Pancreatic Cancer

Annual Review of Pathology: Mechanisms of Disease 3, 157-188

DOI: 10.1146/annurev.pathmechdis.3.121806.154305

Citation Report

#	Article	IF	CITATIONS
2	Apoptotic pathways in pancreatic ductal adenocarcinoma. Molecular Cancer, 2008, 7, 64.	7.9	99
3	Pancreatic Cancer Development and Progression: Remodeling the Model. Gastroenterology, 2008, 135, 724-728.	0.6	27
4	<i>In vivo</i> characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Molecular Cancer Therapeutics, 2008, 7, 3878-3888.	1.9	69
5	Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science, 2008, 321, 1801-1806.	6.0	3,755
6	Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18907-18912.	3.3	350
7	Molecular Characterization of Pancreatic Neoplasms. Advances in Anatomic Pathology, 2008, 15, 185-195.	2.4	38
9	Exomic Sequencing Identifies <i>PALB2</i> as a Pancreatic Cancer Susceptibility Gene. Science, 2009, 324, 217-217.	6.0	713
10	The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biology and Therapy, 2009, 8, 618-626.	1.5	176
11	Notch and Kras in pancreatic cancer: At the crossroads of mutation, differentiation and signaling. Cell Cycle, 2009, 8, 1860-1864.	1.3	72
12	A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biology and Therapy, 2009, 8, 2013-2024.	1.5	108
13	Limitations in improving detection of pancreatic adenocarcinoma. Future Oncology, 2009, 5, 657-668.	1.1	24
14	MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biology and Therapy, 2009, 8, 340-346.	1.5	288
15	Ligand-dependent Notch Signaling Is Involved in Tumor Initiation and Tumor Maintenance in Pancreatic Cancer. Clinical Cancer Research, 2009, 15, 2291-2301.	3.2	161
16	<i>KRAS2</i> Mutations in Human Pancreatic Acinar-Ductal Metaplastic Lesions Are Limited to Those with PanIN: Implications for the Human Pancreatic Cancer Cell of Origin. Molecular Cancer Research, 2009, 7, 230-236.	1.5	98
17	Apoptosis pathways and their therapeutic exploitation in pancreatic cancer. Journal of Cellular and Molecular Medicine, 2009, 13, 1221-1227.	1.6	62
18	Xenopus pancreas development. Developmental Dynamics, 2009, 238, 1271-1286.	0.8	35
19	Widespread activation of the DNA damage response in human pancreatic intraepithelial neoplasia. Modern Pathology, 2009, 22, 1439-1445.	2.9	37
20	Adenosquamous carcinoma of the pancreas harbors KRAS2, DPC4 and TP53 molecular alterations similar to pancreatic ductal adenocarcinoma. Modern Pathology, 2009, 22, 651-659.	2.9	83

#	ARTICLE	IF	Citations
21	Coordinate Loss of Fragile Gene Expression in Pancreatobiliary Cancers: Correlations Among Markers and Clinical Features. Annals of Surgical Oncology, 2009, 16, 2331-2338.	0.7	16
22	Suppression of urokinase plasminogen activator receptor inhibits proliferation and migration of pancreatic adenocarcinoma cells via regulation of ERK/p38 signaling. International Journal of Biochemistry and Cell Biology, 2009, 41, 1731-1738.	1.2	30
23	Pancreatic cancer stem cells: Fact or fiction?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 248-259.	1.8	35
24	The association between glutathione S-transferase gene polymorphisms and pancreatic cancer in a central European Slavonic population. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 680, 78-81.	0.9	20
25	Loss of the Acinar-Restricted Transcription Factor Mist1 Accelerates Kras-Induced Pancreatic Intraepithelial Neoplasia. Gastroenterology, 2009, 136, 1368-1378.	0.6	138
26	Notch Signaling: Where Pancreatic Cancer and Differentiation Meet?. Gastroenterology, 2009, 136, 1499-1502.	0.6	13
27	In vitromodels of pancreatic cancer for translational oncology research. Expert Opinion on Drug Discovery, 2009, 4, 429-443.	2.5	24
28	Epidemiology of pancreatic cancer: an overview. Nature Reviews Gastroenterology and Hepatology, 2009, 6, 699-708.	8.2	614
29	Ras Activity in Acinar Cells Links Chronic Pancreatitis and Pancreatic Cancer. Clinical Gastroenterology and Hepatology, 2009, 7, S40-S43.	2.4	52
30	MicroRNAs in Plasma of Pancreatic Ductal Adenocarcinoma Patients as Novel Blood-Based Biomarkers of Disease. Cancer Prevention Research, 2009, 2, 807-813.	0.7	504
31	Metastatic Pancreatic Adenocarcinoma: Current Standards, Future Directions. American Journal of Therapeutics, 2010, 17, 79-85.	0.5	1
32	Standardized Peptidome Profiling of Human Serum for the Detection of Pancreatic Cancer. Pancreas, 2010, 39, 1293-1298.	0.5	14
34	Adenosquamous Carcinoma of the Pancreas: A Distinct Clinicopathologic Entity. Southern Medical Journal, 2010, 103, 903-910.	0.3	27
35	Pancreatic Cancer: Pathobiology, Treatment Options, and Drug Delivery. AAPS Journal, 2010, 12, 223-232.	2.2	95
36	Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced Drug Delivery Reviews, 2010, 62, 346-361.	6.6	376
37	Pancreatic cancer stem cells: new understanding of tumorigenesis, clinical implications. Langenbeck's Archives of Surgery, 2010, 395, 1-10.	0.8	45
38	Germline Brca2 Heterozygosity Promotes KrasG12D -Driven Carcinogenesis in a Murine Model of Familial Pancreatic Cancer. Cancer Cell, 2010, 18, 499-509.	7.7	147
39	Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine <i>in orthotopic mouse model of human pancreatic cancer. International Journal of Cancer, 2010, 127, 257-268.</i>	2.3	179

#	Article	IF	CITATIONS
40	Lysyl oxidase propeptide sensitizes pancreatic and breast cancer cells to doxorubicinâ€induced apoptosis. Journal of Cellular Biochemistry, 2010, 111, 1160-1168.	1.2	23
41	Pancreatic cancer organotypic cultures. Journal of Biotechnology, 2010, 148, 16-23.	1.9	44
42	PAUF functions in the metastasis of human pancreatic cancer cells and upregulates CXCR4 expression. Oncogene, 2010, 29, 56-67.	2.6	53
43	Synergistic action of Smad4 and Pten in suppressing pancreatic ductal adenocarcinoma formation in mice. Oncogene, 2010, 29, 674-686.	2.6	42
44	Complex regulation of cell-cycle inhibitors by Fbxw7 in mouse embryonic fibroblasts. Oncogene, 2010, 29, 1798-1809.	2.6	14
45	The zinc-finger protein KCMF1 is overexpressed during pancreatic cancer development and downregulation of KCMF1 inhibits pancreatic cancer development in mice. Oncogene, 2010, 29, 4058-4067.	2.6	17
46	Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010, 467, 1114-1117.	13.7	2,184
47	Pathology and Genetics. Medical Radiology, 2010, , 11-18.	0.0	1
48	The Silencing of MicroRNA 148a Production by DNA Hypermethylation Is an Early Event in Pancreatic Carcinogenesis. Clinical Chemistry, 2010, 56, 1107-1118.	1.5	139
49	Cellular Histone Modification Patterns Predict Prognosis and Treatment Response in Resectable Pancreatic Adenocarcinoma: Results From RTOG 9704. Journal of Clinical Oncology, 2010, 28, 1358-1365.	0.8	202
50	Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes and Development, 2010, 24, 2754-2759.	2.7	273
51	Possible Role of Autophagy in the Treatment of Pancreatic Cancer with Histone Deacetylase Inhibitors. Cancers, 2010, 2, 2026-2043.	1.7	8
52	Inhibiting the Cyclin-Dependent Kinase CDK5 Blocks Pancreatic Cancer Formation and Progression through the Suppression of Ras-Ral Signaling. Cancer Research, 2010, 70, 4460-4469.	0.4	140
53	Epithelial-Mesenchymal Transition in Pancreatic Carcinoma. Cancers, 2010, 2, 2058-2083.	1.7	59
54	CDDO-Me: A Novel Synthetic Triterpenoid for the Treatment of Pancreatic Cancer. Cancers, 2010, 2, 1779-1793.	1.7	15
55	Prioritization of driver mutations in pancreatic cancer using cancer-specific high-throughput annotation of somatic mutations (CHASM). Cancer Biology and Therapy, 2010, 10, 582-587.	1.5	79
56	The fatal attraction between pro-prion and filamin A: prion as a marker in human cancers. Biomarkers in Medicine, 2010, 4, 453-464.	0.6	15
57	KLF4α Up-regulation Promotes Cell Cycle Progression and Reduces Survival Time of Patients With Pancreatic Cancer. Gastroenterology, 2010, 139, 2135-2145.	0.6	76

#	Article	IF	CITATIONS
58	Gene-expression profiling in pancreatic cancer. Expert Review of Molecular Diagnostics, 2010, 10, 591-601.	1.5	30
59	Advanced pancreatic carcinoma: current treatment and future challenges. Nature Reviews Clinical Oncology, 2010, 7, 163-172.	12.5	704
60	Pancreatic Cancer. New England Journal of Medicine, 2010, 362, 1605-1617.	13.9	2,474
61	Genetics of Biliary Tract Cancers and Emerging Targeted Therapies. Journal of Clinical Oncology, 2010, 28, 3531-3540.	0.8	185
62	Systemic Administration of Polymeric Nanoparticle-Encapsulated Curcumin (NanoCurc) Blocks Tumor Growth and Metastases in Preclinical Models of Pancreatic Cancer. Molecular Cancer Therapeutics, 2010, 9, 2255-2264.	1.9	184
63	Ectopic Overexpression of Sonic Hedgehog (Shh) Induces Stromal Expansion and Metaplasia in the Adult Murine Pancreas. Neoplasia, 2011, 13, 923-IN18.	2.3	34
64	Elevated microRNA miR-21 Levels in Pancreatic Cyst Fluid Are Predictive of Mucinous Precursor Lesions of Ductal Adenocarcinoma. Pancreatology, 2011, 11, 343-350.	0.5	103
65	A TRANSCRIPTOME ANALYSIS BY LASSO PENALIZED COX REGRESSION FOR PANCREATIC CANCER SURVIVAL. Journal of Bioinformatics and Computational Biology, 2011, 09, 63-73.	0.3	24
66	Zebrafish Models for Cancer. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 71-93.	9.6	135
67	Presence of Pancreatic Intraepithelial Neoplasia in the Pancreatic Transection Margin does not Influence Outcome in Patients with R0 Resected Pancreatic Cancer. Annals of Surgical Oncology, 2011, 18, 3493-3499.	0.7	62
69	The Causes and Consequences of Polyploidy in Normal Development and Cancer. Annual Review of Cell and Developmental Biology, 2011, 27, 585-610.	4.0	375
70	Advances in diagnosis, treatment and palliation of pancreatic carcinoma: 1990-2010. World Journal of Gastroenterology, 2011, 17, 867.	1.4	189
71	Enhanced Discrimination of Malignant from Benign Pancreatic Disease by Measuring the CA 19-9 Antigen on Specific Protein Carriers. PLoS ONE, 2011, 6, e29180.	1.1	61
72	Enhancement of Carcinogenesis and Fatty Infiltration in the Pancreas in N-Nitrosobis(2-Oxopropyl)Amine-Treated Hamsters by High-Fat Diet. Pancreas, 2011, 40, 1234-1240.	0.5	39
73	Detection of KRAS mutations in tumor cells using biochips. Molecular Biology, 2011, 45, 797-803.	0.4	5
74	Restitution of Tumor Suppressor MicroRNAs Using a Systemic Nanovector Inhibits Pancreatic Cancer Growth in Mice. Molecular Cancer Therapeutics, 2011, 10, 1470-1480.	1.9	279
75	A 67-Year-Old Woman with BRCA 1 Mutation Associated with Pancreatic Adenocarcinoma. Journal of Gastrointestinal Cancer, 2011, 42, 160-164.	0.6	12
76	Presence of Pancreatic Intraepithelial Neoplasia in the Pancreatic Transection Margin does not Influence Outcome in Patients with RO Resected Pancreatic Cancer. Indian Journal of Surgical Oncology, 2011, 2, 9-15.	0.3	2

