for p-nitrophenol and methylene blue 9.4 38 catalytic reduction. Journal of Colloid and Interface Science, 2020, 578, 37-46. Novel covalent organic nanosheets for the construction of ultrafine and well-dispersed metal 1370 2.8 8 nanoparticles. New Journal of Chemistry, 2020, 44, 15354-15361. 1371 Sustainable Catalytic Processes Driven by Graphene-Based Materials. Processes, 2020, 8, 672. 2.8

#	Article	IF	CITATIONS
1372	Hybrid architectures based on noble metals and carbon-based dots nanomaterials: A review of recent progress in synthesis and applications. Chemical Engineering Journal, 2020, 399, 125743.	12.7	70
1373	In-situ generated gold nanorods on surface layer of fibers: facile preparation and unprecedented high catalytic activities in reduction of 4-nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124826.	4.7	4
1374	Electron-Rich Gold Clusters Stabilized by Poly(vinylpyridines) as Robust and Active Oxidation Catalysts. Langmuir, 2020, 36, 7844-7849.	3.5	13
1375	Gold Nanoparticle as a Lewis Catalyst for Water Elimination of Tyrosine- [•] OH Adducts: A Radiation and Quantum Chemical Study. Journal of Physical Chemistry B, 2020, 124, 3591-3601.	2.6	5
1376	CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nature Communications, 2020, 11, 1431.	12.8	51
1377	Highly reproducible, high-yield flow synthesis of gold nanoparticles based on a rational reactor design exploiting the reduction of passivated Au(<scp>iii</scp>). Reaction Chemistry and Engineering, 2020, 5, 663-676.	3.7	33
1378	The influence of oxygen vacancy and Ce3+ ion positions on the properties of small gold clusters supported on CeO2â^'x(111). Journal of Materials Chemistry A, 2020, 8, 15695-15705.	10.3	17
1379	Low-cost synthesis of AuNPs through ultrasonic spray pyrolysis. Materials Research Express, 2020, 7, 055017.	1.6	11
1380	Facile Synthesis of MnO2@SiO2/Carbon Nanocomposite-based Gold Catalysts from Rice Husk for Low-Temperature CO Oxidation. Catalysis Letters, 2020, 150, 2726-2733.	2.6	4
1381	Stability and electronic properties of Au atom doped hexagonal boron nitride sheet on Ni(111) support: Role of vacancy defects and supports towards single atom catalysis. Applied Surface Science, 2020, 515, 145978.	6.1	10
1382	The di(thiourea)gold(I) complex [Au{S=C(NH2)2}2][SO3Me] as a precursor for the convenient preparation of gold nanoparticles. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2020, 75, 239-249.	0.7	5
1383	Formation of Au Nanoparticles and Features of Etching of a Si Substrate under Irradiation with Atomic and Molecular Ions. Semiconductors, 2020, 54, 137-143.	0.5	5
1384	Transition metal complex/gold nanoparticle hybrid materials. Chemical Society Reviews, 2020, 49, 2316-2341.	38.1	37
1385	Acetylide-for-thiolate and thiolate-for-acetylide exchange on gold nanoclusters. Nanoscale, 2020, 12, 6239-6242.	5.6	20
1386	Gold nanoparticles stabilized by PEG-tagged imidazolium salts as recyclable catalysts for the synthesis of propargylamines and the cycloisomerization of γ-alkynoic acids. New Journal of Chemistry, 2020, 44, 6130-6141.	2.8	17
1387	Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews, 2020, 120, 3890-3938.	47.7	275
1388	Effect of Multifunctional Nanocatalysts on <i>n</i> -C ₇ Asphaltene Adsorption and Subsequent Oxidation under High-Pressure Conditions. Energy & Fuels, 2020, 34, 6261-6278.	5.1	23
1389	X-ray absorption spectroscopy principles and practical use in materials analysis. Physical Sciences Reviews, 2020, 5, .	0.8	4

#	Article	IF	CITATIONS
1390	Hydrogen Atom Transfer Oxidation by a Gold–Hydroxide Complex. Inorganic Chemistry, 2020, 59, 3659-3665.	4.0	15
1391	In Situ One-Step Synthesis of Platinum Nanoparticles Supported on Metal–Organic Frameworks as an Effective and Stable Catalyst for Selective Hydrogenation of 5-Hydroxymethylfurfural. ACS Omega, 2020, 5, 16183-16188.	3.5	13
1392	Influence of the Acid Properties of the Support on Auâ€Based Catalysts for Glycerol Oxidation in Aqueous Medium. ChemistrySelect, 2020, 5, 7789-7796.	1.5	6
1393	Layered double hydroxides supported atomically precise Aun nanoclusters for air oxidation of benzyl alcohol: Effects of size and active site structure. Journal of Catalysis, 2020, 389, 409-420.	6.2	21
1394	Dendrimer assisted dye-removal: A critical review of adsorption and catalytic degradation for wastewater treatment. Journal of Molecular Liquids, 2020, 315, 113775.	4.9	86
1395	Biocompatibility of surface-modified gold nanoparticles towards red blood cells and haemoglobin. Applied Surface Science, 2020, 512, 145573.	6.1	33
1396	Prediction of Structures and Atomization Energies of Coinage Metals, (M) _{<i>n</i>} , <i>n</i> < 20: Extrapolation of Normalized Clustering Energies to Predict the Cohesive Energy. Journal of Physical Chemistry A, 2020, 124, 1775-1786.	2.5	10
1397	Exterior and Internal Uniform Loading of Pt Nanoparticles on Yolk-Shell La2O3 by Acoustic Levitation Synthesis with Enhanced Photocatalytic Performance. Materials, 2020, 13, 107.	2.9	2
1398	Bioinspired One-Step Synthesis of Pomegranate-like Silica@Gold Nanoparticles with Surface-Enhanced Raman Scattering Activity. Langmuir, 2020, 36, 2553-2562.	3.5	8
1399	Evaluation of catalytic activity of cellulose films decorated with gold nanoparticles in the reduction of 4-nitrophenol. Cellulose, 2020, 27, 3919-3929.	4.9	17
1400	Nanocomposite films for absorption and decomposition of sick-building syndrome gases. , 2020, , 251-272.		0
1401	Poly(p-xylylene) Nanotubes Decorated with Nonagglomerated Gold Nanoparticles for the Alcoholysis of Dimethylphenylsilane. ACS Applied Nano Materials, 2020, 3, 2766-2773.	5.0	4
1402	Single Au Atoms Anchored on Aminoâ€Groupâ€Enriched Graphitic Carbon Nitride for Photocatalytic CO ₂ Reduction. ChemSusChem, 2020, 13, 1979-1985.	6.8	117
1403	Photo-assisted oxidation of gaseous benzene on tungsten-doped MnO2 at lower temperature. Chemical Engineering Journal, 2020, 388, 124387.	12.7	25
1404	Phyto-synthesis of CuO nano-particles and its catalytic application in C-S bond formation. Materials Letters, 2020, 266, 127486.	2.6	12
1405	Restriction of microwave-induced amyloid fibrillar growth by gold nanoparticles. International Journal of Biological Macromolecules, 2020, 151, 212-219.	7.5	4
1406	Facile Sonochemical Preparation of Au-ZrO2 Nanocatalyst for the Catalytic Reduction of 4-Nitrophenol. Applied Sciences (Switzerland), 2020, 10, 503.	2.5	12
1407	What Changes on the Inverse Catalyst? Insights from CO Oxidation on Au-Supported Ceria Nanoparticles Using Ab Initio Molecular Dynamics. ACS Catalysis, 2020, 10, 3164-3174.	11.2	11

