Raster modelling of coastal flooding from seaâ€level ris

International Journal of Geographical Information Science 22, 167-182 DOI: 10.1080/13658810701371858

Citation Report

#	Article	IF	CITATIONS
1	Applications of network analysis for adaptive management of artificial drainage systems in landscapes vulnerable to sea level rise. Journal of Hydrology, 2008, 357, 207-217.	2.3	62
2	Inundation of freshwater peatlands by sea level rise: Uncertainty and potential carbon cycle feedbacks. Journal of Geophysical Research, 2008, 113, .	3.3	33
3	Recent Trends in IJGISc. International Journal of Geographical Information Science, 2009, 23, 1-6.	2.2	8
4	Decision dilemmas for adaptation to sea level rise: How to, when to?. , 2009, , .		6
5	Determinants of coastal treeline and the role of abiotic and biotic interactions. Plant Ecology, 2009, 202, 55-66.	0.7	25
6	Sea-level rise research and dialogue in North Carolina: Creating windows for policy change. Ocean and Coastal Management, 2009, 52, 147-153.	2.0	42
7	Analysis of Lidar Elevation Data for Improved Identification and Delineation of Lands Vulnerable to Sea-Level Rise. Journal of Coastal Research, 2009, 10053, 49-58.	0.1	168
8	Regional scenarios of sea level rise and impacts on Basque (Bay of Biscay) coastal habitats, throughout the 21st century. Estuarine, Coastal and Shelf Science, 2010, 87, 113-124.	0.9	44
9	Sea-level rise impact models and environmental conservation: A review of models and their applications. Ocean and Coastal Management, 2010, 53, 507-517.	2.0	144
10	Matching the Multiple Scales of Conservation with the Multiple Scales of Climate Change. Conservation Biology, 2010, 24, 51-62.	2.4	105
11	Flood Risk Mapping Using LiDAR for Annapolis Royal, Nova Scotia, Canada. Remote Sensing, 2010, 2, 2060-2082.	1.8	24
12	Coastal vulnerability to Sea Level Rise: A spatio-temporal decision making tool. , 2010, , .		4
13	Assessing Sea-Level Rise Impacts: A GIS-Based Framework and Application to Coastal New Jersey. Coastal Management, 2010, 38, 433-455.	1.0	45
14	Phosphorus export from a restored wetland ecosystem in response to natural and experimental hydrologic fluctuations. Journal of Geophysical Research, 2010, 115, .	3.3	54
15	Modelling the future coastal zone urban development as implied by the IPCC SRES and assessing the impact from sea level rise. Landscape and Urban Planning, 2010, 98, 141-149.	3.4	69
16	The Water Quality Consequences of Restoring Wetland Hydrology to a Large Agricultural Watershed in the Southeastern Coastal Plain. Ecosystems, 2010, 13, 1060-1078.	1.6	81
17	Exploring Data-Related Uncertainties in Analyses of Land Area and Population in the "Low-Elevation Coastal Zone―(LECZ). Journal of Coastal Research, 2010, 27, 757.	0.1	102
18	Crossing natural and data set boundaries: coastal terrain modelling in the South-West Finnish Archipelago. International Journal of Geographical Information Science, 2010, 24, 1435-1452.	2.2	5

