Techno-Economic Evaluation of Producing Ethanol from and SHF and Identification of Bottlenecks

Biotechnology Progress 19, 1109-1117 DOI: 10.1021/bp0340180

Citation Report

#	Article	IF	CITATIONS
1	Converging Technologies for Improving Human Performance. , 2003, , .		337
2	Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates – evidence for the role of accessory enzymes. Enzyme and Microbial Technology, 2005, 37, 175-184.	1.6	184
3	A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme and Microbial Technology, 2005, 37, 195-204.	1.6	145
4	Enzymatic Hydrolysis of Steam-Exploded and Ethanol Organosolv–Pretreated Douglas-Firby Novel and Commercial Fungal Cellulases. Applied Biochemistry and Biotechnology, 2005, 121, 0219-0230.	1.4	47
5	Effect of Reduction in Yeast and Enzyme Concentrations in a Simultaneous- Saccharification-and-Fermentation–Based Bioethanol Process: Technical and Economic Evaluation. Applied Biochemistry and Biotechnology, 2005, 122, 0485-0500.	1.4	52
6	Steam Pretreatment of <i>Salix </i> with and without SO ₂ Impregnation for Production of Bioethanol. Applied Biochemistry and Biotechnology, 2005, 124, 1101-1118.	1.4	70
7	Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. Journal of Biotechnology, 2005, 120, 284-295.	1.9	106
8	Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 2006, 125, 198-209.	1.9	563
9	Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of Biotechnology, 2006, 126, 488-498.	1.9	245
10	Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme and Microbial Technology, 2006, 38, 279-286.	1.6	93
11	Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme and Microbial Technology, 2006, 39, 756-762.	1.6	121
12	Canadian Biomass Reserves for Biorefining. Applied Biochemistry and Biotechnology, 2006, 129, 22-40.	1.4	26
13	Steam Pretreatment of Acid-Sprayed and Acid-Soaked Barley Straw for Production of Ethanol. Applied Biochemistry and Biotechnology, 2006, 130, 546-562.	1.4	49
14	Immobilization of β-glucosidase on Eupergit C for Lignocellulose Hydrolysis. Biotechnology Letters, 2006, 28, 151-156.	1.1	120
15	Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 2006, 24, 452-481.	6.0	1,126
16	A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnology and Bioengineering, 2006, 93, 880-886.	1.7	62
17	Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 2006, 93, 1196-1206.	1.7	165
18	Economic Evaluation of Isolation of Hemicelluloses From Process Streams From Thermomechanical Pulping of Spruce. , 2007, , 741-752.		4

ATION REI

#	Article	IF	CITATIONS
19	A generic model for glucose production from various cellulose sources by a commercial cellulase complex. Biocatalysis and Biotransformation, 2007, 25, 419-429.	1.1	37
21	Economic evaluation and environmental benefits of biofuel: an Indian perspective. International Journal of Global Energy Issues, 2007, 28, 357.	0.2	19
22	Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. , 2007, 108, 41-65.		408
23	Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining, 2007, 1, 119-134.	1.9	894
24	Liquefaction of lignocellulose at high-solids concentrations. Biotechnology and Bioengineering, 2007, 96, 862-870.	1.7	444
25	Bioethanol production from bio―organosolv pulps of <i>Pinus radiata</i> and <i>Acacia dealbata</i> . Journal of Chemical Technology and Biotechnology, 2007, 82, 767-774.	1.6	62
26	Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technology, 2007, 98, 2503-2510.	4.8	474
27	Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration and Biodegradation, 2007, 59, 85-89.	1.9	183
28	High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme and Microbial Technology, 2007, 40, 607-613.	1.6	134
29	Simultaneous saccharification and fermentation of steam-pretreated barley straw at low enzyme loadings and low yeast concentration. Enzyme and Microbial Technology, 2007, 40, 1100-1107.	1.6	110
30	Evaluating the Distribution of Cellulases and the Recycling of Free Cellulases during the Hydrolysis of Lignocellulosic Substrates. Biotechnology Progress, 2007, 23, 398-406.	1.3	163
31	Process Engineering Economics of Bioethanol Production. , 2007, 108, 303-327.		141
32	Towards industrial pentose-fermenting yeast strains. Applied Microbiology and Biotechnology, 2007, 74, 937-953.	1.7	662
33	Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess and Biosystems Engineering, 2007, 30, 189-196.	1.7	144
34	Economic evaluation of isolation of hemicelluloses from process streams from thermomechanical pulping of spruce. Applied Biochemistry and Biotechnology, 2007, 137-140, 741-752.	1.4	30
35	Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochemistry, 2008, 43, 1462-1466.	1.8	124
36	Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass. Applied Biochemistry and Biotechnology, 2008, 146, 89-100.	1.4	7
37	Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess and Biosystems Engineering, 2008, 31, 369-377.	1.7	69

#	Article	IF	CITATIONS
38	Analysis of saccharification in Brachypodium distachyon stems under mild conditions of hydrolysis. Biotechnology for Biofuels, 2008, 1, 15.	6.2	44
39	Integration options for high energy efficiency and improved economics in a wood-to-ethanol process. Biotechnology for Biofuels, 2008, 1, 4.	6.2	46
40	A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels, 2008, 1, 7.	6.2	605
41	Effect of Ultrasonic Waves on the Saccharification Processes of Lignocellulose. Chemical Engineering and Technology, 2008, 31, 1510-1515.	0.9	66
42	The new forestry biofuels sector. Biofuels, Bioproducts and Biorefining, 2008, 2, 58-73.	1.9	219
43	Secondâ€generation biofuels and local bioenergy systems. Biofuels, Bioproducts and Biorefining, 2008, 2, 455-469.	1.9	201
44	Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochemistry, 2008, 43, 280-286.	1.8	52
45	Conversion of recycled paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass and Bioenergy, 2008, 32, 400-406.	2.9	110
46	Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresource Technology, 2008, 99, 137-145.	4.8	175
47	Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology, 2008, 43, 214-219.	1.6	146
48	Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass and Bioenergy, 2008, 32, 326-332.	2.9	178
49	Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy, 2008, 32, 422-430.	2.9	377
50	Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresource Technology, 2008, 99, 5099-5103.	4.8	86
51	Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure. Bioresource Technology, 2008, 99, 5327-5334.	4.8	42
52	Ethanol and diesel fuel from plant raw materials: A review. Solid Fuel Chemistry, 2008, 42, 358-364.	0.2	35
53	Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytologist, 2008, 178, 473-485.	3.5	349
54	Current Technologies for Fuel Ethanol Production from Lignocellulosic Plant Biomass. , 2008, , 161-182.		10
55	Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. Journal of Biotechnology, 2008, 134, 112-120.	1.9	137

		CITATION RE	PORT	
# 56	ARTICLE Production of green bioplastics from agri-food chain residues and co-products. , 2009,	, 515-536.	IF	Citations
57	Production of fuel ethanol from softwood by simultaneous saccharification and fermer high dry matter content. Journal of Chemical Technology and Biotechnology, 2009, 84,	tation at 570-577.	1.6	75
58	Functional characterization of a bacterial expansin from <i>Bacillus subtilis</i> for enh enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 2009, 102, 1342	anced -1353.	1.7	142
59	Effect of additives on the digestibility of corn stover solids following pretreatment by le technologies. Biotechnology and Bioengineering, 2009, 102, 1544-1557.	eading	1.7	129
60	A comparison of stress tolerance in YPD and industrial lignocellulose-based medium an and laboratory yeast strains. Journal of Industrial Microbiology and Biotechnology, 200 1085-1091.	iong industrial 9, 36,	1.4	48
61	Rheology measurements of a biomass slurry: an inter-laboratory study. Rheologica Acta 1005-1015.	ı, 2009, 48,	1.1	145
62	Molecular engineering of the cellulosome complex for affinity and bioenergy applicatio Biotechnology Letters, 2009, 31, 465-476.	ns.	1.1	26
63	Model-Based Fed-Batch for High-Solids Enzymatic Cellulose Hydrolysis. Applied Biocher Biotechnology, 2009, 152, 88-107.	nistry and	1.4	196
64	Effect of Nutrients on Fermentation of Pretreated Wheat Straw at very High Dry Matte Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology, 2009, 153, 44-57.	r Content by	1.4	73
65	Aspergillus fumigatus Thermophilic and Acidophilic Endoglucanases. Applied Biochemis Biotechnology, 2009, 155, 18-26.	try and	1.4	48
66	Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice Microbiology and Biotechnology, 2009, 84, 667-676.	straw. Applied	1.7	157
67	Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechr Biofuels, 2009, 2, 11.	ology for	6.2	504
68	The commercial performance of cellulosic ethanol supply-chains in Europe. Biotechnolc Biofuels, 2009, 2, 3.	gy for	6.2	30
69	Prefermentation improves xylose utilization in simultaneous saccharification and co-fer pretreated spruce. Biotechnology for Biofuels, 2009, 2, 8.	mentation of	6.2	71
70	Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces n 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel, 20		3.4	110
71	Influence of steaming pressure on steam explosion pretreatment of Lespedeza stalks (1 94, 1379-1388.	_espedeza) Tj ETQq1 1 0.7	784314 rg 2.7	BT /Overlock 54
72	Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pre using crude Trichoderma reesei and Trichoderma atroviride enzymes. Process Biochemi 1323-1329.		1.8	33
73	New improvements for lignocellulosic ethanol. Current Opinion in Biotechnology, 2009	, 20, 372-380.	3.3	337

