Intra-community spatial variation of size-fractionated in the Long Beach, CA area

Atmospheric Environment 42, 5374-5389

DOI: 10.1016/j.atmosenv.2008.02.060

Citation Report

#	Article	IF	CITATIONS
1	Linking Exposure Assessment Science With Policy Objectives for Environmental Justice and Breast Cancer Advocacy: The Northern California Household Exposure Study. American Journal of Public Health, 2009, 99, S600-S609.	2.7	80
2	Intra-Community Variability in Total Particle Number Concentrations in the San Pedro Harbor Area (Los Angeles, California). Aerosol Science and Technology, 2009, 43, 587-603.	3.1	45
3	Ambiguities inherent in sums-of-squares-based error statistics. Atmospheric Environment, 2009, 43, 749-752.	4.1	154
4	Intra-community spatial variation of size-fractionated organic compounds in Long Beach, California. Air Quality, Atmosphere and Health, 2009, 2, 69-88.	3.3	11
5	The effect of metal salts on quantification of elemental and organic carbon in diesel exhaust particles using thermal-optical evolved gas analysis. Atmospheric Chemistry and Physics, 2010, 10, 11447-11457.	4.9	43
6	Metallic components of traffic-induced urban aerosol, their spatial variation, and source apportionment. Environmental Monitoring and Assessment, 2010, 168, 561-574.	2.7	45
7	DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmospheric Environment, 2010, 44, 1386-1399.	4.1	69
8	Measuring Submicron-Size Fractionated Particulate Matter on Aluminum Impactor Disks. Radiocarbon, 2010, 52, 278-285.	1.8	5
9	Inter- and Intra-Community Variability in Continuous Coarse Particulate Matter (PM _{10-2.5}) Concentrations in the Los Angeles Area. Aerosol Science and Technology, 2010, 44, 526-540.	3.1	16
10	Influence of environmental conditions on carbonaceous particle concentrations within New Zealand. Journal of Aerosol Science, 2010, 41, 134-142.	3.8	26
11	Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities. Atmospheric Environment, 2010, 44, 2383-2392.	4.1	33
12	Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city. Atmospheric Research, 2011, 101, 893-901.	4.1	61
13	Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juárez, Chihuahua (México). Environmental Pollution, 2011, 159, 2476-2486.	7.5	58
14	Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmospheric Environment, 2011, 45, 2651-2662.	4.1	202
15	A study of air pollution of city clusters. Atmospheric Environment, 2011, 45, 3069-3077.	4.1	80
16	Historical trends in the mass and chemical species concentrations of coarse particulate matter in the Los Angeles Basin and relation to sources and air quality regulations. Journal of the Air and Waste Management Association, 2012, 62, 541-556.	1.9	21
17	Spatial-temporal variations in surface ozone in Northern China as observed during 2009–2010 and possible implications for future air quality control strategies. Atmospheric Chemistry and Physics, 2012, 12, 2757-2776.	4.9	178
18	Diurnal Trends in Oxidative Potential of Coarse Particulate Matter in the Los Angeles Basin and Their Relation to Sources and Chemical Composition. Environmental Science & amp; Technology, 2012, 46,	10.0	57