#	Article	IF	CITATIONS
1408	A Novel Tin-Doped Titanium Oxide Nanocomposite for Efficient Photo-Anodic Water Splitting. ACS Omega, 2020, 5, 6405-6413.	3.5	11
1409	One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile. ACS Nano, 2020, 14, 5874-5886.	14.6	47
1410	Transformation of monoterpenes and monoterpenoids using gold-based heterogeneous catalysts. Brazilian Journal of Chemical Engineering, 2020, 37, 1-27.	1.3	9
1411	Gas-phase selective oxidation of cyclohexanol to cyclohexanone over Au/Mg1-xCuxCr2O4 catalysts: On the role of Cu doping. Journal of Catalysis, 2020, 384, 218-230.	6.2	10
1412	Comparison of the catalytic properties of Au nanoparticles supported on different two-dimensional carriers. Journal of Physics and Chemistry of Solids, 2020, 142, 109438.	4.0	9
1413	Recent advances of metal nanoclusters for aerobic oxidation. Materials Today Nano, 2020, 11, 100080.	4.6	11
1414	Improving light harvesting and charge extraction of polymer solar cells upon buffer layer doping. Solar Energy, 2020, 202, 80-85.	6.1	10
1415	Plasma-induced non-equilibrium electrochemistry synthesis of nanoparticles for solar thermal energy harvesting. Solar Energy, 2020, 203, 37-45.	6.1	19
1416	CoGa Particles Stabilized by the Combination of Alloyed Ga ⁰ and Lattice Ga ^{III} Species. Industrial & Engineering Chemistry Research, 2020, 59, 8649-8660.	3.7	6
1417	Highly Selective Synthesis of Hydrazoarenes from Nitroarenes via Polystyrene-Supported Au-Nanoparticle-Catalyzed Reduction: Application to Azoarenes, Aminoarenes, and 4,4′-Diaminobiaryls. ACS Omega, 2020, 5, 7576-7583.	3.5	8
1418	Support work function as a descriptor and predictor for the charge and morphology of deposited Au nanoparticles. Journal of Chemical Physics, 2020, 152, 144704.	3.0	3
1419	Critical analysis of various supporting mediums employed for the incapacitation of silver nanomaterial for aniline and phenolic pollutants: A review. Korean Journal of Chemical Engineering, 2021, 38, 248-263.	2.7	10
1420	Performant Au hydrogenation catalyst cooperated with Cu-doped Al2O3 for selective conversion of furfural to furfuryl alcohol at ambient pressure. Green Energy and Environment, 2021, 6, 546-556.	8.7	38
1421	Solvent accommodation effect on dispersibility of metal oxide nanoparticle with chemisorbed organic shell. Journal of Colloid and Interface Science, 2021, 587, 574-580.	9.4	19
1422	A novel non-enzymatic glucose sensor based on gold-nickel bimetallic nanoparticles doped aluminosilicate framework prepared from agro-waste material. Applied Surface Science, 2021, 537, 147827.	6.1	35
1423	β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Research, 2021, 14, 1018-1025.	10.4	15
1424	In Situ Preparation of Gold–Silica Particles from a Mixture of Oil Palm Leaves and Chloroauric Acid for Reduction of Nitroaromatic Compounds in Water. Waste and Biomass Valorization, 2021, 12, 3773-3780.	3.4	3
1425	Biosynthesis of Gold Clusters and Nanoparticles by Using Extracts of Mexican Plants and Evaluation of Their Catalytic Activity in Oxidation Reactions. Catalysis Letters, 2021, 151, 1604-1611.	2.6	3

#	Article	IF	CITATIONS
1426	Uniform Supported Metal Nanocrystal Catalysts Prepared by Slurry Freeze-Drying. Chemistry of Materials, 2021, 33, 256-265.	6.7	5
1427	Active, selective and stable NiO-CeO2 nanoparticles for CO2 methanation. Fuel Processing Technology, 2021, 212, 106637.	7.2	35
1428	Antitumor effect of copper nanoparticles on human breast and colon malignancies. Environmental Science and Pollution Research, 2021, 28, 1587-1595.	5.3	14
1429	Current heterogeneous catalytic processes for environmental remediation of air, water, and soil. Interface Science and Technology, 2021, , 443-498.	3.3	0
1430	Versatile one-pot synthesis of gold nanoclusters and nanoparticles using 3,6-(dipyridin-2-yl)-(1,2,4,5)-tetrazine. RSC Advances, 2021, 11, 7043-7050.	3.6	4
1431	Gold-based nanoalloys: synthetic methods and catalytic applications. Journal of Materials Chemistry A, 2021, 9, 19025-19053.	10.3	16
1432	Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection. ACS Applied Materials & Interfaces, 2021, 13, 3576-3590.	8.0	56
1433	Tandem catalysis: one-pot synthesis of cyclic organic carbonates from olefins and carbon dioxide. Green Chemistry, 2021, 23, 1921-1941.	9.0	51
1434	Gold nanoparticles with tailored size through ligand modification for catalytic applications. Chemical Communications, 2021, 57, 10775-10778.	4.1	17
1435	Deposition of highly dispersed gold nanoparticles onto metal phosphates by deposition–precipitation with aqueous ammonia. Catalysis Science and Technology, 2021, 11, 7141-7150.	4.1	5
1436	Localized surface plasmon resonance for enhanced electrocatalysis. Chemical Society Reviews, 2021, 50, 12070-12097.	38.1	112
1437	Size-controlled synthesis of cyclodextrin-capped gold nanoparticles for molecular recognition using surface-enhanced Raman scattering. Nanoscale Advances, 2021, 3, 3272-3278.	4.6	9
1438	Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks. Jacs Au, 2021, 1, 187-200.	7.9	12
1439	Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from β-O-4 lignin models. Green Chemistry, 2021, 23, 2308-2316.	9.0	4
1441	Preparation, Functionalization, Modification, and Applications of Nanostructured Gold: A Critical Review. Energies, 2021, 14, 1278.	3.1	42
1443	Concerted Catalysis of Pd and Au on Alloy Nanoparticles for Efficient Heterogeneous Molecular Transformations. Chemistry Letters, 2021, 50, 346-352.	1.3	7
1444	Palladium nanoparticles decorated on ZSM-5 derived micro-/mesostructures (MMZ) for nitrophenol reduction and MB degradation in water. Journal of Environmental Chemical Engineering, 2021, 9, 105002.	6.7	10
1445	Ligand effects in the stabilization of gold nanoparticles anchored on the surface of graphene: Implications in catalysis. Journal of Catalysis, 2021, 394, 113-120.	6.2	23

