Landscape features affect gene flow of Scottish Highlan

Molecular Ecology 17, 981-996 DOI: 10.1111/j.1365-294x.2007.03629.x

Citation Report

			Citations
#	ARTICLE	IF	CHAIIONS
1	Females Shape the Genetic Structure of a Gorilla Population. Current Biology, 2008, 18, 1809-1814.	1.8	39
2	Using genetics to understand the dynamics of wild primate populations. Primates, 2009, 50, 105-120.	0.7	56
3	The effect of habitat fragmentation on finescale population structure of wood frogs (Rana sylvatica). Conservation Genetics, 2009, 10, 1707-1718.	0.8	38
4	Population genetic structure of wild and farmed rusa deer (Cervus timorensis russa) in New-Caledonia inferred from polymorphic microsatellite loci. Genetica, 2009, 137, 313-323.	0.5	13
5	Editorial and retrospective 2008. Molecular Ecology, 2009, 18, 1-13.	2.0	16
6	Relationship between three measures of genetic differentiation <i>G</i> _{ST} , <i>D</i> _{EST} and <i>G</i> ' _{ST} : how wrong have we been?. Molecular Ecology, 2009, 18, 2080-2083.	2.0	151
7	Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, <i>Macropus fuliginosus</i> . Molecular Ecology, 2009, 18, 3363-3378.	2.0	56
8	Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Molecular Ecology, 2009, 18, 3593-3602.	2.0	99
9	Genetic diversity and population structure of Scottish Highland red deer (Cervus elaphus) populations: a mitochondrial survey. Heredity, 2009, 102, 199-210.	1.2	36
10	Ability of Wildlife Overpasses to Provide Connectivity and Prevent Genetic Isolation. Conservation Biology, 2009, 23, 548-556.	2.4	155
11	Red and sika deer in the British Isles, current management issues and management policy. Mammalian Biology, 2009, 74, 247-262.	0.8	45
12	Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mammalian Biology, 2009, 74, 263-273.	0.8	80
13	Evidence for Cryptic Genetic Discontinuity in a Recently Expanded Sika Deer Population on the Boso Peninsula, Central Japan. Zoological Science, 2009, 26, 48-53.	0.3	11
14	Defining spatial genetic structure and management units for vulnerable koala (Phascolarctos) Tj ETQq1 1 0.7843	14.rgBT /(Overlock 10
15	Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 2010, 25, 1601-1612.	1.9	138
16	The genetic effects of roads: A review of empirical evidence. Basic and Applied Ecology, 2010, 11, 522-531.	1.2	280
17	Microgeographic genetic isolation in chub (Cyprinidae: <i>Squalius cephalus</i>) population of the Durance River: estimating fragmentation by dams. Ecology of Freshwater Fish, 2010, 19, 267-278.	0.7	31
18	Landscape genetics of an endangered lemur (<i>Propithecus tattersalli</i>) within its entire fragmented range. Molecular Ecology, 2010, 19, 1606-1621.	2.0	156

