Identification of the optic nerve head with genetic algor

Artificial Intelligence in Medicine 43, 243-259 DOI: 10.1016/j.artmed.2008.04.005

Citation Report

#	Article	IF	CITATIONS
1	3-D segmentation of the rim and cup in spectral-domain optical coherence tomography volumes of the optic nerve head. Proceedings of SPIE, 2009, , .	0.8	12
2	Localisation of the optic disc by means of GA-optimised Topological Active Nets. Image and Vision Computing, 2009, 27, 1572-1584.	2.7	30
3	Detection of the Optic Nerve Head in Fundus Images of the Retina Using the Hough Transform for Circles. Journal of Digital Imaging, 2010, 23, 332-341.	1.6	77
4	Detection of the Optic Nerve Head in Fundus Images of the Retina with Gabor Filters and Phase Portrait Analysis. Journal of Digital Imaging, 2010, 23, 438-453.	1.6	70
5	Segmentation of the Optic Disc in 3-D OCT Scans of the Optic Nerve Head. IEEE Transactions on Medical Imaging, 2010, 29, 159-168.	5.4	144
6	Segmentation of the optic disk in color eye fundus images using an adaptive morphological approach. Computers in Biology and Medicine, 2010, 40, 124-137.	3.9	144
7	Digital Image Processing for Ophthalmology: Detection of the Optic Nerve Head. Synthesis Lectures on Biomedical Engineering, 2011, 6, 1-106.	0.1	12
8	RIM-ONE: An open retinal image database for optic nerve evaluation. , 2011, , .		282
9	Foundations on Natural and Artificial Computation. Lecture Notes in Computer Science, 2011, , .	1.0	0
10	Automated recognition of lesions in retinal images using artificial neural networks. , 2012, , .		0
11	Hybrid clustering method for optic disc segmentation and feature extraction in retinal images. , 2012, ,		1
12	Optic disc localization in retinal images using histogram matching. Eurasip Journal on Image and Video Processing, 2012, 2012, .	1.7	82
13	Variabilidad entre expertos al delimitar el borde y área papilar. Archivos De La Sociedad Espanola De Oftalmologia, 2013, 88, 168-173.	0.1	4
14	Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Computerized Medical Imaging and Graphics, 2013, 37, 581-596.	3.5	136
15	Variability between experts in defining the edge and area of the optic nerve head. Archivos De La Sociedad Espanola De Oftalmologia, 2013, 88, 168-173.	0.1	3
16	A morphologic two-stage approach for automated optic disk detection in color eye fundus images. Pattern Recognition Letters, 2013, 34, 476-485.	2.6	59
17	Automatic Detection of Optic Disc Based on PCA and Mathematical Morphology. IEEE Transactions on Medical Imaging, 2013, 32, 786-796.	5.4	171
19	A Semi-automated System for Optic Nerve Head Segmentation in Digital Retinal Images. , 2014, , .		13

		CITATION REPORT	
# 20	ARTICLE Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation. , 2014, , .	IF	CITATIONS 266
21	Exudates and optic disk detection in retinal images of diabetic patients. Concurrency Computatic Practice and Experience, 2015, 27, 172-192.	n 1.4	6
22	Bioinformatics and Biomedical Engineering. Lecture Notes in Computer Science, 2015, , .	1.0	3
23	Automatic Segmentation of Optic Disc in Eye Fundus Images: A Survey. Electronic Letters on Con Vision and Image Analysis, 2015, 14, .	iputer 0.5	7
24	Automated segmentation of optic disc area using mathematical morphology and active contour. , \cdot	. 2015,	6
25	Active discs for automated optic disc segmentation. , 2015, , .		22
26	Leveraging the crowd for annotation of retinal images. , 2015, 2015, 7736-9.		7
27	Automatic Detection of Glaucoma Using Disc Optic Segmentation and Feature Extraction. , 2015	· · ·	4
28	Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques. Australasian Physical and Engineering Sciences in Medicine, 2015, 38, 643-655.	1.4	49
29	Vessel transform for automatic optic disk detection in retinal images. IET Image Processing, 2015 743-750.	, 9, 1.4	18
30	Localization and segmentation of optic disc in retinal images using Circular Hough transform and Grow Cut algorithm. PeerJ, 2016, 4, e2003.	0.9	87
31	A new optic disc detection method in retinal images based on concentric circular mask. , 2016, , .		0
32	Detection of regions of interest in retinal images using artificial neural networks and K-means clustering. , 2016, , .		5
33	Optic disc segmentation by weighting the vessels density within the strongest candidates. , 2016	, , .	0
34	Optic Disc Localization Using Directional Models. IEEE Transactions on Image Processing, 2016, 2 4433-4442.	5, 6.0	21
35	Optic disc detection in retinal images using algorithms committee with weighted voting. IEEE Lat America Transactions, 2016, 14, 2446-2454.	n 1.2	11
36	An Occlusion-Resistant Ellipse Detection Method by Joining Coelliptic Arcs. Lecture Notes in Computer Science, 2016, , 492-507.	1.0	5
37	Localization of optic disc and fovea in retinal images using intensity based line scanning analysis. Computers in Biology and Medicine, 2017, 87, 382-396.	3.9	35

