Arbuscular mycorrhiza: the mother of plant root endos

Nature Reviews Microbiology 6, 763-775 DOI: 10.1038/nrmicro1987

Citation Report

#	Article	IF	CITATIONS
1	LRF and TRF test during long-term danazol treatment: increase of the LH and FSH responses but decrease of the prolactin and TSH responses. European Journal of Endocrinology, 1983, 104, 1-5.	1.9	4
2	Symbiotic conversations are revealed under genetic interrogation. Nature Reviews Microbiology, 2008, 6, 752-762.	13.6	134
3	CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20540-20545.	3.3	398
4	How CYCLOPS keeps an eye on plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20053-20054.	3.3	12
5	Arbuscular Mycorrhiza–Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway. Plant Cell, 2008, 20, 2989-3005.	3.1	235
6	Mechanism of Infection Thread Elongation in Root Hairs of <i>Medicago truncatula</i> and Dynamic Interplay with Associated Rhizobial Colonization Â. Plant Physiology, 2008, 148, 1985-1995.	2.3	179
7	Aplicação de formononetina na colonização e esporulação de fungos micorrÃzicos em braquiária. Pesquisa Agropecuaria Brasileira, 2009, 44, 496-502.	0.9	7
8	Reprogramming Plant Cells for Endosymbiosis. Science, 2009, 324, 753-754.	6.0	160
9	A Mycorrhizal-Specific Ammonium Transporter from <i>Lotus japonicus</i> Acquires Nitrogen Released by Arbuscular Mycorrhizal Fungi. Plant Physiology, 2009, 150, 73-83.	2.3	303
10	Application of Laser Microdissection to plant pathogenic and symbiotic interactions. Journal of Plant Interactions, 2009, 4, 81-92.	1.0	32
11	Plant-Derived Sucrose Is a Key Element in the Symbiotic Association between <i>Trichoderma virens</i> and Maize Plants Â. Plant Physiology, 2009, 151, 792-808.	2.3	203
12	Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum) Tj ETQq1 1 0.784314	1 rgβT /Ov 2.4	erlock 10 Tf
13	The role of microbial signals in plant growth and development. Plant Signaling and Behavior, 2009, 4, 701-712.	1.2	472
14	Biotic and Abiotic Stimulation of Root Epidermal Cells Reveals Common and Specific Responses to Arbuscular Mycorrhizal Fungi Â. Plant Physiology, 2009, 149, 1424-1434.	2.3	78
15	Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in <i>Medicago truncatula</i> Roots during Arbuscular Mycorrhizal Symbiosis Â. Plant Physiology, 2009, 151, 809-819.	2.3	215
16	Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Current Opinion in Plant Biology, 2009, 12, 500-507.	3.5	78
17	Wege zur Endomykorrhiza. Einladung ans Buffet. Biologie in Unserer Zeit, 2009, 39, 102-113.	0.3	1
18	Plantâ€microbe symbioses: new insights into common roots. BioEssays, 2009, 31, 1233-1244.	1.2	14

#	Article	IF	CITATIONS
19	Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza, 2009, 19, 449-459.	1.3	70
20	Host plant as an organizer of microbial evolution in the beneficial symbioses. Phytochemistry Reviews, 2009, 8, 519-534.	3.1	34
21	Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots. Biology and Fertility of Soils, 2009, 45, 845-853.	2.3	38
22	Apoplastic plant subtilases support arbuscular mycorrhiza development in <i>Lotus japonicus</i> . Plant Journal, 2009, 58, 766-777.	2.8	127
23	Receptor-like kinases shape the plant. Nature Cell Biology, 2009, 11, 1166-1173.	4.6	261
24	Cellâ€Cell Channels, Viruses, and Evolution. Annals of the New York Academy of Sciences, 2009, 1178, 106-119.	1.8	36
25	Genomeâ€wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in <i>Lotus japonicus</i> . New Phytologist, 2009, 182, 200-212.	3.5	318
26	DNAâ€based species level detection of <i>Glomeromycota</i> : one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist, 2009, 183, 212-223.	3.5	353
27	<i>Glomus intraradices</i> induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytologist, 2009, 182, 829-837.	3.5	154
28	Presymbiotic factors released by the arbuscular mycorrhizal fungus <i>Gigaspora margarita</i> induce starch accumulation in <i>Lotus japonicus</i> roots. New Phytologist, 2009, 183, 53-61.	3.5	72
29	Global and cellâ€ŧype gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytologist, 2009, 184, 975-987.	3.5	187
30	The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry, 2009, 70, 1589-1599.	1.4	146
31	Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annual Review of Microbiology, 2009, 63, 363-383.	2.9	699
32	Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis. Russian Journal of Genetics, 2009, 45, 1279-1288.	0.2	9
33	Identification of plant genes involved on the initial contact between ectomycorrhizal symbionts (Castanea sativa – European chestnut and Pisolithus tinctorius). European Journal of Soil Biology, 2009, 45, 275-282.	1.4	23
34	Functional characterization of a C-4 sterol methyl oxidase from the endomycorrhizal fungus Clomus intraradices. Fungal Genetics and Biology, 2009, 46, 486-495.	0.9	17
35	Infection strategies of filamentous microbes described with the Gene Ontology. Trends in Microbiology, 2009, 17, 320-327.	3.5	9
36	Nuclear membrane ion channels mediate root nodule development. Trends in Plant Science, 2009, 14, 295-298.	4.3	21

#	Article	IF	CITATIONS
37	A new class of conjugated strigolactone analogues with fluorescent properties: synthesis and biological activity. Organic and Biomolecular Chemistry, 2009, 7, 3413.	1.5	77
38	A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biology Direct, 2009, 4, 7.	1.9	138
39	Microbiology of the Atmosphere-Rock Interface: How Biological Interactions and Physical Stresses Modulate a Sophisticated Microbial Ecosystem. Annual Review of Microbiology, 2009, 63, 431-450.	2.9	174
40	Weights in the Balance: Jasmonic Acid and Salicylic Acid Signaling in Root-Biotroph Interactions. Molecular Plant-Microbe Interactions, 2009, 22, 763-772.	1.4	148
41	Community Ecology of Fungal Pathogens Causing Wheat Head Blight. Annual Review of Phytopathology, 2009, 47, 83-103.	3.5	257
42	<i>Populus</i> Rhizosphere and the Ectomycorrhizal Interactome. Critical Reviews in Plant Sciences, 2009, 28, 359-367.	2.7	26
43	Root Hair Deformation of Symbiosis-Deficient Mutants of Lotus japonicus by Application of Nod Factor from Mesorhizobium loti. Microbes and Environments, 2009, 24, 128-134.	0.7	13
45	Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1, 48.	5.8	990
46	Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Current Genetics, 2010, 56, 265-274.	0.8	73
47	Effect of fertilizers, lime, and inoculation with rhizobia and mycorrhizal fungi on the growth of four leguminous tree species in a low-fertility soil. Biology and Fertility of Soils, 2010, 46, 771-779.	2.3	23
48	Symbiosis-related pea genes modulate fungal and plant gene expression during the arbuscule stage of mycorrhiza with Glomus intraradices. Mycorrhiza, 2010, 20, 427-443.	1.3	24
49	The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza, 2010, 20, 445-457.	1.3	79
50	Endocytosis in plant–microbe interactions. Protoplasma, 2010, 247, 177-193.	1.0	35
51	Effects of arbuscular mycorrhizal fungi on zinnia and the different colonization between Gigaspora and Glomus. World Journal of Microbiology and Biotechnology, 2010, 26, 1527-1531.	1.7	19
52	Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant and Soil, 2010, 331, 129-137.	1.8	163
53	Intracellular plant microbe associations: secretory pathways and the formation of perimicrobial compartments. Current Opinion in Plant Biology, 2010, 13, 372-377.	3.5	45
54	MediPlEx - a tool to combine in silico & experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes, 2010, 3, 262.	0.6	1
55	Trafficking to the Outer Polar Domain Defines the Root-Soil Interface. Current Biology, 2010, 20, 904-908.	1.8	80

		CITATION REPORT		
#	Article		IF	CITATIONS
56	Proteomic analysis of <i>Medicago truncatula</i> root plastids. Proteomics, 2010, 10,	2123-2137.	1.3	44
57	Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology Phytologist, 2010, 185, 67-82.	ı. New	3.5	33
58	Resource stoichiometry elucidates the structure and function of arbuscular mycorrhize scales. New Phytologist, 2010, 185, 631-647.	is across	3.5	726
59	Membrane steroidâ€binding protein 1 induced by a diffusible fungal signal is critical fo in <i>Medicago truncatula</i> . New Phytologist, 2010, 185, 716-733.	r mycorrhization	3.5	115
60	<i>Sesbania rostrata</i> : a case study of natural variation in legume nodulation. New F 2010, 186, 340-345.	Phytologist,	3.5	60
61	Presence of three mycorrhizal genes in the common ancestor of land plants suggests a mycorrhizas in the colonization of land by plants. New Phytologist, 2010, 186, 514-52	a key role of 5.	3.5	246
62	An efficient procedure for normalizing ionomics data for <i>Arabidopsis thaliana</i> . N Phytologist, 2010, 186, 270-274.	lew	3.5	18
63	The UNITE database for molecular identification of fungi – recent updates and future New Phytologist, 2010, 186, 281-285.	e perspectives.	3.5	1,563
64	Physiological mechanisms of droughtâ€induced tree mortality are far from being resolv Phytologist, 2010, 186, 274-281.	ved. New	3.5	535
65	Polyphosphate has a central role in the rapid and massive accumulation of phosphorus mycelium of an arbuscular mycorrhizal fungus. New Phytologist, 2010, 186, 285-289.	in extraradical	3.5	86
66	A glimpse into the past of land plants and of their mycorrhizal affairs: from fossils to ex Phytologist, 2010, 186, 267-270.	/oâ€devo. New	3.5	37
67	The mechanisms of carbon starvation: how, when, or does it even occur at all?. New Ph 186, 264-266.	iytologist, 2010,	3.5	226
70	The <i>New Phytologist</i> Tansley Medal. New Phytologist, 2010, 186, 263-264.		3.5	24
72	Activation of basal defense mechanisms of rice plants by <i>Glomus intraradices</i> do the arbuscular mycorrhizal symbiosis. New Phytologist, 2010, 188, 597-614.	bes not affect	3.5	55
73	A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Or roots, representing a novel member of a beneficial dark septate endophyte. FEMS Micr 2010, 307, 94-101.		0.7	55
74	The roles of extracellular proteins, polysaccharides and signals in the interactions of rh legume roots. FEMS Microbiology Reviews, 2010, 34, 150-170.	izobia with	3.9	344
75	Making sense out of Ca ²⁺ signals: their role in regulating stomatal moven and Environment, 2010, 33, 305-321.	nents. Plant, Cell	2.8	71
76	<i>Medicago truncatula</i> Vapyrin is a novel protein required for arbuscular mycorrhi Plant Journal, 2010, 61, 482-494.	zal symbiosis.	2.8	198

#	Article	IF	Citations
77	A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts. Plant Journal, 2010, 63, no-no.	2.8	102
78	The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. Plant Journal, 2010, 64, 470-481.	2.8	85
79	Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal, 2010, 64, 1002-1017.	2.8	354
80	Endobacteria affect the metabolic profile of their host <i>Gigaspora margarita</i> , an arbuscular mycorrhizal fungus. Environmental Microbiology, 2010, 12, 2083-2095.	1.8	37
81	Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant, Soil and Environment, 2010, 56, 470-475.	1.0	109
82	Structural Requirements of Strigolactones for Hyphal Branching in AM Fungi. Plant and Cell Physiology, 2010, 51, 1104-1117.	1.5	299
83	Tissue-Adapted Invasion Strategies of the Rice Blast Fungus <i>Magnaporthe oryzae</i> Â. Plant Cell, 2010, 22, 3177-3187.	3.1	179
84	Function of GRAS Proteins in Root Nodule Symbiosis is Retained in Homologs of a Non-Legume, Rice. Plant and Cell Physiology, 2010, 51, 1436-1442.	1.5	37
85	Genomic Inventory and Transcriptional Analysis of <i>Medicago truncatula</i> Transporters. Plant Physiology, 2010, 152, 1716-1730.	2.3	73
86	Two <i>Medicago truncatula</i> Half-ABC Transporters Are Essential for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis. Plant Cell, 2010, 22, 1483-1497.	3.1	223
87	Plant-Microbe Communications for Symbiosis. Plant and Cell Physiology, 2010, 51, 1377-1380.	1.5	67
88	Water-tolerant legume nodulation. Journal of Experimental Botany, 2010, 61, 1251-1255.	2.4	18
89	Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2093-2098.	3.3	563
90	AM symbiosis alters phenolic acid content in tomato roots. Plant Signaling and Behavior, 2010, 5, 1138-1140.	1.2	44
91	Variations in the Mycorrhization Characteristics in Roots of Wild-Type and ABA-Deficient Tomato Are Accompanied by Specific Transcriptomic Alterations. Molecular Plant-Microbe Interactions, 2010, 23, 651-664.	1.4	62
92	The use of wideband filters in distinguish green fluorescent protein in roots of arbuscular mycorrhizal symbiosis. Plant Signaling and Behavior, 2010, 5, 1150-1152.	1.2	0
93	Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. Journal of Experimental Botany, 2010, 61, 2589-2601.	2.4	238
95	Comparison of Developmental and Stress-Induced Nodule Senescence in <i>Medicago truncatula</i> . Plant Physiology, 2010, 152, 1574-1584.	2.3	102

#	Article	IF	CITATIONS
96	Dynamics of Periarbuscular Membranes Visualized with a Fluorescent Phosphate Transporter in Arbuscular Mycorrhizal Roots of Rice. Plant and Cell Physiology, 2010, 51, 341-353.	1.5	152
97	Arbuscular mycorrhizae reducing water loss in maize plants under low temperature stress. Plant Signaling and Behavior, 2010, 5, 591-593.	1.2	15
98	Impact of Arbuscular Mycorrhizal Symbiosis on Plant Response to Biotic Stress: The Role of Plant Defence Mechanisms. , 2010, , 193-207.		89
99	Mycorrhizosphere Interactions for Legume Improvement. , 2010, , 237-271.		32
100	Zn – A Versatile Player in Plant Cell Biology. Plant Cell Monographs, 2010, , 281-298.	0.4	10
101	Functional diversity in arbuscular mycorrhiza – the role ofÂgene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecology, 2010, 3, 1-8.	0.7	139
102	Expression Pattern Suggests a Role of MiR399 in the Regulation of the Cellular Response to Local Pi Increase During Arbuscular Mycorrhizal Symbiosis. Molecular Plant-Microbe Interactions, 2010, 23, 915-926.	1.4	157
103	Interactions Between Plants and Arbuscular Mycorrhizal Fungi. International Review of Cell and Molecular Biology, 2010, 281, 1-48.	1.6	48
104	Intimate Associations of Beneficial Soil Microbes with Host Plants. , 2010, , 119-196.		34
105	Arbuscular mycorrhizal networks: process and functions. A review. Agronomy for Sustainable Development, 2010, 30, 581-599.	2.2	141
106	Arbuscular Mycorrhiza: The Challenge to Understand the Genetics of the Fungal Partner. Annual Review of Genetics, 2010, 44, 271-292.	3.2	104
107	Plants versus pathogens: an evolutionary arms race. Functional Plant Biology, 2010, 37, 499.	1.1	156
108	Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research, 2010, 117, 169-176.	2.3	299
109	Common and not so common symbiotic entry. Trends in Plant Science, 2010, 15, 540-545.	4.3	51
110	The roots of a new green revolution. Trends in Plant Science, 2010, 15, 600-607.	4.3	390
111	Arbuscular Mycorrhizas: Physiology and Function. , 2010, , .		56
113	Strigolactones: a cry for help in the rhizosphere. Botany, 2011, 89, 513-522.	0.5	78
114	The Role of MicroRNAs in Phosphorus Deficiency Signaling. Plant Physiology, 2011, 156, 1016-1024.	2.3	143

	CITATION I	Report	
#	Article	IF	CITATIONS
115	The dawn of symbiosis between plants and fungi. Biology Letters, 2011, 7, 574-577.	1.0	217
116	The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annual Review of Genetics, 2011, 45, 119-144.	3.2	1,008
117	Separating the Inseparable: The Metabolomic Analysis of Plant–Pathogen Interactions. Methods in Molecular Biology, 2011, 860, 31-49.	0.4	21
120	Use and understanding of organic amendments in Australian agriculture: a review. Soil Research, 2011, 49, 1.	0.6	188
121	Root Nodulation: A Paradigm for How Plant-Microbe Symbiosis Influences Host Developmental Pathways. Cell Host and Microbe, 2011, 10, 348-358.	5.1	259
122	The rise and rise of emerging infectious fungi challenges food security and ecosystem health. Fungal Biology Reviews, 2011, 25, 181-188.	1.9	32
123	Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science, 2011, 333, 880-882.	6.0	1,373
124	Lipo-chitooligosaccharide Signaling in Endosymbiotic Plant-Microbe Interactions. Molecular Plant-Microbe Interactions, 2011, 24, 867-878.	1.4	203
125	The role of chitin detection in plant–pathogen interactions. Microbes and Infection, 2011, 13, 1168-1176.	1.0	90
126	Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. Journal of Plant Physiology, 2011, 168, 294-297.	1.6	137
130	Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annual Review of Plant Biology, 2011, 62, 227-250.	8.6	1,210
131	Differences of hyphal and soil phosphatase activities in drought-stressed mycorrhizal trifoliate orange (Poncirus trifoliata) seedlings. Scientia Horticulturae, 2011, 129, 294-298.	1.7	55
132	Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends in Plant Science, 2011, 16, 356-362.	4.3	41
133	Arbuscular Mycorrhizal Symbiosis Limits Foliar Transcriptional Responses to Viral Infection and Favors Long-Term Virus Accumulation. Molecular Plant-Microbe Interactions, 2011, 24, 1562-1572.	1.4	33
134	7 Evolution of the â€~Plant-Symbiotic' Fungal Phylum, Glomeromycota. , 2011, , 163-185.		45
135	Innovative Biological Solutions to Challenges in Sustainable Biofuels Production. , 0, , .		1
136	The enhancement of drought tolerance for pigeon pea inoculated by arbuscular mycorrhizae fungi. Plant, Soil and Environment, 2011, 57, 541-546.	1.0	36
137	An outlook on ion signaling and ionome of mycorrhizal symbiosis. Brazilian Journal of Plant Physiology, 2011, 23, 79-89.	0.5	18

ARTICLE

Carotenoid metabolism in phytoplankton. , 2011, , 113-162.		19
A Naturally Associated Rhizobacterium of Arabidopsis thaliana Induces a Starvation-Like Transcriptional Response while Promoting Growth. PLoS ONE, 2011, 6, e29382.	1.1	44
Progress on research on actinorhizal plants. Functional Plant Biology, 2011, 38, 633.	1.1	18
Activation of a <i>Lotus japonicus</i> Subtilase Gene During Arbuscular Mycorrhiza Is Dependent on the Common Symbiosis Genes and Two <i>cis</i> Active Promoter Regions. Molecular Plant-Microbe Interactions, 2011, 24, 662-670.	1.4	26
STARTS – A stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley. Plant Journal, 2011, 67, 726-735.	2.8	33
<i>Lotus japonicus symRKâ€14</i> uncouples the cortical and epidermal symbiotic program. Plant Journal, 2011, 67, 929-940.	2.8	71
<i>Medicago truncatula mtpt4</i> mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant Journal, 2011, 68, 954-965.	2.8	103
Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. Journal of Ecology, 2011, 99, 36-45.	1.9	69
Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca ²⁺ spiking in the legume and nonlegume root epidermis. New Phytologist, 2011, 189, 347-355.	3.5	165
Ethyleneâ€dependent/ethyleneâ€independent ABA regulation of tomato plants colonized by arbuscular mycorrhiza fungi. New Phytologist, 2011, 190, 193-205.	3.5	127
Arbuscular mycorrhizalâ€ ŀ ike fungi in Carboniferous arborescent lycopsids. New Phytologist, 2011, 191, 311-314.	3.5	33
Microbiology is the basis of sustainable agriculture: an opinion. Annals of Applied Biology, 2011, 159, 155-168.	1.3	89
Fungus seeks plant. Nature Reviews Microbiology, 2011, 9, 148-149.	13.6	1
Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 2011, 469, 58-63.	13.7	912
<i>Vapyrin</i> , a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 244-252.	2.8	211
Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biology and Biochemistry, 2011, 43, 795-803.	4.2	187
Regulation of signal transduction and bacterial infection during root nodule symbiosis. Current Opinion in Plant Biology, 2011, 14, 458-467.	3.5	102
AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca2+ increase. Plant Physiology and Biochemistry, 2011, 49, 963-969.	2.8	11
	A Naturally Associated Phirobacterium of Arabidopsis thaliana Indurces a Stanuation-Like Transcriptional Response while Promoting Crowth. PLoS ONE, 2011, 6, e29382. Progress on research on actinorhizal plants. Functional Plant Biology, 2011, 38, 633. Activation of a ciplotus japonicus clp Subtilase Gene During Arbuscular Mycorrhiza is Dependent on the Common Symboles Cenes and Two ciplos (J). Active Promoter Regions. Molecular Plant. Microbe Interactions, 2011, 24, 662, 670. STARTS 46" A stable root transformation system for rapid functional analyses of proteins of the monocet molecular plant barley. Plant Journal, 2011, 67, 726-735. (J).Lotus japonicus symRX644.4(s): uncouples the cortical and epidermal symbiotic program. Plant Journal, 2011, 67, 925-940. (J).Medicago truncatula mtpt4-(f): mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant Journal, 2011, 68, 954-965. Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca.supp.2+./Supp. spiking in the legume and nonlegume root epidermis. New Phytologist, 2011, 189, 947-355. EthyleneäCelependent/ethyleneäCendependent ABA regulation of tomato plants colonized by arbuscular mycorrhizal hyphopodig st, 2011, 190, 193-203. Arbuscular mycorrhizal Kike fungi in Carboniferous arborescent lycopsids. New Phytologist, 2011, 191, 311-314. Microbiology is the basis of sustainable agriculture: an opinion. Annals of Applied Biology, 2011, 191, 315-168. Fungal lipochicooligosecharide symbiotic signals in arbuscular mycorrhiza. Nature, 2011, 469, 58-63. (-)Napyrin (h), a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is absocessential for intracellular progression of arbuscular mycorrhizal symbiosis, is absocessential for intracellular progression of arbuscular mycorrhizal symbiosis, is absocesential for intracellular progression of arbuscular mycorrhizal symb	A Naturally Associated Rhizobacterium of Arabidopsis thaliana Induces a Stanzation-Like 1.1 Progress on research on actinorhizal plants. Functional Plant Biology, 2011, 58, 633. 1.1 A drivation of a (1) Lotus is ponicus (1): Subtiliase Gene During Arbuscular Mycorrhiza Is Dependent on the Common Symbiosis Genes and Two (4):056 (1): Active Promoter Regions. Molecular Plant Microbe 1.4 STARTS 3(** A stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley. Plant journal, 2011, 67, 726-735. 2.8 (4) Medicago truncatula mtpt4-(1): mutants reveal a role for nitrogen in the regulation of arbuscular degeneration in arbuscular mycorrhizal symbiotic program. Plant 2.8 (4) Medicago truncatula mtpt4-(1): mutants reveal a role for nitrogen in the regulation of arbuscular degeneration in arbuscular mycorrhizal symbiosis. Plant Journal, 2011, 65, 954-965. 2.8 Privoarthizal fungi, Journal of Ecology, 2011, 99, 36-45. 1.9 Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca supp 2+ c(sup) splking 3.5 Erbylene@Cdependent@Vylene@Cndend ABA regulation of tomato plants colonized by arbuscular mycorrhizal fungi. Journal of Ecology, 2011, 90, 193-205. 3.6 Arbuscular mycorrhizalaGikke fungi in Carboniferous arborescent lycopsids. New Phytologist, 2011, 190, 193-205. 3.6 Funge equencies of sustainable agriculture: an opinion. Annals of Applied Biology, 2011, 191, 135-134. 3.6 Funge lapochtoologysecharde

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
157	Life Histories of Symbiotic Rhizobia and Mycorrhizal Fungi. Current Biology, 2011, 21,	R775-R785.	1.8	162
158	Mycorrhizal Symbioses: How to Be Seen as a Good Fungus. Current Biology, 2011, 21,	R550-R552.	1.8	13
159	Cell Biology: Actin Keeps Endocytosis on a Short Leash. Current Biology, 2011, 21, R55	j2-R554.	1.8	13
160	Impact of the Environment on Root Architecture in Dicotyledoneous Plants. , 2011, , 1	13-132.		6
161	<i>Medicago truncatula IPD3</i> Is a Member of the Common Symbiotic Signaling Pat for Rhizobial and Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2011, 2	hway Required 24, 1345-1358.	1.4	147
162	Strigolactones promote nodulation in pea. Planta, 2011, 234, 1073-1081.		1.6	230
163	Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycor Mycorrhiza, 2011, 21, 363-374.	rhizal fungi.	1.3	34
164	Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatu arbuscular mycorrhizal fungi. Mycorrhiza, 2011, 21, 689-702.	la and different	1.3	102
165	Function and evolution of nodulation genes in legumes. Cellular and Molecular Life Sci 68, 1341-1351.	ences, 2011,	2.4	24
166	Interactions between arbuscular mycorrhizal fungi and soil bacteria. Applied Microbiolo Biotechnology, 2011, 89, 917-930.	ogy and	1.7	215
167	Diversity in phosphorus mobilisation and uptake in ectomycorrhizal fungi. Annals of Fo 2011, 68, 33-43.	rest Science,	0.8	87
168	Arbuscular mycorrhiza regulate inter-specific competition between a poisonous plant, l virgaurea, and a co-existing grazing grass, Elymus nutans, in Tibetan Plateau Alpine me Symbiosis, 2011, 55, 29-38.	Ligularia adow ecosystem.	1.2	15
169	Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjust oxidative stress in tomato plants subjected to low temperature stress. Acta Physiologia 2011, 33, 1217-1225.	ment and ae Plantarum,	1.0	131
170	A rice calcium-dependent protein kinase is expressed in cortical root cells during the pr phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biology, 2011, 11, 90.	esymbiotic	1.6	35
171	Niche differentiation of two sympatric species of Microdochium colonizing the roots or reed. BMC Microbiology, 2011, 11, 242.	f common	1.3	26
173	Protein coadaptation and the design of novel approaches to identify protein–proteir IUBMB Life, 2011, 63, 264-271.	interactions.	1.5	11
174	The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the hormonal profile in melon plants. Phytochemistry, 2011, 72, 223-229.	shoot	1.4	90
175	Autophosphorylation profiling of Arabidopsis protein kinases using the cell-free system Phytochemistry, 2011, 72, 1136-1144.		1.4	51