ITATION REDO

#	Article	IF	CITATIONS
19	Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 2010, 19, 3576-3591.	2.0	512
20	Landscape genetics: where are we now?. Molecular Ecology, 2010, 19, 3496-3514.	2.0	480
21	Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Molecular Ecology, 2010, 19, 3301-3314.	2.0	55
22	Variable extent of sex-biased dispersal in a strongly polygynous mammal. Molecular Ecology, 2010, 19, 3101-3113.	2.0	32
23	Inferring landscape effects on gene flow: a new model selection framework. Molecular Ecology, 2010, 19, 3603-3619.	2.0	228
24	Landscape effects on extremely fragmented populations of a rare solitary bee, <i>Colletes floralis</i> . Molecular Ecology, 2010, 19, 4922-4935.	2.0	59
25	Beyond Roadkill, Radiotracking, Recapture and FST—a Review of Some Genetic Methods to Improve Understanding of the Influence of Roads on Wildlife. Ecology and Society, 2010, 15, .	1.0	30
26	Determinants of Population Genetic Structure in Eastern Chipmunks (Tamias striatus): The Role of Landscape Barriers and Sex-Biased Dispersal. Journal of Heredity, 2010, 101, 413-422.	1.0	45
27	Effects of small barriers on habitat use by red deer: Implications for conservation practices. Journal for Nature Conservation, 2010, 18, 196-201.	0.8	7
28	Roads and wildlife: impacts, mitigation and implications for wildlife management in Australia. Wildlife Research, 2010, 37, 320.	0.7	165
29	Relationships between migration rates and landscape resistance assessed using individualâ€based simulations. Molecular Ecology Resources, 2010, 10, 854-862.	2.2	57
30	Assessing the impact of past wapiti introductions into Scottish Highland red deer populations using a Y chromosome marker. Mammalian Biology, 2011, 76, 640-643.	0.8	8
31	Effect of Anthropogenic Landscape Features on Population Genetic Differentiation of Przewalski's Gazelle: Main Role of Human Settlement. PLoS ONE, 2011, 6, e20144.	1.1	28
32	Status and distribution patterns of European ungulates: genetics, population history and conservation. , 2011, , 12-53.		45
33	Distribution and range expansion of deer in Ireland. Mammal Review, 2011, 41, 313-325.	2.2	38
34	Phylogeography, population genetics and conservation of the European red deer Cervus elaphus. Mammal Review, 2011, 41, 138-150.	2.2	82
35	Inferring landscape effects on dispersal from genetic distances: how far can we go?. Molecular Ecology, 2011, 20, 692-705.	2.0	94
36	Toward Best Practices for Developing Regional Connectivity Maps. Conservation Biology, 2011, 25, 879-892.	2.4	186

#	Article	IF	CITATIONS
37	Micro-spatial genetic structure in song sparrows (Melospiza melodia). Conservation Genetics, 2011, 12, 213-222.	0.8	17
38	Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in north-western France. Conservation Genetics, 2011, 12, 1287-1297.	0.8	26
39	Models based on individual level movement predict spatial patterns of genetic relatedness for two Australian forest birds. Landscape Ecology, 2011, 26, 137-148.	1.9	23
40	Male red deer (Cervus elaphus) dispersal during the breeding season. Journal of Ethology, 2011, 29, 329-336.	0.4	20
41	Low genetic variation support bottlenecks in Scandinavian red deer. European Journal of Wildlife Research, 2011, 57, 1137-1150.	0.7	12
42	An overview to the investigative approach to species testing in wildlife forensic science. Investigative Genetics, 2011, 2, 2.	3.3	116
43	The walk is never random: subtle landscape effects shape gene flow in a continuous whiteâ€ŧailed deer population in the Midwestern United States. Molecular Ecology, 2012, 21, 4190-4205.	2.0	60
44	Divergent landscape effects on population connectivity in two coâ€occurring amphibian species. Molecular Ecology, 2012, 21, 4437-4451.	2.0	112
45	Population structure, habitat features and genetic structure of managed red deer populations. European Journal of Wildlife Research, 2012, 58, 933-943.	0.7	23
46	Factors shaping gene flow in red deer (<i>CervusÂelaphus</i>) in seminatural landscapes ofÂcentral Europe. Canadian Journal of Zoology, 2012, 90, 150-162.	0.4	17
47	Reconstructing the history of a fragmented and heavily exploited red deer population using ancient and contemporary DNA. BMC Evolutionary Biology, 2012, 12, 191.	3.2	24
48	Reâ€mating across years and intralineage polygyny are associated with greater than expected levels of inbreeding in wild red deer. Journal of Evolutionary Biology, 2012, 25, 2457-2469.	0.8	15
49	Landscape genetics of a top neotropical predator. Molecular Ecology, 2012, 21, 5969-5985.	2.0	25
51	Simulating Pattern-Process Relationships to Validate Landscape Genetic Models. International Journal of Ecology, 2012, 2012, 1-8.	0.3	111
52	A new analytical approach to landscape genetic modelling: least ost transect analysis and linear mixed models. Molecular Ecology, 2012, 21, 4010-4023.	2.0	164
53	Role of recent and old riverine barriers in fineâ€scale population genetic structure of Geoffroy's tamarin (<i>Saguinus geoffroyi</i>) in the Panama Canal watershed. Ecology and Evolution, 2012, 2, 298-309.	0.8	20
54	Connectivity of prairie dog colonies in an altered landscape: inferences from analysis of microsatellite DNA variation. Conservation Genetics, 2012, 13, 407-418.	0.8	23
55	The complimentary role of genetic and ecological data in understanding population structure: a case study using moose (Alces alces). European Journal of Wildlife Research, 2012, 58, 415-423.	0.7	21