RΤ

#	Article	IF	CITATIONS
38	Evolutionary Computing Enriched Computer-Aided Diagnosis System for Diabetic Retinopathy: A Survey. IEEE Reviews in Biomedical Engineering, 2017, 10, 334-349.	13.1	49
39	Robust and accurate optic disk localization using vessel symmetry line measure in fundus images. Biocybernetics and Biomedical Engineering, 2017, 37, 466-476.	3.3	24
40	Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features. Neuroinformatics, 2017, 15, 231-245.	1.5	13
41	A review of feature-based retinal image analysis. Expert Review of Ophthalmology, 2017, 12, 207-220.	0.3	24
42	A robust algorithm for optic disc segmentation and fovea detection in retinal fundus images. Current Directions in Biomedical Engineering, 2017, 3, 533-537.	0.2	6
43	Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network. Pattern Recognition and Image Analysis, 2017, 27, 618-624.	0.6	307
44	Fast detection of the main anatomical structures in digital retinal images based on intra- and inter-structure relational knowledge. Computer Methods and Programs in Biomedicine, 2017, 149, 55-68.	2.6	24
45	Deep Retinal Image Segmentation: A FCN-Based Architecture with Short and Long Skip Connections for Retinal Image Segmentation. Lecture Notes in Computer Science, 2017, , 713-722.	1.0	20
46	Fast Optic Disc Segmentation in Retina Using Polar Transform. IEEE Access, 2017, 5, 12293-12300.	2.6	57
47	Joint optic disc and cup boundary extraction from monocular fundus images. Computer Methods and Programs in Biomedicine, 2017, 147, 51-61.	2.6	46
48	Optic disc segmentation based on variational model with multiple energies. Pattern Recognition, 2017, 64, 226-235.	5.1	43
49	Ant Colony Optimization-based method for optic cup segmentation in retinal images. Applied Soft Computing Journal, 2017, 52, 409-417.	4.1	48
50	A survey on automatic detection of hard exudates in diabetic retinopathy. , 2017, , .		8
51	Automatic optic cup segmentation using K $ ilde{A}$ ¥sa's circle fitting technique. , 2017, , .		3
52	A unified approach for detection of diagnostically significant regions-of-interest in retinal fundus images. , 2017, , .		6
53	Similarity regularized sparse group lasso for cup to disc ratio computation. Biomedical Optics Express, 2017, 8, 3763.	1.5	21
54	CDR based glaucoma detection using fundus images: a review. International Journal of Applied Pattern Recognition, 2017, 4, 261.	0.3	9
55	Eye gaze– based optic disc detection system. Journal of Intelligent and Fuzzy Systems, 2018, 34, 1713-1722.	0.8	4

