Structure and dielectric behavior of Nd-doped BaTiO3 p

Materials Chemistry and Physics 109, 475-481 DOI: 10.1016/j.matchemphys.2007.12.019

Citation Report

#	Article	IF	CITATIONS
1	Structure and electrical properties of BaTiO3 prepared by sol–gel process. Journal of Alloys and Compounds, 2009, 482, 137-140.	2.8	71
2	A comparative study of different solvothermal methods for the synthesis of Sn2+-doped BaTiO3 powders and their dielectric properties. Journal of Materials Science, 2010, 45, 725-732.	1.7	9
3	Detection of up-conversion in nano-structure BaTiO3 co-doped with Er3+ and Yb3+ ions. Journal of Sol-Gel Science and Technology, 2010, 53, 543-550.	1.1	18
4	Piezoelectric, ferroelectric and dielectric properties of Sm2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Materials Chemistry and Physics, 2010, 124, 1065-1070.	2.0	44
5	Structure and dielectric properties of Ba(Ti0.99Ni0.01)O3-δ ceramic synthesized via high energy ball milling method. Physica B: Condensed Matter, 2010, 405, 2815-2819.	1.3	11
6	Piezoelectric, ferroelectric and dielectric properties of Nd2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 167, 161-166.	1.7	49
7	Influence of the Nd3+ ions content on the FTIR and the visible up-conversion luminescence properties of nano-structure BaTiO3, prepared by sol–gel technique. Journal of Alloys and Compounds, 2010, 489, 451-455.	2.8	42
8	Effect of Dy2O3 on the structure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. Journal of Alloys and Compounds, 2010, 508, 546-553.	2.8	41
9	Structural, optical and magnetic properties of polycrystalline BaTi1â^'xFexO3 ceramics. Journal of Applied Physics, 2011, 110, .	1.1	83
10	Structural, optical and dielectric properties of glass-nanocomposite. Journal of Non-Crystalline Solids, 2011, 357, 864-872.	1.5	8
11	Effects of silver addition on microstructure and electrical properties of barium titanate ceramics. Journal of Alloys and Compounds, 2011, 509, 6423-6426.	2.8	33
12	Self-compensation characteristics of Eu ions in BaTiO3. Solid State Ionics, 2011, 201, 6-10.	1.3	42
13	High piezoelectric actuation response in graded Nd2O3 and ZrO2 doped BaTiO3 structures. Journal of Electroceramics, 2011, 26, 116-121.	0.8	6
14	Structural characteristics and dielectric properties of neodymium doped barium titanate. Journal of Materials Science: Materials in Electronics, 2011, 22, 167-173.	1.1	22
15	Effect of simultaneous double doping in Ba and Ti sites on dielectric and ferroelectric properties of sol–gel synthesized nano-BaTiO3. Journal of Materials Science: Materials in Electronics, 2011, 22, 1855-1864.	1.1	17
16	Preparation, structural and electrical characteristics of praseodymium modified lead titanate. Ceramics International, 2011, 37, 2655-2662.	2.3	10
17	Influence of Cr Valence State on Dielectric-Temperature Stability of Barium Titanate Ceramics. Advanced Materials Research, 2012, 560-561, 914-918.	0.3	1
18	Dielectric Anomaly in La _{0.7} Sr _{0.3} Fe _{0.05} Mn _{0.95} O ₃ /BaTiO _{3Formoelectrics 2012 437 16-27}	ubx Co mpo	ositæ.

