Wet-bulb globe temperature (WBGT)â€"its history and

Journal of Science and Medicine in Sport 11, 20-32

DOI: 10.1016/j.jsams.2007.07.003

Citation Report

#	Article	IF	CITATIONS
1	Heat stress and strain in exercise and sport. Journal of Science and Medicine in Sport, 2008, 11, 6-19.	0.6	149
2	Heat stress in sportâ€"Fact and fiction. Journal of Science and Medicine in Sport, 2008, 11, 3-5.	0.6	2
3	Climate change and health: impacts, vulnerability, adaptation and mitigation. NSW Public Health Bulletin, 2009, 20, 5.	0.3	45
4	Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments. International Journal of Biometeorology, 2009, 53, 221-230.	1.3	43
5	Effect of Oral Rehydration Solution on Fatigue during Outdoor Work in a Hot Environment: A Randomized Crossover Study. Journal of Occupational Health, 2010, 52, 209-215.	1.0	11
6	Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design. International Journal of Biometeorology, 2010, 54, 319-334.	1.3	160
7	Evaluation of human thermal comfort near urban waterbody during summer. Building and Environment, 2010, 45, 1072-1080.	3.0	107
8	75 Tropische Klimaprobleme und Höhenmedizin. , 2010, , .		O
9	Estimation of the Risks of Thermal Stress Due to the Microclimate for Manual Fruit and Vegetable Harvesters in Central Italy. Journal of Agricultural Safety and Health, 2010, 16, 141-159.	0.3	24
10	Climate change and occupational heat stress: methods for assessment. Global Health Action, 2010, 3, 5719.	0.7	31
11	Do Biometeorological Indices Improve Modeling Outcomes of Heat-Related Mortality?. Journal of Applied Meteorology and Climatology, 2011, 50, 1165-1176.	0.6	79
12	Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. Journal of Geophysical Research, 2011, 116, .	3.3	220
13	Management of heat emergencies in the military setting. International Paramedic Practice, 2011, 1, 4-8.	0.1	2
14	A new environmental heat stress index for indoor hot and humid environments based on Cox regression. Building and Environment, 2011, 46, 2472-2479.	3.0	57
15	What effect will a few degrees of climate change have on human heat balance? Implications for human activity. International Journal of Biometeorology, 2011, 55, 147-160.	1.3	66
16	Approach to the evaluation of the thermal work environment in the greenhouse-construction industry of SE Spain. Building and Environment, 2011, 46, 1725-1734.	3.0	29
17	Improving the climate safety of workers in AlmerÃa-type greenhouses in Spain byÂpredicting the periods when they are most likely to suffer thermal stress. Applied Ergonomics, 2011, 42, 391-396.	1.7	25
18	Experiments on outdoor thermal comfort of traditonal comb-layout village in Lingnan China., 2011,,.		O

#	Article	IF	CITATIONS
19	A Field Evaluation of the Physiological Demands of Miners in Canada's Deep Mechanized Mines. Journal of Occupational and Environmental Hygiene, 2012, 9, 491-501.	0.4	66
20	Hyperthermic-related challenges in aquatics, athletics, football, tennis and triathlon: Table 1. British Journal of Sports Medicine, 2012, 46, 800-804.	3.1	45
21	Calculating Workplace WBGT from Meteorological Data: A Tool for Climate Change Assessment. Industrial Health, 2012, 50, 267-278.	0.4	253
22	Developing a heat stress model for construction workers. Journal of Facilities Management, 2012, 10, 59-74.	1.0	64
23	On the Problems Related to Natural Wet Bulb Temperature Indirect Evaluation for the Assessment of Hot Thermal Environments by Means of WBGT. Annals of Occupational Hygiene, 2012, 56, 1063-79.	1.9	21
24	Body heat storage during intermittent work in hot–dry and warm–wet environments. Applied Physiology, Nutrition and Metabolism, 2012, 37, 840-849.	0.9	14
25	Human biometeorology. Progress in Physical Geography, 2012, 36, 93-109.	1.4	51
26	Thermal comfort modelling of body temperature and psychological variations of a human exercising in an outdoor environment. International Journal of Biometeorology, 2012, 56, 21-32.	1.3	63
27	Effects of wind application on thermal perception and self-paced performance. European Journal of Applied Physiology, 2013, 113, 1705-1717.	1.2	23
28	Occupational Health and Safety Impacts of Climate Conditions. , 2013, , 145-156.		8
29	Concept of the equivalent wet bulb globe temperature index forÂindicating safe thermal occupational environments. Building and Environment, 2013, 67, 167-178.	3.0	11
30	Application of the Predicted Heat Strain Model in Development of Localized, Threshold-based Heat Stress Management Guidelines for the Construction Industry. Annals of Occupational Hygiene, 2013, 58, 326-39.	1.9	23
31	A framework for pedestrian comfort navigation using multi-modal environmental sensors. Pervasive and Mobile Computing, 2013, 9, 421-436.	2.1	10
32	Comparison of Methods for Estimating Wet-Bulb Globe Temperature Index From Standard Meteorological Measurements. Military Medicine, 2013, 178, 926-933.	0.4	31
33	Using the Thermal Work Limit as an Environmental Determinant of Heat Stress for Construction Workers. Journal of Management in Engineering - ASCE, 2013, 29, 414-423.	2.6	51
34	Modeling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8881-8896.	1.2	174
35	Effectiveness of Water Immersion on Postmatch Recovery in Elite Professional Footballers. International Journal of Sports Physiology and Performance, 2013, 8, 243-253.	1.1	34
36	The relationship between observational – perceptual heat strain evaluation method and environmental / physiological indices in warm workplace. Pakistan Journal of Medical Sciences, 2013, 29, .	0.3	3

3

#	Article	IF	Citations
37	The heat stress for workers employed in a dairy farm. Journal of Agricultural Engineering, 2014, 44, 170.	0.7	16
38	Numerical Simulations of Outdoor Heat Stress Index and Heat Disorder Risk in the 23 Wards of Tokyo. Journal of Applied Meteorology and Climatology, 2014, 53, 583-597.	0.6	31
39	Outdoor exercise performance in ambient heat: Time to overcome challenging factors?. International Journal of Hyperthermia, 2014, 30, 547-549.	1.1	11
41	Evaluation of Prevalence of the Types of Thyroid Disorders Using Ultrasound and Pathology of One Humped Camel (Camelus dromedarius). Kafkas Universitesi Veteriner Fakultesi Dergisi, 2014, , .	0.0	0
42	The SSC: a decade of climate–health research and future directions. International Journal of Biometeorology, 2014, 58, 109-120.	1.3	70
43	The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate. International Journal of Biometeorology, 2014, 58, 1779-1788.	1.3	120
44	A glossary for biometeorology. International Journal of Biometeorology, 2014, 58, 277-308.	1.3	92
45	Management of climatic heat stress risk in construction: A review of practices, methodologies, and future research. Accident Analysis and Prevention, 2014, 66, 187-198.	3.0	111
46	WBGT Index Revisited After 60 Years of Use. Annals of Occupational Hygiene, 2014, 58, 955-70.	1.9	75
47	Excessive occupational heat exposure: a significant ergonomic challenge and health risk for current and future workers. Extreme Physiology and Medicine, 2014, 3, 14.	2.5	143
48	Comparing the physiological and perceptual responses of construction workers (bar benders and bar) Tj ETQq0 (0 0 rgBT /0	Overlock 10 T
49	Human Heat Adaptation. , 2014, 4, 325-365.		268
50	The Influence of Hot Humid and Hot Dry Environments on Intermittent-Sprint Exercise Performance. International Journal of Sports Physiology and Performance, 2014, 9, 387-396.	1.1	21
51	Assessment of thermal environments: Working conditions in the Portuguese ceramic industry in 1994 and 2012. Work, 2015, 51, 457-470.	0.6	7
52	Heat Stress Illness. , 2015, , 1123-1128.		2
53	Optimal Work Pattern for Construction Workers in Hot Weather: A Case Study in Hong Kong. Journal of Computing in Civil Engineering, 2015, 29, .	2.5	39
54	Heat Stroke. , 2015, 5, 611-647.		292
55	Thermal Indices and Thermophysiological Modeling for Heat Stress. , 2015, 6, 255-302.		134