#	Article	IF	CITATIONS
56	The effect of cost surface parameterization on landscape resistance estimates. Molecular Ecology Resources, 2012, 12, 686-696.	2.2	69
57	Influence of landscape and social interactions on transmission of disease in a social cervid. Molecular Ecology, 2012, 21, 1271-1282.	2.0	37
58	Urban landscape genetics: canopy cover predicts gene flow between whiteâ€footed mouse (<i>Peromyscus leucopus</i>) populations in New York City. Molecular Ecology, 2012, 21, 1360-1378.	2.0	125
59	Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Molecular Ecology, 2012, 21, 3210-3223.	2.0	113
60	Watershed boundaries and geographic isolation: patterns of diversification in cutthroat trout from western North America. BMC Evolutionary Biology, 2012, 12, 38.	3.2	32
61	Landscape resistance and American marten gene flow. Landscape Ecology, 2012, 27, 29-43.	1.9	37
62	Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Molecular Ecology, 2013, 22, 3888-3903.	2.0	86
63	Landscape Composition Has Limited Impact on Local Genetic Structure in Mountain Clover, Trifolium montanum L. Journal of Heredity, 2013, 104, 842-852.	1.0	13
64	Using landscape epidemiological models to understand the distribution of chronic wasting disease in the Midwestern USA. Landscape Ecology, 2013, 28, 1923-1935.	1.9	27
65	Production potentials of native chickens (Gallus gallus domesticus L.) of Western Visayas, Philippines. Tropical Animal Health and Production, 2013, 45, 405-410.	0.5	2
66	Landscape genetics of an early successional specialist in a disturbanceâ€ p rone environment. Molecular Ecology, 2013, 22, 1267-1281.	2.0	32
67	Landscape genetics and limiting factors. Conservation Genetics, 2013, 14, 263-274.	0.8	79
68	Landscape Genetics of Leaf-Toed Geckos in the Tropical Dry Forest of Northern Mexico. PLoS ONE, 2013, 8, e57433.	1.1	23
69	Re-Evaluating Causal Modeling with Mantel Tests in Landscape Genetics. Diversity, 2013, 5, 51-72.	0.7	130
70	Landscape Genetics. , 2013, , 508-523.		3
71	Conservation Genetics. , 2013, , 263-277.		0
72	Fine-scale social and spatial genetic structure in Sitka black-tailed deer. Conservation Genetics, 2013, 14, 439-449.	0.8	18
73	Individual variation in dispersal associated with phenotype influences fine-scale genetic structure in weasels. Conservation Genetics, 2013, 14, 499-509.	0.8	21