#	ARTICLE	IF	CITATIONS
77	Identification of bloodâ \in protein carriers of the CA 19â \in 9 antigen and characterization of prevalence in pancreatic diseases. Proteomics, 2011, 11, 3665-3674.	1.3	54
78	ld3 modulates cellular localization of bHLH Ptf1â€p48 protein. International Journal of Cancer, 2011, 129, 295-306.	2.3	12
79	Telomeres are shortened in acinar-to-ductal metaplasia lesions associated with pancreatic intraepithelial neoplasia but not in isolated acinar-to-ductal metaplasias. Modern Pathology, 2011, 24, 256-266.	2.9	34
80	Integrated Proteomic Profiling of Cell Line Conditioned Media and Pancreatic Juice for the Identification of Pancreatic Cancer Biomarkers. Molecular and Cellular Proteomics, $2011, 10, M111.008599$.	2.5	96
81	Inactivation of <i>Brca2</i> cooperates with <i>Trp53</i> csup>R172Hto induce invasive pancreatic ductal adenocarcinomas in mice. Cancer Biology and Therapy, 2011, 11, 959-968.	1.5	26
82	A novel 3-dimensional culture system uncovers growth stimulatory actions by $TGF\hat{l}^2$ in pancreatic cancer cells. Cancer Biology and Therapy, 2011, 12, 198-207.	1.5	48
83	Calmodulin Mediates Fas-induced FADD-independent Survival Signaling in Pancreatic Cancer Cells via Activation of Src-Extracellular Signal-regulated Kinase (ERK). Journal of Biological Chemistry, 2011, 286, 24776-24784.	1.6	44
84	Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the expression of \hat{l}^2 -catenin, leading to a rapid proliferation of pancreatic cells. Experimental and Molecular Medicine, 2011, 43, 82.	3.2	33
85	PAUF promotes adhesiveness of pancreatic cancer cells by modulating focal adhesion kinase. Experimental and Molecular Medicine, 2011, 43, 291.	3.2	17
86	Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biology and Therapy, 2011, 12, 598-609.	1.5	103
87	Metastatic Pancreatic Cancer: What Can Nurses Do?. Clinical Journal of Oncology Nursing, 2011, 15, 424-428.	0.3	2
88	Risk of Malignant Neoplasm of the Pancreas in Relation to Diabetes: A population-based study in Taiwan. Diabetes Care, 2011, 34, 1177-1179.	4.3	36
89	The Many Faces of Wnt and Pancreatic DuctalÂAdenocarcinoma Oncogenesis. Cancers, 2011, 3, 3676-3686.	1.7	9
90	Diagnostic Management of Pancreatic Cancer. Cancers, 2011, 3, 494-509.	1.7	12
91	Targeting Apoptosis Signaling in Pancreatic Cancer. Cancers, 2011, 3, 241-251.	1.7	7
92	Regulators of epithelial mesenchymal transition in pancreatic cancer. Frontiers in Physiology, 2012, 3, 254.	1.3	16
93	Pathology and Molecular Genetics of Pancreatic Neoplasms. Cancer Journal (Sudbury, Mass), 2012, 18, 492-501.	1.0	114
94	The proline TP53 variant stimulates likely lymphangiogenesis in an orthotopic mouse model of pancreatic cancer. British Journal of Cancer, 2012, 106, 348-357.	2.9	7

#	Article	IF	CITATIONS
95	Interplay between \hat{I}^21 -Integrin and Rho Signaling Regulates Differential Scattering and Motility of Pancreatic Cancer Cells by Snail and Slug Proteins. Journal of Biological Chemistry, 2012, 287, 6218-6229.	1.6	59
96	Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by <i>MLH1</i> haploinsufficiency and complete deficiency. Genome Research, 2012, 22, 208-219.	2.4	107
97	Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project. Gut, 2012, 61, 1085-1094.	6.1	130
98	MicroRNA Molecular Profiles Associated with Diagnosis, Clinicopathologic Criteria, and Overall Survival in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2012, 18, 534-545.	3.2	192
99	Molecular Biologic Approach to the Diagnosis of Pancreatic Carcinoma Using Specimens Obtained by EUS-Guided Fine Needle Aspiration. Gastroenterology Research and Practice, 2012, 2012, 1-7.	0.7	24
100	Selective Induction of Apoptosis and Autophagy Through Treatment With Dandelion Root Extract in Human Pancreatic Cancer Cells. Pancreas, 2012, 41, 1039-1047.	0.5	49
101	Frequencies and Prognostic Role of KRAS and BRAF Mutations in Patients With Localized Pancreatic and Ampullary Adenocarcinomas. Pancreas, 2012, 41, 759-766.	0.5	60
102	Molecular Pathology of Pancreatic Cancer: From Bench-to-Bedside Translation. Current Drug Targets, 2012, 13, 744-752.	1.0	33
103	Vascular Invasion in Infiltrating Ductal Adenocarcinoma of the Pancreas Can Mimic Pancreatic Intraepithelial Neoplasia. American Journal of Surgical Pathology, 2012, 36, 235-241.	2.1	44
104	MACC1: A potential molecule associated with pancreatic cancer metastasis and chemoresistance. Oncology Letters, 2012, 4, 783-791.	0.8	60
105	EGF Receptor Signaling Is Essential for K-Ras Oncogene-Driven Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2012, 22, 318-330.	7.7	339
106	Distinguishing pancreatic cancer from chronic pancreatitis and healthy individuals by 1H nuclear magnetic resonance-based metabonomic profiles. Clinical Biochemistry, 2012, 45, 1064-1069.	0.8	85
107	Plasma Fatty Acid Composition in Patients with Pancreatic Cancer: Correlations to Clinical Parameters. Nutrition and Cancer, 2012, 64, 946-955.	0.9	43
108	SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of \hat{l}^2 -catenin. Biochemical and Biophysical Research Communications, 2012, 423, 270-275.	1.0	43
109	The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 77-87.	8.2	91
110	Translational Therapeutic Opportunities in Ductal Adenocarcinoma of the Pancreas. Clinical Cancer Research, 2012, 18, 4249-4256.	3.2	71
112	Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression. Biochemical Journal, 2012, 441, 541-552.	1.7	168
113	Carcinoma pancreas. Medical Journal Armed Forces India, 2012, 68, 280-283.	0.3	0

#	Article	IF	CITATIONS
114	Quantitative molecular profiling of biomarkers for pancreatic cancer with functionalized quantum dots. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1043-1051.	1.7	37
115	Pristimerin Causes G1 Arrest, Induces Apoptosis, and Enhances the Chemosensitivity to Gemcitabine in Pancreatic Cancer Cells. PLoS ONE, 2012, 7, e43826.	1.1	50
116	Notch1 Is Not Required for Acinar-to-Ductal Metaplasia in a Model of Kras-Induced Pancreatic Ductal Adenocarcinoma. PLoS ONE, 2012, 7, e52133.	1.1	21
117	Origin of pancreatic ductal adenocarcinoma from atypical flat lesions: a comparative study in transgenic mice and human tissues. Journal of Pathology, 2012, 226, 723-734.	2.1	111
118	The association of circulating adiponectin levels with pancreatic cancer risk: A study within the prospective EPIC cohort. International Journal of Cancer, 2012, 130, 2428-2437.	2.3	43
119	Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. International Journal of Cancer, 2012, 131, 30-40.	2.3	182
120	Oncogenic Kras-Induced GM-CSF Production Promotes the Development of Pancreatic Neoplasia. Cancer Cell, 2012, 21, 836-847.	7.7	589
121	Obesity, autophagy and the pathogenesis of liver and pancreatic cancers. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 10-14.	1.4	41
122	Triptolide augments the effects of 5-lipoxygenase RNA interference in suppressing pancreatic tumor growth in a xenograft mouse model. Cancer Chemotherapy and Pharmacology, 2012, 69, 253-261.	1.1	8
123	Oleanolic acid arrests cell cycle and induces apoptosis via ROSâ€mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. Journal of Applied Toxicology, 2013, 33, 756-765.	1.4	79
124	Molecular pathways in pancreatic carcinogenesis. Journal of Surgical Oncology, 2013, 107, 8-14.	0.8	70
125	Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer. British Journal of Cancer, 2013, 108, 1-8.	2.9	265
126	Synergistic interactions between sorafenib and everolimus in pancreatic cancer xenografts in mice. Cancer Chemotherapy and Pharmacology, 2013, 71, 1231-1240.	1.1	29
127	A Critical Analysis of the Clinical Use of Incretin-Based Therapies. Diabetes Care, 2013, 36, 2118-2125.	4.3	264
128	Inhibition of the Growth of Patient-Derived Pancreatic Cancer Xenografts with the MEK Inhibitor Trametinib Is Augmented by Combined Treatment with the Epidermal Growth Factor Receptor/HER2 Inhibitor Lapatinib. Neoplasia, 2013, 15, 143-IN10.	2.3	86
129	Inflammatory networks and immune surveillance of pancreatic carcinoma. Current Opinion in Immunology, 2013, 25, 200-205.	2.4	173
130	Ran GTPase protein promotes human pancreatic cancer proliferation by deregulating the expression of Survivin and cell cycle proteins. Biochemical and Biophysical Research Communications, 2013, 440, 322-329.	1.0	27
131	Mutant KRAS is a druggable target for pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20723-20728.	3.3	252

#	ARTICLE	IF	CITATIONS
132	Development of candidate biomarkers for pancreatic ductal adenocarcinoma using multiple reaction monitoring. Biotechnology and Bioprocess Engineering, 2013, 18, 1038-1047.	1.4	4
133	The presence of tumour-associated lymphocytes confers a good prognosis in pancreatic ductal adenocarcinoma: an immunohistochemical study of tissue microarrays. BMC Cancer, 2013, 13, 436.	1.1	72
134	Inhibiting signal transducer and activator of transcription-3 increases response to gemcitabine and delays progression of pancreatic cancer. Molecular Cancer, 2013, 12, 104.	7.9	38
135	Radioimmunotherapy of Pancreatic Adenocarcinoma. , 2013, , 239-255.		0
136	Emergence of zebrafish models in oncology for validating novel anticancer drug targets and nanomaterials. Drug Discovery Today, 2013, 18, 128-140.	3.2	26
137	Suppression of <i>Lefty</i> expression in induced pluripotent cancer cells. FASEB Journal, 2013, 27, 2165-2174.	0.2	18
138	An iPSC Line from Human Pancreatic Ductal Adenocarcinoma Undergoes Early to Invasive Stages of Pancreatic Cancer Progression. Cell Reports, 2013, 3, 2088-2099.	2.9	161
139	Synthesis and evaluation of cholecystokinin trimers: A multivalent approach to pancreatic cancer detection and treatment. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2422-2425.	1.0	6
140	Loss of runtâ€related transcription factor 3 induces gemcitabine resistance in pancreatic cancer. Molecular Oncology, 2013, 7, 840-849.	2.1	28
141	Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Letters, 2013, 335, 41-51.	3.2	125
142	Evolution and dynamics of pancreatic cancer progression. Oncogene, 2013, 32, 5253-5260.	2.6	167
143	Nontoxic radioactive <i>Listeria</i> ^{at} is a highly effective therapy against metastatic pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8668-8673.	3.3	130
144	Interactions of Everolimus and Sorafenib in Pancreatic Cancer Cells. AAPS Journal, 2013, 15, 78-84.	2.2	15
145	Inflammation, Autophagy, and Obesity: Common Features in the Pathogenesis of Pancreatitis and Pancreatic Cancer. Gastroenterology, 2013, 144, 1199-1209.e4.	0.6	274
146	Notch signaling in pancreatic cancer: oncogene or tumor suppressor?. Trends in Molecular Medicine, 2013, 19, 320-327.	3.5	106
147	Microdissection and Culture of Murine Pancreatic Ductal Epithelial Cells. Methods in Molecular Biology, 2013, 980, 267-279.	0.4	6
148	Molecular markers in pancreatic cancer diagnosis. Clinica Chimica Acta, 2013, 418, 22-29.	0.5	32
149	Pancreatic Cancer Genomes: Toward Molecular Subtyping and Novel Approaches to Diagnosis and Therapy, Molecular Diagnosis and Therapy, 2013, 17, 287-297.	1.6	6