#	Article	IF	CITATIONS
19	About the influence of elevation model quality and small-scale damage functions on flood damage estimation. Natural Hazards and Earth System Sciences, 2011, 11, 3327-3334.	1.5	35
20	Shaping Sea-Level Rise Adaptation Policy through Science: The North Carolina Sea Level Rise Risk Management Study. , 2011, , .		0
21	MEASURING THE IMPACT OF SEA-LEVEL RISE ON COASTAL REAL ESTATE: A HEDONIC PROPERTY MODEL APPROACH*. Journal of Regional Science, 2011, 51, 751-767.	2.1	45
22	Modelling suitable estuarine habitats for Zostera noltii, using Ecological Niche Factor Analysis and Bathymetric LiDAR. Estuarine, Coastal and Shelf Science, 2011, 94, 144-154.	0.9	52
23	A VR-Ocean system for interactive geospatial analysis and 4D visualization of the marine environment around Antarctica. Computers and Geosciences, 2011, 37, 1743-1751.	2.0	21
24	Implications of recent sea level rise science for low-elevation areas in coastal cities of the conterminous U.S.A Climatic Change, 2011, 105, 635-645.	1.7	63
25	Sea-level rise in Indonesia: on adaptation priorities in the agricultural sector. Regional Environmental Change, 2011, 11, 893-904.	1.4	17
26	Multiple scenario analyses forecasting the confounding impacts of sea level rise and tides from storm induced coastal flooding in the city of Shanghai, China. Environmental Earth Sciences, 2011, 63, 407-414.	1.3	47
27	Predicting tidal flooding of urbanized embayments: A modeling framework and data requirements. Coastal Engineering, 2011, 58, 567-577.	1.7	106
28	Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses. , 2012, 22, 264-280.		93
29	A Parcel-Scale Coastal Flood Forecasting Prototype for a Southern California Urbanized Embayment. Journal of Coastal Research, 2012, 29, 642.	0.1	16
30	Tidally adjusted estimates of topographic vulnerability to sea level rise and flooding for the contiguous United States. Environmental Research Letters, 2012, 7, 014033.	2.2	151
31	An improved bathymetric model for the modern and palaeo Lake Eyre. Geomorphology, 2012, 173-174, 69-79.	1.1	34
32	Sensitivity of Coastal Flood Risk Assessments to Digital Elevation Models. Water (Switzerland), 2012, 4, 568-579.	1.2	67
33	Relative sea-level rise and marine erosion and inundation in the Sele river coastal plain (Southern) Tj ETQq0 0 0 r	gBT /Overl	ock_10 Tf 50
34	Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York. Natural Hazards, 2012, 60, 727-745.	1.6	112
35	A new tool to promote sustainability of coastal zones. The case of Sele plain, southern Italy. Rendiconti Lincei, 2013, 24, 113-126.	1.0	9
36	The importance of the vertical accuracy of digital elevation models in gauging inundation by sea level rise along the Valdelagrana beach and marshes (Bay of Cádiz, SW Spain). Geo-Marine Letters, 2013, 33, 225-230.	0.5	14

#	Article	IF	CITATIONS
37	Effects of seaâ€level rise on northern elephant seal breeding habitat at Point Reyes Peninsula, California. Aquatic Conservation: Marine and Freshwater Ecosystems, 2013, 23, 233-245.	0.9	8
38	Sea-level rise vulnerability mapping for adaptation decisions using LiDAR DEMs. Progress in Physical Geography, 2013, 37, 745-766.	1.4	43
39	Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sensing of Environment, 2013, 139, 318-330.	4.6	112
40	Incorporating uncertainty of future sea-level rise estimates into vulnerability assessment: A case study in Kahului, Maui. Climatic Change, 2013, 121, 635-647.	1.7	20
41	Mapping and Portraying Inundation Uncertainty of Bathtub-Type Models. Journal of Coastal Research, 2013, 30, 548.	0.1	29
42	Assessing vulnerability due to sea-level rise in Maui, Hawaiâ€~i using LiDAR remote sensing and GIS. Climatic Change, 2013, 116, 547-563.	1.7	40
43	Influence of elevation modelling on hydrodynamic simulations of a tidally-dominated estuary. Journal of Hydrology, 2013, 497, 152-164.	2.3	24
44	Assessment of Inundation Risk from Sea Level Rise and Storm Surge in Northeastern Coastal National Parks. Journal of Coastal Research, 2013, 291, 1-16.	0.1	55
45	What do we need to assess the sustainability of the tidal salt marsh carbon sink?. Ocean and Coastal Management, 2013, 83, 25-31.	2.0	120
46	Methodology for Integrating Adaptation to Climate Change Into the Transportation Planning Process. Public Works Management Policy, 2013, 18, 145-166.	0.7	4
47	A Cartographic Framework for Visualizing Risk. Cartographica, 2013, 48, 200-224.	0.2	38
48	Assessing Coastal Squeeze of Tidal Wetlands. Journal of Coastal Research, 2013, 290, 1049-1061.	0.1	131
49	Consideration of Vertical Uncertainty in Elevation-Based Sea-Level Rise Assessments: Mobile Bay, Alabama Case Study. Journal of Coastal Research, 2013, 63, 197-210.	0.1	41
50	Assessment of static flood modeling techniques: application to contrasting marshes flooded during Xynthia (western France). Natural Hazards and Earth System Sciences, 2013, 13, 1595-1612.	1.5	75
51	An Operational Web-Based Indicator System for Integrated Coastal Zone Management. ISPRS International Journal of Geo-Information, 2014, 3, 326-344.	1.4	5
52	Incorporating DEM Uncertainty in Coastal Inundation Mapping. PLoS ONE, 2014, 9, e108727.	1.1	56
53	Iron clad wetlands: Soil ironâ€sulfur buffering determines coastal wetland response to salt water incursion. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 2209-2219.	1.3	44
54	A Forecast and Risk Assessment Model for Storm Surge Impacts. Applied Mechanics and Materials, 2014, 580-583, 2635-2641.	0.2	0

