Functional and Molecular Evidence for Impairment of C Channels in Type-1 Diabetic Cerebral Artery Smooth Ma

Journal of Cerebral Blood Flow and Metabolism 28, 377-386 DOI: 10.1038/sj.jcbfm.9600536

Citation Report

#	Article	IF	CITATIONS
1	Molecular studies of BKCa channels in intracranial arteries: presence and localization. Cell and Tissue Research, 2008, 334, 359-369.	1.5	11
2	BK channels in cardiovascular disease: a complex story of channel dysregulation. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1580-H1582.	1.5	30
3	Rotenone partially reverses decreased BK _{Ca} currents in cerebral artery smooth muscle cells from streptozotocinâ€induced diabetic mice. Clinical and Experimental Pharmacology and Physiology, 2009, 36, e57-64.	0.9	19
4	Effect of 17βâ€oestradiol replacement on vascular responsiveness in ovariectomized diabetic rats. Clinical and Experimental Pharmacology and Physiology, 2009, 36, e65-71.	0.9	14
5	Calciumâ€activated potassium channels and endothelial dysfunction: therapeutic options?. British Journal of Pharmacology, 2009, 156, 545-562.	2.7	208
6	Experimental Diabetes Mellitus Down-Regulates Large-Conductance Ca2+- Activated K+ Channels in Cerebral Artery Smooth Muscle and Alters Functional Conductance. Current Neurovascular Research, 2010, 7, 75-84.	0.4	41
7	Baicalin, a flavonoid from Scutellaria baicalensis Georgi, activates large-conductance Ca2+-activated K+ channels via cyclic nucleotide-dependent protein kinases in mesenteric artery. Phytomedicine, 2010, 17, 760-770.	2.3	44
8	Daidzein relaxes rat cerebral basilar artery via activation of large-conductance Ca2+-activated K+ channels in vascular smooth muscle cells. European Journal of Pharmacology, 2010, 630, 100-106.	1.7	31
9	Effect of the two new calcium channel blockers mebudipine and dibudipine in comparison to amlodipine on vascular flow of isolated kidney of diabetic rat. Acta Physiologica Hungarica, 2010, 97, 281-289.	0.9	5
10	Interactive Role of Protein Phosphatase 2A and Protein Kinase Cα in the Stretch-Induced Triphosphorylation of Myosin Light Chain in Canine Cerebral Artery. Journal of Vascular Research, 2010, 47, 115-127.	0.6	9
11	Caveolin-1 limits the contribution of BK(Ca) channel to EDHF-mediated arteriolar dilation: implications in diet-induced obesity. Cardiovascular Research, 2010, 87, 732-739.	1.8	37
12	Activation of BK _{Ca} channel is associated with increased apoptosis of cerebrovascular smooth muscle cells in simulated microgravity rats. American Journal of Physiology - Cell Physiology, 2010, 298, C1489-C1500.	2.1	26
13	Functional Role of Canonical Transient Receptor Potential 1 and Canonical Transient Receptor Potential 3 in Normal and Asthmatic Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 17-25.	1.4	53
14	The BK potassium channel in the vascular smooth muscle and kidney: α- and β-subunits. Kidney International, 2010, 78, 963-974.	2.6	77
15	Impaired Vascular BK Channel Function in Type 2 Diabetes Mellitus. , 0, , .		3
16	Reduced Ca ²⁺ Spark Activity after Subarachnoid Hemorrhage Disables BK Channel Control of Cerebral Artery Tone. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 3-16.	2.4	40
17	Vasodilation of retinal arterioles induced by activation of BKCa channels is attenuated in diabetic rats. European Journal of Pharmacology, 2011, 669, 94-99.	1.7	25
18	High glucose alters apoptosis and proliferation in HEK293 cells by inhibition of cloned BK _{Ca} channel. Journal of Cellular Physiology, 2011, 226, 1660-1675	2.0	23