#	Article	IF	CITATIONS
56	Fast optic disc segmentation using FFT-based template-matching and region-growing techniques. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2018, 6, 101-112.	1.3	10
57	Optic Disk Detection in Fundus Image Based on Structured Learning. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 224-234.	3.9	45
58	Automatic optic disk detection in retinal images using hybrid vessel phase portrait analysis. Medical and Biological Engineering and Computing, 2018, 56, 583-598.	1.6	11
59	Learning supervised descent directions for optic disc segmentation. Neurocomputing, 2018, 275, 350-357.	3.5	21
60	AN UNCONSTRAINED ELLIPSE FITTING TECHNIQUE AND APPLICATION TO OPTIC CUP SEGMENTATION., 2018, , .		3
61	Automatic Optic Disc Localization Using Particle Swarm Optimization Technique. , 2018, , .		Ο
62	Automatic Detection of Optic Disc in Retina Image Using CNN and CRF. , 2018, , .		2
63	An Efficient and Comprehensive Labeling Tool for Large-Scale Annotation of Fundus Images. Lecture Notes in Computer Science, 2018, , 95-104.	1.0	4
64	Automatic Optic Disk and Cup Segmentation of Fundus Images Using Deep Learning. , 2018, , .		34
65	Fundus image classification methods for the detection of glaucoma: A review. Microscopy Research and Technique, 2018, 81, 1105-1121.	1.2	60
66	High-Performance Optic Disc Segmentation Using Convolutional Neural Networks. , 2018, , .		12
67	G-Eyenet: A Convolutional Autoencoding Classifier Framework for the Detection of Glaucoma from Retinal Fundus Images. , 2018, , .		30
68	A Multi-Anatomical Retinal Structure Segmentation System for Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding. IEEE Journal of Translational Engineering in Health and Medicine, 2018, 6, 1-23.	2.2	22
69	Localisation and segmentation of optic disc with the fractionalâ€order Darwinian particle swarm optimisation algorithm. IET Image Processing, 2018, 12, 1303-1312.	1.4	24
70	Dense Fully Convolutional Segmentation of the Optic Disc and Cup in Colour Fundus for Glaucoma Diagnosis. Symmetry, 2018, 10, 87.	1.1	131
71	A novel method for retinal optic disc detection using bat meta-heuristic algorithm. Medical and Biological Engineering and Computing, 2018, 56, 2015-2024.	1.6	22
72	Laterality Classification of Fundus Images Using Interpretable Deep Neural Network. Journal of Digital Imaging, 2018, 31, 923-928.	1.6	24
73	Automatic detection of optic disc in color fundus retinal images using circle operator. Biomedical Signal Processing and Control, 2018, 45, 274-283.	3.5	15

	CITATION	Report	
#	Article	IF	Citations
74	Multiloss Function Based Deep Convolutional Neural Network for Segmentation of Retinal Vasculature into Arterioles and Venules. BioMed Research International, 2019, 2019, 1-17.	0.9	16
75	Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Medical Informatics and Decision Making, 2019, 19, 136.	1.5	75
76	Current status and future trends of clinical diagnoses via image-based deep learning. Theranostics, 2019, 9, 7556-7565.	4.6	66
77	A Novel Segmentation Method for Optic Disc and Optic Cup Based on Deformable U-net. , 2019, , .		4
78	TPU Cloud-Based Generalized U-Net for Eye Fundus Image Segmentation. IEEE Access, 2019, 7, 142379-142387.	2.6	21
79	Saliencyâ€Based Segmentation of Optic Disc in Retinal Images. Chinese Journal of Electronics, 2019, 28, 71-75.	0.7	14
80	Optic Disc Segmentation Using Cascaded Multiresolution Convolutional Neural Networks. , 2019, , .		9
81	Conic sections fitting in disperse data using Differential Evolution. Applied Soft Computing Journal, 2019, 85, 105769.	4.1	2
82	Lightweight cascade framework for optic disc segmentation. IET Image Processing, 2019, 13, 1805-1810.	1.4	1
83	Fundus image quality assessment: survey, challenges, and future scope. IET Image Processing, 2019, 13, 1211-1224.	1.4	40
84	Computer-aided diagnosis of cataract using deep transfer learning. Biomedical Signal Processing and Control, 2019, 53, 101533.	3.5	80
85	Rim-to-Disc Ratio Outperforms Cup-to-Disc Ratio for Glaucoma Prescreening. Scientific Reports, 2019, 9, 7099.	1.6	27
86	Automatic Segmentation of Optic Disc Using Affine Snakes in Gradient Vector Field. , 2019, , .		6
87	Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment. IEEE Transactions on Medical Imaging, 2019, 38, 2211-2218.	5.4	135
88	Automatic optic disk detection and segmentation by variational active contour estimation in retinal fundus images. Signal, Image and Video Processing, 2019, 13, 1191-1198.	1.7	26
89	Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 1417-1426.	3.9	49
90	An Extensive Review on Various Fundus Databases Use for Development of Computer-Aided Diabetic Retinopathy Screening Tool. Advances in Intelligent Systems and Computing, 2019, , 407-418.	0.5	3
91	Automatic Cataract Detection in Fundus Retinal Images using Singular Value Decomposition. , 2019, , .		2