#	Article	IF	CITATIONS
19	Mutual Solid Solubility and Phase Equilibrium in the System BaTiO\$_{3}\$–BaCeO\$_{3}\$. Japanese Journal of Applied Physics, 2012, 51, 071501.	0.8	6
20	SYNTHESIS, CHARACTERIZATION AND ELECTRICAL PROPERTIES OF Nd/Zr CO-DOPED NANO BaTiO₃ CERAMICS. Journal of Advanced Dielectrics, 2012, 02, 1250001.	1.5	9
21	Influences of annealing temperature on structural characterization and magnetic properties of Mn-doped BaTiO3 ceramics. Journal of Applied Physics, 2012, 112, .	1.1	69
22	Highâ€permittivity and conduction mechanism of Laâ€doped Ba _{0.67} Sr _{0.33} TiO ₃ ceramics. Physica Status Solidi (B): Basic Research, 2012, 249, 1452-1458.	0.7	9
23	Structural phase separation and optical and magnetic properties of BaTi1â^'xMnxO3 multiferroics. Journal of Applied Physics, 2012, 111, .	1.1	62
24	Study of glass-nanocomposite and glass–ceramic containing ferroelectric phase. Materials Chemistry and Physics, 2012, 133, 69-77.	2.0	24
25	Effect of Gd amphoteric substitution on structure and dielectric properties of BaTiO3-based ceramics. Journal of Electroceramics, 2013, 30, 129-132.	0.8	28
26	Synthesis, structure, and dielectric properties of a novel perovskite-based nanopowders via sol–gel method: (1–x)BaTiO3–xDyScO3. Journal of Materials Science, 2013, 48, 3958-3966.	1.7	5
27	In-situ diffuse phase transition at the Curie point of BaTiO3 induced by amphoteric Ce3+/Ce4+ ions. Ceramics International, 2013, 39, 9727-9730.	2.3	17
28	Growth, structure and dielectric characteristics of Ba[(Fe1/2Nb1/2)0.1Ti0.9]O3 thin films by pulsed laser deposition. Journal of Applied Physics, 2013, 113, 044114.	1.1	0
29	Effect of composition on electrical properties of lead-free Bi0.5(Na0.80K0.20)0.5TiO3-(Ba0.98Nd0.02)TiO3 piezoelectric ceramics. Journal of Applied Physics, 2013, 114, 027005.	1.1	8
30	Energy Storage Characteristics in Sr _(1-1.5x) Bi _x TiO ₃ Ceramics. Ferroelectrics, 2013, 447, 86-94.	0.3	34
31	A dual chelating sol–gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water. Materials Research Bulletin, 2013, 48, 869-877.	2.7	52
32	Effect of Na-, K-, Mg-, and Ga dopants in A/B-sites on the optical band gap and photoluminescence behavior of [Ba0.5Sr0.5]TiO3 powders. Journal of Luminescence, 2013, 142, 75-80.	1.5	27
33	Effects of Nd-doping on optical and photovoltaic properties of barium titanate thin films prepared by sol–gel method. Materials Research Bulletin, 2013, 48, 3092-3097.	2.7	53
34	Structural evolution and dielectric properties of (Ba1â^'xNdx)(Ti1â^'yFey)O3 ceramics. Journal of Alloys and Compounds, 2013, 576, 24-29.	2.8	27
35	Raman Evidence for Ba-Site Ce ³⁺ in BaTiO ₃ . Japanese Journal of Applied Physics, 2013, 52, 111501.	0.8	22
36	Ba _{0.9} A _{0.1} TiO ₃ (A = Al and Mg) Powders Synthesized by Solid State Reaction Technique and their Dielectric Properties. Advanced Materials Research, 0, 747, 603-606.	0.3	1

#	Article	IF	CITATIONS
37	Characterization of hollow BaTiO3 nanofibers and intense visible photoluminescence. Journal of Applied Physics, 2013, 114, .	1.1	30
38	Characterization of BaTiO ₃ crystals formed in aluminosilicate glasses and their laser patterning. Journal of the Ceramic Society of Japan, 2013, 121, 583-588.	0.5	5
39	Dielectric and Pyroelectric Properties of BaTiO3Embedded in Li2B4O7Glass Matrix. Ferroelectrics, 2014, 473, 34-44.	0.3	2