CITATION REPORT

#	Article	IF	CITATIONS
19	Cardiovascular Disease in Diabetes: Where Does Glucose Fit In?. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 2367-2376.	1.8	54
20	Differential effects of diet-induced obesity on BK _{Ca} β ₁ -subunit expression and function in rat skeletal muscle arterioles and small cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H29-H40.	1.5	50
21	Impairment of neurovascular coupling in type 1 diabetes mellitus in rats is linked to PKC modulation of BK _{Ca} and Kir channels. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1274-H1284.	1.5	37
22	Function and regulation of large conductance Ca2+-activated K+ channel in vascular smooth muscle cells. Drug Discovery Today, 2012, 17, 974-987.	3.2	91
23	Diabetes impairs the atrial natriuretic peptide relaxant action mediated by potassium channels and prostacyclin in the rabbit renal artery. Pharmacological Research, 2012, 66, 392-400.	3.1	6
24	Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats. PLoS ONE, 2012, 7, e53318.	1.1	45
25	The Vascular Conducted Response in Cerebral Blood Flow Regulation. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 649-656.	2.4	31
26	Reduced vascular smooth muscle BK channel current underlies heart failureâ€induced vasoconstriction in mice. FASEB Journal, 2013, 27, 1859-1867.	0.2	20
27	Distinct activity of BK channel β ₁ -subunit in cerebral and pulmonary artery smooth muscle cells. American Journal of Physiology - Cell Physiology, 2013, 304, C780-C789.	2.1	18
28	A BK (Slo1) channel journey from molecule to physiology. Channels, 2013, 7, 442-458.	1.5	143
29	βENaC is required for whole cell mechanically gated currents in renal vascular smooth muscle cells. American Journal of Physiology - Renal Physiology, 2013, 304, F1428-F1437.	1.3	22
30	Abnormal Ca2+ Spark/STOC Coupling in Cerebral Artery Smooth Muscle Cells of Obese Type 2 Diabetic Mice. PLoS ONE, 2013, 8, e53321.	1.1	34
31	Mechanotransduction and the Myogenic Response in Diabetes. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2014, , 233-270.	0.7	0
32	The diabetic vasculature: Physiological mechanisms of dysfunction and influence of aerobic exercise training in animal models. Life Sciences, 2014, 102, 1-9.	2.0	21
33	Ca2+ handling alterations and vascular dysfunction in diabetes. Cell Calcium, 2014, 56, 397-407.	1.1	32
34	Enhanced large conductance K ⁺ channel activity contributes to the impaired myogenic response in the cerebral vasculature of Fawn Hooded Hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H989-H1000.	1.5	23
35	Selective Down-regulation of KV2.1 Function Contributes to Enhanced Arterial Tone during Diabetes. Journal of Biological Chemistry, 2015, 290, 7918-7929.	1.6	30
36	Membrane potential and Ca2+ concentration dependence on pressure and vasoactive agents in arterial smooth muscle: A model. Journal of General Physiology, 2015, 146, 79-96.	0.9	11