#	Article	IF	Citations
92	Localization of the Optic Disc Using Red and Green Channels of the Retinal Images. , 2019, , .		0
93	5. Intelligent approach for retinal disease identification. , 2019, , 99-129.		0
94	A Three Phases Procedure for Optic Disc Segmentation in Retinal Images. , 2019, , .		0
95	Automatic landmark detection in fundus photography. , 2019, , 79-93.		0
96	Computational Methods for Exudates Detection and Macular Edema Estimation in Retinal Images: A Survey. Archives of Computational Methods in Engineering, 2019, 26, 1193-1220.	6.0	14
97	Automatic Determination of Vertical Cup-to-Disc Ratio in Retinal Fundus Images for Glaucoma Screening. IEEE Access, 2019, 7, 8527-8541.	2.6	23
98	Automated techniques for blood vessels segmentation through fundus retinal images: A review. Microscopy Research and Technique, 2019, 82, 153-170.	1.2	45
99	Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images. Clinical and Experimental Ophthalmology, 2019, 47, 484-489.	1.3	27
100	A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends. Pattern Analysis and Applications, 2019, 22, 767-802.	3.1	59
101	Towards Accurate Segmentation of Retinal Vessels and the Optic Disc in Fundoscopic Images with Generative Adversarial Networks. Journal of Digital Imaging, 2019, 32, 499-512.	1.6	130
102	IDRiD: Diabetic Retinopathy – Segmentation and Grading Challenge. Medical Image Analysis, 2020, 59, 101561.	7.0	162
103	REFUCEÂChallenge: A unified framework for evaluating automatedÂmethods for glaucomaÂassessment from fundus photographs. Medical Image Analysis, 2020, 59, 101570.	7.0	354
104	A new and effective method for human retina optic disc segmentation with fuzzy clustering method based on active contour model. Medical and Biological Engineering and Computing, 2020, 58, 25-37.	1.6	21
105	Ophthalmic diagnosis using deep learning with fundus images – A critical review. Artificial Intelligence in Medicine, 2020, 102, 101758.	3.8	125
106	Deep Learning and Transfer Learning for Optic Disc Laterality Detection: Implications for Machine Learning in Neuro-Ophthalmology. Journal of Neuro-Ophthalmology, 2020, 40, 178-184.	0.4	22
107	Machine Learning Techniques for Ophthalmic Data Processing: A Review. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3338-3350.	3.9	38
108	Automatic Detection of Diabetic Eye Disease Through Deep Learning Using Fundus Images: A Survey. IEEE Access, 2020, 8, 151133-151149.	2.6	72
109	Evaluation of LBP Variants in Retinal Blood Vessels Segmentation Using Machine Learning. , 2020, , .		7

