Aberrations of the MRE11–RAD50–NBS1 DNA dama cancer: <i>MRE11</i> as a candidate familial cancerâ€p

Molecular Oncology 2, 296-316 DOI: 10.1016/j.molonc.2008.09.007

Citation Report

#	Article	IF	CITATIONS
1	Aberrations of the MRE11–RAD50–NBS1 DNA damage sensor complex in human breast cancer: <i>MRE11</i> as a candidate familial cancerâ€predisposing gene. Molecular Oncology, 2008, 2, 296-316.	4.6	147
2	Alternative Cyclin D1 Splice Forms Differentially Regulate the DNA Damage Response. Cancer Research, 2010, 70, 8802-8811.	0.9	115
3	Poly (ADP-Ribose) Polymerase as a Novel Therapeutic Target in Cancer. Clinical Cancer Research, 2010, 16, 4517-4526.	7.0	85
4	Genetic susceptibility to breast cancer. Molecular Oncology, 2010, 4, 174-191.	4.6	291
5	Crystal Structure of the First Eubacterial Mre11 Nuclease Reveals Novel Features that May Discriminate Substrates During DNA Repair. Journal of Molecular Biology, 2010, 397, 647-663.	4.2	41
6	Discovering moderate-risk breast cancer susceptibility genes. Current Opinion in Genetics and Development, 2010, 20, 268-276.	3.3	96
7	DNA damage response, genetic instability and cancer: From mechanistic insights to personalized treatment. Molecular Oncology, 2011, 5, 303-307.	4.6	28
8	Iniparib plus Chemotherapy in Metastatic Triple-Negative Breast Cancer. New England Journal of Medicine, 2011, 364, 205-214.	27.0	754
9	Constitutive expression of \hat{I}^3 -H2AX has prognostic relevance in triple negative breast cancer. Radiotherapy and Oncology, 2011, 101, 39-45.	0.6	74
10	Genes Associated with Recurrence of Hepatocellular Carcinoma: Integrated Analysis by Gene Expression and Methylation Profiling. Journal of Korean Medical Science, 2011, 26, 1428.	2.5	37
11	Heterochromatin marks HP1γ, HP1α and H3K9me3, and DNA damage response activation in human testis development and germ cell tumours. Journal of Developmental and Physical Disabilities, 2011, 34, e103-13.	3.6	17
12	Crystal Structure of Human Mre11: Understanding Tumorigenic Mutations. Structure, 2011, 19, 1591-1602.	3.3	78
13	Inherited Mutations in Breast Cancer Genes—Risk and Response. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 3-15.	2.7	56
14	Hodgkin lymphoma risk: Role of genetic polymorphisms and gene–gene interactions in DNA repair pathways. Molecular Carcinogenesis, 2011, 50, 825-834.	2.7	29
15	Crystal structure of the Mre11–Rad50–ATPγS complex: understanding the interplay between Mre11 and Rad50. Genes and Development, 2011, 25, 1091-1104.	5.9	118
16	The peculiarities of gene expression of medullary breast carcinoma tumor-associated antigensin different types of breast tumors. Biopolymers and Cell, 2012, 28, 381-388.	0.4	1
17	INT6/EIF3E Interacts with ATM and Is Required for Proper Execution of the DNA Damage Response in Human Cells. Cancer Research, 2012, 72, 2006-2016.	0.9	18
18	Role of MRE11 in Cell Proliferation, Tumor Invasion, and DNA Repair in Breast Cancer. Journal of the National Cancer Institute, 2012, 104, 1485-1502.	6.3	75