		CITATION REPORT		
#	Article		IF	Citations
176	Long-distance transport of signals during symbiosis. Plant Signaling and Behavior, 201	1, 6, 372-377.	1.2	45
177	How does phosphate status influence the development of the arbuscular mycorrhizal s Plant Signaling and Behavior, 2011, 6, 1300-1304.	ymbiosis?.	1.2	30
178	Symbiotic Signaling in Actinorhizal Symbioses. Current Protein and Peptide Science, 20)11, 12, 156-164.	0.7	56
179	Nuclear membranes control symbiotic calcium signaling of legumes. Proceedings of the Academy of Sciences of the United States of America, 2011, 108, 14348-14353.	e National	3.3	191
180	Strigolactones regulate protonema branching and act as a quorum sensing-like signal i <i>Physcomitrella patens</i> . Development (Cambridge), 2011, 138, 1531-1539.	n the moss	1.2	228
181	Phosphate Deprivation in Maize: Genetics and Genomics. Plant Physiology, 2011, 156,	1067-1077.	2.3	83
182	Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and wat sequestration. Annals of Botany, 2011, 108, 407-418.	ter	1.4	313
183	Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Trias Proceedings of the National Academy of Sciences of the United States of America, 201	sic conifer. 1, 108, 13630-13634.	3.3	25
184	Conserved residues in the ankyrin domain of VAPYRIN indicate potential protein-protei surfaces. Plant Signaling and Behavior, 2011, 6, 680-684.	n interaction	1.2	31
185	Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhiz Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Cont Spread A. Plant Physiology, 2011, 157, 2023-2043.	al Roots, tact and	2.3	195
186	Perspectives on Remorin Proteins, Membrane Rafts, and Their Role During Plant–Mic Molecular Plant-Microbe Interactions, 2011, 24, 7-12.	robe Interactions.	1.4	114
187	The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early a signalling events. Journal of Experimental Botany, 2011, 62, 1049-1060.	and systemic	2.4	235
188	Rhizobial and Mycorrhizal Symbioses in Lotus japonicus Require Lectin Nucleotide Pho Which Acts Upstream of Calcium Signaling À À. Plant Physiology, 2012, 161, 556-56		2.3	51
189	How membranes shape plant symbioses: signaling and transport in nodulation and arb mycorrhiza. Frontiers in Plant Science, 2012, 3, 223.	uscular	1.7	81
190	Differences in Arbuscular Mycorrhizal Fungi among Three Coffee Cultivars in Puerto Ric 1-7.	:o. , 2012, 2012,		10
191	Growth and Nutrient Uptake Responses of Kinnow to Vesicular Arbuscular Mycorrhizae 1-7.	2. , 2012, 2012,		8
192	The Plant Growth Promoting Substance, Lumichrome, Mimics Starch, and Ethylene-Ass Symbiotic Responses in Lotus and Tomato Roots. Frontiers in Plant Science, 2012, 3, 1		1.7	20
193	Strigolactone and karrikin signal perception: receptors, enzymes, or both?. Frontiers in 2012, 3, 296.	Plant Science,	1.7	32

#	Article	IF	CITATIONS
194	Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1589-1597.	1.8	217
195	A MAP Kinase Kinase Interacts with SymRK and Regulates Nodule Organogenesis in <i>Lotus japonicus</i> . Plant Cell, 2012, 24, 823-838.	3.1	99
196	Transcriptional Responses toward Diffusible Signals from Symbiotic Microbes Reveal <i>MtNFP</i> - and <i>MtDMI3</i> -Dependent Reprogramming of Host Gene Expression by Arbuscular Mycorrhizal Fungal Lipochitooligosaccharides A. Plant Physiology, 2012, 159, 1671-1685.	2.3	126
197	Multiple Exocytotic Markers Accumulate at the Sites of Perifungal Membrane Biogenesis in Arbuscular Mycorrhizas. Plant and Cell Physiology, 2012, 53, 244-255.	1.5	107
198	The Integral Membrane Protein SEN1 is Required for Symbiotic Nitrogen Fixation in Lotus japonicus Nodules. Plant and Cell Physiology, 2012, 53, 225-236.	1.5	95
199	Mycorrhizal Networks: Common Goods of Plants Shared under Unequal Terms of Trade Â. Plant Physiology, 2012, 159, 789-797.	2.3	332
200	Reduced mycorrhizal colonization (rmc) tomato mutant lacks expression of SymRK signaling pathway genes. Plant Signaling and Behavior, 2012, 7, 1578-1583.	1.2	7
201	Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza. Plant Signaling and Behavior, 2012, 7, 1584-1588.	1.2	25
202	Influence Arbuscular Mycorrhizal Fungi Have over Soluble Sugar Contents and Endogenous Hormone Levels of Amorpha fruticosa. , 2012, , .		0
203	Expression of Plant Genes for Arbuscular Mycorrhiza-Inducible Phosphate Transporters and Fungal Vesicle Formation in Sorghum, Barley, and Wheat Roots. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2364-2367.	0.6	33
204	Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E665-72.	3.3	164
205	Friends in Fungi. Science, 2012, 337, 1452-1452.	6.0	1
206	Nuclear-Localized and Deregulated Calcium- and Calmodulin-Dependent Protein Kinase Activates Rhizobial and Mycorrhizal Responses in <i>Lotus japonicus</i> . Plant Cell, 2012, 24, 810-822.	3.1	84
207	The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling and Behavior, 2012, 7, 636-641.	1.2	197
208	Buffering Capacity Explains Signal Variation in Symbiotic Calcium Oscillations Â. Plant Physiology, 2012, 160, 2300-2310.	2.3	39
210	<i>Aeschynomene evenia</i> , a Model Plant for Studying the Molecular Genetics of the Nod-Independent Rhizobium-Legume Symbiosis. Molecular Plant-Microbe Interactions, 2012, 25, 851-861.	1.4	37
211	A Common Signaling Process that Promotes Mycorrhizal and Oomycete Colonization of Plants. Current Biology, 2012, 22, 2242-2246.	1.8	291
212	Group I Intron–Mediated Trans-splicing in Mitochondria of Gigaspora rosea and a Robust Phylogenetic Affiliation of Arbuscular Mycorrhizal Fungi with Mortierellales. Molecular Biology and Evolution, 2012, 29, 2199-2210.	3.5	49

#	Article	IF	CITATIONS
213	Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Applied Soil Ecology, 2012, 61, 147-157.	2.1	41
214	No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist, 2012, 196, 845-852.	3.5	78
215	A GRAS-Type Transcription Factor with a Specific Function in Mycorrhizal Signaling. Current Biology, 2012, 22, 2236-2241.	1.8	262
216	Cellular programs for arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2012, 15, 691-698.	3.5	151
217	The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses. Signaling and Communication in Plants, 2012, , 1-30.	0.5	7
218	The evolution of root hairs and rhizoids. Annals of Botany, 2012, 110, 205-212.	1.4	136
219	Fungal endophytes of the obligate parasitic dwarf mistletoe <i>Arceuthobium americanum</i> (Santalaceae) act antagonistically in vitro against the native fungal pathogen <i>Cladosporium</i> (Davidiellaceae) of their host. American Journal of Botany, 2012, 99, 2027-2034.	0.8	13
220	Arbuscular mycorrhiza and salt tolerance of plants. Symbiosis, 2012, 58, 7-16.	1.2	69
221	Mutually beneficial legume symbioses with soil microbes and their potential for plant production. Symbiosis, 2012, 58, 51-62.	1.2	19
222	Evolution of symbiotic bacteria within the extra- and intra-cellular plant compartments: experimental evidence and mathematical simulation (Mini-review). Symbiosis, 2012, 58, 39-50.	1.2	7
223	The diversity of actinorhizal symbiosis. Protoplasma, 2012, 249, 967-979.	1.0	166
224	Spatial Structure and Interspecific Cooperation: Theory and an Empirical Test Using the Mycorrhizal Mutualism. American Naturalist, 2012, 179, E133-E146.	1.0	54
225	Can Stress Enhance Phytoremediation of Polychlorinated Biphenyls?. Environmental Engineering Science, 2012, 29, 1047-1052.	0.8	4
226	Nuclear Calcium Signaling and Its Involvement in Transcriptional Regulation in Plants. Advances in Experimental Medicine and Biology, 2012, 740, 1123-1143.	0.8	18
227	Structure-Activity Relationship Studies of Strigolactone-Related Molecules for Branching Inhibition in Garden Pea: Molecule Design for Shoot Branching Â. Plant Physiology, 2012, 159, 1524-1544.	2.3	173
228	Molecular and biochemical aspects of plant terrestrialization. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 49-59.	1.1	55
229	Plant LysM proteins: modules mediating symbiosis and immunity. Trends in Plant Science, 2012, 17, 495-502.	4.3	189
230	Receptor Kinase Signaling Pathways in Plant-Microbe Interactions. Annual Review of Phytopathology, 2012, 50, 451-473.	3.5	204

#	Article	IF	CITATIONS
231	Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194, 523-535.	3.5	282
232	The molecular basis for construction of highly productive ecologically sustainable agrocenoses. Russian Journal of Genetics: Applied Research, 2012, 2, 353-356.	0.4	1
233	Impacts of changing rainfall patterns on mycorrhizal status of a shrub from arid environments. European Journal of Soil Biology, 2012, 50, 64-67.	1.4	33
234	Rhizosphere Microbial Communities: Isolation, Characterization, and Value Addition for Substrate Development. , 2012, , 169-194.		18
235	Molecular approaches for AM fungal community ecology: A primer. Journal of Microbiological Methods, 2012, 90, 108-114.	0.7	26
236	Communication in the Rhizosphere, a Target for Pest Management. , 2012, , 109-133.		15
237	<i>Lotus japonicus</i> E3 Ligase SEVEN IN ABSENTIA4 Destabilizes the Symbiosis Receptor-Like Kinase SYMRK and Negatively Regulates Rhizobial Infection. Plant Cell, 2012, 24, 1691-1707.	3.1	80
238	The <scp><scp>D3</scp> F</scp> â€box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytologist, 2012, 196, 1208-1216.	3.5	134
239	Mitochondrial genome invaders: an unselfish role as molecular markers. New Phytologist, 2012, 196, 963-965.	3.5	7
241	Reconstruction of the Adaptively Advantages Macroevolutionary Events in the Mutualistic Symbioses. , 2012, , 169-187.		3
242	Phytochemicals and spore germination: At the root of AMF host preference?. Applied Soil Ecology, 2012, 60, 98-104.	2.1	38
243	Mycorrhizal Symbiosis: Ancient Signalling Mechanisms Co-opted. Current Biology, 2012, 22, R997-R999.	1.8	8
244	Challenges and progress towards understanding the role of effectors in plant–fungal interactions. Current Opinion in Plant Biology, 2012, 15, 477-482.	3.5	166
245	<i>Glomus mosseae</i> associated bacteria and their influence on stimulation of mycorrhizal colonization, sporulation, and growth promotion in guava (<i>Psidium guajava</i> L.) seedlings. Biological Agriculture and Horticulture, 2012, 28, 267-279.	0.5	14
246	Tripartite Association Among Plant, Arbuscular Mycorrhizal Fungi and Bacteria. , 2012, , 243-259.		0
247	Root Exudates of Legume Plants and Their Involvement in Interactions with Soil Microbes. Signaling and Communication in Plants, 2012, , 27-48.	0.5	36
248	Production of isoflavone genistein in transgenic IFS tobacco roots and its role in stimulating the development of arbuscular mycorrhiza. Acta Physiologiae Plantarum, 2012, 34, 1863-1871.	1.0	6
249	3 The Interface Between Plants and Mycorrhizal Fungi: Nutrient Exchange, Signaling and Cell Organization. , 2012, , 39-49.		5

#	Article	IF	CITATIONS
250	A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483, 341-344.	13.7	502
251	Role of Ion Channels in Plants. Springer Protocols, 2012, , 295-322.	0.1	7
252	4 Arbuscular Mycorrhiza: A Key Component of Sustainable Plant–Soil Ecosystems. , 2012, , 51-75.		34
253	No evidence for allelopathic effects of arbuscular mycorrhizal fungi on the non-host plant Stellaria media. Plant and Soil, 2012, 360, 319-331.	1.8	23
254	Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia, 2012, 104, 1-13.	0.8	350
255	Secretions and Exudates in Biological Systems. Signaling and Communication in Plants, 2012, , .	0.5	24
256	Jatropha, Challenges for a New Energy Crop. , 2012, , .		14
257	The Role of the Mycorrhizal Symbiosis in Nutrient Uptake of Plants and the Regulatory Mechanisms Underlying These Transport Processes. , 0, , .		48
258	INTERACCIOÌN PLANTA-HONGOS MICORRIÌZICOS ARBUSCULARES. Revista Chapingo, Serie Ciencias Forestales Y Del Ambiente, 2012, XVIII, 409-421.	0.1	7
259	Effects of tillage and residue management on soil microbial communities in North China. Plant, Soil and Environment, 2012, 58, 28-33.	1.0	51
260	Interaction of endophytic microbes with legumes. Journal of Basic Microbiology, 2012, 52, 248-260.	1.8	160
261	Plant Hormonal Regulation of Nitrogen-Fixing Nodule Organogenesis. Molecules and Cells, 2012, 34, 117-126.	1.0	60
262	Sulfur ontaining Secondary Metabolites from <i>Arabidopsis thaliana</i> and other Brassicaceae with Function in Plant Immunity. ChemBioChem, 2012, 13, 1846-1859.	1.3	71
263	Coadaptationary Aspects of the Underground Communication Between Plants and Other Organisms. Signaling and Communication in Plants, 2012, , 361-375.	0.5	1
264	Significance of arbuscular mycorrhizal and bacterial symbionts in a tripartite association with Vigna radiata. Acta Physiologiae Plantarum, 2012, 34, 1519-1528.	1.0	22
265	The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza, 2012, 22, 259-269.	1.3	62
266	Arbusculeâ€containing and nonâ€colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant Journal, 2012, 69, 510-528.	2.8	220
267	A switch in Ca ²⁺ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of <i>Medicago truncatula</i> . Plant Journal, 2012, 69, 822-830.	2.8	104

#	Article	IF	CITATIONS
268	The halfâ€size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant Journal, 2012, 69, 906-920.	2.8	131
269	Differential roles of pyruvate decarboxylase in aerial and embedded mycelia of the ascomycete Gibberella zeae. FEMS Microbiology Letters, 2012, 329, 123-130.	0.7	19
270	Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environmental and Experimental Botany, 2012, 75, 25-35.	2.0	58
271	Soil fungi influence the distribution of microbial functional groups that mediate forest greenhouse gas emissions. Soil Biology and Biochemistry, 2012, 53, 112-119.	4.2	37
272	The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defenceâ€related genes in rice leaves and confers resistance to pathogen infection. Molecular Plant Pathology, 2012, 13, 579-592.	2.0	200
273	Mycoheterotrophic interactions are not limited to a narrow phylogenetic range of arbuscular mycorrhizal fungi. Molecular Ecology, 2012, 21, 1524-1532.	2.0	57
274	Development of symbiogenetic approaches for studying variation and heredity of superspecies systems. Russian Journal of Genetics, 2012, 48, 357-368.	0.2	19
275	Multicomponent symbiosis of legumes with beneficial soil microorganisms: Genetic and evolutionary bases of application in sustainable crop production. Russian Journal of Genetics: Applied Research, 2012, 2, 177-189.	0.4	4
276	Technology for efficient and successful delivery of vermicompost colonized bioinoculants in Pogostemon cablin (patchouli) Benth World Journal of Microbiology and Biotechnology, 2012, 28, 323-333.	1.7	47
277	Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza, 2012, 22, 203-217.	1.3	249
278	Hevea brasiliensis and Urtica dioica impact the in vitro mycorrhization of neighbouring Medicago truncatula seedlings. Symbiosis, 2013, 60, 123-132.	1.2	8
279	Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. Symbiosis, 2013, 60, 155-167.	1.2	26
280	Splice variants of the SIP1 transcripts play a role in nodule organogenesis in Lotus japonicus. Plant Molecular Biology, 2013, 82, 97-111.	2.0	36
281	Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. Ecological Studies, 2013, , .	0.4	27
282	Nod factor perception protein carries weight in biotic interactions. Trends in Plant Science, 2013, 18, 566-574.	4.3	53
283	Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes. Scientia Horticulturae, 2013, 160, 320-325.	1.7	21
284	A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC Genomics, 2013, 14, 306.	1.2	93
285	Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2013, 16, 473-479.	3.5	84

#	Article	IF	CITATIONS
286	Piriformospora indica. Soil Biology, 2013, , .	0.6	19
287	Signaling role of Strigolactones at the interface between plants, (micro)organisms, and a changing environment. Journal of Plant Interactions, 2013, 8, 17-33.	1.0	22
288	Plant Microbe Symbiosis: Fundamentals and Advances. , 2013, , .		25
289	An experimental system to study responses of Medicago truncatula roots to chitin oligomers of high degree of polymerization and other microbial elicitors. Plant Cell Reports, 2013, 32, 489-502.	2.8	26
290	The impact of two non-native plant species on native flora performance: potential implications for habitat restoration. Plant Ecology, 2013, 214, 423-432.	0.7	62
291	Effect of Mycorrhizal Infection on Phosphorus Efficiency of Maize (Zea mays L.) Cultivars. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2013, 83, 147-157.	0.4	6
292	The reduced mycorrhizal colonisation (rmc) mutation of tomato disrupts five gene sequences including the CYCLOPS/IPD3 homologue. Mycorrhiza, 2013, 23, 573-584.	1.3	20
293	Mycorrhizal colonization of Palafoxia feayi (Asteraceae) in a pyrogenic ecosystem. Mycorrhiza, 2013, 23, 243-249.	1.3	3
294	AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164, 77-87.	1.7	248
295	Are there temporal trends in root architecture and soil aggregation for Hordeum vulgare breeding lines?. Applied Soil Ecology, 2013, 65, 31-34.	2.1	3
296	Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. Annual Review of Cell and Developmental Biology, 2013, 29, 593-617.	4.0	493
297	Plant coevolution: evidences and new challenges. Journal of Plant Interactions, 2013, 8, 188-196.	1.0	31
298	Fungal genes related to calcium homeostasis and signalling are upregulated in symbiotic arbuscular mycorrhiza interactions. Fungal Biology, 2013, 117, 22-31.	1.1	18
299	Symbiotic Endophytes. Soil Biology, 2013, , .	0.6	6
300	CERBERUS and NSP1 of Lotus japonicus are Common Symbiosis Genes that Modulate Arbuscular Mycorrhiza Development. Plant and Cell Physiology, 2013, 54, 1711-1723.	1.5	78
301	Automated analysis of calcium spiking profiles with CaSA software: two case studies from root-microbe symbioses. BMC Plant Biology, 2013, 13, 224.	1.6	16
302	Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiologiae Plantarum, 2013, 35, 3465-3475.	1.0	39
303	Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11, 789-799.	13.6	2,669

#	Article	IF	CITATIONS
304	Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence. New Phytologist, 2013, 199, 26-40.	3.5	31
305	Interactions of beneficial and detrimental root-colonizing filamentous microbes with plant hosts. Genome Biology, 2013, 14, 121.	3.8	59
306	Macroevolution of symbiosis as self-organization of superspecies system controlled by natural selection. Biology Bulletin Reviews, 2013, 3, 274-285.	0.3	3
307	The biology of strigolactones. Trends in Plant Science, 2013, 18, 72-83.	4.3	318
308	Gut and Root Microbiota Commonalities. Applied and Environmental Microbiology, 2013, 79, 2-9.	1.4	92
309	<i>TRICOT</i> encodes an AMP1-related carboxypeptidase that regulates root nodule development and shoot apical meristem maintenance in <i>Lotus japonicus</i> . Development (Cambridge), 2013, 140, 353-361.	1.2	21
310	Strigolactones Stimulate Internode Elongation Independently of Gibberellins Â. Plant Physiology, 2013, 163, 1012-1025.	2.3	157
311	Expression of SYMRK affects the development of arbuscular mycorrhiza in tobacco roots. Acta Physiologiae Plantarum, 2013, 35, 85-94.	1.0	6
312	An <scp>AM</scp> â€induced, <i><scp>MYB</scp></i> â€family gene of <i>Lotus japonicus</i> (<i>Lj<scp>MAMI</scp></i>) affects root growth in an <scp>AM</scp> â€independent manner. Plant Journal, 2013, 73, 442-455.	2.8	46
313	Improvement of symbiotic nitrogen fixation in plants: molecular-genetic approaches and evolutionary models. Russian Journal of Plant Physiology, 2013, 60, 27-32.	0.5	6
314	An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 2013, 15, 1870-1881.	1.8	288
315	Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, 2013, 11, 252-263.	13.6	1,373
316	The molecular architecture of the plant nuclear pore complex. Journal of Experimental Botany, 2013, 64, 823-832.	2.4	78
317	The expression of CintPT, the phosphate transporter of Rhizophagus irregularis, depends on the symbiotic status and phosphate availability. Planta, 2013, 237, 1267-1277.	1.6	88
318	Previously unrecognized stages of species-specific colonization in the mutualism between <i>Xenorhabdus</i> bacteria and <i>Steinernema</i> nematodes. Cellular Microbiology, 2013, 15, 1545-1559.	1.1	38
320	Arbuscular mycorrhizal fungi reduce growth and infect roots of the nonâ€host plant <i><scp>A</scp>rabidopsis thaliana</i> . Plant, Cell and Environment, 2013, 36, 1926-1937.	2.8	97
321	The <i>cis</i> â€acting <scp>CTTC</scp> –P1 <scp>BS</scp> module is indicative for gene function of <i><scp>L</scp>j<scp>VTI</scp>12</i> , a <scp>Q</scp> bâ€ <scp>SNARE</scp> protein gene that is required for arbuscule formation in <i><scp>L</scp>otus japonicus</i> . Plant Journal, 2013, 74, 280-293.	2.8	67
322	miR396 affects mycorrhization and root meristem activity in the legume <i><scp>M</scp>edicago truncatula</i> . Plant Journal, 2013, 74, 920-934.	2.8	186

#	Article	IF	CITATIONS
	A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum) Tj ETQq0 0 0	0	
323	2013, 9, 1498.	2.9	67
324	Shortâ€chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear <scp>C</scp> a ²⁺ spiking in <i><scp>M</scp>edicago truncatula</i> roots and their production is enhanced by strigolactone. New Phytologist, 2013, 198, 190-202.	3.5	453
327	Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only. Applied Soil Ecology, 2013, 63, 112-119.	2.1	58
329	Evolution of the plant–microbe symbiotic â€~toolkit'. Trends in Plant Science, 2013, 18, 298-304.	4.3	159
330	Nitrogen supply influences plant growth and transcriptional responses induced by Enterobacter radicincitans in Solanum lycopersicum. Plant and Soil, 2013, 370, 641-652.	1.8	35
331	The Endodermis. Annual Review of Plant Biology, 2013, 64, 531-558.	8.6	302
332	Systems biology and "omics―tools: A cooperation for next-generation mycorrhizal studies. Plant Science, 2013, 203-204, 107-114.	1.7	61
334	Communication Between Filamentous Pathogens and Plants at the Biotrophic Interface. Annual Review of Phytopathology, 2013, 51, 587-611.	3.5	112
335	Detection and Identification of Fungal Biological Control Agents. , 2013, , 9-98.		0
336	Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity. Advances in Applied Microbiology, 2013, 82, 53-113.	1.3	79
338	Phylogenetic analysis of fungal aquaporins provides insight into their possible role in water transport of mycorrhizal associations. Botany, 2013, 91, 495-504.	0.5	28
341	Casuarina glauca: A model tree for basic research in actinorhizal symbiosis. Journal of Biosciences, 2013, 38, 815-823.	0.5	25
342	Synthesis of the Fungal Lipo hitooligosaccharide Mycâ€IV (C16:0, S), Symbiotic Signal of Arbuscular Mycorrhiza. European Journal of Organic Chemistry, 2013, 2013, 7382-7390.	1.2	9
343	<i>RAM1</i> and <i>RAM2</i> function and expression during Arbuscular Mycorrhizal Symbiosis and <i>Aphanomyces euteiches</i> colonization. Plant Signaling and Behavior, 2013, 8, e26049.	1.2	76
344	Biological Nitrogen Fixation: Importance, Associated Diversity, and Estimates. , 2013, , 267-289.		13
345	High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Frontiers in Plant Science, 2013, 4, 426.	1.7	133
346	Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Frontiers in Plant Science, 2013, 4, 135.	1.7	33
347	Agrobacterium infection and plant defense—transformation success hangs by a thread. Frontiers in Plant Science, 2013, 4, 519.	1.7	85

#	Article	IF	CITATIONS
348	Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Frontiers in Plant Science, 2013, 4, 533.	1.7	85
349	Bioactive Molecules in Soil Ecosystems: Masters of the Underground. International Journal of Molecular Sciences, 2013, 14, 8841-8868.	1.8	39
350	Potential agricultural benefits through biotechnological manipulation of plant fungal associations. BioEssays, 2013, 35, 328-331.	1.2	13
351	Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. Frontiers in Plant Science, 2013, 4, 235.	1.7	48
352	Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 2013, 4, 356.	1.7	1,020
353	PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. Plant and Cell Physiology, 2013, 54, 1391-1402.	1.5	34
354	Diversity of Arbuscular Mycorrhizal Fungi and Their Roles in Ecosystems. Mycobiology, 2013, 41, 121-125.	0.6	111
355	Cell autonomous and non-cell autonomous control of rhizobial and mycorrhizal infection in <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2013, 8, e22999.	1.2	6
356	Evaluation of Mycorrhizal Influence on the Development and Phytoremediation Potential of <i>Canavalia Gladiata</i> in Pb-Contaminated Soils. International Journal of Phytoremediation, 2013, 15, 465-476.	1.7	22
357	Silencing of the chalcone synthase gene in <i><scp>C</scp>asuarina glauca</i> highlights the important role of flavonoids during nodulation. New Phytologist, 2013, 199, 1012-1021.	3.5	64
358	Effects of prometryn and acetochlor on arbuscular mycorrhizal fungi and symbiotic system. Letters in Applied Microbiology, 2013, 57, 122-128.	1.0	10
359	DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E5025-34.	3.3	266
360	Mycorrhiza Networks Promote Biodiversity and Stabilize the Tropical Mountain Rain Forest Ecosystem: Perspectives for Understanding Complex Communities. Ecological Studies, 2013, , 187-203.	0.4	16
361	Nuclear Calcium Signaling in Plants. Plant Physiology, 2013, 163, 496-503.	2.3	70
362	Root-Based Innate Immunity and Its Suppression by the Mutualistic Fungus Piriformospora indica. Soil Biology, 2013, , 223-237.	0.6	3
363	Are common symbiosis genes required for endophytic rice-rhizobial interactions?. Plant Signaling and Behavior, 2013, 8, e25453.	1.2	19
364	Arbuscular Mycorrhizas and their Significance in Promoting Soil-Plant System Sustainability against Environmental Stresses. , 2013, , 353-387.		32
365	The Role of Microâ€Ribonucleic Acids in Legumes with a Focus on Abiotic Stress Response. Plant Genome, 2013, 6, plantgenome2013.05.0013.	1.6	45