#	Article	IF	CITATIONS
74	Estimation of chemical traits in poplar short-rotation coppice at stand level. Biomass and Bioenergy, 2009, 33, 1703-1709.	2.9	40
75	Effect of different cellulase dosages on cell viability and ethanol production by Kluyveromyces marxianus in SSF processes. Bioresource Technology, 2009, 100, 890-895.	4.8	56
76	Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresource Technology, 2009, 100, 2425-2429.	4.8	161
77	High consistency enzymatic hydrolysis of hardwood substrates. Bioresource Technology, 2009, 100, 5890-5897.	4.8	107
78	Impact of impregnation time and chip size on sugar yield in pretreatment of softwood for ethanol production. Bioresource Technology, 2009, 100, 6312-6316.	4.8	88
79	Effects of growth stage on enzymatic saccharification and simultaneous saccharification and fermentation of bamboo shoots for bioethanol production. Bioresource Technology, 2009, 100, 6651-6654.	4.8	46
80	Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation. Biocatalysis and Biotransformation, 2009, 27, 27-35.	1.1	23
81	Thermotolerant Yeasts for Bioethanol Production Using Lignocellulosic Substrates. , 2009, , 551-588.		2
82	Decentralized Energy from Waste Systems. Energies, 2010, 3, 194-205.	1.6	32
83	Dynamic Optimization of Fed-batch Fermentation Processes for Ethanol Production from Lignocellulose. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 227-232.	0.4	0
84	Issues with increasing bioethanol productivity: A model directed study. Korean Journal of Chemical Engineering, 2010, 27, 576-586.	1.2	9
85	High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?. Applied Microbiology and Biotechnology, 2010, 85, 861-867.	1.7	297
86	Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Applied Microbiology and Biotechnology, 2010, 86, 1355-1365.	1.7	102
87	Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Applied Microbiology and Biotechnology, 2010, 87, 1303-1315.	1.7	296
88	Evaluation of a combined brown rot decay–chemical delignification process as a pretreatment for bioethanol production from Pinus radiata wood chips. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 893-900.	1.4	32
89	Analysis of conversion and operation strategies for enzymatic hydrolysis of lignocellulosic biomass in a series of CSTRs with distributed feeding. Bioprocess and Biosystems Engineering, 2010, 33, 901-910.	1.7	11
90	Influence of High Solid Concentration on Enzymatic Hydrolysis and Fermentation of Steam-Exploded Corn Stover Biomass. Applied Biochemistry and Biotechnology, 2010, 160, 360-369.	1.4	156
91	Rheology of Dilute Acid Hydrolyzed Corn Stover at High Solids Concentration. Applied Biochemistry and Biotechnology, 2010, 160, 1102-1115.	1.4	69

#	Article	IF	Citations
92	Production of Ethanol and Feed by High Dry Matter Hydrolysis and Fermentation of Palm Kernel Press Cake. Applied Biochemistry and Biotechnology, 2010, 161, 318-332.	1.4	52
93	Ethanol Production from the Organic Fraction Obtained After Thermal Pretreatment of Municipal Solid Waste. Applied Biochemistry and Biotechnology, 2010, 161, 423-431.	1.4	55
94	Bioconversion of Kraft Paper Mill Sludges to Ethanol by SSF and SSCF. Applied Biochemistry and Biotechnology, 2010, 161, 53-66.	1.4	92
95	High-Level Expression and Efficient Purification of Bioactive Swollenin in Aspergillus oryzae. Applied Biochemistry and Biotechnology, 2010, 162, 2027-2036.	1.4	23
96	Trichoderma harzianum IOC-4038: A Promising Strain for the Production of a Cellulolytic Complex with Significant β-Glucosidase Activity from Sugarcane Bagasse Cellulignin. Applied Biochemistry and Biotechnology, 2010, 162, 2111-2122.	1.4	63
97	Improved oneâ€step steam pretreatment of SO ₂ â€Impregnated softwood with timeâ€dependent temperature profile for ethanol production. Biotechnology Progress, 2010, 26, 1054-1060.	1.3	19
98	Highâ€solids biphasic CO ₂ –H ₂ O pretreatment of lignocellulosic biomass. Biotechnology and Bioengineering, 2010, 107, 451-460.	1.7	75
99	Controlled feeding of cellulases improves conversion of xylose in simultaneous saccharification and co-fermentation for bioethanol production. Journal of Biotechnology, 2010, 145, 168-175.	1.9	88
100	Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 2010, 89, S20-S28.	3.4	450
101	Bioproduction of hydrogen from food waste by pilot-scale combined hydrogen/methane fermentation. International Journal of Hydrogen Energy, 2010, 35, 11746-11755.	3.8	130
102	Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries. Biomass and Bioenergy, 2010, 34, 1914-1921.	2.9	153
103	Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochemical Engineering Journal, 2010, 49, 28-32.	1.8	74
104	Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 2010, 156, 395-403.	6.6	366
105	Bioethanol from lignocellulosics: Status and perspectives in Canada. Bioresource Technology, 2010, 101, 4806-4813.	4.8	131
106	Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluationâ [~] †. Bioresource Technology, 2010, 101, 4992-5002.	4.8	696
107	Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology, 2010, 101, 4959-4964.	4.8	174
108	High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresource Technology, 2010, 101, 4884-4888.	4.8	74
109	Hemicelluloses for fuel ethanol: A review. Bioresource Technology, 2010, 101, 4775-4800.	4.8	1,249

#	Article	IF	CITATIONS
110	Techno-economic analysis of lignocellulosic ethanol: A review. Bioresource Technology, 2010, 101, 4980-4991.	4.8	371
111	Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresource Technology, 2010, 101, 7382-7388.	4.8	159
112	Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes. Bioresource Technology, 2010, 101, 7889-7894.	4.8	125
113	SO2-catalyzed steam pretreatment and fermentation of enzymatically hydrolyzed sugarcane bagasse. Enzyme and Microbial Technology, 2010, 46, 64-73.	1.6	120
114	Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter. Biotechnology for Biofuels, 2010, 3, 14.	6.2	54
115	Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnology for Biofuels, 2010, 3, 17.	6.2	71
116	Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process. Biotechnology for Biofuels, 2010, 3, 21.	6.2	56
117	Process Design and Economics of On-Site Cellulase Production on Various Carbon Sources in a Softwood-Based Ethanol Plant. Enzyme Research, 2010, 2010, 1-8.	1.8	63
118	Key features of pretreated lignocelluloses biomass solids and their impact on hydrolysis. , 2010, , 73-121.		10
119	Key drivers influencing the commercialization of ethanol-based biorefineries. Journal of Commercial Biotechnology, 2010, 16, 239-257.	0.2	52
120	Optimization of a Fed-Batch Simultaneous Saccharification and Cofermentation Process from Lignocellulose to Ethanol. Industrial & Engineering Chemistry Research, 2010, 49, 5775-5785.	1.8	18
121	Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3803-3808.	3.3	585
122	Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa. Interface Focus, 2011, 1, 196-211.	1.5	44
124	Ethanol. , 2011, , 419-493.		1
125	Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media. Biotechnology for Biofuels, 2011, 4, 22.	6.2	46
126	Technoeconomic Analysis of Lignocellulosic Ethanol. , 2011, , 123-148.		13
127	Thermochemical Conversion of Biomass to Biofuels. , 2011, , 51-77.		47
128	Topochemistry, Porosity and Chemical Composition Affecting Enzymatic Hydrolysis of Lignocellulosic Materials. , 2011, , 53-72.		8

#	Article	IF	CITATIONS
129	A mutated xylose reductase increases bioethanol production more than a glucose/xylose facilitator in simultaneous fermentation and co-fermentation of wheat straw. AMB Express, 2011, 1, 4.	1.4	12
130	Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Critical Reviews in Biotechnology, 2011, 31, 20-31.	5.1	359
131	Developing Organisms for Consolidated Bioprocessing of Biomass to Ethanol. , 2011, , .		8
132	Latest Frontiers in the Biotechnologies for Ethanol Production from Lignocellulosic Biomass. , 0, , .		3
133	Effects of surfactant on biochemical and hydrothermal conversion of softwood hemicellulose to ethanol and furan derivatives. Process Biochemistry, 2011, 46, 1785-1792.	1.8	27
134	Hydrogen production from mushroom farm waste with a two-step acid hydrolysis process. International Journal of Hydrogen Energy, 2011, 36, 14245-14251.	3.8	36
135	Biomass availability for lignocellulosic ethanol production. Biomass and Bioenergy, 2011, 35, 4519-4529.	2.9	104
136	Co-digestion of swine manure and corn stover for bioenergy production in MixAlcoâ,,¢ consolidated bioprocessing. Biomass and Bioenergy, 2011, 35, 4134-4144.	2.9	15
137	Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass and Bioenergy, 2011, 35, 4879-4886.	2.9	104
138	High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: A comparison between SPORL and dilute acid pretreatments. Bioresource Technology, 2011, 102, 8921-8929.	4.8	73
139	Simultaneous saccharification and fermentation of Kanlow switchgrass by thermotolerant Kluyveromyces marxianus IMB3: The effect of enzyme loading, temperature and higher solid loadings. Bioresource Technology, 2011, 102, 10618-10624.	4.8	96
140	Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading. Bioresource Technology, 2011, 102, 10892-10897.	4.8	71
141	Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresource Technology, 2011, 102, 11204-11211.	4.8	70
142	Rheology of concentrated biomass. Korea Australia Rheology Journal, 2011, 23, 237-245.	0.7	25
143	Routes to Cellulosic Ethanol. , 2011, , .		19
144	Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: First steps in the process development. Engineering in Life Sciences, 2011, 11, 436-442.	2.0	26
145	Improved catalytic hydrolysis of carboxy methyl cellulose using cellulase immobilized on functionalized meso cellular foam. Journal of Porous Materials, 2011, 18, 409-416.	1.3	19
146	Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. Cellulose, 2011, 18, 1055-1062.	2.4	97