#	Article	IF	CITATIONS
19	Immunohistochemical analysis of medullary breast carcinoma autoantigens in different histological types of breast carcinomas. Diagnostic Pathology, 2012, 7, 161.	2.0	14
20	Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle, 2012, 11, 3837-3850.	2.6	144
21	Utilization of fluorescence in situ hybridization with cytokeratin discriminators in TOP2A assessment of chemotherapy-treated patients with breast cancer. Human Pathology, 2012, 43, 1363-1375.	2.0	2
22	Dasatinib, a multi-kinase inhibitor increased radiation sensitivity by interfering with nuclear localization of epidermal growth factor receptor and by blocking DNA repair pathways. Radiotherapy and Oncology, 2012, 105, 241-249.	0.6	52
23	Serological Analysis of SEREX-Defined Medullary Breast Carcinoma-Associated Antigens. Cancer Investigation, 2012, 30, 519-527.	1.3	7
24	RAD50 and NBS1 are not likely to be susceptibility genes in Chinese non-BRCA1/2 hereditary breast cancer. Breast Cancer Research and Treatment, 2012, 133, 111-116.	2.5	21
25	Familial Breast Cancer Risk. Current Breast Cancer Reports, 2013, 5, 170-182.	1.0	8
26	Sodium tungstate modulates ATM function upon DNA damage. FEBS Letters, 2013, 587, 1579-1586.	2.8	10
27	The impact of next generation sequencing on the analysis of breast cancer susceptibility: a role for extremely rare genetic variation?. Clinical Genetics, 2013, 84, 407-414.	2.0	19
28	The MRN protein complex genes: MRE11 and RAD50 and susceptibility to head and neck cancers. Molecular Cancer, 2013, 12, 113.	19.2	14
29	Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia. BMC Cancer, 2013, 13, 457.	2.6	10
30	Hereditary breast cancer: ever more pieces to the polygenic puzzle. Hereditary Cancer in Clinical Practice, 2013, 11, 12.	1.5	48
31	Increased expression of phosphorylated NBS1, a key molecule of the DNA damage response machinery, is an adverse prognostic factor in patients with de novo myelodysplastic syndromes. Leukemia Research, 2013, 37, 1576-1582.	0.8	13
32	The Mre11 Complex Suppresses Oncogene-Driven Breast Tumorigenesis and Metastasis. Molecular Cell, 2013, 52, 353-365.	9.7	46
33	PC3 (BTG2/TIS21) possible role in chromosome instability syndromes. Medical Hypotheses, 2013, 81, 82-85.	1.5	0
34	Hereditary Breast Cancer: The Era of New Susceptibility Genes. BioMed Research International, 2013, 2013, 1-11.	1.9	230
35	Novel Integrative Genomics Approach for Associating GWAS Information with Intrinsic Subtypes of Breast Cancer. Cancer Informatics, 2013, 12, CIN.S11452.	1.9	4
36	Disease-associated MRE11 mutants impact ATM/ATR DNA damage signaling by distinct mechanisms. Human Molecular Genetics, 2013, 22, 5146-5159.	2.9	44

#	Article	IF	CITATIONS
37	Regulation of the Nijmegen breakage syndrome 1 gene NBS1 by c-myc, p53 and coactivators mediates estrogen protection from DNA damage in breast cancer cells. International Journal of Oncology, 2013, 42, 712-720.	3.3	13
38	DNA Damage, DNA Repair and Cancer. , 0, , .		40
39	XRCC3 and RAD51 Expression Are Associated with Clinical Factors in Breast Cancer. PLoS ONE, 2013, 8, e72104.	2.5	19
40	Suppression of Akt-mTOR Pathway-A Novel Component of Oncogene Induced DNA Damage Response Barrier in Breast Tumorigenesis. PLoS ONE, 2014, 9, e97076.	2.5	12
41	Growing recognition of the role forÂrare missense substitutions in breast cancer susceptibility. Biomarkers in Medicine, 2014, 8, 589-603.	1.4	24
42	RAD50 targeting impairs DNA damage response and sensitizes human breast cancer cells to cisplatin therapy. Cancer Biology and Therapy, 2014, 15, 777-788.	3.4	23
44	Next-Generation Sequencing for Inherited Breast Cancer Risk: Counseling through the Complexity. Current Oncology Reports, 2014, 16, 371.	4.0	52
45	The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once. DNA Repair, 2014, 19, 95-107.	2.8	82
46	Targeting <scp>DNA</scp> damage response in cancer therapy. Cancer Science, 2014, 105, 370-388.	3.9	251
47	Combined Genetic and Nutritional Risk Models of Triple Negative Breast Cancer. Nutrition and Cancer, 2014, 66, 955-963.	2.0	32
48	Expanding the genetic basis of copy number variation in familial breast cancer. Hereditary Cancer in Clinical Practice, 2014, 12, 15.	1.5	15
49	PI3K Inhibition Augments the Therapeutic Efficacy of a 3a-aza-Cyclopenta[α]indene Derivative in Lung Cancer Cells. Translational Oncology, 2014, 7, 256-266.e5.	3.7	1
50	Nucleases in homologous recombination as targets for cancer therapy. FEBS Letters, 2014, 588, 2446-2456.	2.8	21
51	Rare key functional domain missense substitutions in MRE11A, RAD50, and NBNcontribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Research, 2014, 16, R58.	5.0	99
52	1053 Heterozygous germline mutations in MRE11 among korean patients with high-risk breast cancer negative for BRCA1/2 mutation. European Journal of Cancer, 2015, 51, S162-S163.	2.8	0
53	Epigenetic Reduction of DNA Repair in Progression to Cancer. , 2015, , .		0
54	Identification of Plasmodium falciparum DNA Repair Protein Mre11 with an Evolutionarily Conserved Nuclease Function. PLoS ONE, 2015, 10, e0125358.	2.5	22
55	Next-generation sequencing for hereditary breast and gynecologic cancer risk assessment. Current Opinion in Obstetrics and Gynecology, 2015, 27, 23-33.	2.0	33

