<i>Modus operandi</i> of the bacterial RNA polymerase promoterâ€specificity factor

Molecular Microbiology 68, 538-546 DOI: 10.1111/j.1365-2958.2008.06181.x

Citation Report

#	Article	IF	CITATIONS
1	Water balance of small lactating rodents ?III. Estimates of milk production and water recycling in lactating Mus musculus under various water regimes. Journal of Mathematical Biology, 1981, 13, 1-22.	1.9	6
2	Milk production and consumption and growth of young of wild mice after ten generations in a cold environment Journal of Physiology, 1984, 346, 409-417.	2.9	23
3	Changes in milk composition during lactation in three species of insectivorous bats. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1995, 164, 543-51.	1.5	46
4	A smallâ€RNAâ€mediated negative feedback loop controls quorumâ€sensing dynamics in <i>Vibrio harveyi</i> . Molecular Microbiology, 2008, 70, 896-907.	2.5	68
5	σ54-Promoter Discrimination and Regulation by ppGpp and DksA*. Journal of Biological Chemistry, 2009, 284, 828-838.	3.4	30
6	NtrC-Dependent Regulatory Network for Nitrogen Assimilation in <i>Pseudomonas putida</i> . Journal of Bacteriology, 2009, 191, 6123-6135.	2.2	70
7	DNA melting by RNA polymerase at the T7A1 promoter precedes the rate-limiting step at 37ŰC and results in the accumulation of an off-pathway intermediate. Nucleic Acids Research, 2009, 37, 5390-5404.	14.5	31
8	Functional roles of the preâ€sensor I insertion sequence in an AAA+ bacterial enhancer binding protein. Molecular Microbiology, 2009, 73, 519-533.	2.5	13
9	Activation and repression of a σ ^N â€dependent promoter naturally lacking upstream activation sequences. Molecular Microbiology, 2009, 73, 419-433.	2.5	20
10	Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretinâ€induced stress in <i>Escherichia coli</i> . Molecular Microbiology, 2009, 74, 16-28.	2.5	36
11	Dual control by perfectly overlapping Ïf ⁵⁴ ―and Ïf ⁷⁰ â€promoters adjusts small RNA GlmY expression to different environmental signals. Molecular Microbiology, 2009, 74, 1054-1070.	2.5	54
12	Involvement of MmoR and MmoG in the transcriptional activation of soluble methane monooxygenase genes in <i>Methylosinus trichosporium</i> OB3b. FEMS Microbiology Letters, 2009, 301, 181-187.	1.8	22
13	Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity. Research in Microbiology, 2009, 160, 389-395.	2.1	13
14	RNA polymerase: A nexus of gene regulation. Methods, 2009, 47, 1-5.	3.8	22
15	Coupling Ïf Factor Conformation to RNA Polymerase Reorganisation for DNA Melting. Journal of Molecular Biology, 2009, 387, 306-319.	4.2	15
16	Mechanisms for activating bacterial RNA polymerase. FEMS Microbiology Reviews, 2010, 34, 611-627.	8.6	66
17	Regulation of glutamate dehydrogenase expression in <i>Pseudomonas putida</i> results from its direct repression by NtrC under nitrogenâ€imiting conditions. Molecular Microbiology, 2010, 78, 305-319.	2.5	33
18	Properties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli. Microbiology (United Kingdom), 2010, 156, 2920-2932.	1.8	35