#	Article	IF	CITATIONS
1446	Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM. Nano Research, 2021, 14, 2805-2809.	10.4	24
1447	Spin-Orbit Coupling Effects in Au 4f Core-Level Electronic Structures in Supported Low-Dimensional Gold Nanoparticles. Nanomaterials, 2021, 11, 554.	4.1	22
1448	Sensitive Interferometric Plasmon Ruler Based on a Single Nanodimer. Journal of Physical Chemistry C, 2021, 125, 6486-6493.	3.1	10
1449	Selective Oxidation of Transient Organic Radicals in the Presence of Gold Nanoparticles. Nanomaterials, 2021, 11, 727.	4.1	6
1450	Discrimination of ablation, shielding, and interface layer effects on the steady-state formation of persistent bubbles under liquid flow conditions during laser synthesis of colloids. Journal of Flow Chemistry, 2021, 11, 773-792.	1.9	7
1451	Quantized Electrodes: Atomic Palladium and Gold in Polyaniline. ChemElectroChem, 2021, 8, 1766-1774.	3.4	4
1452	Systematic Incorporation of Gold Nanoparticles onto Mesoporous Titanium Oxide Particles for Green Catalysts. Catalysts, 2021, 11, 451.	3.5	3
1453	Structure and Catalytic Activity of Gold Clusters Supported on Nitrogen-Doped Graphene. Journal of Physical Chemistry C, 2021, 125, 5006-5019.	3.1	13
1454	A COMPARATIVE STUDY OF THE DEPOSITION OF NANOSCALE Au–S INTERMEDIATES FROM AQUEOUS SOLUTIONS ON CuO, TiO2, AND α-Fe2O3 SURFACES. Journal of Structural Chemistry, 2021, 62, 613-621.	1.0	1
1455	5-Hydroxymethylfurfural Hydrodeoxygenation Coupled with Water-Gas Shift Reaction for 2,5-Dimethylfuran Production over Au/ZrO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 6355-6369.	6.7	13
1456	Catalytic evaluation of biocompatible chitosan-stabilized gold nanoparticles on oxidation of morin. Carbohydrate Polymers, 2021, 258, 117699.	10.2	12
1457	Recyclable polymer microgel stabilized rhodium nanoparticles for reductive degradation of <i>para</i> -nitrophenol. Zeitschrift Fur Physikalische Chemie, 2021, 235, 1701-1719.	2.8	7
1458	Metal–Organic Frameworks as a Versatile Materials Platform for Unlocking New Potentials in Biocatalysis. Small, 2021, 17, e2100300.	10.0	41
1459	Rhodium chemistry: A gas phase cluster study. Journal of Chemical Physics, 2021, 154, 180901.	3.0	18
1460	Atomically precise noble metal clusters (Ag10, Au10, Pd10 and Pt10) on alumina support: A comprehensive DFT study for oxidative catalysis. Applied Surface Science, 2021, 547, 149160.	6.1	7
1461	Hydrogenation of HOPG-Supported Gold Nanoparticles: Surface or Volume?. Crystals, 2021, 11, 597.	2.2	4
1462	Gold Nanoparticles as Efficient Catalysts in Organic Transformations. Current Pharmaceutical Biotechnology, 2021, 22, 724-732.	1.6	9
1463	Bimetallic PdM (M = Co, Ni) catalyzed hydrogenation of nitrobenzene at the water/oil interface in a Pickering emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126513.	4.7	6

#	Article	IF	CITATIONS
1464	Fabrication of highly dispersed Pt NPs in nanoconfined spaces of as-made KIT-6 for nitrophenol and MB catalytic reduction in water. Separation and Purification Technology, 2021, 265, 118532.	7.9	28
1466	Preparing Alumina-Supported Gold Nanowires for Alcohol Oxidation. ACS Omega, 2021, 6, 16043-16048.	3.5	11
1467	Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde on Au8 and Au6Pd2 Clusters: A DFT Study on the Reaction Mechanism. Catalysts, 2021, 11, 720.	3.5	7
1468	Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chemical Engineering Journal, 2021, 414, 128713.	12.7	96
1469	TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. Applied Catalysis B: Environmental, 2021, 286, 119885.	20.2	111
1470	Preparation and Catalytic Performance of Highly Stable Silica-Coated Gold Nanorods Supported on Alumina. Bulletin of the Chemical Society of Japan, 2021, 94, 1685-1689.	3.2	2
1472	Preparation and characterisation of new Ti/Fluorapatite/MWCNTs ternary nanocomposite and its catalytic activity in the synthesis of pyrazolo[3,4-b]quinoline moieties. Materials Today Communications, 2021, 27, 102206.	1.9	0
1473	Study of an Environmentally Friendly Method for the Dissolution of Precious Metal with Ionic Liquid and Iodoalkane. Metals, 2021, 11, 919.	2.3	6
1474	Trends in Sustainable Synthesis of Organics by Gold Nanoparticles Embedded in Polymer Matrices. Catalysts, 2021, 11, 714.	3.5	19
1475	Facile and green fabrication of efficient Au nanoparticles catalysts using plant extract via a mesoporous silica-assisted strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126580.	4.7	9
1476	Green synthesis and evaluation of antioxidant and antimicrobial activity of new dihydropyrroloazepines: Using bioâ€Ag/CdO/ZnO@MWCNTs nanocomposites as a reusable organometallic catalyst. Applied Organometallic Chemistry, 2021, 35, e6295.	3.5	7
1477	Photoluminescence enhancement of single-layer graphene quantum dots by the surface plasmon resonance of Au nanocubes. Journal of Luminescence, 2021, 236, 118070.	3.1	5
1478	Catalytically Active Gold Nanomaterials Stabilized by <i>N</i> â€heterocyclic Carbenes. Chemistry - an Asian Journal, 2021, 16, 3026-3037.	3.3	16
1479	Supported Metal Nanoparticles Assisted Catalysis: A Broad Concept in Functionalization of Ubiquitous Câ^'H Bonds. ChemCatChem, 2021, 13, 4655-4678.	3.7	13
1480	Green synthesis of gold nanoparticles (Au NPs) using Tribulus terrestris extract: Investigation of its catalytic activity in the oxidation of sulfides to sulfoxides and study of its anti-acute leukemia activity. Inorganic Chemistry Communication, 2021, 131, 108781.	3.9	35
1481	Development of Titania-supported Iridium Catalysts for the Acceptor-less Dehydrogenative Synthesis of Benzoxazoles. Journal of the Japan Petroleum Institute, 2021, 64, 271-279.	0.6	2
1482	Synthesis and evaluation of antioxidant and antimicrobial activity of new spiropyrrolopyrrolizine compounds: Using Fe 3 O 4 /TiO 2 /Multiwall carbon nanotubes (MWCNTs) magnetic nanocomposites. Applied Organometallic Chemistry, 0, , e6457.	3.5	1
1483	Influence of Stabilizers on the Performance of Au/TiO ₂ Catalysts for CO Oxidation. ACS Catalysis, 2021, 11, 11607-11615.	11.2	19

#	Article	IF	CITATIONS
1484	Fe 3 O 4 /CuO/ZnO@MWCNT MNCs as an efficient organometallic nanocatalyst promoted synthesis of new 1,2,4â€triazolpyrimidoazepine derivatives: Investigation of antioxidant and antimicrobial activity. Applied Organometallic Chemistry, 0, , e6460.	3.5	1
1485	Semi-quantitative design of synergetic surficial/interfacial sites for the semi-continuous oxidation of glycerol. Fundamental Research, 2022, 2, 412-421.	3.3	4
1486	Electrophilic C(sp ²)â^'H Silylation by Supported Gold Catalysts. ChemCatChem, 2021, 13, 4705-4713.	3.7	5
1487	Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nature Catalysis, 2021, 4, 742-752.	34.4	38
1488	Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coordination Chemistry Reviews, 2021, 445, 213982.	18.8	56
1489	Kinetics-based design of a flow platform for highly reproducible on demand synthesis of gold nanoparticles with controlled size between 50 and 150Ânm and their application in SERS and PIERS sensing. Chemical Engineering Journal, 2021, 423, 129069.	12.7	13
1490	Recent innovations of nanotechnology in water treatment: A comprehensive review. Bioresource Technology, 2021, 342, 126000.	9.6	57
1491	Insights into the mechanism for the catalytic transfer hydrogenation of nitrobenzene to azobenzene on Au (1 0 0) surface under alkaline condition. Applied Surface Science, 2021, 568, 150869.	6.1	2
1492	Multi-optical signal channel gold nanoclusters and their application in heavy metal ions sensing arrays. Journal of Materials Chemistry C, 2021, 9, 2833-2839.	5.5	9
1493	Cyclodextrin capped gold nanoparticles (AuNP@CDs): from synthesis to applications. Journal of Materials Chemistry B, 2021, 9, 2584-2593.	5.8	23
1494	Green Synthesis of Barbituric Acid Derivative via Goldsmith Effluent Initiated Gold Nanoparticles and its Molecular Docking Study against Alzheimer Drug Target. Asian Journal of Organic & Medicinal Chemistry, 2021, 6, 175-180.	0.0	0
1495	Overview on magnetically recyclable ferrite nanoparticles: synthesis and their applications in coupling and multicomponent reactions. RSC Advances, 2021, 11, 29333-29353.	3.6	27
1496	Magnetically recyclable silica-coated ferrite magnetite-K ₁₀ montmorillonite nanocatalyst and its applications in O, N, and S-acylation reaction under solvent-free conditions. RSC Advances, 2021, 11, 21291-21300.	3.6	16
1497	A current research on silica coated ferrite nanoparticle and their application: Review. Current Research in Green and Sustainable Chemistry, 2021, 4, 100063.	5.6	24
1499	Modular Design of Advanced Catalytic Materials Using Hybrid Organic–Inorganic Raspberry Particles. Advanced Functional Materials, 2018, 28, 1704559.	14.9	31
1500	Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Springer Theses, 2014, , .	0.1	4
1501	Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Research, 2020, 13, 2044-2055.	10.4	39
1502	Metal–Support Interaction Effects on Gold Catalysts over Reducible Oxides. RSC Catalysis Series, 2014, , 462-488.	0.1	2