#	Article	IF	CITATIONS
55	Advances in Remote Sensing of Coastal Wetlands: LiDAR, SAR, and Object-Oriented Case Studies from North Carolina. Coastal Research Library, 2014, , 405-428.	0.2	2
56	Coastal Zone Issues: A Case Study (Egypt). Procedia Engineering, 2014, 70, 1102-1111.	1.2	21
57	THESEUS decision support system for coastal risk management. Coastal Engineering, 2014, 87, 218-239.	1.7	69
58	Delineating Sea Level Rise Inundation Using a Graph Traversal Algorithm. Marine Geodesy, 2014, 37, 267-281.	0.9	12
59	A geospatial dataset for U.S. hurricane storm surge and sea-level rise vulnerability: Development and case study applications. Climate Risk Management, 2014, 2, 26-41.	1.6	42
60	Urban coastal flood prediction: Integrating wave overtopping, flood defenses and drainage. Coastal Engineering, 2014, 91, 18-28.	1.7	112
61	Integrated River and Coastal Hydrodynamic Flood Risk Mapping of the LaHave River Estuary and Town of Bridgewater, Nova Scotia, Canada. Water (Switzerland), 2014, 6, 517-546.	1.2	23
62	Identifying FDOT's Physical Transportation Infrastructure Vulnerable to Sea Level Rise. Journal of Infrastructure Systems, 2014, 20, .	1.0	9
63	The conservation value of elevation data accuracy and model sophistication in reserve design under seaâ€level rise. Ecology and Evolution, 2015, 5, 4376-4388.	0.8	8
64	Tools for assessing sea level rise vulnerability. Journal of Water and Climate Change, 2015, 6, 181-190.	1.2	8
65	Coupling scenarios of urban growth and flood hazards along the Emilia-Romagna coast (Italy). Natural Hazards and Earth System Sciences, 2015, 15, 2331-2346.	1.5	32
66	Evaluation of Airborne Lidar Elevation Surfaces for Propagation of Coastal Inundation: The Importance of Hydrologic Connectivity. Remote Sensing, 2015, 7, 11695-11711.	1.8	6
67	Improving Low-Relief Coastal LiDAR DEMs with Hydro-Conditioning of Fine-Scale and Artificial Drainages. Frontiers in Earth Science, 2015, 3, .	0.8	5
68	Supporting Local and Traditional Knowledge with Science for Adaptation to Climate Change: Lessons Learned from Participatory Three-Dimensional Modeling in BoeBoe, Solomon Islands. Coastal Management, 2015, 43, 424-438.	1.0	25
69	Integrating sea level rise into development suitability analysis. Computers, Environment and Urban Systems, 2015, 51, 13-24.	3.3	21
70	A spatially based area–time inundation index model developed to assess habitat opportunity in tidal–fluvial wetlands and restoration sites. Ecological Engineering, 2015, 82, 624-642.	1.6	10
71	Incorporating uncertainty of groundwater modeling in sea-level rise assessment: a case study in South Florida. Climatic Change, 2015, 129, 281-294.	1.7	25
72	Modeling sea-level rise vulnerability of coastal environments using ranked management concerns. Climatic Change, 2015, 131, 349-361.	1.7	15

