How natural infection by <i>Nosema ceranae</i> cause

Environmental Microbiology 10, 2659-2669 DOI: 10.1111/j.1462-2920.2008.01687.x

Citation Report

#	Article	IF	CITATIONS
3	Colony Collapse Disorder: A Descriptive Study. PLoS ONE, 2009, 4, e6481.	1.1	933
4	The ecology and evolution of microsporidian parasites. Parasitology, 2009, 136, 1901-1914.	0.7	57
5	High-Level Resistance of <i>Nosema ceranae</i> , a Parasite of the Honeybee, to Temperature and Desiccation. Applied and Environmental Microbiology, 2009, 75, 6886-6889.	1.4	95
6	The presence of <i>Nosema ceranae</i> (Microsporidia) in North African honey bees (<i>Apis mellifera) Tj ETQq1</i>	1 0,78431 0.7	4 rgBT /Ovei
7	Effect of Temperature on the Biotic Potential of Honeybee Microsporidia. Applied and Environmental Microbiology, 2009, 75, 2554-2557.	1.4	157
8	Deformed Wing Virus Implicated in Overwintering Honeybee Colony Losses. Applied and Environmental Microbiology, 2009, 75, 7212-7220.	1.4	247
9	One-step real-time quantitative PCR assays for the detection and field study of Sacbrood honeybee and Acute bee paralysis viruses. Journal of Virological Methods, 2009, 161, 240-246.	1.0	30
10	Immune suppression in the honey bee (<i>Apis mellifera</i>) following infection by <i>Nosema ceranae</i> (<i>Microsporidia</i>). Environmental Microbiology, 2009, 11, 2284-2290.	1.8	340
11	Unique physiology of host-parasite interactions in microsporidia infections. Cellular Microbiology, 2009, 11, 1551-1560.	1.1	75
12	Biodiversity, conservation and current threats to European honeybees. Apidologie, 2009, 40, 263-284.	0.9	290
13	Behavioral changes mediated by hunger in honeybees infected with <i>Nosema ceranae</i> . Apidologie, 2009, 40, 595-599.	0.9	119
14	Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 2009, 142, 2369-2372.	1.9	309
15	Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertebrate Pathology, 2009, 100, 185-188.	1.5	315
16	Presence of Nosema ceranae in honeybees (Apis mellifera) in Uruguay. Journal of Invertebrate Pathology, 2009, 101, 150-153.	1.5	120
17	Asymmetrical coexistence of Nosema ceranae and Nosema apis in honey bees. Journal of Invertebrate Pathology, 2009, 101, 204-209.	1.5	145
18	Invasive Bombus terrestris (Hymenoptera: Apidae) parasitized by a flagellate (Euglenozoa:) Tj ETQq1 1 0.784314 Pathology, 2009, 102, 263-265.	rgBT /Ove 1.5	erlock 10 Tf 35
19	Genomic Analyses of the Microsporidian Nosema ceranae, an Emergent Pathogen of Honey Bees. PLoS Pathogens, 2009, 5, e1000466.	2.1	194
20	Honeybee colony collapse due to <i>Nosema ceranae</i> in professional apiaries. Environmental Microbiology Reports, 2009, 1, 110-113.	1.0	255

ATION REDO

#	ARTICLE	IF	CITATIONS
21	South American native bumblebees (Hymenoptera: Apidae) infected by <i>Nosema ceranae</i> (<i>Microsporidia</i>), an emerging pathogen of honeybees (<i>Apis mellifera</i>). Environmental Microbiology Reports, 2009, 1, 131-135.	1.0	164
22	Horizontal transmission of <i>Nosema ceranae</i> (Microsporidia) from worker honeybees to queens (<i>Apis mellifera</i>). Environmental Microbiology Reports, 2009, 1, 495-498.	1.0	60
23	Exploiting environmental niches and the potential of environmental microbes. Environmental Microbiology Reports, 2009, 1, 275-278.	1.0	1
24	The Honeybee <i>Apis mellifera</i> . Cold Spring Harbor Protocols, 2009, 2009, pdb.emo123.	0.2	11
25	A case report of a honey bee colony poisoning incident in France. Journal of Apicultural Research, 2010, 49, 113-115.	0.7	27
26	Surveys to estimate winter losses in Switzerland. Journal of Apicultural Research, 2010, 49, 132-133.	0.7	19
27	Data on honey bee losses in Greece: a preliminary note. Journal of Apicultural Research, 2010, 49, 116-118.	0.7	18
28	ä,–界ã«ãŠãʿã,‹ãfŸãf"ãfãfã®ç¾çжãïæ,›å°'è¦å›. Kagaku To Seibutsu, 2010, 48, 577-582.	0.0	2
29	Effect of thymol and resveratrol administered with candy or syrup on the development of <i>Nosema ceranae</i> and on the longevity of honeybees (<i>Apis mellifera</i> L.) in laboratory conditions. Apidologie, 2010, 41, 141-150.	0.9	91
30	<i>Varroa destructor</i> is the main culprit for the death and reduced populations of overwintered honey bee (<i>Apis mellifera</i>) colonies in Ontario, Canada. Apidologie, 2010, 41, 443-450.	0.9	318
31	Research strategies to improve honeybee health in Europe. Apidologie, 2010, 41, 227-242.	0.9	92
32	The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 2010, 41, 332-352.	0.9	564
33	<i>Nosema ceranae</i> in Europe: an emergent type C nosemosis. Apidologie, 2010, 41, 375-392.	0.9	213
34	<i>Nosema ceranae</i> , a newly identified pathogen of <i>Apis mellifera</i> in the USA and Asia. Apidologie, 2010, 41, 364-374.	0.9	91
35	Honey bee pathology: current threats to honey bees and beekeeping. Applied Microbiology and Biotechnology, 2010, 87, 87-97.	1.7	328
36	Nosema spp. Infection Alters Pheromone Production in Honey Bees (Apis mellifera). Journal of Chemical Ecology, 2010, 36, 522-525.	0.9	52
37	Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. Journal of Insect Physiology, 2010, 56, 1572-1575.	0.9	112
38	Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Veterinary Parasitology, 2010, 170, 212-217.	0.7	196

#	Article	IF	CITATIONS
39	Multiplex PCR detection of slowlyâ€evolving trypanosomatids and neogregarines in bumblebees using broadâ€range primers. Journal of Applied Microbiology, 2010, 109, 107-115.	1.4	67
40	Interactions between <i>Nosema</i> microspores and a neonicotinoid weaken honeybees (<i>Apis) Tj ETQq1 1 0</i>	.784314 r 1.8	gBT /Overlo
41	Prevalence and distribution of Nosema ceranae in Croatian honeybee colonies. Veterinarni Medicina, 2010, 55, 457-462.	0.2	30
42	Optimization of duplex real-time PCR with melting-curve analysis for detecting the microsporidian parasites <i>Nosema apis</i> and <i>Nosema ceranae</i> in <i>Apis mellifera</i> . Canadian Entomologist, 2010, 142, 271-283.	0.4	26
43	Effective Gene Silencing in a Microsporidian Parasite Associated with Honeybee (<i>Apis mellifera</i>) Colony Declines. Applied and Environmental Microbiology, 2010, 76, 5960-5964.	1.4	100
44	Large-Scale Field Application of RNAi Technology Reducing Israeli Acute Paralysis Virus Disease in Honey Bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathogens, 2010, 6, e1001160.	2.1	185
45	The role of infectious agents and parasites in the health of honey bee colonies in France. Journal of Apicultural Research, 2010, 49, 31-39.	0.7	17
46	Natural infection by <i>Nosema ceranae</i> causes similar lesions as in experimentally infected caged-worker honey bees (<i>Apis mellifera</i>). Journal of Apicultural Research, 2010, 49, 278-283.	0.7	37
47	Does infection by <i>Nosema ceranae</i> cause "Colony Collapse Disorder―in honey bees (<i>Apis) Tj ETQq</i>	0	Overlock 1
48	The reliability of spore counts to diagnose <i>Nosema ceranae</i> infections in honey bees. Journal of Apicultural Research, 2010, 49, 212-214.	0.7	66
49	Overview of Pesticide Residues in Stored Pollen and Their Potential Effect on Bee Colony (Apis) Tj ETQq0 0 0 rgBT	- /Qverlock	2 10 Tf 50 34
50	Microsporidia: a model for minimal parasite–host interactions. Current Opinion in Microbiology, 2010, 13, 443-449.	2.3	85
51	A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 2010, 103, S80-S95.	1.5	889
52	Nosema ceranae in European honey bees (Apis mellifera). Journal of Invertebrate Pathology, 2010, 103, S73-S79.	1.5	386
53	Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 2010, 103, S96-S119.	1.5	1,159
54	Genetic detection and quantification of Nosema apis and N. ceranae in the honey bee. Journal of Invertebrate Pathology, 2010, 103, 53-58.	1.5	87
55	Effects at Nearctic north-temperate latitudes of indoor versus outdoor overwintering on the microsporidium Nosema ceranae and western honey bees (Apis mellifera). Journal of Invertebrate Pathology, 2010, 104, 4-7.	1.5	23
56	A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera). Journal of Invertebrate Pathology, 2010, 105, 151-155.	1.5	63

#	Article	IF	CITATIONS
57	Sudden deaths and colony population decline in Greek honey bee colonies. Journal of Invertebrate Pathology, 2010, 105, 335-340.	1.5	145
58	A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environmental Microbiology Reports, 2010, 2, 243-250.	1.0	105
59	The differential development of microsporidia infecting worker honey bee (<i>Apis mellifera</i>) at increasing incubation temperature. Environmental Microbiology Reports, 2010, 2, 745-748.	1.0	32
60	Five-Year Cohort Study of <i>Nosema</i> spp. in Germany: Does Climate Shape Virulence and Assertiveness of <i>Nosema ceranae</i> ?. Applied and Environmental Microbiology, 2010, 76, 3032-3038.	1.4	197
61	Infections of Nosema ceranae in four different honeybee species. Journal of Invertebrate Pathology, 2010, 105, 207-210.	1.5	50
62	The Plight of the Bees. Environmental Science & amp; Technology, 2011, 45, 34-38.	4.6	110
63	A Quantitative Model of Honey Bee Colony Population Dynamics. PLoS ONE, 2011, 6, e18491.	1.1	204
64	Distribution of Nosema ceranae in the European honeybee, Apis mellifera in Japan. Journal of Invertebrate Pathology, 2011, 106, 263-267.	1.5	41
65	Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis) Tj ETQq0 0 0	rgBT_/Ove	erlo <u>gk</u> 10 Tf 50
66	Prevalence and infection intensity of Nosema in honey bee (Apis mellifera L.) colonies in Virginia. Journal of Invertebrate Pathology, 2011, 107, 43-49.	1.5	84
67	Phylogenetic analysis of Nosema ceranae isolated from European and Asian honeybees in Northern Thailand. Journal of Invertebrate Pathology, 2011, 107, 229-233.	1.5	28
68	Evidence for emerging parasites and pathogens influencing outbreaks of stress-related diseases like chalkbrood. Journal of Invertebrate Pathology, 2011, 108, 167-173.	1.5	65
69	Bees brought to their knees: microbes affecting honey bee health. Trends in Microbiology, 2011, 19, 614-620.	3.5	312
70	Evaluation of largeâ€scale dissemination of <i>Nosema ceranae</i> spores by European beeâ€eaters <i>Merops apiaster</i> . Environmental Microbiology Reports, 2011, 3, 47-53.	1.0	19
71	RNAi in Agriculturally-Important Arthropods. , 0, , .		7
72	Effect of the herbal preparation Nozevit on the mid-gut structure of honeybees (Apis mellifera) infected with Nosema sp. spores. Veterinarni Medicina, 2011, 56, 344-351.	0.2	17
73	Genetic Basis of Disease Resistance in the Honey Bee (Apis mellifera L.). , 2011, , 763-767.		2
74	Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia. PLoS ONE, 2011, 6, e20656.	1.1	372