#	Article	IF	CITATIONS
150	Optimizing the multimodal approach to pancreatic cyst fluid diagnosis. Cancer Cytopathology, 2013, 121, 86-100.	1.4	47
151	Role of Peroxisome Proliferator-Activated Receptor \hat{I}^2/\hat{I} and B-Cell Lymphoma-6 in Regulation of Genes Involved in Metastasis and Migration in Pancreatic Cancer Cells. PPAR Research, 2013, 2013, 1-11.	1.1	26
152	Pancreatic cancer: why is it so hard to treat?. Therapeutic Advances in Gastroenterology, 2013, 6, 321-337.	1.4	250
153	Collagen triple helix repeat containing-1 promotes pancreatic cancer progression by regulating migration and adhesion of tumor cells. Carcinogenesis, 2013, 34, 694-702.	1.3	63
154	The Differentiation of Pancreatic Tumor-Initiating Cells by Vitronectin Can Be Blocked by Cilengitide. Pancreas, 2013, 42, 861-870.	0.5	5
155	Snail Cooperates with KrasG12D to Promote Pancreatic Fibrosis. Molecular Cancer Research, 2013, 11, 1078-1087.	1.5	46
156	Outlier Kinase Expression by RNA Sequencing as Targets for Precision Therapy. Cancer Discovery, 2013, 3, 280-293.	7.7	40
157	Targeting microRNAs in Pancreatic Cancer: Microplayers in the Big Game. Cancer Research, 2013, 73, 6541-6547.	0.4	7 5
158	Cyclopamine increases the radiosensitivity of human pancreatic cancer cells by regulating the DNA repair signal pathway through an epidermal growth factor receptor-dependent pathway. Molecular Medicine Reports, 2013, 8, 979-983.	1.1	21
159	Triptolide Induces Apoptosis and Inhibits the Growth and Angiogenesis of Human Pancreatic Cancer Cells by Downregulating COX-2 and VEGF. Oncology Research, 2013, 20, 359-368.	0.6	43
160	Immunohistochemically Detected Expression of 3 Major Genes (CDKN2A/p16, TP53, and SMAD4/DPC4) Strongly Predicts Survival in Patients With Resectable Pancreatic Cancer. Annals of Surgery, 2013, 258, 336-346.	2.1	200
161	Emerging concepts in pancreatic cancer medicine: targeting the tumor stroma. OncoTargets and Therapy, 2013, 7, 33.	1.0	66
162	Inhibiting the Growth of Pancreatic Adenocarcinoma In Vitro and In Vivo through Targeted Treatment with Designer Gold Nanotherapeutics. PLoS ONE, 2013, 8, e57522.	1.1	27
163	Development and Histopathological Characterization of Tumorgraft Models of Pancreatic Ductal Adenocarcinoma. PLoS ONE, 2013, 8, e78183.	1.1	23
164	Genetic and molecular alterations in pancreatic cancer: Implications for personalized medicine. Medical Science Monitor, 2013, 19, 916-926.	0.5	38
165	Therapeutic options for the management of pancreatic cancer. World Journal of Gastroenterology, 2014, 20, 11142.	1.4	114
166	Induction of Apoptosis in Pancreatic Cancer Cells by CDDO-Me Involves Repression of Telomerase through Epigenetic Pathways. Journal of Carcinogenesis & Mutagenesis, 2014, 05, 177.	0.3	17
167	Arrested development and the great escape $\hat{a}\in$ The role of cellular senescence in pancreatic cancer. International Journal of Biochemistry and Cell Biology, 2014, 57, 142-148.	1.2	20

#	Article	IF	CITATIONS
168	Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models. Biomatter, 2014, 4, e955386.	2.6	42
169	Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer. Physical Biology, 2014, 11, 065002.	0.8	32
170	Tumour Suppressor Mechanisms in the Control of Chromosome Stability: Insights from BRCA2. Molecules and Cells, 2014, 37, 95-99.	1.0	21
171	Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-ΰB/mTOR signaling proteins and anti-apoptotic Bcl-2. International Journal of Oncology, 2014, 44, 1707-1715.	1.4	63
172	Analysis of the tumor-initiating and metastatic capacity of PDX1-positive cells from the adult pancreas. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3466-3471.	3.3	52
173	<i>Parpâ€1</i> genetic ablation in <i>Ela–myc</i> mice unveils novel roles for Parpâ€1 in pancreatic cancer. Journal of Pathology, 2014, 234, 214-227.	2.1	14
174	Association of Pancreatic Fatty Infiltration With Pancreatic Ductal Adenocarcinoma. Clinical and Translational Gastroenterology, 2014, 5, e53.	1.3	126
175	Reâ€adapting T cells for cancer therapy: from mouse models to clinical trials. Immunological Reviews, 2014, 257, 145-164.	2.8	67
176	p38 MAPK in Pancreatic Cancer: Finding a Protective Needle in the Haystack. Clinical Cancer Research, 2014, 20, 5866-5868.	3.2	9
177	Systematic review of irreversible electroporation in the treatment of advanced pancreatic cancer. European Journal of Surgical Oncology, 2014, 40, 1598-1604.	0.5	67
178	Pancreatic Safety of Newer Incretin-Based Therapies: Are the "-tides" Finally Turning?. Diabetes, 2014, 63, 2219-2221.	0.3	8
179	Treatment of experimental pancreatic cancer with 213-Bismuth-labeled chimeric antibody to single-strand DNA. Expert Review of Anticancer Therapy, 2014, 14, 1243-1249.	1.1	13
180	BET Bromodomain Inhibitors Block Growth of Pancreatic Cancer Cells in Three-Dimensional Collagen. Molecular Cancer Therapeutics, 2014, 13, 1907-1917.	1.9	83
181	ZIP4 confers resistance to zinc deficiency-induced apoptosis in pancreatic cancer. Cell Cycle, 2014, 13, 1180-1186.	1.3	26
182	KRAS Mutations in Codon 12 or 13 Are Associated With Worse Prognosis in Pancreatic Ductal Adenocarcinoma. Pancreas, 2014, 43, 578-583.	0.5	36
183	Cholecystokinin Receptor Antagonist Halts Progression of Pancreatic Cancer Precursor Lesions and Fibrosis in Mice. Pancreas, 2014, 43, 1050-1059.	0.5	36
184	Chronic pancreatitis: A path to pancreatic cancer. Cancer Letters, 2014, 345, 203-209.	3.2	126
185	Clinical Significance of Serum COL6A3 in Pancreatic Ductal Adenocarcinoma. Journal of Gastrointestinal Surgery, 2014, 18, 7-15.	0.9	50

#	Article	IF	CITATIONS
186	Pathway-gene identification for pancreatic cancer survival via doubly regularized Cox regression. BMC Systems Biology, 2014, 8, S3.	3.0	30
187	Interleukin-6 in inflammatory and malignant diseases of the pancreas. Seminars in Immunology, 2014, 26, 80-87.	2.7	104
188	Pathogenesis of Pancreatic Cancer. Toxicologic Pathology, 2014, 42, 217-228.	0.9	30
189	Chromosome instability and carcinogenesis: Insights from murine models of human pancreatic cancer associated with BRCA2 inactivation. Molecular Oncology, 2014, 8, 161-168.	2.1	14
190	Urinary TIMP-1 and MMP-2 levels detect the presence of pancreatic malignancies. British Journal of Cancer, 2014, 111, 1772-1779.	2.9	67
191	A PAUF-neutralizing antibody targets both carcinoma and endothelial cells to impede pancreatic tumor progression and metastasis. Biochemical and Biophysical Research Communications, 2014, 454, 144-150.	1.0	10
192	Inflammation-Induced NFATc1–STAT3 Transcription Complex Promotes Pancreatic Cancer Initiation by <i>Kras</i> Cancer Discovery, 2014, 4, 688-701.	7.7	108
193	Anticancer effects on human pancreatic cancer cells of triterpenoids, polysaccharides and $1,3\cdot\hat{l}^2$ - <scp>d</scp> -glucan derived from the fruiting body of Antrodia camphorata. Food and Function, 2014, 5, 3224-3232.	2.1	18
194	Anticancer activity of HS-527, a novel inhibitor targeting PI3-kinase in human pancreatic cancer cells. Cancer Letters, 2014, 353, 68-77.	3.2	11
195	Interleukin-6: a villain in the drama of pancreatic cancer development and progression. Hepatobiliary and Pancreatic Diseases International, 2014, 13, 371-380.	0.6	92
196	Oncogenic Ras induces inflammatory cytokine production by upregulating the squamous cell carcinoma antigens SerpinB3/B4. Nature Communications, 2014, 5, 3729.	5.8	72
197	Stromal reengineering to treat pancreas cancer. Carcinogenesis, 2014, 35, 1451-1460.	1.3	108
198	A new goniothalamin N-acylated aza-derivative strongly downregulates mediators of signaling transduction associated with pancreatic cancer aggressiveness. European Journal of Medicinal Chemistry, 2014, 87, 745-758.	2.6	19
199	PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines. Investigational New Drugs, 2014, 32, 783-794.	1.2	55
200	HMGB1 in health and disease. Molecular Aspects of Medicine, 2014, 40, 1-116.	2.7	763
201	Snail Cooperates with KrasG12Dâ€^ <i>In Vivo</i> to Increase Stem Cell Factor and Enhance Mast Cell Infiltration. Molecular Cancer Research, 2014, 12, 1440-1448.	1.5	17
202	miR-208-Induced Epithelial to Mesenchymal Transition of Pancreatic Cancer Cells Promotes Cell Metastasis and Invasion. Cell Biochemistry and Biophysics, 2014, 69, 341-346.	0.9	33
203	URG11 predicts poor prognosis of pancreatic cancer by enhancing epithelial–mesenchymal transition-driven invasion. Medical Oncology, 2014, 31, 64.	1.2	11