#	Article	IF	CITATIONS
73	Flood inundation extent mapping based on block compressed tracing. Computers and Geosciences, 2015, 80, 74-83.	2.0	9
74	New York City Panel on Climate Change 2015 Report Chapter 3: Static Coastal Flood Mapping. Annals of the New York Academy of Sciences, 2015, 1336, 45-55.	1.8	11
75	Investigation of potential sea level rise impact on the Nile Delta, Egypt using digital elevation models. Environmental Monitoring and Assessment, 2015, 187, 649.	1.3	25
76	Critical elevation levels for flooding due to sea-level rise in Hawaiâ€~i. Regional Environmental Change, 2015, 15, 1679-1687.	1.4	33
77	Developing a Holistic Approach to Assessing and Managing Coastal Flood Risk. , 2015, , 9-53.		6
79	Evaluation of coastal vulnerability to flooding: comparison of two different methodologies adopted by the Emilia-Romagna region (Italy). Natural Hazards and Earth System Sciences, 2016, 16, 181-194.	1.5	54
80	Damage functions for climate-related hazards: unification and uncertainty analysis. Natural Hazards and Earth System Sciences, 2016, 16, 1189-1203.	1.5	26
81	Effects of Scale and Input Data on Assessing the Future Impacts of Coastal Flooding: An Application of DIVA for the Emilia-Romagna Coast. Frontiers in Marine Science, 2016, 3, .	1.2	29
82	Uncertainties in Tidally Adjusted Estimates of Sea Level Rise Flooding (Bathtub Model) for the Greater London. Remote Sensing, 2016, 8, 366.	1.8	39
83	Predicting the Extent of Inundation due to Sea-Level Rise: Al Hamra Development, Ras Al Khaimah, UAE. A Pilot Project. , 2016, 20, 25-31.		1
84	Flooding risk assessment of coastal tourist attractions affected by sea level rise and storm surge: a case study in Zhejiang Province, China. Natural Hazards, 2016, 84, 611-624.	1.6	36
85	Extreme sea levels under present and future climate: a pan-European database. E3S Web of Conferences, 2016, 7, 02001.	0.2	8
86	Hydrologic Connectivity: Quantitative Assessments of Hydrologic-Enforced Drainage Structures in an Elevation Model. Journal of Coastal Research, 2016, 76, 90-106.	0.1	7
87	Can We Project the Health Impacts of Sea Level Rise?. , 2016, , .		0
88	On the impact of a refined stochastic model for airborne LiDAR measurements. Journal of Applied Geodesy, 2016, 10, 185-196.	0.6	3
89	Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model. Water Resources Research, 2016, 52, 9146-9163.	1.7	92
90	Will a rising sea sink some estuarine wetland ecosystems?. Science of the Total Environment, 2016, 554-555, 276-292.	3.9	15
91	Validated coastal flood modeling at Imperial Beach, California: Comparing total water level, empirical and numerical overtopping methodologies. Coastal Engineering, 2016, 111, 95-104.	1.7	69

#	Article	IF	CITATIONS
92	GIS based 3-D landscape visualization for promoting citizen's awareness of coastal hazard scenarios in flood prone tourism towns. Applied Geography, 2016, 76, 85-97.	1.7	32
93	Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Global and Planetary Change, 2016, 145, 57-66.	1.6	184
94	Coupled modeling of storm surge and coastal inundation: A case study in <scp>N</scp> ew <scp>Y</scp> ork <scp>C</scp> ity during <scp>H</scp> urricane <scp>S</scp> andy. Water Resources Research, 2016, 52, 8685-8699.	1.7	78
95	Coastal economic vulnerability to sea level rise of Bohai Rim in China. Natural Hazards, 2016, 80, 1231-1241.	1.6	8
96	Erosion and Flooding—Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada. Estuaries and Coasts, 2016, 39, 900-915.	1.0	83
97	Improved modelling of the impacts of sea level rise on coastal wetland plant communities. Hydrobiologia, 2016, 774, 203-216.	1.0	24
98	Coastal inundation risk assessment due to subsidence and sea levelÂrise in a Mediterranean alluvial plain (Volturno coastal plain–Âsouthern Italy). Estuarine, Coastal and Shelf Science, 2017, 198, 597-609.	0.9	74
99	Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. International Journal of Remote Sensing, 2017, 38, 3159-3180.	1.3	74
100	Mapping inundation probability due to increasing sea level rise along El Puerto de Santa MarÃa (SW) Tj ETQq0 0	0 rgBT /Ov 1.6	verlock 10 Tf
101	Optimizing DEM resolution inputs and number of stream gauges in GIS predictions of flood inundation. Environmental and Engineering Geoscience, 2017, , 1078-7275.EEG-1890.	0.3	0
102	Process-based indicators to assess storm induced coastal hazards. Earth-Science Reviews, 2017, 173, 159-167.	4.0	30
103	New estimates of potential impacts of sea level rise and coastal floods in Poland. Natural Hazards, 2017, 85, 1249-1277.	1.6	51
104	Carbon Emissions during Wildland Fire on a North American Temperate Peatland. Fire Ecology, 2017, 13, 34-57.	1.1	16
105	Optimizing Digital Elevation Model Resolution Inputs and Number of Stream Gauges in Geographic Information System Predictions of Flood Inundation: a Case Study Along the Illinois River, Usa. Environmental and Engineering Geoscience, 2017, 23, 345-357.	0.3	1
106	Assessing the Economic Costs of Sea Level Rise and Benefits of Coastal Protection: A Spatiotemporal Approach. Sustainability, 2017, 9, 1495.	1.6	10
107	Evaluación del riesgo de inundación a múltiples componentes en la costa del Maresme. Ribagua, 2017, 4, 110-129.	0.3	1
109	Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (western Mediterranean). Natural Hazards and Earth System Sciences, 2017, 17, 1075-1089.	1.5	63
110	A multi-component flood risk assessment in the Maresme coast (NW Mediterranean). Natural Hazards, 2018, 90, 265-292.	1.6	27