#	Article	IF	CITATIONS
366	Two <i><scp>L</scp>otus japonicus</i> symbiosis mutants impaired at distinct steps of arbuscule development. Plant Journal, 2013, 75, 117-129.	2.8	15
367	Getting to the roots of it: Genetic and hormonal control of root architecture. Frontiers in Plant Science, 2013, 4, 186.	1.7	254
368	Seed reserve dependency of Leucaena leucocephala seedling growth for nitrogen and phosphorus. Functional Plant Biology, 2013, 40, 244.	1.1	18
369	From Bench to Barn: Plant Model Research and its Applications in Agriculture. Advancements in Genetic Engineering, 2013, 02, .	0.1	6
370	Multitrophic interactions among Western Corn Rootworm, Glomus intraradices and microbial communities in the rhizosphere and endorhiza of maize. Frontiers in Microbiology, 2013, 4, 357.	1.5	9
371	Breeding to Improve Symbiotic Effectiveness of Legumes. , 2013, , .		5
372	Green Manure Addition to Soil Increases Grain Zinc Concentration in Bread Wheat. PLoS ONE, 2014, 9, e101487.	1.1	49
373	Lipo-Chitin Oligosaccharides, Plant Symbiosis Signalling Molecules That Modulate Mammalian Angiogenesis In Vitro. PLoS ONE, 2014, 9, e112635.	1.1	15
374	Flavonoids in plant rhizospheres: secretion, fate and their effects on biological communication. Plant Biotechnology, 2014, 31, 431-443.	0.5	61
375	Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	32
376	Arbuscular Mycorrhizal Fungi and their Value for Ecosystem Management. , 2014, , .		22
377	Effect of Salinity on Plants and the Role of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria in Alleviation of Salt Stress. , 2014, , 115-144.		30
378	Postâ€ŧranscriptional regulation in root development. Wiley Interdisciplinary Reviews RNA, 2014, 5, 679-696.	3.2	17
380	Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Sequestration. Soil Biology, 2014, , 287-296.	0.6	12
381	Common symbiosis genesCERBERUSandNSP1provide additional insight into the establishment of arbuscular mycorrhizal and root nodule symbioses inLotus japonicus. Plant Signaling and Behavior, 2014, 9, e28544.	1.2	9
382	Biotic Interactions in the Rhizosphere: A Diverse Cooperative Enterprise for Plant Productivity. Plant Physiology, 2014, 166, 701-719.	2.3	100
383	Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, 2014, , .	0.6	21
384	The Gentianaceae - Volume 1: Characterization and Ecology. , 2014, , .		6

#	Article	IF	CITATIONS
385	Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 2014, 5, 680.	1.7	31
386	The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Frontiers in Microbiology, 2014, 5, 368.	1.5	145
387	Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution. PLoS Genetics, 2014, 10, e1004487.	1.5	229
388	Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus. PLoS Genetics, 2014, 10, e1004078.	1.5	238
389	Phosphorus Placement Effects on Phosphorous Recovery Efficiency and Grain Yield of Wheat under No-Tillage in the Humid Pampas of Argentina. International Journal of Agronomy, 2014, 2014, 1-12.	0.5	16
390	Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Frontiers in Plant Science, 2014, 5, 95.	1.7	90
391	Patterns in root traits of woody species hosting arbuscular and ectomycorrhizas: implications for the evolution of belowground strategies. Ecology and Evolution, 2014, 4, 2979-2990.	0.8	134
392	Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus <i><scp>R</scp>hizophagus irregularis</i> during mycorrhization of <i><scp>L</scp>otus japonicus</i> . Plant Journal, 2014, 79, 398-412.	2.8	159
393	Root Architecture Responses: In Search of Phosphate. Plant Physiology, 2014, 166, 1713-1723.	2.3	214
394	Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1684-1697.	1.3	133
395	Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of <scp>C</scp> a ²⁺ spiking. Plant Journal, 2014, 77, 146-159.	2.8	50
396	Effect of salinity and arbuscular mycorrhizal fungi on growth and some physiological parameters of Citrus jambheri. Archives of Agronomy and Soil Science, 2014, 60, 993-1004.	1.3	12
397	Lotus japonicus SUNERGOS 1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. Plant Journal, 2014, 78, 811-821.	2.8	28
398	Highâ€density genomeâ€wide association mapping implicates an <scp>F</scp> â€box encoding gene in <i><scp>M</scp>edicago truncatula</i> resistance to <i><scp>A</scp>phanomyces euteiches</i> . New Phytologist, 2014, 201, 1328-1342.	3.5	86
399	Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Frontiers in Plant Science, 2014, 5, 237.	1.7	132
400	The role of the cell wall compartment in mutualistic symbioses of plants. Frontiers in Plant Science, 2014, 5, 238.	1.7	53
401	Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 2014, 26, 19-24.	3.3	259
402	Intense competition between arbuscular mycorrhizal mutualists in an <i>in vitro</i> root microbiome negatively affects total fungal abundance. Molecular Ecology, 2014, 23, 1584-1593.	2.0	117

ARTICLE IF CITATIONS # Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not 403 2.8 84 fungal viability. Plant, Ćell and Environment, 2014, 37, 557-572. Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal 404 1.8 fungi. Plant and Soil, 2014, 378, 173-188. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregationâ€"a 405 270 1.8 meta-analysis. Plant and Soil, 2014, 374, 523-537. Isolation and Phenotypic Characterization of Lotus japonicus Mutants Specifically Defective in 406 Arbuscular Mycorrhizal Formation. Plant and Cell Physiology, 2014, 55, 928-941. Strigolactones and the control of plant development: lessons from shoot branching. Plant Journal, 407 2.8 203 2014, 79, 607-622. Signaling events during initiation of arbuscular mycorrhizal symbiosis. Journal of Integrative Plant Biology, 2014, 56, 250-261. 408 4.1 409 Fungal (-like) biocontrol organisms in tomato disease control. Biological Control, 2014, 74, 65-81. 1.4 82 Adaptive and progressive evolution of plant-microbial symbiosis. Russian Journal of Genetics: Applied Research, 2014, 4, 88-97. 410 0.4 Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source 411 3.5 246 strength of individual host plants. New Phytologist, 2014, 203, 646-656. Arbuscular mycorrhizal influence on zinc nutrition in crop plants – A meta-analysis. Soil Biology and 4.2 Biochemistry, 2014, 69, 123-131. High specificity in plant leaf metabolic responses to arbuscular mycorrhiza. Nature Communications, 413 5.8125 2014, 5, 3886. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship. 1.6 79 Planta, 2014, 239, 1337-1349. Anatomy of Root from Eyes of a Microbiologist. Soil Biology, 2014, , 3-22. 415 0.6 34 Effects of cultivation and return of Bacillus thuringiensis (Bt) maize on the diversity of the arbuscular mycorrhizal community in soils and roots of subsequently cultivated conventional maize. Soil Biology and Biochemistry, 2014, 75, 254-263. 4.2 Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytologist, 417 3.5 105 2014, 204, 833-840. Evolution of a symbiotic receptor through gene duplications in the legume–rhizobium mutualism. New Phytologist, 2014, 201, 961-972. Natural product biosynthesis in Medicago species. Natural Product Reports, 2014, 31, 356. 419 5.281 Reprogramming of plant cells by filamentous plantâ€colonizing microbes. New Phytologist, 2014, 204, 421 803-814.

#	Article	IF	CITATIONS
422	The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host-plant metabolome for its own benefit. Phytochemistry, 2014, 108, 95-101.	1.4	60
423	The Bifunctional Plant Receptor, OsCERK1, Regulates Both Chitin-Triggered Immunity and Arbuscular Mycorrhizal Symbiosis in Rice. Plant and Cell Physiology, 2014, 55, 1864-1872.	1.5	211
424	Arbuscular Mycorrhiza-Induced Shifts in Foliar Metabolism and Photosynthesis Mirror the Developmental Stage of the Symbiosis and Are Only Partly Driven by Improved Phosphate Uptake. Molecular Plant-Microbe Interactions, 2014, 27, 1403-1412.	1.4	38
425	Mycorrhizae support oaks growing in a phylogenetically distant neighbourhood. Soil Biology and Biochemistry, 2014, 78, 204-212.	4.2	9
426	A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and <i>Medicago truncatula</i> Â Â Â. Plant Cell, 2014, 26, 1818-1830.	3.1	131
427	Arbuscular Mycorrhiza in Crop Improvement under Environmental Stress. , 2014, , 69-95.		52
428	A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nature Communications, 2014, 5, 4087.	5.8	260
429	Distribution of chromium species in a Cr-polluted soil: Presence of Cr(III) in glomalin related protein fraction. Science of the Total Environment, 2014, 493, 828-833.	3.9	85
430	Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Applied Soil Ecology, 2014, 84, 185-191.	2.1	38
431	Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis Â. Plant Physiology, 2014, 166, 281-292.	2.3	163
432	New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions. BMC Evolutionary Biology, 2014, 14, 173.	3.2	38
434	Histone <scp>H</scp> 3 <scp>K</scp> 9 and <scp>H</scp> 3 <scp>K</scp> 27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Molecular Microbiology, 2014, 92, 413-434.	1.2	161
435	Glomalin-related soil protein and water relations in mycorrhizal citrus (<i>Citrus tangerina</i>) during soil water deficit. Archives of Agronomy and Soil Science, 2014, 60, 1103-1114.	1.3	47
436	Defense Related Phytohormones Regulation in Arbuscular Mycorrhizal Symbioses Depends on the Partner Genotypes. Journal of Chemical Ecology, 2014, 40, 791-803.	0.9	78
437	Beyond the Barrier: Communication in the Root through the Endodermis. Plant Physiology, 2014, 166, 551-559.	2.3	86
438	Fine mapping of the Rj4 locus, a gene controlling nodulation specificity in soybean. Molecular Breeding, 2014, 33, 691-700.	1.0	9
439	Nutrient transfer in plant–fungal symbioses. Trends in Plant Science, 2014, 19, 734-740.	4.3	185
440	Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 2014, 203, 863-872.	3.5	362

#	Article	IF	CITATIONS
441	Fungal associations in <i><scp>H</scp>orneophyton ligneri</i> from the <scp>R</scp> hynie <scp>C</scp> hert (<i>c</i> . 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant–fungus symbioses. New Phytologist, 2014, 203, 964-979.	3.5	175
442	The Origin and Early Evolution of Roots. Plant Physiology, 2014, 166, 570-580.	2.3	201
443	Nitrate regulates rhizobial and mycorrhizal symbiosis in common bean (<i>Phaseolus vulgaris</i> L.). Journal of Integrative Plant Biology, 2014, 56, 281-298.	4.1	30
444	A BIOLOGICAL MARKET ANALYSIS OF THE PLANT-MYCORRHIZAL SYMBIOSIS. Evolution; International Journal of Organic Evolution, 2014, 68, 2603-2618.	1.1	84
445	The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Journal of Proteomics, 2014, 108, 354-368.	1.2	49
449	Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling. Scientific Reports, 2015, 5, 13624.	1.6	44
451	Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Functional Plant Biology, 2015, 42, 1158.	1.1	26
452	Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals. Scientific Reports, 2015, 5, 12187.	1.6	72
457	The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biology, 2015, 15, 260.	1.6	118
458	Traitâ€based partner selection drives mycorrhizal network assembly. Oikos, 2015, 124, 1609-1616.	1.2	56
459	The <scp><i>M</i></scp> <i>edicago truncatula</i> hypermycorrhizal <scp>B</scp> 9 mutant displays an altered response to phosphate and is more susceptible to <scp><i>A</i></scp> <i>phanomyces euteiches</i> . Plant, Cell and Environment, 2015, 38, 73-88.	2.8	22
460	Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus <i>Piriformospora indica</i> on <i>Arabidopsis thaliana</i> roots. New Phytologist, 2015, 208, 873-886.	3.5	52
462	Nod-Factor Signaling in Legume-Rhizobial Symbiosis. , 0, , .		2
463	Symbiotic Proteomics $\hat{a} \in \mathbb{C}^{n}$ State of the Art in Plant $\hat{a} \in \mathbb{C}^{n}$ Mycorrhizal Fungi Interactions. , 0, , .		3
464	Nutrient cycling in the mycorrhizosphere. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	39
465	Fungal association and utilization of phosphate by plants: success, limitations, and future prospects. Frontiers in Microbiology, 2015, 6, 984.	1.5	96
466	Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Frontiers in Microbiology, 2015, 6, 1280.	1.5	208
467	The CRE1 Cytokinin Pathway Is Differentially Recruited Depending on Medicago truncatula Root Environments and Negatively Regulates Resistance to a Pathogen. PLoS ONE, 2015, 10, e0116819.	1.1	54

#	Article	IF	CITATIONS
468	A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria. PLoS Genetics, 2015, 11, e1005280.	1.5	97
469	Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis. PLoS ONE, 2015, 10, e0136234.	1.1	6
470	Intra and Inter-Spore Variability in Rhizophagus irregularis AOX Gene. PLoS ONE, 2015, 10, e0142339.	1.1	23
471	Naturally occurring diversity helps to reveal genes of adaptive importance in legumes. Frontiers in Plant Science, 2015, 6, 269.	1.7	37
472	Early Lotus japonicus root transcriptomic responses to symbiotic and pathogenic fungal exudates. Frontiers in Plant Science, 2015, 6, 480.	1.7	58
473	Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. Frontiers in Plant Science, 2015, 6, 667.	1.7	41
474	Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Frontiers in Plant Science, 2015, 6, 700.	1.7	69
475	The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. Frontiers in Plant Science, 2015, 6, 906.	1.7	59
477	RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in <i>Lotus japonicus</i> and <i>Rhizophagus irregularis</i> . Plant and Cell Physiology, 2015, 56, 1490-1511.	1.5	140
478	Recent developments in arbuscular mycorrhizal signaling. Current Opinion in Plant Biology, 2015, 26, 1-7.	3.5	55
479	Environmental Interactions. , 2015, , 159-190.		0
480	A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey. Standards in Genomic Sciences, 2015, 10, 14.	1.5	55
481	Loss of Microbiome Ecological Niches and Diversity by Global Change and Trophic Downgrading. SpringerBriefs in Ecology, 2015, , 89-113.	0.2	6
482	Network of GRAS Transcription Factors Involved in the Control of Arbuscule Development in <i>Lotus japonicus</i> Â Â. Plant Physiology, 2015, 167, 854-871.	2.3	151
483	Lipochitooligosaccharides Modulate Plant Host Immunity to Enable Endosymbioses. Annual Review of Phytopathology, 2015, 53, 311-334.	3.5	98
484	Facilitation and Antagonism in Mycorrhizal Networks. Ecological Studies, 2015, , 203-226.	0.4	13
485	Role of mycorrhization and nutrient availability in competitive interactions between the grassland species Plantago lanceolata and Hieracium pilosella. Plant Ecology, 2015, 216, 887-899.	0.7	13
486	A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in <i>Epichloë</i> spp Molecular Plant-Microbe Interactions, 2015, 28, 218-231.	1.4	59

#	Article	IF	Citations
487	Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi. Journal of Environmental Radioactivity, 2015, 141, 57-61.	0.9	11
488	Fungal associations of basal vascular plants: reopening a closed book?. New Phytologist, 2015, 205, 1394-1398.	3.5	79
489	Nutrient Use Efficiency: from Basics to Advances. , 2015, , .		30
490	Remodeling of the Infection Chamber before Infection Thread Formation Reveals a Two-Step Mechanism for Rhizobial Entry into the Host Legume Root Hair. Plant Physiology, 2015, 167, 1233-1242.	2.3	127
491	Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist, 2015, 205, 1406-1423.	3.5	1,390
492	Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max). Journal of Plant Physiology, 2015, 176, 157-168.	1.6	30
493	Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, 2015, , .	0.6	24
494	Strategies for Enhancing Phosphorus Efficiency in Crop Production Systems. , 2015, , 59-71.		8
496	Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 2015, 51, 403-415.	2.3	658
497	Building the interaction interfaces: host responses upon infection with microorganisms. Current Opinion in Plant Biology, 2015, 23, 132-139.	3.5	16
498	Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews, 2015, 39, 203-221.	3.9	299
499	Protein can be taken up by damaged wheat roots and transported to the stem. Journal of Plant Biology, 2015, 58, 1-7.	0.9	3
500	Partner selection in the mycorrhizal mutualism. New Phytologist, 2015, 205, 1437-1442.	3.5	139
501	Leguminous Plants: Inventors of Root Nodules to Accommodate Symbiotic Bacteria. International Review of Cell and Molecular Biology, 2015, 316, 111-158.	1.6	133
502	Differential effects of ephemeral colonization by arbuscular mycorrhizal fungi in two Cuscuta species with different ecology. Mycorrhiza, 2015, 25, 573-585.	1.3	8
503	Phylogenetic structure of arbuscular mycorrhizal community shifts in response to increasing soil fertility. Soil Biology and Biochemistry, 2015, 89, 196-205.	4.2	113
504	Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annual Review of Phytopathology, 2015, 53, 403-424.	3.5	595
505	EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis. Current Biology, 2015, 25, 2189-2195.	1.8	120

#	Article	IF	CITATIONS
506	Effect of Arbuscular Mycorrhizal (AM) Inoculation on Growth and Flowering in <i>Crossandra infundibuliformis</i> (L.) Nees. Journal of Plant Nutrition, 2015, 38, 1478-1488.	0.9	11
507	The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 2015, 79, 293-320.	2.9	1,895
508	Symbiotic options for the conquest of land. Trends in Ecology and Evolution, 2015, 30, 477-486.	4.2	172
509	Novel Endosymbioses as a Catalyst of Fast Speciation. Interdisciplinary Evolution Research, 2015, , 107-120.	0.2	4
510	The Impact of Host Diet on Wolbachia Titer in Drosophila. PLoS Pathogens, 2015, 11, e1004777.	2.1	77
511	Chitin-mediated plant–fungal interactions: catching, hiding and handshaking. Current Opinion in Plant Biology, 2015, 26, 64-71.	3.5	98
513	Calcium Signaling during Reproduction and Biotrophic Fungal Interactions in Plants. Molecular Plant, 2015, 8, 595-611.	3.9	44
514	Genomic Signature of Selective Sweeps Illuminates Adaptation of <i>Medicago truncatula</i> to Root-Associated Microorganisms. Molecular Biology and Evolution, 2015, 32, 2097-2110.	3.5	51
515	Using mycorrhiza-defective mutant genotypes of non-legume plant species to study the formation and functioning of arbuscular mycorrhiza: a review. Mycorrhiza, 2015, 25, 587-597.	1.3	28
516	Plant identity and density can influence arbuscular mycorrhizal fungi colonization, plant growth, and reproduction investment in coculture. Botany, 2015, 93, 405-412.	0.5	9
517	A cross-city molecular biogeographic investigation of arbuscular mycorrhizas in Conyza canadensis rhizosphere across native and non-native regions. Ecological Processes, 2015, 4, .	1.6	11
518	Lack of sex-specific differences in mycorrhizal associations and response to herbivory in the gynodioecious herb, Polemonium foliosissimum. Plant Ecology, 2015, 216, 951-962.	0.7	4
519	Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae, 2015, 187, 131-141.	1.7	277
520	Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biology and Biochemistry, 2015, 86, 1-4.	4.2	37
521	Impact of water regimes on an experimental community of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza, 2015, 25, 639-647.	1.3	50
522	Effect of volatiles versus exudates released by germinating spores ofÂCigaspora margarita on lateral root formation. Plant Physiology and Biochemistry, 2015, 97, 1-10.	2.8	22
523	Morphology and phylogeny of four Endogone species and Sphaerocreas pubescens collected in Japan. Mycological Progress, 2015, 14, 1.	0.5	15
524	Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13390-13395.	3.3	292

#	Article	IF	CITATIONS
525	Rice responds to endophytic colonization which is independent of the common symbiotic signaling pathway. New Phytologist, 2015, 208, 531-543.	3.5	26
526	Leaf metabolome in arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology, 2015, 26, 120-126.	3.5	72
527	Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with <i><scp>B</scp>acillus thuringiensis</i> toxin genes. Molecular Ecology, 2015, 24, 2580-2593.	2.0	30
528	Effect of combined microbes on plant tolerance to Zn–Pb contaminations. Environmental Science and Pollution Research, 2015, 22, 19142-19156.	2.7	32
529	Arbuscular mycorrhiza symbiosis in viticulture: a review. Agronomy for Sustainable Development, 2015, 35, 1449-1467.	2.2	123
530	The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata. Phytochemistry, 2015, 118, 149-161.	1.4	15
531	Composition of fungal soil communities varies with plant abundance and geographic origin. AoB PLANTS, 2015, 7, plv110.	1.2	11
532	The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Genetics, 2015, 51, 831-846.	0.2	12
533	Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in <i>Lotus japonicus</i> Â. Plant Physiology, 2015, 167, 545-557.	2.3	120
534	The Characterization of Six Auxin-Induced Tomato GH3 Genes Uncovers a Member, SIGH3.4, Strongly Responsive to Arbuscular Mycorrhizal Symbiosis. Plant and Cell Physiology, 2015, 56, 674-687.	1.5	48
535	Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – A meta-analysis. Soil Biology and Biochemistry, 2015, 81, 147-158.	4.2	196
536	Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Critical Reviews in Biotechnology, 2015, 35, 461-474.	5.1	89
537	Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. New Phytologist, 2015, 205, 1537-1551.	3.5	370
538	Different respiration metabolism between mycorrhizal and non-mycorrhizal rice under low-temperature stress: a cry for help from the host. Journal of Agricultural Science, 2015, 153, 602-614.	0.6	25
539	Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses. Mycorrhiza, 2015, 25, 243-252.	1.3	44
540	Root nodule bacteria from <i>Clitoria ternatea</i> L. are putative invasive nonrhizobial endophytes. Canadian Journal of Microbiology, 2015, 61, 131-142.	0.8	19
541	The receptor kinase <i><scp>CERK</scp>1</i> has dual functions in symbiosis and immunity signalling. Plant Journal, 2015, 81, 258-267.	2.8	232
542	Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) sites. Mycorrhiza, 2015, 25, 253-265.	1.3	25

#	Article	IF	CITATIONS
544	First evidence of mutualism between ancient plant lineages (<scp>H</scp> aplomitriopsida liverworts) and <scp>M</scp> ucoromycotina fungi and its response to simulated <scp>P</scp> alaeozoic changes in atmospheric <scp>CO</scp> ₂ . New Phytologist, 2015, 205, 743-756.	3.5	163
545	Role of gibberellins during arbuscular mycorrhizal formation in tomato: new insights revealed by endogenous quantification and genetic analysis of their metabolism in mycorrhizal roots. Physiologia Plantarum, 2015, 154, 66-81.	2.6	41
546	Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities. Annals of Microbiology, 2015, 65, 603-610.	1.1	29
547	Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytologist, 2015, 205, 1515-1524.	3.5	156
548	Effect of mycorrhizal inoculation of leek Allium porrum L. on mineral nitrogen leaching. Zahradnictvi (Prague, Czech Republic: 1992), 2016, 43, 195-202.	0.3	7
549	Activity of Acid Phosphatases in Ectomycorrhizal Fungi. Journal of Agricultural Science, 2016, 8, 78.	0.1	1
551	Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice. Current Genomics, 2016, 17, 297-307.	0.7	12
552	Upscaling Arbuscular Mycorrhizal Symbiosis and Related Agroecosystems Services in Smallholder Farming Systems. BioMed Research International, 2016, 2016, 1-12.	0.9	33
553	A Survey of the Gene Repertoire of Gigaspora rosea Unravels Conserved Features among Glomeromycota for Obligate Biotrophy. Frontiers in Microbiology, 2016, 7, 233.	1.5	113
554	Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling. Frontiers in Microbiology, 2016, 7, 408.	1.5	36
555	The Potential Role of Arbuscular Mycorrhizal Fungi in the Restoration of Degraded Lands. Frontiers in Microbiology, 2016, 7, 1095.	1.5	166
556	Mycorrhizal Symbiotic Efficiency on C3 and C4 Plants under Salinity Stress – A Meta-Analysis. Frontiers in Microbiology, 2016, 7, 1246.	1.5	47
557	Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Frontiers in Microbiology, 2016, 7, 1538.	1.5	499
558	Specific Microbial Communities Associate with the Rhizosphere of Welwitschia mirabilis, a Living Fossil. PLoS ONE, 2016, 11, e0153353.	1.1	41
559	Does a Common Pathway Transduce Symbiotic Signals in Plant–Microbe Interactions?. Frontiers in Plant Science, 2016, 7, 96.	1.7	116
560	Cooperation through Competition—Dynamics and Microeconomics of a Minimal Nutrient Trade System in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2016, 7, 912.	1.7	26
561	Transition Metal Transport in Plants and Associated Endosymbionts: Arbuscular Mycorrhizal Fungi and Rhizobia. Frontiers in Plant Science, 2016, 7, 1088.	1.7	131
562	Grafting: A Technique to Modify Ion Accumulation in Horticultural Crops. Frontiers in Plant Science, 2016, 7, 1457.	1.7	132