#	Article	IF	CITATIONS
19	Control of Flagellar Gene Regulation in <i>Legionella pneumophila</i> and Its Relation to Growth Phase. Journal of Bacteriology, 2010, 192, 446-455.	2.2	80
20	Nooks and Crannies in Type VI Secretion Regulation. Journal of Bacteriology, 2010, 192, 3850-3860.	2.2	146
21	Transcriptional Control of the TOL Plasmid Pathways. , 2010, , 1127-1140.		1
22	Gene Expression, Bacteria Viability and Survivability Following Spray Drying of Mycobacterium smegmatis. Materials, 2010, 3, 2684-2724.	2.9	4
23	Novel plasmid-based genetic tools for the study of promoters and terminators in Streptococcus pneumoniae and Enterococcus faecalis. Journal of Microbiological Methods, 2010, 83, 156-163.	1.6	43
24	Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens. Gene, 2010, 469, 31-44.	2.2	23
25	Transcriptional Regulation by Nucleoid-Associated Proteins at Complex Promoters in Escherichia coli. , 2010, , 419-443.		1
26	T7 phage protein Gp2 inhibits the <i>Escherichia coli</i> RNA polymerase by antagonizing stable DNA strand separation near the transcription start site. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2247-2252.	7.1	61
27	Gene Regulation in <i>Borrelia burgdorferi</i> . Annual Review of Microbiology, 2011, 65, 479-499.	7.3	194
28	Mechanism of Bacterial Transcription Initiation: RNA Polymerase - Promoter Binding, Isomerization to Initiation-Competent Open Complexes, and Initiation of RNA Synthesis. Journal of Molecular Biology, 2011, 412, 754-771.	4.2	284
29	Inhibition of Escherichia coli RNAp by T7 Gp2 Protein: Role of Negatively Charged Strip of Amino Acid Residues in Gp2. Journal of Molecular Biology, 2011, 407, 623-632.	4.2	10
30	Reprint of: Inhibition of Escherichia coli RNAp by T7 Gp2 protein: Role of Negatively Charged Strip of Amino Acid Residues in Gp2. Journal of Molecular Biology, 2011, 412, 832-841.	4.2	3
31	Signal sensory systems that impact σ ⁵⁴ -dependent transcription. FEMS Microbiology Reviews, 2011, 35, 425-440.	8.6	75
32	Evolution of multisubunit RNA polymerases in the three domains of life. Nature Reviews Microbiology, 2011, 9, 85-98.	28.6	375
33	Dissipation of Proton Motive Force is not Sufficient to Induce the Phage Shock Protein Response in Escherichia coli. Current Microbiology, 2011, 62, 1374-1385.	2.2	33
34	Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics, 2011, 12, 385.	2.8	93
35	Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. Nucleic Acids Research, 2011, 39, 1294-1309.	14.5	51
36	Regulation of Type VI Secretion Gene Clusters by $I_f < sup > 54 < /sup > and Cognate Enhancer Binding Proteins. Journal of Bacteriology, 2011, 193, 2158-2167.$	2.2	75