	Стл	ation Report	
# 110	ARTICLE Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Translational Vision Science and Technology, 2020, 9, 55.	lF 1.1	Citations
111	A fully convolutional neural network approach for the localization of optic disc in retinopathy of prematurity diagnosis. Journal of Intelligent and Fuzzy Systems, 2020, 38, 6269-6278.	0.8	4
112	A new optic disc segmentation method using a modified Dolph-Chebyshev matched filter. Biomedical Signal Processing and Control, 2020, 59, 101932.	3.5	10
113	A novel hybrid segmentation approach for optic papilla detection in high resolution fundus images of retina. Multimedia Tools and Applications, 2020, 79, 23531-23545.	2.6	0
114	Statistical Parameters for Glaucoma Detection from Color Fundus Images. Procedia Computer Science, 2020, 171, 2675-2683.	1.2	12
115	Automated segmentation of optic disc using statistical region merging and morphological operations. Physical and Engineering Sciences in Medicine, 2020, 43, 857-869.	1.3	8
116	Automated macula proximity diagnosis for early finding of diabetic macular edema. Research on Biomedical Engineering, 2020, 36, 249-265.	1.5	3
117	Learning the retinal anatomy from scarce annotated data using self-supervised multimodal reconstruction. Applied Soft Computing Journal, 2020, 91, 106210.	4.1	19
118	A novel method for optic disc detection in retinal images using the cuckoo search algorithm and structural similarity index. Multimedia Tools and Applications, 2020, 79, 23387-23400.	2.6	10
119	Optic Disc Segmentation in Fundus Images with Deep Learning Object Detector. Journal of Computer Science, 2020, 16, 591-600.	0.5	2
120	Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models. Applied Soft Computing Journal, 2020, 92, 106328.	4.1	52
121	Correcting Automatic Cataract Diagnosis Systems Against Noisy/Blur Environment. , 2020, , .		1
122	Machine learning applied to retinal image processing for glaucoma detection: review and perspective. BioMedical Engineering OnLine, 2020, 19, 20.	1.3	49
123	Simultaneous segmentation of the optic disc and fovea in retinal images using evolutionary algorithms. Neural Computing and Applications, 2021, 33, 1903-1921.	3.2	4
124	Application of an attention U-Net incorporating transfer learning for optic disc and cup segmentation. Signal, Image and Video Processing, 2021, 15, 913-921.	1.7	19
125	CAFR-CNN: coarse-to-fine adaptive faster R-CNN for cross-domain joint optic disc and cup segmentation. Applied Intelligence, 2021, 51, 5701-5725.	3.3	8
126	DeepOpht: Medical Report Generation for Retinal Images via Deep Models and Visual Explanation. , 202 , .	21,	24
127	A Study of Bilateral Symmetry in Color Fundus Photographs. IEEE Access, 2021, 9, 109624-109651.	2.6	0

#	Article	IF	Citations
128	A Novel IR Analyzer Based Property Extraction for Segmented Branch Retinal Artery Occlusion and GWO-CNN Based Classification – An Ophthalmic Outcome. IETE Journal of Research, 2023, 69, 2164-2176.	1.8	2
129	Improved optic disc and cup segmentation in Glaucomatic images using deep learning architecture. Multimedia Tools and Applications, 2021, 80, 30143-30163.	2.6	10
130	A Neural Network Based Optic Disc Segmentation. , 2021, , .		0
131	Automatic Diagnosis of Glaucoma using Ensemble based Deep Learning Model. , 2021, , .		3
132	Two-stage framework for optic disc segmentation and estimation of cup-to-disc ratio using deep learning technique. Journal of Ambient Intelligence and Humanized Computing, 0, , 1.	3.3	9
133	3D augmented fundus images for identifying glaucoma via transferred convolutional neural networks. International Ophthalmology, 2021, 41, 2065-2072.	0.6	9
134	Automated segmentation and quantitative analysis of optic disc and fovea in fundus images. Multimedia Tools and Applications, 2021, 80, 24205.	2.6	5
135	A Comprehensive Review of Markov Random Field and Conditional Random Field Approaches in Pathology Image Analysis. Archives of Computational Methods in Engineering, 2022, 29, 609-639.	6.0	33
136	Automated segmentation of optic disc and optic cup for glaucoma assessment using improved UNET++ architecture. Biocybernetics and Biomedical Engineering, 2021, 41, 819-832.	3.3	32
137	Applications of deep learning in fundus images: A review. Medical Image Analysis, 2021, 69, 101971.	7.0	175
138	Interpreting Deep Learning Studies in Glaucoma: Unresolved Challenges. Asia-Pacific Journal of Ophthalmology, 2021, 10, 261-267.	1.3	14
139	RETINAL IMAGING AND ANALYSIS USING MACHINE LEARNING WITH INFORMATION FUSION OF THE FUNCTIONAL AND STRUCTURAL FEATURES BASED ON A DUAL-MODAL FUNDUS CAMERA. Journal of Mechanics in Medicine and Biology, 2021, 21, 2150030.	0.3	2
140	ANN Classification and Modified Otsu Labeling on Retinal Blood Vessels. Current Signal Transduction Therapy, 2021, 16, 82-90.	0.3	0
141	Segmentation of Glaucoma Disease based on Modified Kernel Fuzzy C-Means Algorithm. , 2021, , .		0
142	Contextualized Keyword Representations for Multi-modal Retinal Image Captioning. , 2021, , .		11
143	Detection of Optic Disc Abnormalities in Color Fundus Photographs Using Deep Learning. Journal of Neuro-Ophthalmology, 2021, 41, 368-374.	0.4	18
144	A study on the use of Edge TPUs for eye fundus image segmentation. Engineering Applications of Artificial Intelligence, 2021, 104, 104384.	4.3	23
145	Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning. IEEE Transactions on Medical Imaging, 2021, 40, 2795-2807.	5.4	14