		Report	
#	Article	IF	CITATIONS
563	Differential Gene Expression in Rhododendron fortunei Roots Colonized by an Ericoid Mycorrhizal Fungus and Increased Nitrogen Absorption and Plant Growth. Frontiers in Plant Science, 2016, 7, 1594.	1.7	21
564	Integrated multiâ€omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the <i>Lotus japonicus–Glomus intraradices</i> mycorrhizal symbiosis. Plant, Cell and Environment, 2016, 39, 393-415.	2.8	30
565	Invader disruption of belowground plant mutualisms reduces carbon acquisition and alters allocation patterns in a native forest herb. New Phytologist, 2016, 209, 542-549.	3.5	35
566	Comparative analysis of the tubulin cytoskeleton organization in nodules of <i>Medicago truncatula</i> and <i>Pisum sativum</i> : bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. New Phytologist, 2016, 210, 168-183.	3.5	41
567	Common and divergent shoot–root signalling in legume symbioses. New Phytologist, 2016, 210, 643-656.	3.5	12
569	Mycorrhizosphere: The Extended Rhizosphere and Its Significance. , 2016, , 97-124.		14
570	Mycorrhiza. Resonance, 2016, 21, 1093-1104.	0.2	16
571	The role of arbuscular mycorrhizal fungi in establishment and water balance of tomato seedlings and sweet cherry cuttings in low phosphorous soil. Acta Horticulturae, 2016, , 109-116.	0.1	5
572	<i>Lotus japonicus</i> NF-YA1 Plays an Essential Role During Nodule Differentiation and Targets Members of the <i>SHI/STY</i> Gene Family. Molecular Plant-Microbe Interactions, 2016, 29, 950-964.	1.4	44
573	Soil Microbial Metabolomics. , 2016, , 147-198.		7
575	Chitinaseâ€resistant hydrophilic symbiotic factors secreted by <i>Frankia</i> activate both Ca ²⁺ spiking and <i><scp>NIN</scp></i> gene expression in the actinorhizal plant <i>Casuarina glauca</i> . New Phytologist, 2016, 209, 86-93.	3.5	62
576	Faster acquisition of symbiotic partner by common mycorrhizal networks in early plant life stage. Ecosphere, 2016, 7, e01222.	1.0	12
577	Effect of Arbuscular Mycorrhizal Fungi on the Growth and Polyphenol Profile of Marjoram, Lemon Balm, and Marigold. Journal of Agricultural and Food Chemistry, 2016, 64, 3733-3742.	2.4	43
578	Life cycle specialization of filamentous pathogens — colonization and reproduction in plant tissues. Current Opinion in Microbiology, 2016, 32, 31-37.	2.3	21
579	An Autophagy-Related Kinase Is Essential for the Symbiotic Relationship between <i>Phaseolus vulgaris</i> and Both Rhizobia and Arbuscular Mycorrhizal Fungi. Plant Cell, 2016, 28, 2326-2341.	3.1	37
580	Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. Molecular Plant, 2016, 9, 1583-1608.	3.9	90
581	Advances in the rhizosphere: stretching the interface of life. Plant and Soil, 2016, 407, 1-8.	1.8	78
582	Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere, 2016, 162, 105-116.	4.2	77

		CITATION	Report	
#	Article		IF	CITATIONS
584	Carotenoids in Nature. Sub-Cellular Biochemistry, 2016, , .		1.0	39
585	Apocarotenoids: A New Carotenoid-Derived Pathway. Sub-Cellular Biochemistry, 2016,	79, 239-272.	1.0	62
586	Improving crop nutrient efficiency through root architecture modifications. Journal of Plant Biology, 2016, 58, 193-202.	ntegrative	4.1	191
587	Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline A Biotechnology Advances, 2016, 34, 1245-1259.	griculture.	6.0	315
588	An autophagy gene, HoATG5 , is involved in sporulation, cell wall integrity and infectio barley leaves. Microbiological Research, 2016, 192, 326-335.	n of wounded	2.5	11
589	Evaluation of the Role of the LysM Receptor-Like Kinase, OsNFR5/OsRLK2 for AM Symb and Cell Physiology, 2016, 57, 2283-2290.	viosis in Rice. Plant	1.5	69
590	Pteridophyte fungal associations: Current knowledge and future perspectives. Journal and Evolution, 2016, 54, 666-678.	of Systematics	1.6	27
591	Belowground Defence Strategies in Plants: Parallels Between Root Responses to Benef Detrimental Microbes. Signaling and Communication in Plants, 2016, , 7-43.	icial and	0.5	5
592	The Plant Microbiota: Systems-Level Insights and Perspectives. Annual Review of Gener 211-234.	tics, 2016, 50,	3.2	627
593	Highâ€resolution community profiling of arbuscular mycorrhizal fungi. New Phytologis 780-791.	t, 2016, 212,	3.5	104
594	Arbuscular mycorrhizal fungi induced changes in rhizosphere, essential oil and mineral uptake in dill/common bean intercropping system. Annals of Applied Biology, 2016, 16	nutrients 9, 384-397.	1.3	30
595	Belowground nitrogen transfer from legumes to non-legumes under managed herbace systems. A review. Agronomy for Sustainable Development, 2016, 36, 1.	ous cropping	2.2	107
596	Root nodule symbiosis in <i>Lotus japonicus</i> drives the establishment of distinctive root, and nodule bacterial communities. Proceedings of the National Academy of Scier United States of America, 2016, 113, E7996-E8005.	e rhizosphere, aces of the	3.3	258
597	An assemblage of Frankia Cluster II strains from California contains the canonical nod the sulfotransferase gene nodH. BMC Genomics, 2016, 17, 796.	genes and also	1.2	97
598	Soil conditions moderate the effects of herbivores, but not mycorrhizae, on a native bu Acta Oecologica, 2016, 77, 100-108.	unchgrass.	0.5	4
599	Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the Journal of Experimental Botany, 2017, 68, erw387.	roots.	2.4	55
600	DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infe Communications, 2016, 7, 12636.	ction. Nature	5.8	135
601	DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signa Nature Communications, 2016, 7, 12433.	ling pathways.	5.8	198

#	Article	IF	Citations
602	Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nature Plants, 2016, 2, 15208.	4.7	206
603	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	4.7	529
609	Unearthing the roots of ectomycorrhizal symbioses. Nature Reviews Microbiology, 2016, 14, 760-773.	13.6	317
610	Effects of Arbuscular Mycorrhiza on Plant Chemistry and the Development and Behavior of a Generalist Herbivore. Journal of Chemical Ecology, 2016, 42, 1247-1258.	0.9	23
611	Title is missing!. Kagaku To Seibutsu, 2016, 54, 233-234.	0.0	0
612	Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.). Environmental Monitoring and Assessment, 2016, 188, 425.	1.3	45
613	Root Exudates and Their Molecular Interactions with Rhizospheric Microbes. , 2016, , 59-77.		19
614	Plant, Soil and Microbes. , 2016, , .		5
615	Mycorrhizal Association: A Safeguard for Plant Pathogen. , 2016, , 253-275.		3
616	Genomics of Plant, Soil, and Microbe Interaction. , 2016, , 303-336.		1
617	Mycorrhizal Association and Their Role in Plant Disease Protection. , 2016, , 95-143.		5
618	Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil. Environmental Pollution, 2016, 213, 549-560.	3.7	33
619	A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching. Current Biology, 2016, 26, 987-998.	1.8	182
620	Recent advances in actinorhizal symbiosis signaling. Plant Molecular Biology, 2016, 90, 613-622.	2.0	34
621	Strigolactones: new plant hormones in action. Planta, 2016, 243, 1311-1326.	1.6	95
622	Signaling in the Rhizosphere. Trends in Plant Science, 2016, 21, 187-198.	4.3	465
623	Effect of arbuscular mycorrhizal fungi inoculation on cold stress-induced oxidative damage in leaves of Elymus nutans Griseb. South African Journal of Botany, 2016, 104, 21-29.	1.2	50
624	Restricting mutualistic partners to enforce trade reliance. Nature Communications, 2016, 7, 10322.	5.8	16

#	Article	IF	CITATIONS
625	Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2. Symbiosis, 2016, 68, 129-144.	1.2	29
626	15 Genetic and Metabolic Aspects of Primary and Secondary Metabolism of the Zygomycetes. , 2016, , 361-385.		22
627	Increase in biomass of two woody species from a seasonal dry tropical forest in association with AMF with different phosphorus levels. Applied Soil Ecology, 2016, 102, 46-52.	2.1	15
628	The cryptic Sebacinales: An obscure but ubiquitous group of root symbionts comes to light. Fungal Ecology, 2016, 22, 115-119.	0.7	8
629	Effect of exotic Spartina alterniflora on fungal symbiosis with native plants Phragmites australis and Scirpus mariqueter, and model plants Lolium perenne L. and Trifolium repens. Aquatic Botany, 2016, 130, 50-58.	0.8	13
630	Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi. Environmental Science and Pollution Research, 2016, 23, 11312-11322.	2.7	45
631	Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 2016, 90, 575-587.	2.0	523
632	Predicting plant response to arbuscular mycorrhizas: The role of host functional traits. Fungal Ecology, 2016, 20, 79-83.	0.7	22
633	Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 2016, 40, 182-207.	3.9	238
634	Opposing effects of nitrogen versus phosphorus additions on mycorrhizal fungal abundance along an elevational gradient in tropical montane forests. Soil Biology and Biochemistry, 2016, 94, 37-47.	4.2	61
635	Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study. Annals of Microbiology, 2016, 66, 207-221.	1.1	11
636	A review of symbiotic fungal endophytes in lycophytes and ferns – a global phylogenetic and ecological perspective. Symbiosis, 2017, 71, 77-89.	1.2	31
637	Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nature Communications, 2017, 8, 14245.	5.8	106
638	Fungi in a Psaronius root mantle from the Rotliegend (Asselian, Lower Permian/Cisuralian) of Thuringia, Germany. Review of Palaeobotany and Palynology, 2017, 239, 14-30.	0.8	16
639	Strigolactone Signaling and Evolution. Annual Review of Plant Biology, 2017, 68, 291-322.	8.6	470
640	Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of rootâ€external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytologist, 2017, 214, 632-643.	3.5	210
641	Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Science of the Total Environment, 2017, 584-585, 838-848.	3.9	65
642	Biogeography of nodulated legumes and their nitrogenâ€fixing symbionts. New Phytologist, 2017, 215, 40-56.	3.5	280

ARTICLE IF CITATIONS # Lectin Protein Kinase Is Induced in Plant Roots in Response to the Endophytic Fungus, Piriformospora 643 1.0 8 indica. Plant Molecular Biology Reporter, 2017, 35, 323-332. The Crosstalk Between Plants and Their Arbuscular Mycorrhizal Symbionts: A Mycocentric View., 644 2017, , 285-308. Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Canadian Journal of 645 0.3 18 Plant Science, 0, , . Arbuscular Mycorrhizas: An Overview., 2017, , 1-24. 646 Arbuscular Mycorrhizas and Ecosystem Restoration., 2017, , 245-292. 647 4 Application of Arbuscular Mycorrhizal Fungi into Agriculture., 2017, , 305-327. 649 Arbuscular Mycorrhizal Fungi and Tolerance of Fe Stress in Plants., 2017, , 131-145. 3 Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph 1.4 14 Arachnitis uniflóra Phil. (Corsiaceae). Annáls of Botany, 2017, 119, 1279-1294. 651 Arbuscular Mycorrhiza and Reactive Oxygen Species., 2017, , 225-243. 20 Species composition determines forage quality and medicinal value of high diversity grasslands in 2.5 38 lowland England. Agriculture, Ecosystems and Environment, 2017, 241, 193-204. Evolutionary convergence and biologically embodied cognition. Interface Focus, 2017, 7, 20160123. 654 1.5 40 Jasmonic acid signalling and the plant holobiont. Current Opinion in Microbiology, 2017, 37, 42-47. 2.3 Arbuscular mycorrhiza formation and its function under elevated atmospheric O 3 : A meta-analysis. 656 3.7 19 Environmental Pollution, 2017, 226, 104-117. Exocytosis for endosymbiosis: membrane trafficking pathways for development of symbiotic membrane 3.5 54 compartments. Current Opinion in Plant Biology, 2017, 38, 101-108. 659 Inter- and Intraspecific Fungal Diversity in the Arbuscular Mycorrhizal Symbiosis., 2017, , 253-274. 3 Plant Flavonoids: Key Players in Signaling, Establishment, and Regulation of Rhizobial and Mycorrhizal Endosymbioses. , 2017, , 133-176. Wild Camellia japonica specimens in the Shimane prefecture (Japan) host previously undescribed AMF 661 2.111 diversity. Applied Soil Ecology, 2017, 115, 10-18. Mycorrhiza - Function, Diversity, State of the Art., 2017,,.

		CITATION REPORT		
#	Article	IF		Citations
663	Breeding for mycorrhizal symbiosis: focus on disease resistance. Euphytica, 2017, 213, 1.	0.6	6	62
664	Biophysical Phenotyping as an Essential Tool for Understanding Host–Microbe Interactio 65-80.	n. , 2017, ,		14
665	Bacterial Quorum Sensing (QS) in Rhizosphere (Paddy Soil): Understanding Soil Signaling a N-Recycling for Increased Crop Production. , 2017, , 119-131.	ind		5
666	Root fungal colonisations of the understory grass Deschampsia flexuosa after top-canopy harvesting. Plant and Soil, 2017, 414, 171-180.	1.8	8	2
667	Adapted Biotroph Manipulation of Plant Cell Ploidy. Annual Review of Phytopathology, 201 537-564.	7, 55, 3.5	5	17
668	Translating Endophyte Research to Applications: Prospects and Challenges. , 2017, , 343-3	65.		5
670	Native communities of arbuscular mycorrhizal fungi associated with Capsicum annuum L. r soil properties and agronomic management under field conditions. Agriculture, Ecosystems Environment, 2017, 245, 43-51.	espond to s and 2.5	5	28
671	Interactions between phenolic compounds present in dry olive residues and the arbuscular mycorrhizal symbiosis. Mycological Progress, 2017, 16, 567-575.	0.5	5	0
672	How Plant Root Exudates Shape the Nitrogen Cycle. Trends in Plant Science, 2017, 22, 661	l-673. 4.3	3	322
673	Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 2017 1175-1178.	7, 356, 6.0	D	503
674	Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant div and productivity. New Phytologist, 2017, 215, 756-765.	versity 3.5	5	248
675	Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356	6,. 6.0	D	333
676	An empirical investigation of the possibility of adaptability of arbuscular mycorrhizal fungi t hosts. Mycorrhiza, 2017, 27, 553-563.	to new 1.3	3	9
677	Diversity and Benefits of Microorganisms from the Tropics. , 2017, , .			14
678	Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root coloniz arbuscular mycorrhizae fungi. Mycorrhiza, 2017, 27, 683-694.	ation of 1.3	3	3
679	Three cis-Regulatory Motifs, AuxRE, MYCRS1 and MYCRS2, are Required for Modulating the Mycorrhiza-Responsive Expression of a Tomato GH3 Gene. Plant and Cell Physiology, 2017		5	10
680	Small molecules belowâ€ground: the role of specialized metabolites in the rhizosphere. Pla 2017, 90, 788-807.	nt Journal, 2.8	3	193
681	Arbuscular Mycorrhizas and Stress Tolerance of Plants. , 2017, , .			39

# 682	ARTICLE Arbuscular Mycorrhizal Fungi as Potential Bioprotectants Against Aerial Phytopathogens and Pests. , 2017, , 195-223.	IF	Citations
683	Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Science and Plant Nutrition, 2017, 63, 127-136.	0.8	27
684	Evolutionary History of Subtilases in Land Plants and Their Involvement in Symbiotic Interactions. Molecular Plant-Microbe Interactions, 2017, 30, 489-501.	1.4	38
685	Mycorrhizas. , 2017, , 1-6.		18
686	Mycorrhizal Symbioses and Pedogenesis Throughout Earth's History. , 2017, , 9-33.		18
688	Mycorrhizas and Soil Aggregation. , 2017, , 241-262.		34
689	Magnitude, Dynamics, and Control of the Carbon Flow to Mycorrhizas. , 2017, , 375-393.		6
690	Middle–late Miocene palaeoenvironments, palynological data and a fossil fish Lagerstäte from the Central Kenya Rift (East Africa). Geological Magazine, 2017, 154, 24-56.	0.9	16
691	Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochemistry Reviews, 2017, 16, 677-692.	3.1	62
692	Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry. Phytochemistry Letters, 2017, 20, 520-539.	0.6	82
693	Trait-based representation of hydrological functional properties ofÂplants in weather and ecosystem models. Plant Diversity, 2017, 39, 1-12.	1.8	56
694	Deciphering interfungal relationships in the 410-million-yr-old Rhynie chert: Morphology and development of vesicle-colonizing microfungi. Geobios, 2017, 50, 9-22.	0.7	15
695	Arbuscular Mycorrhizal Fungal Association in Genetically Modified Droughtâ€Tolerant Corn. Journal of Environmental Quality, 2017, 46, 227-231.	1.0	14
697	Gaining Insight into Plant Responses to Beneficial and Pathogenic Microorganisms Using Metabolomic and Transcriptomic Approaches. , 2017, , 113-140.		4
698	Microbial Diversity of Tropical Andean Soils and Low-Input Sustainable Agriculture Development. , 2017, , 207-234.		1
699	Endophytes: Role and Functions in Crop Health. , 2017, , 291-310.		9
700	Arbuscular Mycorrhizal Symbiosis: A Promising Approach for Imparting Abiotic Stress Tolerance in Crop Plants. , 2017, , 377-402.		4
701	An Insight into Genetically Modified Crop-Mycorrhizal Symbiosis. , 2017, , 403-429.		2

ARTICLE IF CITATIONS Metagenomics of Plant Microbiomes., 2017, , 179-200. 702 7 Fungal community assemblages in a high elevation desert environment: Absence of dispersal limitation 4.2 and edaphic effects in surface soil. Soil Biology and Biochemistry, 2017, 115, 393-402. 705 Mycorrhizosphere Interactions to Improve a Sustainable Production of Legumes., 2017, , 199-225. 7 Continuum of root–fungal symbioses for plant nutrition. Proceedings of the National Academy of 706 Sciences of the United States of America, 2017, 114, 11574-11576. Interdependency of efficient nodulation and arbuscular mycorrhization in <i>Piptadenia 708 2.8 21 gonoacantha, </i> a Brazilian legume tree. Plant, Cell and Environment, 2018, 41, 2008-2020. Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Chemosphere, 2017, 187, 27-34. 4.2 Plant response to strigolactones: Current developments and emerging trends. Applied Soil Ecology, 710 2.1 44 2017, 120, 247-253. Rhizospheric fungi and their link with the nitrogenâ€fixing <i>Frankia</i> harbored in host plant 1.8 20 <i>Hippophae rhamnoides</i> L. Journal of Basic Microbiology, 2017, 57, 1055-1064. Understanding the Arbuscule at the Heart of Endomycorrhizal Symbioses in Plants. Current Biology, 712 1.8 176 2017, 27, R952-R963. Arbuscular Mycorrhizal Symbiosis and Its Role in Plant Nutrition in Sustainable Agriculture., 2017, 129-164. High-density genetic mapping identifies the genetic basis of a natural colony morphology mutant in 714 0.9 7 the root rot pathogen Armillaria ostoyae. Fungal Genetics and Biology, 2017, 108, 44-54. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3.3 143 E8118-E8127. Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular 716 2.1 40 mycorrhizal fungi: a soil microcosm study. Applied Soil Ecology, 2017, 119, 307-316. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings. Science of the Total Environment, 2017, 607-608, 168-175. Co-ordinated Changes in the Accumulation of Metal lons in Maize (Zea mays ssp. mays L.) in Response to 718 Inoculation with the Arbuscular Mycorrhizal Fungus Funneliformis mosseaé. Plant and Cell 27 1.5 Physiology, 2017, 58, 1689-1699. Application of Bioinoculants for Sustainable Agriculture., 2017, , 473-495. 720 Arbuscular Mycorrhizal Symbiosis: Genetic and Functional Diversity., 2017, 149-181. 2 External hyphae of <i>Rhizophagus irregularis</i> DAOM 197198 are less sensitive to low pH than roots in arbuscular mycorrhizae: evidence from axenic culture system. Environmental Microbiology Reports, 2017, 9, 649-657.

#	Article	IF	CITATIONS
723	Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis. Molecular Plant, 2017, 10, 1147-1158.	3.9	306
724	Rhizosphere Microorganisms: Application of Plant Beneficial Microbes in Biological Control of Weeds. Microorganisms for Sustainability, 2017, , 391-430.	0.4	7
725	Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 1901-1957.	6.6	133
726	Beneficial Microbes for Disease Suppression and Plant Growth Promotion. , 2017, , 395-432.		21
727	Hairy Root Composite Plant Systems in Root-Microbe Interaction Research. , 2017, , 17-44.		3
728	Phytomicrobiome: A Reservoir for Sustainable Agriculture. , 2017, , 117-132.		4
729	Calcium signatures and signaling events orchestrate plant–microbe interactions. Current Opinion in Plant Biology, 2017, 38, 173-183.	3.5	140
730	Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza, 2017, 27, 695-708.	1.3	28
731	Vesicular Arbuscular Mycorrhizal (VAM) fungi- as a major biocontrol agent in modern sustainable agriculture system. Russian Agricultural Sciences, 2017, 43, 138-143.	0.1	18
732	Terpenoids in plant and arbuscular mycorrhiza-reinforced defence against herbivorous insects. Annals of Botany, 2017, 119, mcw263.	1.4	78
733	Antifungal potential of marine natural products. European Journal of Medicinal Chemistry, 2017, 126, 631-651.	2.6	69
734	Genome-wide association mapping and agronomic impact of cowpea root architecture. Theoretical and Applied Genetics, 2017, 130, 419-431.	1.8	69
735	Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis. Mycorrhiza, 2017, 27, 139-146.	1.3	37
736	The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil. Applied and Environmental Microbiology, 2017, 83, .	1.4	10
737	Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Science of the Total Environment, 2017, 577, 84-93.	3.9	54
738	Emergence of plant and rhizospheric microbiota as stable interactomes. Protoplasma, 2017, 254, 617-626.	1.0	34
739	A comprehensive draft genome sequence for lupin (<i>Lupinus angustifolius</i>), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnology Journal, 2017, 15, 318-330.	4.1	153
740	Comparative phylogenomics of symbiotic associations. New Phytologist, 2017, 213, 89-94.	3.5	40

#	Article	IF	CITATIONS
741	Structural features of the aromatic/arginine constriction in the aquaglyceroporin GintAQPF2 are responsible for glycerol impermeability in arbuscular mycorrhizal symbiosis. Fungal Biology, 2017, 121, 95-102.	1.1	4
742	Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant. Journal of Soils and Sediments, 2017, 17, 841-851.	1.5	44
743	Longâ€ŧerm agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (<i><scp>H</scp>ordeum vulgare</i>) mycorrhizal carbon and phosphorus exchange. New Phytologist, 2017, 213, 874-885.	3.5	121
744	Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability, 2017, , .	0.4	14
745	Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Rice Production. Microorganisms for Sustainability, 2017, , 99-126.	0.4	11
746	Mycorrhizal Symbioses of Cotton Grown on Sodic Soils: A Review from an Australian Perspective. Pedosphere, 2017, 27, 1015-1026.	2.1	7
747	Potential for Developing Low-Input Sustainable Agriculture in the Tropical Andes by Making Use of Native Microbial Resources. , 2017, , 29-54.		3
748	Belowground Microbial Crosstalk and Rhizosphere Biology. , 2017, , 695-752.		6
749	Commonalities in Symbiotic Plant-Microbe Signalling. Advances in Botanical Research, 2017, , 187-221.	0.5	9
750	Enhancement of Drought Tolerance in Trifoliate Orange by Mycorrhiza: Changes in Root Sucrose and Proline Metabolisms. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 46, 270-276.	0.5	39
751	<htm>Phytohyperaccumulator-AMF (arbuscularmycorrhizal fungi) interaction in heavy metals detoxification of soil </htm> . Acta Biológica Paranaense, 2017, 46, .	0.1	2
752	The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants. Frontiers in Plant Science, 2017, 8, 124.	1.7	100
753	Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Increased Potassium Content and Expression of Genes Encoding Potassium Channels in Lycium barbarum. Frontiers in Plant Science, 2017, 8, 440.	1.7	40
754	Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla. Frontiers in Plant Science, 2017, 8, 1263.	1.7	13
755	Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities. Frontiers in Plant Science, 2017, 8, 1381.	1.7	34
756	Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. Agronomy, 2017, 7, 75.	1.3	98
757	Arbuscular Mycorrhizal Fungi Regulate the Growth and Phyto-Active Compound of Salvia miltiorrhiza Seedlings. Applied Sciences (Switzerland), 2017, 7, 68.	1.3	17
758	Congolese Rhizospheric Soils as a Rich Source of New Plant Growth-Promoting Endophytic Piriformospora Isolates. Frontiers in Microbiology, 2017, 08, 212.	1.5	20

#	Article	IF	CITATIONS
759	Interplay of Pathogen-Induced Defense Responses and Symbiotic Establishment in Medicago truncatula. Frontiers in Microbiology, 2017, 8, 973.	1.5	46
760	Engineering Mycorrhizal Symbioses to Alter Plant Metabolism and Improve Crop Health. Frontiers in Microbiology, 2017, 8, 1403.	1.5	53
761	Differential Signaling and Sugar Exchanges in Response to Avirulent Pathogen- and Symbiont-Derived Molecules in Tobacco Cells. Frontiers in Microbiology, 2017, 8, 2228.	1.5	5
762	Strigolactones. , 2017, , 327-359.		7
763	Mycorrhizal Fungi Regulate Root Responses and Leaf Physiological Activities in Trifoliate Orange. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 17-21.	0.5	11
764	Occurrence of arbuscular mycorrhizal fungi on King George Island, South Shetland Islands, Antarctica. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1737-1743.	0.3	10
765	Mycorrhiza and Common Mycorrhizal Network Regulate the Production of Signal Substances in Trifoliate Orange (Poncirus trifoliata). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 43-49.	0.5	5
766	Improvement of tree growth in salt-affected soils under greenhouse conditions using a combination of peanut shells and microbial inoculation. Journal of Agricultural Biotechnology and Sustainable Development, 2017, 9, 36-44.	0.3	5
768	Harnessing Useful Rhizosphere Microorganisms for Nematode Control. , 2017, , .		11
769	Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments. Acta Botanica Brasilica, 2017, 31, 295-308.	0.8	15
770	The Plant Cytoskeletons in Interactions between Plants and Obligate Biotrophs. Cytologia, 2017, 82, 341-348.	0.2	2
771	Endophytic Fungi and Bioactive Metabolites Production: An Update. , 2018, , 455-482.		15
772	Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. Plant and Cell Physiology, 2018, 59, 666-677.	1.5	21
773	Elevated <scp>CO</scp> ₂ and water addition enhance nitrogen turnover in grassland plants with implications for temporal stability. Ecology Letters, 2018, 21, 674-682.	3.0	20
774	What have we learnt from studying the evolution of the arbuscular mycorrhizal symbiosis?. Current Opinion in Plant Biology, 2018, 44, 49-56.	3.5	31
775	The Mycoheterotrophic Symbiosis Between Orchids and Mycorrhizal Fungi Possesses Major Components Shared with Mutualistic Plant-Mycorrhizal Symbioses. Molecular Plant-Microbe Interactions, 2018, 31, 1032-1047.	1.4	32
776	Mycorrhizal Network Connections, Water Reduction, and Neighboring Plant Species Differentially Impact Seedling Performance of Two Forest Wildflowers. International Journal of Plant Sciences, 2018, 179, 314-324.	0.6	5
777	The unspecificity of the relationships between the invasive Pennisetum setaceum and mycorrhizal fungi may provide advantages during its establishment at semiarid Mediterranean sites. Science of the Total Environment, 2018, 630, 1464-1471.	3.9	12