#	Article	IF	CITATIONS
111	Assessment of Land Subsidence and Climate Change Impacts on Inundation Hazard in Southwestern Taiwan. Irrigation and Drainage, 2018, 67, 26-37.	0.8	11
112	Examining the Influence of Tidal Stage on Salt Marsh Mapping Using High-Spatial-Resolution Satellite Remote Sensing and Topobathymetric LiDAR. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 5169-5176.	2.7	24
113	Exploring the sensitivity of coastal inundation modelling to DEM vertical error. International Journal of Geographical Information Science, 2018, 32, 1172-1193.	2.2	13
114	Coastal subsidence detected by <scp>Synthetic Aperture Radar</scp> interferometry and its effects coupled with future seaâ€level rise: the case of the Sele Plain (Southern Italy). Journal of Flood Risk Management, 2018, 11, 191-206.	1.6	36
115	Critical review of salinity intrusion in rivers and estuaries. Journal of Water and Climate Change, 2018, 9, 1-16.	1.2	17
116	Estimation of Coastal Inundation Area by Typhoon-Induced Surges. , 2018, , .		1
117	Using Information on Settlement Patterns to Improve the Spatial Distribution of Population in Coastal Impact Assessments. Sustainability, 2018, 10, 3170.	1.6	16
118	Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure. Frontiers in Earth Science, 2018, 6, .	0.8	80
119	Coastal Flood Modeling Challenges in Defended Urban Backshores. Geosciences (Switzerland), 2018, 8, 450.	1.0	49
120	Regionalisation of population growth projections in coastal exposure analysis. Climatic Change, 2018, 151, 413-426.	1.7	35
121	Island rewilding with giant tortoises in an era of climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170442.	1.8	33
122	Sea level rise impacts on rural coastal social-ecological systems and the implications for decision making. Environmental Science and Policy, 2018, 90, 122-134.	2.4	52
123	Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nature Communications, 2018, 9, 4161.	5.8	204
124	High-resolution marine flood modelling coupling overflow and overtopping processes: framing the hazard based on historical and statistical approaches. Natural Hazards and Earth System Sciences, 2018, 18, 207-229.	1.5	20
125	DEM Resolution Effects on Coastal Flood Vulnerability Assessment: Deterministic and Probabilistic Approach. Water Resources Research, 2018, 54, 4965-4982.	1.7	36
126	Present day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic coast: the case of Molise region. Environmental Earth Sciences, 2018, 77, 1.	1.3	34
127	Recent and Future Outlooks for Nuisance Flooding Impacts on Roadways on the U.S. East Coast. Transportation Research Record, 2018, 2672, 1-10.	1.0	49
128	Investigating compound flooding in an estuary using hydrodynamic modelling: a case study from the Shoalhaven River, Australia. Natural Hazards and Earth System Sciences, 2018, 18, 463-477.	1.5	94