40	Compositional Range and Electrical Properties of Lead-Free Bi _{0.5} (Na _{0.8} K _{0.2}) _{0.5} TiO ₃ -(Ba _{0.98TiO₃System. Ferroelectrics, 2014, 458, 49-55.}	>Ndxsub>().02)
41	Effect of Na Content on the Physical Properties ofBa0.5Sr0.5TiO3Powders. Advances in Materials Science and Engineering, 2014, 2014, 1-7.	1.0	3
42	Structure and Dielectric Properties of <scp><scp>BaTiO</scp></scp> ₃ – <scp><scp>BiYO</scp></scp> ₃ Perovskite Solid Solutions. Journal of the American Ceramic Society, 2014, 97, 1797-1801.	1.9	73
43	Effects of Ca Addition on Chemical Composition, Microstructure and Dielectric Properties of BaTiO ₃ . Applied Mechanics and Materials, 0, 575, 231-237.	0.2	1
44	Temperature-Dependent Structure of a High-k (Ba,La)(Ti,Ce)O ₃ Ceramic. Key Engineering Materials, 0, 602-603, 705-709.	0.4	1
45	Dielectric properties of Y2O3 donor-doped Ba0.8Sr0.2TiO3 ceramics. Materials Chemistry and Physics, 2014, 143, 676-680.	2.0	8
46	Effect of carbon-dopant on the optical band gap and photoluminescence properties of [Ba0.5Sr0.5]TiO3 powders synthesized by the sol–gel process. Journal of Luminescence, 2014, 145, 919-924.	1.5	5
47	Abnormal Raman spectra in Erâ€doped BaTiO ₃ ceramics. Journal of Raman Spectroscopy, 2014, 45, 963-970.	1.2	35
48	Enhanced piezoelectric and mechanical properties of AlN-modified BaTiO3 composite ceramics. Physical Chemistry Chemical Physics, 2014, 16, 13078.	1.3	27
49	Structural and dielectric properties, electron paramagnetic resonance, and defect chemistry of Pr-doped BaTiO 3 ceramics. Journal of Alloys and Compounds, 2014, 615, 25-34.	2.8	29
50	X-ray diffraction, dielectric and Raman spectroscopy studies of Ba1â^'xNd2x/3(Ti0.9Zr0.1)O3 ceramics. Ceramics International, 2014, 40, 10255-10261.	2.3	20
51	Structural, AC conductivity and dielectric properties of vanado-tellurite glasses containing BaTiO3. Journal of Non-Crystalline Solids, 2014, 390, 31-36.	1.5	34
52	Novel X7R BaTiO3 ceramics co-doped with La3+ and Ca2+ ions. Journal of Alloys and Compounds, 2014, 586, 136-141.	2.8	34
53	Deuterium Storage of Ti39Zr38Ni17Pd6 Icosahedral Quasi-crystal. Rare Metal Materials and Engineering, 2015, 44, 1581-1586.	0.8	1
54	Synthesis, Characterization and Electrical Properties of La Modified SrBi ₄ Ti _{3.975} Zr _{0.025} O ₁₅ . Ferroelectrics, 2015, 482, 90-103.	0.3	7

#	Article	IF	CITATIONS
55	Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics. Journal of Applied Physics, 2015, 117, .	1.1	26
56	Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 2726-2732.	1.1	70
57	Self-adjustable site occupations between Ba-site Tb3+ and Ti-site Tb4+ ions in terbium-doped barium titanate ceramics. Solid State Ionics, 2015, 276, 98-106.	1.3	24
58	BaTiO ₃ –graphene nanocomposites: synthesis and visible light photocatalytic activity. New Journal of Chemistry, 2015, 39, 4407-4413.	1.4	67
59	Thermal, dielectric and ferroelectric properties of 0.925BaTiO ₃ –0.075Pb(Zn _{1/3} Nb _{2/3})O ₃ ceramic. Phase Transitions, 2015, 88, 776-785.	0.6	0
60	Electrical properties of Ta2O5-doped TiO2 varistor ceramics sintered at low-temperature. Ceramics International, 2015, 41, 9183-9187.	2.3	20
61	Enhancement of YIG bandwidth efficiency through Ce-doping for dielectric resonator antenna (DRA) applications. Journal of Materials Science: Materials in Electronics, 2015, 26, 504-514.	1.1	14