#	Article	IF	CITATIONS
778	Transcription factors network in root endosymbiosis establishment and development. World Journal of Microbiology and Biotechnology, 2018, 34, 37.	1.7	34
779	Impact of Rhizophagus irregularis MUCL 41833 on disease symptoms caused by Phytophthora infestans in potato grown under field conditions. Crop Protection, 2018, 107, 26-33.	1.0	30
780	Nitrogen fixation ability explains leaf chemistry and arbuscular mycorrhizal responses to fertilization. Plant Ecology, 2018, 219, 391-401.	0.7	4
781	Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi. DNA Research, 2018, 25, 217-227.	1.5	33
782	Strigolactones: new plant hormones in the spotlight. Journal of Experimental Botany, 2018, 69, 2205-2218.	2.4	72
783	Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum. Genome Biology and Evolution, 2018, 10, 629-645.	1.1	48
784	Differential responses to high soil chromium of two arbuscular mycorrhizal fungi communities isolated from Cr-polluted and non-polluted rhizospheres of Ricinus communis. Science of the Total Environment, 2018, 625, 1113-1121.	3.9	13
785	Transcriptional Regulation of Arbuscular Mycorrhiza Development. Plant and Cell Physiology, 2018, 59, 678-695.	1.5	86
786	Legume, Microbiome, and Regulatory Functions of miRNAs in Systematic Regulation of Symbiosis. Microorganisms for Sustainability, 2018, , 255-282.	0.4	8
787	Sugar compartmentation as an environmental stress adaptation strategy in plants. Seminars in Cell and Developmental Biology, 2018, 83, 106-114.	2.3	28
788	Fungi and fungal interactions in the Rhynie chert: a review of the evidence, with the description of <i>Perexiflasca tayloriana</i> gen. et sp. nov. ^{â€} . Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160500.	1.8	36
789	Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 2018, 93, 592-613.	2.8	370
790	Shared Genes but Not Shared Genetic Variation: Legume Colonization by Two Belowground Symbionts. American Naturalist, 2018, 191, 395-406.	1.0	13
791	Plant evolution: landmarks on the path to terrestrial life. New Phytologist, 2018, 217, 1428-1434.	3.5	236
792	Roles of bacteria in the bark beetle holobiont–Âhow do they shape this forest pest?. Annals of Applied Biology, 2018, 172, 111-125.	1.3	55
793	Tracking plant preference for higherâ€quality mycorrhizal symbionts under varying <scp>CO</scp> ₂ conditions over multiple generations. Ecology and Evolution, 2018, 8, 78-87.	0.8	19
794	Morphological and Physiological Aspects of Symbiotic Plant–Microbe Interactions and Their Significance. Soil Biology, 2018, , 367-407.	0.6	3
795	Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5229-5234.	3.3	90

#	Article	IF	CITATIONS
796	Calcium signals in the plant nucleus: origin and function. Journal of Experimental Botany, 2018, 69, 4165-4173.	2.4	46
797	Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. New Phytologist, 2018, 220, 996-1011.	3.5	84
798	Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regulation, 2018, 84, 207-223.	1.8	209
799	Plant species, mycorrhiza, and aphid age influence the performance and behaviour of a generalist. Ecological Entomology, 2018, 43, 37-46.	1.1	2
800	The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression. Plant Physiology, 2018, 176, 1598-1609.	2.3	36
801	Chemical signaling involved in plant–microbe interactions. Chemical Society Reviews, 2018, 47, 1652-1704.	18.7	149
802	<i>Nicotiana attenuata</i> 's capacity to interact with arbuscular mycorrhiza alters its competitive ability and elicits major changes in the leaf transcriptome. Journal of Integrative Plant Biology, 2018, 60, 242-261.	4.1	24
803	Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immunity, 2018, 24, 92-100.	1.1	75
804	Interactive effects of co-inoculation ofBradyrhizobium japonicumstrains and mycorrhiza species on soybean growth and nutrient contents in plant. Journal of Plant Nutrition, 2018, 41, 10-18.	0.9	5
805	Plant-symbiont interactions: the functional role of expansins. Symbiosis, 2018, 74, 1-10.	1.2	17
808	Exploring the Roles of Aquaporins in Plant–Microbe Interactions. Cells, 2018, 7, 267.	1.8	32
809	Symbiotic Microorganisms Enhance Antioxidant Defense in Plants Exposed to Metal/Metalloid-Contaminated Soils. , 2018, , 337-366.		5
810	Foliar application of Fe resonates to the belowground rhizosphere microbiome in Andean landrace potatoes. Applied Soil Ecology, 2018, 131, 89-98.	2.1	8
811	Convergent evolution of complex structures for ant–bacterial defensive symbiosis in fungus-farming ants. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10720-10725.	3.3	74
812	Aphid infestation in the phyllosphere affects primary metabolic profiles in the arbuscular mycorrhizal hyphosphere. Scientific Reports, 2018, 8, 14442.	1.6	13
813	Proline Accumulation Influenced by Osmotic Stress in Arbuscular Mycorrhizal Symbiotic Plants. Frontiers in Microbiology, 2018, 9, 2525.	1.5	149
814	Favorable effect of mycorrhizae on biomass production efficiency exceeds their carbon cost in a fertilization experiment. Ecology, 2018, 99, 2525-2534.	1.5	31
815	Carbon Sequestration and the Significance of Soil Fungi in the Process. , 2018, , 467-482.		3

#	Article	IF	CITATIONS
816	Effect of maize and peanut crops on Ivory Coast northern soil biological activities and their response to arbuscular mycorrhizal fungi inoculation. African Journal of Microbiology Research, 2018, 12, 171-180.	0.4	2
817	Unraveling the molecules hidden in the gray shadows of quantitative disease resistance to pathogens. Acta Biologica Colombiana, 2018, 23, 5-16.	0.1	6
818	The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytologist, 2018, 220, 982-995.	3.5	53
819	Mycorrhizal Markets, Firms, and Co-ops. Trends in Ecology and Evolution, 2018, 33, 777-789.	4.2	40
820	Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. Science, 2018, 361, .	6.0	339
821	Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality. Fungal Ecology, 2018, 34, 43-49.	0.7	50
822	Growth response of litchi to arbuscular mycorrhizal co-inoculation with Trichoderma viride, Azotobacter chroococcum and Bacillus megatarium. Indian Phytopathology, 2018, 71, 65-74.	0.7	9
823	Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annual Review of Phytopathology, 2018, 56, 135-160.	3.5	116
824	Natural Colonization of Rice by Arbuscular Mycorrhizal Fungi in Different Production Areas. Rice Science, 2018, 25, 169-174.	1.7	45
825	Cell remodeling and subtilase gene expression in the actinorhizal plant <i>Discaria trinervis</i> highlight host orchestration of intercellular <i>Frankia</i> colonization. New Phytologist, 2018, 219, 1018-1030.	3.5	29
826	Fern genomes elucidate land plant evolution and cyanobacterial symbioses. Nature Plants, 2018, 4, 460-472.	4.7	391
827	Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes. New Phytologist, 2018, 220, 1129-1134.	3.5	41
828	Importance of phosphorus supply through endophytic Metarhizium brunneum for root:shoot allocation and root architecture in potato plants. Plant and Soil, 2018, 430, 87-97.	1.8	17
829	Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the PHYTOENE SYNTHASE Gene Family. Frontiers in Plant Science, 2018, 9, 255.	1.7	53
830	IPD3 and IPD3L Function Redundantly in Rhizobial and Mycorrhizal Symbioses. Frontiers in Plant Science, 2018, 9, 267.	1.7	34
831	Domain Swap Approach Reveals the Critical Roles of Different Domains of SYMRK in Root Nodule Symbiosis in Lotus japonicus. Frontiers in Plant Science, 2018, 9, 697.	1.7	16
832	Belowground Inoculation With Arbuscular Mycorrhizal Fungi Increases Local and Systemic Susceptibility of Rice Plants to Different Pest Organisms. Frontiers in Plant Science, 2018, 9, 747.	1.7	52
833	Even flow? Changes of carbon and nitrogen release from pea roots over time. Plant and Soil, 2018, 431, 143-157.	1.8	19

#	Article	IF	CITATIONS
834	Fossils of Arbuscular Mycorrhizal Fungi Give Insights Into the History of a Successful Partnership With Plants. , 2018, , 461-480.		4
835	Looking for Arbuscular Mycorrhizal Fungi in the Fossil Record. , 2018, , 481-517.		12
836	Diversity and Co-occurrence Patterns of Soil Bacterial and Fungal Communities in Seven Intercropping Systems. Frontiers in Microbiology, 2018, 9, 1521.	1.5	132
837	Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Frontiers in Microbiology, 2018, 9, 91.	1.5	67
838	Reducing Water Availability Impacts the Development of the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis MUCL 41833 and Its Ability to Take Up and Transport Phosphorus Under in Vitro Conditions. Frontiers in Microbiology, 2018, 9, 1254.	1.5	6
839	Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Drought-Responsive Genes in Tissue-Specific Root Cells of Common Bean. Frontiers in Microbiology, 2018, 9, 1339.	1.5	40
840	Plant Growth-Promoting Rhizobacteria (PGPR): Perspective in Agriculture Under Biotic and Abiotic Stress. , 2018, , 333-342.		32
841	Symbiotic Tripartism in the Model Plant Family of Legumes and Soil Sustainability. , 2018, , 173-203.		1
842	Receptor-Like Kinase LYK9 in Pisum sativum L. Is the CERK1-Like Receptor that Controls Both Plant Immunity and AM Symbiosis Development. International Journal of Molecular Sciences, 2018, 19, 8.	1.8	60
843	Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 2018, 28, 779-785.	1.3	70
844	Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes, 2018, 9, 125.	1.0	93
845	Evidence of non-tandemly repeated rDNAs and their intragenomic heterogeneity in Rhizophagus irregularis. Communications Biology, 2018, 1, 87.	2.0	55
846	Evolutionary dynamics of mycorrhizal symbiosis in land plant diversification. Scientific Reports, 2018, 8, 10698.	1.6	51
847	Innate Immunity Engaged or Disengaged in Plant-Microbe Interactions â~†. , 2018, , 107-144.		0
848	Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. Symbiosis, 2018, 76, 265-275.	1.2	23
849	Comparative genomics of the nonlegume <i>Parasponia</i> reveals insights into evolution of nitrogen-fixing rhizobium symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4700-E4709.	3.3	253
850	Improvement of Verticillium Wilt Resistance by Applying Arbuscular Mycorrhizal Fungi to a Cotton Variety with High Symbiotic Efficiency under Field Conditions. International Journal of Molecular Sciences, 2018, 19, 241.	1.8	32
851	Fluoroquinolones metal complexation and its environmental impacts. Coordination Chemistry Reviews, 2018, 376, 46-61.	9.5	71

#	Article	IF	CITATIONS
852	Ultrastructural Imaging of <i>Salmonella</i> –Host Interactions Using Superâ€resolution Correlative Lightâ€Electron Microscopy of Bioorthogonal Pathogens. ChemBioChem, 2018, 19, 1766-1770.	1.3	19
854	Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME Journal, 2018, 12, 2339-2351.	4.4	153
855	Ca2+-regulated Ca2+ channels with an RCK gating ring control plant symbiotic associations. Nature Communications, 2019, 10, 3703.	5.8	34
856	Plant-Microbiome Interactions in Agroecosystem: An Application. , 2019, , 251-291.		3
857	Environmental pollution effects on plant microbiota: the case study of poplar bacterial-fungal response to silver nanoparticles. Applied Microbiology and Biotechnology, 2019, 103, 8215-8227.	1.7	21
858	Affirmative Plant-Microbe Interfaces Toward Agroecosystem Sustainability. , 2019, , 145-170.		3
859	Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity. Scientific Reports, 2019, 9, 11650.	1.6	107
860	A Concise Compilation of the Diverse Detection Methods to Study Plant-Microbe Interfaces at the Cellular and Molecular Level: The Past, Present and Future. , 2019, , 291-308.		2
861	Plant-Mycorrhizal and Plant-Rhizobial Interfaces: Underlying Mechanisms and Their Roles in Sustainable Agroecosystems. , 2019, , 27-67.		3
862	An anthocyanin marker for direct visualization of plant transformation and its use to study nitrogen-fixing nodule development. Journal of Plant Research, 2019, 132, 695-703.	1.2	9
863	The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil. Plant Ecology, 2019, 220, 789-800.	0.7	7
864	Mycorrhizal Mediated Micronutrients Transportation in Food Based Plants: A Biofortification Strategy. , 2019, , 1-24.		6
865	Recent Trends to Study the Functional Analysis of Mycorrhizosphere. , 2019, , 181-190.		7
866	Mycorrhiza Based Approaches for Soil Remediation and Abiotic Stress Management. , 2019, , 297-320.		0
867	Arbuscular Mycorrhizal Fungi Confer Salt Tolerance in Giant Reed (Arundo donax L.) Plants Grown Under Low Phosphorus by Reducing Leaf Na+ Concentration and Improving Phosphorus Use Efficiency. Frontiers in Plant Science, 2019, 10, 843.	1.7	33
868	Mycorrhizal Assisted Phytoremediation of Xenobiotics from Contaminated Soil. , 2019, , 53-59.		1
869	Strigolactones Play an Important Role in Shaping Exodermal Morphology via a KAI2-Dependent Pathway. IScience, 2019, 17, 144-154.	1.9	24
870	Metagenomics as a Tool to Explore Mycorrhizal Fungal Communities. , 2019, , 207-219.		3

	Сіт	TATION REPORT	
#	ARTICLE Fungal Diversity: Global Perspective and Ecosystem Dynamics. , 2019, , 83-113.	IF	CITATIONS
0/1			0
872	Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates. Soil and Tillage Research, 2019, 194, 104340.	2.6	33
873	Interactions and Coadaptation in Plant Metaorganisms. Annual Review of Phytopathology, 2019, 57, 483-503.	3.5	28
874	How Slow Rock Weathering Balances Nutrient Loss During Fast Forest Floor Turnover in Montane, Temperate Forest Ecosystems. Frontiers in Earth Science, 2019, 7, .	0.8	41
875	A protein complex required for polar growth of rhizobial infection threads. Nature Communications, 2019, 10, 2848.	5.8	72
876	Arbuscular Mycorrhizal Fungi in Alleviation of Cold Stress in Plants. , 2019, , 435-455.		8
878	A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. Molecular Plant, 2019, 12, 1561-1576.	3.9	106
879	Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula. PLoS ONE, 2019, 14, e0224938.	1.1	11
880	Microbial secondary metabolites and plant–microbe communications in the rhizosphere. , 2019, , 93	3-111.	5
881	The role of nutrient balance in shaping plant root-fungal interactions: facts and speculation. Current Opinion in Microbiology, 2019, 49, 90-96.	2.3	23
882	Ramf: An Open-Source R Package for Statistical Analysis and Display of Quantitative Root Colonizatior by Arbuscular Mycorrhiza Fungi. Frontiers in Plant Science, 2019, 10, 1184.	ז 1.7	3
883	Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Frontiers in Plant Science, 2019, 10, 1172.	1.7	85
884	Bioactive Molecules in Plant Defense. , 2019, , .		9
885	Plant Identity Shaped Rhizospheric Microbial Communities More Strongly Than Bacterial Bioaugmentation in Petroleum Hydrocarbon-Polluted Sediments. Frontiers in Microbiology, 2019, 10, 2144.	1.5	28
886	Astrobiologie - die Suche nach außerirdischem Leben. , 2019, , .		2
887	Arbuscular Mycorrhizal Fungus Improves Rhizobium–Glycyrrhiza Seedling Symbiosis under Drought Stress. Agronomy, 2019, 9, 572.	1.3	28
888	Phosphoproteomic changes in root cells of Poncirus trifoliata (L.) Raf. induced by Rhizophagus intraradices inoculation. Tree Genetics and Genomes, 2019, 15, 1.	0.6	1
889	Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses a systematic review and meta-analysis. FEMS Microbiology Letters, 2019, 366, .	s: 0.7	63

ARTICLE IF CITATIONS # Neglecting plantâ€"microbe symbioses leads to underestimation of modeled climate impacts. 890 1.3 20 Biogeosciences, 2019, 16, 457-465. A first glimpse at genes important to the Azolla–Nostoc symbiosis. Symbiosis, 2019, 78, 149-162. 1.2 Dysfunction in the arbuscular mycorrhizal symbiosis has consistent but small effects on the 892 3.5 16 establishment of the fungal microbiota inLotus japonicus. New Phytologist, 2019, 224, 409-420. Isotope fractionation during root water uptake by Acacia caven is enhanced by arbuscular 1.8 mycorrhizas. Plant and Soil, 2019, 441, 485-497. Plant-mycorrhizal fungi interaction and response to inoculation with different growth-promoting 894 0.9 19 fungi. Pesquisa Agropecuaria Brasileira, 2019, 54, . Plant–Microbe Symbiosis: What Has Proteomics Taught Us?. Proteomics, 2019, 19, e1800105. 1.3 Density and Diversity of Microbial Symbionts under Organic and Conventional Agricultural 896 0.7 9 Management. Microbes and Environments, 2019, 34, 234-243. Arbuscular Mycorrhizal Symbiosis Affects Plant Immunity to Viral Infection and Accumulation. 1.5 38 Viruses, 2019, 11, 534. Variation in arbuscular mycorrhizal fungal communities associated with lowland rice (Orvza sativa) 898 along a gradient of soil salinity and arsenic contamination in Bangladesh. Science of the Total 3.9 33 Environment, 2019, 686, 546-554. Diversity, Ecology, and Significance of Fungal Endophytes. Reference Series in Phytochemistry, 2019, , 899 0.2 61-100 Beneficial Plant Microbe Interactions and Their Effect on Nutrient Uptake, Yield, and Stress Resistance 900 7 of Soybeans., 0,,. Bioirrigation: a common mycorrhizal network facilitates the water transfer from deep-rooted pigeon 1.8 pea to shallow-rooted finger millet under drought. Plant and Soil, 2019, 440, 277-292. Understanding dynamics of Rhizophagus irregularis ontogenesis in axenically developed coculture 902 1.8 2 through basic and advanced microscopic techniques. Journal of Basic Microbiology, 2019, 59, 767-774. Climate Change and Secondary Metabolism in Plants: Resilience to Disruption., 2019, , 95-131. How Do Strigolactones Ameliorate Nutrient Deficiencies in Plants?. Cold Spring Harbor Perspectives 904 2.319 in Biology, 2019, 11, a034686. Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species. Functional Plant Biology, 2019, 46, 732. 1.1 Contribution of Arbuscular Mycorrhizal Fungi in Promoting Cadmium Tolerance in Plants., 2019,, 906 7 553-586. Role of Grazing Intensity on Shaping Arbuscular Mycorrhizal Fungi Communities in Patagonian 1.1 Semiarid Steppes. Rangeland Ecology and Management, 2019, 72, 692-699.

#	Article	IF	CITATIONS
908	Symbiotic Root-Endophytic Soil Microbes Improve Crop Productivity and Provide Environmental Benefits. Scientifica, 2019, 2019, 1-25.	0.6	124
909	Endoplasmic Reticulum Plays a Critical Role in Integrating Signals Generated by Both Biotic and Abiotic Stress in Plants. Frontiers in Plant Science, 2019, 10, 399.	1.7	62
910	Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant <i>Arabidopsis thaliana</i> switches from initial detection to antagonism. New Phytologist, 2019, 223, 867-881.	3.5	49
911	Biological Control Agents Against Fusarium Wilt of Banana. Frontiers in Microbiology, 2019, 10, 616.	1.5	179
912	Molecular Signalling During the Ectomycorrhizal Symbiosis. , 2019, , 95-109.		3
913	Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Scientific Reports, 2019, 9, 3360.	1.6	14
915	Factors Influencing Leaf- and Root-Associated Communities of Bacteria and Fungi Across 33 Plant Orders in a Grassland. Frontiers in Microbiology, 2019, 10, 241.	1.5	51
916	Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop and Pasture Science, 2019, 70, 218.	0.7	49
917	Mechanisms and Impact of Symbiotic Phosphate Acquisition. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034603.	2.3	53
918	The role of plant–mycorrhizal mutualisms in deterring plant invasions: Insights from an individualâ€based model. Ecology and Evolution, 2019, 9, 2018-2030.	0.8	8
919	Effects of re-vegetation type and arbuscular mycorrhizal fungal inoculation on soil enzyme activities and microbial biomass in coal mining subsidence areas of Northern China. Catena, 2019, 177, 202-209.	2.2	55
920	Effect of arbuscular mycorrhizal fungi on rhizosphere organic acid content and microbial activity of trifoliate orange under different low P conditions. Archives of Agronomy and Soil Science, 2019, 65, 2029-2042.	1.3	12
922	Agricultural Applications of Endophytic Microflora. , 2019, , 385-403.		2
923	Strigolactones as Plant Hormones. , 2019, , 47-87.		9
924	An arbuscular mycorrhizal fungus and a root pathogen induce different volatiles emitted by Medicago truncatula roots. Journal of Advanced Research, 2019, 19, 85-90.	4.4	21
925	A global coexpression network of soybean genes gives insights into the evolution of nodulation in nonlegumes and legumes. New Phytologist, 2019, 223, 2104-2119.	3.5	21
926	Chemical Warfare in the Plant Microbiome Leads to a Balance of Antagonisms and a Healthy Plant. , 2019, , 171-189.		5
927	Flowering plant immune repertoires expand under mycorrhizal symbiosis. Plant Direct, 2019, 3, e00125.	0.8	2

#	Article	IF	CITATIONS
928	Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Archives of Microbiology, 2019, 201, 723-735.	1.0	52
929	Strigolactones - Biology and Applications. , 2019, , .		13
930	Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Frontiers in Plant Science, 2019, 10, 157.	1.7	540
931	A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 2019, 33, 540-552.	1.7	292
932	Diverse role of Î ³ -aminobutyric acid in dynamic plant cell responses. Plant Cell Reports, 2019, 38, 847-867.	2.8	120
933	Mycorrhiza-Induced Resistance in Potato Involves Priming of Defense Responses Against Cabbage Looper (Noctuidae: Lepidoptera). Environmental Entomology, 2019, 48, 370-381.	0.7	52
934	Local endoreduplication as a feature of intracellular fungal accommodation in arbuscular mycorrhizas. New Phytologist, 2019, 223, 430-446.	3.5	25
935	Genetic analysis of tomato root colonization by arbuscular mycorrhizal fungi. Annals of Botany, 2019, 124, 933-946.	1.4	22
936	Impacts of Invasive Plants on Soil Fungi and Implications for Restoration. , 0, , .		1
937	Effects of arbuscular mycorrhiza and irrigation frequencies on nutrient uptake and growth parameters of Pelargonium reniforme Curtis. Acta Horticulturae, 2019, , 149-158.	0.1	1
938	Effect of aboveground plant conditioner treatment on arbuscular mycorrhizal colonization of tomato and pepper. Zahradnictvi (Prague, Czech Republic: 1992), 2019, 46, 208-214.	0.3	2
939	Inoculation with the mycorrhizal fungus <i>Rhizophagus irregularis</i> modulates the relationship between root growth and nutrient content in maize (<i>Zea mays</i> ssp. <i>mays</i> L.). Plant Direct, 2019, 3, e00192.	0.8	19
940	Agent Based Modeling of the Rhizobiome with Molecular Communication and Game Theory. , 2019, , .		0
941	Chitotetraose activates the fungal-dependent endosymbiotic signaling pathway in actinorhizal plant species. PLoS ONE, 2019, 14, e0223149.	1.1	2
942	Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biology, 2019, 17, 99.	1.7	114
943	Mycorrhiza Regulates Signal Substance Levels and Pathogen Defense Gene Expression to Resist Citrus Canker. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, 1161-1167.	0.5	7
944	Symbiosis Signaling: Solanaceae Symbiotic LCO Receptors Are Functional for Rhizobium Perception in Legumes. Current Biology, 2019, 29, R1312-R1314.	1.8	1
945	LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes. Current Biology, 2019, 29, 4249-4259.e5.	1.8	41

#	Article	IF	CITATIONS
946	Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. New Phytologist, 2019, 221, 1036-1048.	3.5	38
947	Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science, 2019, 65, 1316-1330.	1.3	67
948	The Influence of Bt Maize Cultivation on Communities of Arbuscular Mycorrhizal Fungi Revealed by MiSeq Sequencing. Frontiers in Microbiology, 2018, 9, 3275.	1.5	15
949	Nutrient exchange in arbuscular mycorrhizal symbiosis from a thermodynamic point of view. New Phytologist, 2019, 222, 1043-1053.	3.5	19
950	The symbiotic role of the actin filament cytoskeleton. New Phytologist, 2019, 221, 611-613.	3.5	4
951	Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (<i>Poncirus trifoliata</i>). Journal of Integrative Plant Biology, 2019, 61, 1099-1111.	4.1	29
952	Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Applied Microbiology and Biotechnology, 2019, 103, 643-657.	1.7	40
953	LACK OF SYMBIONT ACCOMMODATION controls intracellular symbiont accommodation in root nodule and arbuscular mycorrhizal symbiosis in Lotus japonicus. PLoS Genetics, 2019, 15, e1007865.	1.5	23
955	Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health. Forests, 2019, 10, 42.	0.9	137
956	Diversity, Ecology, and Significance of Fungal Endophytes. Reference Series in Phytochemistry, 2019, , 1-40.	0.2	0
957	Lipoâ€chitooligosaccharides promote lateral root formation and modify auxin homeostasis in Brachypodium distachyon. New Phytologist, 2019, 221, 2190-2202.	3.5	17
958	The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 2019, 9, 18-26.	1.4	59
959	Arbuscular mycorrhizal fungi increase grain yields: a metaâ€analysis. New Phytologist, 2019, 222, 543-555.	3.5	187
960	Diversity, Ecology, and Significance of Fungal Endophytes. Reference Series in Phytochemistry, 2019, , 1-40.	0.2	0
961	The plant microbiome: A missing link for the understanding of community dynamics and multifunctionality in forest ecosystems. Applied Soil Ecology, 2020, 145, 103345.	2.1	22
962	Do native plant associations with arbuscular mycorrhizal fungi and dark septate endophytes differ between reconstructed and remnant coastal dunes?. Plant Ecology, 2020, 221, 757-771.	0.7	10
963	Analysis of soil bacterial communities associated with genetically modified drought-tolerant corn. Applied Soil Ecology, 2020, 146, 103375.	2.1	9
964	Linking lipid transfer with reduced arbuscule formation in tomato roots colonized by arbuscular mycorrhizal fungus under low pH stress. Environmental Microbiology, 2020, 22, 1036-1051.	1.8	20