#	Article	IF	CITATIONS
1503	Gold Nanoparticles Supported Over Low-Cost Supports for Hydrogen Generation from a Hydrogen Feedstock Material. ECS Journal of Solid State Science and Technology, 2020, 9, 071004.	1.8	7
1504	Eco-Friendly Methods of Gold Nanoparticles Synthesis. Nanoscience and Nanotechnology - Asia, 2019, 9, 311-328.	0.7	3
1507	Synthesis of Gold Catalysts Supported on Mesoporous Silica Materials: Recent Developments. Catalysts, 2011, 1, 97-154.	3.5	87
1508	A Review on Recent Trends in Green Synthesis of Gold Nanoparticles for Tuberculosis. Advanced Pharmaceutical Bulletin, 2021, 11, 10-27.	1.4	17
1509	Bundlet Model for Single-Wall Carbon Nanotubes, Nanocones and Nanohorns. , 0, , 228-284.		3
1510	Enhancement in the Photocatalytic Activity of Au@TiO ₂ Nanocomposites by Pretreatment of TiO ₂ Nanocomposites by Pretreatment.	1.9	29
1511	Catalytic Activity of Gold Nanocluster Catalyst Protected by Poly (N-vinyl 2-pyrrolidone). Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 517-528.	0.1	3
1512	Catalysis of Metal Oxide-Supported Gold Nanoparticles in Liquid Phase. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 1034-1043.	0.1	1
1513	Sinter-resistant platinum nanocatalysts immobilized by biochar for alkane hydroisomerization. Catalysis Science and Technology, 2021, 11, 7740-7750.	4.1	5
1514	Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation. Nanoscale Advances, 2021, 3, 7002-7006.	4.6	15
1515	Selective Mild Oxidation of Anilines into Nitroarenes by Catalytic Activation of Mesoporous Frameworks Linked with Gold‣oaded Mn ₃ O ₄ Nanoparticles. ChemPlusChem, 2022, 87, .	2.8	3
1516	Mimicking the microbial oxidation of elemental sulfur with a biphasic electrochemical cell. Electrochimica Acta, 2022, 401, 139443.	5.2	4
1517	Ultrafast catalytic reduction of toxic nitroaromatics and organic colouring dyes by using Au/ZIF-11: Efficient wastewater treatment. Journal of Water Process Engineering, 2021, 44, 102362.	5.6	12
1518	Selective Oxidation of Benzyl Alcohol Catalyzed by Pd/PMO-SBA-15 Catalyst. Chinese Journal of Catalysis, 2011, 31, 1369-1373.	14.0	0
1519	Bundlet Model for Single-Wall Carbon Nanotubes, Nanocones and Nanohorns. International Journal of Chemoinformatics and Chemical Engineering, 2012, 2, 48-98.	0.1	3
1520	Ceria-Based Mixed Oxide Supported Nano-Gold as an Efficient and Durable Heterogeneous Catalyst for Oxidative Dehydrogenation of Amines to Imines Using Molecular Oxygen. Bulletin of Chemical Reaction Engineering and Catalysis, 2012, 7, .	1.1	4
1521	Selective Oxidation/Dehydrogenation Reactions. Springer Briefs in Molecular Science, 2013, , 11-31.	0.1	0
1522	Novel Feature and Catalysis of Metal Oxide Supported Gold Nanoparticles. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 443-451.	0.1	0

#	Article	IF	Citations
1523	Synthesis and bioactivities of silver nanoparticles capped with 5-Amino-ß-resorcylic acid hydrochloride dihydrate. Journal of Nanobiotechnology, 2014, 12, 34.	9.1	3
1524	Unsupported Nanoporous Gold Catalyst for Highly Selective Hydrogenation of Quinolines. Springer Theses, 2014, , 93-119.	0.1	0
1525	Formation of Nanoparticles and Decoration of Organic Crystals. , 2015, , 1-14.		1
1526	Development of New Gold Catalysts for Removing CO from H2. , 0, , 217-238.		2
1528	Cluster Origin of Solvation Features of C-Nanostructures in Organic Solvents. Advances in Medical Technologies and Clinical Practice Book Series, 2016, , 189-293.	0.3	0
1529	Formation of Nanoparticles and Decoration of Organic Crystals. , 2016, , 549-564.		0
1530	Gentle Gas-stimuli-Triggered Recoverable Noble Nanoparticles. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2017, 25, 48-53.	0.0	0
1531	Development of Highly Functionalized Metal Nanocluster Catalysts for Fine Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 1238-1252.	0.1	0
1532	Hard Template-Directed Synthesis. Nanostructure Science and Technology, 2017, , 415-536.	0.1	2
1533	Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene. AIMS Materials Science, 2017, 4, 738-754.	1.4	1
1536	Nanocatalysis for Green Chemistry. , 2018, , 1-28.		1
1537	Double role of metalloporphyrins in catalytic bioinspired supramolecular metal–organic frameworks (SMOFs). IUCrJ, 2018, 5, 559-568.	2.2	4
1538	Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. ChemistrySelect, 2021, 6, .	1.5	1
1539	The Effects of Technology, Product System, and Process Development Innovation on Innovation Resistance and Technology Performance of Organizational Members in the Disaster Prevention Industry. Korean Society of Hazard Mitigation, 2018, 18, 145-153.	0.2	0
1540	Nanocatalysis for Green Chemistry. , 2019, , 83-109.		0
1542	Aerobic Oxidations Using Metal-free Heterogeneous Systems. RSC Catalysis Series, 2020, , 78-103.	0.1	0
1543	Recent Developments on Noble Metal Based Microparticles for Their Applications in Organic Catalysis. Current Organic Chemistry, 2020, 24, 855-869.	1.6	1
1544	Single Atoms. Revista Facultad De Ciencias Básicas, 2020, 15, 69-81.	0.2	0