#	Article	IF	CITATIONS
75	Polymorphism and recombination for rDNA in the putatively asexual microsporidian <i>Nosema ceranae</i> , a pathogen of honeybees. Environmental Microbiology, 2011, 13, 84-95.	1.8	52
76	A cell culture model for <i>Nosema ceranae</i> and <i>Nosema apis</i> allows new insights into the life cycle of these important honey beeâ€pathogenic microsporidia. Environmental Microbiology, 2011, 13, 404-413.	1.8	103
77	Intracellular immune responses of dipteran insects. Immunological Reviews, 2011, 240, 129-140.	2.8	31
78	The habitat disruption induces immuneâ€suppression and oxidative stress in honey bees. Ecology and Evolution, 2011, 1, 201-217.	0.8	44
79	The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera L.). Apidologie, 2011, 42, 1-13.	0.9	89
80	The microsporidian Nosema ceranae, the antibiotic Fumagilin-B®, and western honey bee (Apis) Tj ETQq1 1 0.78	4314 rgBT	Qverlock
81	Dominance of Nosema ceranae in honey bees in the Balkan countries in the absence of symptoms of colony collapse disorder. Apidologie, 2011, 42, 49-58.	0.9	91
82	Molecular detection of Nosema ceranae and N. apis from Turkish honey bees. Apidologie, 2011, 42, 174-180.	0.9	38
83	Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie, 2011, 42, 192-199.	0.9	52
84	Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitology Research, 2011, 109, 605-612.	0.6	147
85	The stability and effectiveness of fumagillin in controlling Nosema ceranae (Microsporidia) infection in honey bees (Apis mellifera) under laboratory and field conditions. Apidologie, 2011, 42, 364-377.	0.9	80
86	A more consistent method for extracting and amplifying DNA from bee wings. Apidologie, 2011, 42, 721-727.	0.9	7
87	An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain. Pest Management Science, 2011, 67, 1320-1331.	1.7	15
88	Non-Lytic, Actin-Based Exit of Intracellular Parasites from C. elegans Intestinal Cells. PLoS Pathogens, 2011, 7, e1002227.	2.1	67
89	New Models of Microsporidiosis: Infections in Zebrafish, C. elegans, and Honey Bee. PLoS Pathogens, 2011, 7, e1001243.	2.1	38
90	Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae. PLoS ONE, 2011, 6, e21550.	1.1	325
91	Viral infection and <i>Nosema ceranae</i> in honey bees (<i>Apis mellifera</i>) in Chile. Journal of Apicultural Research, 2012, 51, 285-287.	0.7	23
92	Preparing a discreet escape. Worm, 2012, 1, 207-211.	1.0	7

	CHATION	LPORT	
#	ARTICLE	IF	Citations
94	Pollen nutrition affects honey bee stress resistance. Terrestrial Arthropod Reviews, 2012, 5, 175-189.	0.8	122
96	Gut Pathology and Responses to the Microsporidium Nosema ceranae in the Honey Bee Apis mellifera. PLoS ONE, 2012, 7, e37017.	1,1	204
97	Interaction between pesticides and other factors in effects on bees. EFSA Supporting Publications, 2012, 9, 340E.	0.3	26
98	Patterns of Apis mellifera infestation by Nosema ceranae support the parasite hypothesis for the evolution of extreme polyandry in eusocial insects. Apidologie, 2012, 43, 539-548.	0.9	24
99	Detection of Nosema apis and N. ceranae in honeybee bottom scraps and frass in naturally infected hives. Apidologie, 2012, 43, 753-760.	0.9	22
100	Dead or Alive: Deformed Wing Virus and Varroa destructor Reduce the Life Span of Winter Honeybees. Applied and Environmental Microbiology, 2012, 78, 981-987.	1.4	283
101	The growing prevalence of Nosema ceranae in honey bees in Spain, an emerging problem for the last decade. Research in Veterinary Science, 2012, 93, 150-155.	0.9	49
102	Prevalence and seasonality of <i>Nosema</i> species in Québec honey bees. Canadian Entomologist, 2012, 144, 577-588.	0.4	22
103	Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections. Journal of Invertebrate Pathology, 2012, 109, 297-302.	1.5	94
104	Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. Journal of Invertebrate Pathology, 2012, 109, 326-329.	1.5	142
105	Linking evolutionary lineage with parasite and pathogen prevalence in the Iberian honey bee. Journal of Invertebrate Pathology, 2012, 110, 8-13.	1.5	9
106	Further evidence of an oriental origin for Nosema ceranae (Microsporidia: Nosematidae). Journal of Invertebrate Pathology, 2012, 110, 108-113.	1.5	43
107	Low natural levels of Nosema ceranae in Apis mellifera queens. Journal of Invertebrate Pathology, 2012, 110, 408-410.	1.5	24
108	Liquid chromatography coupled to ion trap-tandem mass spectrometry to evaluate juvenile hormone III levels in bee hemolymph from Nosema spp. infected colonies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 899, 146-153.	1.2	23
109	Low prevalence of honeybee viruses in Spain during 2006 and 2007. Research in Veterinary Science, 2012, 93, 1441-1445.	0.9	27
110	Gas chromatography–mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. Journal of Insect Physiology, 2012, 58, 1349-1359.	0.9	62
111	Asymptomatic presence of Nosema spp. in Spanish commercial apiaries. Journal of Invertebrate Pathology, 2012, 111, 106-110.	1.5	44

#	Article	IF	CITATIONS
112	General Stress Responses in the Honey Bee. Insects, 2012, 3, 1271-1298.	1.0	122
113	Pervasiveness of Parasites in Pollinators. PLoS ONE, 2012, 7, e30641.	1.1	137
114	Predictive Markers of Honey Bee Colony Collapse. PLoS ONE, 2012, 7, e32151.	1.1	291
115	Pathogen Webs in Collapsing Honey Bee Colonies. PLoS ONE, 2012, 7, e43562.	1.1	387
116	Honeybee Communication and Pollination. , 2012, , .		2
117	Critical aspects of the Nosema spp. diagnostic sampling in honey bee (Apis mellifera L.) colonies. Parasitology Research, 2012, 110, 2557-2561.	0.6	17
118	Nosema ceranae an emergent pathogen of Apis mellifera in Chile. Parasitology Research, 2012, 111, 601-607.	0.6	35
119	Honeybee glands as possible infection reservoirs of Nosema ceranae and Nosema apis in naturally infected forager bees. Journal of Applied Microbiology, 2012, 112, 15-24.	1.4	39
120	<i>Nosema</i> spp. parasitization decreases the effectiveness of acaricide strips (Apivar [®]) in treating varroosis of honey bee (<i>Apis mellifera iberiensis</i>) colonies. Environmental Microbiology Reports, 2012, 4, 57-65.	1.0	23
121	Colony collapse disorder in Europe. Environmental Microbiology Reports, 2012, 4, 123-125.	1.0	71
122	Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 2012, 58, 1090-1095.	0.9	138
123	Prevalence of honeybee viruses in the Czech Republic and coinfections with other honeybee disease. Biologia (Poland), 2012, 67, 590-595.	0.8	12
124	Microsporidia infecting <i>Apis mellifera</i> : coexistence or competition. Is <i>Nosema ceranae</i> replacing <i> Nosema apis</i> ?. Environmental Microbiology, 2012, 14, 2127-2138.	1.8	120
125	The effect of induced queen replacement on <i>Nosema</i> spp. infection in honey bee (<i>Apis) Tj ETQq1 1 0.7</i>	84314 rgB 1.8	T /Qverlock
126	A review on self-destructive defense behaviors in social insects. Insectes Sociaux, 2012, 59, 1-10.	0.7	113
127	Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Die Naturwissenschaften, 2012, 99, 153-158.	0.6	368
128	Comparative susceptibility of three Western honeybee taxa to the microsporidian parasite Nosema ceranae. Infection, Genetics and Evolution, 2013, 17, 188-194.	1.0	26
129	Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Veterinary Microbiology, 2013, 167, 474-483.	0.8	59

#	Article	IF	CITATIONS
130	Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Veterinary Research, 2013, 44, 25.	1.1	147
131	Characteristics of Nosema ceranae infection in Serbian honey bee colonies. Apidologie, 2013, 44, 522-536.	0.9	51
132	Apoptosis in the pathogenesis of <i><scp>N</scp>osema ceranae</i> (<i><scp>M</scp>icrosporidia</i> :) Tj ETC Microbiology Reports, 2013, 5, 530-536.	2q0 0 0 rg 1.0	BT /Overlock 62
133	Do the honeybee pathogens <i><scp>N</scp>osema ceranae</i> and deformed wing virus act synergistically?. Environmental Microbiology Reports, 2013, 5, 506-510.	1.0	39
134	A serological method for detection of <i>Nosema ceranae</i> . Journal of Applied Microbiology, 2013, 114, 621-625.	1.4	11
135	Pathogens, Pests, and Economics: Drivers of Honey Bee Colony Declines and Losses. EcoHealth, 2013, 10, 434-445.	0.9	187
136	Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions. BMC Genomics, 2013, 14, 451.	1.2	61
137	Chronic sublethal stress causes bee colony failure. Ecology Letters, 2013, 16, 1463-1469.	3.0	175
138	Prevalence of <i>Nosema</i> from Managed Honey Bee Colonies in South Dakota and New York ¹ . Journal of Agricultural and Urban Entomology, 2013, 29, 99-104.	0.6	6
139	A potential link among biogenic amines-based pesticides, learning and memory, and colony collapse disorder: A unique hypothesis. Neurochemistry International, 2013, 62, 122-136.	1.9	96
140	Temporal study of <i><scp>N</scp>osema</i> spp. in a cold climate. Environmental Microbiology Reports, 2013, 5, 78-82.	1.0	34
141	The microsporidian parasites Nosema ceranae and Nosema apis are widespread in honeybee (Apis) Tj ETQq1 1 0.	784314 rg 0.6	BT /Overloc
142	Negative evidence for effects of genetic origin of bees on Nosema ceranae, positive evidence for effects of Nosema ceranae on bees. Apidologie, 2013, 44, 511-518.	0.9	24
143	Dynamic modelling of honey bee (Apis mellifera) colony growth and failure. Ecological Modelling, 2013, 265, 158-169.	1.2	88
144	Nosema ceranae has been present in Brazil for more than three decades infecting Africanized honey bees. Journal of Invertebrate Pathology, 2013, 114, 250-254.	1.5	60
145	Comparative study of Nosema ceranae (Microsporidia) isolates from two different geographic origins. Veterinary Microbiology, 2013, 162, 670-678.	0.8	40
146	Molecular differentiation of Nosema apis and Nosema ceranae based on species–specific sequence differences in a protein coding gene. Journal of Invertebrate Pathology, 2013, 113, 1-6.	1.5	37
147	Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. Journal of Invertebrate Pathology, 2013, 113, 42-51.	1.5	116