#	Article		CITATIONS
965	Effect of floristic composition and configuration on plant root mycobiota: a landscape transposition at a small scale. New Phytologist, 2020, 225, 1777-1787.	3.5	10
966	The Diversity of Associated Microorganisms in Different Organs and Rhizospheric Soil of Arctium lappa L Current Microbiology, 2020, 77, 746-754.	1.0	6
967	A Roadmap toward Engineered Nitrogen-Fixing Nodule Symbiosis. Plant Communications, 2020, 1, 100019.	3.6	44
968	Fertilityâ€related interplay between fungal guilds underlies plant richness–productivity relationships in natural grasslands. New Phytologist, 2020, 226, 1129-1143.	3.5	46
969	Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. Theoretical and Applied Genetics, 2020, 133, 1365-1384.	1.8	58
970	Mycorrhizal inoculation mitigates damage from an intermediate, but not severe, frost event for a cool-season perennial bunchgrass. Botany, 2020, 98, 127-135.	0.5	0
975	Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula under lead stress. Environmental and Experimental Botany, 2020, 171, 103950.	2.0	25
976	Effect of inoculation with native and commercial arbuscular mycorrhizal fungi on growth and mycorrhizal colonization of olive (Olea europaea L.). Scientia Horticulturae, 2020, 261, 108969.	1.7	23
977	Gibberellin Promotes Fungal Entry and Colonization during Paris-Type Arbuscular Mycorrhizal Symbiosis in Eustoma grandiflorum. Plant and Cell Physiology, 2020, 61, 565-575.	1.5	18
978	MLO Differentially Regulates Barley Root Colonization by Beneficial Endophytic and Mycorrhizal Fungi. Frontiers in Plant Science, 2019, 10, 1678.	1.7	25
979	Carbonic anhydrase modification for carbon management. Environmental Science and Pollution Research, 2020, 27, 1294-1318.	2.7	12
981	Assessment of Polygala paniculata (Polygalaceae) characteristics for evolutionary studies of legume–rhizobia symbiosis. Journal of Plant Research, 2020, 133, 109-122.	1.2	3
982	Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytologist, 2020, 225, 1852-1872.	3.5	42
983	The Protective Role of 28-Homobrassinolide and Glomus versiforme in Cucumber to Withstand Saline Stress. Plants, 2020, 9, 42.	1.6	6
984	A mycorrhizaâ€specific H ⁺ â€ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant, Cell and Environment, 2020, 43, 1069-1083.	2.8	31
985	Ménage à Trois: Unraveling the Mechanisms Regulating Plant–Microbe–Arthropod Interactions. Trends in Plant Science, 2020, 25, 1215-1226.	4.3	31
986	Systemic induction of phosphatidylinositol-based signaling in leaves of arbuscular mycorrhizal rice plants. Scientific Reports, 2020, 10, 15896.	1.6	13
987	Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity, 2020, 12, 370.	0.7	198

#	Article	IF	CITATIONS
988	Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiological Research, 2020, 241, 126589.	2.5	64
989	Duplication of Symbiotic Lysin Motif Receptors Predates the Evolution of Nitrogen-Fixing Nodule Symbiosis. Plant Physiology, 2020, 184, 1004-1023.	2.3	26
990	Wild Isolates of Neurospora crassa Reveal Three Conidiophore Architectural Phenotypes. Microorganisms, 2020, 8, 1760.	1.6	2
991	Species-Specific Interactions of Bacillus Innocula and Arbuscular Mycorrhizal Fungi Symbiosis with Winter Wheat. Microorganisms, 2020, 8, 1795.	1.6	5
992	Detecting the colonization of ericoid mycorrhizal fungi in Vaccinium uliginosum using in situ polymerase chain reaction and green fluorescent protein. Plant Methods, 2020, 16, 102.	1.9	1
993	Glomus. , 2020, , 561-569.		1
994	The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. South African Journal of Botany, 2020, 134, 126-134.	1.2	61
995	Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale <i>Lotus japonicus</i> Gifu genome sequence. DNA Research, 2020, 27, .	1.5	35
996	A Systematic Review of the Effects of Arbuscular Mycorrhizal Fungi on Root-Lesion Nematodes, Pratylenchus spp Frontiers in Plant Science, 2020, 11, 923.	1.7	25
997	The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiology and Biochemistry, 2020, 155, 437-443.	2.8	21
998	Parasitism within mutualist guilds explains the maintenance of diversity in multi-species mutualisms. Theoretical Ecology, 2020, 13, 615-627.	0.4	8
999	Chemotactic Host-Finding Strategies of Plant Endoparasites and Endophytes. Frontiers in Plant Science, 2020, 11, 1167.	1.7	16
1000	Arbuscular Mycorrhizal Symbiosis Enhances Photosynthesis in the Medicinal Herb Salvia fruticosa by Improving Photosystem II Photochemistry. Plants, 2020, 9, 962.	1.6	42
1001	Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. International Journal of Molecular Sciences, 2020, 21, 8052.	1.8	25
1002	Influence of Funneliformis mosseae enhanced with titanium dioxide nanoparticles (TiO2NPs) on Phaseolus vulgaris L. under salinity stress. PLoS ONE, 2020, 15, e0235355.	1.1	29
1003	Ridgeâ€furrow and filmâ€mulching sowing practices enhance enzyme activity and alter fungi communities. Agronomy Journal, 2020, 112, 4775-4787.	0.9	10
1004	Effects of drought and mycorrhiza on wheat and aphid infestation. Ecology and Evolution, 2020, 10, 10481-10491.	0.8	21
1005	A Meta-Analytical Approach on Arbuscular Mycorrhizal Fungi Inoculation Efficiency on Plant Growth and Nutrient Uptake. Agriculture (Switzerland), 2020, 10, 370.	1.4	24

#	Article		CITATIONS
1006	Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata). Scientific Reports, 2020, 10, 12260.	1.6	27
1007	High Aluminum Drives Different Rhizobacterial Communities Between Aluminum-Tolerant and Aluminum-Sensitive Wild Soybean. Frontiers in Microbiology, 2020, 11, 1996.	1.5	22
1008	miCROPe 2019 – emerging research priorities towards microbe-assisted crop production. FEMS Microbiology Ecology, 2020, 96, .	1.3	12
1010	MtCOPT2 is a Cu+ transporter specifically expressed in Medicago truncatula mycorrhizal roots. Mycorrhiza, 2020, 30, 781-788.	1.3	15
1011	Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 2020, 9, 1011.	1.6	151
1012	Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. Agronomy, 2020, 10, 1209.	1.3	124
1013	Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome. Metabolites, 2020, 10, 335.	1.3	125
1014	Symbiotic Regulatory Genes Controlling Nodule Development in Pisum sativum L. Plants, 2020, 9, 1741.	1.6	19
1015	Ecosystem Functions of Microbial Consortia in Sustainable Agriculture. Agronomy, 2020, 10, 1902.	1.3	30
1016	Mycorrhizal Interventions for Sustainable Potato Production in Africa. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	11
1017	Transcriptome Analysis of Alternative Splicing Events Induced by Arbuscular Mycorrhizal Fungi (Rhizophagus irregularis) in Pea (Pisum sativum L.) Roots. Plants, 2020, 9, 1700.	1.6	10
1018	The Influence of Mycorrhizal Fungi on the Accumulation of Sennosides A and B in Senna alexandrina and Senna italica. Separations, 2020, 7, 65.	1.1	2
1019	Do mycorrhizae influence cover crop biomass production?. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2020, 70, 657-666.	0.3	4
1020	Fertility Impact of Separate and Combined Treatments with Biochar, Sewage Sludge Compost and Bacterial Inocula on Acidic Sandy Soil. Agronomy, 2020, 10, 1612.	1.3	9
1021	Regulators of nitric oxide signaling triggered by host perception in a plant pathogen. Proceedings of the United States of America, 2020, 117, 11147-11157.	3.3	31
1022	Natural Products as Fungicide and Their Role in Crop Protection. , 2020, , 131-219.		34
1023	Response of the arbuscular mycorrhizal fungi diversity and community in maize and soybean rhizosphere soil and roots to intercropping systems with different nitrogen application rates. Science of the Total Environment, 2020, 740, 139810.	3.9	68
1024	Combination of Mycorrhizal Symbiosis and Root Grafting Effectively Controls Nematode in Replanted Coffee Soil. Plants, 2020, 9, 555.	1.6	10

#	Article	IF	CITATIONS
1025	Inhibiting Protein Prenylation with Benzoxaboroles to Target Fungal Plant Pathogens. ACS Chemical Biology, 2020, 15, 1930-1941.	1.6	6
1026	Arbuscular Mycorrhizal Fungi Mitigate Nitrogen Leaching under Poplar Seedlings. Forests, 2020, 11, 325.	0.9	11
1027	Biotic and Environmental Drivers of Plant Microbiomes Across a Permafrost Thaw Gradient. Frontiers in Microbiology, 2020, 11, 796.	1.5	20
1028	Arbuscular mycorrhiza, a fungal perspective. , 2020, , 241-258.		1
1029	Mixed Plantations of Eucalyptus and Leguminous Trees. , 2020, , .		3
1030	Significance of mycorrhizal associations for the performance of N2-fixing Black Locust (Robinia) Tj ETQq1 1 0.784	1314 rgBT	/Qyerlock 1
1031	A plant's diet, surviving in a variable nutrient environment. Science, 2020, 368, .	6.0	241
1032	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	4.7	225
1033	The Full-Size ABCG Transporter of Medicago truncatula Is Involved in Strigolactone Secretion, Affecting Arbuscular Mycorrhiza. Frontiers in Plant Science, 2020, 11, 18.	1.7	43
1034	The arbuscular mycorrhizal fungus Rhizophagus intraradices and other microbial groups affect plant species in a copper-contaminated post-mining soil. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126594.	1.5	6
1035	<i>Archaeosporites rhyniensis</i> gen. et sp. nov. (Glomeromycota, Archaeosporaceae) from the Lower Devonian Rhynie chert: a fungal lineage morphologically unchanged for more than 400 million years. Annals of Botany, 2020, 126, 915-928.	1.4	12
1036	<i>Piriformospora indica</i> symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems. Plant Signaling and Behavior, 2020, 15, 1722447.	1.2	56
1037	An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nature Plants, 2020, 6, 280-289.	4.7	150
1038	Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza, 2020, 30, 63-77.	1.3	17
1039	Claroideoglomus etunicatum reduces leaf spot incidence and improves drought stress resistance in perennial ryegrass. Australasian Plant Pathology, 2020, 49, 147-157.	0.5	6
1040	Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae. Journal of Experimental Botany, 2020, 71, 3270-3278.	2.4	23
1041	Evo-physio: on stress responses and the earliest land plants. Journal of Experimental Botany, 2020, 71, 3254-3269.	2.4	107
1042	Mycorrhizas in fruit nutrition: Important breakthroughs. , 2020, , 339-351.		1

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1043	Nod factor signaling in symbiotic nodulation. Advances in Botanical Research, 2020, 94	4, 1-39.	0.5	17
1044	Orchids and their mycorrhizal fungi: an insufficiently explored relationship. Mycorrhiza 5-22.	, 2020, 30,	1.3	57
1045	An endophytic <i>Fusarium</i> –legume association is partially dependent on the co signalling pathway. New Phytologist, 2020, 226, 1429-1444.	mmon symbiotic	3.5	23
1046	Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease and Plant Growth Promotion. Frontiers in Plant Science, 2019, 10, 1741.	e Suppression	1.7	354
1047	Building de novo reference genome assemblies of complex eukaryotic microorganisms nuclei. Scientific Reports, 2020, 10, 1303.	from single	1.6	22
1048	The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosyn Nature Communications, 2020, 11, 2114.	nthesis in rice.	5.8	101
1049	Receptor-Like Kinases Sustain Symbiotic Scrutiny. Plant Physiology, 2020, 182, 1597-1	.612.	2.3	34
1050	Spatial Patterns of Soil Fungal Communities Are Driven by Dissolved Organic Matter (E Semi-Arid Regions. Microbial Ecology, 2021, 82, 202-214.	OOM) Quality in	1.4	18
1051	Arbuscular mycorrhizal fungal species identity governs plant water content and soil ag improvements under wet-dry climate conditions. Environmental Science and Pollution 27, 37377-37383.	gregation Research, 2020,	2.7	5
1052	Fluxes of nutrients in mycorrhiza: what has fluxomics taught us in the plant-fungus int 2021, , 241-260.	eraction?. ,		1
1053	Multi-species relationships in legume roots: From pairwise legume-symbiont interaction – microbiome – soil continuum. FEMS Microbiology Ecology, 2021, 97, .	ns to the plant	1.3	18
1054	Allelopathy is pervasive in invasive plants. Biological Invasions, 2021, 23, 367-371.		1.2	75
1055	Diagnose of Indigenous Arbuscular Mycorrhizal Communities Associated to Cynara car var. altilis and var. sylvestris. Current Microbiology, 2021, 78, 190-197.	dunculus L.	1.0	1
1056	Rare taxa maintain the stability of crop mycobiomes and ecosystem functions. Environ Microbiology, 2021, 23, 1907-1924.	mental	1.8	132
1057	Demarcating cognition: the cognitive life sciences. SynthÃ^se, 2021, 198, 137-157.		0.6	11
1058	Mechanisms of the phytomicrobiome for enhancing soil fertility and health. , 2021, , 1-	14.		5
1059	Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia–le Molecular Plant, 2021, 14, 503-516.	gume symbiosis.	3.9	56
1060	Ecological restoration methods influence the structure of arbuscular mycorrhizal funga communities in degraded drylands. Pedobiologia, 2021, 84, 150690.	al	0.5	11

#	Article	IF	CITATIONS
1061	Precipitation exerts a strong inï¬,uence on arbuscular mycorrhizal fungi community and network complexity in a semiarid steppe ecosystem. European Journal of Soil Biology, 2021, 102, 103268.	1.4	13
1062	Friends, neighbours and enemies: an overview of the communal and social biology of plants. Plant, Cell and Environment, 2021, 44, 997-1013.	2.8	46
1063	Hormones as goâ€betweens in plant microbiome assembly. Plant Journal, 2021, 105, 518-541.	2.8	115
1064	Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytologist, 2021, 230, 116-128.	3.5	50
1065	Cultivarâ€dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO ₂ . Plants People Planet, 2021, 3, 553-566.	1.6	12
1066	Phosphate availability and ectomycorrhizal symbiosis with Pinus sylvestris have independent effects on the Paxillus involutus transcriptome. Mycorrhiza, 2021, 31, 69-83.	1.3	7
1067	Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Biology and Fertility of Soils, 2021, 57, 47-64.	2.3	33
1068	Endophytic strains of <i>Trichoderma</i> increase plants' photosynthetic capability. Journal of Applied Microbiology, 2021, 130, 529-546.	1.4	95
1070	Unravelling Microbial Nitrogen Pathway in Rhizosphere. Soil Biology, 2021, , 163-177.	0.6	0
1071	Mycorrhizal symbioses. , 2021, , 303-325.		2
1072	Friends in low places: Soil derived microbial inoculants for biostimulation and biocontrol in crop production. , 2021, , 15-31.		5
1073	Rhizosphere. , 2021, , 269-301.		2
1074	Mucoromycotina Fungi Possess the Ability to Utilize Plant Sucrose as a Carbon Source: Evidence From Gongronella sp. w5. Frontiers in Microbiology, 2020, 11, 591697.	1.5	3
1075	Mutualism as a Source of Evolutionary Innovation: Insights from Insect-Plant Interactions. , 2021, , 307-332.		2
1076	Endophytic Actinobacteria Associated with Mycorrhizal Spores and Their BenefitsÂto Plant Growth. Sustainable Development and Biodiversity, 2021, , 229-246.	1.4	1
1077	A Novel Signaling Pathway Required for Arabidopsis Endodermal Root Organization Shapes the Rhizosphere Microbiome. Plant and Cell Physiology, 2021, 62, 248-261.	1.5	17
1078	Sulfur transfer from the endophytic fungus <i>Serendipita indica</i> improves maize growth and requires the sulfate transporter SiSulT. Plant Cell, 2021, 33, 1268-1285.	3.1	37
1079	MicroRNAs and abiotic stress tolerance in legumes. , 2021, , 303-336.		0

		CITATION REP	ORT	
#	Article		IF	CITATIONS
1080	Rhizosphere Metagenomics: Methods and Challenges. Rhizosphere Biology, 2021, , 1-20.		0.4	0
1082	Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi. Mycorrhi 2021, 31, 137-148.	2a,	1.3	18
1083	Impact of increasing chromium (VI) concentrations on growth, phosphorus and chromium upta maize plants associated to the mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Heliyo 7, e05891.		1.4	9
1084	Nod factor signaling in legume-Rhizobium symbiosis: Specificity and molecular genetics of nod signaling. , 2021, , 33-67.	factor		0
1085	Exogenous Aspergillus aculeatus Enhances Drought and Heat Tolerance of Perennial Ryegrass. Frontiers in Microbiology, 2021, 12, 593722.		1.5	8
1086	A comparison of the arbuscular mycorrhizal fungal communities among Bangladeshi modern hi yielding and traditional rice varieties. Plant and Soil, 2021, 462, 109-124.	gh	1.8	14
1087	Potential Effects of Microplastic on Arbuscular Mycorrhizal Fungi. Frontiers in Plant Science, 20 12, 626709.	21,	1.7	41
1088	Uncovering cognitive similarities and differences, conservation and innovation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200458.		1.8	29
1089	Serendipita indica changes host sugar and defense status in Arabidopsis thaliana: cooperation exploitation?. Planta, 2021, 253, 74.	or	1.6	18
1090	Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Ch Frontiers in Microbiology, 2021, 12, 574060.	iitin.	1.5	16
1091	Glomalin – Truths, myths, and the future of this elusive soil glycoprotein. Soil Biology and Biochemistry, 2021, 153, 108116.		4.2	82
1092	Evolution and biogeography of actinorhizal plants and legumes: A comparison. Journal of Ecolo 2021, 109, 1098-1121.	gy,	1.9	39
1094	Biodiversity Arbuscular Mycorrhizal Fungi in the Former Gold Mine Area in North Sumatra. Jourr Physics: Conference Series, 2021, 1819, 012045.	al of	0.3	2
1095	Invasionâ€induced root–fungal disruptions alter plant water and nitrogen economies. Ecolog 2021, 24, 1145-1156.	y Letters,	3.0	7
1096	Smart fertilizers: What should we mean and where should we go?. Italian Journal of Agronomy, 16, .	2021,	0.4	10
1097	Impacts of Arbuscular Mycorrhizal Fungi on Rice Growth, Development, and Stress Managemer a Particular Emphasis on Strigolactone Effects on Root Development. Communications in Soil S and Plant Analysis, 2021, 52, 1591-1621.	t With cience	0.6	21
1098	Comprehensive Assessment of Ameliorative Effects of AMF in Alleviating Abiotic Stress in Toma Plants. Journal of Fungi (Basel, Switzerland), 2021, 7, 303.	to	1.5	28
1099	Arbuscular mycorrhizal fungus modulates vulnerability to xylem cavitation of Populus × canad â€~Neva' under drought stress. Pakistan Journal of Botany, 2021, 53, .	lensis	0.2	1

#	Article	IF	CITATIONS
1101	Nanotechnology in plants: recent advances and challenges. Journal of Chemical Technology and Biotechnology, 2021, 96, 2095-2108.	1.6	31
1102	Aggregation of a Ferruginous Nodular Gleysol in a pasture area in Cuba, under the influence of Arbuscular mycorrhizal fungi associated with hybrid Urochloa. Soil and Tillage Research, 2021, 208, 104905.	2.6	3
1103	Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Scientia Horticulturae, 2021, 280, 109933.	1.7	25
1104	The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis. Current Biology, 2021, 31, 1570-1577.e4.	1.8	30
1106	Assessing the Impact of Rice Cultivation and Off-Season Period on Dynamics of Soil Enzyme Activities and Bacterial Communities in Two Agro-Ecological Regions of Mozambique. Agronomy, 2021, 11, 694.	1.3	7
1108	An endophytic bacterial strain, Enterobacter cloacae TMX-6, enhances the degradation of thiamethoxam in rice plants. Chemosphere, 2021, 269, 128751.	4.2	16
1109	Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization. Horticulture Research, 2021, 8, 84.	2.9	11
1110	Soil Zn Fertilization and Inoculation with Arbuscular Mycorrhizal Fungus and Azotobacter Chroococcum Bacteria Affect the Cd Concentration and Zn Bioavailability in Bread Wheat Grown in a Cd-spiked Soil. Soil and Sediment Contamination, 2021, 30, 819-837.	1.1	2
1111	Use of the Glomus etunicatum as biocontrol agent of the soybean cyst nematode. Research, Society and Development, 2021, 10, e7310615132.	0.0	6
1113	Direct transfer of zinc between plants is channelled by common mycorrhizal network of arbuscular mycorrhizal fungi and evidenced by changes in expression of zinc transporter genes in fungus and plant. Environmental Microbiology, 2021, 23, 5883-5900.	1.8	14
1114	Sweet Modifications Modulate Plant Development. Biomolecules, 2021, 11, 756.	1.8	14
1115	Full-length transcriptome analysis of asparagus roots reveals the molecular mechanism of salt tolerance induced by arbuscular mycorrhizal fungi. Environmental and Experimental Botany, 2021, 185, 104402.	2.0	16
1116	A Network of Phosphate Starvation and Immune-Related Signaling and Metabolic Pathways Controls the Interaction between <i>Arabidopsis thaliana</i> and the Beneficial Fungus <i>Colletotrichum tofieldiae</i> . Molecular Plant-Microbe Interactions, 2021, 34, 560-570.	1.4	21
1117	Selection of nitrogen responsive root architectural traits in spinach using machine learning and genetic correlations. Scientific Reports, 2021, 11, 9536.	1.6	18
1118	The Coevolution of Plants and Microbes Underpins Sustainable Agriculture. Microorganisms, 2021, 9, 1036.	1.6	36
1119	Arbuscular Mycorrhizal Fungi Increase Pb Uptake of Colonized and Non-Colonized Medicago truncatula Root and Deliver Extra Pb to Colonized Root Segment. Microorganisms, 2021, 9, 1203.	1.6	7
1120	Arbuscular mycorrhizal fungi acted synergistically with Bradyrhizobium sp. to improve nodulation, nitrogen fixation, plant growth and seed yield of mung bean (Vigna radiata) but increased the population density of the root-lesion nematode Pratylenchus thornei. Plant and Soil, 2021, 465, 431-452.	1.8	15
1121	A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume–rhizobium symbioses. Plant Physiology, 2021, 187, 2071-2091.	2.3	29

#	Article	IF	CITATIONS
1122	Volatile organic compound patterns predict fungal trophic mode and lifestyle. Communications Biology, 2021, 4, 673.	2.0	39
1123	Interactions between belowâ€ground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition. Functional Ecology, 2021, 35, 1603-1619.	1.7	15
1124	Evidence of considerable C and N transfer from peas to cereals via direct root contact but not via mycorrhiza. Scientific Reports, 2021, 11, 11424.	1.6	9
1125	The future of microbial ecological niche theory and modeling. New Phytologist, 2021, 231, 508-511.	3.5	3
1126	Transcriptome analysis for understanding the mechanism of dark septate endophyte S16 in promoting the growth and nitrate uptake of sweet cherry. Journal of Integrative Agriculture, 2021, 20, 1819-1831.	1.7	16
1127	Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms, 2021, 9, 1557.	1.6	9
1128	A review on arbuscular mycorrhizal fungal communities in response to disturbance. Journal of Physics: Conference Series, 2021, 1968, 012001.	0.3	1
1129	Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane. Journal of Cell Biology, 2021, 220, .	2.3	17
1130	MycoRed: Betalain pigments enable in vivo real-time visualisation of arbuscular mycorrhizal colonisation. PLoS Biology, 2021, 19, e3001326.	2.6	11
1131	Alterations to arbuscular mycorrhizal fungal community composition is driven by warming at specific elevations. PeerJ, 2021, 9, e11792.	0.9	4
1132	<i>Serendipita</i> Fungi Modulate the Switchgrass Root Transcriptome to Circumvent Host Defenses and Establish a Symbiotic Relationship. Molecular Plant-Microbe Interactions, 2021, 34, 1128-1142.	1.4	6
1133	Role of Serendipita indica in enhancing drought tolerance in crops. Physiological and Molecular Plant Pathology, 2021, 116, 101691.	1.3	19
1134	Turning Inside Out: Filamentous Fungal Secretion and Its Applications in Biotechnology, Agriculture, and the Clinic. Journal of Fungi (Basel, Switzerland), 2021, 7, 535.	1.5	17
1135	The Effect of Mycorrhizal Fungi and PGPR on Tree Nutritional Status and Growth in Organic Apple Production. Agronomy, 2021, 11, 1402.	1.3	15
1136	Soil legacy of arbuscular mycorrhizal fungus Gigaspora margarita: The potassium-sequestering glomalin improves peanut (Arachis hypogaea) drought resistance and pod yield. Microbiological Research, 2021, 249, 126774.	2.5	9
1137	Crosstalk between Nutrient Signalling Pathways and Immune Responses in Rice. Agriculture (Switzerland), 2021, 11, 747.	1.4	13
1138	Calcium Signaling Mechanisms Across Kingdoms. Annual Review of Cell and Developmental Biology, 2021, 37, 311-340.	4.0	98
1139	Plant carbon investment in fine roots and arbuscular mycorrhizal fungi: A cross-biome study on nutrient acquisition strategies. Science of the Total Environment, 2021, 781, 146748.	3.9	19