CITATION REPORT

#	Article	IF	CITATIONS
19	Intra-urban spatial variability of PM2.5-bound carbonaceous components. Atmospheric Environment, 2012, 60, 486-494.	4.1	20
20	On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions. Atmospheric Environment, 2012, 61, 378-386.	4.1	52
21	Examining the representativeness of home outdoor PM2.5, EC, and OC estimates for daily personal exposures in Southern California. Air Quality, Atmosphere and Health, 2012, 5, 335-351.	3.3	9
22	Sources of nickel, vanadium and black carbon in aerosols in Milwaukee. Atmospheric Environment, 2012, 59, 294-301.	4.1	38
23	Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: Spatial/temporal variability, size distribution and sources. Atmospheric Environment, 2013, 77, 250-259.	4.1	106
24	Derivation of PM ₁₀ size-selected human equivalent concentrations of inhaled nickel based on cancer and non-cancer effects on the respiratory tract. Inhalation Toxicology, 2014, 26, 559-578.	1.6	14
25	Nuclear Microscopy for Air-Pollutant Characterization and Its Advantages over Traditional Techniques. Journal of Applied Spectroscopy, 2014, 81, 145-150.	0.7	2
26	Predicting Primary PM _{2.5} and PM _{0.1} Trace Composition for Epidemiological Studies in California. Environmental Science & amp; Technology, 2014, 48, 4971-4979.	10.0	56
27	Gauging intraurban variability of ambient particulate matter arsenic and other air toxic metals from a network of monitoring sites. Atmospheric Environment, 2014, 89, 318-328.	4.1	9
28	The effect of seasonal variation on indoor and outdoor carbon monoxide concentrations in Eastern Mediterranean climate. Atmospheric Pollution Research, 2014, 5, 315-324.	3.8	20
29	Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010. Atmospheric Chemistry and Physics, 2014, 14, 9105-9128.	4.9	15
30	Passive sampling to capture the spatial variability of coarse particles by composition in Cleveland, OH. Atmospheric Environment, 2015, 105, 61-69.	4.1	24
31	Spatial pattern and distribution regularity of soil environmental quality in East China. Diqiu Huaxue, 2015, 34, 330-337.	0.5	1
32	Vertical characteristics of PM2.5 during the heating season in Tianjin, China. Science of the Total Environment, 2015, 523, 152-160.	8.0	47
33	Spatial and temporal variations in particulate matter concentrations in twelve schools environment in urban and overpopulated camps landscape. Building and Environment, 2015, 90, 157-167.	6.9	27
35	Microscale spatial distribution and health assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) at nine communities in Xi'an, China. Environmental Pollution, 2016, 218, 1065-1073.	7.5	55
36	Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China. Atmospheric Research, 2016, 171, 133-146.	4.1	110
37	Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia. Environment International, 2016, 91, 230-242.	10.0	34

#	Article	IF	CITATIONS
38	Sources and spatial distribution of particulate polycyclic aromatic hydrocarbons in Shanghai, China. Science of the Total Environment, 2017, 584-585, 307-317.	8.0	73
39	Source apportionment of fine particulate matter and risk of term low birth weight in California: Exploring modification by region and maternal characteristics. Science of the Total Environment, 2017, 605-606, 647-654.	8.0	41
40	Influence of fireworks displays on the chemical characteristics of PM2.5 in rural and suburban areas in Central and East China. Science of the Total Environment, 2017, 578, 476-484.	8.0	40
41	Long-term particulate matter modeling for health effect studies in California – Part 2: Concentrations and sources of ultrafine organic aerosols. Atmospheric Chemistry and Physics, 2017, 17, 5379-5391.	4.9	26
42	Comparison of atmospheric polycyclic aromatic hydrocarbon levels in three urban areas in Lebanon. Atmospheric Environment, 2018, 179, 260-267.	4.1	22
43	Chemical composition and redox activity of PM0.25 near Los Angeles International Airport and comparisons to an urban traffic site. Science of the Total Environment, 2018, 610-611, 1336-1346.	8.0	26
44	Analysis of the Characteristics and Sources of Carbonaceous Aerosols in PM2.5 in the Beijing, Tianjin, and Langfang Region, China. International Journal of Environmental Research and Public Health, 2018, 15, 1483.	2.6	42
45	Land-Use Regression Modeling of Source-Resolved Fine Particulate Matter Components from Mobile Sampling. Environmental Science & Technology, 2019, 53, 8925-8937.	10.0	29
46	Spatial homogeneity and heterogeneity of ambient air pollutants in Tehran. Science of the Total Environment, 2019, 697, 134123.	8.0	43
47	Assessment of Air Pollution Aggravation during Straw Burning in Hubei, Central China. International Journal of Environmental Research and Public Health, 2019, 16, 1446.	2.6	11
48	Estimation of personal exposure to fine particles (PM2.5) of ambient origin for healthy adults in Hong Kong. Science of the Total Environment, 2019, 654, 514-524.	8.0	31
49	Chemical Characteristics of Size-Resolved Aerosols in Coastal Areas during KORUS-AQ Campaign; Comparison of Ion Neutralization Model. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 387-399.	2.3	8
50	Seasonal variation, formation mechanisms and potential sources of PM2.5 in two typical cities in the Central Plains Urban Agglomeration, China. Science of the Total Environment, 2019, 657, 657-670.	8.0	58
51	PM events and changes in the chemical composition of urban aerosols: A case study in the western Mediterranean. Chemosphere, 2020, 244, 125520.	8.2	27
52	Temporal and spatial variability of PM10 in daycare centres in Perlis. IOP Conference Series: Earth and Environmental Science, 2020, 476, 012128.	0.3	1
53	A framework for setting up a country-wide network of regional surface PM2.5 sampling sites utilising a satellite-derived proxy – The COALESCE project, India. Atmospheric Environment, 2020, 234, 117544.	4.1	20
54	Insignificant Impact of the "Stay-At-Home―Order on Ambient Air Quality in the Memphis Metropolitan Area, U.S.A Atmosphere, 2020, 11, 630.	2.3	24
55	Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017. Journal of Environmental Sciences, 2020, 92, 187-199.	6.1	63