62	Spectroscopic and electrical studies on Nd3+, Zr4+ ions doped nano-sized BaTiO3 ferroelectrics prepared by sol–gel method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 366-372.	2.0	12
63	Lattice Defects Induce Multiferroic Responses in Ce, La‣ubstituted BaFe _{0.01} Ti _{0.99} 0 ₃ Nanostructures. Journal of the American Ceramic Society, 2016, 99, 1601-1608.	1.9	19
64	Review on dielectric properties of rare earth doped barium titanate. AIP Conference Proceedings, 2016,	0.3	17
65	Rapid stability of ferroelectric polarization in the Ca, Ce hybrid doped BaTiO3 ceramics. Scientific Reports, 2016, 6, 38354.	1.6	13
66	Structure and Catalytic Activity of Cr-Doped BaTiO ₃ Nanocatalysts Synthesized by Conventional Oxalate and Microwave Assisted Hydrothermal Methods. Inorganic Chemistry, 2016, 55, 4795-4805.	1.9	49
67	Effect of sintering duration on structural and electrical properties of Ba0.9Sr0.1Ti0.96Zr0.04O3 solid solution. Current Applied Physics, 2016, 16, 859-866.	1.1	21
68	Dielectric and photoluminescence properties of Nd and Ga codoped-BaTiO3, prepared by sol–gel method. Journal of Materials Science: Materials in Electronics, 2016, 27, 11371-11378.	1.1	4
69	Novel Raman spectroscopy of a strong high-k diffuse phase transition (Ba1â^'Sm)(Ti0.95â^'/4Ce0.05)O3 ceramics. Ceramics International, 2016, 42, 8815-8821.	2.3	6
70	Structural, dielectric and ferroelectric studies of Ba1â [~] xSrxTiO3 ceramics prepared by mechanochemical activation technique. Journal of Materials Science: Materials in Electronics, 2016, 27, 9911-9919.	1.1	18
71	Effect of Pr 3+ doping on structural, electrical, and optical properties of BaTi 0.925 (Yb 0.5 Nb 0.5) 0.075 O 3 ceramics. Journal of Alloys and Compounds, 2016, 686, 153-159.	2.8	12
72	Uniaxial stress dependence of the dielectric properties of barium titanate single crystals. Phase Transitions, 2016, 89, 986-995.	0.6	0

#	Article	IF	CITATIONS
73	Effect of B doping on optical, electrical properties and defects of ZnO films. Journal of Alloys and Compounds, 2016, 676, 135-141.	2.8	43
74	Lattice distortion and electrical properties of x(Na0.5K0.5)NbO3–(1Ââ^'Âx)BaTiO3 dielectrics. Journal of Materials Science: Materials in Electronics, 2016, 27, 2315-2320.	1.1	3
75	Wet chemical synthesis of rare earth-doped barium titanate nanoparticles. Journal of Materials Science, 2016, 51, 4709-4727.	1.7	35
76	Structure and ferroelectric property of low concentration iron-doped sol–gel BaTiO3 thin films. Ceramics International, 2016, 42, 9046-9050.	2.3	10
77	Structural, optical and conductivity properties of BaTi 1â^'x Ni x O 3. Ceramics International, 2016, 42, 7414-7421.	2.3	7
78	Enhancement of H2S-sensing performances with Fe-doping in CaCu3Ti4O12 thin films prepared by a sol–gel method. Sensors and Actuators B: Chemical, 2016, 224, 118-127.	4.0	33
79	Structural properties, Judd–Ofelt calculations, and near infrared to visible photon up-conversion in Er ³⁺ /Yb ³⁺ doped BaTiO ₃ phosphors under excitation at 1500 nm. RSC Advances, 2017, 7, 10529-10538.	1.7	25
80	Crystalline Structure, Defect Chemistry and Room Temperature Colossal Permittivity of Nd-doped Barium Titanate. Scientific Reports, 2017, 7, 42274.	1.6	89
81	A comparative study on electrical conduction properties of Sr-substituted Ba1Ââ^'Âx Sr x Zr0.1Ti0.9O3 (xÂ=Â0.00–0.15) ceramics. Ionics, 2017, 23, 2405-2416.	1.2	22