#	Article	IF	CITATIONS
148	Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. Developmental and Comparative Immunology, 2013, 40, 300-310.	1.0	96
149	Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 2013, 11, 251-259.	1.9	980
150	Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. Journal of Invertebrate Pathology, 2013, 114, 114-119.	1.5	127
151	Back to basics: A revealing secondary reduction of the mitochondrial protein import pathway in diverse intracellular parasites. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 295-303.	1.9	24
152	Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. Journal of Invertebrate Pathology, 2013, 112, 62-67.	1.5	44
153	Screening alternative therapies to control Nosemosis type C in honey bee (Apis mellifera iberiensis) colonies. Research in Veterinary Science, 2013, 95, 1041-1045.	0.9	30
154	Statistical guidelines for <i>Apis mellifera</i> research. Journal of Apicultural Research, 2013, 52, 1-24.	0.7	73
155	Standard methods for <i>Nosema</i> research. Journal of Apicultural Research, 2013, 52, 1-28.	0.7	283
156	Differential expression of vitellogenin in honey bees (<i>Apis mellifera</i>) with different degrees of <i>Nosema ceranae</i> infection. Journal of Apicultural Research, 2013, 52, 227-234.	0.7	19
157	<i><scp>N</scp>osema ceranae</i> (Microsporidia), a controversial 21st century honey bee pathogen. Environmental Microbiology Reports, 2013, 5, 17-29.	1.0	165
158	Survey forNosemaspp. in Belize apiaries. Journal of Apicultural Research, 2013, 52, 62-66.	0.7	3
159	New insights on the genetic diversity of the honeybee parasite <i>Nosema ceranae</i> based on <i>multilocus</i> sequence analysis. Parasitology, 2013, 140, 1346-1356.	0.7	31
160	Varroa-Virus Interaction in Collapsing Honey Bee Colonies. PLoS ONE, 2013, 8, e57540.	1.1	238
161	Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae. PLoS ONE, 2013, 8, e70182.	1.1	364
162	The effect of Nozevit on leucine aminopeptidase and esterase activity in the midgut of honey bees (Apis) Tj ETQq	0 8.9 rgBT	Qverlock 1
163	Evaluation of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee (Apis) Tj ETQq1	1 0.78431 1.1	.4 rgBT /Ove
164	Sex-Specific Differences in Pathogen Susceptibility in Honey Bees (Apis mellifera). PLoS ONE, 2014, 9, e85261.	1.1	52
165	So Near and Yet So Far: Harmonic Radar Reveals Reduced Homing Ability of Nosema Infected Honeybees. PLoS ONE, 2014, 9, e103989.	1.1	108

#	Article	IF	CITATIONS
166	Genome-Wide Identification and Comprehensive Analyses of the Kinomes in Four Pathogenic Microsporidia Species. PLoS ONE, 2014, 9, e115890.	1.1	8
167	Identification of Nosema ceranae in the ValparaÃso District, Chile. Archivos De Medicina Veterinaria, 2014, 46, 487-491.	0.2	12
168	Honeybee immunity and colony losses. Entomologia, 2014, , .	1.0	4
169	Spore Loads May Not be Used Alone as a Direct Indicator of the Severity of <i>Nosema ceranae</i> Infection in Honey Bees <i>Apis mellifera</i> (Hymenoptera:Apidae). Journal of Economic Entomology, 2014, 107, 2037-2044.	0.8	35
171	Weak effects of a microsporidian parasite on mottled sculpin in Michigan streams. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 915-926.	0.7	5
172	Ubiquitin-Mediated Response to Microsporidia and Virus Infection in C. elegans. PLoS Pathogens, 2014, 10, e1004200.	2.1	184
173	Occurrence of parasites and pathogens in honey bee colonies used in a European genotype-environment interactions experiment. Journal of Apicultural Research, 2014, 53, 215-229.	0.7	82
174	A Comparative Study of Environmental Conditions, Bee Management and the Epidemiological Situation in Apiaries Varying in the Level of Colony Losses. Journal of Apicultural Science, 2014, 58, 107-132.	0.1	17
175	Molecular Detection of <i>Nosema apis</i> and <i>N. Ceranae</i> from Southwestern and South Central USA Feral Africanized and European Honey Bees, <i>Apis mellifera</i> (Hymenoptera: Apidae). Florida Entomologist, 2014, 97, 585-589.	0.2	11
176	Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evolutionary Applications, 2014, 7, 812-855.	1.5	185
177	Ribosomal Gene Polymorphism in Small Genomes: Analysis of Different 16S <scp>rRNA</scp> Sequences Expressed in the Honeybee Parasite <i>Nosema ceranae</i> (Microsporidia). Journal of Eukaryotic Microbiology, 2014, 61, 42-50.	0.8	11
178	Dynamics of the Presence of Israeli Acute Paralysis Virus in Honey Bee Colonies with Colony Collapse Disorder. Viruses, 2014, 6, 2012-2027.	1.5	44
179	Holistic screening of collapsing honey bee colonies in Spain: a case study. BMC Research Notes, 2014, 7, 649.	0.6	72
180	<i>Nosema ceranae</i> and queen age influence the reproduction and productivity of the honey bee colony. Journal of Apicultural Research, 2014, 53, 545-554.	0.7	40
181	Nosema Ceranae DNA in Honey Bee Haemolymph and Honey Bee Mite Varroa Destructor/DNK Nosema Ceranae U Hemolimfi PÄela I PÄelinjem Krpelju Varroa Destructor. Acta Veterinaria, 2014, 64, 349-357.	0.2	18
182	Presence of Nosema ceranae associated with honeybee queen introductions. Infection, Genetics and Evolution, 2014, 23, 161-168.	1.0	19
183	Characterization of viral siRNA populations in honey bee colony collapse disorder. Virology, 2014, 454-455, 176-183.	1.1	61
184	A selective sweep in a microsporidian parasite <i><scp>N</scp>osema</i> â€tolerant honeybee population, <i><scp>A</scp>pis mellifera</i> . Animal Genetics, 2014, 45, 267-273.	0.6	19

#	Article	IF	CITATIONS
185	Fumagillin: An Overview of Recent Scientific Advances and Their Significance for Apiculture. Journal of Agricultural and Food Chemistry, 2014, 62, 2728-2737.	2.4	83
186	Quantifying spore viability of the honey bee pathogen <i>Nosema apis</i> using flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 454-462.	1.1	18
187	Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera. Apidologie, 2014, 45, 248-256.	0.9	29
188	Nosema ceranae and RNA viruses in European and Africanized honeybee colonies (Apis mellifera) in Uruguay. Apidologie, 2014, 45, 224-234.	0.9	25
189	Reviews of Science for Science Librarians: An Update on Honeybee Colony Collapse Disorder. Science and Technology Libraries, 2014, 33, 228-260.	0.8	8
190	Immunosenescence and resistance to parasite infection in the honey bee, Apis mellifera. Journal of Invertebrate Pathology, 2014, 121, 1-6.	1.5	44
191	Differential proteomic analysis of midguts from Nosema ceranae-infected honeybees reveals manipulation of key host functions. Journal of Invertebrate Pathology, 2014, 121, 89-96.	1.5	63
192	Systemic Spread and Propagation of a Plant-Pathogenic Virus in European Honeybees, Apis mellifera. MBio, 2014, 5, e00898-13.	1.8	81
195	An Inventory of Documented Diseases of African Honeybees. African Entomology, 2014, 22, 473-487.	0.6	14
196	A descriptive study of the prevalence of parasites and pathogens in Chinese black honeybees. Parasitology, 2015, 142, 1364-1374.	0.7	3
197	Permanent prevalence of Nosema ceranae in honey bees (Apis mellifera) in Hungary. Acta Veterinaria Hungarica, 2015, 63, 358-369.	0.2	6
198	Neonicotinoids and the prevalence of parasites and disease in bees. Bee World, 2015, 92, 34-40.	0.3	8
199	Diseases in insects produced for food and feed. Journal of Insects As Food and Feed, 2015, 1, 87-102.	2.1	122
200	Passive laboratory surveillance in Spain: pathogens as risk factors for honey bee colony collapse. Journal of Apicultural Research, 2015, 54, 525-531.	0.7	10
201	Genome analyses suggest the presence of polyploidy and recent humanâ€driven expansions in eight global populations of the honeybee pathogen <scp><i>N</i></scp> <i>osema ceranae</i> . Environmental Microbiology, 2015, 17, 4443-4458.	1.8	66
202	<i>Nosema ceranae</i> alters a highly conserved hormonal stress pathway in honeybees. Insect Molecular Biology, 2015, 24, 662-670.	1.0	48
203	Distribution, epidemiological characteristics and control methods of the pathogen Nosema ceranae Fries in honey bees Apis mellifera L. (Hymenoptera, Apidae). Archivos De Medicina Veterinaria, 2015, 47, 129-138.	0.2	9
204	Virus infections of honeybees Apis Mellifera. Italian Journal of Food Safety, 2015, 4, 5364.	0.5	41