#	ARTICLE	IF	CITATIONS
56	Combining several thermal indices to generate a unique heat comfort assessment methodology. Journal of Industrial Engineering and Management, 2015, 8, .	1.0	2
57	Emerging Environmental and Weather Challenges in Outdoor Sports. Climate, 2015, 3, 492-521.	1.2	44
58	Predicted Thermal Sensation Index for the Hot Environment in the Spinning Workshop. Mathematical Problems in Engineering, 2015, 2015, 1-8.	0.6	3
59	Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geoscientific Model Development, 2015, 8, 151-170.	1.3	165
60	Searching for the best modeling specification for assessing the effects of temperature and humidity on health: a time series analysis in three European cities. International Journal of Biometeorology, 2015, 59, 1585-1596.	1.3	22
61	Heat Index and Adjusted Temperature as Surrogates for Wet Bulb Globe Temperature to Screen for Occupational Heat Stress. Journal of Occupational and Environmental Hygiene, 2015, 12, 323-333.	0.4	25
62	Measuring personal heat exposure in an urban and rural environment. Environmental Research, 2015, 137, 410-418.	3.7	83
63	Thermal performance trials on the habitability of private bushfire shelters: part 1. International Journal of Biometeorology, 2015, 59, 983-993.	1.3	3
64	Which Environmental Indicator Is Better Able to Predict the Effects of Heat Stress on Construction Workers?. Journal of Management in Engineering - ASCE, 2015, 31, .	2.6	19
65	Consensus recommendations on training and competing in the heat. British Journal of Sports Medicine, 2015, 49, 1164-1173.	3.1	195
66	Consensus Recommendations on Training and Competing in the Heat. Sports Medicine, 2015, 45, 925-938.	3.1	70
67	Heat stress causes substantial labour productivity loss in Australia. Nature Climate Change, 2015, 5, 647-651.	8.1	290
68	Author's Reply to Brocherie and Millet: â€~Is the Wet-Bulb Globe Temperature (WGBT) Index Relevant for Exercise in the Heat?'. Sports Medicine, 2015, 45, 1623-1624.	3.1	6
69	Consensus recommendations on training and competing in the heat. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 6-19.	1.3	144
70	Thermal environment in the cotton textile workshop. Energy and Buildings, 2015, 102, 432-441.	3.1	11
71	Is the Wet-Bulb Globe Temperature (WBGT) Index Relevant for Exercise in the Heat?. Sports Medicine, 2015, 45, 1619-1621.	3.1	40
72	Effects of human head hair on performance and thermoregulatory responses during 10-km outdoor running in healthy men. Revista Brasileira De Cineantropometria E Desempenho Humano, 2016, 18, 155.	0.5	0
73	The Relationship between the Heat Disorder Incidence Rate and Heat Stress Indices at Yamanashi Prefecture in Japan. Advances in Meteorology, 2016, 2016, 1-11.	0.6	12

#	ARTICLE	IF	Citations
74	Occupational Heat Stress Profiles in Selected Workplaces in India. International Journal of Environmental Research and Public Health, 2016, 13, 89.	1.2	95
75	Applicability of Universal Thermal Climate Index (UTCI) in occupational heat stress assessment: a case study in brick industries. Industrial Health, 2016, 54, 14-19.	0.4	43
76	Macrolideâ€induced hyperthermia in foals: Role of impaired sweat responses. Equine Veterinary Journal, 2016, 48, 590-594.	0.9	22
77	A Statistical Framework to Evaluate Extreme Weather Definitions from a Health Perspective: A Demonstration Based on Extreme Heat Events. Bulletin of the American Meteorological Society, 2016, 97, 1817-1830.	1.7	31
78	Enhanced economic connectivity to foster heat stress–related losses. Science Advances, 2016, 2, e1501026.	4.7	50
79	Measurement and evaluation of indoor thermal environment in a naturally ventilated industrial building with high temperature heat sources. Building and Environment, 2016, 96, 35-45.	3.0	35
80	Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Climate, 2016, 18, 33-57.	2.4	245
81	Prolonged self-paced exercise in the heat – environmental factors affecting performance. Temperature, 2016, 3, 539-548.	1.6	52
82	Heat index trends and climate change implications for occupational heat exposure in Da Nang, Vietnam. Climate Services, 2016, 2-3, 41-51.	1.0	48
83	Evolution of urban heat wave intensity for the Brussels Capital Region in the ARPEGE-Climat A1B scenario. Urban Climate, 2016, 17, 176-195.	2.4	36
84	How should we measure occupational heat stress?. Temperature, 2016, 3, 369-370.	1.6	3
85	Exposure science in an age of rapidly changing climate: challenges and opportunities. Journal of Exposure Science and Environmental Epidemiology, 2016, 26, 529-538.	1.8	11
86	Exertional heat illness: a review of the syndrome affecting racing Thoroughbreds in hot and humid climates. Australian Veterinary Journal, 2016, 94, 240-247.	0.5	32
87	Exertional Heat Illness in American Football Players: When Is the Risk Greatest?. Journal of Athletic Training, 2016, 51, 593-600.	0.9	48
88	Occupational heat stress in Australian workplaces. Temperature, 2016, 3, 394-411.	1.6	46
89	Thermal stress, human performance, and physical employment standards. Applied Physiology, Nutrition and Metabolism, 2016, 41, S148-S164.	0.9	96
90	Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city. International Journal of Biometeorology, 2016, 60, 591-603.	1.3	42
91	The development of the Hong Kong Heat Index for enhancing the heat stress information service of the Hong Kong Observatory. International Journal of Biometeorology, 2016, 60, 1029-1039.	1.3	31

#	Article	IF	CITATIONS
92	Towards best practice in physical and physiological employment standards. Applied Physiology, Nutrition and Metabolism, 2016, 41, S47-S62.	0.9	34
93	Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environment International, 2016, 89-90, 193-203.	4.8	329
94	Development of an early-warning system for site work in hot and humid environments: A case study. Automation in Construction, 2016, 62, 101-113.	4.8	102
95	Humidity: A review and primer on atmospheric moisture and human health. Environmental Research, 2016, 144, 106-116.	3.7	279
96	Evaluating the impacts of high-temperature outdoor working environments on construction labor productivity in China: A case study of rebar workers. Building and Environment, 2016, 95, 42-52.	3.0	124
97	Practical on-site measurement of heat strain with the use of a perceptual strain index. International Archives of Occupational and Environmental Health, 2016, 89, 299-306.	1.1	21
98	Climatic and psychosocial risks of heat illness incidents on construction site. Applied Ergonomics, 2016, 53, 25-35.	1.7	43
99	Development of accumulated heat stress index based on time-weighted function. Theoretical and Applied Climatology, 2016, 124, 541-554.	1.3	11
100	Effectiveness of a newly designed construction uniform for heat strain attenuation in a hot and humid environment. Applied Ergonomics, 2017, 58, 555-565.	1.7	14
101	Physiological and psychological responses while wearing firefighters' protective clothing under various ambient conditions. Textile Reseach Journal, 2017, 87, 929-944.	1.1	7
102	Environmental Conditions and Seasonal Variables in American Youth Football Leagues. Clinical Pediatrics, 2017, 56, 1209-1218.	0.4	6
103	Influence of menstrual phase and arid <i>vs</i> . humid heat stress on autonomic and behavioural thermoregulation during exercise in trained but unacclimated women. Journal of Physiology, 2017, 595, 2823-2837.	1.3	70
104	Thermal comfort investigation of an outdoor air-conditioned area in a hot and arid environment. Science and Technology for the Built Environment, 2017, 23, 1113-1131.	0.8	17
105	Optimizing Marathon Race Safety Using an Incident Command Post Strategy. Current Sports Medicine Reports, 2017, 16, 144-149.	0.5	4
106	The Brazilian World Cup: too hot for soccer?. International Journal of Biometeorology, 2017, 61, 2195-2203.	1.3	8
107	Influence of climate change on summer cooling costs and heat stress in urban office buildings. Climatic Change, 2017, 144, 721-735.	1.7	19
108	Heat, health, and humidity in Australia's monsoon tropics: a critical review of the problematization of â€~heat' in a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2017, 8, e468.	3.6	43
109	Farmworker Vulnerability to Heat Hazards: A Conceptual Framework. Journal of Nursing Scholarship, 2017, 49, 617-624.	1.1	31