#	Article	IF	CITATIONS
37	BosR (BB0647) Controls the RpoN-RpoS Regulatory Pathway and Virulence Expression in Borrelia burgdorferi by a Novel DNA-Binding Mechanism. PLoS Pathogens, 2011, 7, e1001272.	4.7	102
38	The Evolution of the Phage Shock Protein Response System: Interplay between Protein Function, Genomic Organization, and System Function. Molecular Biology and Evolution, 2011, 28, 1141-1155.	8.9	56
39	Autoregulation of the Synthesis of the MobM Relaxase Encoded by the Promiscuous Plasmid pMV158. Journal of Bacteriology, 2012, 194, 1789-1799.	2.2	13
40	A dual switch controls bacterial enhancer-dependent transcription. Nucleic Acids Research, 2012, 40, 10878-10892.	14.5	6
41	Insights from the architecture of the bacterial transcription apparatus. Journal of Structural Biology, 2012, 179, 299-319.	2.8	46
42	Phenotypic and transcriptomic analyses of Sigma L-dependent characteristics in Listeria monocytogenes EGD-e. Food Microbiology, 2012, 32, 152-164.	4.2	43
43	The Role of Bacterial Enhancer Binding Proteins as Specialized Activators of σ ⁵⁴ -Dependent Transcription. Microbiology and Molecular Biology Reviews, 2012, 76, 497-529.	6.6	277
44	Mechanism of Transcription Initiation at an Activator-Dependent Promoter Defined by Single-Molecule Observation. Cell, 2012, 148, 679-689.	28.9	128
45	CoSMoS Unravels Mysteries of Transcription Initiation. Cell, 2012, 148, 635-637.	28.9	9
46	Identification of Multicomponent Histidine-Aspartate Phosphorelay System Controlling Flagellar and Motility Gene Expression in Geobacter Species. Journal of Biological Chemistry, 2012, 287, 10958-10966.	3.4	20
47	Nitrogen fixation control in Herbaspirillum seropedicae. Plant and Soil, 2012, 356, 197-207.	3.7	44
48	Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Archives of Microbiology, 2012, 194, 379-390.	2.2	37
49	Coupling AAA protein function to regulated gene expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 108-116.	4.1	32
50	Prokaryotic Redox Switches. , 2013, , 233-276.		2
51	Expanding the Boolean Logic of the Prokaryotic Transcription Factor XylR by Functionalization of Permissive Sites with a Protease-Target Sequence. ACS Synthetic Biology, 2013, 2, 594-603.	3.8	16
52	Use of a promiscuous, constitutively-active bacterial enhancer-binding protein to define the σ54 (RpoN) regulon of Salmonella Typhimurium LT2. BMC Genomics, 2013, 14, 602.	2.8	33
53	Sigma Factors. , 2013, , 232-235.		0
54	Structure, function, and tethering of DNAâ€binding domains in Ïf ⁵⁴ transcriptional activators. Biopolymers, 2013, 99, 1082-1096.	2.4	21

#	Article	IF	CITATIONS
55	Evidence for selfâ€association of the alternative sigma factor σ ⁵⁴ . FEBS Journal, 2013, 280, 1371-1378.	4.7	0
56	Nitrogen and Carbon Status Are Integrated at the Transcriptional Level by the Nitrogen Regulator NtrC <i>In Vivo</i> . MBio, 2013, 4, e00881-13.	4.1	66
57	The syp Enhancer Sequence Plays a Key Role in Transcriptional Activation by the Â54-Dependent Response Regulator SypG and in Biofilm Formation and Host Colonization by Vibrio fischeri. Journal of Bacteriology, 2013, 195, 5402-5412.	2.2	24
58	Manganese and Zinc Regulate Virulence Determinants in Borrelia burgdorferi. Infection and Immunity, 2013, 81, 2743-2752.	2.2	39
59	Transcriptional activation of the <scp>CrcZ</scp> and <scp>CrcY</scp> regulatory <scp>RNAs</scp> by the <scp>CbrB</scp> response regulator in <i><scp>P</scp>seudomonas putida</i> . Molecular Microbiology, 2013, 89, 189-205.	2.5	40
60	RNA polymerase approaches its promoter without long-range sliding along DNA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9740-9745.	7.1	60
61	Synthesis of RpoS Is Dependent on a Putative Enhancer Binding Protein Rrp2 in Borrelia burgdorferi. PLoS ONE, 2014, 9, e96917.	2.5	19
62	Regulation by Alternative Sigma Factors. , 0, , 31-43.		7
63	Transcription of the Lysine-2,3-Aminomutase Gene in the <i>kam</i> Locus of Bacillus thuringiensis subsp. kurstaki HD73 Is Controlled by Both Ïf ⁵⁴ and Ïf ^K Factors. Journal of Bacteriology, 2014, 196, 2934-2943.	2.2	12
64	iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Research, 2014, 42, 12961-12972.	14.5	467
66	DNA Recognition by a σ54 Transcriptional Activator from Aquifex aeolicus. Journal of Molecular Biology, 2014, 426, 3553-3568.	4.2	13
67	An ArsR/SmtB Family Member Is Involved in the Regulation by Arsenic of the Arsenite Oxidase Operon in Thiomonas arsenitoxydans. Applied and Environmental Microbiology, 2014, 80, 6413-6426.	3.1	24
68	Engineering Bacterial Transcription Regulation To Create a Synthetic <i>in Vitro</i> Two-Hybrid System for Protein Interaction Assays. Journal of the American Chemical Society, 2014, 136, 14031-14038.	13.7	16
69	Determination of the Self-Association Residues within a Homomeric and a Heteromeric AAA+ Enhancer Binding Protein. Journal of Molecular Biology, 2014, 426, 1692-1710.	4.2	6
70	Genome-Scale Mapping of Escherichia coli σ54 Reveals Widespread, Conserved Intragenic Binding. PLoS Genetics, 2015, 11, e1005552.	3.5	52
71	Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. Journal of Biotechnology, 2015, 202, 60-77.	3.8	82
72	Genome wide interactions of wild-type and activator bypass forms of σ54. Nucleic Acids Research, 2015, 43, 7280-7291.	14.5	20
73	The RNA ligase RtcB reverses MazF-induced ribosome heterogeneity in <i>Escherichia coli</i> . Nucleic Acids Research, 2017, 45, gkw1018.	14.5	44