82	Titanium deficiency in tetragonal-structured (Ba,Ca)(Zr,Ti)O 3 piezoelectric ceramics. Journal of Alloys and Compounds, 2017, 712, 406-411.	2.8	14
83	Abnormal Curie temperature behavior and enhanced strain property by controlling substitution site of Ce ions in BaTiO3 ceramics. Ceramics International, 2017, 43, 10683-10690.	2.3	17
84	Spectroscopic properties of Nd 3+ ions in YAP nano-perovskites. Journal of Luminescence, 2017, 188, 204-208.	1.5	9
85	Effects of lanthanide amphoteric incorporation on structural, electrical, and photoluminescence properties of BaTi 0.925 (Yb 0.5 Nb 0.5) 0.075 O 3 ceramic. Journal of Alloys and Compounds, 2017, 711, 205-214.	2.8	12
86	Compositionalâ€driven multiferroic properties in samarium substituted LaFeO ₃ â€PbTiO ₃ solid solutions. International Journal of Applied Ceramic Technology, 2017, 14, 260-268.	1.1	5
87	Effect of Ca2+ substitution on impedance and electrical conduction mechanism of Ba1â^'xCaxZr0.1Ti0.9O3 (0.00â‰ ¤ â‰ 0 .20) ceramics. Physica B: Condensed Matter, 2017, 508, 124-135.	1.3	39
88	Thermal, Raman, dielectric and ferroelectric properties of 0.975BaTiO3-0.025Pb(Zn1/3Nb2/3)O3 ceramic. Ferroelectrics, 2017, 511, 69-75.	0.3	0
89	Improved piezoelectric and electro-caloric effects in the BaTi 0.975 (Nb 0.5 Yb 0.5) 0.025 O 3 lead-free ceramic characterized by phase-coexistence at room temperature. Materials Chemistry and Physics, 2017, 200, 121-127.	2.0	7
90	Photoluminescence associated with the site occupations of Ho3+ ions in BaTiO3. Scientific Reports, 2017, 7, 6125.	1.6	17

#	Article	IF	CITATIONS
91	Designing pseudocubic perovskites with enhanced nanoscale polarization. Applied Physics Letters, 2017, 111, .	1.5	22
92	Distinct effects of Ce doping in A or B sites on the electrocaloric effect of BaTiO3 ceramics. Journal of Alloys and Compounds, 2017, 724, 163-168.	2.8	26
93	Giant dielectric constant phenomena in Bi ₂ O ₃ -doped Ba _{0.8} Sr _{0.2} TiO ₃ ferroelectrics. Materials Technology, 2017, 32, 321-326.	1.5	3
94	Structural and electrical properties of Barium Titanate (BaTiO3) and Neodymium doped BaTiO3 (Ba0.995Nd0.005TiO3). EPJ Web of Conferences, 2017, 162, 01050.	0.1	6
95	Structural, dielectric, piezoelectric, ferroelectric and electro-caloric properties of Ba1â^'xCaxTi0.975(Nb0.5Yb0.5)0.025O3 lead-free ceramics. Ceramics International, 2018, 44, 8018-8025.	2.3	24
96	A high-permittivity and low-loss (Ba1â^'Nd)(Ti1â^'â^'/4Ce)O3 ceramic. Materials Letters, 2018, 223, 25-28.	1.3	4
97	Modulating the Effect of Yttrium Doping on the Structural and Dielectric Properties of Barium Titanate. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700710.	0.8	8
98	Multiplicity of photoluminescence in Raman spectroscopy and defect chemistry of (Ba1â^'R)(Ti1â^'Ho)O3 (R = La, Pr, Nd, Sm) dielectric ceramics. Ceramics International, 2018, 44, 1483-1492.	2.3	9
99	Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic. Physica B: Condensed Matter, 2018, 530, 242-250.	1.3	6
100	Structural, electrical and spectroscopic studies of the diffuse phase transition relaxor-like ferroelectric material Ba[(Ho,Sb) _{0.05} Ti _{0.9}]O ₃ . Ferroelectrics, 2018, 532, 168-182.	0.3	5
101	Study of the crystallization kinetics of ferroelectric nanocrystals into TeO ₂ -based glass system. Ferroelectrics, 2018, 533, 19-25.	0.3	0