#	Article	IF	CITATIONS
1140	Effect of rootâ€glomalin on soil carbon storage in trees' rhizosphere and interspace of a tropical dry forest. Land Degradation and Development, 2021, 32, 5281-5291.	1.8	6
1141	In-depth Phylogenomic Analysis of Arbuscular Mycorrhizal Fungi Based on a Comprehensive Set of de novo Genome Assemblies. Frontiers in Fungal Biology, 2021, 2, .	0.9	15
1142	Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME Journal, 2022, 16, 676-685.	4.4	48
1143	Three Common Symbiotic ABC Subfamily B Transporters in <i>Medicago truncatula</i> Are Regulated by a NIN-Independent Branch of the Symbiosis Signaling Pathway. Molecular Plant-Microbe Interactions, 2021, 34, 939-951.	1.4	12
1144	Do mycorrhizae increase plant growth and pollutant removal in stormwater biofilters?. Water Research, 2021, 202, 117381.	5.3	8
1145	Drought in the forest breaks plant–fungi interactions. European Journal of Forest Research, 2021, 140, 1301-1321.	1.1	8
1146	Molecular diversity of arbuscular mycorrhizal fungi associated with two alpine plant species in the Tibetan Plateau. Rhizosphere, 2021, 19, 100384.	1.4	2
1147	Differential responses of 23 maize cultivar seedlings to an arbuscular mycorrhizal fungus when grown in a metal-polluted soil. Science of the Total Environment, 2021, 789, 148015.	3.9	20
1148	Nitrogen fertilization has a stronger influence than cropping pattern on AMF community in maize/soybean strip intercropping systems. Applied Soil Ecology, 2021, 167, 104034.	2.1	14
1149	Rhizosphere: A fascinating paleovegetational and paleoclimatic new intermediary in the Quaternary fluvio-lacustrine set-up of the Purna alluvial basin, central India. Rhizosphere, 2021, 20, 100430.	1.4	7
1150	Role of fungi in the agricultural sector and its prospects in soil restoration. , 2021, , 165-181.		0
1151	Arbuscular Mycorrhizal Fungi for Sustainable Crop Protection and Production. Microorganisms for Sustainability, 2021, , 147-188.	0.4	1
1152	Genetic engineering of legumes for abiotic stress tolerance. , 2021, , 371-393.		0
1154	Nutrient uptake and growth of potato: Arbuscular mycorrhiza symbiosis interacts with quality and quantity of amended biochars. Journal of Plant Nutrition and Soil Science, 2020, 183, 220-232.	1.1	15
1155	Biological Nitrogen Fixation (BNF) in Mixed-Forest Plantations. , 2020, , 103-135.		5
1156	Symbiotic Signaling: Insights from Arbuscular Mycorrhizal Symbiosis. , 2020, , 75-103.		3
1157	Interactions Between Soil Mesofauna and Edible Ectomycorrhizal Mushrooms. , 2020, , 367-405.		2
1159	Combined Use of Beneficial Bacteria and Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant Cryptogamic Diseases: Evidence, Methodology, and Limits. Soil Biology, 2021, , 429-468.	0.6	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1160	Defence, Symbiosis and ABCG Transporters. Signaling and Communication in Plants, 2014,	, 163-184.	0.5	11
1161	Arbuscular Mycorrhiza: A Tool for Enhancing Crop Production. , 2017, , 235-250.			16
1162	Dynamics of Arbuscular Mycorrhizal Symbiosis and Its Role in Nutrient Acquisition: An Over 2017, , 21-43.	view.,		9
1163	Modelling Ammonium Transporters in Arbuscular Mycorrhiza Symbiosis. Lecture Notes in C Science, 2011, , 85-109.	omputer	1.0	6
1164	Signalling and the Re-structuring of Plant Cell Architecture in AM Symbiosis. Signaling and Communication in Plants, 2012, , 51-71.		0.5	4
1165	Plant-Mycorrhizae and Endophytic Fungi Interactions: Broad Spectrum of Allelopathy Studio 55-80.	es. , 2013, ,		4
1166	Endocytic Accommodation of Microbes in Plants. , 2012, , 271-295.			4
1167	Chemical Signalling in the Arbuscular Mycorrhizal Symbiosis: Biotechnological Applications Biology, 2013, , 215-232.	. Soil	0.6	12
1168	Root Allies: Arbuscular Mycorrhizal Fungi Help Plants to Cope with Biotic Stresses. Soil Biolo , 289-307.	ogy, 2013,	0.6	28
1169	Carbon Metabolism During Symbiotic Nitrogen Fixation. Soil Biology, 2013, , 53-68.		0.6	2
1170	Establishment of Actinorhizal Symbioses. Soil Biology, 2013, , 89-101.		0.6	2
1171	Legume–Rhizobia Symbiosis and Interactions in Agroecosystems. , 2013, , 233-265.			12
1172	Biotic Environment of the Arbuscular Mycorrhizal Fungi in Soil. , 2010, , 209-236.			12
1173	The Making of Symbiotic Cells in Arbuscular Mycorrhizal Roots. , 2010, , 57-71.			24
1174	Options for Improving Plant Nutrition to Increase Common Bean Productivity in Africa. , 20	11, , 201-240.		6
1175	Plant Growth-Promoting Rhizobacteria: An Overview in Agricultural Perspectives. Microorga for Sustainability, 2019, , 345-361.	anisms	0.4	19
1176	Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture Sustainability. Microorganisms for Sustainability, 2019, , 111-168.		0.4	5
1177	Diversity of Arbuscular Mycorrhizal Fungi in Relation to Sustainable Plant Production System, 167-186.	ms. , 2019,		12

		CITATION	Report	
#	Article		IF	CITATIONS
1178	Inter-Organismal Signaling in the Rhizosphere. Rhizosphere Biology, 2021, , 255-293.		0.4	12
1179	Molecular Mechanisms of Plant–Microbe Interactions in the Rhizosphere as Targets Plant Productivity. Rhizosphere Biology, 2021, , 295-338.	for Improving	0.4	8
1180	Contribution of Zinc-Solubilizing and -Mobilizing Microorganisms (ZSMM) to Enhance BioavailabilityÂfor Better Soil, Plant, and Human Health. Microorganisms for Sustainab 357-386.	Zinc ility, 2020, ,	0.4	3
1181	Mycorrhiza in Sustainable Crop Production. , 2019, , 461-483.			5
1182	The potential of arbuscular mycorrhizal fungi in C cycling: a review. Archives of Microbi 202, 1581-1596.	iology, 2020,	1.0	76
1183	Paying the Rent: How Endophytic Microorganisms Help Plant Hosts Obtain Nutrients. ,	, 2019, , 770-788.		3
1184	Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temper N levels: Aspects of N and C metabolism on the plant side. Plant Physiology and Bioche 87-95.		2.8	65
1185	Growth of chamomile (Matricaria chamomilla L.) and production of essential oil stimula arbuscular mycorrhizal symbiosis. Rhizosphere, 2020, 15, 100208.	ated by	1.4	7
1186	Fertilization changes soil microbiome functioning, especially phagotrophic protists. So Biochemistry, 2020, 148, 107863.	il Biology and	4.2	78
1187	Allocation and turnover of rhizodeposited carbon in different soil microbial groups. Soi and Biochemistry, 2020, 150, 107973.	il Biology	4.2	21
1189	Elements, biochemicals, and structures of microbes. , 2011, , 19-34.			1
1190	Microbial primary production and phototrophy. , 2011, , 55-78.			2
1191	Degradation of organic material. , 2011, , 79-98.			3
1192	Microbial growth, biomass production, and controls. , 2011, , 99-116.			3
1193	Ecology of viruses. , 2011, , 137-156.			1
1206	Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity a Resistance in Rice. Rice, 2020, 13, 42.	nd Blast	1.7	51
1207	Modifications of the Carotenoid Metabolism in Plastids. Books in Soils, Plants, and the 2010, , 407-433.	Environment,	0.1	2
1208	Flooding Greatly Affects the Diversity of Arbuscular Mycorrhizal Fungi Communities in Wetland Plants. PLoS ONE, 2011, 6, e24512.	the Roots of	1.1	76

#	Article	IF	CITATIONS
1209	An Active Factor from Tomato Root Exudates Plays an Important Role in Efficient Establishment of Mycorrhizal Symbiosis. PLoS ONE, 2012, 7, e43385.	1.1	22
1210	Heart of Endosymbioses: Transcriptomics Reveals a Conserved Genetic Program among Arbuscular Mycorrhizal, Actinorhizal and Legume-Rhizobial Symbioses. PLoS ONE, 2012, 7, e44742.	1.1	77
1211	Phosphorus and Nitrogen Regulate Arbuscular Mycorrhizal Symbiosis in Petunia hybrida. PLoS ONE, 2014, 9, e90841.	1.1	222
1212	Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant. PLoS ONE, 2015, 10, e0127630.	1.1	131
1213	The Cry1Ab Protein Has Minor Effects on the Arbuscular Mycorrhizal Fungal Communities after Five Seasons of Continuous Bt Maize Cultivation. PLoS ONE, 2015, 10, e0146041.	1.1	13
1214	Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice. PLoS ONE, 2016, 11, e0167014.	1.1	28
1216	CHARACTERIZATION OF RHIZOBIA AND ARBUSCULAR MYCORRHIZAL FUNGI IN AREAS IMPACTED BY GRAVEL MINING IN BRAZIL. Revista Caatinga, 2019, 32, 995-1004.	0.3	8
1217	Growth and nutrients uptake in Euterpe edulis Martius inoculated with arbuscular mycorrhizal fungi. Pesquisa Agropecuaria Tropical, 2016, 46, 169-176.	1.0	2
1218	Arbuscular mycorrhizal fungi and Urochloa brizantha: symbiosis and spore multiplication. Pesquisa Agropecuaria Tropical, 0, 49, .	1.0	4
1219	Ocorrência de fungos micorrÃzicos em catuaba (Anemopaegma arvense (Vell.) Stell. ex de Souza -) Tj ETQq1 1 Medicinais, 2013, 15, 646-654.	0.784314 0.3	rgBT /Overloc 1
1219 1220			<u> </u>
	Medicinais, 2013, 15, 646-654. Exploring plant root-fungal interactions in a neotropical freshwater wetland. Botanical Sciences,	0.3	1
1220	Medicinais, 2013, 15, 646-654. Exploring plant root-fungal interactions in a neotropical freshwater wetland. Botanical Sciences, 2019, 97, 661-674. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open	0.3	3
1220 1221	Medicinais, 2013, 15, 646-654. Exploring plant root-fungal interactions in a neotropical freshwater wetland. Botanical Sciences, 2019, 97, 661-674. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiology Journal, 2015, 9, 1-7. Señales de reconocimiento entre plantas y hongos formadores de micorrizas arbusculares. Ciencia	0.3 0.3 0.2	1 3 107
1220 1221 1222	Medicinais, 2013, 15, 646-654. Exploring plant root-fungal interactions in a neotropical freshwater wetland. Botanical Sciences, 2019, 97, 661-674. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiology Journal, 2015, 9, 1-7. Señales de reconocimiento entre plantas y hongos formadores de micorrizas arbusculares. Ciencia Tecnologia Agropecuaria, 2014, 11, 53-60. Efficacy of New Fungicides against Late Blight of Potato in Subtropical Plains of India. Journal of Pure	0.3 0.3 0.2 0.3	1 3 107 1
1220 1221 1222 1222	Medicinais, 2013, 15, 646-654. Exploring plant root-fungal interactions in a neotropical freshwater wetland. Botanical Sciences, 2019, 97, 661-674. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiology Journal, 2015, 9, 1-7. Señales de reconocimiento entre plantas y hongos formadores de micorrizas arbusculares. Ciencia Tecnologia Agropecuaria, 2014, 11, 53-60. Efficacy of New Fungicides against Late Blight of Potato in Subtropical Plains of India. Journal of Pure and Applied Microbiology, 2017, 11, 599-603. Effect of mycorrhiza and phosphorus content in nutrient solution on the yield and nutritional status of tomato plants grown on rockwool or coconut coir. Agricultural and Food Science, 2015,	0.3 0.3 0.2 0.3 0.3	1 3 107 1 4
1220 1221 1222 1223 1224	Medicinais, 2013, 15, 646-654. Exploring plant root-fungal interactions in a neotropical freshwater wetland. Botanical Sciences, 2019, 97, 661-674. Plant-microbe Cross-talk in the Rhizosphere: Insight and Biotechnological Potential. Open Microbiology Journal, 2015, 9, 1-7. Señales de reconocimiento entre plantas y hongos formadores de micorrizas arbusculares. Ciencia Tecnologia Agropecuaria, 2014, 11, 53-60. Efficacy of New Fungicides against Late Blight of Potato in Subtropical Plains of India. Journal of Pure and Applied Microbiology, 2017, 11, 599-603. Effect of mycorrhiza and phosphorus content in nutrient solution on the yield and nutritional status of tomato plants grown on rockwool or coconut coir. Agricultural and Food Science, 2015, 24, 39-51. The role of arbuscular mycorrhiza in zinc uptake by lettuce grown at two phosphorus levels in the	0.3 0.2 0.3 0.3 0.3	1 3 107 1 4 28

#	Article	IF	CITATIONS
1228	INTERACTIONS OF ARBUSCULAR MYCORRHIZAL FUNGI WITH PLANTS AND SOIL MICROFLORA. Acta Scientiarum Polonorum, Hortorum Cultus, 2017, 16, 89-95.	0.3	19
1229	Effects of Glomus fasciculatum and Trichoderma asperelloides in Roots of Groundnut (Cv.) Tj ETQq1 1 0.784314 89-100.	rgBT /Ove 0.1	rlock 10 Tf 7
1230	The yeast three-hybrid system as an experimental platform to identify proteins interacting with small signaling molecules in plant cells: Potential and limitations. Frontiers in Plant Science, 2011, 2, 101.	1.7	28
1231	Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. International Journal of Molecular Sciences, 2021, 22, 318.	1.8	89
1232	Receptor-like Kinase CrRLK1-L Subfamily: Novel Motifs in Extracellular Domain and Biological Functions in Plants*. Progress in Biochemistry and Biophysics, 2011, 38, 891-899.	0.3	7
1233	Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and woodland area inÂSouthernÂOntario. Nature Conservation, 0, 4, 55-76.	0.0	10
1234	A review of the influence of root-associating fungi and root exudates on the success of invasive plants. NeoBiota, 0, 14, 21-45.	1.0	10
1235	Exploiting diversity to promote arbuscular mycorrhizal symbiosis and crop productivity in organic farming systems. AIMS Agriculture and Food, 2018, 3, 280-294.	0.8	7
1236	How do Microbes Enhance the Carrying Capacity of their Habitats?. Expert Opinion on Environmental Biology, 2012, 01, .	0.2	3
1237	Mutual Information Flow between Beneficial Microorganisms and the Roots of Host Plants Determined the Bio-Functions of Biofertilizers. American Journal of Plant Sciences, 2012, 03, 1115-1120.	0.3	22
1238	Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection. Plant Pathology Journal, 2017, 33, 402-409.	0.7	17
1239	Impact of arbuscular mycorrhizal fungi on the growth and related physiological indexes of Amorpha fruticosa. Journal of Medicinal Plants Research, 2012, 6, .	0.2	1
1240	Legume root symbioses: Natural history and prospects for improvement. Ratarstvo I Povrtarstvo, 2011, 48, 291-304.	0.6	7
1241	Mycosphere Essay 18: Biotechnological advances of beneficial fungi for plants. Mycosphere, 2017, 8, 445-455.	1.9	4
1242	Role of Beneficial Soil Microbes in Sustainable Agriculture and Environmental Management. Climate Change and Environmental Sustainability, 2016, 4, 137.	0.3	43
1243	The genetic architecture of host response reveals the importance of arbuscular mycorrhizae to maize cultivation. ELife, 2020, 9, .	2.8	24
1244	Is there genetic variation in mycorrhization of <i>Medicago truncatula</i> ?. PeerJ, 2017, 5, e3713.	0.9	11
1245	Effects of <i>Trichoderma</i> seedling treatment with System of Rice Intensification management and with conventional management of transplanted rice. PeerJ, 2019, 7, e5877.	0.9	33

	Сітатіс	on Report	
#	Article	IF	Citations
1246	Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. PeerJ, 2019, 7, e7679.	0.9	1
1247	Belowground fungal community diversity, composition and ecological functionality associated with winter wheat in conventional and organic agricultural systems. PeerJ, 2020, 8, e9732.	0.9	5
1248	Diversity and Ecology of Arbuscular Mycorrhization Fungi. , 2021, , 185-201.		0
1249	Fungi Inhabiting the Wheat Endosphere. Pathogens, 2021, 10, 1288.	1.2	9
1250	Cascading Effects of Root Microbial Symbiosis on the Development and Metabolome of the Insect Herbivore Manduca sexta L Metabolites, 2021, 11, 731.	1.3	13
1252	Effects of microplastics on soil properties: Current knowledge and future perspectives. Journal of Hazardous Materials, 2022, 424, 127531.	6.5	294
1253	Divide and Be Conquered—Cell Cycle Reactivation in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2021, 12, 753265.	1.7	7
1254	A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell, 2021, 184, 5527-5540.e18.	13.5	151
1255	The genetic control of specificity of interactions between legume plants and nodule bacteria. Ecological Genetics, 2008, 6, 12-19.	0.1	5
1257	Modelling an Ammonium Transporter with SCLS. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 6, 77-92.	0.8	0
1258	Flexible Genome Retrieval for Supporting In-Silico Studies of Endobacteria-AMFs. International Federation for Information Processing, 2010, , 138-147.	0.4	0
1259	Small RNA in Legumes. , 2011, , 121-138.		0
1260	Genomes and metagenomes of microbes and viruses. , 2011, , 177-194.		0
1261	Symbiosis and microbes. , 2011, , 257-276.		0
1262	Community structure of microbes in natural environments. , 2011, , 157-176.		0
1263	Physical-chemical environment of microbes. , 2011, , 35-54.		0
1264	Introduction to geomicrobiology. , 2011, , 237-256.		0
1265	Predation and protists. , 2011, , 117-136.		0

IF

ARTICLE

1267 Processes in anoxic environments. , 2011, , 195-216.

0

CITATIONS

1268	The nitrogen cycle. , 2011, , 217-236.		0
1269	Symbiosis: Fungus seeks plant. Functional Glycomics Gateway, 2011, , .	0.0	0
1270	Multi-component symbiosis of Legumes with beneficial soil microbes: genetic and evolutionary basis of application in sustainable crop production. Ecological Genetics, 2011, 9, 80-94.	0.1	1
1271	The molecular basis for construction of highly productive ecologically sustainable agrocenoses. Ecological Genetics, 2011, 9, 23-26.	0.1	0
1272	Arbuscular Mycorrhizal Fungi for Jatropha Production. , 2012, , 263-279.		0
1273	Arbuscular mycorrhizal fungi: Essential belowground organisms for earth life but sensitive to a changing environment. African Journal of Microbiology Research, 2012, 6, .	0.4	1
1274	Adaptive and progressive evolution of plant-microbe symbiosis. Ecological Genetics, 2013, 11, 12.	0.1	1
1275	The Role of Arbuscular Mycorrhiza in the Growth and Development of Plants in the Family Gentianaceae. , 2014, , 303-316.		0
1276	Rhizosphere Microflora in Advocacy of Heavy Metal Tolerance in Plants. Soil Biology, 2015, , 323-337.	0.6	0
1277	Effect of AM Fungi and Plant Growth-Promoting Rhizobacteria (PGPR) Potential Bioinoculants on Growth and Yield of Coleus forskohlii. Soil Biology, 2015, , 89-107.	0.6	0
1278	Ability of arbuscular mycorrhiza to promote growth of maize plant and enzymatic activity of an alluvial soil. Journal of Applied and Natural Science, 2015, 7, 1029-1035.	0.2	4
1279	Field evaluation of arbuscular mycorrhizal fungi (AMF) for microbial activities and yield of maize under alluvial soil. Journal of Applied and Natural Science, 2016, 8, 2055-2059.	0.2	1
1280	Impact of the symbivit preparation on quantitative and qualitative indicators of tomato (Lycopersicon) Tj ETQq1 1	0.78431 0.5	4 ₁ gBT /Ove
1282	The Mechanisms of Nutrient Uptake by Arbuscular Mycorrhizae. , 2017, , 1-19.		9
1283	The Role of Arbuscular Mycorrhizal Fungi and the Mycorrhizal-Like Fungus Piriformospora indica in Biocontrol of Plant Parasitic Nematodes. , 2017, , 43-56.		0
1284	Chapter 4 Phosphorus Use Efficiency in Crop Plants. , 2017, , 143-176.		0
1286	Effect of arbuscular mycorrhizal (AM) fungi inoculation on enzymatic activity and zinc uptake under direct seeded rice system. Journal of Applied and Natural Science, 2017, 9, 1157-1163.	0.2	0

	CITATION	Report	
#	Article	IF	CITATIONS
1289	Adverse Soil Mineral Availability. , 2019, , 203-256.		1
1291	Role of mycorrhization in the phytoremediation of heavy metals in urban soils. Acta Horticulturae, 2018, , 311-314.	0.1	1
1292	SzÃįrazsÃįgstressz és mikorrhiza gombÃįk búza gyökérnövekedésére gyakorolt hatÃįsÃįnak mon elektromos kapacitÃįs mérésével. Agrokemia Es Talajtan, 2018, 67, 213-225.	itorozÃisa 0.1	1
1293	Biotic Influences: Symbiotic Associations. , 2019, , 487-540.		3
1294	Plant–Microbe Interaction: Gene-to-Metabolite Network. , 2019, , 75-100.		4
1295	UNDERGROUND COMMUNICATION - THE NEW ELEMENTS OF SIGNALLING PATHWAYS OF ARBUSCULAR MYCORRHIZAL SYMBIOSIS. Postepy Mikrobiologii, 2019, 56, 275-281.	0.1	0
1296	Microbial Interventions in Soil and Plant Health for Improving Crop Efficiency. , 2019, , 17-47.		4
1297	Plant-Microbe Communication: New Facets for Sustainable Agriculture. , 2019, , 547-573.		2
1298	Extreme Organismen und Transspermie. , 2019, , 115-192.		0
1299	Diversity in Type III Secreting Systems (T3SSs) in Legume-Rhizobium Symbiosis. , 2019, , 83-107.		1
1303	Production of Arbuscular Mycorrhizal Fungi using In vitro Root Organ Culture and Phenolic Compounds. Journal of Pure and Applied Microbiology, 2019, 13, 1985-1994.	0.3	1
1304	Microbial Transformation of Nutrients in Soil: An Overview. Microorganisms for Sustainability, 2020, , 175-211.	0.4	3
1306	Impact of protein hydrolysate biostimulants on growth of barley and wheat and their interaction with symbionts and pathogens. Agricultural and Food Science, 2020, 29, .	0.3	6
1309	Auxinâ€mediated regulation of arbuscular mycorrhizal symbiosis: A role of SIGH3.4 in tomato. Plant, Cell and Environment, 2022, 45, 955-968.	2.8	20
1310	Agriculturally Important Fungi: Plant–Microbe Association for Mutual Benefits. Fungal Biology, 2020, , 1-20.	0.3	0
1311	Mycorrhizal–Plant Interactions. , 2020, , 301-317.		1
1312	Soil Microorganisms and Quality of the Coffee Beverage. Food Engineering Series, 2021, , 101-147.	0.3	0
1313	Arbuscular mycorrhizal fungal association boosted the arsenic resistance in crops with special responsiveness to rice plant. Environmental and Experimental Botany, 2022, 193, 104681.	2.0	20

#	Article	IF	Citations
1314	Arbuscular mycorrhizal symbiosis enhances water stable aggregate formation and organic matter stabilization in Fe ore tailings. Geoderma, 2022, 406, 115528.	2.3	15
1315	Recent Advances in Plant-Microbe Interaction. , 2020, , 23-49.		2
1316	Biotechnological Interventions for Arbuscular Mycorrhiza Fungi (AMF) Based Biofertilizer: Technological Perspectives. , 2020, , 161-191.		2
1317	The Role of Arbuscular Mycorrhizal Fungal Community in Paddy Soil. Fungal Biology, 2020, , 61-88.	0.3	0
1318	7 Genetics and Genomics Decipher Partner Biology in Arbuscular Mycorrhizas. , 2020, , 143-172.		0
1319	Utilization of Beneficial Microorganisms in Sustainable Control of Phytonematodes. , 2020, , 317-337.		2
1320	Current Status of Fusarium and Their Management Strategies. , 0, , .		3
1321	Below-ground physiological processes enhancing phosphorus acquisition in plants. Plant Physiology Reports, 2021, 26, 600-613.	0.7	8
1322	An Insight through Root-Endophytic-Mutualistic Association in Improving Crop Productivity and Sustainability. Soil Biology, 2021, , 31-44.	0.6	1
1323	Interaction Between Root Endophytes and Plants: Their Bioactive Products and Significant Functions. Soil Biology, 2021, , 45-62.	0.6	1
1324	Mycorrhizae Applications in Sustainable Forestry. , 0, , .		1
1325	Rhizosphere Microbiomes and Their Potential Role in Increasing Soil Fertility and Crop Productivity. Environmental and Microbial Biotechnology, 2021, , 183-201.	0.4	1
1326	Effects of Nitrogen Fertilization on Mycorrhizal Infection, Nodulation and Growth of <i>Phaseolus vulgaris</i> L Contemporary Agriculture, 2020, 69, 61-72.	0.3	1
1328	Lightâ€dependent activation of HY5 promotes mycorrhizal symbiosis in tomato by systemically regulating strigolactone biosynthesis. New Phytologist, 2022, 233, 1900-1914.	3.5	30
1329	Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nature Microbiology, 2021, 6, 1537-1548.	5.9	68
1330	Mycorrhiza-Induced Alterations in Metabolome of Medicago lupulina Leaves during Symbiosis Development. Plants, 2021, 10, 2506.	1.6	7
1331	Posttranslational regulation of transporters important for symbiotic interactions. Plant Physiology, 2022, 188, 941-954.	2.3	1
1332	Transcriptomic analysis of sym28 and sym29 supernodulating mutants of pea (Pisum sativum L.) under complex inoculation with beneficial microorganisms. Biological Communications, 2021, 66, .	0.4	2