#	Article	IF	CITATIONS
129	GIS and Coastal Vulnerability to Climate Change. , 2018, , 236-257.		16
130	Changing Sediment Dynamics of a Mature Backbarrier Salt Marsh in Response to Sea-Level Rise and Storm Events. Frontiers in Marine Science, 2018, 5, .	1.2	11
131	Modelling Hydrodynamic Impacts of Sea-Level Rise on Wave-Dominated Australian Estuaries with Differing Geomorphology. Journal of Marine Science and Engineering, 2018, 6, 66.	1.2	22
132	The Impact of Lidar Elevation Uncertainty on Mapping Intertidal Habitats on Barrier Islands. Remote Sensing, 2018, 10, 5.	1.8	20
133	Near real-time coastal flood inundation simulation with uncertainty analysis and GPU acceleration in a web environment. Computers and Geosciences, 2018, 119, 39-48.	2.0	9
134	Accuracy of panâ€European coastal flood mapping. Journal of Flood Risk Management, 2019, 12, e12459.	1.6	23
135	Decadal-Scale Vegetation Change Driven by Salinity at Leading Edge of Rising Sea Level. Ecosystems, 2019, 22, 1918-1930.	1.6	37
136	Uncertain seas: probabilistic modeling of future coastal flood zones. International Journal of Geographical Information Science, 2019, 33, 2188-2217.	2.2	10
137	Assessing the impact of sea level rise on port operability using LiDAR-derived digital elevation models. Remote Sensing of Environment, 2019, 232, 111318.	4.6	14
138	Modeled Sediment Availability, Deposition, and Decadal Land Change in Coastal Louisiana Marshes under Future Relative Sea Level Rise Scenarios. Wetlands, 2019, 39, 1233-1248.	0.7	15
139	Modeling DEM Errors in Coastal Flood Inundation and Damages: A Spatial Nonstationary Approach. Water Resources Research, 2019, 55, 6606-6624.	1.7	26
141	Comparison of a simple hydrostatic and a data-intensive 3D numerical modeling method of simulating sea-level rise induced groundwater inundation for Honolulu, Hawai'i, USA. Environmental Research Communications, 2019, 1, 041005.	0.9	14
142	Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis. Natural Hazards and Earth System Sciences, 2019, 19, 973-984.	1.5	45
143	Coastal Flood Assessment due to Sea Level Rise and Extreme Storm Events: A Case Study of the Atlantic Coast of Portugal's Mainland. Geosciences (Switzerland), 2019, 9, 239.	1.0	17
144	New York City Panel on Climate Change 2019 Report Chapter 5: Mapping Climate Risk. Annals of the New York Academy of Sciences, 2019, 1439, 115-125.	1.8	3
145	Modeling Barrier Island Habitats Using Landscape Position Information. Remote Sensing, 2019, 11, 976.	1.8	10
146	Modelling Coastal Flood Propagation under Sea Level Rise: A Case Study in Maria, Eastern Canada. Geosciences (Switzerland), 2019, 9, 76.	1.0	8
147	Succession, regression and loss: does evidence of saltwater exposure explain recent changes in the tree communities of North Carolina's Coastal Plain?. Annals of Botany, 2020, 125, 255-264.	1.4	17

#	Article	IF	CITATIONS
148	Assessing the sea-level rise vulnerability in coastal communities: A case study in the Tampa Bay Region, US. Cities, 2019, 88, 144-154.	2.7	10
149	Mapping Impact of Tidal Flooding on Solar Salt Farming in Northern Java using a Hydrodynamic Model. ISPRS International Journal of Geo-Information, 2019, 8, 451.	1.4	15
150	Comparing static and dynamic flood models in estuarine environments: a case study from south-east Australia. Marine and Freshwater Research, 2019, 70, 781.	0.7	9
151	N-dimensional geospatial data and analytics for critical infrastructure risk assessment. , 2019, , .		5
152	Hydrodynamic and Morphologic Response of a Backâ€Barrier Estuary to an Extratropical Storm. Journal of Geophysical Research: Oceans, 2019, 124, 7700-7717.	1.0	6
153	Multihazard simulation for coastal flood mapping: Bathtub versus numerical modelling in an open estuary, Eastern Canada. Journal of Flood Risk Management, 2019, 12, .	1.6	42
154	Sea-Level Rise Vulnerability Assessment of Bicycle and Trail Networks. Journal of Transportation Engineering Part A: Systems, 2019, 145, .	0.8	1
155	Vulnerability to storm surge flood using remote sensing and GIS techniques: A study on Sundarban Biosphere Reserve, India. Remote Sensing Applications: Society and Environment, 2019, 13, 106-120.	0.8	51
156	Workforce/Population, Economy, Infrastructure, Geography, Hierarchy, and Time (WEIGHT): Reflections on the Plural Dimensions of Disaster Resilience. Risk Analysis, 2020, 40, 43-67.	1.5	21
157	Better Management Through Measurement: Integrating Archaeological Site Features into a GIS-Based Erosion and Sea Level Rise Impact Assessment—Blueskin Bay, New Zealand. Journal of Island and Coastal Archaeology, 2020, 15, 104-126.	0.6	10
158	Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Using A High-Accuracy Digital Elevation Model. Remote Sensing, 2020, 12, 154.	1.8	10
159	Inundation modelling for Bangladeshi coasts using downscaled and bias-corrected temperature. Climate Risk Management, 2020, 27, 100207.	1.6	13
160	Sea-level rise and human migration. Nature Reviews Earth & Environment, 2020, 1, 28-39.	12.2	189
161	GIS-Based Material Stock Analysis (MSA) of Climate Vulnerabilities to the Tourism Industry in Antigua and Barbuda. Sustainability, 2020, 12, 8090.	1.6	16
162	Evaluation and enhancement of unmanned aircraft system photogrammetric data quality for coastal wetlands. GIScience and Remote Sensing, 2020, 57, 865-881.	2.4	7
163	Coastal Dam Inundation Assessment for the Yellow River Delta: Measurements, Analysis and Scenario. Remote Sensing, 2020, 12, 3658.	1.8	24
164	Rainfall Flooding in Urban Areas in the Context of Geomorphological Aspects. Geosciences (Switzerland), 2020, 10, 457.	1.0	8
165	Impact of Relative Sea-Level Rise on Low-Lying Coastal Areas of Catalonia, NW Mediterranean, Spain. Water (Switzerland), 2020, 12, 3252.	1.2	12