#	Article	IF	Citations
147	Enzymatic degradation of steam-pretreated Lespedeza stalk (Lespedeza crytobotrya) by cellulosic-substrate induced cellulases. Bioprocess and Biosystems Engineering, 2011, 34, 357-365.	1.7	11
148	Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry. Applied Biochemistry and Biotechnology, 2011, 163, 626-635.	1.4	25
149	Relatively High-Substrate Consistency Hydrolysis of Steam-Pretreated Sweet Sorghum Bagasse at Relatively Low Cellulase Loading. Applied Biochemistry and Biotechnology, 2011, 165, 1024-1036.	1.4	12
150	Thermostable endoglucanases in the liquefaction of hydrothermally pretreated wheat straw. Biotechnology for Biofuels, 2011, 4, 2.	6.2	61
151	Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnology for Biofuels, 2011, 4, 27.	6.2	264
152	Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnology for Biofuels, 2011, 4, 3.	6.2	263
153	A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds. Biotechnology for Biofuels, 2011, 4, 49.	6.2	36
154	Different process configurations for bioethanol production from pretreated olive pruning biomass. Journal of Chemical Technology and Biotechnology, 2011, 86, 881-887.	1.6	74
155	Multiâ€Enzymatic Cascade Reactions: Overview and Perspectives. Advanced Synthesis and Catalysis, 2011, 353, 2239-2262.	2.1	433
156	The influence of pretreatment and enzyme loading on the effectiveness of batch and fedâ€batch hydrolysis of corn stover. Biotechnology Progress, 2011, 27, 77-85.	1.3	34
157	The effects of increasing swelling and anionic charges on the enzymatic hydrolysis of organosolvâ€pretreated softwoods at low enzyme loadings. Biotechnology and Bioengineering, 2011, 108, 1549-1558.	1.7	47
158	Biofuel excision and the viability of ethanol production in the Green Triangle, Australia. Energy Policy, 2011, 39, 1951-1957.	4.2	17
159	Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing Streptomyces for bioethanol production. Biomass and Bioenergy, 2011, 35, 1878-1884.	2.9	41
160	Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production. Bioresource Technology, 2011, 102, 3014-3019.	4.8	35
161	Second-generation ethanol production from steam exploded barley straw by Kluyveromyces marxianus CECT 10875. Fuel, 2011, 90, 1624-1630.	3.4	88
162	Isolation and Characterization of <i>Shigella flexneri</i> G3, Capable of Effective Cellulosic Saccharification under Mesophilic Conditions. Applied and Environmental Microbiology, 2011, 77, 517-523.	1.4	22
163	The Effect of <i>Gleditsia</i> Saponin on Simultaneous Saccharification and Fermentation of Furfural Residue for Ethanol Production. Advanced Materials Research, 2011, 236-238, 108-111.	0.3	7
164	Bioconversion of a mixture of extraction liquor from water prehydrolysis of Eucalyptus chips and cassava pulp. , 2011, , .		1

#	Article	IF	CITATIONS
165	Correlation of Genomic and Physiological Traits of Thermoanaerobacter Species with Biofuel Yields. Applied and Environmental Microbiology, 2011, 77, 7998-8008.	1.4	42
166	Lignin Recovery and Lignin-Based Products. RSC Green Chemistry, 2012, , 180-210.	0.0	9
167	Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5. Bioengineered, 2012, 3, 197-202.	1.4	28
168	The Penicillium echinulatum Secretome on Sugar Cane Bagasse. PLoS ONE, 2012, 7, e50571.	1.1	70
169	A Review of Life Cycle Assessment (LCA) of Bioethanol from Lignocellulosic Biomass. Japan Agricultural Research Quarterly, 2012, 46, 41-57.	0.1	33
170	Techno-economic evaluation of redox potential-controlled ethanol fermentation processes. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 813-819.	2.7	2
171	Cost to produce switchgrass and cost to produce ethanol from switchgrass for several levels of biorefinery investment cost and biomass to ethanol conversion rates. Biomass and Bioenergy, 2012, 46, 517-530.	2.9	40
172	An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy and Environmental Science, 2012, 5, 7100.	15.6	83
173	Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry, 2012, 47, 1287-1294.	1.8	158
174	Producing bioethanol from cellulosic hydrolyzate via co-immobilized cultivation strategy. Journal of Bioscience and Bioengineering, 2012, 114, 198-203.	1.1	12
175	Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw. Biotechnology for Biofuels, 2012, 5, 12.	6.2	61
176	Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol. Biotechnology for Biofuels, 2012, 5, 16.	6.2	56
177	Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnology for Biofuels, 2012, 5, 22.	6.2	210
178	An economic and ecological perspective of ethanol production from renewable agro waste: a review. AMB Express, 2012, 2, 65.	1.4	115
179	Effects of operation conditions on enzymatic hydrolysis of high-solid rice straw. International Journal of Hydrogen Energy, 2012, 37, 13660-13666.	3.8	6
180	Towards sustainable production of clean energy carriers from biomass resources. Applied Energy, 2012, 100, 172-186.	5.1	383
181	Bioethanol production: An integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue. Bioresource Technology, 2012, 123, 699-702.	4.8	16
182	Lignocellulosic ethanol: From science to industry. Biomass and Bioenergy, 2012, 46, 13-24.	2.9	213

#	Article	IF	CITATIONS
183	Comparison of bioethanol production of simultaneous saccharification & fermentation and separation hydrolysis & fermentation from cellulose-rich barley straw. Korean Journal of Chemical Engineering, 2012, 29, 1341-1346.	1.2	17
184	Surfactant-Assisted Acid Pretreatment of Sugarcane Tops for Bioethanol Production. Applied Biochemistry and Biotechnology, 2012, 167, 1513-1526.	1.4	26
185	Infrared Spectroscopy as Alternative to Wet Chemical Analysis to Characterize Eucalyptus globulus Pulps and Predict Their Ethanol Yield for a Simultaneous Saccharification and Fermentation Process. Applied Biochemistry and Biotechnology, 2012, 168, 2028-2042.	1.4	11
186	Ultrasonic and high-temperature pretreatment, enzymatic hydrolysis and fermentation of lignocellulosic sweet sorghum to bio-ethanol. International Journal of Ambient Energy, 2012, 33, 152-160.	1.4	10
187	Towards Increasing the Productivity of Lignocellulosic Bioethanol: Rational Strategies Fueled by Modeling. , 0, , .		2
188	STUDY OF ENZYMATIC HYDROLYSIS OF PRETREATED BIOMASS AT INCREASED SOLIDS LOADING. BioResources, 2012, 7, .	0.5	52
189	Twoâ€ŧemperature stage biphasic CO ₂ –H ₂ O pretreatment of lignocellulosic biomass at high solid loadings. Biotechnology and Bioengineering, 2012, 109, 1499-1507.	1.7	38
190	Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Conversion and Biorefinery, 2012, 2, 123-132.	2.9	28
191	Kinetic Studies on the Product Inhibition of Enzymatic Lignocellulose Hydrolysis. Applied Biochemistry and Biotechnology, 2012, 167, 358-366.	1.4	14
192	Perspectives for the production of bioethanol from wood and straw in Austria: technical, economic, and ecological aspects. Clean Technologies and Environmental Policy, 2012, 14, 411-425.	2.1	24
193	Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel, 2012, 94, 305-312.	3.4	86
194	District heating and ethanol production through polygeneration in Stockholm. Applied Energy, 2012, 91, 214-221.	5.1	43
195	Optimization of ethanol production by Saccharomyces cerevisiae UFPEDA 1238 in simultaneous saccharification and fermentation of delignified sugarcane bagasse. Industrial Crops and Products, 2012, 36, 584-588.	2.5	39
196	Ethanol production from steam-pretreated sweet sorghum bagasse with high substrate consistency enzymatic hydrolysis. Biomass and Bioenergy, 2012, 41, 157-164.	2.9	36
197	Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource Technology, 2012, 108, 128-133.	4.8	99
198	Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresource Technology, 2012, 110, 526-533.	4.8	55
199	An integrated process for conversion of Zostera marina residues to bioethanol. Journal of Supercritical Fluids, 2012, 68, 117-122.	1.6	16
200	Trends in bioconversion of lignocellulose: Biofuels, platform chemicals &Âbiorefinery concept. Progress in Energy and Combustion Science, 2012, 38, 522-550.	15.8	1,258