#	Article	IF	CITATIONS
56	Influence of Local Sources and Meteorological Parameters on the Spatial and Temporal Distribution of Ultrafine Particles in Augsburg, Germany. Frontiers in Environmental Science, 2021, 8, .	3.3	12
57	Intra–Community Scale Variability of Air Quality in the Center of a Megacity in South Korea: A High-Density Cost-Effective Sensor Network. Applied Sciences (Switzerland), 2021, 11, 9105.	2.5	3
58	How to obtain large amounts of location- and time-specific PM2.5 with homogeneous mass and composition? A possible approach, from particulate collection to chemical characterization. Atmospheric Pollution Research, 2021, 12, 101193.	3.8	1
60	Urban-scale Spatial-temporal Variability of Black Carbon and Winter Residential Wood Combustion Particles. Aerosol and Air Quality Research, 2011, 11, 473-481.	2.1	62
61	Characterization of Ultrafine Particles and Other Traffic Related Pollutants near Roadways in Beijing. Aerosol and Air Quality Research, 2015, 15, 1261-1269.	2.1	7
64	An interlaboratory comparison of aerosol inorganic ion measurements by ion chromatography: implications for aerosol pH estimate. Atmospheric Measurement Techniques, 2020, 13, 6325-6341.	3.1	16
66	Assessment of traffic-related air pollution (TRAP) at two near-road schools and residence in El Paso, Texas, USA. Atmospheric Pollution Research, 2022, 13, 101304.	3.8	0
67	Collocated Measurements of Lightâ€Absorbing Organic Carbon in PM _{2.5} : Observation Uncertainty and Organic Tracerâ€Based Source Apportionment. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
68	Characteristics of water-soluble organic carbon (WSOC) in PM2.5 in inland and coastal cities, China. Atmospheric Pollution Research, 2022, 13, 101447.	3.8	4
69	Investigation of Organic Carbon Profiles and Sources of Coarse Pm in Los Angeles. SSRN Electronic Journal, 0, , .	0.4	0
70	Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China. Environmental Pollution, 2022, 312, 119966.	7.5	8
71	Using Low-Cost Sensors to Assess PM2.5 Concentrations at Four South Texan Cities on the U.S.—Mexico Border. Atmosphere, 2022, 13, 1554.	2.3	5
72	Investigation of organic carbon profiles and sources of coarse PM in Los Angeles. Environmental Pollution, 2022, 314, 120264.	7.5	6
73	Chemistry of PM2.5 in haze events in two East Asian cities during winter–spring 2019. Atmospheric Environment, 2023, 293, 119457.	4.1	4

CITATION REPORT