#	Article	IF	CITATIONS
166	From abstract futures to concrete experiences: How does political ideology interact with threat perception to affect climate adaptation decisions?. Environmental Science and Policy, 2020, 112, 440-452.	2.4	13
167	An Integrated Approach for the Simulation Modeling and Risk Assessment of Coastal Flooding. Water (Switzerland), 2020, 12, 2076.	1.2	7

169	Digital elevation model generation using UAV-SfM photogrammetry techniques to map sea-level rise scenarios at Cassino Beach, Brazil. SN Applied Sciences, 2020, 2, 1.	1.5	8
170	The Effect of Stochasticity of Waves on Coastal Flood and Its Variations with Sea-level Rise. Journal of Marine Science and Engineering, 2020, 8, 798.	1.2	7
171	Compound Effects of Flood Drivers and Wetland Elevation Correction on Coastal Flood Hazard Assessment. Water Resources Research, 2020, 56, e2020WR027544.	1.7	40
172	High-accuracy coastal flood mapping for Norway using lidar data. Natural Hazards and Earth System Sciences, 2020, 20, 673-694.	1.5	9
173	Coastal flood: a composite method for past events characterisation providing insights in past, present and future hazards—joining historical, statistical and modelling approaches. Natural Hazards, 2020, 101, 465-501.	1.6	25
174	Exploring effectiveness of frequency ratio and support vector machine models in storm surge flood susceptibility assessment: A study of Sundarban Biosphere Reserve, India. Catena, 2020, 189, 104450.	2.2	93
175	Assessing the social and economic impacts of sea-level rise at a global scale—State of knowledge and challenges. , 2021, , 351-363.		0
176	Downscaling of real-time coastal flooding predictions for decision support. Natural Hazards, 2021, 107, 1341-1369.	1.6	10
177	Risk Assessment of Coastal Flooding under Different Inundation Situations in Southwest of Taiwan (Tainan City). Water (Switzerland), 2021, 13, 880.	1.2	3
178	GIS-based approach to estimate sea level rise impacts on Damietta coast, Egypt. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
179	Flooded with Error: Handling Uncertainty in SRTM for the Assessment of Sea Level Rise in the Mississippi River Delta. Professional Geographer, 2021, 73, 404-412.	1.0	1
180	Environmental and economic impacts of rising sea levels: A case study in Kuwait's coastal zone. Ocean and Coastal Management, 2021, 205, 105572.	2.0	12
181	Indexing habitat opportunity for juvenile anadromous fishes in tidal-fluvial wetland systems. Ecological Indicators, 2021, 124, 107422.	2.6	5
182	Quantifying Drivers of Coastal Forest Carbon Decline Highlights Opportunities for Targeted Human Interventions. Land, 2021, 10, 752.	1.2	7
183	Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earth's Future, 2021, 9, e2020EF001882.	2.4	35