#	Article	IF	CITATIONS
110	Verification of Fiala-based human thermophysiological model and its application to protective clothing under high metabolic rates. Building and Environment, 2017, 126, 13-26.	3.0	14
111	Ability to Discriminate Between Sustainable and Unsustainable Heat Stress Exposuresâ€"Part 1: WBGT Exposure Limits. Annals of Work Exposures and Health, 2017, 61, 611-620.	0.6	17
112	Climate variability of heat wave and projection of warming scenario in Taiwan. Climatic Change, 2017, 145, 305-320.	1.7	18
113	Role of work uniform in alleviating perceptual strain among construction workers. Industrial Health, 2017, 55, 76-86.	0.4	12
114	Heatstroke Risk Predictions for Current and Near-Future Summers in Sendai, Japan, Based on Mesoscale WRF Simulations. Sustainability, 2017, 9, 1467.	1.6	8
115	Occupational and Aerospace Medicine. , 2017, , 217-268.		0
116	Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation. Environmental Research Letters, 2017, 12, 064010.	2.2	63
117	Application of Universal Thermal Climate Index (UTCI) for assessment of occupational heat stress in open-pit mines. Industrial Health, 2017, 55, 437-443.	0.4	32
118	Preventing heat illness in the anticipated hot climate of the Tokyo 2020 Summer Olympic Games. Environmental Health and Preventive Medicine, 2017, 22, 68.	1.4	74
119	Heat stress intervention research in construction: gaps and recommendations. Industrial Health, 2017, 55, 201-209.	0.4	15
120	Environmental Condition and Monitoring. , 2018, , 147-162.		4
121	Risk Management of Heatstroke Based on Fast Computation of Temperature and Water Loss Using Weather Data for Exposure to Ambient Heat and Solar Radiation. IEEE Access, 2018, 6, 3774-3785.	2.6	16
122	Australian community sport extreme heat policies: Limitations and opportunities for improvement. Journal of Science and Medicine in Sport, 2018, 21, 544-548.	0.6	13
123	Thermal comfort along the marathon course of the 2020 Tokyo Olympics. International Journal of Biometeorology, 2018, 62, 1407-1419.	1.3	31
124	Evaluating the Effectiveness of Mitigation Options on Heat Stress for Sydney, Australia. Journal of Applied Meteorology and Climatology, 2018, 57, 209-220.	0.6	29
125	Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environmental Research Letters, 2018, 13, 014001.	2.2	244
126	Distributed network for measuring climatic parameters in heterogeneous environments: Application in a greenhouse. Computers and Electronics in Agriculture, 2018, 145, 105-121.	3.7	21
127	Heat: a primer for public health researchers. Public Health, 2018, 161, 138-146.	1.4	63

#	Article	IF	Citations
128	Heat stress assessment in artistic glass units. Industrial Health, 2018, 56, 171-184.	0.4	8
129	The effect of hot days on occupational heat stress in the manufacturing industry: implications for workers' well-being and productivity. International Journal of Biometeorology, 2018, 62, 1251-1264.	1.3	42
130	The cut-off point for tympanic temperature as a heat strain index for evaluation of outdoor workers: a field study. International Journal of Occupational Safety and Ergonomics, 2018, 24, 224-232.	1.1	8
131	Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric. International Journal of Biometeorology, 2018, 62, 331-345.	1.3	57
132	Challenges in Selecting an Appropriate Heat Stress Index to Protect Workers in Hot and Humid Underground Mines. Safety and Health at Work, 2018, 9, 10-16.	0.3	51
133	Assessment of Semen Quality among Workers Exposed to Heat Stress: A Cross-Sectional Study in a Steel Industry. Safety and Health at Work, 2018, 9, 232-235.	0.3	41
134	Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature, 2018, 5, 86-99.	1.6	50
135	A modified method of evaluating the impact of air humidity on human acceptable air temperatures in hot-humid environments. Energy and Buildings, 2018, 158, 393-405.	3.1	51
136	Heat stress incident prevalence and tennis matchplay performance at the Australian Open. Journal of Science and Medicine in Sport, 2018, 21, 467-472.	0.6	22
137	Investigation into sensitivities of factors in outdoor thermal comfort indices. Building and Environment, 2018, 128, 129-142.	3.0	110
138	Heat stress incidence and matchplay characteristics in Women's Grand Slam Tennis. Journal of Science and Medicine in Sport, 2018, 21, 666-670.	0.6	16
139	Heat balance model for a human body in the form of wet bulb globe temperature indices. Journal of Thermal Biology, 2018, 71, 1-9.	1.1	20
140	Heat stress risk profiles for three non-woven coveralls. Journal of Occupational and Environmental Hygiene, 2018, 15, 80-85.	0.4	7
141	Breathalysing and surveying river users in Australia to understand alcohol consumption and attitudes toward drowning risk. BMC Public Health, 2018, 18, 1393.	1.2	22
142	Occupational cooling practices of emergency first responders in the United States: A survey. Temperature, 2018, 5, 348-358.	1.6	16
143	Limited Role of Working Time Shift in Offsetting the Increasing Occupationalâ€Health Cost of Heat Exposure. Earth's Future, 2018, 6, 1588-1602.	2.4	34
144	Assessment of the Australian Bureau of Meteorology wet bulb globe temperature model using weather station data. International Journal of Biometeorology, 2018, 62, 2205-2213.	1.3	25
145	Daily rhythms of rectal and body surface temperatures in donkeys during the cold-dry (harmattan) and hot-dry seasons in a tropical savannah. International Journal of Biometeorology, 2018, 62, 2231-2243.	1.3	15

#	Article	IF	Citations
146	Outdoor Thermal Comfort during Anomalous Heat at the 2015 Pan American Games in Toronto, Canada. Atmosphere, 2018, 9, 321.	1.0	9
147	Indirect calorimetry on the metabolic rate of sitting, standing and walking office activities. Building and Environment, 2018, 145, 77-84.	3.0	57
148	Diurnal rhythms of heart and respiratory rates in donkeys of different age groups during the cold-dry and hot-dry seasons in a tropical savannah. Physiological Reports, 2018, 6, e13855.	0.7	3
149	Heatstroke at home: Prediction by thermoregulation modeling. Building and Environment, 2018, 137, 147-156.	3.0	38
150	The Science of Adaptation to Extreme Heat. , 2018, , 89-103.		9
151	Heat Stress and Illnesses in Athletes. , 2018, , 255-275.		0
152	Projected Changes in Extreme High Temperature and Heat Stress in China. Journal of Meteorological Research, 2018, 32, 351-366.	0.9	34
153	Towards a monitoring system of temperature extremes in Europe. Natural Hazards and Earth System Sciences, 2018, 18, 91-104.	1.5	36
154	Correlation of ambient air temperature and cognitive performance: A systematic review and meta-analysis. Building and Environment, 2018, 143, 701-716.	3.0	48
155	Assessment of thermal environments: working conditions in the portuguese glass industry. Industrial Health, 2018, 56, 62-77.	0.4	7
156	Human Health and Physical Activity During Heat Exposure. SpringerBriefs in Medical Earth Sciences, 2018, , .	0.3	1
157	Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather and Climate Extremes, 2018, 19, 49-57.	1.6	161
158	University Initiatives in Climate Change Mitigation and Adaptation. , 2019, , .		1
159	Prevalence of post-race exertional heat illness in Thoroughbred racehorses and climate conditions at racecourses in Japan. Journal of Equine Science, 2019, 30, 17-23.	0.2	13
160	Practical Hydration Solutions for Sports. Nutrients, 2019, 11, 1550.	1.7	55
161	Extreme Wetâ€Bulb Temperatures in China: The Significant Role of Moisture. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11944-11960.	1.2	24
162	Effects of urbanization and global climate change on regional climate in the Pearl River Delta and thermal comfort implications. International Journal of Climatology, 2019, 39, 2984-2997.	1.5	32
163	Dependence of economic impacts of climate change on anthropogenically directed pathways. Nature Climate Change, 2019, 9, 737-741.	8.1	49