#	Article	IF	CITATIONS
146	Artificial intelligence in ophthalmopathy and ultra-wide field image: A survey. Expert Systems With Applications, 2021, 182, 115068.	4.4	15
147	Automated segmentation algorithm with deep learning framework for early detection of glaucoma. Concurrency Computation Practice and Experience, 2021, 33, e6181.	1.4	4
148	An Empirical Analysis of Hierarchical and Partition-Based Clustering Techniques in Optic Disc Segmentation. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 85-96.	0.5	4
149	A Review on Glaucoma Disease Detection Using Computerized Techniques. IEEE Access, 2021, 9, 37311-37333.	2.6	33
150	The Use of U-Net Lite and Extreme Gradient Boost (XGB) for Glaucoma Detection. IEEE Access, 2021, 9, 47411-47424.	2.6	16
151	Approaches for Early Detection of Glaucoma Using Retinal Images: A Performance Analysis. Studies in Big Data, 2020, , 213-238.	0.8	2
152	Deploying Deep Learning into Practice: A Case Study on Fundus Segmentation. Communications in Computer and Information Science, 2020, , 411-422.	0.4	1
153	Continuous Adaptation for Interactive Object Segmentation by Learning from Corrections. Lecture Notes in Computer Science, 2020, , 579-596.	1.0	24
154	Leveraging Undiagnosed Data for Glaucoma Classification with Teacher-Student Learning. Lecture Notes in Computer Science, 2020, , 731-740.	1.0	10
155	Sliding Box Method for Automated Detection of the Optic Disc and Macula in Retinal Images. Lecture Notes in Computer Science, 2015, , 250-261.	1.0	5
156	Optic Disc Recognition Method for Retinal Images. Advances in Intelligent Systems and Computing, 2016, , 875-889.	0.5	1
157	Fast Optic Disc Segmentation in Retinal Images Using Polar Transform. Communications in Computer and Information Science, 2017, , 38-49.	0.4	6
158	Localization and Segmentation of the Optic Nerve Head in Eye Fundus Images Using Pyramid Representation and Genetic Algorithms. Lecture Notes in Computer Science, 2011, , 431-440.	1.0	6
159	Computerized retinal image analysis - a survey. Multimedia Tools and Applications, 2020, 79, 22389-22421.	2.6	22
160	Optic Cup segmentation from retinal fundus images using Glowworm Swarm Optimization for glaucoma detection. Biomedical Signal Processing and Control, 2020, 60, 102004.	3.5	35
161	Visualizing and Understanding Inherent Image Features in CNN-based Glaucoma Detection. , 2020, , .		5
162	Hybrid machine learning architecture for automated detection and grading of retinal images for diabetic retinopathy. Journal of Medical Imaging, 2020, 7, 1.	0.8	15
163	Stack-U-Net: refinement network for improved optic disc and cup image segmentation. , 2019, , .		15

