Diversity and disease: community structure drives para

Ecology Letters 11, 1017-1026

DOI: 10.1111/j.1461-0248.2008.01212.x

Citation Report

#	Article	IF	CITATIONS
1	Parasites as predators: unifying natural enemy ecology. Trends in Ecology and Evolution, 2008, 23, 610-618.	8.7	185
2	Community diversity reduces <i>Schistosoma mansoni</i> transmission, host pathology and human infection risk. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 1657-1663.	2.6	81
3	The role of trematode parasites in larval anuran communities: an aquatic ecologist's guide to the major players. Oecologia, 2009, 161, 371-385.	2.0	59
4	All hosts are not equal: explaining differential patterns of malformations in an amphibian community. Journal of Animal Ecology, 2009, 78, 191-201.	2.8	49
5	Effects of urbanisation on disease prevalence and age structure in blackbird <i>Turdus merula</i> populations. Oikos, 2009, 118, 774-782.	2.7	96
6	Effects of environmental change on helminth infections in amphibians: exploring the emergence of Ribeiroia and Echinostoma infections in North America, 2009, , 249-280.		31
7	Preliminary evaluation of the potential of the helminth parasite Rhabdias elegans as a biological control agent for invasive Puerto Rican coquÃs (Eleutherodactylus coqui) in Hawaii. Biological Control, 2010, 54, 69-74.	3.0	21
8	Local context drives infection of grasses by vectorâ€borne generalist viruses. Ecology Letters, 2010, 13, 810-818.	6.4	79
9	Echinostome-Induced Mortality Varies Across Amphibian Species in the Field. Journal of Parasitology, 2010, 96, 851-855.	0.7	15
10	Diversity, decoys and the dilution effect: how ecological communities affect disease risk. Journal of Experimental Biology, 2010, 213, 961-970.	1.7	262
11	Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3693-3702.	2.6	239
12	A dilution effect in the emerging amphibian pathogen <i>Batrachochytrium dendrobatidis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16322-16326.	7.1	98
13	Host-parasite interactions under extreme climatic conditions. Environmental Epigenetics, 2011, 57, 390-405.	1.8	31
14	Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant. Ecology Letters, 2011, 14, 453-461.	6.4	53
15	Individual and combined effects of multiple pathogens on Pacific treefrogs. Oecologia, 2011, 166, 1029-1041.	2.0	36
16	The combined influence of trematode parasites and predatory salamanders on wood frog (Rana) Tj ETQq1 1 0.7	84314 rgB 2.0	T /Overlock 1
17	Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 2011, 30, 1689-1696.	4.3	27
18	Can infection by eugregarine parasites mediate species coexistence in <i>Calopteryx</i> damselflies?. Ecological Entomology, 2011, 36, 582-587.	2.2	14

#	Article	IF	Citations
19	Impact of the experimental removal of lizards on Lyme disease risk. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2970-2978.	2.6	81
20	Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology, 2012, 139, 847-863.	1.5	309
21	Macroparasite Infections of Amphibians: What Can They Tell Us?. EcoHealth, 2012, 9, 342-360.	2.0	100
22	Effects of Host Diversity on Infectious Disease. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 157-182.	8.3	355
23	Species diversity reduces parasite infection through cross-generational effects on host abundance. Ecology, 2012, 93, 56-64.	3.2	52
24	Metagonimoides oregonensis (Heterophyidae: Digenea) Infection In Pleurocerid Snails and Desmognathus quadramaculatus Salamander Larvae In Southern Appalachian Streams. Journal of Parasitology, 2012, 98, 760-767.	0.7	11
25	Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1688-1707.	4.0	127
26	Interaction Between Two Species of Tadpoles Mediated By Nutrient Enrichment. Herpetologica, 2012, 68, 174-183.	0.4	7
27	Contrasting the consumptive and nonâ€consumptive cascading effects of natural enemies on vectorâ€borne pathogens. Entomologia Experimentalis Et Applicata, 2012, 144, 45-55.	1.4	45
28	Effects of Host Species and Life Stage on the Helminth Communities of Sympatric Northern Leopard Frogs (<i>Lithobates pipiens</i>) and Wood Frogs (<i>Lithobates sylvaticus</i>) in the Sheyenne National Grasslands, North Dakota. Journal of Parasitology, 2013, 99, 587-594.	0.7	3
29	Host–parasite interactions in a fragmented landscape. International Journal for Parasitology, 2013, 43, 27-35.	3.1	23
30	Climate change and infectious diseases of wildlife: Altered interactions between pathogens, vectors and hosts. Environmental Epigenetics, 2013, 59, 427-437.	1.8	93
31	Host and parasite diversity jointly control disease risk in complex communities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16916-16921.	7.1	124
32	Host Density and Competency Determine the Effects of Host Diversity on Trematode Parasite Infection. PLoS ONE, 2014, 9, e105059.	2.5	14
33	Organizational Innovation and Value Creation in Small Technology-based Companies in Malaysia. Jurnal Teknologi (Sciences and Engineering), 2014, 69, .	0.4	0
34	Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME Journal, 2014, 8, 2360-2368.	9.8	243
35	Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology, 2014, 95, 1907-1917.	3.2	168
36	Interesting Open Questions in Disease Ecology and Evolution. American Naturalist, 2014, 184, S1-S8.	2.1	74