102	Anisotropic electrical and magnetic properties in grain-oriented Bi ₄ Ti ₃ O ₁₂ –La _{0.5} Sr _{0.5} MnO ₃ . Journal of Materials Chemistry C, 2018, 6, 11272-11279.	2.7	14
103	Mechanism of the giant permittivity in Sm modified SrTiO3 sintered at different atmospheres. Journal of Materials Science: Materials in Electronics, 2018, 29, 11546-11552.	1.1	2
104	Effect of Nd 2 O 3 doping on the electrical properties of Ba 0.96 Ca 0.04 Ti 0.90 Sn 0.10 O 3 ceramics. Journal of Rare Earths, 2018, 36, 745-749.	2.5	8
105	Conductivity relaxation and oxygen vacancies-related electron hopping mechanism in Pb _{1-x} La _{x/2} Sm _{x/2} Ti _{1-x} Fe _x O ₃ solid solutions. Journal of Asian Ceramic Societies, 2018, 6, 222-231.	1.0	21
106	Structural evolution and dielectric properties of Nd and Mn co-doped BaTiO 3 ceramics. Journal of Alloys and Compounds, 2018, 760, 31-41.	2.8	43
107	Fine-grained silica-coated barium strontium titanate ceramics with high energy storage. Ceramics International, 2018, 44, 20239-20244.	2.3	13
108	Giant photovoltaic response in band engineered ferroelectric perovskite. Scientific Reports, 2018, 8, 8005.	1.6	36

#	Article	IF	CITATIONS
109	Perovskite-based photocatalysts for organic contaminants removal: Current status and future perspectives. Catalysis Today, 2019, 327, 47-63.	2.2	86
110	Near-infrared to visible upconversion and second harmonic generation in BaTiO3:Ho3+ and BaTiO3:Ho3+/Yb3+ phosphors. Journal of Alloys and Compounds, 2019, 806, 1146-1152.	2.8	14
111	Oxygen-vacancy and charge hopping related dielectric relaxation of CuMoO4 ceramic. Physica B: Condensed Matter, 2019, 573, 62-66.	1.3	2
112	Co effect on the structural, chemical and frequency depended electrical properties of YbFeO3 perovskite oxide compound. Journal of Materials Science: Materials in Electronics, 2019, 30, 13336-13346.	1.1	5
113	Giant electrostrictive effect in lead-free barium titanate-based ceramics <i>via</i> A-site ion-pairs engineering. Journal of Materials Chemistry A, 2019, 7, 17366-17375.	5.2	61
114	Conductivity behavior and impedance studies in BaTiO3–CoFe2O4 magnetoelectric composites. Materials Chemistry and Physics, 2019, 234, 110-121.	2.0	40
115	Effect of structural disorder on the electronic and phononic properties of Hf doped BaTiO3. Journal of Materials Science: Materials in Electronics, 2019, 30, 9498-9506.	1.1	33
116	Dense Sm and Mn Co-Doped BaTiO3 Ceramics with High Permittivity. Materials, 2019, 12, 678.	1.3	22
117	Aging-Resistant Behavior and Room Temperature Electron Spin Resonance of Nd3+ in Singly and Doubly Doped BaTiO3 Ceramics Associated with Preservation History. Materials, 2019, 12, 451.	1.3	2
118	Influence of Sintering Strategy on the Characteristics of Sol-Gel Ba1â^'xCexTi1â^'x/4O3 Ceramics. Nanomaterials, 2019, 9, 1675.	1.9	1
119	Structural and dielectric relaxor properties of (1â^'x)BaTiO3–xBi(Zn1/2Zr1/2)O3 ceramics for energy storage applications. Journal of Materials Science: Materials in Electronics, 2019, 30, 2772-2782.	1.1	26
120	Dielectric and structural studies of ferroelectric phase evolution in dipoleâ€pair substituted barium titanate ceramics. Journal of the American Ceramic Society, 2020, 103, 287-296.	1.9	20
121	Investigation on Microstructural, Electrical and Optical Properties of Nd-Doped BaCo0.01Ti0.99O3 Perovskite. Journal of Electronic Materials, 2020, 49, 377-384.	1.0	8