- ARTICLE IF CITATIONS # Prokaryotic Transcription., 2016,, 468-480. 0 74 Kinetics of transcription initiation directed by multiplecis-regulatory elements on thegInAp2promoter. Nucleic Acids Research, 2016, 44, 10530-10538. 14.5 Mechanism of Antiactivation at the Pseudomonas sp. Strain ADP If < sup > N < /sup > -Dependent P76 3.1 4 <i>atzT</i> Promoter. Applied and Environmental Microbiology, 2016, 82, 4350-4362. The Xp10 Bacteriophage Protein P7 Inhibits Transcription by the Major and Major Variant Forms of the Host RNA Polymerase via a Common Mechanism. Journal of Molecular Biology, 2016, 428, 3911-3919. Pro54DB: a database for experimentally verified sigma-54 promoters. Bioinformatics, 2017, 33, 467-469. 78 4.1 91 Local and global regulation of transcription initiation in bacteria. Nature Reviews Microbiology, 2016, 14, 638-650. 79 28.6 Inflammasome Recognition and Regulation of the Legionella Flagellum. Current Topics in 80 1.1 11 Microbiology and Immunology, 2016, 397, 161-181. Sox transcription in sarcosine utilization is controlled by Sigma54 and SoxR in Bacillus thuringiensis 3.3 HD73. Scientific Reports, 2016, 6, 29141. <scp>PTS</scp> regulation domainâ€containing transcriptional activator Cel<scp>R</scp> and sigma 82 factor If < sup > 54 < / sup > control cellobiose utilization in < scp > <i > C < /i > </ scp > <i > lostridium 2.5 24 acetobutylicum </i>. Molecular Microbiology, 2016, 100, 289-302. Insight into the Dual Functions of Bacterial Enhancer-Binding Protein Rrp2 of Borrelia burgdorferi. 2.2 Journal of Bacteriology, 2016, 198, 1543-1552. Negative Autogenous Control of the Master Type III Secretion System Regulator HrpL in 84 4.1 24 <i>Pseudomonas syringae</i>. MBio, 2017, 8, . Structure and Function of RNA Polymerases and the Transcription Machineries. Sub-Cellular 2.4 Biochemistry, 2017, 83, 225-270. Macromolecular Protein Complexes. Sub-Cellular Biochemistry, 2017, , . 86 2.4 5 Regulation of <i>Escherichia coli</i> Pathogenesis by Alternative Sigma Factor N. EcoSal Plus, 2017, 7, . 87 5.4 24 Novel DNA Binding and Regulatory Activities for if < sup > 54 < /sup > (RpoN) in Salmonella enterica Serovar 88 2.2 16 Typhimurium 14028s. Journal of Bacteriology, 2017, 199, . The EbpA-RpoN Regulatory Pathway of the Pathogen Leptospira interrogans Is Essential for Survival in 3.1 the Environment. Applied and Environmental Microbiology, 2017, 83, . The putative Walker A and Walker <scp>B</scp> motifs of <scp>R</scp>rp2 are required for the 90 2.57 growth of <scp><i>B</i></scp><i>orrelia burgdorferi</i>. Molecular Microbiology, 2017, 103, 86-98. NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia
 - H111. PLoS ONE, 2017, 12, e0180362.