#	Article	IF	CITATIONS
205	Limitações ao uso de Apis mellifera (Hymenoptera: Apidae) para a polinização dirigida de cultivares: um estudo de caso com a pereira-portuguesa (Pyrus communis L. cv. Rocha). Biotemas, 2015, 28, 73.	0.2	2
206	Honey Bees (Apis mellifera L.) and Pollination Issues: Current status, impacts and potential drivers of decline. Journal of Agricultural Science, 2015, 7, .	0.1	23
207	Identification of Candidate Agents Active against N. ceranae Infection in Honey Bees: Establishment of a Medium Throughput Screening Assay Based on N. ceranae Infected Cultured Cells. PLoS ONE, 2015, 10, e0117200.	1.1	29
208	Nosema ceranae Can Infect Honey Bee Larvae and Reduces Subsequent Adult Longevity. PLoS ONE, 2015, 10, e0126330.	1.1	66
209	Four Categories of Viral Infection Describe the Health Status of Honey Bee Colonies. PLoS ONE, 2015, 10, e0140272.	1.1	39
210	Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories. PLoS ONE, 2015, 10, e0145609.	1.1	21
211	Horizontal transmission of a parasite is influenced by infected host phenotype and density. Parasitology, 2015, 142, 395-405.	0.7	15
212	Infectivity of <i>Nosema ceranae</i> isolates from different hosts and immune response in honey bees <i>Apis mellifera</i> and <i>Apis cerana</i> . Journal of Apicultural Research, 2015, 54, 200-206.	0.7	4
213	Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3427-3432.	3.3	220
214	Determination of Dicyclohexylamine and Fumagillin in Honey by LC-MS/MS. Food Analytical Methods, 2015, 8, 767-777.	1.3	18
215	Stability of dicyclohexylamine and fumagillin in honey. Food Chemistry, 2015, 179, 152-158.	4.2	25
216	Evidence of the synergistic interaction of honey bee pathogens Nosema ceranae and Deformed wing virus. Veterinary Microbiology, 2015, 177, 1-6.	0.8	34
217	Effects of genotype, environment, and their interactions on honey bee health in Europe. Current Opinion in Insect Science, 2015, 10, 177-184.	2.2	68
218	Death of the bee hive: understanding the failure of an insect society. Current Opinion in Insect Science, 2015, 10, 45-50.	2.2	74
219	The cost of promiscuity: sexual transmission of Nosema microsporidian parasites in polyandrous honey bees. Scientific Reports, 2015, 5, 10982.	1.6	59
220	Dynamics of Apis mellifera Filamentous Virus (AmFV) Infections in Honey Bees and Relationships with Other Parasites. Viruses, 2015, 7, 2654-2667.	1.5	44
221	<italic>Nosema bombycis</italic> (Microsporidia) suppresses apoptosis in <italic>Bm</italic> N cells (<italic>Bombyx) Tj ETQq0 0 0 rgBT /Ove</italic>	rlo al 910 T	f 5 2 497 Td (n
	Microsporidia: Fukarvotic Intracellular Parasites Shaped by Gene Loss and Horizontal Gene Transfers		

² Annual Review of Microbiology, 2015, 69, 167-183.

		15	Circuration
#	ARTICLE	IF	CHATIONS
223	honeybee nosemosis. Carbohydrate Polymers, 2015, 133, 213-220.	5.1	52
224	Prospective Large-Scale Field Study Generates Predictive Model Identifying Major Contributors to Colony Losses. PLoS Pathogens, 2015, 11, e1004816.	2.1	38
225	Metatranscriptomic analyses of honey bee colonies. Frontiers in Genetics, 2015, 6, 100.	1.1	35
226	Hologenome theory and the honey bee pathosphere. Current Opinion in Insect Science, 2015, 10, 1-7.	2.2	57
227	Effects of the juvenile hormone analogue methoprene on rate of behavioural development, foraging performance and navigation in honey bees (<i>Apis mellifera</i>). Journal of Experimental Biology, 2015, 218, 1715-24.	0.8	24
228	Effects, but no interactions, of ubiquitous pesticide and parasite stressors on honey bee (<scp><i>A</i></scp> <i>pis mellifera</i>) lifespan and behaviour in a colony environment. Environmental Microbiology, 2015, 17, 4322-4331.	1.8	47
229	Seasonal Variation of Honeybee Pathogens and its Association with Pollen Diversity in Uruguay. Microbial Ecology, 2015, 70, 522-533.	1.4	40
230	Stable genetic diversity despite parasite and pathogen spread in honey bee colonies. Die Naturwissenschaften, 2015, 102, 53.	0.6	4
231	Effect of oxalic acid on Nosema ceranae infection. Research in Veterinary Science, 2015, 102, 167-172.	0.9	27
232	Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151371.	1.2	229
233	Accelerated behavioural development changes fine-scale search behaviour and spatial memory in honey bees (<i>Apis mellifera</i> L). Journal of Experimental Biology, 2015, 219, 412-8.	0.8	21
234	Interspecific competition in honeybee intracellular gut parasites is asymmetric and favours the spread of an emerging infectious disease. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141896.	1.2	77
235	Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental Microbiology, 2015, 17, 969-983.	1.8	295
236	Within-host competition among the honey bees pathogens Nosema ceranae and Deformed wing virus is asymmetric and to the disadvantage of the virus. Journal of Invertebrate Pathology, 2015, 124, 31-34.	1.5	61
237	Effects of Wintering Environment and Parasite–Pathogen Interactions on Honey Bee Colony Loss in North Temperate Regions. PLoS ONE, 2016, 11, e0159615.	1.1	38
238	Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.). PLoS ONE, 2016, 11, e0163522.	1.1	31
239	Flight performance of actively foraging honey bees is reduced by a common pathogen. Environmental Microbiology Reports, 2016, 8, 728-737.	1.0	44
240	Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (<i>Apis mellifera</i> L). Journal of Experimental Biology, 2016, 219, 949-959.	0.8	51

#	Apticie	IE	CITATIONS
#	Parasite resistance and tolerance in honeybees at the individual and social level. Zoology, 2016, 119,	IF	CHAHONS
241	290-297.	0.6	51
242	Test of the invasive pathogen hypothesis of bumble bee decline in North America. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4386-4391.	3.3	104
243	The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions. MBio, 2016, 7, e02164-15.	1.8	215
244	Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (<i>nkd</i>) Improves Host Immune Function and Reduces Nosema ceranae Infections. Applied and Environmental Microbiology, 2016, 82, 6779-6787.	1.4	57
245	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	1.4	115
246	Viability and infectivity of fresh and cryopreserved Nosema ceranae spores. Journal of Microbiological Methods, 2016, 131, 16-22.	0.7	25
247	Bombus brasiliensis Lepeletier (Hymenoptera, Apidae) infected with Nosema ceranae (Microsporidia). Revista Brasileira De Entomologia, 2016, 60, 347-351.	0.1	16
248	Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection. EFSA Journal, 2016, 14, e04578.	0.9	24
249	Risk factors associated with the abundance of <i>Nosema</i> spp. in apiaries located in temperate and subtropical conditions after honey harvest. Journal of Apicultural Research, 2016, 55, 342-350.	0.7	9
250	Nosema ceranae is an old resident of honey bee (Apis mellifera) colonies in Mexico, causing infection levels of one million spores per bee or higher during summer and fall. Journal of Invertebrate Pathology, 2016, 141, 38-40.	1.5	25
251	Optimal search patterns in honeybee orientation flights are robust against emerging infectious diseases. Scientific Reports, 2016, 6, 32612.	1.6	23
252	Distribution and prevalence of Nosema apis and N. ceranae in temperate and subtropical eco-regions of Argentina. Journal of Invertebrate Pathology, 2016, 141, 34-37.	1.5	18
253	Identifying bacterial predictors of honey bee health. Journal of Invertebrate Pathology, 2016, 141, 41-44.	1.5	29
254	Parasite infection accelerates age polyethism in young honey bees. Scientific Reports, 2016, 6, 22042.	1.6	42
255	Evaluation of Antimicrosporidian Activity of Plant Extracts on <i>Nosema ceranae</i> . Journal of Apicultural Science, 2016, 60, 167-178.	0.1	14
256	Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Beneficial Microbes, 2016, 7, 45-51.	1.0	67
257	Approaches and Challenges to Managing <i>Nosema</i> (Microspora: Nosematidae) Parasites in Honey Bee (Hymenoptera: Apidae) Colonies. Journal of Economic Entomology, 2016, 109, 1487-1503.	0.8	35
258	Prevalence of Nosema species in a feral honey bee population: a 20-year survey. Apidologie, 2016, 47, 561-571.	0.9	7

#	Article	IF	CITATIONS
259	Atypical viral and parasitic pattern in Algerian honey bee subspecies Apis mellifera intermissa and A. m. sahariensis. Apidologie, 2016, 47, 631-641.	0.9	10
260	Molecular epidemiology and geographical distribution of Nosema ceranae in honeybees, Northern Thailand. Asian Pacific Journal of Tropical Disease, 2016, 6, 27-31.	0.5	3
261	Honey Bees and Colony Collapse Disorder: A Pluralistic Reframing. Geography Compass, 2016, 10, 222-236.	1.5	45
262	Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees. Chemosphere, 2016, 147, 328-336.	4.2	34
263	A fluorescent method for visualization of Nosema infection in whole-mount honey bee tissues. Journal of Invertebrate Pathology, 2016, 135, 10-14.	1.5	11
264	The effect of dicyclohexylamine and fumagillin on Nosema ceranae-infected honey bee (Apis mellifera) mortality in cage trial assays. Apidologie, 2016, 47, 663-670.	0.9	28
265	Large scale patterns of abundance and distribution of parasites in Mexican bumblebees. Journal of Invertebrate Pathology, 2016, 133, 73-82.	1.5	18
266	<i>Parasaccharibacter apium</i> , gen. nov., sp. nov., Improves Honey Bee (Hymenoptera: Apidae) Resistance to <i>Nosema</i> . Journal of Economic Entomology, 2016, 109, 537-543.	0.8	76
267	Microscopic and molecular detection of Nosema spp. in honeybees of Turkey. Apidologie, 2016, 47, 267-271.	0.9	16
268	Effects of pollen dilution on infection of Nosema ceranae in honey bees. Journal of Insect Physiology, 2016, 87, 12-19.	0.9	76
269	Evaluation of Fumagilin-B® and other potential alternative chemotherapies against Nosema ceranae-infected honeybees (Apis mellifera) in cage trial assays. Apidologie, 2016, 47, 617-630.	0.9	30
270	Higher prevalence and levels of Nosema ceranae than Nosema apis infections in Canadian honey bee colonies. Parasitology Research, 2016, 115, 175-181.	0.6	65
271	Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann). Pesticide Biochemistry and Physiology, 2016, 128, 68-75.	1.6	41
272	European isolates of the Microsporidia Nosema apis and Nosema ceranae have similar virulence in laboratory tests on European worker honey bees. Apidologie, 2016, 47, 57-65.	0.9	17
273	Dynamics of Weight Change and Temperature of <i>Apis mellifera</i> (Hymenoptera: Apidae) Colonies in a Wintering Building With Controlled Temperature. Journal of Economic Entomology, 2017, 110, tow282.	0.8	10
274	Role of Human Action in the Spread of Honey Bee (Hymenoptera: Apidae) Pathogens. Journal of Economic Entomology, 2017, 110, 797-801.	0.8	31
275	Geographical distribution and molecular detection of Nosema ceranae from indigenous honey bees of Saudi Arabia. Saudi Journal of Biological Sciences, 2017, 24, 983-991.	1.8	27
276	Any role for the dissemination of Nosema spores by the blue-tailed bee-eater Merops philippinus?. Journal of Apicultural Research, 2017, 56, 262-269.	0.7	2