#	Article	IF	CITATIONS
164	Activity modification in heat: critical assessment of guidelines across athletic, occupational, and military settings in the USA. International Journal of Biometeorology, 2019, 63, 405-427.	1.3	40
165	The impact of climate change and urban growth on urban climate and heat stress in a subtropical city. International Journal of Climatology, 2019, 39, 3013-3030.	1.5	30
166	Modeling the Impacts of Urbanization on Summer Thermal Comfort: The Role of Urban Land Use and Anthropogenic Heat. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6681-6697.	1.2	58
167	Association between work in deforested, compared to forested, areas and human heat strain: an experimental study in a rural tropical environment. Environmental Research Letters, 2019, 14, 084012.	2.2	15
168	Estimation of heat-related morbidity from weather data: A computational study in three prefectures of Japan over 2013–2018. Environment International, 2019, 130, 104907.	4.8	32
169	Globe Temperature and Its Measurement: Requirements and Limitations. Annals of Work Exposures and Health, 2019, 63, 743-758.	0.6	19
170	A new outdoor environmental heat index (OEHI) as a simple and applicable heat stress index for evaluation of outdoor workers. Urban Climate, 2019, 29, 100479.	2.4	15
171	Heat stress assessment during intermittent work under different environmental conditions and clothing combinations of effective wet bulb globe temperature (WBGT). Journal of Occupational and Environmental Hygiene, 2019, 16, 467-476.	0.4	10
172	The asymmetric impact of abundant preceding rainfall on heat stress in low latitudes. Environmental Research Letters, 2019, 14, 044010.	2.2	11
173	Investigation of Thermal Comfort Responses with Fuzzy Logic. Energies, 2019, 12, 1792.	1.6	6
174	A simplified indoor wet-bulb globe temperature formula to determine acceptable hot environmental parameters in naturally ventilated buildings. Energy and Buildings, 2019, 196, 169-177.	3.1	5
175	Patterns of outdoor exposure to heat in three South Asian cities. Science of the Total Environment, 2019, 674, 264-278.	3.9	48
176	Brief in-play cooling breaks reduce thermal strain during football in hot conditions. Journal of Science and Medicine in Sport, 2019, 22, 912-917.	0.6	19
177	Global Heat Wave Hazard Considering Humidity Effects during the 21st Century. International Journal of Environmental Research and Public Health, 2019, 16, 1513.	1.2	24
178	Athletics: Track and Field in theÂHeat. , 2019, , 235-243.		0
179	The role of weather conditions on running performance in the Boston Marathon from 1972 to 2018. PLoS ONE, 2019, 14, e0212797.	1.1	30
180	Medical Emergencies During a Half Marathon Race $\hat{a}\in$ The Influence of Weather. International Journal of Sports Medicine, 2019, 40, 312-316.	0.8	9
181	Study of globe temperature relative to air temperature during cognitive activities in information technology laboratories. Work, 2019, 62, 393-410.	0.6	5

#	Article	IF	CITATIONS
182	Heat Stress in Sport and Exercise. , 2019, , .		6
183	Workplace heat exposure, health protection, and economic impacts: A case study in Canada. American Journal of Industrial Medicine, 2019, 62, 1024-1037.	1.0	30
184	Ambient Conditions Prior to Tokyo 2020 Olympic and Paralympic Games: Considerations for Acclimation or Acclimatization Strategies. Frontiers in Physiology, 2019, 10, 414.	1.3	52
185	Site-specific hourly resolution wet bulb globe temperature reconstruction from gridded daily resolution climate variables for planning climate change adaptation measures. International Journal of Biometeorology, 2019, 63, 787-800.	1.3	8
186	Heat Strain Decision Aid (HSDA) accurately predicts individual-based core body temperature rise while wearing chemical protective clothing. Computers in Biology and Medicine, 2019, 107, 131-136.	3.9	16
187	Passive cooling strategies in roof design to improve the residential building thermal performance in tropical region. Asian Journal of Civil Engineering, 2019, 20, 571-580.	0.8	13
188	Thermal Stress and Its Physiological Implications. , 2019, , 349-379.		2
189	The predictability of heat-related mortality in Prague, Czech Republic, during summer 2015—a comparison of selected thermal indices. International Journal of Biometeorology, 2019, 63, 535-548.	1.3	17
190	Risk perceptions for exertional heat illnesses in junior cricket in Sri Lanka. BMJ Open Sport and Exercise Medicine, 2019, 5, e000508.	1.4	4
191	Development of Cyber-Physical System-based Wellness Management for Physical Workers. , 2019, , .		3
193	Meteorological Risks in Doha 2019 Athletics World Championships: Health Considerations From Organizers. Frontiers in Sports and Active Living, 2019, 1, 58.	0.9	9
194	An Accident Model with Considering Physical Processes for Indoor Environment Safety. Applied Sciences (Switzerland), 2019, 9, 4732.	1.3	5
195	An earbud-type wearable (A hearable) with vital parameter sensors for early detection and prevention of heat-stroke., 2019, 2019, 7049-7055.		13
196	Exertional Heat Stroke within Secondary School Athletics. Current Sports Medicine Reports, 2019, 18, 149-153.	0.5	11
197	Heat Adaptation in Military Personnel: Mitigating Risk, Maximizing Performance. Frontiers in Physiology, 2019, 10, 1485.	1.3	40
198	Estimation of Time-Course Core Temperature and Water Loss in Realistic Adult and Child Models with Urban Micrometeorology Prediction. International Journal of Environmental Research and Public Health, 2019, 16, 5097.	1.2	11
199	Evaluation of indoor heat stress on workers of bakeries at Assiut City, Egypt. International Journal of Environmental Science and Technology, 2019, 16, 2637-2642.	1.8	16
200	Environmental Heat Exposure and Heat-Related Symptoms in United States Coast Guard Deepwater Horizon Disaster Responders. Disaster Medicine and Public Health Preparedness, 2019, 13, 561-569.	0.7	5

#	Article	IF	CITATIONS
201	Will naturally ventilated dwellings remain safe during heatwaves?. Energy and Buildings, 2019, 183, 408-417.	3.1	15
202	Investigation into the differences among several outdoor thermal comfort indices against field survey in subtropics. Sustainable Cities and Society, 2019, 44, 676-690.	5.1	142
203	On exercise thermoregulation in females: interaction of endogenous and exogenous ovarian hormones. Journal of Physiology, 2019, 597, 71-88.	1.3	57
204	Investigation into the thermal comfort of university students conducting outdoor training. Building and Environment, 2019, 149, 26-38.	3.0	49
205	Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environmental Research, 2019, 168, 158-170.	3.7	82
206	Loss of work productivity in a warming world: Differences between developed and developing countries. Journal of Cleaner Production, 2019, 208, 1219-1225.	4.6	22
207	Heat waves in South Korea: differences of heat wave characteristics by thermal indices. Journal of Exposure Science and Environmental Epidemiology, 2019, 29, 790-805.	1.8	20
208	Actual and simulated weather data to evaluate wet bulb globe temperature and heat index as alerts for occupational heat-related illness. Journal of Occupational and Environmental Hygiene, 2019, 16, 54-65.	0.4	16
209	Heat-related issues and practical applications for Paralympic athletes at Tokyo 2020. Temperature, 2020, 7, 37-57.	1.6	39
210	Triathlon Medicine. , 2020, , .		7
211	Spatial Changes in Work Capacity for Occupations Vulnerable to Heat Stress: Potential Regional Impacts From Global Climate Change. Safety and Health at Work, 2020, 11, 1-9.	0.3	12
212	Exertional Heat Illness. , 2020, , .		5
213	Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls. Journal of Cleaner Production, 2020, 250, 119443.	4.6	26
214	Correlation Between Estimated Thermoregulatory Responses and Pacing in Athletes During Marathon. IEEE Access, 2020, 8, 173079-173091.	2.6	6
215	Identifying Tree Traits for Cooling Urban Heat Islands—A Cross-City Empirical Analysis. Forests, 2020, 11, 1064.	0.9	19
216	Epidemiology and risk factors for heat illness: 11 years of Heat Stress Monitoring Programme data from the FIVB Beach Volleyball World Tour. British Journal of Sports Medicine, 2021, 55, 831-835.	3.1	10
217	There is no â€~Swiss Army Knife' of thermal indices: the importance of considering â€~why?' and â€~for whom?' when modelling heat stress in sport. British Journal of Sports Medicine, 2021, 55, 822-824.	3.1	19
218	Exertional Heat Illness Preparedness Strategies: Environmental Monitoring Policies in United States High Schools. Medicina (Lithuania), 2020, 56, 486.	0.8	6