122	Effects of Al2O3 on dielectric properties of core–shell Ba0.7Sr0.3Ti0.9925Tm0.0103@Al2O3 ceramics. Materials Chemistry and Physics, 2020, 241, 122376.	2.0	3
123	Effect of neodymium doping in BaTiO3 ceramics on structural and ferroelectric properties. Journal of Materials Science: Materials in Electronics, 2020, 31, 1535-1546.	1.1	8
124	Defects and Aliovalent Doping Engineering in Electroceramics. Chemical Reviews, 2020, 120, 1710-1787.	23.0	151
125	Role of lanthanide substitution on suitable sites in enhancing the properties of various electroceramics. , 2020, , 365-392.		4
126	Structural, dielectric, and conductivity studies of strontium-doped Gd2NiMnO6 perovskite. Journal of Materials Science: Materials in Electronics, 2020, 31, 23002-23011.	1.1	9

	CHATION		
#	Article	IF	Citations
127	Stability and amphotericity analysis in rhombohedral ABO3 perovskites. Materialia, 2020, 13, 100819.	1.3	7
128	Structure, dielectric properties of novel Ba(Zr,Ti)O3 based ceramics for energy storage application. Ceramics International, 2020, 46, 12080-12087.	2.3	24
129	Frequency and thermal studies of dielectric permittivity and Raman analysis of Ba0.97La0.02Ti0.98Nb0.016O3. Journal of Materials Science: Materials in Electronics, 2020, 31, 22323-22339.	1.1	10
130	Origin of Structural Change Driven by A-Site Lanthanide Doping in ABO3-Type Perovskite Ferroelectrics. Crystals, 2020, 10, 434.	1.0	11
131	Study of non-centrosymmetric to centrosymmetric structural transformation in Zr-doped Barium Titanate. Phase Transitions, 2020, 93, 351-360.	0.6	8
132	Effect of Na0.5Bi0.5TiO3 on structural, dielectric and ferroelectric properties of Ba1-yPr2y/3⃞y/3Ti0.9Zr0.1O3ceramic. Journal of Alloys and Compounds, 2020, 825, 153859.	2.8	5
133	Temperature-dependent dielectric loss in BaTiO3: Competition between tunnelling probability and electron-phonon interaction. Materials Chemistry and Physics, 2021, 257, 123792.	2.0	25
134	Supercritical Hydrothermal Growth of Fe-Doped Bismuth Titanate Single Crystals. Crystal Growth and Design, 2021, 21, 1259-1266.	1.4	1
135	Structural and dielectric properties of sol–gel processed Ce-doped BaTi0.97Y0.03O3 ceramics. Journal of Advanced Dielectrics, 2021, 11, 2150003.	1.5	7
136	Resource efficient exploration of ternary phase space to develop multi-layer ceramic capacitors. Acta Materialia, 2021, 207, 116690.	3.8	3
137	HighlyÂTunable Multifunctional BaTiO3-Based Ferroelectrics via Site Selective Doping Strategy. Acta Materialia, 2021, 209, 116792.	3.8	33
138	Dielectric, ferroelectric and impedance study of Bi0.5Ba0.5Gd0.5Ti0.5O3. Journal of Materials Science: Materials in Electronics, 2021, 32, 20625-20639.	1.1	4
139	Raman and infrared spectroscopic investigation of the effects of yttrium and tin co-doping in barium titanate. Journal of Physics and Chemistry of Solids, 2021, 154, 110079.	1.9	21
140	Correlation between reduced dielectric loss and charge migration kinetics in NdFeO3-modified Ba0.7Sr0.3TiO3 ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 24910.	1.1	2
141	Investigation of Structural, Dielectric, and Optical Behaviour of Dysprosium-Doped Barium Titanate Ceramics. ECS Journal of Solid State Science and Technology, 2021, 10, 093003.	0.9	1
142	Synthesis of flexible BaTiO3 nanofibers for efficient vibration-driven piezocatalysis. Ceramics International, 2021, 47, 25416-25424.	2.3	18