#	Article	IF	CITATIONS
201	Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Progress in Energy and Combustion Science, 2012, 38, 583-598.	15.8	140
202	Production of bio-ethanol from pretreated agricultural byproduct using enzymatic hydrolysis and simultaneous saccharification. Microbiology, 2012, 81, 201-207.	0.5	6
203	Process Evaluation of Enzymatic Hydrolysis with Filtrate Recycle for the Production of High Concentration Sugars. Applied Biochemistry and Biotechnology, 2012, 166, 839-855.	1.4	5
204	Assessment of the Brazilian potential for the production of enzymes for biofuels from agroindustrial materials. Biomass Conversion and Biorefinery, 2012, 2, 87-107.	2.9	17
205	Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess and Biosystems Engineering, 2012, 35, 11-18.	1.7	175
206	Bioconversion of corn stover derived pentose and hexose to ethanol using cascade simultaneous saccharification and fermentation (CSSF). Bioprocess and Biosystems Engineering, 2012, 35, 99-104.	1.7	4
207	Cellulosic ethanol production on temperature-shift simultaneous saccharification and fermentation using the thermostable yeast Kluyveromyces marxianus CHY1612. Bioprocess and Biosystems Engineering, 2012, 35, 115-122.	1.7	33
208	Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp. Biotechnology for Biofuels, 2013, 6, 56.	6.2	22
209	Structural evaluation and bioethanol production by simultaneous saccharification and fermentation with biodegraded triploid poplar. Biotechnology for Biofuels, 2013, 6, 42.	6.2	14
210	Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnology for Biofuels, 2013, 6, 36.	6.2	74
211	Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 2013, 6, 16.	6.2	1,074
212	Ethanol Production from High-Solid SSCF of Alkaline-Pretreated Corncob Using Recombinant Zymomonas mobilis CP4. Bioenergy Research, 2013, 6, 292-299.	2.2	18
213	Structural and chemical analysis of process residue from biochemical conversion of wheat straw (Triticum aestivum L.) to ethanol. Biomass and Bioenergy, 2013, 56, 572-581.	2.9	26
214	Integrated process of starch ethanol and cellulosic lactic acid for ethanol and lactic acid production. Applied Microbiology and Biotechnology, 2013, 97, 1923-1932.	1.7	14
215	Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel, 2013, 113, 165-179.	3.4	37
217	Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants. Enzyme and Microbial Technology, 2013, 52, 184-189.	1.6	23
218	SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production. Biotechnology for Biofuels, 2013, 6, 169.	6.2	41
219	Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production. Biotechnology for Biofuels, 2013, 6, 168.	6.2	61

#	RTICLE		CITATIONS
220	Comparison of process configurations for ethanol production from acid- and alkali-pretreated corncob by Saccharomyces cerevisiae strains with and without β-glucosidase expression. Bioresource Technology, 2013, 142, 154-161.		19
221	Assessment of Combinations between Pretreatment and Conversion Configurations for Bioethanol Production. ACS Sustainable Chemistry and Engineering, 2013, 1, 956-965.	3.2	37
222	Alkaline Pretreatment Improves Saccharification and Ethanol Yield from Waste Money Bills. Bioscience, Biotechnology and Biochemistry, 2013, 77, 1397-1402.	0.6	6
223	l(+)-Lactic acid production from furfural residues and corn kernels with treated yeast as nutrients. European Food Research and Technology, 2013, 236, 365-371.	1.6	15
224	Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review. Bioresource Technology, 2013, 134, 362-373.	4.8	264
225	Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass and Bioenergy, 2013, 59, 142-150.	2.9	61
226	Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification. Bioresource Technology, 2013, 142, 312-319.	4.8	52
227	Simultaneous Saccharification and Fermentation of Rice Straw Pretreated by a Sequence of Dilute Acid and Dilute Alkali at High Dry Matter Content. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2013, 35, 741-752.	1.2	10
228	Molecular genetic characteristics of Saccharomyces cerevisiae distillers' yeasts. Microbiology, 2013, 82, 175-185.	0.5	13
229	Cost analysis of cassava cellulose utilization scenarios for ethanol production on flowsheet simulation platform. Bioresource Technology, 2013, 134, 298-306.	4.8	21
230	Simultaneous saccharification, filtration and fermentation (SSFF): A novel method for bioethanol production from lignocellulosic biomass. Bioresource Technology, 2013, 133, 68-73.	4.8	76
231	Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresource Technology, 2013, 142, 171-178.	4.8	75
232	Simultaneous saccharification and co-fermentation of whole wheat in integrated ethanol production. Biomass and Bioenergy, 2013, 56, 506-514.	2.9	36
233	Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnology for Biofuels, 2013, 6, 2.	6.2	91
234	Bioethanol production from various waste papers: Economic feasibility and sensitivity analysis. Applied Energy, 2013, 111, 1172-1182.	5.1	76
235	Optimisation of simultaneous saccharification and fermentation of wheat straw for ethanol production. Fuel, 2013, 112, 331-337.	3.4	52
236	Use of a two-chamber reactor to improve enzymatic hydrolysis and fermentation of lignocellulosic materials. Applied Energy, 2013, 102, 198-203.	5.1	19
237	Hydrolysis of concentrated suspensions of steam pretreated Arundo donax. Applied Energy, 2013, 102, 179-189.	5.1	62

#	Article		CITATIONS
238	Heat integration of biochemical ethanol production from straw – A case study. Applied Energy, 2013, 102, 32-43.		30
239	Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresource Technology, 2013, 127, 202-208.	4.8	71
240	Ionic liquid pretreatment allows utilization of high substrate loadings in enzymatic hydrolysis of biomass to produce ethanol from cotton stalks. Industrial Crops and Products, 2013, 51, 408-414.	2.5	45
241	Production of a high concentration of ethanol from potato tuber by high gravity fermentation. Food Science and Biotechnology, 2013, 22, 441-448.	1.2	13
242	Mixing Effects on the Kinetics of Enzymatic Hydrolysis of Avicel for Batch Production of Cellulosic Ethanol. Industrial & Engineering Chemistry Research, 2013, 52, 3988-3999.		27
243	Alkali Pretreatment for Improvement of Biogas and Ethanol Production from Different Waste Parts of Pine Tree. Industrial & Engineering Chemistry Research, 2013, 52, 972-978.	1.8	70
244	Hydrolysis and fermentation for cellulosic ethanol production. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 633-654.	1.9	28
245	Production of Bioethanol. SpringerBriefs in Applied Sciences and Technology, 2013, , 21-53.	0.2	3
246	Immobilization of cellulase on modified mesoporous silica shows improved thermal stability and reusability. African Journal of Microbiology Research, 2013, 7, 3248-3253.		13
247	Biofuels Get in the Fast Lane: Developments in Plant Feedstock Production and Processing. Advances in Crop Science and Technology, 2013, 01, .	0.4	0
248	Cellulase Recycling after High-Solids Simultaneous Saccharification and Fermentation of Combined Pretreated Corncob. Frontiers in Energy Research, 2014, 2, .	1.2	7
249	Enhanced Ethanol Production with Mixed Lignocellulosic Substrates from Commercial Furfural and Cassava Residues. BioResources, 2014, 10, .	0.5	10
250	Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. saccharolyticus. SpringerPlus, 2014, 3, 516.	1.2	30
251	Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2014, 30, 3173-3183.	1.7	40
252	Conversion of Industrial Paper Sludge to Ethanol: Fractionation of Sludge and Its Impact. Applied Biochemistry and Biotechnology, 2014, 174, 2096-2113.	1.4	30
253	<i>Bacillus coagulans</i> tolerance to 1â€ethylâ€3â€methylimidazoliumâ€based ionic liquids in aqueous and solidâ€state thermophilic culture. Biotechnology Progress, 2014, 30, 311-316.	1.3	19
254	Developments in bioethanol fuel-focused biorefineries. , 2014, , 259-302.		9
255	Economic evaluation of the conversion of industrial paper sludge to ethanol. Energy Economics, 2014, 44, 281-290.	5.6	27

#	Article	IF	CITATIONS
256	Ethanol production from xerophilic and salt-resistant Tamarix jordanis biomass. Biomass and Bioenergy, 2014, 61, 73-81.	2.9	21
257	Enzymatic liquefaction and saccharification of pretreated corn stover at high-solids concentrations in a horizontal rotating bioreactor. Bioprocess and Biosystems Engineering, 2014, 37, 173-181.	1.7	53
258	Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?. Biotechnology and Bioengineering, 2014, 111, 59-68.	1.7	183
259	Sono-assisted organosolv/H2O2 pretreatment of oil palm (Elaeis guineensis Jacq.) fronds for recovery of fermentable sugars: Optimization and severity evaluation. Fuel, 2014, 115, 170-178.	3.4	37
260	Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Applied Energy, 2014, 113, 277-286.	5.1	133
261	Bioethanol production from rapeseed straw at high solids loading with different process configurations. Fuel, 2014, 122, 112-118.	3.4	76
262	High solid fed-batch SSF with delayed inoculation for improved production of bioethanol from wheat straw. Fuel, 2014, 122, 294-300.	3.4	37
263	Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Industrial Crops and Products, 2014, 54, 32-39.	2.5	47
264	Integration of biofuel production into district heating – part I: an evaluation of biofuel production costs using four types of biofuel production plants as case studies. Journal of Cleaner Production, 2014, 69, 176-187.	4.6	21
265	Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresource Technology, 2014, 152, 140-146.	4.8	98
266	Shear-induced diffusion in dilute curved fiber suspensions in simple shear flow. Physics of Fluids, 2014, 26, .	1.6	6
267	Economic Evaluation of Switchgrass Feedstock Production Systems Tested in Potassium-Deficient Soils. Bioenergy Research, 2014, 7, 260-267.	2.2	9
268	High Solids Enzymatic Hydrolysis of Pretreated Lignocellulosic Materials with a Powerful Stirrer Concept. Applied Biochemistry and Biotechnology, 2014, 172, 1699-1713.	1.4	36
269	Selection of a Thermotolerant Kluyveromyces marxianus Strain with Potential Application for Cellulosic Ethanol Production by Simultaneous Saccharification and Fermentation. Applied Biochemistry and Biotechnology, 2014, 172, 1553-1564.	1.4	39
270	Innately robust yeast strains isolated from grape marc have a great potential for lignocellulosic ethanol production. Annals of Microbiology, 2014, 64, 1807-1818.	1.1	9
271	Improvement in commercial scale dry mill corn ethanol production using controlled flow cavitation and cellulose hydrolysis. Biomass Conversion and Biorefinery, 2014, 4, 211-224.	2.9	10
272	Bioconversion of lignocellulosic waste to bioethanol by Trichoderma and yeast fermentation. 3 Biotech, 2014, 4, 493-499.	1.1	19
273	Bench-scale bioethanol production from eucalyptus by high solid saccharification and glucose/xylose fermentation method. Bioprocess and Biosystems Engineering, 2014, 37, 749-754.	1.7	15

