Prediction of an organism's inactivation patterns from the determined at the end of three non-isothermal heat treated at the e

International Journal of Food Microbiology 126, 98-111 DOI: 10.1016/j.ijfoodmicro.2008.05.007

Citation Report

#	Article	IF	CITATIONS
1	Dynamic Model of Heat Inactivation Kinetics for Bacterial Adaptation. Applied and Environmental Microbiology, 2009, 75, 2590-2597.	3.1	32
2	Extracting Survival Parameters from Isothermal, Isobaric, and "Isoâ€concentration―Inactivation Experiments by the "3 End Points Method― Journal of Food Science, 2009, 74, R1-R11.	3.1	25
3	Stochastic and Deterministic Model of Microbial Heat Inactivation. Journal of Food Science, 2010, 75, R59-70.	3.1	27
4	Comparing the effectiveness of thermal and non-thermal food preservation processes: the concept of equivalent efficacy. , 2010, , 464-488.		3
5	Accelerated shelf life testing of foods. , 2011, , 482-506.		8
7	Enzymatic browning in sliced and puréed avocado: A fractal kinetic study. Journal of Food Engineering, 2011, 105, 210-215.	5.2	23
8	Estimating microbial survival parameters under high hydrostatic pressure. Food Research International, 2012, 46, 314-320.	6.2	9
9	On Quantifying Nonthermal Effects on the Lethality of Pressureâ€Assisted Heat Preservation Processes. Journal of Food Science, 2012, 77, R47-56.	3.1	10
10	An optimization algorithm for estimation of microbial survival parameters during thermal processing. International Journal of Food Microbiology, 2012, 154, 52-58.	4.7	11
11	ESTIMATION OF THE THERMOCHEMICAL NONISOTHERMAL INACTIVATION BEHAVIOR OF BACILLUS COAGULANS SPORES IN NUTRIENT BROTH WITH OREGANO ESSENTIAL OIL. Journal of Food Processing and Preservation, 2013, 37, 962-969.	2.0	3
12	Estimating microbial survival parameters from dynamic survival data using Microsoft Excel. International Journal of Food Science and Technology, 2013, 48, 1841-1846.	2.7	4
13	Parameter Estimation in Food Science. Annual Review of Food Science and Technology, 2013, 4, 401-422.	9.9	68
14	A comparison of two methods for estimating microbial survival parameters from dynamic survival data. International Journal of Food Science and Technology, 2013, 48, 1109-1113.	2.7	3
15	Thermal Inactivation of Microorganisms. Critical Reviews in Food Science and Nutrition, 2014, 54, 1371-1385.	10.3	150
16	Estimating thermal degradation kinetics parameters from the endpoints of non-isothermal heat processes or storage. Food Research International, 2014, 66, 313-324.	6.2	16
17	Modeling the Fate of <i>Escherichia coli</i> O157:H7 and <i>Salmonella enterica</i> in the Agricultural Environment: Current Perspective. Journal of Food Science, 2014, 79, R421-7.	3.1	15
18	Predicting chemical degradation during storage from two successive concentration ratios: Theoretical investigation. Food Research International, 2015, 75, 174-181.	6.2	6
19	Predicting anthocyanins' isothermal and non-isothermal degradation with the endpoints method. Food Chemistry, 2015, 187, 537-544.	8.2	17

CITATION REPORT

#	Article	IF	CITATIONS
20	A kinetic model and endpoints method for volatiles formation in stored fresh fish. Food Research International, 2016, 86, 156-161.	6.2	11
21	Calculating the degradation kinetic parameters of thiamine by the isothermal version of the endpoints method. Food Research International, 2016, 79, 73-80.	6.2	14
22	High Pressure Processing in Combination with High Temperature and Other Preservation Factors. Food Engineering Series, 2016, , 193-215.	0.7	9
23	A New Look at Kinetics in Relation to Food Storage. Annual Review of Food Science and Technology, 2017, 8, 135-153.	9.9	14
24	Modeling the degradation kinetics of ascorbic acid. Critical Reviews in Food Science and Nutrition, 2018, 58, 1478-1494.	10.3	32
25	Microwave pasteurization of apple juice: Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium at 80–90°C. Food Microbiology, 2020, 87, 103382.	4.2	29
26	On optimum dynamic temperature profiles for thermal inactivation kinetics determination. Journal of Food Science, 2021, 86, 2172-2193.	3.1	2
28	Procesamiento no térmico de alimentos. Scientia Agropecuaria, 2010, , 81-93.	1.0	5
29	Assessing the Pressure's Direct Contribution to the Efficacy of Pressure-Assisted Thermal Sterilization. Food Engineering Reviews, 2022, 14, 201-211.	5.9	3
30	The probability of bacterial spores surviving a thermal process: The 12D myth and other issues with its quantitative assessment. Critical Reviews in Food Science and Nutrition, 0, , 1-15.	10.3	1