#	Article	IF	Citations
92	Engineered CRISPRa enables programmable eukaryote-like gene activation in bacteria. Nature Communications, 2019, 10, 3693.	12.8	90
93	Structural analysis of the recognition of the -35 promoter element by SigW from Bacillus subtilis. PLoS ONE, 2019, 14, e0221666.	2.5	5
94	Plasmids as Genetic Tools and Their Applications in Ecology and Evolution. , 0, , .		6
95	Current View of the Mechanisms Controlling the Transcription of the TOL Plasmid Aromatic Degradation Pathways. , 2019, , 573-594.		0
96	Noise in bacterial gene expression. Biochemical Society Transactions, 2019, 47, 209-217.	3.4	26
97	Nitrogen Starvation Induces Persister Cell Formation in Escherichia coli. Journal of Bacteriology, 2019, 201, .	2.2	39
98	Redefining fundamental concepts of transcription initiation in bacteria. Nature Reviews Genetics, 2020, 21, 699-714.	16.3	100
99	Evolution of Regulated Transcription. Cells, 2020, 9, 1675.	4.1	19
100	Bacterial Enhancer Binding Proteins—AAA+ Proteins in Transcription Activation. Biomolecules, 2020, 10, 351.	4.0	27
101	A Novel Eukaryoteâ€Like CRISPR Activation Tool in Bacteria: Features and Capabilities. BioEssays, 2020, 42, e1900252.	2.5	6
102	Gene Regulation and Transcriptomics. Current Issues in Molecular Biology, 2022, 42, 223-266.	2.4	22
103	Transcription Sigma Factors. , 2021, , 379-382.		0
104	Current View of The Mechanisms Controlling The Transcription of The TOL Plasmid Aromatic Degradation Pathways. , 2017, , 1-22.		1
105	Current View of The Mechanisms Controlling The Transcription of The TOL Plasmid Aromatic Degradation Pathways. , 2017, , 1-22.		1
108	Identification and Cross-Characterisation of Artificial Promoters and 5′ Untranslated Regions in Vibrio natriegens. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826142.	4.1	5
110	A Role for the RNA Polymerase Gene Specificity Factor Ïf ⁵⁴ in the Uniform Colony Growth of Uropathogenic Escherichia coli. Journal of Bacteriology, 2022, , e0003122.	2.2	0
112	Genome-wide promoter assembly in <i>E. coli</i> measured at single-base resolution. Genome Research, 2022, , .	5.5	1
113	Prokaryotic Transcription. , 2016, , 592-605.		0

#	Article	IF	CITATIONS
114	The acetoin assimilation pathway of <scp> <i>Pseudomonas putida</i> KT2440 </scp> is regulated by overlapping global regulatory elements that respond to nutritional cues. Environmental Microbiology, 0, , .	3.8	2
115	iProm-Sigma54: A CNN Base Prediction Tool for Ï f 54 Promoters. Cells, 2023, 12, 829.	4.1	о
116	Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 2023, 24, 11895.	4.1	1
117	Transcriptional regulation of soluble methane monooxygenase via enhancer-binding protein derived from <i>Methylosinus sporium</i> 5. Applied and Environmental Microbiology, 2023, 89, .	3.1	Ο
118	A Fur family protein BosR is a novel RNA-binding protein that controls <i>rpoS</i> RNA stability in the Lyme disease pathogen. Nucleic Acids Research, 0, , .	14.5	0