#	Article	IF	CITATIONS
219	Intensity-duration-frequency relationship of WBGT extremes using regional frequency analysis in South Korea. Environmental Research, 2020, 190, 109964.	3.7	7
220	Methods for improving thermal tolerance in military personnel prior to deployment. Military Medical Research, 2020, 7, 58.	1.9	12
221	Contribution of Spatial Heterogeneity and Temporal-Spatial Change of Ecosystems to the Thermal Environment of Tourist Destinations: A Case Study of Sichuan-Chongqing Region, China. Advances in Meteorology, 2020, 2020, 1-15.	0.6	0
222	The Heat Death Line: Proposed Heat Index Alert Threshold for Preventing Heat-Related Fatalities in the Civilian Workforce. New Solutions, 2020, 30, 138-145.	0.6	2
223	Concepts and New Implements for Modified Physiologically Equivalent Temperature. Atmosphere, 2020, 11, 694.	1.0	17
224	Document analysis of exertional heat illness policies and guidelines published by sports organisations in Victoria, Australia. BMJ Open Sport and Exercise Medicine, 2020, 6, e000591.	1.4	14
225	Development and application of a methodology for heat stress assessment of workers in an Italian glass industry. , 2020, , .		1
226	A High Spatiotemporal Resolution Global Gridded Dataset of Historical Human Discomfort Indices. Atmosphere, 2020, 11, 835.	1.0	20
227	Evaluation of Climatic Comfort of Living Environment based on Age Differentials in Beijing-Tianjin-Hebei Area. Ecosystem Health and Sustainability, 2020, 6, .	1.5	6
228	Development and validation of an environmental heat strain risk assessment (EHSRA) index using structural equation modeling based on empirical relations. Environmental Health and Preventive Medicine, 2020, 25, 63.	1.4	4
229	A Field Evaluation of Construction Workers' Activity, Hydration Status, and Heat Strain in the Extreme Summer Heat of Saudi Arabia. Annals of Work Exposures and Health, 2020, 64, 522-535.	0.6	18
230	Mean radiant temperature from global-scale numerical weather prediction models. International Journal of Biometeorology, 2020, 64, 1233-1245.	1.3	39
231	Global evaluation of WBGT and SET indices for outdoor environments using thermal imaging and artificial neural networks. Sustainable Cities and Society, 2020, 60, 102182.	5.1	20
232	Is Physiological Equivalent Temperature (PET) a superior screening tool for heat stress risk than Wet-Bulb Globe Temperature (WBGT) index? Eight years of data from the Gothenburg half marathon. British Journal of Sports Medicine, 2021, 55, 825-830.	3.1	19
233	Methods for Estimating Wet Bulb Globe Temperature From Remote and Lowâ€Cost Data: A Comparative Study in Central Alabama. GeoHealth, 2020, 4, e2019GH000231.	1.9	18
234	Development of a personal heat strain risk assessment (PHSRA) index in workplaces and its validation. BMC Public Health, 2020, 20, 837.	1.2	5
235	Escalating global exposure to compound heat-humidity extremes with warming. Environmental Research Letters, 2020, 15, 064003.	2.2	89
236	A multi-scalar climatological analysis in preparation for extreme heat at the Tokyo 2020 Olympic and Paralympic Games. Temperature, 2020, 7, 191-214.	1.6	22

#	ARTICLE	IF	CITATIONS
237	Spatio-temporal patterns of the minimum rest time for outdoor workers exposed to summer heat stress in South Korea. International Journal of Biometeorology, 2020, 64, 1755-1765.	1.3	5
238	Rapid Warming in Summer Wet Bulb Globe Temperature in China with Human-Induced Climate Change. Journal of Climate, 2020, 33, 5697-5711.	1.2	40
239	Moist Heat Stress on a Hotter Earth. Annual Review of Earth and Planetary Sciences, 2020, 48, 623-655.	4.6	104
240	Applicability of the model presented by Australian Bureau of Meteorology to determine WBGT in outdoor workplaces: A case study. Urban Climate, 2020, 32, 100609.	2.4	6
241	Reductions in Labor Capacity from Intensified Heat Stress in China under Future Climate Change. International Journal of Environmental Research and Public Health, 2020, 17, 1278.	1.2	15
242	Influence of urban spatial configuration and sea breeze on land surface temperature on summer clear-sky days. Urban Climate, 2020, 31, 100578.	2.4	25
243	Multiple environmental and psychosocial work risk factors and sleep disturbances. International Archives of Occupational and Environmental Health, 2020, 93, 623-633.	1.1	17
244	The role of physical geographic parameters affecting past (1980–2010) and future (2020–2049) thermal stress in Iran. Natural Hazards, 2020, 102, 365-399.	1.6	10
245	Nexus of thermal resilience and energy efficiency in buildings: A case study of a nursing home. Building and Environment, 2020, 177, 106842.	3.0	40
246	The cooling effect of a spray fan in an indoor hot environment. Indoor and Built Environment, 2021, 30, 851-858.	1.5	1
247	Thermal Comfort Aspects of Solar Gains during the Heating Season. Energies, 2020, 13, 1702.	1.6	5
248	Global warming, heat-related illnesses, and the dermatologist. International Journal of Women's Dermatology, 2021, 7, 70-84.	1.1	21
249	Mapping urban temperature using crowd-sensing data and machine learning. Urban Climate, 2021, 35, 100739.	2.4	31
250	Intensified Humid Heat Events Under Global Warming. Geophysical Research Letters, 2021, 48, e2020GL091462.	1.5	17
251	The use of the handâ€held infrared thermometer as an early detection tool for exertional heat illness in Thoroughbred racehorses: A study at racetracks in eastern Australia. Equine Veterinary Education, 2021, 33, 296-305.	0.3	13
252	Roundtable on Preseason Heat Safety in Secondary School Athletics: Environmental Monitoring During Activities in the Heat. Journal of Athletic Training, 2021, 56, 362-371.	0.9	12
253	Heat-related illness risk and associated personal and environmental factors of construction workers during work in summer. Scientific Reports, 2021, 11, 1119.	1.6	15
254	Personal assessment of urban heat exposure: a systematic review. Environmental Research Letters, 2021, 16, 033005.	2.2	43

#	Article	IF	CITATIONS
255	The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study. International Journal of Environmental Research and Public Health, 2021, 18, 1632.	1.2	10
256	Heat Stress Indicators in CMIP6: Estimating Future Trends and Exceedances of Impactâ€Relevant Thresholds. Earth's Future, 2021, 9, e2020EF001885.	2.4	71
257	Earlier Boston Marathon Start Time Mitigates Environmental Heat Stress. Medicine and Science in Sports and Exercise, 2021, 53, 1999-2005.	0.2	5
258	Adapting to Changing Labor Productivity as a Result of Intensified Heat Stress in a Changing Climate. GeoHealth, 2021, 5, e2020GH000313.	1.9	10
259	Combined LC–MS/MS and 16S rDNA analysis on mice under high temperature and humidity and Herb Yinchen protection mechanism. Scientific Reports, 2021, 11, 5099.	1.6	3
260	Physiological interactions with personal-protective clothing, physically demanding work and global warming: An Asia-Pacific perspective. Journal of Thermal Biology, 2021, 97, 102858.	1.1	10
261	Developing and Validating Heat Exposure Products Using the U.S. Climate Reference Network. Journal of Applied Meteorology and Climatology, 2021, 60, 543-558.	0.6	6
262	Occupational heat stress and economic burden: A review of global evidence. Environmental Research, 2021, 195, 110781.	3.7	50
264	Wind and greenery effects in attenuating heat stress: A case study. Journal of Cleaner Production, 2021, 291, 125919.	4.6	8
265	Improved methods for estimating mean radiant temperature in hot and sunny outdoor settings. International Journal of Biometeorology, 2021, 65, 967-983.	1.3	31
266	Applicability of air enthalpy for heat stress assessment of outdoor environments in different climates of Iran. Theoretical and Applied Climatology, 2021, 145, 1233-1242.	1.3	4
267	Heat health risk assessment analysing heatstroke patients in Fukuoka City, Japan. PLoS ONE, 2021, 16, e0253011.	1.1	18
268	Construct validity and invariance assessment of the social impacts of occupational heat stress scale (SIOHSS) among Ghanaian mining workers. Science of the Total Environment, 2021, 771, 144911.	3.9	8
269	Evaluation of Environmental Conditions on Self-Selected Work and Heat Stress in Wildland Firefighting. Wilderness and Environmental Medicine, 2021, 32, 149-159.	0.4	12
270	Heat Stress Management in the Construction Industry: A Socio-technical Systems Perspective. Lecture Notes in Networks and Systems, 2022, , 804-810.	0.5	0
271	Indoor air quality investigation of a badminton hall in humid season through objective and subjective approaches. Science of the Total Environment, 2021, 771, 145390.	3.9	12
272	Heatstroke predictions by machine learning, weather information, and an all-population registry for 12-hour heatstroke alerts. Nature Communications, 2021, 12, 4575.	5.8	22
273	Effects of climate change on combined labour productivity and supply: an empirical, multi-model study. Lancet Planetary Health, The, 2021, 5, e455-e465.	5.1	58