#	Article	IF	CITATIONS
165	Deriving external forces via convolutional neural networks for biomedical image segmentation. Biomedical Optics Express, 2019, 10, 3800.	1.5	23
166	Performance Evaluation of Optic Disc Segmentation Algorithms in Retinal Fundus Images : an Empirical Investigation. International Journal of Advanced Science and Technology, 2014, 69, 19-32.	0.3	2
167	A Systematic Review of Deep Learning Methods Applied to Ocular Images. Ciencia E IngenierÃa Neogranadina, 2019, 30, 9-26.	0.1	11
168	Automatic Extraction of the Optic Disc Boundary for Detecting Retinal Diseases. , 2013, , .		3
169	FIRE: Fundus Image Registration dataset. Journal for Modeling in Ophthalmology, 2017, 1, 16-28.	0.1	57
170	Deep learning on fundus images detects glaucoma beyond the optic disc. Scientific Reports, 2021, 11, 20313.	1.6	40
171	Localization of Optic Disc in Color Fundus Images. Communications in Computer and Information Science, 2012, , 178-186.	0.4	0
172	Pattern Detection in Images Using LBP-Based Relational Operators. Lecture Notes in Computer Science, 2013, , 11-20.	1.0	1
173	The Singapore Eye Vessel Assessment System. , 2014, , 159-176.		4
174	Localizing Optic Disk using LBP, SIFT and ICA. International Journal of Computer Applications, 2014, 102, 12-15.	0.2	0
175	Optical Disc and Blood Vessel Segmentation in Retinal Fundus Images. Academic Journal of Nawroz University, 2019, 8, 67.	0.1	2
176	Fast Optic Disc Localization Using Viola-Jones Algorithm. IFMBE Proceedings, 2020, , 435-441.	0.2	0
177	Retinal Vascular Characteristics. Advances in Computer Vision and Pattern Recognition, 2020, , 309-354.	0.9	3
178	Review of Various Tasks Performed in the Preprocessing Phase of a Diabetic Retinopathy Diagnosis System. Current Medical Imaging, 2020, 16, 397-426.	0.4	2
179	An Efficient Weakly-Supervised Learning Method for Optic Disc Segmentation. , 2020, , .		4
180	Automatic Localization of Optic Disc in Retinal Fundus Image Based on Unsupervised Learning. Studies in Big Data, 2021, , 245-278.	0.8	3
181	Recent Techniques and Trends for Retinal Blood Vessel Extraction and Tortuosity Evaluation: A Comprehensive Review. IEEE Access, 2020, 8, 197787-197816.	2.6	10
182	Fusioning Multiple Treatment Retina Images into a Single One. Communications in Computer and Information Science, 2020, , 96-103.	0.4	0

#	Article	IF	CITATIONS
183	Machine Learning and Deep Learning: Recent Overview in Medical Care. Advances in Intelligent Systems and Computing, 2021, , 223-231.	0.5	2
184	Detection of Optic Disc Localization from Retinal Fundus Image Using Optimized Color Space. Journal of Digital Imaging, 2022, 35, 302-319.	1.6	6
185	Optic Disc Segmentation on Eye Retinal Image with U-Net Convolutional Neural Network Architecture. , 2021, , .		0
187	A Novel Hybrid Approach Based on Deep CNN to Detect Glaucoma Using Fundus Imaging. Electronics (Switzerland), 2022, 11, 26.	1.8	44
188	Segmentation ofÂSignificant Regions inÂRetinal Images: Perspective ofÂU-Net Network Through aÂComparative Approach. Communications in Computer and Information Science, 2022, , 29-40.	0.4	0
189	Peripapillary Atrophy Segmentation and Classification Methodologies for Glaucoma Image Detection: A Review. Current Medical Imaging, 2022, 18, .	0.4	0
190	A Deep Learning System for Fully Automated Retinal Vessel Measurement in High Throughput Image Analysis. Frontiers in Cardiovascular Medicine, 2022, 9, 823436.	1.1	14
191	Computerâ€aided diagnosis of cataract severity using retinal fundus images and deep learning. Computational Intelligence, 2022, 38, 1450-1473.	2.1	9
192	Machine Learning and Deep Learning Techniques for Optic Disc and Cup Segmentation – A Review. Clinical Ophthalmology, 2022, Volume 16, 747-764.	0.9	9
193	ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images. SN Applied Sciences, 2022, 4, 1.	1.5	19
194	Multi-Feature Extraction with Ensemble Network for Tracing Chronic Retinal Disorders. , 2021, , .		3
196	El menosprecio de lo próximo. Comentario respecto al editorial de agosto de 2021 sobre el estado actual de la inteligencia artificial en OftalmologÃa. Archivos De La Sociedad Espanola De Oftalmologia, 2022, 97, 417-417.	0.1	0
197	Glaucoma diagnosis using multi-feature analysis and a deep learning technique. Scientific Reports, 2022, 12, 8064.	1.6	18
199	A Comprehensive Review of Deep Learning Strategies in Retinal Disease Diagnosis Using Fundus Images. IEEE Access, 2022, 10, 57796-57823.	2.6	19
200	Neglect what is near. Commentary regarding the August 2021 editorial on the current state of Artificial Intelligence in Ophthalmology. Archivos De La Sociedad Espanola De Oftalmologia, 2022, , .	0.1	0
201	Machine Learning for Cataract Classification/Grading on Ophthalmic Imaging Modalities: A Survey. , 2022, 19, 184-208.		26
202	PAPILA: Dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. Scientific Data, 2022, 9, .	2.4	19
203	Central retinal artery: branching patterns on the disc of optic nerve. Reports of Morphology, 2022, 28, 13-19.	0.0	Ο