#	Article	IF	CITATIONS
1545	Supramolecular Gold Stripping from Activated Carbon Using α-Cyclodextrin. Journal of the American Chemical Society, 2021, 143, 1984-1992.	13.7	22
1546	Denatured proteins as a novel template for the synthesis of well-defined, ultra-stable and water-soluble metal nanostructures for catalytic applications. Journal of Leather Science and Engineering, 2020, 2, .	6.0	3
1547	Reductive N-alkylation of primary amides using nickel-nanoparticles. Tetrahedron, 2021, , 132526.	1.9	0
1548	Cluster Origin of Solvent Features of Fullerenes, Single-Wall Carbon Nanotubes, Nanocones, and Nanohorns. , 0, , 1-57.		0
1549	Cluster Origin of Solvent Features of Fullerenes, Single-Wall Carbon Nanotubes, Nanocones, and Nanohorns. , 0, , 262-318.		0
1550	Catalytic Degradation of Methylene Blue Using Gold Nanoparticles Capped by Polyoxyethylene Cholesteryl Ether. Advanced Science, Engineering and Medicine, 2020, 12, 1236-1240.	0.3	2
1551	Low-Temperature Oxidation of Methyl Formate on Au(332). Journal of Physical Chemistry C, 0, , .	3.1	1
1552	Sculpting the Plasmonic Responses of Nanoparticles by Directed Electron Beam Irradiation. Small, 2022, 18, e2105099.	10.0	5
1553	Effects of fluid film properties on fouling in biphasic flow systems. Chemical Engineering Science, 2022, 249, 117293.	3.8	1
1554	Striding the threshold of an atom era of organic synthesis by single-atom catalysis. CheM, 2022, 8, 119-140.	11.7	71
1555	Reaction–Diffusion Assisted Synthesis of Gold Nanoparticles: Route from the Spherical Nano-Sized Particles to Micrometer-Sized Plates. Journal of Physical Chemistry C, 2021, 125, 26116-26124.	3.1	5
1556	Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal. Catalysts, 2022, 12, 63.	3.5	25
1557	Facile synthesis of Co3O4@SiO2/Carbon Nanocomposite Catalysts from Rice Husk for Low-Temperature CO Oxidation. Molecular Catalysis, 2022, 518, 112053.	2.0	4
1558	Impact and implications of nanocatalyst in the Fenton-like processes for remediation of aquatic environment contaminated with micro-pollutants: A critical review. Journal of Water Process Engineering, 2022, 45, 102500.	5.6	17
1559	Occurrence, toxic effects, and mitigation of pesticides as emerging environmental pollutants using robust nanomaterials $\hat{a} \in A$ review. Chemosphere, 2022, 293, 133538.	8.2	66
1560	Au NPs fabricated on biguanidine-modified Zr-UiO-66 MOFs: a competent reusable heterogeneous nanocatalyst in the green synthesis of propargylamines. New Journal of Chemistry, 2022, 46, 2829-2836.	2.8	6
1561	Microscopic mechanisms of cooperative communications within single nanocatalysts. Proceedings of the United States of America, 2022, 119, .	7.1	5
1562	Effects of crosslinking density on the in situ formation of gold-polymer composite particles and their catalytic properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128409.	4.7	8

#	Article	IF	CITATIONS
1563	Synthesis of active, robust and cationic Au ₂₅ cluster catalysts on double metal hydroxide by long-term oxidative aging of Au ₂₅ (SR) ₁₈ . Nanoscale, 2022, 14, 3031-3039.	5.6	10
1564	Molecular Dynamics Study on the Crystallization Process of Cubic Cu–Au Alloy. Applied Sciences (Switzerland), 2022, 12, 946.	2.5	12
1565	Enzyme-metal nanobiohybrids in chemobiocatalytic cascade processes. , 2022, , 189-210.		0
1566	Gold-catalyzed thioetherification of allyl, benzyl, and propargyl phosphates. Catalysis Science and Technology, 0, , .	4.1	1
1567	Morphology-controlled synthesis of gold nanoparticles with chitosan for catalytic reduction of nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128471.	4.7	22
1568	Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. Journal of Colloid and Interface Science, 2022, 613, 359-367.	9.4	6
1569	Hydrogen Adsorption at the Au/TiO ₂ Interface: Quantitative Determination and Spectroscopic Signature of the Reactive Interface Hydroxyl Groups at the Active Site. ACS Catalysis, 2021, 11, 15194-15202.	11.2	16
1571	Highly Selective and Sensitive Detection of Breath Isoprene by Tailored Gas Reforming: A Synergistic Combination of Macroporous WO ₃ Spheres and Au Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 11587-11596.	8.0	9
1572	Optimization of nanoparticle yield for biomedical applications at femto-, pico- and nanosecond laser ablation of thin gold films in water. Laser Physics Letters, 2022, 19, 045603.	1.4	4
1573	Efficient non-volatile organogold complex for TiO2-supported gold cluster catalysts: Preparation and catalytic activity for CO oxidation. Journal of Catalysis, 2022, 408, 236-244.	6.2	2
1574	Colloidal Polydopamine Beads: A Photothermally Active Support for Noble Metal Nanocatalysts. ACS Applied Materials & Interfaces, 2022, 14, 17560-17569.	8.0	23
1575	Superassembled Hierarchical Asymmetric Magnetic Mesoporous Nanorobots Driven by Smart Confined Catalytic Degradation. Chemistry - A European Journal, 2022, 28, e202200307.	3.3	2
1576	Synthesis and Investigation of Biological Activity of New Oxazinoazepines: Application of Fe ₃ O ₄ /CuO/ZnO@MWCNT Magnetic Nanocomposite in Reduction of 4-Nitrophenol in Water. Polycyclic Aromatic Compounds, 2023, 43, 2938-2959.	2.6	2
1577	Deposition of Au nanoparticles into mesoporous SiO2 SBA-15. Journal of Supercritical Fluids, 2022, 184, 105582.	3.2	3
1578	One-step synthesis of gold nanoparticles for catalysis and SERS applications using selectively dicarboxylated cellulose and hyaluronate. International Journal of Biological Macromolecules, 2022, 206, 927-938.	7.5	5
1579	Silver nanoparticles decorated on graphene oxide modified polyester fabric: Catalytic reduction of 4-nitrophenol, organic dyes and SERS application. Journal of Physics and Chemistry of Solids, 2022, 165, 110640.	4.0	19
1580	Theoretical and experimental investigations of a gold nanosensor based on rhodamine-modified carbon nanotubes. Journal of Molecular Structure, 2022, 1260, 132765.	3.6	1
1581	Sizeâ€Dependent Catalytic Behavior of Gold Nanoparticles. Advanced Materials Interfaces, 2022, 9, .	3.7	17

#	Article	IF	CITATIONS
1582	Gallium-Indium-Tin Eutectic as a Self-Healing Room-Temperature Liquid Metal Anode for High-Capacity Lithium-Ion Batteries. Materials, 2022, 15, 168.	2.9	9
1583	Gold Nanoparticles Supported on Poly(2,6â€dimethylâ€1,4â€phenylene oxide) as Robust, Selective and Costâ€Effective Catalyst for Aerobic Oxidation and Direct Oxidative Esterification of Alcohols. ChemCatChem, 2022, 14, .	3.7	3
1584	Highly sensitive and selective amperometric hydrazine sensor based on Au nanoparticle-decorated conducting polythiophene prepared via oxidative polymerization and photo-reduction techniques. Journal of Saudi Chemical Society, 2022, 26, 101480.	5.2	18
1585	Selective Oxidation of Biomass-Derived Secondary Alcohols. RSC Catalysis Series, 2014, , 401-423.	0.1	0
1586	Preferential Oxidation of Carbon Monoxide over Gold Catalysts. RSC Catalysis Series, 2013, , 96-122.	0.1	0
1589	Electrosynthesis of Poly(2,5-Dimercapto-1,3,4-Thiadiazole) Films and Their Composites with Gold Nanoparticles at a Polarised Liquid Liquid Interface. SSRN Electronic Journal, 0, , .	0.4	0
1590	Automated exploitation of the big configuration space of large adsorbates on transition metals reveals chemistry feasibility. Nature Communications, 2022, 13, 2087.	12.8	8
1591	Electrochemical Detection of Ethanol in Air Using Graphene Oxide Nanosheets Combined with Au-WO3. Sensors, 2022, 22, 3194.	3.8	9
1593	Ligand-Enabled Sustainable Gold Catalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 6900-6918.	6.7	18
1594	Metal nanoparticle arrays via a water-based lift-off scheme using a block copolymer template. Nanotechnology, 2022, 33, 325302.	2.6	2
1595	One-pot synthesis of finely-dispersed Au nanoparticles on ZnO hexagonal sheet for base-free aerobic oxidation of vanillyl alcohol. Catalysis Science and Technology, 0, , .	4.1	7
1596	Synergy between homogeneous and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 6623-6649.	4.1	29
1597	Nanophotonics for Perovskite Solar Cells. Advanced Photonics Research, 2022, 3, .	3.6	15
1598	A Dual-Functional Fluorescent Probe for Simultaneous Visualization and Quantification of AU and Pd Species in Environmental and Biological Systems. SSRN Electronic Journal, 0, , .	0.4	Ο
1599	Helium Droplet Mass Spectrometry. Topics in Applied Physics, 2022, , 67-153.	0.8	4
1600	Catalytic cooperativity between glucose oxidase and gold nanoparticles in the sequential oxidation of glucose to saccharic acid. Green Chemistry, 2022, 24, 5162-5170.	9.0	5
1601	Potentiometric Study of the Growth of a Single Au Nanoparticle. Electroanalysis, 2023, 35, .	2.9	1
1602	Melting upon Coalescence of Solid Nanoparticles. Solids, 2022, 3, 361-373.	2.4	1