#	Article	IF	CITATIONS
274	A new evaluation index for indoor hot environment in naturally ventilated building with hot surface. Indoor and Built Environment, 2022, 31, 745-758.	1.5	1
275	Appraising the historical and projected spatiotemporal changes in the heat index in Bangladesh. Theoretical and Applied Climatology, 2021, 146, 125-138.	1.3	8
276	A Review of Heat Stress Impact Towards Construction Workers Productivities and Health Based on Several Heat Stress Model. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2021, 85, 161-168.	0.3	0
277	An investigation into environmental variables influencing postâ€race exertional heat illness in thoroughbred racehorses in temperate eastern Australia. Australian Veterinary Journal, 2021, 99, 473-481.	0.5	10
278	Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production. Economics of Disasters and Climate Change, 2021, 5, 367-390.	1.3	12
279	The Impact of Environmental Conditions on Player Loads During Preseason Training Sessions in Women's Soccer Athletes. Journal of Strength and Conditioning Research, 2021, 35, 2775-2782.	1.0	1
280	Prediction of Climate Change Effect on Outdoor Thermal Comfort in Arid Region. Energies, 2021, 14, 4730.	1.6	4
281	Dynamic prediction of indoor wet bulb globe temperature in an industrial workshop. Applied Thermal Engineering, 2021, 195, 117219.	3.0	3
282	Assessment of thermal comfort indices in an open air-conditioned stadium in hot and arid environment. Journal of Building Engineering, 2021, 40, 102378.	1.6	24
283	Heat Safety in the Workplace: Modified Delphi Consensus to Establish Strategies and Resources to Protect the US Workers. GeoHealth, 2021, 5, e2021GH000443.	1.9	23
284	An exploratory survey of heat stress management programs in the electric power industry. Journal of Occupational and Environmental Hygiene, 2021, 18, 436-445.	0.4	3
285	Hot weather and heat extremes: health risks. Lancet, The, 2021, 398, 698-708.	6.3	469
286	Happiness in the tropics: climate variables and subjective wellbeing. Environment and Development Economics, 2022, 27, 250-271.	1.3	4
287	The relationship between climate conditions and consumption of bottled water: A potential link between climate change and plastic pollution. Ecological Economics, 2021, 187, 107090.	2.9	15
288	A New Perspective of Wet Kata Cooling Power as a Predictor for Thermal Stress in Underground Mines. Mining, Metallurgy and Exploration, 2021, 38, 2433-2441.	0.4	0
289	Thermoregulatory responses in persons with lower-limb amputation during upper-limb endurance exercise in a hot and humid environment. Prosthetics and Orthotics International, 2021, 45, 401-409.	0.5	2
290	Upholding labor productivity with intensified heat stress: Robust planning for adaptation to climate change under uncertainty. Journal of Cleaner Production, 2021, 322, 129083.	4.6	4
291	The role of outdoor microclimatic features at long-term care facilities in advancing the health of its residents: An integrative review and future strategies. Environmental Research, 2021, 201, 111583.	3.7	11

#	Article	IF	Citations
292	Prevention of Occupational Heat-Related Illnesses. Journal of Occupational and Environmental Medicine, 2021, 63, e737-e744.	0.9	4
293	Social implementation and intervention with estimated morbidity of heat-related illnesses from weather data: A case study from Nagoya City, Japan. Sustainable Cities and Society, 2021, 74, 103203.	5.1	7
294	Detailed thermal indicators analysis based on outdoor thermal comfort indices in construction sites in South China. Building and Environment, 2021, 205, 108191.	3.0	17
295	Playing on natural or artificial turf sports field? Assessing heat stress of children, young athletes, and adults in Hong Kong. Sustainable Cities and Society, 2021, 75, 103271.	5.1	8
296	Body Core Temperature Estimation Using New Compartment Model With Vital Data From Wearable Devices. IEEE Access, 2021, 9, 124452-124462.	2.6	5
297	Heat-Related Illness., 2020,, 45-55.		2
298	Climate Change and Heat Exposure: Impact on Health in Occupational and General Populations. , 2020, , 225-261.		11
299	Climate Change, Occupational Heat Stress, Human Health, and Socioeconomic Factors. Handbook Series in Occupational Health Sciences, 2020, , 71-89.	0.1	5
300	Construction of a WBGT Index Meter Using Low Cost Devices. Advances in Intelligent Systems and Computing, 2020, , 459-468.	0.5	6
301	Heat Exposure and Impact on Occupational Settings. SpringerBriefs in Medical Earth Sciences, 2018, , 45-58.	0.3	1
302	Climate Change Adaptation for Russian Cities: A Case Study of the Thermal Comfort Assessment. , 2019, , 265-276.		3
304	A Statistical–Dynamical Methodology to Downscale Regional Climate Projections to Urban Scale. Journal of Applied Meteorology and Climatology, 2020, 59, 1109-1123.	0.6	14
305	Consistency between Sweat Rate and Wet Bulb Globe Temperature for the Assessment of Heat Stress of People Working Outdoor in Arid and Semi-arid Regions. International Journal of Occupational and Environmental Medicine, 2018, 9, 1-9.	4.2	9
306	Estimation of Heat Stress and Maximum Acceptable Work Time Based on Physiological and Environmental Response in Hot-Dry Climate: A Case Study in Traditional Bakers. International Journal of Occupational and Environmental Medicine, 2019, 10, 194-202.	4.2	8
307	Risk Evaluation of Heat Stroke with Multiphysics Computation and its Application. IEEJ Transactions on Fundamentals and Materials, 2018, 138, 288-294.	0.2	1
308	Human Heat stress risk prediction in the Brazilian semiarid Region based on the Wet-Bulb Globe Temperature. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180748.	0.3	5
309	Impacts of heat stress conditions on mortality from respiratory and cardiovascular diseases in Brazil. Sustentabilidade Em Debate, 2020, 11, 297-330.	0.4	3
310	Feasibility of Relative Strain Index (RSI) for the Assessment of Heat Stress in Outdoor Environments: Case Study in Three Different Climates of Iran. Open Ecology Journal, 2020, 13, 11-18.	2.0	8

#	Article	IF	CITATIONS
311	Proposal of a new equation to estimate globe temperature in an urban park environment. J Agricultural Meteorology, 2013, 69, 23-32.	0.8	25
312	Temperature and rainfall trends in northern Australia 1911-2013: implications for human activity and regional development. Climate Research, 2016, 71, 1-16.	0.4	7
313	Variations in Athlete Heat-Loss Potential Between Hot-Dry and Warm-Humid Environments at Equivalent Wet-Bulb Globe Temperature Thresholds. Journal of Athletic Training, 2020, 55, 1190-1198.	0.9	16
314	The evaluation of heat stress through monitoring environmental factors and physiological responses in melting and casting industries workers. International Journal of Environmental Health Engineering, 2012, 1, 21.	0.4	20
315	Cardiac strain comparison between workers with normal weight and overweight in the hot humid weather of the Persian Gulf region. Journal of Education and Health Promotion, 2013, 2, 48.	0.3	5
316	A hot body in a cold room hyperthermia secondary to rapid diuresis in cardiac failure; the perils of rapid fluid shifts. Indian Journal of Critical Care Medicine, 2018, 22, 608-610.	0.3	1
317	On the Characteristics of Globe Temperature Variation Observed at Downtown in Summer Season. Journal of Environmental Science International, 2008, 17, 907-918.	0.0	3
318	Automated Monitoring of Cattle Heat Stress and Its Mitigation. Frontiers in Animal Science, 2021, 2, .	0.8	15
319	Investigation of Thermal Comfort Changes Using Summer Simmer Index (SSI): A Case Study in Different Climates of Iran. The Open Environmental Research Journal, 2021, 14, 13-23.	1.5	2
320	Identifying the need for locally-observed wet bulb globe temperature across outdoor athletic venues for current and future climates in a desert environment. Environmental Research Letters, 0, , .	2.2	6
321	An Analysis of Thermal Comforts for Pedestrians by WBGT Measurement on the Urban Street Greens. Journal of the Korean Institute of Landscape Architecture, 2013, 41, 22-30.	0.1	4
322	AN ARTIFICIAL NEURAL NETWORK MODEL FOR PREDICTING FATIGUE OF CONSTRUCTION WORKERS IN HUMID ENVIRONMENTS. Proceedings of International Structural Engineering and Construction, 2015, 2, .	0.1	1
323	ë,시 ê³ì¨´´,ìfì→ì,,œì•´í†ì§€í"¼ë³µìœí•과체ê°ì¯ë, ê°,, ê´€ê³,,ë¶,ì,,• Journal of Korea Planning Association, 2016	, 5012 137-1	152.
324	WskaŰnik WBGT – zalety i ŰródÅ,a nieÅ›cisÅ,oÅ›ci zwiÄ…zane z jego zastosowaniem. Occupational Safety â Science and Practice, 2016, 535, 22-24.	€" 0.0	0
325	Standards of heat stress—a short review. , 2017, , .		0
326	A STUDY ON THE OCCUPATIONAL HEALTH IN THE CONSTRUCTION SITE OF THE NEW ASSIUT BARRAGE. JES Journal of Engineering Sciences, 2017, 45, 333-343.	0.0	0
327	Consideration of Physical Stressors in Cumulative Risk Assessment. , 2018, , 467-492.		3
328	FUZZY-КОÐТÐОЛЕРПІДТÐÐ~МÐÐÐÐ~МІКÐОКЛІМÐТУ Ð' ПÐÐ~МІЩЕÐÐÐ	† @1 -ЕÐ-	- & D : D : D : D