#	Article	IF	Citations
204	Bufalin exerts antitumor effects by inducing cell cycle arrest and triggering apoptosis in pancreatic cancer cells. Tumor Biology, 2014, 35, 2461-2471.	0.8	46
205	Inflammation and pancreatic cancer: molecular and functional interactions between S100A8, S100A9, NT-S100A8 and TGF \hat{I}^2 1. Cell Communication and Signaling, 2014, 12, 20.	2.7	31
206	Pathology review of proliferative lesions of the exocrine pancreas in two chronic feeding studies in rats with ammonium perfluorooctanoate. Toxicology Reports, 2014, 1, 85-91.	1.6	6
207	Anti-tumor efficacy of a therapeutic peptide based on thermo-responsive elastin-like polypeptide in combination with gemcitabine. Cancer Letters, 2014, 348, 177-184.	3.2	32
208	¿Sigue representando la infiltración arterial un criterio de irresecabilidad en el carcinoma de pĂ¡ncreas?. CirugÃa Española, 2014, 92, 305-315.	0.1	6
209	XMD8-92 inhibits pancreatic tumor xenograft growth via a DCLK1-dependent mechanism. Cancer Letters, 2014, 351, 151-161.	3.2	107
210	Is Arterial Infiltration Still a Criterion for Unresectability in Pancreatic Adenocarcinoma?. CirugÃa Española (English Edition), 2014, 92, 305-315.	0.1	2
211	WNT7B mediates autocrine Wnt/ \hat{l}^2 -catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene, 2014, 33, 899-908.	2.6	105
212	Novel strategies for managing pancreatic cancer. World Journal of Gastroenterology, 2014, 20, 14717.	1.4	15
213	Triptolide suppresses proliferation, hypoxia-inducible factor- $1\hat{l}_{\pm}$ and c-Myc expression in pancreatic cancer cells. Molecular Medicine Reports, 2015, 12, 4508-4513.	1.1	33
214	miRNAs as Diagnostic and Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma and Its Precursor Lesions: A Review. Biomarker Insights, 2015, 10, BMI.S27679.	1.0	8
215	Downregulation of ASPP2 in pancreatic cancer cells contributes to increased resistance to gemcitabine through autophagy activation. Molecular Cancer, 2015, 14, 177.	7.9	44
216	Mining the Human Proteome. Cancer Journal (Sudbury, Mass), 2015, 21, 327-336.	1.0	11
218	Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines. Brazilian Journal of Medical and Biological Research, 2015, 48, 111-119.	0.7	78
219	Update on the management of pancreatic cancer: Surgery is not enough. World Journal of Gastroenterology, 2015, 21, 3157-3165.	1.4	147
220	NFATc1 Links EGFR Signaling to Induction of Sox9 Transcription and Acinar–Ductal Transdifferentiation in the Pancreas. Gastroenterology, 2015, 148, 1024-1034.e9.	0.6	73
221	Novel approaches in the management of pancreatic ductal adenocarcinoma: potential promises for the future. Journal of Hematology and Oncology, 2015, 8, 44.	6.9	40
222	Immunohistochemistry as a surrogate to molecular diagnosis in pancreatic tumors. Diagnostic Histopathology, 2015, 21, 116-121.	0.2	0

#	Article	IF	Citations
223	Exploration of carboxyl functionalized eugenol for preventing metastasis of pancreatic cancer. , 2015, , .		0
224	Oncotropic H-1 parvovirus infection degrades HIF- $1\hat{l}$ ± protein in human pancreatic cancer cells independently of VHL and RACK1. International Journal of Oncology, 2015, 46, 2076-2082.	1.4	24
225	CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma. International Journal of Oncology, 2015, 47, 2100-2106.	1.4	15
226	miR-139 and miR-200c regulate pancreatic cancer endothelial cell migration and angiogenesis. Oncology Reports, 2015, 34, 51-58.	1.2	42
227	Inhibition of hTERT/telomerase contributes to the antitumor activity of pristimerin in pancreatic ductal adenocarcinoma cells. Oncology Reports, 2015, 34, 518-524.	1.2	18
228	Pathological and Molecular Evaluation of Pancreatic Neoplasms. Seminars in Oncology, 2015, 42, 28-39.	0.8	64
229	Combining clinicopathological predictors and molecular biomarkers in the oncogenic K-RAS/Ki67/HIF- $1\hat{l}\pm$ pathway to predict survival in resectable pancreatic cancer. British Journal of Cancer, 2015, 112, 514-522.	2.9	39
230	Antithetical <scp>NFAT</scp> c1–Sox2 and p53–miR200 signaling networks govern pancreatic cancer cell plasticity. EMBO Journal, 2015, 34, 517-530.	3.5	87
231	Early onset pancreatic cancer: Risk factors, presentation and outcome. Pancreatology, 2015, 15, 151-155.	0.5	60
232	The Cancer Genomics Resource List 2014. Archives of Pathology and Laboratory Medicine, 2015, 139, 989-1008.	1.2	18
233	The role of pancreatic stellate cells in pancreatic cancer. Surgical Oncology, 2015, 24, 232-238.	0.8	66
234	Pancreatic adenocarcinoma up-regulated factor expression is associated with disease-specific survival in cervical cancer patients. Human Pathology, 2015, 46, 884-893.	1.1	17
235	Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling. Biochemical and Biophysical Research Communications, 2015, 459, 313-318.	1.0	5
236	Targeted radionuclide therapies for pancreatic cancer. Cancer Gene Therapy, 2015, 22, 375-379.	2.2	17
237	Genetic GIScience: Toward a Place-Based Synthesis of the Genome, Exposome, and Behavome. Annals of the American Association of Geographers, 2015, 105, 454-472.	3.0	24
238	A Screen for Extracellular Signal-Regulated Kinase-Primed Glycogen Synthase Kinase 3 Substrates Identifies the p53 Inhibitor iASPP. Journal of Virology, 2015, 89, 9232-9241.	1.5	10
239	Recent advances in pancreatic cancer: biology, treatment, and prevention. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 13-27.	3.3	60
240	Immune Therapy in GI Malignancies: A Review. Journal of Clinical Oncology, 2015, 33, 1745-1753.	0.8	35

#	ARTICLE	IF	CITATIONS
241	An Updated Review on Cancer Risk Associated with Incretin Mimetics and Enhancers. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2015, 33, 67-124.	2.9	43
242	The need for effective pancreatic cancer detection and management: a biomarker-based strategy. Expert Review of Molecular Diagnostics, 2015, 15, 1339-1353.	1.5	18
243	Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nature Medicine, 2015, 21, 1163-1171.	15.2	349
244	Pancreatic Cancer Metabolism: Breaking It Down to Build It Back Up. Cancer Discovery, 2015, 5, 1247-1261.	7.7	178
245	Genetics and Genetic Testing in Pancreatic Cancer. Gastroenterology, 2015, 149, 1252-1264.e4.	0.6	58
246	Difficult Diagnostic Problems in Pancreatobiliary Neoplasia. Archives of Pathology and Laboratory Medicine, 2015, 139, 848-857.	1.2	35
247	Insights Into SMAD4 Loss in Pancreatic Cancer From Inducible Restoration of TGF- \hat{l}^2 Signaling. Molecular Endocrinology, 2015, 29, 1440-1453.	3.7	28
248	Variant Profiling of Candidate Genes in Pancreatic Ductal Adenocarcinoma. Clinical Chemistry, 2015, 61, 1408-1416.	1.5	21
249	Manganese superoxide dismutase expression is negatively associated with microRNA-301a in human pancreatic ductal adenocarcinoma. Cancer Gene Therapy, 2015, 22, 481-486.	2.2	7
250	The Q705K and F359L Single-Nucleotide Polymorphisms of NOD-Like Receptor Signaling Pathway: Association with Chronic Pancreatitis, Pancreatic Cancer, and Periodontitis. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 485-494.	1.0	34
251	Fibulin-5 Blocks Microenvironmental ROS in Pancreatic Cancer. Cancer Research, 2015, 75, 5058-5069.	0.4	33
252	The molecular mechanisms of a novel multi-kinase inhibitor ZLJ33 in suppressing pancreatic cancer growth. Cancer Letters, 2015, 356, 392-403.	3.2	4
253	Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis. Oncogene, 2015, 34, 455-464.	2.6	48
254	Elastin-like polypeptide for improved drug delivery for anticancer therapy: preclinical studies and future applications. Expert Opinion on Drug Delivery, 2015, 12, 653-667.	2.4	25
255	Smoking accelerates pancreatic cancer progression by promoting differentiation of MDSCs and inducing HB-EGF expression in macrophages. Oncogene, 2015, 34, 2052-2060.	2.6	47
256	Genetic variations associated with gemcitabine treatment outcome in pancreatic cancer. Pharmacogenetics and Genomics, 2016, 26, 527-537.	0.7	31
257	Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer. International Journal of Biological Sciences, 2016, 12, 292-301.	2.6	37
258	The pancreatic niche inhibits the effectiveness of sunitinib treatment of pancreatic cancer. Oncotarget, 2016, 7, 48265-48279.	0.8	10

#	ARTICLE	IF	CITATIONS
259	NFATc4 Regulates <i>Sox9</i> Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells International, 2016, 2016, 1-11.	1.2	55
260	An Overview of Genetic Changes and Risk of Pancreatic Ductal Adenocarcinoma. Journal of Cancer, 2016, 7, 2045-2051.	1.2	10
261	MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma <i>via</i> direct suppression of SMAD2 and SMAD3. Oncotarget, 2016, 7, 14912-14924.	0.8	56
262	Increased Expression of the Glucose Transporter Type 1 Gene Is Associated With Worse Overall Survival in Resected Pancreatic Adenocarcinoma. Pancreas, 2016, 45, 974-979.	0.5	31
263	The inhibition of cell proliferation and induction of apoptosis in pancreatic ductal adenocarcinoma cells by verrucarin A, a macrocyclic trichothecene, is associated with the inhibition of Akt/NF-ÎB/mTOR prosurvival signaling. International Journal of Oncology, 2016, 49, 1139-1147.	1.4	18
264	Identification of KIAA1199 as a Biomarker for Pancreatic Intraepithelial Neoplasia. Scientific Reports, 2016, 6, 38273.	1.6	24
265	Synthesis of new tricyclic thiolactams as potent antitumor agent for pancreatic cancer. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2577-2579.	1.0	11
266	Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-κB signaling. Oncogene, 2016, 35, 5501-5514.	2.6	143
267	Mutation analysis of the PALB2 gene in unselected pancreatic cancer patients in the Czech Republic. Cancer Genetics, 2016, 209, 199-204.	0.2	27
268	Preclinical Safety Evaluation in Rats of a Polymeric Matrix Containing an siRNA Drug Used as a Local and Prolonged Delivery System for Pancreatic Cancer Therapy. Toxicologic Pathology, 2016, 44, 856-865.	0.9	54
269	CTHRC1 promotes angiogenesis by recruiting Tie2-expressing monocytes to pancreatic tumors. Experimental and Molecular Medicine, 2016, 48, e261-e261.	3.2	23
270	Deguelin inhibits proliferation and migration of human pancreatic cancer cells in vitro targeting hedgehog pathway. Oncology Letters, 2016, 12, 2761-2765.	0.8	21
271	Hes1 Controls Exocrine Cell Plasticity and Restricts Development of Pancreatic Ductal Adenocarcinoma in a Mouse Model. American Journal of Pathology, 2016, 186, 2934-2944.	1.9	26
272	Tumor suppressor Fbxw7 antagonizes WNT signaling by targeting \hat{l}^2 -catenin for degradation in pancreatic cancer. Tumor Biology, 2016, 37, 13893-13902.	0.8	30
273	Superior therapeutic efficacy of nab-paclitaxel over cremophor-based paclitaxel in locally advanced and metastatic models of human pancreatic cancer. British Journal of Cancer, 2016, 115, 442-453.	2.9	39
274	Recent Advances and Prospects for Multimodality Therapy in Pancreatic Cancer. Seminars in Radiation Oncology, 2016, 26, 320-337.	1.0	21
275	Leveraging Mechanisms Governing Pancreatic Tumorigenesis To Reduce Pancreatic Cancer Mortality. Trends in Endocrinology and Metabolism, 2016, 27, 770-781.	3.1	10
276	Deep sequencing and in silico analyses identify MYB-regulated gene networks and signaling pathways in pancreatic cancer. Scientific Reports, 2016, 6, 28446.	1.6	21