143	Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: A review. Journal of Environmental Chemical Engineering, 2021, 9, 106264.	3.3	56
144	The effect of Zn2+ and Nb5+ substitution on structural, dielectric, electrocaloric properties, and energy storage density of Ba0.95Ca0.05Ti0.95Zr0.05O3 ceramics. Journal of Alloys and Compounds, 2021, 878, 160355.	2.8	17

#	Article	IF	CITATIONS
145	Effect of Nd doping on the structural, optical and dielectric properties of BaTi0.95Sn0.05O3 ceramics. Journal of Alloys and Compounds, 2021, 883, 160635.	2.8	10
146	Mixed valence states of Yb3+/Yb2+ in low-loss (Ba1â^'Nd)(Ti1â^'Yb)O3 dielectric ceramics. Journal of Alloys and Compounds, 2021, 884, 161049.	2.8	4
147	Dielectric and ferroelectric behaviour of Zr-doped BaTiO3 perovskites. Processing and Application of Ceramics, 2020, 14, 188-194.	0.4	14
148	Effect of Bi and Sm ion doping in barium titanate ceramic: dielectric, optical and ferroelectric study. Applied Physics A: Materials Science and Processing, 2021, 127, .	1.1	4
149	Mutual Solid Solubility and Phase Equilibrium in the System BaTiO ₃ –BaCeO ₃ . Japanese Journal of Applied Physics, 2012, 51, 071501.	0.8	0
150	Effect of Ta2O5 doping on the microstructure and dielectric properties of BaTiO3 based ceramics. International Journal of Automotive and Mechanical Engineering, 2013, 7, 840-849.	0.5	2
151	Effects of Bi and Mn codoping on the physical properties of barium titanate: investigation via DFT method. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	24
152	Enhancement of electrostrictive and magnetic performance with high energy storage efficiency in Fe2O3 nanoparticles-modified Ba(Zr0.07Ti0.93)O3 multiferroic ceramics. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 277, 115579.	1.7	2
154	Dielectric properties of BaTiO3-based ceramics are tuned by defect dipoles and oxygen vacancies under a reducing atmosphere. Ceramics International, 2022, 48, 22212-22220.	2.3	7
155	Enhancing properties of lead-free ferroelectric BaTiO3 through doping. Journal of the European Ceramic Society, 2022, 42, 4693-4701.	2.8	13
156	The Quantizable Contribution of Epdd, Sblc, and Iblc Effects to Colossal Permittivity in La-Doped Batio3 Ceramic. SSRN Electronic Journal, 0, , .	0.4	0
157	Electrocaloric effect in lead-free Ba1-Ln2/3Ti0.925(Yb0.5Nb0.5)0.075O3 ceramics (LnÂ=ÂEu3+, Nd3+, Pr3+) Tj E	TQ ₁] 1 0.	784314 rg8⊤ 1
158	Effect of compositional changes on dielectric and ferroelectric properties of Zr substituted barium titanate. AIP Conference Proceedings, 2022, , .	0.3	0
159	Influence of Sintering Temperature Strategy on Structural, Dielectric, and Resistive Switching in Bulk Ba0.7Sr0.3TiO3 Ceramics. Journal of Electronic Materials, 2023, 52, 1691-1699.	1.0	4
160	The effect of Erbium on physical properties of the Ba0.8Ca0.2Ti0.975(Nb0.5Yb0.5)0.025O3 multifunctional ceramic. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	0
161	Structural and optical investigations of Nd and Cu doped BaTiO3 prepared by solid state reaction. Optik, 2023, 275, 170534.	1.4	2
162	Enhanced ferroelectricity and electrocaloric effect of Sm modified BSTO with temperature stability near room temperature. Journal of Applied Physics, 2023, 133, .	1.1	3
163	Improvement of Piezoelectricity of (Bi0.5Na0.5)0.94Ba0.06TiO3 Ceramics Modified by a Combination of Porosity and Sm3+ Doping. Coatings, 2023, 13, 805.	1.2	3

ARTICLE

IF CITATIONS