#	Article	IF	CITATIONS
37	Applying evolutionary concepts to wildlife disease ecology and management. Evolutionary Applications, 2014, 7, 856-868.	3.1	47
38	Multiple effects of hostâ€species diversity on coexisting hostâ€specific and hostâ€opportunistic microbes. Ecology, 2014, 95, 1173-1183.	3.2	24
39	Linking manipulative experiments to field data to test the dilution effect. Journal of Animal Ecology, 2014, 83, 557-565.	2.8	92
40	Frontiers in research on biodiversity and disease. Ecology Letters, 2015, 18, 1119-1133.	6.4	195
41	A Combination of Species Evenness and Functional Diversity Is the Best Predictor of Disease Risk in Multihost Communities. American Naturalist, 2015, 186, 755-765.	2.1	20
42	Host species vary in infection probability, sub-lethal effects and costs of immune response when exposed to an amphibian parasite. Scientific Reports, 2015, 5, 10828.	3.3	47
43	Success, failure and ambiguity of the dilution effect among competitors. Ecology Letters, 2015, 18, 916-926.	6.4	71
44	The relationship between biodiversity and disease transmission risk. Research and Reports in Biodiversity Studies, 0, , 9.	0.0	5
45	Evidence for carry-over effects of predator exposure on pathogen transmission potential. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20152430.	2.6	56
46	Elucidating the Life History and Ecological Aspects of <i> Allodero hylae </i> (Annelida: Clitellata:) Tj ETQq1 1 0.784 2015, 101, 275-281.	1314 rgBT 0.7	/Overlock 10 14
47	Interspecific Contact and Competition May Affect the Strength and Direction of Disease-Diversity Relationships for Directly Transmitted Microparasites. American Naturalist, 2015, 186, 480-494.	2.1	26
48	Helpful invaders: Can cane toads reduce the parasite burdens of native frogs?. International Journal for Parasitology: Parasites and Wildlife, 2015, 4, 295-300.	1.5	10
49	Associations between patterns of human intestinal schistosomiasis and snail and mammal species richness in Uganda: can we detect a decoy effect?. Frontiers of Biogeography, 2016, 8, .	1.8	4
50	Warming and fertilization alter the dilution effect of host diversity on disease severity. Ecology, 2016, 97, 1680-1689.	3.2	76
51	Parasites and invasions: changes in gastrointestinal helminth assemblages in invasive and native rodents in Senegal. International Journal for Parasitology, 2016, 46, 857-869.	3.1	30
53	Invasion, alien control and restoration: Legacy effects linked to folivorous insects and phylopathogenic fungi. Austral Ecology, 2016, 41, 906-917.	1.5	8
54	Drivers of variation in species impacts for a multi-host fungal disease of bats. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150456.	4.0	92
55	A Multiscale Approach to Plant Disease Using the Metacommunity Concept. Annual Review of Phytopathology, 2016, 54, 397-418.	7.8	67

#	Article	IF	CITATIONS
56	Helminth parasite assemblages in two cyprinids with different life history strategies. Aquatic Ecology, 2017, 51, 247-256.	1.5	4
57	Avian species diversity and transmission of West Nile virus in Atlanta, Georgia. Parasites and Vectors, 2017, 10, 62.	2.5	32
58	Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160129.	4.0	58
59	Snail species diversity impacts the infection patterns of Echinostoma spp.: Examples from field collected data. Acta Parasitologica, 2017, 62, 493-501.	1.1	10
60	Parasites and Biological Invasions. Advances in Ecological Research, 2017, , 1-54.	2.7	18
61	Importance of Microorganisms to Macroorganisms Invasions. Advances in Ecological Research, 2017, 57, 99-146.	2.7	40
62	The influence of pesticide use on amphibian chytrid fungal infections varies with host life stage across broad spatial scales. Global Ecology and Biogeography, 2018, 27, 1277-1287.	5 . 8	9
63	Invasive parasites are detectable by their abundance-occupancy relationships: the case of helminths from Liza haematocheilus (Teleostei: Mugilidae). International Journal for Parasitology, 2018, 48, 793-803.	3.1	14
64	Indirect effects in a planktonic disease system. Theoretical Population Biology, 2019, 130, 132-142.	1.1	4
65	Host traits and competitive ability jointly structure disease dynamics and community assembly. Journal of Animal Ecology, 2019, 88, 1379-1391.	2.8	6
66	Larval predation in malaria vectors and its potential implication in malaria transmission: an overlooked ecosystem service?. Parasites and Vectors, 2019, 12, 217.	2.5	22
67	Can Community Structure Causally Determine Dynamics of Constituent Species? A Test Using a Host-Parasite Community. American Naturalist, 2019, 194, E66-E80.	2.1	1
68	Effects of pesticides on exposure and susceptibility to parasites can be generalised to pesticide class and type in aquatic communities. Ecology Letters, 2019, 22, 962-972.	6.4	32
69	Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecology Letters, 2021, 24, 130-148.	6.4	42
70	Combining species distribution models and population genomics underlines the determinants of range limitation in an emerging parasite. Ecography, 2021, 44, 307-319.	4.5	8
71	Testing the multiple stressor hypothesis: chlorothalonil exposure alters transmission potential of a bumblebee pathogen but not individual host health. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202922.	2.6	9
72	Environmental Correlates of Prevalence of an Intraerythrocytic Apicomplexan Infecting Caribbean Damselfish. Parasitologia, 2021, 1, 69-82.	1.3	4
74	The dilution effect behind the scenes: testing the underlying assumptions of its mechanisms through quantifying the long-term dynamics and effects of a pathogen in multiple host species. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210773.	2.6	7