#	Article	IF	CITATIONS
1603	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	11.2	14
1604	Electrosynthesis of poly(2,5-dimercapto-1,3,4-thiadiazole) films and their composites with gold nanoparticles at a polarised liquid liquid interface. Electrochimica Acta, 2022, 424, 140677.	5.2	6
1605	Copper supported silica-based nanocatalysts for CuAAC and cross-coupling reactions. Reaction Chemistry and Engineering, 2022, 7, 1891-1920.	3.7	2
1606	Polydimethylsiloxane Sponge-Supported Metal Nanoparticles as Reusable Catalyst for Continuous Flow Reactions. Nanomaterials, 2022, 12, 2081.	4.1	2
1607	Oxidative condensation/esterification of furfural with ethanol using preformed Au colloidal nanoparticles. Impact of stabilizer and heat treatment protocols on catalytic activity and stability. Molecular Catalysis, 2022, 528, 112438.	2.0	3
1608	Thiol-decorated covalent organic frameworks as multifunctional materials for high-performance supercapacitors and heterogeneous catalysis. Journal of Materials Chemistry A, 2022, 10, 16685-16696.	10.3	23
1609	Nanomaterials Synthesis via Laser Ablation in Liquid: A Review. Journal of the Institution of Engineers (India): Series D, 2023, 104, 413-426.	1.0	5
1610	Development of Environmentally Friendly Dehydrogenative Oxidation Reactions Using Multifunctional Heterogeneous Catalysts. Bulletin of the Chemical Society of Japan, 2022, 95, 1332-1352.	3.2	0
1611	Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. Molecules, 2022, 27, 4395.	3.8	2
1612	A porous V/SiO2 sphere composite for the selective oxidation of benzyl alcohol to benzaldehyde in aqueous phase through peroxymonosulfate activation. Journal of Catalysis, 2022, 413, 668-680.	6.2	11
1613	Magnetically Recoverable Silica-Decorated Ferromagnetic-Nanoceria Nanocatalysts and Their Use with <i>O</i> - and <i>N</i> -Butyloxycarbonylation Reaction via Solvent-Free Condition. ACS Omega, 2022, 7, 24190-24201.	3.5	6
1614	Novel Cobaltâ€Supported Silicaâ€Coated Ferrite Nanoparticles Applicable for Acylation of Amine, Phenol, and Thiols Derivatives under Solventâ€Free Condition. ChemistrySelect, 2022, 7, .	1.5	3
1615	Microreactor technology in experimental and modelling study of alcohol oxidation on nanogold. Chemical Engineering Science, 2022, 260, 117920.	3.8	7
1616	New routes for the construction of strong metal—support interactions. Science China Chemistry, 2022, 65, 2051-2057.	8.2	20
1617	Highly-Active Surface Reaction Over Ultra-Thin (111) Faceted Gold Nanoplates. Journal of Cluster Science, 0, , .	3.3	0
1618	Pt, Pd, and Rh Nanoparticles Supported on Polydopamine Nanospheres as Catalysts for Transfer Hydrogenolysis. ACS Applied Nano Materials, 2022, 5, 11797-11808.	5.0	4
1619	Oxidation of furfural to bio-based molecules with hydrogen peroxide via modified layered double hydroxides: the effect of gold nanoparticles on the selectivity. Journal of Porous Materials, 2023, 30, 55-64.	2.6	1
1620	Sonochemical decomposition of noble metal oxides and sonochemical alloying of gold–silver systems. Ultrasonics Sonochemistry, 2022, 89, 106115.	8.2	5

#	Article	IF	CITATIONS
1621	Real time optical detection of gold in living cells through genetically-encoded probe. RSC Advances, 2022, 12, 23193-23203.	3.6	2
1622	Turning waste into wealth: efficient and rapid capture of gold from electronic waste with a thiourea functionalised magnetic core stirring rod adsorbent and its application for heterogeneous catalysis. Green Chemistry, 2022, 24, 7592-7601.	9.0	18
1623	Interaction of Nanomaterials with Protein-Peptide. Current Protein and Peptide Science, 2022, 23, 548-562.	1.4	3
1625	Pd(II)â€Functionalized Polymeric Shell Encapsulated on Magnetite Nanocatalysts for Câ^C Coupling Reactions. ChemistrySelect, 2022, 7, .	1.5	1
1626	Porous Metal Organic Frameworks as Multifunctional Catalysts for Cyclohexane Oxidation. ChemCatChem, 2022, 14, .	3.7	8
1627	Structural Engineering toward Gold Nanocluster Catalysis. Angewandte Chemie, 2022, 134, .	2.0	2
1628	Structural Engineering toward Gold Nanocluster Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	49
1629	Confining Gold Nanoparticles in Preformed Zeolites by Post-Synthetic Modification Enhances Stability and Catalytic Reactivity and Selectivity. Jacs Au, 2022, 2, 2327-2338.	7.9	9
1630	Metal nanoparticles decorated two-dimensional nanosheets as heterogeneous catalysts for coupling reactions. Catalysis Reviews - Science and Engineering, 0, , 1-73.	12.9	6
1631	Cu–Au nanoparticles produced by the aggregation of gasâ€phase metal atoms for CO oxidation. Aggregate, 2022, 3, .	9.9	9
1632	Catalytic Reduction of Water Contaminants Using Green Gold Nanoparticles Mediated by Stem Extract of Nepeta Leucophylla. Topics in Catalysis, 2022, 65, 1899-1909.	2.8	1
1633	A polarizable coarse-grained model for metal, metal oxide and composite metal/metal oxide nanoparticles and its applications. Physical Chemistry Chemical Physics, 2022, 24, 27742-27750.	2.8	1
1634	A polarizable coarse-grained model for metal, metal oxide and composite metal/metal oxide nanoparticles: development and implementation. Physical Chemistry Chemical Physics, 2022, 24, 27731-27741.	2.8	2
1635	In-depth theoretical understanding of the chemical interaction of aromatic compounds with a gold nanoparticle. Physical Chemistry Chemical Physics, 2022, 24, 25327-25336.	2.8	2
1636	Fe3O4/CuO/ZnO@MWCNT MNCs Promoted the Green Synthesis of Indenopyrimidin-1,2,4-Triazoles as Hybrid Molecules. Polycyclic Aromatic Compounds, 2023, 43, 7319-7342.	2.6	1
1637	VO Cluster-Stabilized H ₂ O Adsorption on a TiO ₂ (110) Surface at Room Temperature. Journal of Physical Chemistry C, 2022, 126, 17975-17982.	3.1	2
1638	Synthesis of Gold Cluster-Based Catalyst and the Effect of Pre-Treatments on Its Catalytic Performance. Springer Theses, 2022, , 59-86.	0.1	0
1639	Propylene Epoxidation on Au/Ti-Containing Supports: The Effect of the Support. Springer Theses, 2022, , 131-155.	0.1	0