#	Article	IF	CITATIONS
74	Genetic Structure of the Endangered Northeastern Bulrush (Scirpus ancistrochaetus) in Pennsylvania, USA, Using Information from RAPD and SNPs. Biochemical Genetics, 2013, 51, 686-697.	0.8	5
75	The Impact of Past Introductions on an Iconic and Economically Important Species, the Red Deer of Scotland. Journal of Heredity, 2013, 104, 14-22.	1.0	15
76	Geographic Distance Affects Dispersal of the Patchy Distributed Greater Long-Tailed Hamster (Tscherskia triton). PLoS ONE, 2014, 9, e99540.	1.1	8
77	A multiscale analysis of gene flow for the <scp>N</scp> ew <scp>E</scp> ngland cottontail, an imperiled habitat specialist in a fragmented landscape. Ecology and Evolution, 2014, 4, 1853-1875.	0.8	33
78	A multiâ€method approach for analyzing hierarchical genetic structures: a case study with cougars <i>Puma concolor</i> . Ecography, 2014, 37, 552-563.	2.1	42
79	Landscape genetics in mammals. Mammalia, 2014, 78, .	0.3	17
80	Temporal change in the spatial genetic structure of a sika deer population with an expanding distribution range over a 15â€year period. Population Ecology, 2014, 56, 311-325.	0.7	12
81	The genetic population structure of wild western lowland gorillas (<i>Gorilla gorilla gorilla</i>) living in continuous rain forest. American Journal of Primatology, 2014, 76, 868-878.	0.8	30
82	A survey of the hybridisation status of Cervus deer species on the island of Ireland. Conservation Genetics, 2014, 15, 823-835.	0.8	30
83	Genetic evidence for landscape effects on dispersal in the army ant <i>Eciton burchellii</i> . Molecular Ecology, 2014, 23, 96-109.	2.0	18
84	Comparative landscape genetics of two river frog species occurring at different elevations on <scp>M</scp> ount <scp>K</scp> ilimanjaro. Molecular Ecology, 2014, 23, 4989-5002.	2.0	20
85	Contrasting genetic structure of the Eurasian otter (<i>Lutra lutra</i>) across a latitudinal divide. Journal of Mammalogy, 2014, 95, 814-823.	0.6	10
86	Using network theory to prioritize management in a desert bighorn sheep metapopulation. Landscape Ecology, 2014, 29, 605-619.	1.9	26
87	The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland. Acta Theriologica, 2014, 59, 367-376.	1.1	23
88	Roe deer population structure in a highly fragmented landscape. European Journal of Wildlife Research, 2014, 60, 909-917.	0.7	12
89	Geographic Determinants of Gene Flow in Two Sister Species of Tropical Andean Frogs. Journal of Heredity, 2014, 105, 216-225.	1.0	15
90	Genetic differentiation among 6 populations of red deer (Cervus elaphusL.) in Poland based on microsatellite DNA polymorphism. Acta Biologica Hungarica, 2014, 65, 414-427.	0.7	3
91	Ecological connectivity assessment in a strongly structured fire salamander (<i>Salamandra) Tj ETQq1 1 0.7843</i>	14 rgBT /C)verlock 10

#	Article	IF	CITATIONS
92	The genetic landscape of the Iberian red deer (Cervus elaphus hispanicus) after 30 years of big-game hunting in southern Spain. Journal of Wildlife Management, 2015, 79, 500-504.	0.7	9
93	Influence of landscape features on spatial genetic structure of whiteâ€ŧailed deer in humanâ€∎ltered landscapes. Journal of Wildlife Management, 2015, 79, 180-194.	0.7	14
94	Population genetic structure and disease in montane boreal toads: more heterozygous individuals are more likely to be infected with amphibian chytrid. Conservation Genetics, 2015, 16, 833-844.	0.8	18
95	Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140019.	1.8	42
96	Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses. Molecular Ecology, 2015, 24, 263-283.	2.0	109
97	Genetic structure in Mongolian gazelles based on mitochondrial and microsatellite markers. Mammalian Biology, 2015, 80, 303-311.	0.8	7
98	Admixture of Eastern and Western European Red Deer Lineages as a Result of Postglacial Recolonization of the Czech Republic (Central Europe). Journal of Heredity, 2015, 106, 375-385.	1.0	28
99	Influence of ecological and geological features on rangewide patterns of genetic structure in a widespread passerine. Heredity, 2015, 114, 143-154.	1.2	30
100	Genetic signature of the northward expansion of the Egyptian mongooseHerpestes ichneumon(Herpestidae) in the Iberian Peninsula. Biological Journal of the Linnean Society, 2016, 118, 686-697.	0.7	6
101	First description of spatial and temporal patterns of river crossings by European roe deer Capreolus capreolus (Mammalia: Cervidae): characteristics and possible reasons. Italian Journal of Zoology, 2016, 83, 423-433.	0.6	1
102	lberian red deer: paraphyletic nature at mt DNA but nuclear markers support its genetic identity. Ecology and Evolution, 2016, 6, 905-922.	0.8	29
103	Locating wildlife crossings for multispecies connectivity across linear infrastructures. Landscape Ecology, 2016, 31, 1955-1973.	1.9	60
104	A Landscape Ecologist's Agenda for Landscape Genetics. Current Landscape Ecology Reports, 2016, 1, 115-126.	1.1	44
105	Rainfall and topography predict gene flow among populations of the declining northern quoll (Dasyurus hallucatus). Conservation Genetics, 2016, 17, 1213-1228.	0.8	23
106	Local-scale genetic structure in the Japanese wild boar (Sus scrofa leucomystax): insights from autosomal microsatellites. Conservation Genetics, 2016, 17, 1125-1135.	0.8	7
107	Modeling Habitat Connectivity to Inform Reintroductions: A Case Study with the Chiricahua Leopard Frog. Journal of Herpetology, 2016, 50, 63-69.	0.2	25
108	Origins of recently emerged foci of the tick Dermacentor reticulatus in central Europe inferred from molecular markers. Veterinary Parasitology, 2017, 237, 63-69.	0.7	15
109	Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus. Heredity, 2017, 118, 542-553.	1.2	30