#	Article	IF	CITATIONS
277	Clinicopathological Characteristics of Young Patients With Pancreatic Cancer. Pancreas, 2016, 45, 1411-1417.	0.5	25
278	Molecular Pathogenesis of Pancreatic Cancer. Progress in Molecular Biology and Translational Science, 2016, 144, 241-275.	0.9	113
279	Epigenetic Changes and Potential Targets in Pancreatic Cancer. , 2016, , 27-63.		0
280	K-Ras ^{V14I} -induced Noonan syndrome predisposes to tumour development in mice. Journal of Pathology, 2016, 239, 206-217.	2.1	12
281	Metabolic Reprogramming of Pancreatic Cancer Mediated by CDK4/6 Inhibition Elicits Unique Vulnerabilities. Cell Reports, 2016, 14, 979-990.	2.9	160
282	Differential Regulation of ZEB1 and EMT by MAPK-Interacting Protein Kinases (MNK) and eIF4E in Pancreatic Cancer. Molecular Cancer Research, 2016, 14, 216-227.	1.5	38
283	The â€~SPARC' of life: Analysis of the role of osteonectin/SPARC in pancreatic cancer (Review). International Journal of Oncology, 2016, 48, 1765-1771.	1.4	19
284	Cellular and molecular aspects of pancreatic cancer. Acta Histochemica, 2016, 118, 305-316.	0.9	30
285	Genetics and biology of pancreatic ductal adenocarcinoma. Genes and Development, 2016, 30, 355-385.	2.7	416
286	Molecular Imaging of Pancreatic Cancer with Antibodies. Molecular Pharmaceutics, 2016, 13, 8-24.	2.3	62
287	Transcriptional Regulation of miR-31 by Oncogenic KRAS Mediates Metastatic Phenotypes by Repressing RASA1. Molecular Cancer Research, 2016, 14, 267-277.	1.5	61
288	Poly(ADP-Ribose) Polymerases. American Journal of Pathology, 2016, 186, 234-241.	1.9	16
289	Germline Mutation of the CCK Receptor: A Novel Biomarker for Pancreas Cancer. Clinical and Translational Gastroenterology, 2016, 7, e134.	1.3	5
290	Pancreatic Adenocarcinoma. , 2016, , 11-20.		0
291	APC haploinsufficiency coupled with p53 loss sufficiently induces mucinous cystic neoplasms and invasive pancreatic carcinoma in mice. Oncogene, 2016, 35, 2223-2234.	2.6	19
292	Genetic Diversity of Pancreatic Ductal Adenocarcinoma and Opportunities for Precision Medicine. Gastroenterology, 2016, 150, 48-63.	0.6	90
293	Process of hepatic metastasis from pancreatic cancer: biology with clinical significance. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1137-1161.	1.2	24
294	Characterization of Pancreatic Cancer Cell Thermal Response to Heat Ablation or Cryoablation. Technology in Cancer Research and Treatment, 2017, 16, 393-405.	0.8	17

#	ARTICLE	IF	CITATIONS
295	Utilizing somatic mutation data from numerous studies for cancer research: proof of concept and applications. Oncogene, 2017, 36, 3375-3383.	2.6	14
296	Notch as a tumour suppressor. Nature Reviews Cancer, 2017, 17, 145-159.	12.8	301
297	Common Telomere Changes during InÂVivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports, 2017, 8, 460-475.	2.3	33
298	Metastatic Pancreatic Cancer. , 2017, , 117-135.		O
299	Team work and cytopathology molecular diagnosis of solid pancreatic lesions. Digestive Endoscopy, 2017, 29, 657-666.	1.3	13
300	Molecular Aberrations in Periampullary Carcinoma. Indian Journal of Surgical Oncology, 2017, 8, 348-356.	0.3	0
301	Sterol regulatory element-binding protein 1 inhibitors decrease pancreatic cancer cell viability and proliferation. Biochemical and Biophysical Research Communications, 2017, 488, 136-140.	1.0	52
302	Treatment of Pancreatic Cancer Patient–Derived Xenograft Panel with Metabolic Inhibitors Reveals Efficacy of Phenformin. Clinical Cancer Research, 2017, 23, 5639-5647.	3.2	76
303	Correlation of 18F-Fluorodeoxyglucose Positron Emission Tomography Parameters with Patterns of Disease Progression in Locally Advanced Pancreatic Cancer after Definitive Chemoradiotherapy. Clinical Oncology, 2017, 29, 370-377.	0.6	25
304	Endoscopic Ultrasonography with Fine-needle Aspiration. Gastrointestinal Endoscopy Clinics of North America, 2017, 27, 601-614.	0.6	5
305	Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Science Translational Medicine, 2017, 9, .	5.8	193
306	Young adulthood and adulthood adiposity in relation to incidence of pancreatic cancer: a prospective study of 0.5 million Chinese adults and a meta-analysis. Journal of Epidemiology and Community Health, 2017, 71, jech-2017-208895.	2.0	15
307	Dual Inhibition of Hedgehog and c-Met Pathways for Pancreatic Cancer Treatment. Molecular Cancer Therapeutics, 2017, 16, 2399-2409.	1.9	27
308	Human profilin 1 is a negative regulator of CTL mediated cellâ€killing and migration. European Journal of Immunology, 2017, 47, 1562-1572.	1.6	43
309	Heterogeneous Stromal Signaling within the Tumor Microenvironment Controls the Metastasis of Pancreatic Cancer. Cancer Research, 2017, 77, 41-52.	0.4	71
310	Predicting novel salivary biomarkers for the detection of pancreatic cancer using biological feature-based classification. Pathology Research and Practice, 2017, 213, 394-399.	1.0	13
311	Cross Talk Between Snail and Mutant K-Ras Contributes to Pancreatic Cancer Progression. , 2017, , 119-131.		0
312	Blocking SIAH Proteolysis, an Important K-RAS Vulnerability, to Control and Eradicate K-RAS-Driven Metastatic Cancer., 2017,, 213-232.		4

#	Article	IF	CITATIONS
313	Immunotherapy in Gastrointestinal Cancers. BioMed Research International, 2017, 2017, 1-17.	0.9	69
314	Nutrients and the Pancreas: An Epigenetic Perspective. Nutrients, 2017, 9, 283.	1.7	23
315	Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. International Journal of Molecular Sciences, 2017, 18, 1338.	1.8	431
316	Suppression of Gingival NK Cells in Precancerous and Cancerous Stages of Pancreatic Cancer in KC and BLT-Humanized Mice. Frontiers in Immunology, 2017, 8, 1606.	2.2	18
317	Pancreatic cancer cell/fibroblast co-culture induces M2 like macrophages that influence therapeutic response in a 3D model. PLoS ONE, 2017, 12, e0182039.	1.1	140
318	Array comparative genomic hybridization of 18 pancreatic ductal adenocarcinomas and their autologous metastases. BMC Research Notes, 2017, 10, 560.	0.6	8
319	Superoxide Dismutases in Pancreatic Cancer. Antioxidants, 2017, 6, 66.	2.2	12
320	Molecular Subtyping of Pancreatic Cancer: Translating Genomics and Transcriptomics into the Clinic. Journal of Cancer, 2017, 8, 513-522.	1.2	36
321	Mortality assessment of patients with pancreatic cancer in Mexico, 2000–2014. Ecancermedicalscience, 2017, 11, 788.	0.6	6
322	A <i>SLC24A2</i> Gene Variant Uncovered in Pancreatic Ductal Adenocarcinoma by Whole Exome Sequencing. Tohoku Journal of Experimental Medicine, 2017, 241, 287-295.	0.5	13
323	LncRNA UCA1 promotes migration and invasion in pancreatic cancer cells via the Hippo pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1770-1782.	1.8	76
324	Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene, 2018, 37, 2757-2772.	2.6	61
325	Pancreatic enzyme replacement therapy for steatorrhoea in pancreatic cancer. The Cochrane Library, 0, , .	1.5	2
326	Molecular classification as prognostic factor and guide for treatment decision of pancreatic cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 248-255.	3.3	20
327	Evaluation of 22G fine-needle aspiration (FNA) versus fine-needle biopsy (FNB) for endoscopic ultrasound-guided sampling of pancreatic lesions: a prospective comparison study. Surgical Endoscopy and Other Interventional Techniques, 2018, 32, 3533-3539.	1.3	55
329	Pancreas 3D Organoids: Current and Future Aspects as a Research Platform for Personalized Medicine in Pancreatic Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 289-298.	2.3	86
330	Progression of Chronic Pancreatitis to Pancreatic Cancer. Pancreas, 2018, 47, 227-232.	0.5	11
331	Histone Deacetylase Inhibition Restores Expression of Hypoxia-Inducible Protein NDRG1 in Pancreatic Cancer. Pancreas, 2018, 47, 200-207.	0.5	19

#	Article	IF	Citations
332	Antagonizing CD105 enhances radiation sensitivity in prostate cancer. Oncogene, 2018, 37, 4385-4397.	2.6	21
333	<i>KRAS</i> fluorescence in situ hybridisation testing for the detection and diagnosis of pancreatic adenocarcinoma. Journal of Clinical Pathology, 2018, 71, 865-873.	1.0	3
334	Precision Medicine Based on Next-Generation Sequencing and Master Controllers., 2018,, 1577-1611.		1
335	Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility. Gut, 2018, 67, 508-520.	6.1	81
336	FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis. Oncogene, 2018, 37, 697-709.	2.6	49
337	Genetically Engineered Mouse Models of K-Ras-Driven Lung and Pancreatic Tumors: Validation of Therapeutic Targets. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a031542.	2.9	19
338	A KRAS wild type mutational status confers a survival advantage in pancreatic ductal adenocarcinoma. Journal of Gastrointestinal Oncology, 2018, 9, 1-10.	0.6	39
339	Increased mutant KRAS gene dosage drives pancreatic cancer progression: evidence for wild-type KRAS as a tumor suppressor?. Hepatobiliary Surgery and Nutrition, 2018, 7, 403-405.	0.7	9
340	MicroRNA‑539 inhibits cell proliferation, colony formation and invasion in pancreatic ductal adenocarcinoma by directly targeting IGF‑1R. Molecular Medicine Reports, 2018, 18, 1804-1811.	1.1	2
341	SNPs and Somatic Mutation on Long Non-Coding RNA: New Frontier in the Cancer Studies?. High-Throughput, 2018, 7, 34.	4.4	48
342	Murine Models of Pancreatitis Leading to the Development of Pancreatic Cancer. Current Protocols in Pharmacology, 2018, 83, e48.	4.0	7
343	AACR White Paper: Shaping the Future of Cancer Prevention – A Roadmap for Advancing Science and Public Health. Cancer Prevention Research, 2018, 11, 735-778.	0.7	36
344	Cyclooxygenase-2 Influences Response to Cotargeting of MEK and CDK4/6 in a Subpopulation of Pancreatic Cancers. Molecular Cancer Therapeutics, 2018, 17, 2495-2506.	1.9	8
345	Targeting Defects in the Cellular DNA Damage Response for the Treatment of Pancreatic Ductal Adenocarcinoma. Oncology Research and Treatment, 2018, 41, 619-625.	0.8	11
346	Demographic, clinical, and pathological features of early onset pancreatic cancer patients. BMC Gastroenterology, 2018, 18, 139.	0.8	34
347	Omega-3 Fatty Acids Prevent Early Pancreatic Carcinogenesis via Repression of the AKT Pathway. Nutrients, 2018, 10, 1289.	1.7	27
348	BAG3 regulates stability of IL-8 mRNA via interplay between HuR and miR-4312 in PDACs. Cell Death and Disease, 2018, 9, 863.	2.7	19
349	Aberrant expression of PDZ-binding kinase/T-LAK cell-originated protein kinase modulates the invasive ability of human pancreatic cancer cells via the stabilization of oncoprotein c-MYC. Carcinogenesis, 2018, 39, 1548-1559.	1.3	19