#	Article	IF	CITATIONS
1640	Tailoring Gold Nanoparticles with Tunable Core Size and Their Catalytic Applications. Springer Theses, 2022, , 113-129.	0.1	0
1641	Synthesis of ultra-high molecular weight poly(methyl methacrylate) with hydrosilane as initiator. Materials Today Communications, 2022, 33, 104927.	1.9	0
1642	Gold nanoparticles supported on carbon coated magnetic nanoparticles; a robustness and effective catalyst for aerobic alcohols oxidation in water. Molecular Catalysis, 2023, 534, 112772.	2.0	1
1643	Short peptide amphiphile nanostructures facilitate sunlight-induced nanowelding of gold nanosheets. Chemical Communications, 2022, 58, 13815-13818.	4.1	5
1644	Yolk–Shell Nanoparticles with CO ₂ -Responsive Outer Shells for Gas-Controlled Catalysis. ACS Applied Nano Materials, 2022, 5, 18237-18246.	5.0	3
1645	Airborne Preparation of Small Gold Nanoparticles Dispersed on Mesoporous Silica for the Catalytic Oxidation of Glycerol to Dihydroxyacetone. ACS Applied Nano Materials, 2022, 5, 18977-18985.	5.0	6
1647	Inherent Redox Activity of Titania Support Enhances Catalytic Activity of Highly Dispersed Cu Catalyst. ChemistrySelect, 2022, 7, .	1.5	0
1648	Coadsorption and Interaction of Quinolines and Hydrogen on Platinum Group Metals and Gold: A First-Principles Analysis. Journal of Physical Chemistry C, 2022, 126, 20840-20851.	3.1	1
1649	Integrating Interactive Noble Metal Single-Atom Catalysts into Transition Metal Oxide Lattices. Journal of the American Chemical Society, 2022, 144, 23214-23222.	13.7	55
1650	The Impact of Functionality and Porous System of Nanostructured Carriers Based on Metal–Organic Frameworks of UiO-66-Type on Catalytic Performance of Embedded Au Nanoparticles in Hydroamination Reaction. Catalysts, 2023, 13, 133.	3.5	2
1651	Ag/CdO/Fe ₃ O ₄ @MWCNTs Promoted Green Synthesis of Novel Triazinopyrrolothiazepine: Investigation of Antioxidant and Antimicrobial Activity. Polycyclic Aromatic Compounds, 2023, 43, 9024-9046.	2.6	10
1652	Influence of the Crystallinity of Silver Nanoparticles on Their Magnetic Properties. Helvetica Chimica Acta, 2023, 106, .	1.6	2
1653	Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials, 2023, 13, 574.	4.1	65
1654	Highly Active and Recyclable Cu _x Fe _{3â€x} O ₄ NPs for Selective Oxidation of Benzyl Alcohol using TBHP as an Oxidant. ChemistrySelect, 2023, 8, .	1.5	3
1655	Ambient CO2 capture and conversion into liquid fuel and fertilizer catalyzed by a PdAu nano-alloy. Cell Reports Physical Science, 2023, 4, 101248.	5.6	2
1656	Molecular manipulation of the microenvironment of Au active sites on mesoporous silica for the enhanced catalytic reduction of 4-nitrophenol. Catalysis Science and Technology, 2023, 13, 2001-2009.	4.1	3
1657	Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coordination Chemistry Reviews, 2023, 480, 215025.	18.8	25
1658	Impact of tether length and flexibility on the efficiency of analyte capture by tethered receptors. Sensors and Actuators Reports, 2023, 5, 100148.	4.4	2

#	Article	IF	CITATIONS
1659	Hydrogen Evolution upon Ammonia Borane Solvolysis: Comparison between the Hydrolysis and Methanolysis Reactions. Chemistry, 2023, 5, 886-899.	2.2	4
1660	Au/TiO2 coatings for photocatalytic reduction of 4-nitrophenol to 4-aminophenol with green light. Catalysis Today, 2023, 418, 114145.	4.4	8
1661	Sustainable Heterogeneous Catalytic Reactions for the Fine and Pharma Industry. , 2014, , 47-83.		0
1662	Synergistic Bonding of Poly(<i>N</i> -isopropylacrylamide)-Based Hybrid Microgels and Gold Nanoparticles Used for Temperature-Responsive Controllable Catalysis of <i>p</i> -Nitrophenol Reduction. Langmuir, 2023, 39, 2408-2421.	3.5	6
1663	From 8- to 18-Cluster Electrons Superatoms: Evaluation via DFT Calculations of the Ligand-Protected W@Au ₁₂ (dppm) ₆ Cluster Displaying Distinctive Electronic and Optical Properties. Inorganic Chemistry, 2023, 62, 3047-3055.	4.0	3
1664	Urethane functions can reduce metal salts under hydrothermal conditions: synthesis of noble metal nanoparticles on flexible sponges applied in semi-automated organic reduction. Journal of Materials Chemistry A, 0, , .	10.3	1
1665	Gold(III) Chloride-Mediated Transformation of Furfural to the trans-N,N-4,5-Diaminocyclopent-2-enones in the Presence of Anilines. Chemistry, 2023, 5, 393-405.	2.2	0
1666	Gold Clusters Immobilized by Post-Synthesis Methods on Thiol-Containing SBA-15 Mesoporous Materials for the Aerobic Oxidation of Cyclohexene: Influence of Light and Hydroperoxide. Chemistry, 2023, 5, 526-543.	2.2	0
1667	Selective Styrene Oxidation Catalyzed by Phosphate Modified Mesoporous Titanium Silicate. Chemistry, 2023, 5, 589-601.	2.2	2
1668	Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Materials Advances, 2023, 4, 1831-1849.	5.4	29
1669	Distinct morphology-dependent behaviors for Au/γ-Al ₂ O ₃ catalysts: enhanced thermal stabilization in CO oxidation reaction. RSC Advances, 2023, 13, 9010-9019.	3.6	0
1670	Design of gold catalysts for activation of H2 and H-donor molecules: transfer hydrogenation and CO ₂ hydrogenation. Catalysis Science and Technology, 0, , .	4.1	0
1671	CuCo Nanoparticle, Pd(II), and <scp>l</scp> -Proline Trifunctionalized UiO-67 Catalyst for Three-Step Sequential Asymmetric Reactions. Inorganic Chemistry, 2023, 62, 5435-5446.	4.0	4
1672	Progress and opportunities for metal–organic framework composites in electrochemical sensors. RSC Advances, 2023, 13, 10800-10817.	3.6	12
1673	Regioselective synergic catalytic C-H activation: Unprecedented formation of sporadic 4-substituted (oxo-diaryl alkyl) isoquinolinium salts using SA-NEt2 catalyst. Results in Chemistry, 2023, 5, 100922.	2.0	0
1674	One-pot synthesis of stable cationic gold species highly active in the CO oxidation confined into mordenite-like zeolite. Applied Catalysis B: Environmental, 2023, 334, 122855.	20.2	2
1676	Nanoporous Gold: From Structure Evolution to Functional Properties in Catalysis and Electrochemistry. Chemical Reviews, 2023, 123, 6716-6792.	47.7	15
1677	Synthesis and characterization of gold nanohybrid and its efficiency for benzaldehyde reduction. Journal of Molecular Structure, 2023, 1289, 135790.	3.6	1

#	Article	IF	CITATIONS
1679	Effect of Capping Ligands for the Synthesis of Gold Nanoparticles and on the Catalytic Performance for the Oxidation of 5-Hydroxymethyl-2-furfural. Catalysts, 2023, 13, 990.	3.5	0
1680	Rapid synthesis of concave gold nanocubes with tunable indentations and high index facets for enhanced catalytic performance. Chemical Engineering Journal, 2023, 470, 144044.	12.7	0
1681	Ferrite Nanoparticles as Catalysts in Organic Reactions: A Mini Review. Magnetochemistry, 2023, 9, 156.	2.4	4
1682	Oxidative dehydrogenation of alcohols on gold: An experimental and computational study on the role of water and the alcohol chain length. Journal of Catalysis, 2023, 425, 233-244.	6.2	2
1683	Fabrication of nanofibrous vinyl brushes of clay minerals as an active support for gold nanoparticles for catalytic reduction. Gold Bulletin, 0, , .	2.4	0
1684	Harnessing Supported Gold Nanoparticle as a Singleâ€Electron Transfer Catalyst for Decarboxylative Crossâ€Coupling. Advanced Synthesis and Catalysis, 0, , .	4.3	1