#	Article	IF	CITATIONS
277	Ecological and evolutionary approaches to managing honeybee disease. Nature Ecology and Evolution, 2017, 1, 1250-1262.	3.4	73
278	Nosema neumanni n. sp. (Microsporidia, Nosematidae), a new microsporidian parasite of honeybees, Apis mellifera in Uganda. European Journal of Protistology, 2017, 61, 13-19.	0.5	55
279	Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection. Journal of Economic Entomology, 2017, 110, 1959-1972.	0.8	69
280	The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Scientific Reports, 2017, 7, 5242.	1.6	93
281	Efficient use of sentinel sites: detection of invasive honeybee pests and diseases in the UK. Journal of the Royal Society Interface, 2017, 14, 20160908.	1.5	6
282	Honey beeâ€collected pollen in agroâ€ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecology and Evolution, 2017, 7, 7243-7253.	0.8	53
283	Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitology Research, 2017, 116, 3265-3274.	0.6	27
284	Characterization of Nosema ceranae Genetic Variants from Different Geographic Origins. Microbial Ecology, 2017, 73, 978-987.	1.4	15
285	A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies. Journal of Biological Dynamics, 2017, 11, 348-378.	0.8	12
286	<i>Nosema ceranae</i> parasitism impacts olfactory learning and memory and neurochemistry in honey bees <i>(Apis mellifera)</i> . Journal of Experimental Biology, 2018, 221, .	0.8	33
287	Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L Journal of Apicultural Science, 2017, 61, 93-104.	0.1	6
288	First Detection of Nosema Ceranae and Nosema Apis in Greater Wax Moth Galleria Mellonella. Journal of Apicultural Science, 2017, 61, 185-192.	0.1	4
289	Zeolite clinoptilolite as a dietary supplement and remedy for honeybee (Apis mellifera L.) colonies. Veterinarni Medicina, 2015, 60, 696-705.	0.2	8
290	Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. Insects, 2017, 8, 48.	1.0	99
291	Long-Term Temporal Trends of Nosema spp. Infection Prevalence in Northeast Germany: Continuous Spread of Nosema ceranae, an Emerging Pathogen of Honey Bees (Apis mellifera), but No General Replacement of Nosema apis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 301.	1.8	44
292	Octopamine Underlies the Counter-Regulatory Response to a Glucose Deficit in Honeybees (Apis) Tj ETQq1 1 0.7	84314 rgI 1.2	3T/Overlock
293	Basic and Applied Research on Entomopathogenic Fungi. , 2017, , 69-89.		31
294	RNA-sequence analysis of gene expression from honeybees (Apis mellifera) infected with Nosema ceranae. PLoS ONE, 2017, 12, e0173438.	1.1	45

ARTICLE IF CITATIONS Seasonal Effects and the Impact of In-Hive Pesticide Treatments on Parasite, Pathogens, and Health of 295 0.8 7 Honey Bees. Journal of Economic Entomology, 2018, 111, 517-527. Probiotics for Honeybees' Health. , 2018, , 219-245. Estimation of the influence of selected products on co-infection with <i>N. apis</i>/<i>N. ceranae</i> in <i>Apis mellifera</i> using real-time PCR. Invertebrate Reproduction and Development, 2018, 62, 297 0.3 11 92-97. Survival and health improvement of Nosema infected Apis florea (Hymenoptera: Apidae) bees after treatment with propolis extract. Journal of Asia-Pacific Entomology, 2018, 21, 437-444. Stable gastric pentadecapeptide <scp>BPC</scp> 157 in honeybee (<i>Apis mellifera</i>) therapy, to 299 control <i>Nosema ceranae</i> invasions in apiary conditions. Journal of Veterinary Pharmacology 0.6 25 and Therapeutics, 2018, 41, 614-621. <i>Nosema ceranae</i> in <i>Apis mellifera</i>: a 12 years postdetection <i>perspective</i>. 1.8 Environmental Microbiology, 2018, 20, 1302-1329. 301 Porphyrins inactivate Nosema spp. microsporidia. Scientific Reports, 2018, 8, 5523. 1.6 46 Feedbacks between nutrition and disease in honey bee health. Current Opinion in Insect Science, 2018, 130 26, 114-119. Invertebrate host responses to microsporidia infections. Developmental and Comparative 303 1.0 45 Immunology, 2018, 83, 104-113. Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and 304 accelerated lipid loss in host Apis mellifera honey bees. International Journal for Parasitology, 2018, 1.3 48, 433-444 Yeastâ€insect associations: It takes guts. Yeast, 2018, 35, 315-330. 305 0.8 174 Honey Bee (Apis mellifera) Pollen Foraging Reflects Benefits Dependent on Individual Infection Status. 306 1.4 Micróbial Ecology, 2018, 76, 482-491 Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 307 0.9 52 105, 1-8. Effect of Some Honeybee Diseases on Seasonal Mortality of Apis mellifera intermissa in Algeria 308 0.4 Apiaries. Proceedings of the Zoological Society, 2018, 71, 83-87. Pre-almond supplemental forage improves colony survival and alters queen pheromone signaling in 309 0.9 10 overwintering honey bee colonies. Apidologie, 2018, 49, 827-837. Home sick: impacts of migratory beekeeping on honey bee (<i>Apis mellifera</i>) pests, pathogens, and 29 colony size. PeerJ, 2018, 6, e5812. Impact of the microsporidian Nosema ceranae on the gut epithelium renewal of the honeybee, Apis 311 1.534 mellifera. Journal of Invertebrate Pathology, 2018, 159, 121-128. Medicinal value of sunflower pollen against bee pathogens. Scientific Reports, 2018, 8, 14394. 1.6 86

#	Article	IF	CITATIONS
313	Impacts of Insecticides on Pollinators of Different Food Plants. Entomology, Ornithology, & Herpetology: Current Research, 2018, 07, .	0.1	11
314	The condition of honey bee colonies (<i>Apis mellifera</i>) treated for <i>Varroa destructor</i> by different methods. Journal of Apicultural Research, 2018, 57, 674-681.	0.7	0
315	Onset of foraging and lifespan of Africanized honey bees (Apis mellifera) infected with different levels of Nosema ceranae spores in Neotropical Mexico. Apidologie, 2018, 49, 781-788.	0.9	11
316	Honey Bees in Modernized South East Asia: Adaptation or Extinction?. Asia in Transition, 2018, , 169-186.	0.2	1
317	Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli. Journal of Insect Physiology, 2018, 108, 17-24.	0.9	22
318	Deleterious Interaction Between Honeybees (Apis mellifera) and its Microsporidian Intracellular Parasite Nosema ceranae Was Mitigated by Administrating Either Endogenous or Allochthonous Gut Microbiota Strains. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	41
319	Spores of Paenibacillus larvae, Ascosphaera apis, Nosema ceranae and Nosema apis in bee products supervised by the Brazilian Federal Inspection Service. Revista Brasileira De Entomologia, 2018, 62, 188-194.	0.1	17
320	A honey bee (Apis mellifera) colony's brood survival rate predicts its in vitro-reared brood survival rate. Apidologie, 2018, 49, 573-580.	0.9	9
321	Genetic diversity and prevalence of <i>Varroa destructor</i> , <i>Nosema apis</i> , and <i>N. ceranae</i> in managed honey bee (<i>Apis mellifera</i>) colonies in the Caribbean island of Dominica, West Indies. Journal of Apicultural Research, 2018, 57, 541-550.	0.7	4
322	The first detection of Nosema ceranae (Microsporidia) in the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Apidologie, 2018, 49, 619-624.	0.9	16
323	Bee Diversity and Current Status of Beekeeping in Japan. , 2018, , 223-245.		5
324	Observations of native bumble bees inside of commercial colonies of <i>Bombus impatiens</i> (Hymenoptera: Apidae) and the potential for pathogen spillover. Canadian Entomologist, 2018, 150, 520-531.	0.4	10
325	Infection by the microsporidium of Clado Nosema/Vairimorpha in pupal parasitoids. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180326.	0.3	1
326	Nosema ceranae infection in honeybee samples from Tuscanian Archipelago (Central Italy) investigated by two qPCR methods. Saudi Journal of Biological Sciences, 2019, 26, 1553-1556.	1.8	27
327	Industrial bees: The impact of apicultural intensification on local disease prevalence. Journal of Applied Ecology, 2019, 56, 2195-2205.	1.9	20
328	Impact of nutritional stress on the honeybee colony health. Scientific Reports, 2019, 9, 10156.	1.6	64
329	Fungal Diseases of Honey Bees: Current Status and Future Perspective. Fungal Biology, 2019, , 7-27.	0.3	2
330	First molecular detection of <i>Nosema ceranae</i> in Azerbaijan. Journal of Apicultural Research, 2019, 58, 559-561.	0.7	4

#	Article	IF	CITATIONS
331	Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nature Microbiology, 2019, 4, 1798-1804.	5.9	60
332	Assessment of Pollen Diversity Available to Honey Bees (Hymenoptera: Apidae) in Major Cropping Systems During Pollination in the Western United States. Journal of Economic Entomology, 2019, 112, 2040-2048.	0.8	17
333	Local honey bees (<i>Apis mellifera)</i> have lower pathogen loads and higher productivity compared to non-local transplanted bees in North America. Journal of Apicultural Research, 2019, 58, 694-701.	0.7	4
334	Welfare of Managed Honey Bees. Animal Welfare, 2019, , 69-104.	1.0	14
335	Effect of Abscisic Acid (ABA) Combined with Two Different Beekeeping Nutritional Strategies to Confront Overwintering: Studies on Honey Bees' Population Dynamics and Nosemosis. Insects, 2019, 10, 329.	1.0	13
336	Microsporidia Nosema spp. – obligate bee parasites are transmitted by air. Scientific Reports, 2019, 9, 14376.	1.6	19
337	Rapid imaging, detection, and quantification of <i>Nosema ceranae</i> spores in honey bees using mobile phone-based fluorescence microscopy. Lab on A Chip, 2019, 19, 789-797.	3.1	32
338	An optimized approach for extraction and quantification of energy reserves in differentially fed bumble bees (<i>Bombus</i>). Journal of Apicultural Research, 2019, 58, 531-541.	0.7	3
339	The levels of natural Nosema spp. infection in Apis mellifera iberiensis brood stages. International Journal for Parasitology, 2019, 49, 657-667.	1.3	15
340	Exposure of the wild bee <i>Osmia bicornis</i> to the honey bee pathogen <i>Nosema ceranae</i> . Agricultural and Forest Entomology, 2019, 21, 363-371.	0.7	21
341	Scientific Advances in Controlling Nosema ceranae (Microsporidia) Infections in Honey Bees (Apis) Tj ETQq0 0 0	rgBT/Over 0.9	'loဌန္ဒ 10 Tf 50
342	Beekeeping Management Practices Are Associated with Operation Size and Beekeepers' Philosophy towards in-Hive Chemicals. Insects, 2019, 10, 10.	1.0	42
343	Hazard of a neonicotinoid insecticide on the homing flight of the honeybee depends on climatic conditions and Varroa infestation. Chemosphere, 2019, 224, 360-368.	4.2	15
344	Disease Resistance in Honey Bees (Apis mellifera L.) at the Colony and Individual Levels. , 2019, , 811-817.		3
345	Age and Method of Inoculation Influence the Infection of Worker Honey Bees (Apis mellifera) by Nosema ceranae. Insects, 2019, 10, 417.	1.0	14
346	Alterations in honey bee gut microorganisms caused by <i>Nosema</i> spp. and pest control methods. Pest Management Science, 2019, 75, 835-843.	1.7	19
347	Effects of Supplemental Pollen Feeding on Honey Bee (Hymenoptera: Apidae) Colony Strength and <i>Nosema</i> spp. Infection. Journal of Economic Entomology, 2019, 112, 60-66.	0.8	32
348	Genetic and Genome Analyses Reveal Genetically Distinct Populations of the Bee Pathogen Nosema ceranae from Thailand. Microbial Ecology, 2019, 77, 877-889.	1.4	8