#	Article	IF	CITATIONS
329	Consistency Assessment of Heat Stress Monitoring of Outdoor Workers Using Sweat Rate Measurement and Wet Bulb Globe Temperature WBGT in Arid and Semi-Arid Climates. Health Scope, 2018, In Press, .	0.4	0
330	DOĞAL YOL İLE HAVALANDIRILAN BİR SANAYİ KURULUŎUNDA ISIL KONFOR İNCELEMESİ VE GİYSİ F METABOLİK ORAN, ćALIŎAN AĎIRLIĎININ KONFORA ETKİLERİNİN ARAŎTIRILMASI. Uludağ University Faculty of Engineering, 2018, 23, 341-354.	FAKTÃ-RÃ Joou e nal of	ce, thoe
331	Analysis of climatic conditions limits in underground mines from the legislation perspective of the Republic of Serbia. Tehnika, 2019, 74, 517-526.	0.0	0
333	Evaluation of Occupational Exposure to Heat Stress and Physiological Responses of Workers in the Rolling Industry. Open Public Health Journal, 2019, 12, 114-120.	0.1	3
335	Identification, classification, and prioritization of effective factors in producing thermal strain in men at workplaces using fuzzy AHP technique. Indian Journal of Occupational and Environmental Medicine, 2020, 24, 106.	0.6	4
336	Low cost design for measuring and assessing climatic indices for safe working environment. International Journal of Engineering Research and Technology, 2020, 13, 984.	0.3	1
337	Progress in extreme heat management and warning systems: A systematic review of heat-health action plans (1995-2020). Sustainable Cities and Society, 2022, 76, 103487.	5.1	42
338	Climate Change, Occupational Heat Stress, Human Health and Socio-Economic Factors. , 2020, , 1-19.		0
339	Assessing the Climatological Relationship between Heatstroke Risk and Heat Stress Indices in 47 Prefectures in Japan. GeoHazards, 2021, 2, 321-331.	0.8	8
340	Evaluation of wet bulb globe temperature index for estimation of heat strain in hot/humid conditions in the Persian Gulf. Journal of Research in Medical Sciences, 2012, 17, 1108-13.	0.4	14
341	Validation of a questionnaire for heat strain evaluation in women workers. International Journal of Preventive Medicine, 2013, 4, 631-40.	0.2	13
342	Cardiac Strain between Normal Weight and Overweight Workers in Hot/Humid Weather in the Persian Gulf. International Journal of Preventive Medicine, 2013, 4, 1147-53.	0.2	10
343	Determination of Air Enthalpy Based on Meteorological Data as an Indicator for Heat Stress Assessment in Occupational Outdoor Environments, a Field Study in IRAN. Journal of Research in Health Sciences, 2016, 16, 133-140.	0.9	8
344	Climate Change Adaptation: Prehospital Data Facilitate the Detection of Acute Heat Illness in India. Western Journal of Emergency Medicine, 2021, 22, 739-749.	0.6	0
345	Spatially-heterogeneous impacts of surface characteristics on urban thermal environment, a case of the Guangdong-Hong Kong-Macau Greater Bay Area. Urban Climate, 2022, 41, 101034.	2.4	13
346	The Heat Is On: Exertional Heatstroke in Football. Current Sports Medicine Reports, 2021, 20, 566-567.	0.5	3
347	Wearing a face mask during controlledâ€intensity exercise is not a risk factor for exertional heatstroke: A pilot study. Acute Medicine & Surgery, 2021, 8, e712.	0.5	5
348	Climate Change Adaptation: Prehospital Data Facilitate the Detection of Acute Heat Illness in India. Western Journal of Emergency Medicine, 2021, 22, 739-749.	0.6	0

#	Article	IF	CITATIONS
349	The impact of heat on kidney stone presentations in South Carolina under two climate change scenarios. Scientific Reports, 2022, 12, 369.	1.6	12
350	The Heat Is On: Observations and Trends of Heat Stress Metrics during Florida Summers. Journal of Applied Meteorology and Climatology, 2022, 61, 277-296.	0.6	6
351	Explicit Calculations of Wetâ€Bulb Globe Temperature Compared With Approximations and Why It Matters for Labor Productivity. Earth's Future, 2022, 10, .	2.4	25
352	Effects of urbanization on heat waves based on the wet-bulb temperature in the Yangtze River Delta urban agglomeration, China. Urban Climate, 2022, 41, 101067.	2.4	17
353	Spatial analysis of outdoor wet bulb globe temperature under RCP4.5 and RCP8.5 scenarios for 2041–2080 across a range of temperate to hot climates. Weather and Climate Extremes, 2022, 35, 100420.	1.6	9
354	Scoping review on the state of the integration of human physiological responses to evaluating heat-stress. Applied Ergonomics, 2022, 101, 103704.	1.7	4
355	Epidemiology of exertional heat illness in Thoroughbred racehorses in temperate eastern Australia: The role of extrinsic (environmental) factors in disease causation. Equine Veterinary Education, 2022, 34, 660-672.	0.3	3
356	Heat stress morbidity among US military personnel: Daily exposure and lagged response (1998–2019). International Journal of Biometeorology, 2022, 66, 1199-1208.	1.3	4
358	Determination of thermal sensation levels for Koreans based on perceived temperature and climate chamber experiments with hot and humid settings. International Journal of Biometeorology, 2022, , 1 .	1.3	3
359	Feasibility of the Olympic marathon under climatic and socioeconomic change. Scientific Reports, 2022, 12, 4010.	1.6	1
360	Global and local bioclimatic predilections for rebalancing the heating and cooling of buildings. Energy and Buildings, 2022, , 112088.	3.1	1
361	Thermofeel: A python thermal comfort indices library. SoftwareX, 2022, 18, 101005.	1.2	12
362	Relationship between weather parameters and risk of exertional heat injuries during military training. Singapore Medical Journal, 2022, 63, 709.	0.3	3
363	Long-Term Changes in Summer Extreme Wet Bulb Globe Temperature over China. Journal of Meteorological Research, 2021, 35, 975-986.	0.9	5
364	Computed and Measured Core Temperature of Patients With Heatstroke Transported From Their Homes via Ambulance. IEEE Access, 2022, 10, 41839-41851.	2.6	2
365	Heat Stress Assessment using a Wearable Biosensor Network in Workplace Environments., 2022,,.		0
366	Latent heat must be visible in climate communications. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	3.6	12
370	Risk Factors for Severe and Fatal Heat-Related Illness in UK Dogsâ€"A VetCompass Study. Veterinary Sciences, 2022, 9, 231.	0.6	6