#	Article	IF	CITATIONS
350	<i>K<scp>RAS</scp></i> mutation and epithelialâ€"macrophage interplay in pancreatic neoplastic transformation. International Journal of Cancer, 2018, 143, 1994-2007.	2.3	23
351	NFκB in Pancreatic Stellate Cells Reduces Infiltration of Tumors by Cytotoxic T Cells and Killing of Cancer Cells, via Up-regulation of CXCL12. Gastroenterology, 2018, 155, 880-891.e8.	0.6	111
352	Deficiencies in Natural Killer Cell Numbers, Expansion, and Function at the Pre-Neoplastic Stage of Pancreatic Cancer by KRAS Mutation in the Pancreas of Obese Mice. Frontiers in Immunology, 2018, 9, 1229.	2.2	33
353	Targeting Pancreatic Cancer Cell Plasticity: The Latest in Therapeutics. Cancers, 2018, 10, 14.	1.7	26
354	A New Strategy to Control and Eradicate "Undruggable―Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology. Cancers, 2018, 10, 142.	1.7	17
355	Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4. Journal of Experimental and Clinical Cancer Research, 2018, 37, 130.	3.5	56
356	Tumor B7-H3 (CD276) Expression and Survival in Pancreatic Cancer. Journal of Clinical Medicine, 2018, 7, 172.	1.0	46
357	Silencing of MUC20 suppresses the malignant character of pancreatic ductal adenocarcinoma cells through inhibition of the HGF/MET pathway. Oncogene, 2018, 37, 6041-6053.	2.6	38
358	Neuromodulation and Pancreatic Cancer Pain. Journal of Palliative Medicine, 2018, 21, 1064-1066.	0.6	3
359	Ancistroyafungines A-D, 5,8′- and 5,1′-coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fìtoterapìâ, 2018, 130, 6-16.	1.1	24
360	Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget, 2018, 9, 26900-26933.	0.8	47
361	Long noncoding RNA TP53TG1 promotes pancreatic ductal adenocarcinoma development by acting as a molecular sponge of microRNAâ€96. Cancer Science, 2019, 110, 2760-2772.	1.7	53
362	Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers, 2019, 11, 1745.	1.7	6
363	Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations. Scientific Reports, 2019, 9, 12766.	1.6	5
364	Animal models for modeling pancreatic cancer and novel drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 127-142.	2.5	16
365	Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Molecular Cancer, 2019, 18, 14.	7.9	266
366	<scp>TGIF</scp> 1 functions as a tumor suppressor in pancreatic ductal adenocarcinoma. EMBO Journal, 2019, 38, e101067.	3.5	21
367	The Rho/MRTF pathway inhibitor CCG-222740 reduces stellate cell activation and modulates immune cell populations in KrasG12D; Pdx1-Cre (KC) mice. Scientific Reports, 2019, 9, 7072.	1.6	17

#	Article	IF	CITATIONS
368	Mouse models of gastrointestinal cancers in drug development and research., 2019, , 267-292.		0
369	ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes and Development, 2019, 33, 641-655.	2.7	20
370	Signaling in the microenvironment of pancreatic cancer: Transmitting along the nerve. , 2019, 200, 126-134.		31
371	Cancer-Associated Fibroblasts' Functional Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancers, 2019, 11, 290.	1.7	34
372	The glycosylation landscape of pancreatic cancer (Review). Oncology Letters, 2019, 17, 2569-2575.	0.8	70
373	Phosphorylation Regulates CAP1 (Cyclase-Associated Protein 1) Functions in the Motility and Invasion of Pancreatic Cancer Cells. Scientific Reports, 2019, 9, 4925.	1.6	12
374	Computer-aided assessment of the extra-cellular matrix during pancreatic carcinogenesis: a pilot study. Journal of Translational Medicine, 2019, 17, 61.	1.8	13
375	Activation of TAp73 and inhibition of TrxR by Verteporfin for improved cancer therapy in <i>TP53</i> mutant pancreatic tumors. Future Science OA, 2019, 5, FSO366.	0.9	16
376	Complete Regression of Advanced Pancreatic Ductal Adenocarcinomas upon Combined Inhibition of EGFR and C-RAF. Cancer Cell, 2019, 35, 573-587.e6.	7.7	75
377	Lycopene Inhibits Reactive Oxygen Species-Mediated NF-κB Signaling and Induces Apoptosis in Pancreatic Cancer Cells. Nutrients, 2019, 11, 762.	1.7	71
378	Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology, 2019, 156, 2024-2040.	0.6	476
379	BAG3 Suppresses Loading of Ago2 to IL6 mRNA in Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2019, 9, 225.	1.3	7
380	Depletion of the lncRNA RP11-567G11.1 inhibits pancreatic cancer progression. Biomedicine and Pharmacotherapy, 2019, 112, 108685.	2.5	20
381	Recent advances in molecular diagnostics and therapeutic targets for pancreatic cancer. , 2019, , 325-367.		2
382	The activating transcription factor 2: an influencer of cancer progression. Mutagenesis, 2019, 34, 375-389.	1.0	39
383	Ultrasound-induced Cavitation enhances the efficacy of Chemotherapy in a 3D Model of Pancreatic Ductal Adenocarcinoma with its microenvironment. Scientific Reports, 2019, 9, 18916.	1.6	14
384	Pancreatic ductal adenocarcinoma: the role of circulating tumor DNA. Journal of Pancreatology, 2019, 2, 72-75.	0.3	6
385	Pancreatic cancer chemoprevention. , 2019, , 245-261.		0

#	Article	IF	CITATIONS
386	Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. SLAS Technology, 2019, 24, 151-160.	1.0	22
387	Epithelial-Stromal Interactions in Pancreatic Cancer. Annual Review of Physiology, 2019, 81, 211-233.	5.6	33
388	Quantitative Method to Track Proteolytic Invasion in 3D Collagen. Methods in Molecular Biology, 2019, 1882, 161-169.	0.4	1
389	MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. Annual Review of Cancer Biology, 2019, 3, 203-222.	2.3	97
390	Co-dependency between KRAS addiction and ARHGEF2 promotes an adaptive escape from MAPK pathway inhibition. Small GTPases, 2019, 10, 441-448.	0.7	5
391	Organoid-based ex vivo reconstitution of Kras-driven pancreatic ductal carcinogenesis. Carcinogenesis, 2020, 41, 490-501.	1.3	21
392	Revisiting the tumorigenesis timeline with a data-driven generative model. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 857-864.	3.3	44
393	Proteome alterations in pancreatic ductal adenocarcinoma. Cancer Letters, 2020, 469, 429-436.	3.2	30
394	Circulating tumor DNA as an early cancer detection tool., 2020, 207, 107458.		123
395	The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111672.	1.7	35
396	Prediction of biomarker signatures and therapeutic agents from blood sample against Pancreatic Ductal Adenocarcinoma (PDAC): A network-based study. Informatics in Medicine Unlocked, 2020, 19, 100346.	1.9	4
397	Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells, 2020, 9, 2464.	1.8	31
398	Biomaterial-based in vitro models for pancreatic cancer. , 2020, , 235-249.		4
399	Socioeconomic inequalities in pancreatic cancer incidence in Canada: evidence from Cancer Registry data. Zeitschrift Fur Gesundheitswissenschaften, 2022, 30, 801-810.	0.8	8
400	Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduction and Targeted Therapy, 2020, 5, 249.	7.1	88
401	Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. Nature Communications, 2020, 11, 4249.	5.8	44
402	Co-expression analysis of pancreatic cancer proteome reveals biology and prognostic biomarkers. Cellular Oncology (Dordrecht), 2020, 43, 1147-1159.	2.1	21
403	Early detection of pancreatic cancer. Current Opinion in Gastroenterology, 2020, 36, 456-461.	1.0	19

#	Article	IF	Citations
404	Cellular Heterogeneity of Pancreatic Stellate Cells, Mesenchymal Stem Cells, and Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers, 2020, 12, 3770.	1.7	31
406	Tissue acquisition and pancreatic masses: Which needle and which acquisition technique should be used?. Endoscopy International Open, 2020, 08, E1315-E1320.	0.9	14
407	Nicotinamide combined with gemcitabine is an immunomodulatory therapy that restrains pancreatic cancer in mice. , 2020, 8, e001250.		10
408	Co-targeting of CXCR4 and hedgehog pathways disrupts tumor-stromal crosstalk and improves chemotherapeutic efficacy in pancreatic cancer. Journal of Biological Chemistry, 2020, 295, 8413-8424.	1.6	35
409	Metabolic Profiling of Early and Late Recurrent Pancreatic Ductal Adenocarcinoma Using Patient-Derived Organoid Cultures. Cancers, 2020, 12, 1440.	1.7	16
410	A novel hotspot and rare somatic mutation p.A138V, at TP53 is associated with poor survival of pancreatic ductal and periampullary adenocarcinoma patients. Molecular Medicine, 2020, 26, 59.	1.9	12
411	Epigenetic Landscape in Pancreatic Ductal Adenocarcinoma: On the Way to Overcoming Drug Resistance?. International Journal of Molecular Sciences, 2020, 21, 4091.	1.8	17
413	Inactivation of APC Induces CD34 Upregulation to Promote Epithelial-Mesenchymal Transition and Cancer Stem Cell Traits in Pancreatic Cancer. International Journal of Molecular Sciences, 2020, 21, 4473.	1.8	12
414	MiR-502 is the first reported miRNA simultaneously targeting two components of the classical non-homologous end joining (C-NHEJ) in pancreatic cell lines. Heliyon, 2020, 6, e03187.	1.4	5
415	Pancreatic Cancer Molecular Classifications: From Bulk Genomics to Single Cell Analysis. International Journal of Molecular Sciences, 2020, 21, 2814.	1.8	18
416	Differential methylation landscape of pancreatic ductal adenocarcinoma and its precancerous lesions. Hepatobiliary and Pancreatic Diseases International, 2020, 19, 205-217.	0.6	15
417	MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype. Cancer Discovery, 2020, 10, 588-607.	7.7	121
418	Promoter-Level Transcriptome Identifies Stemness Associated With Relatively High Proliferation in Pancreatic Cancer Cells. Frontiers in Oncology, 2020, 10, 316.	1.3	1
419	Neurotensin receptor 1 signaling promotes pancreatic cancer progression. Molecular Oncology, 2021, 15, 151-166.	2.1	17
420	THBS2/CA19-9 Detecting Pancreatic Ductal Adenocarcinoma at Diagnosis Underperforms in Prediagnostic Detection: Implications for Biomarker Advancement. Cancer Prevention Research, 2021, 14, 223-232.	0.7	13
421	MiRNAs directly targeting the key intermediates of biological pathways in pancreatic cancer. Biochemical Pharmacology, 2021, 189, 114357.	2.0	11
422	DIAPH3 promotes pancreatic cancer progression by activating selenoprotein TrxR1â€mediated antioxidant effects. Journal of Cellular and Molecular Medicine, 2021, 25, 2163-2175.	1.6	33
423	Reciprocal regulation of pancreatic ductal adenocarcinoma growth and molecular subtype by HNF4α and SIX1/4. Gut, 2021, 70, 900-914.	6.1	19