ARTICLE

349 $\langle i \rangle$ Nosema apis $\langle i \rangle$ and $\langle i \rangle$ Nosema ceranae $\langle i \rangle$ Tissue Tropism in Worker Honey Bees ($\langle i \rangle$ Apis) Tj ETQq0 0 0 rgBT (Qverlock 10 Tf 50 7 0.8 strong 10 Tf

350	The toxic unit approach as a risk indicator in honey bees surveillance programmes: A case of study in Apis mellifera iberiensis. Science of the Total Environment, 2020, 698, 134208.	3.9	14
351	A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects. Pesticide Biochemistry and Physiology, 2020, 163, 138-146.	1.6	23
352	Prevalence and geographical distribution of <i>Nosema apis</i> and <i>Nosema ceranae</i> in apiaries of Northwest Mexico using a duplex real-time PCR with melting-curve analysis. Journal of Apicultural Research, 2020, 59, 195-203.	0.7	5
353	Control of the microsporidian parasite Nosema ceranae in honey bees (Apis mellifera) using nutraceutical and immuno-stimulatory compounds. PLoS ONE, 2020, 15, e0227484.	1.1	39
354	Biotic Stressors Affecting Key Apiaries in Argentina. Bee World, 2020, 97, 45-52.	0.3	6
355	Automated monitoring of bee behaviour using connected hives: Towards a computational apidology. Apidologie, 2020, 51, 356-368.	0.9	27
356	Seasonality of Nosema ceranae Infections and Their Relationship with Honey Bee Populations, Food Stores, and Survivorship in a North American Region. Veterinary Sciences, 2020, 7, 131.	0.6	36
357	Development of a loop-mediated isothermal amplification (LAMP) and a direct LAMP for the specific detection of Nosema ceranae, a parasite of honey bees. Parasitology Research, 2020, 119, 3947-3956.	0.6	12
358	Mathematical modelling of population and food storage dynamics in a honey bee colony infected with Nosema ceranae. Heliyon, 2020, 6, e04599.	1.4	6
359	Longitudinal analysis on parasite diversity in honeybee colonies: new taxa, high frequency of mixed infections and seasonal patterns of variation. Scientific Reports, 2020, 10, 10454.	1.6	18
360	Impact of Protoporphyrin Lysine Derivatives on the Ability of Nosema ceranae Spores to Infect Honeybees. Insects, 2020, 11, 504.	1.0	5
361	Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Scientific Reports, 2020, 10, 17021.	1.6	14
362	Within-Colony Transmission of Microsporidian and Trypanosomatid Parasites in Honey Bee and Bumble Bee Colonies. Environmental Entomology, 2020, 49, 1393-1401.	0.7	9
363	Effect of Api-Bioxal® and ApiHerb® Treatments against Nosema ceranae Infection in Apis mellifera Investigated by Two qPCR Methods. Veterinary Sciences, 2020, 7, 125.	0.6	32
364	Reducing Chlorothalonil Use in Fungicide Spray Programs for Powdery Mildew, Anthracnose, and Gummy Stem Blight in Melons. Plant Disease, 2020, 104, 3213-3220.	0.7	14
365	Prevalence of the Microsporidian Nosema spp. in Honey Bee Populations (Apis mellifera) in Some Ecological Regions of North Asia. Veterinary Sciences, 2020, 7, 111.	0.6	14
366	Honey as a Source of Environmental DNA for the Detection and Monitoring of Honey Bee Pathogens and Parasites. Veterinary Sciences, 2020, 7, 113.	0.6	21

#	Article	IF	CITATIONS
367	Nosema ceranae (Microspora: Nosematidae): A Sweet Surprise? Investigating the Viability and Infectivity of N. ceranae Spores Maintained in Honey and on Beeswax. Journal of Economic Entomology, 2020, 113, 2069-2078.	0.8	10
368	Targeting the honey bee gut parasite Nosema ceranae with siRNA positively affects gut bacteria. BMC Microbiology, 2020, 20, 258.	1.3	11
369	Effects of Synthetic Acaricides and Nosema ceranae (Microsporidia: Nosematidae) on Molecules Associated with Chemical Communication and Recognition in Honey Bees. Veterinary Sciences, 2020, 7, 199.	0.6	8
370	Evaluation of potential miticide toxicity to Varroa destructor and honey bees, Apis mellifera, under laboratory conditions. Scientific Reports, 2020, 10, 21529.	1.6	13
371	A review of nutrition in bumblebees: The effect of caste, life-stage and life history traits. Advances in Insect Physiology, 2020, 59, 71-129.	1.1	12
372	Putative determinants of virulence in <i>Melissococcus plutonius</i> , the bacterial agent causing European foulbrood in honey bees. Virulence, 2020, 11, 554-567.	1.8	36
373	Chronic bee paralysis virus (CBPV) in South American non-Apis bees. Archives of Virology, 2020, 165, 2053-2056.	0.9	5
374	Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology, 2020, 147, 1290-1304.	0.7	35
375	A Review of Sub-lethal Neonicotinoid Insecticides Exposure and Effects on Pollinators. Current Pollution Reports, 2020, 6, 137-151.	3.1	44
376	The Pathogen Profile of a Honey Bee Queen Does Not Reflect That of Her Workers. Insects, 2020, 11, 382.	1.0	9
377	Pesticides use, practice and its effect on honeybee in Ethiopia: a review. International Journal of Tropical Insect Science, 2020, 40, 473-481.	0.4	19
378	Two routes of transmission for Nosema infections in a honeybee population model with polyethism and time-periodic parameters can lead to drastically different qualitative model behavior. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105207.	1.7	7
379	Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae. Journal of Invertebrate Pathology, 2020, 172, 107348.	1.5	71
380	Immune-related gene expression of Apis mellifera larvae in response to cold stress and Abscisic Acid (ABA) dietary supplementation. Journal of Apicultural Research, 2020, 59, 669-676.	0.7	6
381	Infectivity and virulence of <i>Nosema ceranae</i> (Microsporidia) isolates obtained from various <i>Apis mellifera</i> morphotypes. Entomologia Experimentalis Et Applicata, 2020, 168, 286-294.	0.7	5
382	Multiple stressors interact to impair the performance of bumblebee <i>Bombus terrestris</i> colonies. Journal of Animal Ecology, 2021, 90, 415-431.	1.3	24
382	Multiple stressors interact to impair the performance of bumblebee <i>Bombus terrestris</i> colonies. Journal of Animal Ecology, 2021, 90, 415-431. Matrixâ€assisted laser desorption/ionization mass spectrometry biotyping, an approach for deciphering and assessing the identity of the honeybee pathogen <i>Nosema</i> . Rapid Communications in Mass Spectrometry, 2021, 35, e8980.	1.3 0.7	24 6

#	Article	IF	CITATIONS
385	The Role of Pathogen Dynamics and Immune Gene Expression in the Survival of Feral Honey Bees. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	18
386	Protective potential of Chinese herbal extracts against microsporidian Nosema ceranae, an emergent pathogen of western honey bees, Apis mellifera L Journal of Asia-Pacific Entomology, 2021, 24, 502-512.	0.4	13
387	REVIEW ON HONEYBEE : MIRACLE AGENT OF POLLINATION. Plant Archives, 2021, 21, 2205-2209.	0.1	2
388	Rapidly quantitative detection of <i>Nosema ceranae</i> in honeybees using ultra-rapid real-time quantitative PCR. Journal of Veterinary Science, 2021, 22, e40.	0.5	7
390	Effects of Prebiotics and Probiotics on Honey Bees (Apis mellifera) Infected with the Microsporidian Parasite Nosema ceranae. Microorganisms, 2021, 9, 481.	1.6	37
391	RNA Interference-Mediated Knockdown of Genes Encoding Spore Wall Proteins Confers Protection against Nosema ceranae Infection in the European Honey Bee, Apis mellifera. Microorganisms, 2021, 9, 505.	1.6	13
392	Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathogens, 2021, 17, e1009270.	2.1	22
393	The effects of Nosema ceranae (Microspora: Nosematidae) isolated from wild Apis cerana japonica (Hymenoptera: Apidae) on Apis mellifera. Applied Entomology and Zoology, 2021, 56, 311-317.	0.6	0
394	Estimation of honey bee colony infection with Nosema ceranae and Varroa destructor using fluorescence spectroscopy in combination with differential scanning calorimetry of honey samples. Journal of Apicultural Research, 0, , 1-7.	0.7	3
395	Potential of Fumagillin and Agaricus blazei Mushroom Extract to Reduce Nosema ceranae in Honey Bees. Insects, 2021, 12, 282.	1.0	20
396	Beyond brood: the potential impacts of insect growth disruptors on the long-term health and performance of honey bee colonies. Apidologie, 2021, 52, 580-595.	0.9	6
397	Histomorphological description of the reproductive system in mated honey bee queens. Journal of Apicultural Research, 2022, 61, 114-126.	0.7	2
398	Variation in the Distribution of Nosema Species in Honeybees (Apis mellifera Linnaeus) between the Neighboring Countries Estonia and Latvia. Veterinary Sciences, 2021, 8, 58.	0.6	4
399	Seed Meals from Brassica nigra and Eruca sativa Control Artificial Nosema ceranae Infections in Apis mellifera. Microorganisms, 2021, 9, 949.	1.6	27
400	Plant-based supplement containing B-complex vitamins can improve bee health and increase colony performance. Preventive Veterinary Medicine, 2021, 190, 105322.	0.7	11
401	Pesticides residues and metabolites in honeybees: A Greek overview exploring Varroa and Nosema potential synergies. Science of the Total Environment, 2021, 769, 145213.	3.9	10
402	Economics of Pollination. Annual Review of Resource Economics, 2021, 13, 335-354.	1.5	15
404	Pollen Sources in Honey Bee (Apis mellifera) Diet in Ellis County, Kansas. Transactions of the Kansas Academy of Science, 2021, 124, .	0.0	1