#	Article	IF	CITATIONS
75	Nonhost species reduce parasite infection in a focal host species within experimental fish communities. Ecology and Evolution, 2021, 11, 10155-10163.	1.9	1
76	The Context-Dependent Effects of Host Competence, Competition, and Pathogen Transmission Mode on Disease Prevalence. American Naturalist, 2021, 198, 179-194.	2.1	14
77	The dilution effect limits plasmid horizontal transmission in multispecies bacterial communities. Microbiology (United Kingdom), 2021, 167, .	1.8	12
78	Dilution of Epidemic Potential of Environmentally Transmitted Infectious Diseases for Species with Partially Overlapping Habitats. American Naturalist, 2022, 199, E43-E56.	2.1	5
79	Dilution effects in disease ecology. Ecology Letters, 2021, 24, 2490-2505.	6.4	54
80	Using sensitivity analysis to identify factors promoting higher versus lower infection prevalence in multi-host communities. Journal of Theoretical Biology, 2021, 526, 110766.	1.7	6
81	One Health. , 2014, , 364-377.		4
82	Experimental Evidence for Reduced Rodent Diversity Causing Increased Hantavirus Prevalence. PLoS ONE, 2009, 4, e5461.	2.5	181
83	The Effects of Host Diversity on Vector-Borne Disease: The Conditions under Which Diversity Will Amplify or Dilute the Disease Risk. PLoS ONE, 2013, 8, e80279.	2.5	53
84	The Scaling of Host Density with Richness Affects the Direction, Shape, and Detectability of Diversity-Disease Relationships. PLoS ONE, 2014, 9, e97812.	2.5	59
85	Better Alone or in Ill Company? The Effect of Migration and Inter-Species Comingling on Fascioloides magna Infection in Elk. PLoS ONE, 2016, 11, e0159319.	2.5	15
86	Investigation of Business Model on Fintech Payment System. The E-Business Studies, 2015, 16, 65-94.	0.1	8
87	è,é°èŒç¾ੴœ¨é±¼ç±»ç–¾ç—…å'Œå…ç–«ä,作用的ç"究进展. Zoological Research, 2019, 40, 70-76.	2.1	102
89	The Study of Business Model on Fintech Internet Only Bank. The E-Business Studies, 2016, 17, 273.	0.1	0
91	Biodiversity and Host–Parasite (Co)Extinction. Topics in Geobiology, 2021, , 75-97.	0.5	5
92	Biodiversity and vectorâ€borne diseases: Host dilution and vector amplification occur simultaneously for Amazonian leishmaniases. Molecular Ecology, 2023, 32, 1817-1831.	3.9	18
93	Exploring the nature of science with abnormal frogs. Journal of Biological Education, 2024, 58, 209-225.	1.5	0
95	Exploring how a generalist pathogen and within-host priority effects alter the risk of being infected by a specialist pathogen. American Naturalist, 0, , .	2.1	2

#	Article	IF	CITATIONS
97	Food web structure and microenvironment affect Chagas disease vector infection and abundance in a rural landscape. Ecosphere, 2023, 14 , .	2.2	0
98	The Potential of the Parasite Fauna as an Indicator of Ecosystem Health in the Anthropized Environments of Mexico., 2023,, 569-579.		0
99	Exploring how ecological and epidemiological processes shape multi-host disease dynamics using global sensitivity analysis. Journal of Mathematical Biology, 2023, 86, .	1.9	1
101	Host exposure to a common pollutant can influence diversity–disease relationships. Journal of Animal Ecology, 0, , .	2.8	1
104	Climatic variability, spatial heterogeneity and the presence of multiple hosts drive the population structure of the pathogen <i>Phytophthora ramorum</i> and the epidemiology of Sudden Oak Death. Ecography, 0, , .	4. 5	0
105	Non-linear effects of non-host diversity on the removal of free-living infective stages of parasites. Oecologia, 2024, 204, 339-349.	2.0	0
106	Multi-omics analysis of miRNA-mediated intestinal microflora changes in crucian carp Carassius auratus infected with Rahnella aquatilis. Frontiers in Immunology, $0,15,.$	4.8	0