#	Article	IF	CITATIONS
274	A novel rheometer design for yield stress fluids. AICHE Journal, 2014, 60, 1523-1528.	1.8	8
275	Scale-up Pretreatment Studies on Sugarcane Bagasse and Straw for Second-Generation Ethanol Production. , 2014, , 225-254.		2
276	Continuous Enzymatic Hydrolysis of Lignocellulosic Biomass with Simultaneous Detoxification and Enzyme Recovery. Applied Biochemistry and Biotechnology, 2014, 173, 1319-1335.	1.4	13
277	Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chemistry, 2014, 16, 4816-4838.	4.6	399
278	Carbohydrate-Binding Modules of Fungal Cellulases. Advances in Applied Microbiology, 2014, 88, 103-165.	1.3	127
279	Production, optimization and evaluation of multicomponent holocellulase produced by Streptomyces sp. ssr-198. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2379-2386.	2.7	17
280	Improving Rheology and Enzymatic Hydrolysis of High-Solid Corncob Slurries by Adding Lignosulfonate and Long-Chain Fatty Alcohols. Journal of Agricultural and Food Chemistry, 2014, 62, 8430-8436.	2.4	15
281	PEI detoxification of pretreated spruce for high solids ethanol fermentation. Applied Energy, 2014, 132, 394-403.	5.1	48
282	The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover. Applied Biochemistry and Biotechnology, 2014, 174, 146-155.	1.4	21
283	Factors to decrease the cellulose conversion of enzymatic hydrolysis of lignocellulose at high solid concentrations. Cellulose, 2014, 21, 2409-2417.	2.4	26
284	Production of cellulosic ethanol and enzyme from waste fiber sludge using SSF, recycling of hydrolytic enzymes and yeast, and recombinant cellulase-producing Aspergillus niger. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1191-1200.	1.4	15
285	Combining the effects of process design and pH for improved xylose conversion in high solid ethanol production from Arundo donax. AMB Express, 2014, 4, 41.	1.4	12
286	Improvements of Tolerance to Stress Conditions by Genetic Engineering in Saccharomyces Cerevisiae during Ethanol Production. Applied Biochemistry and Biotechnology, 2014, 174, 28-42.	1.4	47
287	Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock. Biotechnology for Biofuels, 2014, 7, 26.	6.2	71
288	Combined substrate, enzyme and yeast feed in simultaneous saccharification and fermentation allow bioethanol production from pretreated spruce biomass at high solids loadings. Biotechnology for Biofuels, 2014, 7, 54.	6.2	65
289	Bioethanol Production from Hydrothermally Pretreated and Delignified Corn Stover by Fed-Batch Simultaneous Saccharification and Fermentation. Energy & Fuels, 2014, 28, 1158-1165.	2.5	12
290	Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renewable Energy, 2014, 62, 362-368.	4.3	109
291	Ethanol production from sunflower meal biomass by simultaneous saccharification and fermentation (SSF) with Kluyveromyces marxianus ATCC 36907. Bioprocess and Biosystems Engineering, 2014, 37, 2235-2242.	1.7	29

#	ARTICLE		CITATIONS
293	Analysis of historical total production costs of cellulosic ethanol and forecasting for the 2020-decade. Fuel, 2014, 130, 100-104.		12
294	Techno-economic analysis of an integrated biorefinery system for poly-generation of power, heat, pellet and bioethanol. International Journal of Energy Research, 2014, 38, 551-563.	2.2	9
295	An approach to cellulase recovery from enzymatic hydrolysis of pretreated sugarcane bagasse with high lignin content. Biocatalysis and Biotransformation, 2015, 33, 287-297.	1.1	9
296	Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium. Biotechnology for Biofuels, 2015, 8, 166.	6.2	29
297	Influence of different SSF conditions on ethanol production from corn stover at high solids loadings. Energy Science and Engineering, 2015, 3, 481-489.		22
298	- Synthetic Biology: A Promising Technology for Biofuel Production. , 2015, , 26-29.		1
300	Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnology for Biofuels, 2015, 8, 76.	6.2	68
301	High solid saccharification using mild alkali-pretreated rice straw by hyper-cellulolytic fungal strain. Bioresources and Bioprocessing, 2015, 2, .	2.0	4
302	Comparative technoeconomic analysis of a softwood ethanol process featuring posthydrolysis sugars concentration operations and continuous fermentation with cell recycle. Biotechnology Progress, 2015, 31, 946-956.	1.3	9
303	CONTINUOUS AND SEMICONTINUOUS REACTION SYSTEMS FOR HIGH-SOLIDS ENZYMATIC HYDROLYSIS OF LIGNOCELLULOSICS. Brazilian Journal of Chemical Engineering, 2015, 32, 805-819.	0.7	7
305	Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. Bioresource Technology, 2015, 192, 529-539.	4.8	76
306	A synergistic effect of pretreatment on cell wall structural changes in barley straw (<i>Hordeum) Tj ETQq1 1 0.78- 2015, 95, 843-850.</i>	4314 rgBT 1.7	/Overlock 1 22
307	A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae. Bioresource Technology, 2015, 188, 153-160.	4.8	20
308	Alternative Hybrid Liquid-Liquid and Distillation Sequences for the Biobutanol Separation. Computer Aided Chemical Engineering, 2015, , 1127-1132.	0.3	7
309	Cell Wall Engineering by Heterologous Expression of Cell Wall-Degrading Enzymes for Better Conversion of Lignocellulosic Biomass into Biofuels. Bioenergy Research, 2015, 8, 1574-1588.	2.2	14
310	Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renewable and Sustainable Energy Reviews, 2015, 51, 699-717.	8.2	92
311	Optimizing Ethanol and Methane Production from Steam-pretreated, Phosphoric Acid-impregnated Corn Stover. Applied Biochemistry and Biotechnology, 2015, 175, 1371-1388.	1.4	12
312	Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production. Bioresource Technology, 2015, 191, 263-270.	4.8	46

#	Article		CITATIONS
313	Reactors for High Solid Loading Pretreatment of Lignocellulosic Biomass. Advances in Biochemical Engineering/Biotechnology, 2015, 152, 75-90.	0.6	10
314	Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover. Bioresource Technology, 2015, 187, 43-48.	4.8	59
315	Bioethanol production from rice husk under elevated temperature simultaneous saccharification and fermentation using Kluyveromyces marxianus CK8. Biocatalysis and Agricultural Biotechnology, 2015, 4, 543-549.	1.5	18
316	Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune. Bioresource Technology, 2015, 197, 37-41.	4.8	53
317	Process Alternatives for Biobutanol Purification: Design and Optimization. Industrial & Engineering Chemistry Research, 2015, 54, 351-358.	1.8	45
318	Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnology Advances, 2015, 33, 1091-1107.	6.0	151
319	Optimal Temperature and pH Control for a Batch Simultaneous Saccharification and Co-Fermentation Process. Chemical Engineering Communications, 2015, 202, 899-910.	1.5	4
320	Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison. Applied Energy, 2015, 138, 346-366.	5.1	142
321	Techno-Economic Analysis of Integrating First and Second-Generation Ethanol Production Using Filamentous Fungi: An Industrial Case Study. Energies, 2016, 9, 359.	1.6	26
322	Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw. Biotechnology for Biofuels, 2016, 9, 222.	6.2	49
324	Combined ethanol and methane production from switchgrass (Panicum virgatum L.) impregnated with lime prior to steam explosion. Biomass and Bioenergy, 2016, 90, 22-31.	2.9	23
325	Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electronic Journal of Biotechnology, 2016, 21, 82-92.	1.2	114
326	Hydrolysis of Cellulose Using an Acidic and Hydrophobic Ionic Liquid and Subsequent Separation of Glucose Aqueous Solution from the Ionic Liquid and 5-(Hydroxymethyl)furfural. ACS Sustainable Chemistry and Engineering, 2016, 4, 3352-3356.	3.2	31
327	Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content. Bioprocess and Biosystems Engineering, 2016, 39, 1415-1423.	1.7	27
328	Biorefinery Scheme for Residual Biomass Using Autohydrolysis and Organosolv Stages for Oligomers and Bioethanol Production. Energy & Fuels, 2016, 30, 8236-8245.	2.5	23
329	Pretreatment and enzymatic process modification strategies to improve efficiency of sugar production from sugarcane bagasse. 3 Biotech, 2016, 6, 126.	1.1	11
330	Simultaneously saccharification and fermentation approach as a tool for enhanced fossil fuels biodesulfurization. Journal of Environmental Management, 2016, 182, 397-405.	3.8	20
331	Direktsynthese von Bioethylen aus Weizenstroh. Chemie-Ingenieur-Technik, 2016, 88, 183-191.	0.4	1