#	Article	IF	CITATIONS
405	Transcriptome analysis reveals changes in silkworm energy metabolism during Nosema bombycis infection. Pesticide Biochemistry and Physiology, 2021, 174, 104809.	1.6	11
406	Immunity and physiological changes in adult honey bees (Apis mellifera) infected with Nosema ceranae: The natural colony environment. Journal of Insect Physiology, 2021, 131, 104237.	0.9	8
407	An international inter-laboratory study on Nosema spp. spore detection and quantification through microscopic examination of crushed honey bee abdomens. Journal of Microbiological Methods, 2021, 184, 106183.	0.7	4
408	Propolis Extract and Chitosan Improve Health of Nosema ceranae Infected Giant Honey Bees, Apis dorsata Fabricius, 1793. Pathogens, 2021, 10, 785.	1.2	8
409	Genome and Evolutionary Analysis of Nosema ceranae: A Microsporidian Parasite of Honey Bees. Frontiers in Microbiology, 2021, 12, 645353.	1.5	12
410	Nosema ceranae Infections in Honey Bees (Apis mellifera) Treated with Pre/Probiotics and Impacts on Colonies in the Field. Veterinary Sciences, 2021, 8, 107.	0.6	12
411	A Machine Learning Approach to Study Demographic Alterations in Honeybee Colonies Using SDS–PAGE Fingerprinting. Animals, 2021, 11, 1823.	1.0	0
412	Application of Herbal Essential Oil Extract Mixture for Honey Bees (Apis mellifera L.) Against Nosema ceranae and Nosema apis. Journal of Apicultural Science, 2021, 65, 163-175.	0.1	2
413	Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Archives of Virology, 2021, 166, 2693-2702.	0.9	14
414	Indirect Effect of Pesticides on Insects and Other Arthropods. Toxics, 2021, 9, 177.	1.6	79
415	Pathways for Novel Epidemiology: Plant–Pollinator–Pathogen Networks and Global Change. Trends in Ecology and Evolution, 2021, 36, 623-636.	4.2	41
416	A Case Report of Chronic Stress in Honey Bee Colonies Induced by Pathogens and Acaricide Residues. Pathogens, 2021, 10, 955.	1.2	8
417	Honey Bee Habitat Sharing Enhances Gene Flow of the Parasite Nosema ceranae. Microbial Ecology, 2021, , 1.	1.4	3
418	Screening of anti-nosemosis active compounds based on the structure-activity correlation. Journal of Asia-Pacific Entomology, 2021, 24, 606-613.	0.4	3
419	Prevalence of Nosema species infections in Apis cerana japonica and Apis mellifera honeybees in the Tohoku region of Japan. Parasitology International, 2021, 83, 102361.	0.6	1
420	Eristalis flower flies can be mechanical vectors of the common trypanosome bee parasite, Crithidia bombi. Scientific Reports, 2021, 11, 15852.	1.6	9
422	Biologically Active Extracts from Different Medicinal Plants Tested as Potential Additives against Bee	15	5
	Pathogens. Antibiotics, 2021, 10, 960.	1.0	0

#	Article	IF	CITATIONS
424	Screening of Dietary Ingredients against the Honey Bee Parasite Nosema ceranae. Pathogens, 2021, 10, 1117.	1.2	14
425	Vairimorpha (Nosema) ceranae Infection Alters Honey Bee Microbiota Composition and Sustains the Survival of Adult Honey Bees. Biology, 2021, 10, 905.	1.3	12
426	Effect of feeding chitosan or peptidoglycan on Nosema ceranae infection and gene expression related to stress and the innate immune response of honey bees (Apis mellifera). Journal of Invertebrate Pathology, 2021, 185, 107671.	1.5	6
427	The pathological effects of a Nosema ceranae infection in the giant honey bee, Apis dorsata Fabricius, 1793. Journal of Invertebrate Pathology, 2021, 185, 107672.	1.5	0
430	Environmental conditions and beekeeping practices associated with Nosema ceranae presence in Argentina. Apidologie, 2021, 52, 400-417.	0.9	3
431	Impacts of Invasive Species in Terrestrial and Aquatic Systems in the United States. , 2021, , 5-39.		11
432	Diseases and Enemies. , 2013, , 761-809.		1
433	Silent effect of the fungicide pyraclostrobin on the larval exposure of the non-target organism Africanized Apis mellifera and its interaction with the pathogen Nosema ceranae in adulthood. Environmental Pollution, 2020, 267, 115622.	3.7	26
434	Bee colony health indicators: synthesis and future directions CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-12.	0.6	13
435	Effects of <i>Nosema ceranae</i> (Dissociodihaplophasida: Nosematidae) and Flupyradifurone on Olfactory Learning in Honey Bees, <i>Apis mellifera</i> (Hymenoptera: Apidae). Journal of Insect Science, 2020, 20, .	0.6	11
437	Bee Health in Apiaries in the ParaÃba Valley, São Paulo State, Southeast Brazil. Sociobiology, 2014, 61, .	0.2	13
438	Honey Bee (Apis mellifera) Health in Stationary and Migratory Apiaries. Sociobiology, 2017, 64, 42.	0.2	7
439	Nosema ceranae (Microsporidia: Nosematidae) Does Not Cause Collapse of Colonies of Africanized Apis mellifera (Hymenoptera: Apidae) in Tropical Climate. Sociobiology, 2020, 67, 408.	0.2	6
440	The Honey Bee Parasite Nosema ceranae: Transmissible via Food Exchange?. PLoS ONE, 2012, 7, e43319.	1.1	80
441	The Prevalence of Parasites and Pathogens in Asian Honeybees Apis cerana in China. PLoS ONE, 2012, 7, e47955.	1.1	99
442	Comprehensive Bee Pathogen Screening in Belgium Reveals Crithidia mellificae as a New Contributory Factor to Winter Mortality. PLoS ONE, 2013, 8, e72443.	1.1	212
443	Transcriptome Analyses of the Honeybee Response to Nosema ceranae and Insecticides. PLoS ONE, 2014, 9, e91686.	1.1	208
444	Infra-Population and -Community Dynamics of the Parasites Nosema apis and Nosema ceranae, and Consequences for Honey Bee (Apis mellifera) Hosts. PLoS ONE, 2014, 9, e99465.	1.1	71

	Сітатіо	n Report	
#	Article	IF	CITATIONS
445	Effects of Infection on Honey Bee Population Dynamics: A Model. PLoS ONE, 2014, 9, e110237.	1.1	55
446	Pathogens as Predictors of Honey Bee Colony Strength in England and Wales. PLoS ONE, 2015, 10, e0133228.	1.1	41
447	Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees. PLoS ONE, 2015, 10, e0142031.	1.1	70
448	Linking Measures of Colony and Individual Honey Bee Health to Survival among Apiaries Exposed to Varying Agricultural Land Use. PLoS ONE, 2016, 11, e0152685.	1.1	144
449	Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PLoS ONE, 2017, 12, e0182814.	1.1	55
450	Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae. PLoS ONE, 2017, 12, e0187726.	1.1	71
451	Comparison of the two microsporidia that infect honey bees – a review. Agricultura, 2016, 13, 49-56.	0.3	5
452	Honey Bee Infection Caused by Nosema spp. in Lithuania. Journal of Apicultural Science, 2016, 60, 77-88.	0.1	4
453	Parasites of the genus Nosema, Crithidia and Lotmaria in the honeybee and bumblebee populations: a case study in India. Vavilovskii Zhurnal Genetiki I Selektsii, 2017, 21, 943-951.	0.4	9
454	Determination of spore longevity and viability of Nosema apis and Nosema ceranae according to storage conditions. The EuroBiotech Journal, 2017, 1, 217-221.	0.5	1
455	Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Veterinaria, 2019, 69, 1-31.	0.2	56
456	Evaluating Efficacy of Fumagilin-B [®] Against Nosemosis and Tracking Seasonal Trends of <i>Nosema</i> spp. in Nova Scotia Honey Bee Colonies. Journal of Apicultural Science, 2020, 64, 277-286.	0.1	6
457	Detection of Nosema spp. in worker bees, pollen and bee bread during the honey flow season. Acta Veterinaria Brno, 2016, 85, 261-266.	0.2	5
458	Propolis Consumption Reduces Nosema ceranae Infection of European Honey Bees (Apis mellifera). Insects, 2020, 11, 124.	1.0	37
459	The Effect of Migratory Beekeeping on the Infestation Rate of Parasites in Honey Bee (Apis mellifera) Colonies and on Their Genetic Variability. Microorganisms, 2021, 9, 22.	1.6	18
460	Modeling colony collapse disorder in honeybees as a contagion. Mathematical Biosciences and Engineering, 2014, 11, 1275-1294.	1.0	44
461	Experimental Treatment with the Natural Water Acidifier Provigoro [®] for Nosema spp. Control: Preliminary Results. Advances in Entomology (Irvine, Calif), 2015, 03, 83-85.	0.1	3
462	Short communication. The detection of Israeli Acute Paralysis virus (IAPV), fipronil and imidacloprid in professional apiaries are not related with massive honey bee colony loss in Spain. Spanish Journal of Agricultural Research, 2010, 8, 658.	0.3	11

#	Article	IF	CITATIONS
463	Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain. Spanish Journal of Agricultural Research, 2017, 15, e0501.	0.3	13
464	Histopathological findings of the midgut in European honey bee (Apis Mellifera L.) naturally infected by Nosema spp Veterinary Medicine and Animal Sciences, 2014, 2, 4.	0.3	12
465	Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees. PeerJ, 2017, 5, e3297.	0.9	20
466	The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ, 2014, 2, e522.	0.9	82
467	Honey bee viruses in Serbian colonies of different strength. PeerJ, 2018, 6, e5887.	0.9	21
468	Response of adult honey bees treated in larval stage with prochloraz to infection with <i>Nosema ceranae</i> . PeerJ, 2019, 7, e6325.	0.9	30
469	Mites Alight! Sunflower Crop Area and Pollen Supplementation Enhance Honey Bee Resistance to <i>Varroa Destructor</i> . SSRN Electronic Journal, 0, , .	0.4	0
470	Nosema Ceranae Interactions with Nosema apis and Black Queen Cell Virus. Agriculture (Switzerland), 2021, 11, 963.	1.4	11
471	Epidemiology of Nosema spp. and the effect of indoor and outdoor wintering on honey bee colony population and survival in the Canadian Prairies. PLoS ONE, 2021, 16, e0258801.	1.1	6
473	La nosemiasi. , 2014, , 181-203.		0
474	Molecular characterization of Paenibacillus larvae larvae, for early diagnosis of american foulbrood of honeybees in Egypt. Egyptian Academic Journal of Biological Sciences C Physiology and Molecular Biology, 2014, 6, 35-45.	0.0	0
476	ÜLKEMİZDE GÜNEY MARMARA BÖLGESİ'NDEKİ BAL ARILARINDA NOSEMA CERANAE'NİN Mđ MOLEKÜLER OLARAK BELİRLENMESİ. Uludag Aricilik Dergisi, 2016, 16, 20-26.	°KROSKOE	BİK VE
477	Evaluation of results in research made in order to obtain a phytotherapeutic product for the prophylaxis and fight against nosema in bees. The EuroBiotech Journal, 2017, 1, 36-40.	0.5	0
479	The Spring Assessment of Nosema Spp. Infection in Honey Bee Colonies (Apis mellifera L.) - Sampling as an Important Aspect of a Reliable Diagnosis. Journal of Apicultural Science, 2018, 62, 61-66.	0.1	2
482	Investigation of The Effectiveness of Noseba® against Nosema ceranae in Naturally Infected Honeybee Colonies. Journal of Research in Veterinary Medicine, 0, , .	0.1	0
483	Sudden and Prevalent Deaths of Foraging Honey Bees in Early Spring During Sowing of Clothianidin Coated Maize Seeds Between 2013 and 2018 in Turkey. Journal of Apicultural Science, 2020, 64, 67-76.	0.1	0
484	Economics of Pollination. SSRN Electronic Journal, 0, , .	0.4	0
485	THE PRESENCE AND DISTRIBUTION OF NOSEMOSIS DISEASE IN TURKEY. Journal of Apitherapy and Nature, 0, , .	0.4	1