1685 金属纳米团纇çš"é...뽓工程:æīeгçff-e´§å,金属纳米团纇çš"啿ˆë,Žæ€§èŤ. Chinese Science Bulleti**o,**2023, , 1

1686	Catalysts and processes for gluconic and glucaric acids production: A comprehensive review of market and chemical routes. Catalysis Communications, 2023, 182, 106740.	3.3	3
1687	Perspectives and trends in advanced optical and electrochemical biosensors based on engineered peptides. Mikrochimica Acta, 2023, 190, .	5.0	0
1688	Supported gold nanoparticles prepared from NHC-Au complex precursors as reusable heterogeneous catalysts. Molecular Catalysis, 2023, 549, 113460.	2.0	0
1689	Clay-based durable catalyst membranes of porous layered double hydroxide and gold nanoparticle nanocomposites for fast and continuous-flow reactions. Inorganic Chemistry Communication, 2023, 156, 111299.	3.9	0
1690	Photochemical Sonogashira coupling reactions: beyond traditional palladium–copper catalysis. Chemical Communications, 2023, 59, 11615-11630.	4.1	1
1691	CuNPs loaded zeolite 3ÂÃ as an efficient catalyst for the catalytic reduction of hazardous pollutants. Inorganic Chemistry Communication, 2023, 156, 111211.	3.9	2
1692	Hafnium oxide - graphene electrodes for highly efficient aqueouselectrolyte supercapacitors. Diamond and Related Materials, 2023, 139, 110393.	3.9	2
1693	The role of surface hydroxyls in the entropy-driven adsorption and spillover of H2 on Au/TiO2 catalysts. Nature Catalysis, 2023, 6, 710-719.	34.4	5
1694	Sonochemical parallel synthesis of novel 1,2,3-triazoles utilizing gold-supported titania catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2023, 150, 105060.	5.3	2
1695	Recent Trends in Nobel Metals and Carbon Dots in the Costume of Hybrid Nano Architecture. Topics in Catalysis, 2024, 67, 280-299.	2.8	1
1696	Highly efficient affinity anchoring of gold nanoparticles on chitosan nanofibers via dialdehyde cellulose for reusable catalytic devices. Carbohydrate Polymers, 2024, 323, 121435.	10.2	3

ARTICLE IF CITATIONS Deep insight of CO2 reduction reaction mechanism through experimental and theoretical 1697 4.1 5 anticipations. Materials Today Sustainability, 2023, 24, 100587. Interplay between Nanoparticles and Phosphorus Dendrimers, and Their Properties. Molecules, 2023, 3.8 28, <u>5739</u>. Polyacrylonitrile/cellulose nanofiber supported gold nanoparticles for liquid-phase aerobic 1699 4.9 0 oxidation of benzyl alcohol to benzaldehyde. Cellulose, 2023, 30, 8941-8953. Methylene blue degradation under visible light of Au-DP25/PET and Cu-DP25/PET photocatalytic films, synthesized through two wet impregnation routes – An experimental and theoretical evaluation. Materials Today Communications, 2023, 37, 106944. 1700 1.9 Fe Electron Center Local Regulation of CoFe‣ayered Double Hydroxides Nanosheets for Enhancing the 1701 2.8 1 Electrocatalytic Oxidation of Benzyl Alcohol. ChemNanoMat, 2023, 9, . Using the Colloidal Method to Prepare Au Catalysts for the Alkylation of Aniline by Benzyl Alcohol. International Journal of Molecular Sciences, 2023, 24, 14779. 4.1 Impact of polymer particle purification on the structural and catalytic properties of in situ generated 1703 2.4 0 gold nanoparticles. Journal of Polymer Research, 2023, 30, . Nanostructure Tuning of Gold Nanoparticles Films via Click Sintering. Small, 2024, 20, . 10.0 1704 Nanoarchitectonics and Catalytic Performance of Au-Pd Nanoflowers Supported on 1705 0 1.4 Fe<sub>2</sub>O<sub>3</sub>. Journal of Oleo Science, 2023, 72, 1055-1061. 1706 Pulsed Laser Ablation in Liquids for Fabrication of Noble Metal Nanostructures., 0, , . Multi-spectroscopic and thermodynamic profiles on HSA binding of <i>Cassia fistula</i> leaf based potential antibacterial and anticancer silver nanoparticles. Journal of Biomolecular Structure and 1707 0 3.5 Dynamics, 0, , 1-13. Synthesis of hollow shell TiO2 nanostructures enclosing Au nanoparticles and evaluation of their 1708 2.9 photoelectrocatalytic activity. Journal of Solid State Chemistry, 2024, 330, 124484. Insight into the Role of the Aminoâ€Organosilane Modifier in Improving the Catalytic Activity of 1710 3.7 0 ZnŎâ€Supported Gold Species in Baseã€Free Oxidation of Benzyl Alcohol. ChemĆatChem, 2024, 16, . Au nanoparticles confined in self-assembled Zn(II) metal-organic cubane cages for light-driven conversion of furfural to 2-methyl furan in biofuel production. Journal of Materials Chemistry C, O, 1711 5.5 Controllable Catalytic Activity of Temperature-Responsive Polymer Hybrid Microgels Designed Using a 1712 0 4.8 Gold Nanoparticle Monomer with Polymerizable Groups. Macromolecules, 2023, 56, 9853-9865. Microenvironment tailoring mediated oxygen-vacancy defect engineering strategy facilitating O2 and 1713 alcohol activation on HEOs with superior catalytic efficiency. Applied Surface Science, 2024, 648, 6.1 158984. Sustainable Production of Chemicals <i>via</i> Hydrotreating of CO₂ and Biomass 1714 3.7 0 Derived Molecules Using Heterogeneous Noble Metal Oxide Catalysts. ChemCatChem, 2024, 16, . Molecular-scale Insights into Cooperativity Switching of <i>x</i>TAB Adsorption on Gold 1715 11.3 Nanoparticles. ACS Central Science, 2024, 10, 65-76.

#	Article	IF	CITATIONS
1716	Engineering a hierarchically micro-/nanostructured Si@Au-based artificial enzyme with improved accessibility of active sites for enhanced catalysis. RSC Advances, 2024, 14, 2697-2703.	3.6	0
1717	One-Shot Dual-Detection-Based Single-Molecule Super-Resolution Imaging Method for Real-Time Observation of Spatiotemporal Catalytic Activity Variations on the Plasmonic Gold Nanoparticle Surface. Analytical Chemistry, 2024, 96, 1957-1964.	6.5	0
1718	Towards unconstrained catalyst shaping: high accuracy DLP printing of porous γ-Al ₂ O ₃ -based catalysts. Catalysis Science and Technology, 2024, 14, 1336-1348.	4.1	0
1719	Polydopamine-mediated in situ synthesis of gold nanoparticles uniformly distributed on silk fibers as reusable catalysts for efficient 4-nitrophenol reduction. Journal of Industrial Textiles, 2024, 54, .	2.4	0
1720	Distinct Site Motifs Activate O ₂ and H ₂ on Supported Au Nanoparticles in Liquid Water. ACS Catalysis, 2024, 14, 3248-3265.	11.2	0
1722	Unraveling the transformative pathways of Au-NHC and Au-alkynyl complexes and bridging the gap between molecular and nanoscale gold systems. Inorganic Chemistry Frontiers, 2024, 11, 1839-1851.	6.0	0
1723	Strategies to improve hydrogen activation on gold catalysts. Nature Reviews Chemistry, 2024, 8, 195-210.	30.2	0
1724	In situ confinement of ultrasmall Cu nanoparticles within silicalite-1 zeolite for catalytic reforming of methanol to hydrogen. International Journal of Hydrogen Energy, 2024, 61, 113-124.	7.1	0
1725	Modification of Synthetic Valleriite Surface with Gold Nanoparticles: The Roles of Specific Adsorption and Zeta Potential. Colloid Journal, 2024, 86, 40-51.	1.3	0