#	Article		CITATIONS
332	Optimization and techno-economic assessment of high-solid fed-batch saccharification and ethanol fermentation by Scheffersomyces stipitis and Saccharomyces cerevisiae consortium. Renewable Energy, 2016, 99, 1062-1072.		18
333	Scale-up of high-solid enzymatic hydrolysis of steam-pretreated softwood: the effects of reactor flow conditions. Biomass Conversion and Biorefinery, 2016, 6, 173-180.	2.9	22
334	Production of cellulosic ethanol from steam-exploded Eucalyptus urograndis and sugarcane bagasse at high total solids and low enzyme loadings. Sustainable Chemical Processes, 2016, 4, .	2.3	18
335	Bioethanol production from forestry residues: A comparative techno-economic analysis. Applied Energy, 2016, 184, 727-736.	5.1	69
336	Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment. Biotechnology for Biofuels, 2016, 9, 141.	6.2	54
337	Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnology for Biofuels, 2016, 9, 97.	6.2	49
338	Fiber modifications by organosolv catalyzed with H2SO4 improves the SSF of Pinus radiata. Industrial Crops and Products, 2016, 86, 79-86.	2.5	17
339	Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. Biotechnology for Biofuels, 2016, 9, 88.	6.2	47
340	Effect of enzymatic high temperature prehydrolysis on the subsequent cellulose hydrolysis of steamâ€pretreated spruce in high solids concentration. Journal of Chemical Technology and Biotechnology, 2016, 91, 1844-1852.	1.6	13
341	A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine. RSC Advances, 2016, 6, 14964-14992.	1.7	70
342	Mixing behavior of a model cellulosic biomass slurry during settling and resuspension. Chemical Engineering Science, 2016, 144, 310-320.	1.9	5
343	Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns. International Journal of Mineral Processing, 2016, 148, 72-82.	2.6	66
344	Lignocellulosic bioethanol production employing newly isolated inhibitor and thermotolerant Saccharomyces cerevisiae DBTIOC S24 strain in SSF and SHF. RSC Advances, 2016, 6, 24381-24390.	1.7	20
345	Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass. Bioprocess and Biosystems Engineering, 2016, 39, 937-944.	1.7	7
346	Evaluation of a pilot-scaled paddle dryer for the production of ethanol from lignocellulose including inhibitor removal and high-solids enzymatic hydrolysis. Biotechnology Reports (Amsterdam,) Tj ETQqO	0 02ngBT /0	Dv ed ock 10 ⁻
347	Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Current Opinion in Biotechnology, 2016, 42, 30-39.	3.3	203
348	Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. Bioresource Technology, 2016, 201, 27-32.	4.8	71
349	Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae.	1.7	38

#	Article	IF	CITATIONS
350	Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Applied Microbiology and Biotechnology, 2016, 100, 597-611.	1.7	70
351	Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 2016, 199, 103-112.	4.8	1,507
352	Sugar production from wheat straw biomass by alkaline extrusion and enzymatic hydrolysis. Renewable Energy, 2016, 86, 1060-1068.	4.3	55
353	CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings. Green Chemistry, 2016, 18, 1581-1589.	4.6	108
354	Optimization of enzymatic sugar beet hydrolysis in a horizontal rotating tubular bioreactor. Journal of Chemical Technology and Biotechnology, 2017, 92, 623-632.	1.6	9
355	Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (<i>Trinervitermes trinervoides</i>) and the characterization of a multimodular βâ€1,4â€xylanase (GH11). Biotechnology and Applied Biochemistry, 2017, 64, 174-186.	1.4	22
356	Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 2017, 71, 475-501.	8.2	541
357	Status of Canada's lignocellulosic ethanol: Part I: Pretreatment technologies. Renewable and Sustainable Energy Reviews, 2017, 72, 178-190.	8.2	46
358	Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis. Biotechnology for Biofuels, 2017, 10, 51.	6.2	87
359	Rheometry of coarse biomass at high temperature and pressure. Biomass and Bioenergy, 2017, 99, 69-78.	2.9	22
360	Optimal control of fed-batch reactor for enzymatic hydrolysis of lignocellulosic feedstocks. , 2017, , .		0
361	Techno-economic assessment of high-solid simultaneous saccharification and fermentation and economic impacts of yeast consortium and on-site enzyme production technologies. Energy, 2017, 122, 194-203.	4.5	36
362	Microbial treatment of industrial lignin: Successes, problems and challenges. Renewable and Sustainable Energy Reviews, 2017, 77, 1179-1205.	8.2	85
363	Recovering Activities of Inactivated Cellulases by the Use of Mannanase in Spruce Hydrolysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 5265-5272.	3.2	7
364	Hydrolysis of Lignocellulosic Biomass to Sugars. Biofuels and Biorefineries, 2017, , 3-41.	0.5	5
365	Optimal control of dilute acid pretreatment and enzymatic hydrolysis for processing lignocellulosic feedstock. Journal of Process Control, 2017, 56, 100-111.	1.7	12
366	Production of Ethanol from Lignocellulosic Biomass. Biofuels and Biorefineries, 2017, , 375-410.	0.5	20
367	Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement. Bioresource Technology, 2017, 243, 126-134.	4.8	31

#	Article		CITATIONS
368	Enzymatic Hydrolysis of Steam-Treated Sugarcane Bagasse: Effect of Enzyme Loading and Substrate Total Solids on Its Fractal Kinetic Modeling and Rheological Properties. Energy & Fuels, 2017, 31, 6211-6220.		20
369	Sensitivity analysis and stochastic modelling of lignocellulosic feedstock pretreatment and hydrolysis. Computers and Chemical Engineering, 2017, 106, 23-39.		8
370	Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11673-11678.	3.3	134
371	Two-Dimensional ¹ H-Nuclear Magnetic Resonance Relaxometry for Understanding Biomass Recalcitrance. ACS Sustainable Chemistry and Engineering, 2017, 5, 8785-8795.	3.2	25
372	Production of bulk chemicals from lignocellulosic biomass via thermochemical conversion and syngas fermentation: a comparative technoâ€economic and environmental assessment of different siteâ€specific supply chain configurations. Biofuels, Bioproducts and Biorefining, 2017, 11, 861-886.	1.9	35
373	Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé. Food Research International, 2017, 100, 102-111.	2.9	4
374	Bioethanol production from spent mushroom compost derived from chaff of millet and sorghum. Biotechnology for Biofuels, 2017, 10, 195.	6.2	25
375	Simultaneous Saccharification and Fermentation of Pretreated Eucalyptus grandis Under High Solids Loading. Industrial Biotechnology, 2017, 13, 131-140.	0.5	17
376	Effect of solids loading on ethanol production: Experimental, economic and environmental analysis. Bioresource Technology, 2017, 244, 108-116.	4.8	39
377	Degradation of chlortetracycline using immobilized laccase on Polyacrylonitrile-biochar composite nanofibrous membrane. Science of the Total Environment, 2017, 605-606, 315-321.	3.9	114
378	Does sugar inhibition explain mixing effects in enzymatic hydrolysis of lignocellulose?. Journal of Chemical Technology and Biotechnology, 2017, 92, 868-873.	1.6	8
379	Status of Canada's lignocellulosic ethanol: Part II: Hydrolysis and fermentation technologies. Renewable and Sustainable Energy Reviews, 2017, 79, 1535-1555.	8.2	34
380	Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Journal of Bioscience and Bioengineering, 2017, 123, 342-346.	1.1	54
381	Non-Saccharomyces (and Bacteria) Yeasts That Produce Ethanol. , 2017, , 389-413.		0
382	Bioethanol Production From Agricultural and Municipal Wastes. , 2017, , 157-190.		20
383	How does technology pathway choice influence economic viability and environmental impacts of lignocellulosic biorefineries?. Biotechnology for Biofuels, 2017, 10, 268.	6.2	29
384	Biomass as Raw Material for Production of Highâ€Value Products. , 0, , .		26
385	Hybrid Selection of Saccharomyces cerevisiae Yeasts for Thermotolerance and Fermentation Activity. Microbiology, 2018, 87, 215-221.	0.5	1