#	Article	IF	CITATIONS
486	Honey bees with a drinking problem: potential routes of <i>Nosema ceranae</i> spore transmission. Parasitology, 2021, , 1-8.	0.7	4
487	KINETIC PHASE TRANSITION IN HONEYBEE FORAGING DYNAMICS: SYNERGY OF INDIVIDUAL AND COLLECTIVE. International Journal of Modeling, Simulation, and Scientific Computing, 2020, 23, 2050019.	0.9	0
488	Vairimorpha ceranae was the only detected microsporidian species from Iranian honey bee colonies: a molecular and phylogenetic study. Parasitology Research, 2022, 121, 355-366.	0.6	1
489	Screening of Honey Bee Pathogens in the Czech Republic and Their Prevalence in Various Habitats. Insects, 2021, 12, 1051.	1.0	11
490	Nosemosis Prevention and Control. Applied Sciences (Switzerland), 2022, 12, 783.	1.3	13
491	Molecular histoproteomy by MALDI mass spectrometry imaging to uncover markers of the impact of Nosema on Apis mellifera. Proteomics, 2022, , 2100224.	1.3	5
492	Miticidal activity of fenazaquin and fenpyroximate against <i>Varroa destructor</i> , an ectoparasite of <i>Apis mellifera</i> . Pest Management Science, 2022, 78, 1686-1697.	1.7	4
493	Phenomic analysis of the honey bee pathogen-web and its dynamics on colony productivity, health and social immunity behaviors. PLoS ONE, 2022, 17, e0263273.	1.1	5
494	Polymorphism of 16s rRNA Gene: Any Effect on the Biomolecular Quantitation of the Honey Bee (Apis) Tj ETQqO	0 0 <u>r</u> gBT /	Overlock 10 1
495	Age and Season Effect the Timing of Adult Worker Honeybee Infection by Nosema ceranae. Frontiers in Cellular and Infection Microbiology, 2021, 11, 823050.	1.8	3
496	1H NMR Profiling of Honey Bee Bodies Revealed Metabolic Differences between Summer and Winter Bees. Insects, 2022, 13, 193.	1.0	3
497	Current Therapy and Therapeutic Targets for Microsporidiosis. Frontiers in Microbiology, 2022, 13, 835390.	1.5	9
498	Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. Insects, 2022, 13, 308.	1.0	26
499	The Role of Nosema ceranae (Microsporidia: Nosematidae) in Honey Bee Colony Losses and Current Insights on Treatment. Veterinary Sciences, 2022, 9, 130.	0.6	14
500	Development of monoclonal antibodies against spores of <i>Nosema ceranae</i> for the diagnosis of nosemosis. Journal of Apicultural Research, 0, , 1-8.	0.7	1
502	Prevalence of nosemosis in honey bees (<i>Apis mellifera</i> L., 1758) of the Hatay province in Turkey. Journal of Apicultural Research, 2022, 61, 368-374.	0.7	5
503	Genetic Variation in Antimicrobial Activity of Honey Bee (Apis mellifera) Seminal Fluid. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2

504	Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role?. Insects, 2022, 13, 371.	1.0	2
-----	--	-----	---

#	Article	IF	CITATIONS
505	Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). Journal of Fungi (Basel, Switzerland), 2022, 8, 424.	1.5	5
506	A novel bee host cannot detect a microbial parasite, in contrast to its original host. Insectes Sociaux, 0, , 1.	0.7	0
509	Bee Stressors from an Immunological Perspective and Strategies to Improve Bee Health. Veterinary Sciences, 2022, 9, 199.	0.6	21
511	High genetic variability of Nosema ceranae populations in Apis mellifera from East Asia compared to central Asia and the Americas. Biological Invasions, 0, , .	1.2	0
512	Nosemosis in Honeybees: A Review Guide on Biology and Diagnostic Methods. Applied Sciences (Switzerland), 2022, 12, 5890.	1.3	8
514	The gut parasite <i>Nosema ceranae</i> impairs olfactory learning in bumblebees. Journal of Experimental Biology, 2022, 225, .	0.8	6
515	Colonisation Patterns of Nosema ceranae in the Azores Archipelago. Veterinary Sciences, 2022, 9, 320.	0.6	6
516	Reconstructing the ecosystem context of a species: Honey-borne DNA reveals the roles of the honeybee. PLoS ONE, 2022, 17, e0268250.	1.1	2
517	Alterations in the Microbiota of Caged Honeybees in the Presence of Nosema ceranae Infection and Related Changes in Functionality. Microbial Ecology, 2023, 86, 601-616.	1.4	7
518	Identification and subcellular localization analysis of membrane protein Ycf 1 in the microsporidian <i>Nosema bombycis</i> . PeerJ, 0, 10, e13530.	0.9	1
519	Critical role of native forest and savannah habitats in retaining neotropical pollinator diversity in highly mechanized agricultural landscapes. Agriculture, Ecosystems and Environment, 2022, 338, 108084.	2.5	5
520	Simulating the Effects of Pesticides on Honey Bee (Apis mellifera L.) Colonies with BeePop+. Ecologies, 2022, 3, 275-291.	0.7	4
521	Does sending honey bee, <i>ApisÂmellifera</i> (Hymenoptera: Apidae), colonies to lowbush blueberry, <i>Vaccinium angustifolium</i> (Ericaceae), for pollination increase <i>Nosema</i> spp. (Nosematidae) spore loads?. Canadian Entomologist, 2022, 154, .	0.4	0
522	Effects of dietary supplementation with abscisic acid on Apis mellifera colonies confined in overwintering nucleus: studies on the adult honey bee population, nosemosis, and expression of nutrition- and immune-related genes. , 2022, 1, 16-26.		0
523	Epidemiology of the Microsporidium Nosema ceranae in Four Mediterranean Countries. Insects, 2022, 13, 844.	1.0	3
524	Can the exotic pathogen Nosema ceranae affect the amount of Cucurbita maxima pollen grains transported by the native bee Eucera fervens?. Arthropod-Plant Interactions, 2022, 16, 607-615.	0.5	3
525	Honeybee age and inoculum concentration as factors affecting the development of <i>Nosema ceranae</i> infection. , 2022, 89, 1180-1190.		0
526	PERFORMANCE AND Nosema spp. SPORE LEVEL IN YOUNG HONEYBEE (Apis mellifera carnica, Pollmann) Tj ETQc	1 1 0.784	314 rgBT /〇

#	Article	IF	CITATIONS
527	Transgenerational genomic analyses reveal allelic oscillation and purifying selection in a gut parasite Nosema ceranae. Frontiers in Microbiology, 0, 13, .	1.5	0
528	Perceptions of honey bee management information sources among backyard and sideliner beekeepers in the United States. Journal of Rural Studies, 2022, 96, 190-197.	2.1	1
529	Population genetic diversity and dynamics of the honey bee brood pathogen Melissococcus plutonius in a region with high prevalence. Journal of Invertebrate Pathology, 2023, 196, 107867.	1.5	2
530	Laboratory Cultivation of Vairimorpha (Nosema) ceranae (Microsporidia: Nosematidae) in Artificially Infected Worker Bees. Insects, 2022, 13, 1092.	1.0	0
531	Propolis and its effects on bee diseases and pests: a systematic review. Journal of Apicultural Research, 2023, 62, 171-184.	0.7	3
532	Emerging Risk of Cross-Species Transmission of Honey Bee Viruses in the Presence of Invasive Vespid Species. Insects, 2023, 14, 6.	1.0	2
533	Beneficial Bacteria and Plant Extracts Promote Honey Bee Health and Reduce Nosema ceranae Infection. Probiotics and Antimicrobial Proteins, 2024, 16, 259-274.	1.9	1
534	Genome-Wide Characterization and Comparative Genomic Analysis of the Serpin Gene Family in Microsporidian Nosema bombycis. International Journal of Molecular Sciences, 2023, 24, 550.	1.8	1
535	Sunflower-Associated Reductions in Varroa Mite Infestation of Honey Bee Colonies. Journal of Economic Entomology, 0, , .	0.8	4
536	The promise of probiotics in honeybee health and disease management. Archives of Microbiology, 2023, 205, .	1.0	5
537	Evaluating the Efficacy of Common Treatments Used for Vairimorpha (Nosema) spp. Control. Applied Sciences (Switzerland), 2023, 13, 1303.	1.3	6
538	Prevalence of honey bee pathogens and parasites in South Korea: A five-year surveillance study from 2017 to 2021. Heliyon, 2023, 9, e13494.	1.4	7
539	Preliminary Survey of Pathogens in the Asian Honey Bee (Apis cerana) in Thailand. Life, 2023, 13, 438.	1.1	0
540	Determination of the efficacy of thymol, <i>Artemisia absinthium</i> oil and nanoparticle ozone in the treatment of <i>Nosema ceranae</i> in adult honey bees. Journal of Apicultural Research, 0, , 1-9.	0.7	0
541	Colonization of Honey Bee Digestive Tracts by Environmental Yeast <i>Lachancea thermotolerans</i> Is Naturally Occurring, Temperature Dependent, and Impacts the Microbiome of Newly Emerged Bees. Microbiology Spectrum, 2023, 11, .	1.2	3
542	Effect of bee bread on Africanized honey bees infected with spores of <i>Nosema</i> spp Entomologia Experimentalis Et Applicata, 2023, 171, 374-385.	0.7	0
543	Significant, but not biologically relevant: Nosema ceranae infections and winter losses of honey bee colonies. Communications Biology, 2023, 6, .	2.0	5
544	High-throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits. PLoS Pathogens, 2023, 19, e1011225.	2.1	2

#	Article	IF	CITATIONS	
569	Case Report: Emerging Losses of Managed Honey Bee Colonies. Biology, 2024, 13, 117.	1.3	0	