#	Article	IF	CITATIONS
56	Gene-Panel Sequencing and the Prediction of Breast-Cancer Risk. New England Journal of Medicine, 2015, 372, 2243-2257.	27.0	764
57	Multigene panel analysis identified germline mutations of <scp>DNA</scp> repair genes in breast and ovarian cancer. Molecular Genetics & Genomic Medicine, 2015, 3, 459-466.	1.2	69
58	Evaluation of miRNA-binding-site SNPs of MRE11A, NBS1, RAD51 and RAD52 involved in HRR pathway genes and risk of breast cancer in China. Molecular Genetics and Genomics, 2015, 290, 1141-1153.	2.1	25
59	Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Molecular Oncology, 2015, 9, 601-616.	4.6	136
60	Expression of the Mre11–Rad50–Nbs1 complex in cisplatin nephrotoxicity. Environmental Toxicology and Pharmacology, 2015, 40, 12-17.	4.0	10
61	RAD51, XRCC3, and XRCC2 mutation screening in Finnish breast cancer families. SpringerPlus, 2015, 4, 92.	1.2	21
62	Heterozygous germline mutations in NBS1 among Korean patients with high-risk breast cancer negative for BRCA1/2 mutation. Familial Cancer, 2015, 14, 365-371.	1.9	3
63	γ-H2AX Foci in Peripheral Blood Lymphocytes to Quantify Radiation-Induced DNA Damage After 177Lu-DOTA-Octreotate Peptide Receptor Radionuclide Therapy. Journal of Nuclear Medicine, 2015, 56, 501-502.	5.0	5
64	ATM and ATR as therapeutic targets in cancer. , 2015, 149, 124-138.		487
65	Beyond BRCA: New hereditary breast cancer susceptibility genes. Cancer Treatment Reviews, 2015, 41, 1-8.	7.7	166
66	Refining Breast Cancer Risk Stratification: Additional Genes, Additional Information. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, 44-56.	3.8	19
67	Current Management Strategies in Breast Cancer by Targeting Key Altered Molecular Players. Frontiers in Oncology, 2016, 6, 45.	2.8	17
68	Hereditary breast and ovarian cancer: new genes in confined pathways. Nature Reviews Cancer, 2016, 16, 599-612.	28.4	305
69	Means to the ends: The role of telomeres and telomere processing machinery in metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 320-329.	7.4	17
70	Impact of race and tumor subtype on second malignancy risk in women with breast cancer. SpringerPlus, 2016, 5, 14.	1.2	13
71	Programmed <scp>DNA</scp> breaks in lymphoid cells: repair mechanisms and consequences in human disease. Immunology, 2016, 147, 11-20.	4.4	11
72	Role of Runx2 in breast cancer-mediated bone metastasis. International Journal of Biological Macromolecules, 2017, 99, 608-614.	7.5	49
73	MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene, 2017, 36, 4943-4950.	5.9	38