#	Article	IF	CITATIONS
386	Biomass and Bioenergy: Current State. Green Energy and Technology, 2018, , 3-37.	0.4	0
387	Simultaneous saccharification and bioethanol production from corn cobs: Process optimization and kinetic studies. Bioresource Technology, 2018, 262, 32-41.	4.8	80
388	Integral process assessment of sugarcane agricultural crop residues conversion to ethanol. Bioresource Technology, 2018, 260, 241-247.	4.8	36
389	Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chemical Engineering Journal, 2018, 347, 119-136.	6.6	145
390	Viscosity reduction of pretreated softwood by endoglucanases. Journal of Chemical Technology and Biotechnology, 2018, 93, 2440-2446.	1.6	2
391	A much cheaper method to separate ethanol after solid-state fermentation process in renewable energy production. Renewable Energy, 2018, 123, 675-682.	4.3	2
392	Techno-economic analysis of butanol production from lignocellulosic biomass by concentrated acid pretreatment and hydrolysis plus continuous fermentation. Biochemical Engineering Journal, 2018, 134, 30-43.	1.8	59
393	Techno-economic analysis of organosolv pretreatment process from lignocellulosic biomass. Clean Technologies and Environmental Policy, 2018, 20, 1401-1412.	2.1	33
394	Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass: solvent recycle and process integration. Biomass Conversion and Biorefinery, 2018, 8, 397-411.	2.9	27
395	Pretreatment of Sweet Sorghum Bagasse Using EFB-Based Black Liquor for Ethanol Production. , 2018, , 85-95.		0
396	Optimization of Surfactant Addition in Cellulosic Ethanol Process Using Integrated Techno-economic and Life Cycle Assessment for Bioprocess Design. ACS Sustainable Chemistry and Engineering, 2018, 6, 13687-13695.	3.2	30
397	Techno-economic Assessment of Bioethanol Production from Major Lignocellulosic Residues Under Different Process Configurations. , 2018, , 177-204.		1
398	Complementary effect of thermotolerant yeast and cold active cellulase on simultaneous saccharification and fermentation for bioethanol production from rice straw. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	9
399	Organosolv Fractionation of Softwood Biomass for Biofuel and Biorefinery Applications. Energies, 2018, 11, 50.	1.6	86
400	Direct conversion of cellulose into ethanol and ethylâ€Î²â€< scp>dâ€glucoside via engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2018, 115, 2859-2868.	1.7	5
401	Fungal Enzymes Applied to Industrial Processes for Bioethanol Production. Fungal Biology, 2018, , 65-83.	0.3	1
402	Pressure-driven flow of lignocellulosic biomass: A compressible Bingham fluid. Journal of Rheology, 2018, 62, 801-815.	1.3	5
403	Conversion of lignocellulosic agave residues into liquid biofuels using an AFEXâ,,¢-based biorefinery. Biotechnology for Biofuels, 2018, 11, 7.	6.2	57

#	Article	IF	Citations
404	Optimisation of Simultaneous Saccharification and Fermentation (SSF) for Biobutanol Production Using Pretreated Oil Palm Empty Fruit Bunch. Molecules, 2018, 23, 1944.	1.7	23
405	Waste office paper: A potential feedstock for cellulase production by a novel strain Bacillus velezensis ASN1. Waste Management, 2018, 79, 491-500.	3.7	44
406	Improved Cellulosic Ethanol Titres from Highly Lignified Cotton Trash Residues Using Various Batch and Fed-Batch Process Configurations. Bioenergy Research, 2019, 12, 1021-1032.	2.2	5
407	Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 2019, 375, 121983.	6.6	218
408	Intensifying ethanol production from brewer's spent grain waste: Use of whole slurry at high solid loadings. New Biotechnology, 2019, 53, 1-8.	2.4	49
409	Co-production of bioethanol and furfural from poplar wood via low temperature (â‰ 9 0â€ [~] °C) acid hydrotropic fractionation (AHF). Fuel, 2019, 254, 115572.	3.4	51
410	Liquid biofuels from the organic fraction of municipal solid waste: A review. Renewable and Sustainable Energy Reviews, 2019, 110, 298-314.	8.2	93
411	Lytic Polysaccharide Monooxygenases in Enzymatic Processing of Lignocellulosic Biomass. ACS Catalysis, 2019, 9, 4970-4991.	5.5	145
412	Moving second generation biofuel manufacturing forward: Investigating economic viability and environmental sustainability considering two strategies for supply chain restructuring. Applied Energy, 2019, 242, 1467-1496.	5.1	39
413	Effects on forest products markets of second-generation biofuel production based on biomass from boreal forests: a case study from Norway. Scandinavian Journal of Forest Research, 2019, 34, 218-227.	0.5	4
414	Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. Biotechnology for Biofuels, 2019, 12, 40.	6.2	47
415	Fermentation of Oil Extraction: Bioethanol, Acetone and Butanol Production. Biofuel and Biorefinery Technologies, 2019, , 219-249.	0.1	1
416	Biochemical Strategies for Enhanced Biofuel Production. Biofuel and Biorefinery Technologies, 2019, , 51-87.	0.1	5
417	Challenges of Biomass Utilization for Biofuels. , 0, , .		11
418	Bioethanol Production From Rice- and Wheat Straw: An Overview. , 2019, , 213-231.		44
419	Forest Bioresources for Bioethanol and Biodiesel Production With Emphasis on Mohua (Madhuca) Tj ETQq1 1 0.	784314 rg	BT _g /Overloc
420	High titer ethanol production from rice straw via solid-state simultaneous saccharification and fermentation by Mucor indicus at low enzyme loading. Energy Conversion and Management, 2019, 182, 520-529.	4.4	46
421	Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis. Industrial Crops and Products, 2019, 130, 528-536.	2.5	43

		CITATION REPOR	т
#	Article	IF	Citations
422	Identification of superior cellulase secretion phenotypes in haploids derived from natural <i>Saccharomyces cerevisiae</i> isolates. FEMS Yeast Research, 2019, 19, .	1.1	13
423	Recovery of Glucose and Polyester from Textile Waste by Enzymatic Hydrolysis. Waste and Bic Valorization, 2019, 10, 3763-3772.	omass 1.8	39
424	Production of Bioethanol From Sugarcane Bagasse: Current Approaches and Perspectives. , 20 21-42.	119, ,	18
425	Lignocellulosic bioethanol production: prospects of emerging membrane technologies to impr process $\hat{a} \in \hat{a}$ a critical review. Reviews in Chemical Engineering, 2020, 36, 333-367.	ove the 2.3	67
426	Lignocellulosic biofuel production: review of alternatives. Biomass Conversion and Biorefinery, 2020, 10, 779-791.	2.9	59
427	Review: Bio-polyethylene from Wood Wastes. Journal of Polymers and the Environment, 2020,	, 28, 1-16. 2.4	- 35
428	Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel, 2020, 262, 116552.	. 3.4	94
429	Lignocellulosic biomass to biodiesel. , 2020, , 127-167.		10
430	A High-Yield Process for Production of Biosugars and Hesperidin from Mandarin Peel Wastes. Molecules, 2020, 25, 4286.	1.7	10
431	Moderate Electric Field Treatment Enhances Enzymatic Hydrolysis of Cellulose at Below-Optim Temperatures. Enzyme and Microbial Technology, 2020, 142, 109678.	nal 1.6	8
432	Effect of using a nitrogen atmosphere on enzyme hydrolysis at high corn stover loadings in an agitated reactor. Biotechnology Progress, 2020, 36, e3059.	1.3	11
433	Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 623-657.	1.4	109
434	A strategy for synergistic ethanol yield and improved production predictability through blendir feedstocks. Biotechnology for Biofuels, 2020, 13, 156.	ng 6.2	5
435	Lignocellulosic biomass and industrial bioprocesses for the production of second generation bio-ethanol, does it have a future in Algeria?. SN Applied Sciences, 2020, 2, 1.	1.5	5
436	Enzymatic conversion of treated oil palm empty fruit bunches fiber into fermentable sugars: optimization of solid and protein loadings and surfactant effects. Biomass Conversion and Biorefinery, 2021, 11, 2359-2368.	2.9	9 8
437	Physicochemical Properties for the Reaction Systems: Levulinic Acid, Its Esters, and γ-Valerolad Journal of Chemical & Engineering Data, 2020, 65, 3008-3020.	ctone. 1.0) 30
438	Characterizing Variability in Lignocellulosic Biomass: A Review. ACS Sustainable Chemistry and Engineering, 2020, 8, 8059-8085.	3.2	55
439	Combining Environmental and Economic Performance for Bioprocess Optimization. Trends in Biotechnology, 2020, 38, 1203-1214.	4.9	53

#	Article	IF	CITATIONS
440	Whole sweet sorghum plant as a promising feedstock for biobutanol production via biorefinery approaches: Techno-economic analysis. Renewable Energy, 2020, 158, 332-342.	4.3	13
441	Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renewable Energy, 2020, 157, 332-341.	4.3	34
442	Transformation of pulp and paper mill sludge (PPMS) into a glucose-rich hydrolysate using green chemistry: Assessing pretreatment methods for enhanced hydrolysis. Journal of Environmental Management, 2020, 270, 110914.	3.8	17
443	Comprehensive assessment of 2G bioethanol production. Bioresource Technology, 2020, 313, 123630.	4.8	183
444	Techno-economic analysis and environmental impact of biovalorization of agro-industrial wastes for biodiesel feedstocks by oleaginous yeasts. Sustainable Environment Research, 2020, 30, .	2.1	14
445	Techno-Economic Analysis for Bioethanol Plant with Multi Lignocellulosic Feedstocks. International Journal of Renewable Energy Development, 2020, 9, 319-328.	1.2	3
446	Progress in the development of alkali and metal salt catalysed lignocellulosic pretreatment regimes: Potential for bioethanol production. Bioresource Technology, 2020, 310, 123372.	4.8	55
447	Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways. Applied Energy, 2021, 281, 116059.	5.1	24
448	Occurrence and fate of aromaticity driven recalcitrance in anaerobic treatment of wastewater and organic solidÂwastes. , 2021, , 203-226.		1
450	A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation. Energy, 2021, 223, 120018.	4.5	17
451	Yeast immobilization systems for secondâ€generation ethanol production: actual trends and future perspectives. Biofuels, Bioproducts and Biorefining, 2021, 15, 1549-1565.	1.9	20
452	Evaluating the economic feasibility of cellulosic ethanol: A meta-analysis of techno-economic analysis studies. Renewable and Sustainable Energy Reviews, 2021, 145, 111098.	8.2	46
453	New Polish Oilseed Hemp Cultivar Henola – Cultivation, Properties and Utilization for Bioethanol Production. Journal of Natural Fibers, 2022, 19, 7283-7295.	1.7	6
454	Buffalo rumen harbours diverse thermotolerant yeasts capable of producing second-generation bioethanol from lignocellulosic biomass. Renewable Energy, 2021, 173, 795-807.	4.3	7
455	Cellulase Addition and Pre-hydrolysis Effect of High Solid Fed-Batch Simultaneous Saccharification and Ethanol Fermentation from a Combined Pretreated Oil Palm Trunk. ACS Omega, 2021, 6, 26119-26129.	1.6	15
456	Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule, 2021, 5, 2479-2503.	11.7	160
457	Integration of techno-economic analysis and life cycle assessment for sustainable process design – A review. Journal of Cleaner Production, 2021, 317, 128247.	4.6	97
458	New trends in bioprocesses for lignocellulosic biomass and CO2 utilization. Renewable and Sustainable Energy Reviews, 2021, 152, 111620.	8.2	27