#	Article	IF	CITATIONS
110	Combining familiarity and landscape features helps break down the barriers between movements and home ranges in a nonâ€ŧerritorial large herbivore. Journal of Animal Ecology, 2017, 86, 371-383.	1.3	25
111	Railway Ecology. , 2017, , 3-9.		14
112	Landscape genetic analyses reveal fineâ€scale effects of forest fragmentation in an insular tropical bird. Molecular Ecology, 2017, 26, 4906-4919.	2.0	26
113	Comparative landscape genetics of pondâ€breeding amphibians in Mediterranean temporal wetlands: The positive role of structural heterogeneity in promoting gene flow. Molecular Ecology, 2017, 26, 5407-5420.	2.0	19
114	Introgression of exotic <i>Cervus</i> (<i>nippon</i> and <i>canadensis</i>) into red deer (<i>Cervus) Tj ETQq0 (</i>	0 0 rgBT /0 0.8	Overlock 10 T 34
115	Propagule pressure and land cover changes as main drivers of red and roe deer expansion in mainland Portugal. Diversity and Distributions, 2018, 24, 551-564.	1.9	18
116	Effect of landscape features on genetic structure of the goitered gazelle (Gazella subgutturosa) in Central Iran. Conservation Genetics, 2018, 19, 323-336.	0.8	17
117	Climatic suitability, isolation by distance and river resistance explain genetic variation in a Brazilian whiptail lizard. Heredity, 2018, 120, 251-265.	1.2	39
118	Estimating range expansion of wildlife in heterogeneous landscapes: A spatially explicit stateâ€space matrix model coupled with an improved numerical integration technique. Ecology and Evolution, 2018, 9, 318-327.	0.8	9
119	Landscape genetics matches with behavioral ecology and brings new insight on the functional connectivity in Mediterranean mouflon. Landscape Ecology, 2018, 33, 1069-1085.	1.9	18
120	Variation in the prion protein gene (PRNP) sequence of wild deer in Great Britain and mainland Europe. Veterinary Research, 2019, 50, 59.	1.1	22
121	Impact of different panels of microsatellite loci, different numbers of loci, sample sizes, and gender ratios on population genetic results in red deer. European Journal of Wildlife Research, 2019, 65, 1.	0.7	14
122	First assessment of MHC diversity in wild Scottish red deer populations. European Journal of Wildlife Research, 2019, 65, 1.	0.7	7
123	Railway ecology vs. road ecology: similarities and differences. European Journal of Wildlife Research, 2019, 65, 1.	0.7	34
124	How rivers and historical climate oscillations impact on genetic structure in Chinese Muntjac (<i>Muntiacus reevesi</i>)?. Diversity and Distributions, 2019, 25, 116-128.	1.9	4
125	A DNA toolbox for non-invasive genetic studies of sambar deer (Rusa unicolor). Australian Mammalogy, 2020, 42, 58.	0.7	2
126	Topography, more than land cover, explains genetic diversity in a Neotropical savanna tree frog. Diversity and Distributions, 2020, 26, 1798-1812.	1.9	15
127	First Insights into the Population Genetic Structure and Heterozygosity–Fitness Relationship in Roe Deer Inhabiting the Area between the Alps and Dinaric Mountains. Animals, 2020, 10, 2276.	1.0	5