#	Article	IF	CITATIONS
74	The Changing Landscape of Genetic Testing for Inherited Breast Cancer Predisposition. Current Treatment Options in Oncology, 2017, 18, 27.	3.0	25
75	Next-Generation Sequencing Reveals a Nonsense Mutation (p.Arg364Ter) in MRE11A Gene in an Indian Patient with Familial Breast Cancer. Breast Care, 2017, 12, 112-114.	1.4	3
76	PLGA-CTAB curcumin nanoparticles: Fabrication, characterization and molecular basis of anticancer activity in triple negative breast cancer cell lines (MDA-MB-231 cells). Biomedicine and Pharmacotherapy, 2017, 94, 944-954.	5.6	36
77	MRE11 Promotes Tumorigenesis by Facilitating Resistance to Oncogene-Induced Replication Stress. Cancer Research, 2017, 77, 5327-5338.	0.9	22
78	Association of DNA repair genes polymorphisms and mutations with increased risk of head and neck cancer: a review. Medical Oncology, 2017, 34, 197.	2.5	46
79	Lack of MRE11-RAD50-NBS1 (MRN) complex detection occurs frequently in low-grade epithelial ovarian cancer. BMC Cancer, 2017, 17, 44.	2.6	36
80	Frequency of pathogenic germline mutation in CHEK2, PALB2, MRE11, and RAD50 in patients at high risk for hereditary breast cancer. Breast Cancer Research and Treatment, 2017, 161, 95-102.	2.5	28
81	Panel of SEREX-defined antigens for breast cancer autoantibodies profile detection. Biomarkers, 2017, 22, 149-156.	1.9	15
82	Developmental therapeutics for patients with breast cancer and central nervous system metastasis: current landscape and future perspectives. Annals of Oncology, 2017, 28, 44-56.	1.2	43
83	Outcomes of retesting BRCA negative patients using multigene panels. Familial Cancer, 2017, 16, 319-328.	1.9	18
84	Exome Sequencing in a Family with Luminal-Type Breast Cancer Underpinned by Variation in the Methylation Pathway. International Journal of Molecular Sciences, 2017, 18, 467.	4.1	14
85	Early Postoperative Low Expression of RAD50 in Rectal Cancer Patients Associates with Disease-Free Survival. Cancers, 2017, 9, 163.	3.7	12
86	Targeting ATR for Cancer Therapy: Profile and Expectations for ATR Inhibitors. Cancer Drug Discovery and Development, 2018, , 63-97.	0.4	0
87	Reversible mislocalization of a disease-associated MRE11 splice variant product. Scientific Reports, 2018, 8, 10121.	3.3	3
88	Revisiting Non-BRCA1/2 Familial Whole Exome Sequencing Datasets Implicates NCK1 as a Cancer Gene. Frontiers in Genetics, 2019, 10, 527.	2.3	4
89	Attenuating the DNA damage response to double-strand breaks restores function in models of CNS neurodegeneration. Brain Communications, 2019, 1, fcz005.	3.3	20
90	RAD6B Plays a Critical Role in Neuronal DNA Damage Response to Resist Neurodegeneration. Frontiers in Cellular Neuroscience, 2019, 13, 392.	3.7	14
91	Prognostic effects of abnormal DNA damage response protein expression in breast cancer. Breast Cancer Research and Treatment, 2019, 175, 117-127.	2.5	8

#	Article	IF	CITATIONS
92	RECQL5 plays an essential role in maintaining genome stability and viability of tripleâ€negative breast cancer cells. Cancer Medicine, 2019, 8, 4743-4752.	2.8	14
93	Association between polymorphisms in MRE11 and HIV-1 susceptibility and AIDS progression in a northern Chinese MSM population. Journal of Antimicrobial Chemotherapy, 2019, 74, 2009-2018.	3.0	1
94	Expression of γâ€H2AX and patient prognosis in breast cancer cohort. Journal of Cellular Biochemistry, 2019, 120, 12958-12965.	2.6	6
95	Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. Journal of Hematology and Oncology, 2019, 12, 38.	17.0	66
96	Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Frontiers in Oncology, 2019, 9, 1388.	2.8	143
97	Updates in the field of hereditary nonpolyposis colorectal cancer. Expert Review of Gastroenterology and Hepatology, 2020, 14, 707-720.	3.0	18
98	A Survey of Reported Disease-Related Mutations in the MRE11-RAD50-NBS1 Complex. Cells, 2020, 9, 1678.	4.1	18
99	An assessment of poly (ADPâ€ribose) polymeraseâ€1 role in normal and cancer cells. BioFactors, 2020, 46, 894-905.	5.4	19
100	A P53-Independent DNA Damage Response Suppresses Oncogenic Proliferation and Genome Instability. Cell Reports, 2020, 30, 1385-1399.e7.	6.4	29
101	Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test?. International Journal of Molecular Sciences, 2020, 21, 1128.	4.1	61
102	DNA damage response and breast cancer development: Possible therapeutic applications of ATR, ATM, PARP, BRCA1 inhibition. DNA Repair, 2021, 98, 103032.	2.8	13
104	Germline risk of clonal haematopoiesis. Nature Reviews Genetics, 2021, 22, 603-617.	16.3	48
105	Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. Oncologist, 2021, 26, e1526-e1537.	3.7	53
107	The Genetic Analyses of French Canadians of Quebec Facilitate the Characterization of New Cancer Predisposing Genes Implicated in Hereditary Breast and/or Ovarian Cancer Syndrome Families. Cancers, 2021, 13, 3406.	3.7	9
108	MRN Complex and Cancer Risk: Old Bottles, New Wine. Clinical Cancer Research, 2021, 27, 5465-5471.	7.0	6
109	MRE11 as a molecular signature and therapeutic target for cancer treatment with radiotherapy. Cancer Letters, 2021, 514, 1-11.	7.2	15
110	Understanding the DNA double-strand break repair and its therapeutic implications. DNA Repair, 2021, 106, 103177.	2.8	13
111	Circadian-disruption-induced gene expression changes in rodent mammary tissues. Oncoscience, 2016, 3, 58-70.	2.2	5