#	Article	IF	CITATIONS
459	Postharvest technology for advancing sustainable bioenergy production for food processing and reduction of postharvest losses. , 2021, , 281-311.		0
461	Production routes of advanced renewable <scp>C1</scp> to <scp>C4</scp> alcohols as biofuel components – a review. Biofuels, Bioproducts and Biorefining, 2020, 14, 845-878.	1.9	41
462	Enzymatic Hydrolysis of Steam-Exploded and Ethanol Organosolv-Pretreated Douglas-Fir by Novel and Commercial Fungal Cellulases. , 2005, , 219-230.		6
463	Effect of Reduction in Yeast and Enzyme Concentrations in a Simultaneous-Saccharification-and-Fermentation-Based Bioethanol Process. , 2005, , 485-499.		8
464	Evaluation of a Hypocrea jecorina Enzyme Preparation for Hydrolysis of Tifton 85 Bermudagrass. , 2008, , 209-220.		1
466	The influence of polymer adsorption, and fiber composition, on the rheology of aqueous suspensions of aspen, cotton, and corn stover pulps. Biomass and Bioenergy, 2017, 103, 47-54.	2.9	4
467	Hydrolysis and fermentation steps of a pretreated sawmill mixed feedstock for bioethanol production in a wood biorefinery. Bioresource Technology, 2020, 310, 123412.	4.8	29
468	Development of a green liquor dregs pretreatment for enhanced glucose recovery from corn cobs and kinetic assessment on various bioethanol fermentation types. Fuel, 2020, 274, 117797.	3.4	16
470	PRETREATMENT OF MOSO BAMBOO WITH DILUTE PHOSPHORIC ACID. BioResources, 2012, 7, .	0.5	27
471	Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Research Journal, 0, , 152-195.	7.2	174
473	Ethanol Production from Cassava Starch by Selected Fungi from an-Koji and Saccaromycetes cereviseae. Biotechnology, 2009, 9, 84-88.	0.5	7
474	Synthetic Biology: A Promising Technology for Biofuel Production. Journal of Petroleum & Environmental Biotechnology, 2013, 04, .	0.3	2
475	Cellulase immobilization properties and their catalytic effect on cellulose hydrolysis in ionic liquid. African Journal of Microbiology Research, 2012, 6, .	0.4	5
476	Characterization and ethanol fermentation of Pichia and Torulaspora strains. Journal of Applied Pharmaceutical Science, 0, , .	0.7	3
477	Enzyme-Assisted Transformation of Lignin-Based Food Bio-residues into High-Value Products with a Zero-Waste Theme: A Review. Waste and Biomass Valorization, 0, , 1.	1.8	3
479	The Economics of Bioethanol. , 2008, , 227-284.		0
480	Chemistry, Biochemistry, and Microbiology of Lignocellulosic Biomass. , 2008, , 49-93.		0
481	Bioethanol bioethanol from Celluloses bioethanol from celluloses. , 2012, , 961-987.		1

#	Article	IF	CITATIONS
482	Ethanol Production from Bamboo Pulp under Simultaneous Saccharification and Fermentation Using a Cocktail Enzyme of T. reesei and Sporeless Strain of A. tubingensis. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2013, 92, 970-974.	0.2	1
483	Bioethanol bioethanol from Celluloses bioethanol from celluloses. , 2013, , 45-71.		0
484	The use of lignocellulosic biomass for fermentative butanol production in biorefining processes. Dissertationes Forestales, 2015, 2015, .	0.1	3
485	Influence of Ethanol-ferric Chloride Pretreatment on Straw Enzymatic Saccharification. , 2016, , .		0
486	Techno-Economic Aspects in the Evaluation of Biorefineries for Production of Second-Generation Bioethanol. , 2017, , 401-420.		1
487	Sustainability of Biorefineries: Challenges Associated with Hydrolysis Methods for Biomass Valorization. Clean Energy Production Technologies, 2020, , 255-272.	0.3	3
488	Steam Pretreatment of Salix with and without SO2 Impregnation for Production of Bioethanol. , 2005, , 1101-1117.		0
489	Canadian Biomass Reserves for Biorefining. , 2006, , 22-40.		1
490	Steam Pretreatment of Acid-Sprayed and Acid-Soaked Barley Straw for Production of Ethanol. , 2006, , 546-562.		2
491	Production of Bioethanol. Green Energy and Technology, 2021, , 41-110.	0.4	2
493	Multiobjective optimization of the supply chain for the production of biomass-based fuels and high-value added products in Mexico. Computers and Chemical Engineering, 2022, 157, 107598.	2.0	3
494	Impact of particle size reduction on high gravity enzymatic hydrolysis of steam-exploded wheat straw. SN Applied Sciences, 2021, 3, 1.	1.5	6
495	Lignocellulosic Bioethanol Production of Napier Grass Using Trichoderma reesei and Saccharomyces cerevisiae Co-Culture Fermentation. International Journal of Renewable Energy Development, 2022, 11, 423-433.	1.2	4
496	Effect of temperature on the rheology of concentrated suspensions containing lignocellulosic biomass particles. Biomass and Bioenergy, 2022, 156, 106298.	2.9	1
497	Optimization-based analysis of integrated lignocellulosic biorefineries in Spain focusing on building blocks. Biomass Conversion and Biorefinery, 2024, 14, 435-450.	2.9	3
498	Solvents and ions for pretreatment in lignocellulosic biorefineries. Process Biochemistry, 2022, 113, 241-257.	1.8	4
499	Updated technologies for sugar fermentation to bioethanol. , 2022, , 95-116.		1
501	Development of high temperature simultaneous saccharification and fermentation by thermosensitive Saccharomyces cerevisiae and Bacillus amyloliquefaciens. Scientific Reports, 2022, 12, 3630.	1.6	8

#	Article	IF	CITATIONS
502	Novel system design for high solid lignocellulosic biomass conversion. Bioresource Technology, 2022, 350, 126897.	4.8	4
503	Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from spruce. Renewable Energy, 2022, 190, 396-407.	4.3	16
506	A Simple Techno-Economic Assessment for Scaling-Up the Enzymatic Hydrolysis of MSW Pulp. Frontiers in Energy Research, 0, 10, .	1.2	7
507	Production of xylo-oligosaccharides and ethanol from corncob by combined tartaric acid hydrolysis with simultaneous saccharification and fermentation. Bioresource Technology, 2022, 363, 127977.	4.8	10
508	Advanced Bioethanol Production from Source-Separated Bio-waste in Pilot Scale. Sustainability, 2022, 14, 12127.	1.6	2
509	Evaluation of Techno-economic Using Decision Making Trial and Evaluation Laboratory (DEMATEL) Method. , 2022, 3, 101-110.		4
511	Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam–exploded wheat straw hydrolysate. Bioresource Technology, 2022, 364, 128079.	4.8	6
512	Biofuels From Bio-Waste and Biomass. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 75-118.	0.3	0
513	Nanotechnology as a vital science in accelerating biofuel production, a boon or bane. Biofuels, Bioproducts and Biorefining, 2023, 17, 616-663.	1.9	2
514	H ₂ O ₂ feeding enables LPMOâ€assisted cellulose saccharification during simultaneous fermentative production of lactic acid. Biotechnology and Bioengineering, 2023, 120, 726-736.	1.7	2
516	Enhancing of pretreatment on high solids enzymatic hydrolysis of food waste: Sugar yield, trimming of substrate structure. Bioresource Technology, 2023, 379, 128989.	4.8	5
517	Ethanol production from non-detoxified hardwood spent sulfite liquor in submerged fed-batch culture using advanced yeasts. Biomass Conversion and Biorefinery, 0, , .	2.9	0
518	Thermo-sensitive Porous Polymer Membrane-immobilized Cellulose as a Switchable Enzyme Reactor for Tuning Its Enzymolysis via Variation Temperature. Chemical Research in Chinese Universities, 0, , .	1.3	0
520	Integrated biorefineries: The path forward. , 2023, , 267-304.		0
522	Novel and Cost-Effective Feedstock for Sustainable Bioethanol Production. Green Energy and Technology, 2023, , 21-45.	0.4	0
524	Sugar fermentation: C4 platforms. , 2024, , 125-156.		0
528	An Economic and Sustainable Method of Bio-Ethanol Production from Agro-Waste: A Waste to Energy Approach. , 2023, , 65-99.		0
529	Bioethanol Production from Paddy Straw Lignocellulosic Waste. Clean Energy Production Technologies, 2024, , 151-182.	0.3	0

ARTICLE

IF CITATIONS