#	Article	IF	Citations
371	Heat exposure limits for young unacclimatized males and females at low and high humidity. Journal of Occupational and Environmental Hygiene, 2022, , $1-15$.	0.4	6
373	Robust increase in population exposure to heat stress with increasing global warming. Environmental Research Letters, 2022, 17, 064049.	2.2	17
375	Extreme environmental temperatures and motorcycle crashes: a time-series analysis. Environmental Science and Pollution Research, 2022, 29, 76251-76262.	2.7	4
376	The emergence of prolonged deadly humid heatwaves. International Journal of Climatology, 2022, 42, 8607-8618.	1.5	2
377	Wet-Bulb Globe Temperature, Universal Thermal Climate Index, and Other Heat Metrics for US Counties, 2000–2020. Scientific Data, 2022, 9, .	2.4	20
378	Urban Heat Island and Thermal Comfort Assessment in a Medium-Sized Mediterranean City. Atmosphere, 2022, 13, 1102.	1.0	8
379	Small changes in thermal conditions hinder marathon running performance in the tropics. Temperature, 0, , $1\text{-}16$.	1.6	1
380	Utility of the Heat Index in defining the upper limits of thermal balance during light physical activityÂ(PSU HEAT Project). International Journal of Biometeorology, 2022, 66, 1759-1769.	1.3	9
381	How hot weather kills: the rising public health dangers of extreme heat. BMJ, The, 0, , o1741.	3.0	7
382	Towards a more comprehensive assessment of the intensity of historical European heat waves (1979–2019). Atmospheric Science Letters, 2022, 23, .	0.8	10
383	The need for location-specific biometeorological indexes in Taiwan. Frontiers in Public Health, 0, 10, .	1.3	2
384	Estimação do Ãndice de Bulbo Úmido Termômetro de Globo (IBUTG) para ambientes a céu aberto por meio de Redes Neurais Artificiais utilizando dados de estações metereologicas. Revista Brasileira De Climatologia, 0, 30, 524-548.	0.3	0
385	Baseline scenarios of heat-related ambulance transportations under climate change in Tokyo, Japan. Peerl, 0, 10, e13838.	0.9	3
386	Influence of the Thermal Environment on Work Rate and Physiological Strain during a UCI World Tour Multistage Cycling Race. Medicine and Science in Sports and Exercise, 2023, 55, 32-45.	0.2	2
387	The impact of humidity on Australia's operational heatwave services. Climate Services, 2022, 27, 100315.	1.0	4
388	Thermophysiological aspects of wearable robotics: Challenges and opportunities. Temperature, 2023, 10, 313-325.	1.6	1
390	Moving in a hotter world: Maintaining adequate childhood fitness as a climate change countermeasure. Temperature, 2023, 10, 179-197.	1.6	3
391	Long-term trends of atmospheric hot-and-polluted episodes (HPE) and the public health implications in the Pearl River Delta region of China. Environmental Pollution, 2022, 311, 119782.	3.7	3

#	Article	IF	CITATIONS
392	Hematological parameters in a population of male bakers exposed to high heat work environment. PLoS ONE, 2022, 17, e0274782.	1.1	1
393	A regard on the thermal comfort theories from the standpoint of Electric Vehicle design â€" Review and perspectives. Energy Reports, 2022, 8, 10501-10517.	2.5	13
394	Spatiotemporal Changes in Universal Thermal Climate Index Over South Asia. SSRN Electronic Journal, 0, , .	0.4	0
395	Spatiotemporal Changes in Universal Thermal Climate Index Over South Asia. SSRN Electronic Journal, 0, , .	0.4	2
396	Contributions from a Land Down Under: The Arid Continent. , 2022, , 357-404.		4
397	Global Increases in Lethal Compound Heat Stress: Hydrological Drought Hazards Under Climate Change. Geophysical Research Letters, 2022, 49, .	1.5	41
398	Can Japan really reach "zero deaths―from heat stroke?. BMJ, The, 0, , o2107.	3.0	0
399	IOC consensus statement on recommendations and regulations for sport events in the heat. British Journal of Sports Medicine, 2023, 57, 8-25.	3.1	20
400	Exertional heat stroke in sport and the military: epidemiology and mitigation. Experimental Physiology, 2022, 107, 1111-1121.	0.9	18
402	THERMAL COMFORT OF UGLJEVIK TOWN FOR THE YEAR 2021 OBSERVED THROUGH THE BIOCLIMATIC INDEX WBGT. Archives for Technical Sciences, 2022, 1 , .	0.1	1
403	Spatial prediction of outdoor thermal comfort using an operational NWP model for city and regional scales: A case study in Korea. Urban Climate, 2022, 45, 101286.	2.4	3
404	Hot Pursuit: New Efforts to Prevent Heat-Related Illness on the Job. Environmental Health Perspectives, 2022, 130, .	2.8	0
405	Development of a modified thermal humidity index and its application to human thermal comfort of urban vegetation patches. Ecosystem Health and Sustainability, 2022, 8, .	1.5	3
406	Using Wet Bulb Globe Temperature and Physiological Equivalent Temperature as Predicative Models of Medical Stress in a Marathon: Analysis of 30 Years of Data From the Twin Cities Marathon. Clinical Journal of Sport Medicine, 2022, Publish Ahead of Print, .	0.9	0
407	Field study on the effect of space type, exercise intensity, and wet bulb globe temperature on thermal responses of exercisers. Building and Environment, 2022, 225, 109555.	3.0	6
408	Evaluation of Heat Stress Levels Inside Greenhouses during Summer in Korea. International Journal of Environmental Research and Public Health, 2022, 19, 12497.	1.2	1
409	The Impacts of Urban Configurations on Outdoor Thermal Perceptions: Case Studies of Flat Bandar Tasik Selatan and Surya Magna in Kuala Lumpur. Buildings, 2022, 12, 1684.	1.4	2
410	Combining multiple human physiological signals using fuzzy logic to determine stress caused by battle dress uniforms. SN Applied Sciences, 2022, 4, .	1.5	0

#	ARTICLE	IF	Citations
411	An Empirical Equation for Wet-Bulb Temperature Using Air Temperature and Relative Humidity. Atmosphere, 2022, 13, 1765.	1.0	0
412	Occupational heat exposure and prostate cancer risk: A pooled analysis of case-control studies. Environmental Research, 2023, 216, 114592.	3.7	1
413	Repurposing mesoscale traffic models for insights into traveler heat exposure. Transportation Research, Part D: Transport and Environment, 2023, 114, 103548.	3.2	2
414	Towards real-time thermal stress prediction systems for workers. Journal of Thermal Biology, 2023, 113, 103405.	1.1	4
415	Heat stress illness outcomes and annual indices of outdoor heat at U.S. Army installations. PLoS ONE, 2022, 17, e0263803.	1.1	2
416	History of Thermal Comfort Standards. SpringerBriefs in Architectural Design and Technology, 2022, , 9-46.	0.3	0
417	Short hydration education video and hiker fluid selection and consumption at trails, a non-randomized quasi-experimental field study. Nutrition and Health, 0, , 026010602211503.	0.6	0
418	Occupational medicine. , 2023, , 247-304.		0
419	Socioeconomic disparities in cooling and warming efficiencies of urban vegetation and impervious surfaces. Sustainable Cities and Society, 2023, 92, 104464.	5.1	13
420	Spatiotemporal changes in population exposure to heat stress in South Asia. Sustainable Cities and Society, 2023, 93, 104544.	5.1	8
421	Thermal responses of face-masked pedestrians during summer: An outdoor investigation under tree-shaded areas. Building and Environment, 2023, 233, 110058.	3.0	5
422	Forecasting daily emergency ambulance service demand using biometeorological indexes. International Journal of Biometeorology, 2023, 67, 565-572.	1.3	1
423	Recovery with a fan-cooling jacket after exposure to high solar radiation during exercise in hot outdoor environments. Frontiers in Sports and Active Living, 0, 5, .	0.9	0
424	Estimation of the number of heat illness patients in eight metropolitan prefectures of Japan: Correlation with ambient temperature and computed thermophysiological responses. Frontiers in Public Health, 0, 11 , .	1.3	1
425	Wet Bulb Globe Temperature: Indicating Extreme Heat Risk on a Global Grid. GeoHealth, 2023, 7, .	1.9	10
426	Spatiotemporal changes in Hourly Wet Bulb Globe temperature in Peninsular Malaysia. Stochastic Environmental Research and Risk Assessment, 2023, 37, 2327-2347.	1.9	4
427	Risk Assessment of Heat Stroke during the Marathon of the Tokyo 2020 Olympics in Sapporo, Hokkaido. Sustainability, 2023, 15, 3997.	1.6	1
428	Effect of Work-to-Rest Cycles on Cardiovascular Strain and Maximal Oxygen Uptake during Heat Stress. International Journal of Environmental Research and Public Health, 2023, 20, 4580.	1.2	2

#	ARTICLE	IF	CITATIONS
429	Effectiveness of travel behavior and infrastructure change to mitigate heat exposure. Frontiers in Sustainable Cities, 0, 5, .	1.2	3
431	Risk factors for, and prediction of, exertional heat illness in Thoroughbred racehorses at British racecourses. Scientific Reports, 2023, 13, .	1.6	2
432	Changes in Land Cover and Management Affect Heat Stress and Labor Capacity. Earth's Future, 2023, 11, .	2.4	4
433	Heat stress in horses: a literature review. International Journal of Biometeorology, 0, , .	1.3	1
446	A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. European Journal of Applied Physiology, 2024, 124, 1-145.	1.2	1
477	WBGT Index Forecast Using Time Series Models inÂSmart Cities. Lecture Notes in Computer Science, 2024, , 347-358.	1.0	0