#	ARTICLE	IF	CITATIONS
424	A novel methylation signature predicts inferior outcome of patients with PDAC. Aging, 2021, 13, 2851-2863.	1.4	5
425	The COL11A1/Akt/CREB signaling axis enables mitochondrial-mediated apoptotic evasion to promote chemoresistance in pancreatic cancer cells through modulating BAX/BCL-2 function. Journal of Cancer, 2021, 12, 1406-1420.	1.2	25
426	Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomaterials Science, 2021, 9, 6673-6690.	2.6	18
427	Analysis on the Treatments on Early Diagnosis of Pancreatic Cancer (PC). E3S Web of Conferences, 2021, 271, 03052.	0.2	0
428	High ARHGEF2 (GEF-H1) Expression is Associated with Poor Prognosis Via Cell Cycle Regulation in Patients with Pancreatic Cancer. Annals of Surgical Oncology, 2021, 28, 4733-4743.	0.7	6
429	Perioperative cell-free mutant KRAS dynamics in patients with pancreatic cancer. British Journal of Surgery, 2021, 108, 239-243.	0.1	3
430	Pancreatic Cancer: Recent Progress of Drugs in Clinical Trials. AAPS Journal, 2021, 23, 29.	2.2	5
431	Ablative Radiotherapy Reprograms the Tumor Microenvironment of a Pancreatic Tumor in Favoring the Immune Checkpoint Blockade Therapy. International Journal of Molecular Sciences, 2021, 22, 2091.	1.8	13
432	Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacologica Sinica, 2021, 42, 1725-1741.	2.8	53
433	Transcriptomic Analysis of Laser Capture Microdissected Tumors Reveals Cancer- and Stromal-Specific Molecular Subtypes of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2021, 27, 2314-2325.	3.2	10
434	MicroRNA-Regulated Signaling Pathways: Potential Biomarkers for Pancreatic Ductal Adenocarcinoma. Stresses, 2021, 1, 30-47.	1.8	10
435	Mitochondrial uncoupler MB1-47 is efficacious in treating hepatic metastasis of pancreatic cancer in murine tumor transplantation models. Oncogene, 2021, 40, 2285-2295.	2.6	4
436	Inhibition of \hat{I}^2 -Catenin Activity Abolishes LKB1 Loss-Driven Pancreatic Cystadenoma in Mice. International Journal of Molecular Sciences, 2021, 22, 4649.	1.8	2
437	Molecular Processes Involved in Pancreatic Cancer and Therapeutics. Current Chemical Biology, 2021, 15, 85-108.	0.2	0
439	Targeting Fibrosis: The Bridge That Connects Pancreatitis and Pancreatic Cancer. International Journal of Molecular Sciences, 2021, 22, 4970.	1.8	19
440	A pharmacognostic approach for mitigating pancreatic cancer: emphasis on herbal extracts and phytoconstituents. Future Journal of Pharmaceutical Sciences, 2021, 7, .	1.1	5
441	Curing pancreatic cancer. Seminars in Cancer Biology, 2021, 76, 232-246.	4.3	22
442	MicroRNAâ€'203â€'3p inhibits the proliferation, invasion and migration of pancreatic cancer cells by downregulating fibroblast growth factorÂ2. Oncology Letters, 2021, 22, 626.	0.8	7

#	Article	IF	CITATIONS
443	Stem Cells in the Exocrine Pancreas during Homeostasis, Injury, and Cancer. Cancers, 2021, 13, 3295.	1.7	7
444	A systematic study of novel drug delivery mechanisms and treatment strategies for pancreatic cancer. Journal of Drug Delivery Science and Technology, 2021, 63, 102539.	1.4	9
445	Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell, 2021, 28, 1090-1104.e6.	5.2	57
446	Molecular alterations in pancreatic tumors. World Journal of Gastroenterology, 2021, 27, 2710-2726.	1.4	16
447	Tumor-Associated Macrophages in Pancreatic Ductal Adenocarcinoma: Therapeutic Opportunities and Clinical Challenges. Cancers, 2021, 13, 2860.	1.7	39
448	Tyrosine Phosphoproteomics of Patient-Derived Xenografts Reveals Ephrin Type-B Receptor 4 Tyrosine Kinase as a Therapeutic Target in Pancreatic Cancer. Cancers, 2021, 13, 3404.	1.7	2
449	Non-coding RNAs in pancreatic ductal adenocarcinoma: New approaches for better diagnosis and therapy. Translational Oncology, 2021, 14, 101090.	1.7	21
450	Reliable Detection of Somatic Mutations for Pancreatic Cancer in Endoscopic Ultrasonography-Guided Fine Needle Aspirates with Next-Generation Sequencing: Implications from a Prospective Cohort Study. Journal of Gastrointestinal Surgery, 2021, 25, 3149-3159.	0.9	12
451	Myeloid Cell Mediated Immune Suppression in Pancreatic Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1531-1542.	2.3	21
452	Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers, 2021, 13, 4173.	1.7	11
453	Are Circulating Immune Cells a Determinant of Pancreatic Cancer Risk? A Prospective Study Using Epigenetic Cell Count Measures. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2179-2187.	1.1	3
454	Mesenchymal Lineage Heterogeneity Underlies Nonredundant Functions of Pancreatic Cancer–Associated Fibroblasts. Cancer Discovery, 2022, 12, 484-501.	7.7	97
455	Radiation-Induced Autophagy in Human Pancreatic Cancer Cells is Critically Dependent on G2 Checkpoint Activation: A Mechanism of Radioresistance in Pancreatic Cancer. International Journal of Radiation Oncology Biology Physics, 2021, 111, 260-271.	0.4	8
456	Highlights on the Role of KRAS Mutations in Reshaping the Microenvironment of Pancreatic Adenocarcinoma. International Journal of Molecular Sciences, 2021, 22, 10219.	1.8	14
457	Evaluation of biomarkers, genetic mutations, and epigenetic modifications in early diagnosis of pancreatic cancer. World Journal of Gastroenterology, 2021, 27, 6093-6109.	1.4	6
458	Deletion of NEMO Inhibits EMT and Reduces Metastasis in KPC Mice. Cancers, 2021, 13, 4541.	1.7	0
459	Tumorâ€suppressor Fbxw7 targets SIK2 for degradation to interfere with TORC2â€AKT signaling in pancreatic cancer. Cell Biology International, 2020, 44, 1900-1910.	1.4	6
460	Precursor Lesions of Pancreatic Cancer. , 2011, , 395-420.		5

#	Article	IF	Citations
461	Pancreatic Cancer and Diabetes. Advances in Experimental Medicine and Biology, 2013, 771, 229-239.	0.8	16
462	MicroRNAs in Pancreatic Cancer: Potential Interests as Biomarkers and Therapeutic Tools. , 2011, , 287-307.		1
463	Mechanisms of drug resistance of pancreatic ductal adenocarcinoma at different levels. Bioscience Reports, 2020, 40, .	1,1	24
464	Identification of Serum miRNA Signature and Establishment of a Nomogram for Risk Stratification in Patients With Pancreatic Ductal Adenocarcinoma. Annals of Surgery, 2022, 275, e229-e237.	2.1	14
468	Altered hydroxymethylation is seen at regulatory regions in pancreatic cancer and regulates oncogenic pathways. Genome Research, 2017, 27, 1830-1842.	2.4	51
469	BET inhibitors block pancreatic stellate cell collagen I production and attenuate fibrosis in vivo. JCI Insight, 2017, 2, e88032.	2.3	50
470	Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. Journal of Clinical Investigation, 2009, 119, 2725-2736.	3.9	83
471	KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. Journal of Clinical Investigation, 2013, 123, 727-39.	3.9	144
472	IER3 supports KRASG12D-dependent pancreatic cancer development by sustaining ERK1/2 phosphorylation. Journal of Clinical Investigation, 2014, 124, 4709-4722.	3.9	32
473	Pancreatic cancer with ovarian metastases: A case report and review of the literature. World Journal of Clinical Cases, 2020, 8, 5380-5388.	0.3	5
474	Inactivation of TIF1 \hat{I}^3 Cooperates with KrasG12D to Induce Cystic Tumors of the Pancreas. PLoS Genetics, 2009, 5, e1000575.	1.5	102
475	Tissue and Serum microRNAs in the KrasG12D Transgenic Animal Model and in Patients with Pancreatic Cancer. PLoS ONE, 2011, 6, e20687.	1.1	74
476	GATA6 Activates Wnt Signaling in Pancreatic Cancer by Negatively Regulating the Wnt Antagonist Dickkopf-1. PLoS ONE, 2011, 6, e22129.	1.1	83
477	Somatic Mutations in Exocrine Pancreatic Tumors: Association with Patient Survival. PLoS ONE, 2013, 8, e60870.	1.1	47
478	Telomerase Inhibitor Imetelstat (GRN163L) Limits the Lifespan of Human Pancreatic Cancer Cells. PLoS ONE, 2014, 9, e85155.	1.1	63
479	CXCL12 Chemokine Expression Suppresses Human Pancreatic Cancer Growth and Metastasis. PLoS ONE, 2014, 9, e90400.	1.1	74
480	Epithelial to Stromal Re-Distribution of Primary Cilia during Pancreatic Carcinogenesis. PLoS ONE, 2016, 11, e0164231.	1.1	24
481	Depletion of runt-related transcription factor 2 (RUNX2) enhances SAHA sensitivity of p53-mutated pancreatic cancer cells through the regulation of mutant p53 and TAp63. PLoS ONE, 2017, 12, e0179884.	1.1	5

#	Article	IF	Citations
482	A concise review on the current understanding of pancreatic cancer stem cells. Journal of Cancer Stem Cell Research, 2014, 2, 1.	1.1	37
483	PARP Inhibitors in Pancreatic Cancer: From Phase I to Plenary Session. Pancreas (Fairfax, Va), 2019, 3, e5-e8.	1.4	11
484	Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. Oncotarget, 2016, 7, 78396-78411.	0.8	45
485	An oncogenic KRAS transcription program activates the RHOGEF ARHGEF2 to mediate transformed phenotypes in pancreatic cancer. Oncotarget, 2017, 8, 4484-4500.	0.8	18
486	Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer?. Oncotarget, 2017, 8, 14173-14191.	0.8	31
487	Prognostic value of loss of heterozygosity and sub-cellular localization of SMAD4 varies with tumor stage in colorectal cancer. Oncotarget, 2017, 8, 20198-20212.	0.8	21
488	HIF-2α promotes the formation of vasculogenic mimicry in pancreatic cancer by regulating the binding of Twist1 to the VE-cadherin promoter. Oncotarget, 2017, 8, 47801-47815.	0.8	43
489	Inhibitors of telomerase and poly(ADP-ribose) polymerases synergize to limit the lifespan of pancreatic cancer cells. Oncotarget, 2017, 8, 83754-83767.	0.8	13
490	Inhibition of the MEK/ERK pathway augments nab-paclitaxel-based chemotherapy effects in preclinical models of pancreatic cancer. Oncotarget, 2018, 9, 5274-5286.	0.8	24
491	Accumulation of FOXP3+T-cells in the tumor microenvironment is associated with an epithelial-mesenchymal-transition-type tumor budding phenotype and is an independent prognostic factor in surgically resected pancreatic ductal adenocarcinoma. Oncotarget, 2015, 6, 4190-4201.	0.8	52
492	Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells. Oncotarget, 2015, 6, 11098-11113.	0.8	83
493	HIPK2 deficiency causes chromosomal instability by cytokinesis failure and increases tumorigenicity. Oncotarget, 2015, 6, 10320-10334.	0.8	30
494	PHLPP negatively regulates cell motility through inhibition of Akt activity and integrin expression in pancreatic cancer cells. Oncotarget, 2016, 7, 7801-7815.	0.8	22
495	Cdc7 is a potent anti-cancer target in pancreatic cancer due to abrogation of the DNA origin activation checkpoint. Oncotarget, 2016, 7, 18495-18507.	0.8	22
496	Development of gemcitabine-resistant patient-derived xenograft models of pancreatic ductal adenocarcinoma., 2020, 3, 572-585.		4
497	Genetic Alterations of Periampullary and Pancreatic Ductal Adenocarcinoma: An Overview. Current Genomics, 2018, 19, 444-463.	0.7	29
498	Updates and Critical Evaluation on Novel Biomarkers for the Malignant Progression of Intraductal Papillary Mucinous Neoplasms of the Pancreas. Anticancer Research, 2017, 37, 2185-2194.	0.5	34
499	LncRNA SNHG16 induces the SREBP2 to promote lipogenesis and enhance the progression of pancreatic cancer. Future Oncology, 2019, 15, 3831-3844.	1.1	36