#	ARTICLE	IF	CITATIONS
112	Double-strand break repair and colorectal cancer: gene variants within 3′ UTRs and microRNAs binding as modulators of cancer risk and clinical outcome. Oncotarget, 2016, 7, 23156-23169.	1.8	40
113	Molecular Genetics of Breast and Ovarian Cancer: Recent Advances and Clinical Implications. Balkan Journal of Medical Genetics, 2012, 15, 75-80.	0.5	2
114	Loss of BRCA1 expression leads to worse survival in patients with gastric carcinoma. World Journal of Gastroenterology, 2013, 19, 1968.	3.3	23
115	Development and validation of a 36-gene sequencing assay for hereditary cancer risk assessment. PeerJ, 2017, 5, e3046.	2.0	18
116	Suppression of isoprenylcysteine carboxylmethyltransferase compromises DNA damage repair. Life Science Alliance, 2021, 4, e202101144.	2.8	1
117	TYPES OF DNA DAMAGE. , 2013, , 115-118.		0
118	Breast Cancer Genetics and Risk Assessment. , 2015, , 1-21.		0
119	Next-Generation Sequencing Based Testing for Breast Cancer. , 2016, , 299-328.		0
122	Hereditary : BRCA and Other. , 2020, , 23-41.		0
123	Polymorphisms in poly (ADP-ribose) polymerase-1 (PARP1) promoter and 3' untranslated region and their association with PARP1 expression in breast cancer patients. International Journal of Clinical and Experimental Pathology, 2015, 8, 7059-71.	0.5	10
124	DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition. American Journal of Cancer Research, 2015, 5, 2113-26.	1.4	20
125	The deubiquitinase USP28 stabilizes the expression of RecQ family helicases and maintains the viability of triple negative breast cancer cells. Journal of Biological Chemistry, 2022, 298, 101443.	3.4	6
126	Untangling the clinicopathological significance of MRE11-RAD50-NBS1 complex in sporadic breast cancer, 2021, 7, 143.	5.2	8
127	An <i>in-silico</i> analysis to identify structural, functional and regulatory role of SNPs in <i>hMRE11</i> . Journal of Biomolecular Structure and Dynamics, 2023, 41, 2160-2174.	3.5	2
128	Germline Mutation Analysis in Sporadic Breast Cancer Cases With Clinical Correlations. Frontiers in Genetics, 2022, 13, 820610.	2.3	0
129	ICRU REPORT 96, Dosimetry-Guided Radiopharmaceutical Therapy. Journal of the ICRU, 2021, 21, 1-212.	15.5	52
138	Exome sequencing reveals a distinct somatic genomic landscape in breast cancer from women with germline PTEN variants. American Journal of Human Genetics, 2022, 109, 1520-1533.	6.2	2
139	Integrative Expression, Survival Analysis and Cellular miR-2909 Molecular Interplay in MRN Complex Check Point Sensor Genes (MRN-CSG) Involved in Breast Cancer. Clinical Breast Cancer, 2022, 22, e850-e862.	2.4	1

#	Article	IF	CITATIONS
140	Crosstalk between SUMOylation and ubiquitylation controls DNA end resection by maintaining MRE11 homeostasis on chromatin. Nature Communications, 2022, 13, .	12.8	3
141	Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomedicine and Pharmacotherapy, 2023, 158, 114126.	5.6	1
142	Markers associated with genomic instability, immunogenicity and immune therapy responsiveness in Metaplastic carcinoma of the breast: Expression of γH2AX, pRPA2, P53, PD-L1 and tumor infiltrating lymphocytes in 76 cases. BMC Cancer, 2022, 22, .	2.6	1
143	Importance of Germline and Somatic Alterations in Human MRE11, RAD50, and NBN Genes Coding for MRN Complex. International Journal of Molecular Sciences, 2023, 24, 5612.	4.1	5
145	Integrating somatic CNV and gene expression in breast cancers from women with PTEN hamartoma tumor syndrome. Npj Genomic Medicine, 2023, 8, .	3.8	0
146	Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis. Current Issues in Molecular Biology, 2023, 45, 7582-7616.	2.4	0
147	Chromosome 5. , 2023, , 90-158.		0