#	Article	IF	CITATIONS
184	Biogeochemical cycling of iron (hydr-)oxides and its impact on organic carbon turnover in coastal wetlands: A global synthesis and perspective. Earth-Science Reviews, 2021, 218, 103658.	4.0	47
185	Assessing coastal vulnerability to environmental hazards of Indian Sundarban delta using multi-criteria decision-making approaches. Ocean and Coastal Management, 2021, 209, 105641.	2.0	35
186	Sea-level rise impact and future scenarios of inundation risk along the coastal plains in Campania (Italy). Environmental Earth Sciences, 2021, 80, 1.	1.3	20
187	Modeling nearshore dynamics of extreme storms in complex environments of Connecticut. Coastal Engineering, 2021, 168, 103950.	1.7	2
188	Threats to Cultural Heritage Caused by the Global Sea Level Rise as a Result of the Global Warming. Water (Switzerland), 2021, 13, 2577.	1.2	6
190	Water Body Extraction and Flood Risk Assessment Using Lidar and Open Data. Climate Change Management, 2019, , 93-111.	0.6	5
191	Developing a Framework for Assessing Coastal Vulnerability to Sea Level Rise in Southern New England, USA. Local Sustainability, 2012, , 25-36.	0.2	8
192	Flood risk assessment based on LiDAR and UAV points clouds and DEM. , 2018, , .		8
193	Applied Climate-Change Analysis: The Climate Wizard Tool. PLoS ONE, 2009, 4, e8320.	1.1	153
194	Evaluating the effects of land-use change and future climate change on vulnerability of coastal landscapes to saltwater intrusion. Elementa, 2018, 6, .	1.1	45
195	Groins or Not: Some environmental challenges to urban development on a Lagos coastal barrier island of Lekki Peninsula. Journal of Construction Business and Management, 2017, 1, 14-28.	0.1	5
196	Climate change impacts on coastal and pelagic environments in the southeastern Bay of Biscay. Climate Research, 2011, 48, 307-332.	0.4	37
201	Elevation Uncertainty in Coastal Inundation Hazard Assessments. , 0, , .		3
202	Methodology for Predicting Local Impacts of Sea Level Rise. British Journal of Applied Science & Technology, 2015, 7, 84-96.	0.2	2
204	HOMOGENEOUS GEOVISUALIZATION OF COASTAL AREAS FROM HETEROGENEOUS SPATIO-TEMPORAL DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-3/W3, 509-516.	0.2	3
205	Assessing the Impacts of Sea Level Rise Using Existing Data. Journal of Geoscience and Environment Protection, 2016, 04, 159-183.	0.2	2
206	Améliorer la perception du réalisme dans la géovisualisation du littoral. Revue Internationale De Géomatique, 2016, 26, 403-424.	0.2	1
207	Human Dimensions and Communication of Florida's Climate. , 2017, , .		Ο

#	Article	IF	CITATIONS
208	COREDAR: A Coastal Climate Service Framework on Sea-Level Rise Risk Communication for Adaptation Policy Planning. Climate Change Management, 2020, , 85-104.	0.6	0
209	Relative sea-level rise induced changes in habitat distribution in the Ebro Delta: Implications for adaptation strategies. , 2020, , .		Ο
210	ASSESSING SEA LEVEL RISE VULNERABILITY AND COSTS IN A DATA LIMITED ENVIRONMENT. International Journal of Engineering Technologies and Management Research, 2017, 4, 13-31.	0.1	0
211	An effective alternative for predicting coastal floodplain inundation by considering rainfall, storm surge, and downstream topographic characteristics. Journal of Hydrology, 2022, 607, 127544.	2.3	5
212	Housing market impairment from future sea-level rise inundation. Environment Systems and Decisions, 0, , 1.	1.9	2
213	Potential vulnerability impact of coastal inundation over Kelantan coast due to sea level rise based on satellite altimetry, GPS and LiDAR data. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	1
216	Assessment of Open Access Global Elevation Model Errors Impact on Flood Extents in Southern Niger. Frontiers in Environmental Science, 2022, 10, .	1.5	2
217	Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnology and Oceanography Letters, 2022, 7, 321-331.	1.6	15
218	Geographic information system data considerations in the context of the enhanced bathtub model for coastal inundation. Transactions in GIS, 2022, 26, 3074-3089.	1.0	2
219	Risk Assessment of Sea Level Rise for Karasu Coastal Area, Turkey. Hydrology, 2023, 10, 13.	1.3	1
220	Physicochemical coastal groundwater dynamics between KauhakŕCrater lake and Kalaupapa settlement, Molokaâ€ĩi, Hawaiâ€ĩi. Marine Pollution Bulletin, 2023, 187, 114509.	2.3	0