#	Article	IF	CITATIONS
128	Fragmentation and Translocation Distort the Genetic Landscape of Ungulates: Red Deer in the Netherlands. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	15
129	Pronghorn population genomics show connectivity in the core of their range. Journal of Mammalogy, 2020, 101, 1061-1071.	0.6	9
130	Genetic analysis of red deer (Cervus elaphus) administrative management units in a human-dominated landscape. Conservation Genetics, 2020, 21, 261-276.	0.8	15
131	Demographic and genetic structure of a severely fragmented population of the endangered hog deer (Axis porcinus) in the Indo-Burma biodiversity hotspot. PLoS ONE, 2020, 15, e0210382.	1.1	4
132	Climate connectivity of the bobcat in the Great Lakes region. Ecology and Evolution, 2020, 10, 2131-2144.	0.8	6
133	Winter temperature and forest cover have shaped red deer distribution in Europe and the Ural Mountains since the Late Pleistocene. Journal of Biogeography, 2021, 48, 147-159.	1.4	26
134	Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Molecular Ecology Resources, 2021, 21, 1167-1185.	2.2	19
135	Human-driven genetic differentiation in a managed red deer population. European Journal of Wildlife Research, 2021, 67, 1.	0.7	5
136	Riverine barriers to gene flow in a salamander with both aquatic and terrestrial reproduction. Evolutionary Ecology, 2021, 35, 483-511.	0.5	14
137	Host Genetic Diversity and Infectious Diseases. Focus on Wild Boar, Red Deer and Tuberculosis. Animals, 2021, 11, 1630.	1.0	2
138	On the use of genomeâ€wide data to model and date the time of anthropogenic hybridisation: An example from the Scottish wildcat. Molecular Ecology, 2021, 30, 3688-3702.	2.0	17
140	Genetics of early conception and its relationship to growth traits in red deer (Cervus elaphus). Animal Production Science, 2013, 53, 1083.	0.6	4
141	Scale-Dependent Effects of a Heterogeneous Landscape on Genetic Differentiation in the Central American Squirrel Monkey (Saimiri oerstedii). PLoS ONE, 2012, 7, e43027.	1.1	49
142	Assessing the Permeability of Landscape Features to Animal Movement: Using Genetic Structure to Infer Functional Connectivity. PLoS ONE, 2015, 10, e0117500.	1.1	19
143	Anthropogenic Habitats Facilitate Dispersal of an Early Successional Obligate: Implications for Restoration of an Endangered Ecosystem. PLoS ONE, 2016, 11, e0148842.	1.1	24
144	Altitudinal gradients, biogeographic history and microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical populations of an ancient tropical tree species. PLoS ONE, 2017, 12, e0182515.	1.1	23
145	Population Structure, Admixture, and Migration Patterns of Japanese Sika Deer (Cervus nippon) Inhabiting Toyama Prefecture in Japan. Zoological Science, 2019, 36, 128.	0.3	4
147	Genetic diversity and relatedness among seven red deer (Cervus elaphus) populations. Potravinarstvo, 2014, 8, .	0.5	5

#	Article	IF	CITATIONS
148	Yangtze River, an insignificant genetic boundary in tufted deer (<i>Elaphodus cephalophus</i>): the evidence from a first population genetics study. PeerJ, 2016, 4, e2654.	0.9	10
151	Genetic Diversity and Structure of Artibeus jamaicensis in the Fragmented Landscape of El Salvador. , 2020, , 249-268.		2
152	Investigation of causes of death in wildlife using veterinary molecular and wound analysis methods. Journal of Veterinary Medical Science, 2020, 82, 1173-1177.	0.3	0
154	Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation. Zoological Research, 2014, 35, 528-36.	0.6	2
155	The Influence of Landscape Structure on the Dispersal Pattern of Yellow Fever Virus in the State of São Paulo. SSRN Electronic Journal, 0, , .	0.4	0
156			
	10		

#	Article	IF	CITATIONS
172	Population genetics of the African snakehead fish <i>Parachanna obscura</i> along West Africa's water networks: Implications for sustainable management and conservation. Ecology and Evolution, 2023, 13, .	0.8	1
173	The Effect of Landscape Environmental Factors on Gene Flow of Red Deer (Cervus) Tj ETQq1 1 0.784314 rgBT / 576.	Overlock 1 1.3	0 Tf 50 707 Te 0