#	Article	IF	CITATIONS
500	Personalising pancreas cancer treatment: When tissue is the issue. World Journal of Gastroenterology, 2014, 20, 7849.	1.4	22
501	Molecular pathology of intraductal papillary mucinous neoplasms of the pancreas. World Journal of Gastroenterology, 2014, 20, 10008.	1.4	21
502	Pancreatic cancer-improved care achievable. World Journal of Gastroenterology, 2014, 20, 10405.	1.4	16
503	ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward?. World Journal of Gastroenterology, 2018, 24, 3222-3238.	1.4	77
504	Molecular Characteristics of Pancreatic Ductal Adenocarcinoma. Pathology Research International, 2011, 2011, 1-16.	1.4	43
505	Role of anti-stromal polypharmacy in increasing survival after pancreaticoduodenectomy for pancreatic ductal adenocarcinoma. World Journal of Gastrointestinal Pathophysiology, 2015, 6, 235.	0.5	10
506	The Pathology and Genetics of Metastatic Pancreatic Cancer. Archives of Pathology and Laboratory Medicine, 2009, 133, 413-422.	1.2	186
507	Molecular Signatures of Pancreatic Cancer. Archives of Pathology and Laboratory Medicine, 2011, 135, 716-727.	1.2	130
508	THSB2 as a prognostic biomarker for patients diagnosed with metastatic pancreatic ductal adenocarcinoma. Oncotarget, 2021, 12, 2266-2272.	0.8	1
510	Methylation Detection and Epigenomics in Pancreatic Cancer. , 2010, , 181-204.		0
511	Biologisch zielgerichtete medikamentöse Therapie. , 2010, , 265-275.		0
512	Mouse Models of Pancreatic Exocrine Cancer. , 2010, , 471-495.		0
513	Molecular Relationships Between Chronic Pancreatitis and Cancer. , 2010, , 285-315.		0
514	Genomic Alterations in Sporadic Pancreatic Cancer. , 2013, , 1-26.		0
515	The Genetics of Pancreatic Cancer Progression. , 2013, , 171-184.		0
516	Translational Implications of Molecular Genetics for Early Diagnosis of Pancreatic Cancer., 2013,, 75-82.		1
517	Mouse Models of Pancreatic Ductal Adenocarcinoma. , 2013, , 145-170.		1
518	Mouse Models of RAS-Induced Tumors and Developmental Disorders. , 2014, , 211-231.		0

#	Article	IF	CITATIONS
519	E28 Literaturhinweise und Internetadressen. , 2015, , e1-e79.		0
520	Cancer Genetics at a Glance: The Comprehensive Insights. , 2017, , 79-389.		1
521	Chronic Pancreatitis and Pancreatic Cancer. , 2017, , 179-190.		0
522	Precision Medicine Based on Next Generation Sequencing and Master Controllers. , 2018, , 1-35.		O
523	Mechanism of Tumour Dissemination in Hepatobiliary and Pancreatic Tumours. Cancer Dissemination Pathways, 2018, , 1-12.	0.0	0
526	Hepatocyte Growth Factor and Macrophage-stimulating Protein "Hinge―Analogs to Treat Pancreatic Cancer. Current Cancer Drug Targets, 2019, 19, 782-795.	0.8	1
529	Primary pancreatic cystadenocarcinoma with ovarian metastases in a 38-year-old female: case report. Translational Cancer Research, 2020, 9, 7652-7656.	0.4	1
534	Integrated transcriptome meta-analysis of pancreatic ductal adenocarcinoma and matched adjacent pancreatic tissues. PeerJ, 2020, 8, e10141.	0.9	34
535	AMP‑activated protein kinase family member 5 is an independent prognostic indicator of pancreatic adenocarcinoma: A study based on The Cancer Genome Atlas. Molecular Medicine Reports, 2020, 22, 4329-4339.	1.1	1
536	Shorter Treatment-Naà ve Leukocyte Telomere Length is Associated with Poorer Overall Survival of Patients with Pancreatic Ductal Adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 210-216.	1.1	2
537	Epigenetics and epigenetic alterations in pancreatic cancer. International Journal of Clinical and Experimental Pathology, 2009, 2, 310-26.	0.5	54
539	Inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cells is ROS-dependent. Journal of Experimental Therapeutics and Oncology, 2012, 10, 51-64.	0.5	15
540	Polymorphisms in UGT2B4 and susceptibility to pancreatic cancer. International Journal of Clinical and Experimental Medicine, 2015, 8, 2702-10.	1.3	3
542	Nuclear translocation of the receptor tyrosine kinase c-MET reduces the treatment efficacies of olaparib and gemcitabine in pancreatic ductal adenocarcinoma cells. American Journal of Cancer Research, 2021, 11, 236-250.	1.4	2
543	IMUP and GPRC5A: two newly identified risk score indicators in pancreatic ductal adenocarcinoma. Cancer Cell International, 2021, 21, 620.	1.8	11
544	Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets. Cancer and Metastasis Reviews, 2021, 40, 1093-1114.	2.7	10
546	Effects of toluidine blue O and methylene blue on growth and viability of pancreatic cancer cells. Drug Development Research, 2022, , .	1.4	3
547	Unraveling and targeting RAS-driven metabolic signaling for therapeutic gain. Advances in Cancer Research, 2022, 153, 267-304.	1.9	2

#	Article	IF	CITATIONS
548	Loss of SMAD4 Is Associated With Poor Tumor Immunogenicity and Reduced PD-L1 Expression in Pancreatic Cancer. Frontiers in Oncology, 2022, 12, 806963.	1.3	14
549	Impact of Environmental and Occupational Exposures in Reactive Oxygen Species-Induced Pancreatic Cancer., 2022,, 637-662.		0
550	Circulating tumour DNA: a challenging innovation to develop "precision onco-surgery―in pancreatic adenocarcinoma. British Journal of Cancer, 2022, 126, 1676-1683.	2.9	8
551	Development of asolectin-based liposomal formulation for controlled and targeted delivery of erlotinib as a model drug for EGFR monotherapy. Journal of Liposome Research, 2022, , 1-10.	1.5	1
552	<i>Listeria</i> delivers tetanus toxoid protein to pancreatic tumors and induces cancer cell death in mice. Science Translational Medicine, 2022, 14, eabc1600.	5.8	37
553	Zebrafish imaging reveals TP53 mutation switching oncogene-induced senescence from suppressor to driver in primary tumorigenesis. Nature Communications, 2022, 13, 1417.	5.8	11
554	The distinct genetic features of pancreatic cancer in Chinese population. EBioMedicine, 2022, 78, 103960.	2.7	0
555	Clinical Applications of Classical and Novel Biological Markers of Pancreatic Cancer. Cancers, 2022, 14, 1866.	1.7	6
557	Molecular Targeted Positron Emission Tomography Imaging and Radionuclide Therapy of Pancreatic Ductal Adenocarcinoma. Cancers, 2021, 13, 6164.	1.7	8
559	SYT8 promotes pancreatic cancer progression via the TNNI2/ERRα/SIRT1 signaling pathway. Cell Death Discovery, 2021, 7, 390.	2.0	7
572	Striatal Isolated from Cyathus striatus Extracts Induces Apoptosis in Human Pancreatic Cancer Cells. Molecules, 2022, 27, 2746.	1.7	0
573	Dynamic Interplay between Structural Variations and 3D Genome Organization in Pancreatic Cancer. Advanced Science, 2022, 9, e2200818.	5.6	10
575	Two Novel Nomograms Predicting the Risk and Prognosis of Pancreatic Cancer Patients With Lung Metastases: A Population-Based Study. Frontiers in Public Health, 2022, 10, .	1.3	5
576	Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers, 2022, 14, 2486.	1.7	29
577	Germline variants of ATG7 in familial cholangiocarcinoma alter autophagy and p62. Scientific Reports, 2022, 12, .	1.6	6
579	Good and Bad Stroma in Pancreatic Cancer: Relevance of Functional States of Cancer-Associated Fibroblasts. Cancers, 2022, 14, 3315.	1.7	11
580	PCDH1 promotes progression of pancreatic ductal adenocarcinoma via activation of NF- \hat{l}^{P} B signalling by interacting with KPNB1. Cell Death and Disease, 2022, 13, .	2.7	7
581	Repositioning of Old Drugs for Novel Cancer Therapies: Continuous Therapeutic Perfusion of Aspirin and Oseltamivir Phosphate with Gemcitabine Treatment Disables Tumor Progression, Chemoresistance, and Metastases. Cancers, 2022, 14, 3595.	1.7	3

#	Article	IF	CITATIONS
582	<pre><scp>IGF2BP2</scp> promotes pancreatic carcinoma progression by enhancing the stability of <scp>B3GNT6 mRNA</scp> via <scp>m6A</scp> methylation. Cancer Medicine, 2023, 12, 4405-4420.</pre>	1.3	5
583	The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Letters, 2022, 548, 215868.	3.2	9
584	Epithelial-stromal interactions in pancreatic adenocarcinoma: the role of stroma in disease progression. Arkhiv Patologii, 2022, 84, 65.	0.0	0
585	Pancreatic ductal adenocarcinoma: tumor microenvironment and problems in the development of novel therapeutic strategies. Clinical and Experimental Medicine, 2023, 23, 619-643.	1.9	7
586	Pancreatic Ductal Adenocarcinoma: Molecular Pathology and Predictive Biomarkers. Cells, 2022, 11, 3068.	1.8	12
587	Imaging-Based Biomarkers for Pancreatic Cancer. , 2022, , 229-240.		0
588	Exploring the Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers, 2022, 14, 5302.	1.7	6
589	Role of noncoding RNAs in pancreatic ductal adenocarcinoma associated cachexia. American Journal of Physiology - Cell Physiology, 2022, 323, C1624-C1632.	2.1	1
590	Therapeutic effect and safety of individualized chemotherapy combined with sequential immunotherapy based on BRCA1 mRNA expression level in unresectable pancreatic cancer. Frontiers in Oncology, 0, 12, .	1.3	0
591	Derivation of pancreatic acinar cell carcinoma cell line <scp>HS</scp> â€1 as a patientâ€derived tumor organoid. Cancer Science, 2023, 114, 1165-1179.	1.7	4
592	Proteogenomic insights into the biology and treatment of pancreatic ductal adenocarcinoma. Journal of Hematology and Oncology, 2022, 15 , .	6.9	9
593	Integrated genomic analysis to identify druggable targets for pancreatic cancer. Frontiers in Oncology, $0,12,.$	1.3	5
594	The Role of Pericytes in Tumor Angiogenesis. Biology of Extracellular Matrix, 2023, , 257-275.	0.3	0
595	Prognostic significance of ımmunhistochemical axl expression in pancreas ductal adenocarcinomas. Indian Journal of Pathology and Microbiology, 2023, .	0.1	0
596	Glycoproteins and Cancer Biomarkers. , 2023, , 195-227.		0
597	Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers, 2023, 15, 724.	1.7	2
598	In Vitro Measurement and Mathematical Modeling of Thermally-Induced Injury in Pancreatic Cancer Cells. Cancers, 2023, 15, 655.	1.7	2
599	Arginase 1 is a key driver of immune suppression in pancreatic cancer. ELife, $0,12,.$	2.8	17

#	Article	IF	CITATIONS
600	PTGES Expression Is Associated with Metabolic and Immune Reprogramming in Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 2023, 24, 7304.	1.8	0
601	Pancreatic Cancer Treatment by Using Theragnostic Nanoparticles. , 2022, , 149-168.		0
602	EGFR Reloaded: Finding New Ways to Shape Pancreatic Cancer Epigenome. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1253-1254.	2.3	0
606	Pathophysiology of Gastrointestinal Tract Cancers and Therapeutic Status. , 2023, , 1-32.		0