#	Article	IF	CITATIONS
204	Graph deep network for optic disc and optic cup segmentation for glaucoma disease using retinal imaging. Physical and Engineering Sciences in Medicine, 2022, 45, 847-858.	1.3	3
205	Brain Tumor Detection and Classification Using Convolutional Neural Network (CNN). , 2022, , .		5
206	Retinal Glaucoma Public Datasets: What Do We Have and What Is Missing?. Journal of Clinical Medicine, 2022, 11, 3850.	1.0	4
208	Artificial Intelligence-based computer-aided diagnosis of glaucoma using retinal fundus images. Expert Systems With Applications, 2022, 207, 117968.	4.4	20
209	RaPiD: a Raspberry Pi-based optical fundoscope. ISSS Journal of Micro and Smart Systems, 0, , .	1.0	0
210	Automatic detection of glaucoma via fundus imaging and artificial intelligence: A review. Survey of Ophthalmology, 2023, 68, 17-41.	1.7	18
211	A review on the use of deep learning for medical images segmentation. Neurocomputing, 2022, 506, 311-335.	3.5	30
212	Optic disc detection and segmentation using saliency mask in retinal fundus images. Computers in Biology and Medicine, 2022, 150, 106067.	3.9	7
213	Histogram of Oriented Gradients (HOG)-Based Artificial Neural Network (ANN) Classifier for Glaucoma Detection. International Journal of Swarm Intelligence Research, 2022, 13, 1-32.	0.5	1
214	Multiple Preprocessing Hybrid Level Set Model for Optic Disc Segmentation in Fundus Images. Sensors, 2022, 22, 6899.	2.1	2
215	Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. Multimedia Tools and Applications, 2023, 82, 14471-14525.	2.6	2
216	Deep learning approaches based improved light weight U-Net with attention module for optic disc segmentation. Physical and Engineering Sciences in Medicine, 2022, 45, 1111-1122.	1.3	2
217	Simplified U-Net as a deep learning intelligent medical assistive tool in glaucoma detection. Evolutionary Intelligence, 0, , .	2.3	3
218	A Comprehensive Survey on the Detection of Diabetic Retinopathy. IETE Journal of Research, 0, , 1-21.	1.8	1
219	Exploring deep feature-blending capabilities to assist glaucoma screening. Applied Soft Computing Journal, 2023, 133, 109918.	4.1	6
220	A Survey of Glaucoma Detection Algorithms using Fundus and OCT Images. , 2022, , .		2
221	Detection of Glaucoma on Fundus Images Using Deep Learning on a New Image Set Obtained with a Smartphone and Handheld Ophthalmoscope. Healthcare (Switzerland), 2022, 10, 2345.	1.0	9
222	Superpixel-Based Optic Nerve Head Segmentation Method of Fundus Images for Glaucoma Assessment. Diagnostics, 2022, 12, 3210.	1.3	2

IF ARTICLE CITATIONS # Performance Evaluation of Different Object Detection Models for the Segmentation of Optical Cups 223 1.36 and Discs. Diagnostics, 2022, 12, 3031. ChÃ;ká1£u: A glaucoma specific fundus image database. Scientific Data, 2023, 10, . 224 2.4 GRETINA: A Large-Scale High-Quality Generated Retinal Image Dataset forÂSecurity andÂPrivacy 225 1.0 1 Assessment. Lecture Notes in Computer Science, 2023, , 373-387. TU-Net: a new network for optic disc segmentation., 2022,,. A Review of Deep Learning Techniques for Glaucoma Detection. SN Computer Science, 2023, 4, . 227 2.3 1 Progress in Deep Learning for Glaucoma Diagnosis Based on Fundus Images., 2022,,. A reliable automatic cataract detection using deep learning. International Journal of Systems 229 1.5 1 Assurance Engineering and Management, 2023, 14, 1089-1102. Fundus image-based automatic cataract detection and grading system. AIP Conference Proceedings, Machine Learning based Segmentation and Classification Algorithms for Glaucoma Detection., 2023,,. 236 0 243 Deep learning for macular fovea detection based on ultra-widefield fundus images., 2024,,.

CITATION REPORT