#	Article	IF	CITATIONS
37	BK Channels in the Vascular System. International Review of Neurobiology, 2016, 128, 401-438.	0.9	32
38	Berberine improves mesenteric artery insulin sensitivity through upâ€regulating insulin receptorâ€mediated signalling in diabetic rats. British Journal of Pharmacology, 2016, 173, 1569-1579.	2.7	59
39	Big-conductance Ca ²⁺ -activated K ⁺ channels in physiological and pathophysiological urinary bladder smooth muscle cells. Channels, 2016, 10, 355-364.	1.5	7
40	Tacrolimus inhibits vasoconstriction by increasing Ca2+ sparks in rat aorta. Journal of Huazhong University of Science and Technology [Medical Sciences], 2016, 36, 8-13.	1.0	4
41	Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives. Physiological Genomics, 2017, 49, 306-317.	1.0	20
42	Berberine reduced blood pressure and improved vasodilation in diabetic rats. Journal of Molecular Endocrinology, 2017, 59, 191-204.	1.1	31
43	Restoration of the response of the middle cerebral artery of the rat to acidosis in hyposmotic hyponatremia by the opener of large-conductance calcium sensitive potassium channels (BK _{Ca}). Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3219-3230.	2.4	7
44	Salidroside improved cerebrovascular vasodilation in streptozotocin-induced diabetic rats through restoring the function of BKCa channel in smooth muscle cells. Cell and Tissue Research, 2017, 370, 365-377.	1.5	7
45	Impaired BKCa channel function in native vascular smooth muscle from humans with type 2 diabetes. Scientific Reports, 2017, 7, 14058.	1.6	31
46	Distinct Effects of Ca2+ Sparks on Cerebral Artery and Airway Smooth Muscle Cell Tone in Mice and Humans. International Journal of Biological Sciences, 2017, 13, 1242-1253.	2.6	4
47	Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. , 2018, 8, 773-799.		47
48	Activation of Large Conductance, Calcium-Activated Potassium Channels by Nitric Oxide Mediates Apelin-Induced Relaxation of Isolated Rat Coronary Arteries. Journal of Pharmacology and Experimental Therapeutics, 2018, 366, 265-273.	1.3	29
49	Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Archiv European Journal of Physiology, 2018, 470, 1271-1289.	1.3	73
50	Downregulation of BK channel function and protein expression in coronary arteriolar smooth muscle cells of type 2 diabetic patients. Cardiovascular Research, 2019, 115, 145-153.	1.8	15
51	Pregnancy Increases Ca ²⁺ Sparks/Spontaneous Transient Outward Currents and Reduces Uterine Arterial Myogenic Tone. Hypertension, 2019, 73, 691-702.	1.3	21
52	Redox Regulation of the Microcirculation. , 2019, 10, 229-259.		7
53	The red wine polyphenol resveratrol induced relaxation of the isolated renal artery of diabetic rats: The role of potassium channels. Journal of Functional Foods, 2019, 52, 266-275.	1.6	14
54	Important Role of Sarcoplasmic Reticulum Ca2+ Release via Ryanodine Receptor-2 Channel in Hypoxia-Induced Rieske Iron–Sulfur Protein-Mediated Mitochondrial Reactive Oxygen Species Generation in Pulmonary Artery Smooth Muscle Cells. Antioxidants and Redox Signaling, 2020, 32, 447-462.	2.5	14

	CITATION	n Report		
#	Article	IF	CITATIONS	
55	Antihypertensive constituents in Sanoshashinto. Journal of Natural Medicines, 2020, 74, 421-433.	1.1	12	
56	Disruption of Pressure-Induced Ca ²⁺ Spark Vasoregulation of Resistance Arteries, Rather Than Endothelial Dysfunction, Underlies Obesity-Related Hypertension. Hypertension, 2020, 75, 539-548.	1.3	26	
57	Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cellular and Molecular Life Sciences, 2021, 78, 31-61.	2.4	25	
58	Inhibition of big-conductance Ca2+-activated K+ channels in cerebral artery (vascular) smooth muscle cells is a major novel mechanism for tacrolimus-induced hypertension. Pflugers Archiv European Journal of Physiology, 2021, 473, 53-66.	1.3	4	
59	Microvascular basis of cognitive impairment in type 1 diabetes. , 2022, 229, 107929.		8	
60	Large-Conductance Calcium-Activated Potassium Channels. , 2014, , 49-83.		3	
61	Coronary Large Conductance Ca2+-Activated K+ Channel Dysfunction in Diabetes Mellitus. Frontiers in Physiology, 2021, 12, 750618.	1.3	2	
62	Reduced Ca2+ spark activity contributes to detrusor overactivity of rats with partial bladder outlet obstruction. Aging, 2020, 12, 4163-4177.	1.4	1	
64	Large-conductance Ca2 +-activated K+ channel β1-subunit maintains the contractile phenotype of vascular smooth muscle cells. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	0	
65	Mechanisms of Vascular CaV1.2 Channel Regulation During Diabetic Hyperglycemia. Handbook of Experimental Pharmacology, 2023, , .	0.9	1	