ARTICLE

1334	ã,¢ãf¼ãfã,¹ã,ãf¥ãf©ãf¼èŒæ¹å±ç"Ÿã«ãŠã'ã,‹å±ç"Ÿã,∙ã,°ãfŠãf«ãëã⊷ã┥ã®ã,¹ãf^ãfªã,´ãf©ã,¯ãf^ãf³. Kagak	uđ .o Seibu	t s u, 2021, 5
1336	Arbuscular mycorrhizal fungal response to fire and urbanization in the Great Smoky Mountains National Park. Elementa, 2021, 9, .	1.1	3
1337	Plant nitrogen nutrition: The roles of arbuscular mycorrhizal fungi. Journal of Plant Physiology, 2022, 269, 153591.	1.6	33
1338	Climate warming alters the soil microbial association network and role of keystone taxa in determining wheat quality in the field. Agriculture, Ecosystems and Environment, 2022, 326, 107817.	2.5	9
1339	Diversity and Functionalities of Unknown Mycorrhizal Fungal Microbiota. Microbiological Research, 2022, 256, 126940.	2.5	4
1340	Improving Plant Growth and Quality of Plant-Products: An Interplay of Plant-microbe Interaction. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 3759-3766.	0.0	1
1341	Kadmiumstressz detektálására alkalmazható in situ és destruktÃv mérési módszerek összehasonlÃŧ∕ vizsgálata búzán. Agrokemia Es Talajtan, 2020, 69, 73-90.	$\tilde{4}^{3}_{0.1}$	0
1343	What Are the Small Lumps I See on Some Plant Roots?. Frontiers for Young Minds, 0, 9, .	0.8	0
1344	Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture. Archives of Microbiology, 2022, 204, 151.	1.0	9
1345	The role of nutrients underlying interactions among root-nodule bacteria (Bradyrhizobium sp.), arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus) Tj ETQq1 1 0.784 421-449	314 rgBT 1.8	/gverlock 1
1345 1346	The role of nutrients underlying interactions among root-nodule bacteria (Bradyrhizobium sp.), arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus) Tj ETQq1 1 0.784 421-449. Role of beneficial soil microbes in alleviating climatic stresses in plants. , 2022, , 29-68.	-314 rgBT 1.8	/Overlock 1 3
	arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus) Tj ETQq1 1 0.784 421-449.	314 rgBT 1.8 3.5	0
1346	arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus) Tj ETQq1 1 0.784 421-449. Role of beneficial soil microbes in alleviating climatic stresses in plants. , 2022, , 29-68. Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic	10	3
1346 1347	 arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus) Tj ETQq1 1 0.784 421-449. Role of beneficial soil microbes in alleviating climatic stresses in plants. , 2022, , 29-68. Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist, 2022, 234, 672-687. Assessment of Bacterial Inoculant Delivery Methods for Cereal Crops. Frontiers in Microbiology, 	3.5	3 27
1346 1347 1348	arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus) Tj ETQq1 1 0.784 421-449. Role of beneficial soil microbes in alleviating climatic stresses in plants. , 2022, , 29-68. Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist, 2022, 234, 672-687. Assessment of Bacterial Inoculant Delivery Methods for Cereal Crops. Frontiers in Microbiology, 2022, 13, 791110. A SPX domainâ€containing phosphate transporter from <i>Rhizophagus irregularis</i> handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. New Phytologist, 2022, 234,	3.5 1.5	3 27 6
1346 1347 1348 1349	arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus) Tj ETQq1 1 0.784 421-449. Role of beneficial soil microbes in alleviating climatic stresses in plants. , 2022, , 29-68. Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist, 2022, 234, 672-687. Assessment of Bacterial Inoculant Delivery Methods for Cereal Crops. Frontiers in Microbiology, 2022, 13, 791110. A SPX domainâ€containing phosphate transporter from <i>Rhizophagus irregularis</i> handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. New Phytologist, 2022, 234, 650-671. Soil fungi regulate the response of plant production-community composition relationship to grazing	3.5 1.5 3.5	3 27 6 25
1346 1347 1348 1349 1350	arbuscular mycorrhizal fungi (Funneliformis mosseae) and root-lesion nematodes (Pratylenchus) Tj ETQq1 1 0.784 421-449. Role of beneficial soil microbes in alleviating climatic stresses in plants. , 2022, , 29-68. Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. New Phytologist, 2022, 234, 672-687. Assessment of Bacterial Inoculant Delivery Methods for Cereal Crops. Frontiers in Microbiology, 2022, 13, 791110. A SPX domainâ€containing phosphate transporter from <i>Rhizophagus irregularis</i> handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas. New Phytologist, 2022, 234, 650-671. Soil fungi regulate the response of plant production-community composition relationship to grazing and mowing in a semi-arid steppe. Plant and Soil, 2022, 473, 573-589. War and Peas: Molecular Bases of Resistance to Powdery Mildew in Pea (Pisum sativum L.) and Other	 3.5 1.5 3.5 1.8 	3 27 6 25 3

#	Article	IF	CITATIONS
1354	Role of AM fungi in growth promotion of high-value crops. , 2022, , 121-144.		0
1355	Innovation and appropriation in mycorrhizal and rhizobial Symbioses. Plant Cell, 2022, 34, 1573-1599.	3.1	50
1356	Application of plant–soil feedbacks in the selection of crop rotation sequences. Ecological Applications, 2022, 32, e2501.	1.8	21
1357	Sulfur nutrition and its role in plant growth and development. Plant Signaling and Behavior, 2023, 18, 2030082.	1.2	64
1358	Plant and seed germination responses to global change, with a focus on CO2: A review. One Ecosystem, 0, 6, .	0.0	3
1359	Mycorrhiza improves cold tolerance of Satsuma orange by inducing antioxidant enzyme gene expression. Biocell, 2022, 46, 1959-1966.	0.4	6
1360	The Length of the Fertilization Period for a Paulownia Plantation Affects Indirectly the Composition and Diversity of the Soil Fungal Community Due to Changes in the Soil Microbial Characteristics. SSRN Electronic Journal, 0, , .	0.4	0
1361	Arbuscular Mycorrhizal Fungi Are an Influential Factor in Improving the Phytoremediation of Arsenic, Cadmium, Lead, and Chromium. Journal of Fungi (Basel, Switzerland), 2022, 8, 176.	1.5	21
1362	Importance of soil amendments with biochar and/or Arbuscular Mycorrhizal fungi to mitigate aluminum toxicity in tamarind (Tamarindus indica L.) on an acidic soil: A greenhouse study. Heliyon, 2022, 8, e09009.	1.4	5
1363	Combined Bioremediation of Bensulfuron-Methyl Contaminated Soils With Arbuscular Mycorrhizal Fungus and Hansschlegelia zhihuaiae S113. Frontiers in Microbiology, 2022, 13, 843525.	1.5	10
1364	Mechanisms in Growth-Promoting of Cucumber by the Endophytic Fungus Chaetomium globosum Strain ND35. Journal of Fungi (Basel, Switzerland), 2022, 8, 180.	1.5	18
1365	Saprophytic Bacillus Accelerates the Release of Effective Components in Agarwood by Degrading Cellulose. Molecules, 2022, 27, 1428.	1.7	1
1366	Host SPX-PHR regulatory circuit: the molecular dynamo steering mycorrhization in plants. Plant Cell Reports, 2022, , 1.	2.8	2
1367	Lotus japonicus. Current Biology, 2022, 32, R149-R150.	1.8	1
1368	Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Frontiers in Microbiology, 2022, 13, 843415.	1.5	5
1370	Colonization of Mutualistic Mycorrhizal and Parasitic Blast Fungi Requires OsRAM2-Regulated Fatty Acid Biosynthesis in Rice. Molecular Plant-Microbe Interactions, 2022, 35, 178-186.	1.4	10
1371	Prevalence of mycorrhizae in host plants and rhizosphere soil: A biodiversity aspect. PLoS ONE, 2022, 17, e0266403.	1.1	15
1372	A rulebook for peptide control of legume–microbe endosymbioses. Trends in Plant Science, 2022, 27, 870-889.	4.3	21

#	Article	IF	CITATIONS
1373	Quantitative Proteomics at Early Stages of the Symbiotic Interaction Between <i>Oryza sativa</i> and <i>Nostoc punctiforme</i> Reveals Novel Proteins Involved in the Symbiotic Crosstalk. Plant and Cell Physiology, 2022, 63, 1433-1445.	1.5	6
1374	Nutrients Regulate the Effects of Arbuscular Mycorrhizal Fungi on the Growth and Reproduction of Cherry Tomato. Frontiers in Microbiology, 2022, 13, 843010.	1.5	6
1375	Microbial community from species rich meadow supports plant specialists during meadow restoration. Functional Ecology, 2022, 36, 1573-1584.	1.7	5
1376	An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms, 2022, 10, 75.	1.6	19
1377	Effects of Arbuscular Mycorrhiza on Primary Metabolites in Phloem Exudates of Plantago major and Poa annua and on a Generalist Aphid. International Journal of Molecular Sciences, 2021, 22, 13086.	1.8	3
1378	At the Root of Nodule Organogenesis: Conserved Regulatory Pathways Recruited by Rhizobia. Plants, 2021, 10, 2654.	1.6	7
1379	Management of Soil Microbial Communities: Opportunities and Prospects (a Review). Eurasian Soil Science, 2021, 54, 1888-1902.	0.5	17
1380	Environmental risk assessment of transgenic miraculin-accumulating tomato in a confined field trial in Japan. Plant Biotechnology, 2021, 38, 421-431.	0.5	3
1381	Above―and belowâ€ground biodiversity responses to the prolonged flood pulse in centralâ€western Amazonia, Brazil. Environmental DNA, 2022, 4, 533-548.	3.1	1
1382	The combined use of silicon/nanosilicon and arbuscular mycorrhiza for effective management of stressed agriculture: Action mechanisms and future prospects. , 2022, , 241-264.		3
1383	Plant-mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis, 2022, 86, 155-168.	1.2	20
1384	Glomalin Arbuscular Mycorrhizal Fungal Reproduction, Lifestyle and Dynamic Role in Global Sustainable Agriculture for Future Generation. , 0, , .		0
1385	Arbuscular Mycorrhizal Fungi Induced Plant Resistance against Fusarium Wilt in Jasmonate Biosynthesis Defective Mutant and Wild Type of Tomato. Journal of Fungi (Basel, Switzerland), 2022, 8, 422.	1.5	17
1437	Advanced research tools for fungal diversity and its impact on forest ecosystem. Environmental Science and Pollution Research, 2022, 29, 45044-45062.	2.7	12
1438	Early branching arbuscular mycorrhizal fungus Paraglomus occultum carries a small and repeat-poor genome compared to relatives in the Glomeromycotina. Microbial Genomics, 2022, 8, .	1.0	14
1439	Regulatory role of microbial inoculants to induce salt stress tolerance in horticulture crops. , 2022, , 125-155.		1
1440	Traditional Plant-Based Treatments of Fungal Infections in the Republic of Suriname (South America): Phytochemical and Pharmacological Rationales. , 0, , .		0
1441	Comparative Transcriptomics Analysis of the Symbiotic Germination of D. officinale (Orchidaceae) With Emphasis on Plant Cell Wall Modification and Cell Wall-Degrading Enzymes. Frontiers in Plant Science, 2022, 13, .	1.7	7

#	Article	IF	CITATIONS
1442	Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization. International Journal of Molecular Sciences, 2022, 23, 5284.	1.8	15
1443	Structural insight into chitin perception by chitin elicitor receptor kinase 1 of <i>Oryza sativa</i> . Journal of Integrative Plant Biology, 2023, 65, 235-248.	4.1	5
1444	Positive feedback relationship between shrub encroachment and arbuscular mycorrhizal fungi in the Inner Mongolia grassland of northern China. Applied Soil Ecology, 2022, 177, 104525.	2.1	5
1445	Production of Purpureocillium lilacinum and Pochonia chlamydosporia by Submerged Liquid Fermentation and Bioactivity against Tetranychus urticae and Heterodera glycines through Seed Inoculation. Journal of Fungi (Basel, Switzerland), 2022, 8, 511.	1.5	10
1446	OsCERK2/OsRLK10, a homolog of OsCERK1, has a potential role for chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Biotechnology, 2022, 39, 119-128.	0.5	7
1448	Arbuscular mycorrhiza and vermicompost alleviate drought stress and enhance yield, total flavonoid concentration, rutin content, and antioxidant activity of buckwheat (Fagopyrum esculentum) Tj ETQq1 1 0.784	-314 1.n gBT /	Ov e rlock 10
1449	Increased Carbon Partitioning to Secondary Metabolites Under Phosphorus Deficiency in Glycyrrhiza uralensis Fisch. Is Modulated by Plant Growth Stage and Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2022, 13, .	1.7	6
1450	Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Genes and miRNAs Associated with the Cell Wall in Tomato Leaves. Biology, 2022, 11, 854.	1.3	3
1451	Increase in yield, leaf nutrient, and profitability of soybean co-inoculated with Bacillus strains and Arbuscular mycorrhizal fungi. Revista Brasileira De Ciencia Do Solo, 2022, 46, .	0.5	3
1452	Quorum Sensing in the Rhizosphere. Rhizosphere Biology, 2022, , 99-134.	0.4	1
1453	The Role of Serendipita indica (Piriformospora indica) in Improving Plant Resistance to Drought and Salinity Stresses. Biology, 2022, 11, 952.	1.3	18
1454	Transfer of Nitrogen and Phosphorus From Cattle Manure to Soil and Oats Under Simulative Cattle Manure Deposition. Frontiers in Microbiology, 0, 13, .	1.5	2
1455	Unraveling host–microbe interactions and ecosystem functions in moss–bacteria symbioses. Journal of Experimental Botany, 2022, 73, 4473-4486.	2.4	15
1456	Arbuscular mycorrhizal fungi: Effects on secondary metabolite accumulation of traditional Chinese medicines. Plant Biology, 2022, 24, 932-938.	1.8	11
1457	Soil microbiome and metabolome analysis reveals beneficial effects of ginseng–celandine rotation on the rhizosphere soil of ginseng-used fields. Rhizosphere, 2022, 23, 100559.	1.4	13
1458	A panâ€genome and chromosomeâ€length reference genome of narrowâ€leafed lupin (<i>Lupinus) Tj ETQq1 I Journal, 0, , .</i>	l 0.784314 2.8	rgBT /Over 9
1459	Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 2022, 214, 113821.	3.7	81
1460	Commentary on the use of nutrient-coated quantum dots as a means of tracking nutrient uptake by and movement within plants. Plant and Soil, 2022, 476, 535-548.	1.8	3

#	Article	IF	Citations
1467	Soil microbiomes and one health. Nature Reviews Microbiology, 2023, 21, 6-20.	13.6	163
1468	Impacts of Drought Stress and Mycorrhizal Inoculation on the Performance of Two Spring Wheat Cultivars. Plants, 2022, 11, 2187.	1.6	5
1469	Influence of Substrate Properties on Communities of Arbuscular Mycorrhizal Fungi Isolated from Agroecosystems in Peru. Journal of Soil Science and Plant Nutrition, 2022, 22, 4784-4797.	1.7	2
1470	Modeling Global Carbon Costs of Plant Nitrogen and Phosphorus Acquisition. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	13
1471	Fungal endophytes of Brassicaceae: Molecular interactions and crop benefits. Frontiers in Plant Science, 0, 13, .	1.7	14
1472	Effects of AM Fungi and Grass Strips on Soil Erosion Characteristics in Red Sandstone Erosion Areas in Southern China. Forests, 2022, 13, 1351.	0.9	4
1473	Responses of Endoplasmic Reticulum to Plant Stress. Biochemistry, 0, , .	0.8	0
1474	Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. Journal of Plant Physiology, 2022, 276, 153765.	1.6	35
1476	Phytoremediation using arbuscular mycorrhizal fungi. , 2022, , 73-92.		0
1477	Accelerating soil aggregate formation: a review on microbial processes as the critical step in a post-mining rehabilitation context. Soil Research, 2023, 61, 209-223.	0.6	6
1480	Evolutionary genomic insights into cyanobacterial symbioses in plants. Quantitative Plant Biology, 2022, 3, .	0.8	9
1481	Arbuscular Mycorrhizal Fungi (AMF) for Sustainable Soil and Plant Health. , 2022, , 135-152.		2
1485	Rhizospheric Microbial Communication. , 2022, , 41-66.		0
1486	Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods, 2022, 11, 2591.	1.9	15
1487	In-Forest Planting of High-Value Herb Sarcandra glabra Enhances Soil Carbon Storage without Affecting the Diversity of the Arbuscular Mycorrhiza Fungal Community and Composition of Cunninghamia lanceolata. Microorganisms, 2022, 10, 1844.	1.6	1
1488	Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors. Current Biology, 2022, 32, 4428-4437.e3.	1.8	12
1489	Arbuscular mycorrhizal fungi enhanced rice proline metabolism under low temperature with nitric oxide involvement. Frontiers in Plant Science, 0, 13, .	1.7	6
1490	Whole genome analyses based on single, field collected spores of the arbuscular mycorrhizal fungus Funneliformis geosporum. Mycorrhiza, 2022, 32, 361-371.	1.3	6

ARTICLE IF CITATIONS The Roles of Arbuscular Mycorrhizal Fungi in Influencing Plant Nutrients, Photosynthesis, and 1491 1.3 23 Metabolites of Cereal Cropsâ€"A Review. Agronomy, 2022, 12, 2191. Physiological and Metabolic Effects of the Inoculation of Arbuscular Mycorrhizal Fungi in Solanum 1492 1.6 tuberosum Crops under Water Stress. Plants, 2022, 11, 2539. Arbuscular Mycorrhizal Fungal Inoculation Increases Organic Selenium Accumulation in Soybean 1493 1.6 1 (Glycine max (Linn.) Merr.) Growing in Selenite-Spiked Soils. Toxics, 2022, 10, 565. Nitrogen and Phosphorus of Plants Associated with Arbuscular and Ectomycorrhizas Are 1494 Differentially Influenced by Drought. Plants, 2022, 11, 2429. Impact of an arbuscular mycorrhizal fungal inoculum and exogenous methyl jasmonate on the 1495 1.52 performance of tall fescue under saline-alkali condition. Frontiers in Microbiology, 0, 13, . How plants conquered land: evolution of terrestrial adaptation. Journal of Evolutionary Biology, 2023, 36, 5-14. 1496 0.8 Receptor Kinases and Signal Pathway in the Arbuscular Mycorrhizal Symbiosis., 0,,. 1497 1 Identifying thresholds of nitrogen enrichment for substantial shifts in arbuscular mycorrhizal fungal community metrics in a temperate grassland of northern China. New Phytologist, 2023, 237, 1498 3.5 279-294. Microbiomes in agroecosystem: Diversity, function and assembly mechanisms. Environmental 1499 1.0 21 Microbiology Reports, 2022, 14, 833-849. Arbuscular Mycorrhizal Fungal Symbiosis for Mutual Benefit: More Than Expectation. Rhizosphere 0.4 Biology, 2022, , 105-128. Communities of Glomeromycota in the Argentine Arid Diagonal: An Approach from Their Ecological 1501 0.3 0 Role in Grassland Management and Use. Fungal Biology, 2022, , 373-392. Rhizospheric Microbial Community as Drivers of Soil Ecosystem: Interactive Microbial Communication 0.4 and Its Impact on Plants. Rhizosphere Biology, 2022, , 355-371. Evolution of the Knowledge and Practice of Endophytic Microorganisms for Enhanced Agricultural 1503 0.4 0 Benefit and Environmental Sustainability. Rhizosphere Biology, 2022, , 1-8. Seasonal Shifts in Soil Microbiome Structure Are Associated with the Cultivation of the Local 1504 1.3 Runner Bean Variety around the Lake Mikri Prespa. Biology, 2022, 11, 1595. A phosphate starvation responseâ€regulated receptorâ€like kinase, <scp>OsADK1,</scp> is required for 1507 3.5 12 mycorrhizal symbiosis and phosphate starvation responses. New Phytologist, 2022, 236, 2282-2293. A <i>Eucalyptus</i> Pht1 Family Gene EgPT8 Is Essential for Arbuscule Elongation of <i>Rhizophagus 1.2 irregularis </i>. Microbiology Spectrum, 2022, 10, . Nutrient regulation of lipochitooligosaccharide recognition in plants via NSP1 and NSP2. Nature 1510 5.8 18 Communications, 2022, 13, . A Review of Research on the Use of Selected Grass Species in Removal of Heavy Metals. Agronomy, 1.3 2022, 12, 2587.

#	Article	IF	CITATIONS
1512	Root symbionts alter herbivore-induced indirect defenses of tomato plants by enhancing predator attraction. Frontiers in Physiology, 0, 13, .	1.3	1
1513	Molecular basis of plant nutrient use efficiency - concepts and challenges for its improvement. , 2023, , 107-151.		3
1515	Role of fungal endophytes on mycorrhizal-plant association and its impact on plant fitness. , 2023, , 117-136.		0
1516	Pb Transfer Preference of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis in Morus alba under Different Light Intensities. Journal of Fungi (Basel, Switzerland), 2022, 8, 1224.	1.5	3
1517	Plant Growth Promoting Filamentous Fungi and Their Application in the Fertilization of Pastures for Animal Consumption. Agronomy, 2022, 12, 3033.	1.3	6
1518	Physio-Biochemical and Transcriptomic Features of Arbuscular Mycorrhizal Fungi Relieving Cadmium Stress in Wheat. Antioxidants, 2022, 11, 2390.	2.2	6
1519	Role of Mycorrhizae in Crop Protection. , 0, , .		1
1520	Unearthing the alteration in plant volatiles induced by mycorrhizal fungi: A shield against plant pathogens. Physiologia Plantarum, 2023, 175, .	2.6	7
1521	Volatile organic compounds shape belowground plant–fungi interactions. Frontiers in Plant Science, 0, 13, .	1.7	5
1523	Grassland Degradation Has Stronger Effects on Soil Fungal Community Than Bacterial Community across the Semi-Arid Region of Northern China. Plants, 2022, 11, 3488.	1.6	2
1524	Host―and virus―induced gene silencing of <scp>HOG1â€MAPK</scp> cascade genes in <i>Rhizophagus irregularis</i> inhibit arbuscule development and reduce resistance of plants to drought stress. Plant Biotechnology Journal, 2023, 21, 866-883.	4.1	11
1525	Flavonoids promote Rhizophagus irregularis spore germination and tomato root colonization: A target for sustainable agriculture. Frontiers in Plant Science, 0, 13, .	1.7	2
1526	Hyphosphere interactions between <scp> <i>Rhizophagus irregularis</i> </scp> and <scp> <i>Rahnella aquatilis</i> </scp> promote carbon–phosphorus exchange at the periâ€arbuscular space in <scp> <i>Medicago truncatula</i> </scp> . Environmental Microbiology, 2023, 25, 867-879.	1.8	5
1527	Taxonomical and functional analysis of four arbuscular mycorrhizal fungi populations obtained from a Ricinus communis rhizospheric Cr(VI) polluted soil. Environmental Advances, 2023, 11, 100343.	2.2	1
1528	Population Response of Rhizosphere Microbiota of Garden Pea Genotypes to Inoculation with Arbuscular Mycorrhizal Fungi. International Journal of Molecular Sciences, 2023, 24, 1119.	1.8	0
1529	Changes in the soil biotic community are associated with variation in Illicium verum productivity. Plant and Soil, 2023, 486, 323-336.	1.8	3
1530	Abundance, diversity, and composition of root-associated microbial communities varied with tall fescue cultivars under water deficit. Frontiers in Microbiology, 0, 13, .	1.5	5
1531	Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms, 2023, 11, 69.	1.6	3

#	Article	IF	CITATIONS
1532	Arbuscular mycorrhizal fungi symbiosis and food security. , 2023, , 227-244.		0
1533	Structure and Function Analysis of Cultivated Meconopsis integrifolia Soil Microbial Community Based on High-Throughput Sequencing and Culturability. Biology, 2023, 12, 160.	1.3	2
1534	Between-Plant Signaling. Annual Review of Plant Biology, 2023, 74, 367-386.	8.6	9
1535	How to build a lichen: from metabolite release to symbiotic interplay. New Phytologist, 2023, 238, 1362-1378.	3.5	10
1536	Water stress protection by the arbuscular mycorrhizal fungus <i>Rhizoglomus irregulare</i> involves physiological and hormonal responses in an organâ€specific manner. Physiologia Plantarum, 2023, 175, .	2.6	8
1537	OsSYMRK Plays an Essential Role in AM Symbiosis in Rice (<i>Oryza sativa</i>). Plant and Cell Physiology, 2023, 64, 378-391.	1.5	4
1538	A transcriptional activator from Rhizophagus irregularis regulates phosphate uptake and homeostasis in AM symbiosis during phosphorous starvation. Frontiers in Microbiology, 0, 13, .	1.5	5
1539	Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. Plants, 2023, 12, 517.	1.6	5
1540	Interplay between rhizobial nodulation and arbuscular mycorrhizal fungal colonization in <i>Lotus japonicus</i> roots. Journal of Applied Microbiology, 2023, 134, .	1.4	5
1541	Rhizobium tropici and Riboflavin Amendment Condition Arbuscular Mycorrhiza Colonization in Phaseolus vulgaris L Agronomy, 2023, 13, 876.	1.3	1
1542	Arbuscular mycorrhizal symbiosis enhances perennial ryegrass growth during temperature stress through the modulation of antioxidant defense and hormone levels. Industrial Crops and Products, 2023, 195, 116412.	2.5	4
1543	Simultaneous removal of pharmaceuticals and heavy metals from aqueous phase via adsorptive strategy: A critical review. Water Research, 2023, 236, 119924.	5.3	27
1544	Decoupling of tree height and root depth across the globe and the implications for tree mortality during drought events. Ecological Indicators, 2023, 147, 109944.	2.6	1
1545	Beta Diversity of Arbuscular Mycorrhizal Communities Increases in Time after Crop Establishment of Peruvian Sacha Inchi (Plukenetia volubilis). Journal of Fungi (Basel, Switzerland), 2023, 9, 194.	1.5	1
1546	Arbuscular Mycorrhizal Fungi (AMF) for Improved Plant Health and Production. , 2021, , 147-169.		1
1547	Orchard Management and Incorporation of Biochemical and Molecular Strategies for Improving Drought Tolerance in Fruit Tree Crops. Plants, 2023, 12, 773.	1.6	6
1548	The cytoplasmic synthesis and coupled membrane translocation of eukaryotic polyphosphate by signal-activated VTC complex. Nature Communications, 2023, 14, .	5.8	15
1549	Generalist arbuscular mycorrhizal fungi dominated heavy metal polluted soils at two artisanal and small â~' scale gold mining sites in southeastern Ecuador. BMC Microbiology, 2023, 23, .	1.3	4

#	Article	IF	CITATIONS
1550	Role of Arbuscular Mycorrhizal Fungi and Phosphate Solubilizing Bacteria in Improving Yield, Yield Components, and Nutrients Uptake of Barley under Salinity Soil. Agriculture (Switzerland), 2023, 13, 537.	1.4	7
1551	Cover Crops Modulate the Response of Arbuscular Mycorrhizal Fungi to Water Supply: A Field Study in Corn. Plants, 2023, 12, 1015.	1.6	3
1552	Improving Nitrogen Acquisition and Utilization Through Root Architecture Remodelling: Insight from Legumes. Journal of Plant Growth Regulation, 0, , .	2.8	0
1553	Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annual Review of Plant Biology, 2023, 74, 569-607.	8.6	48
1554	Extracellular Vesicles in the Arbuscular Mycorrhizal Symbiosis: Current Understanding and Future Perspectives. Molecular Plant-Microbe Interactions, 2023, 36, 235-244.	1.4	7
1555	Analysis of the molecular and biochemical mechanisms involved in the symbiotic relationship between Arbuscular mycorrhiza fungi and Manihot esculenta Crantz. Frontiers in Plant Science, 0, 14, .	1.7	1
1556	The community of soil fungi associated with the western red cedar (<i>Thuja plicata</i> Donn ex D.) Tj ETQq0 0 C) rgBT /Ove 0.1	erlock 10 Tf 1
1557	Fallopia japonica and Impatiens glandulifera are colonized by species-poor root-associated fungal communities but have minor impacts on soil properties in riparian habitats. Biological Invasions, 2023, 25, 2199-2218.	1.2	2
1558	On the Occurrence of Arbuscular Mycorrhizal Fungi in a Bryophyte Community of Punta Lara Natural Reserve, Buenos Aires, Argentina. Diversity, 2023, 15, 442.	0.7	1
1559	AM Fungi as a Potential Biofertilizer for Abiotic Stress Management. , 0, , .		1
1560	Unraveling arbuscular mycorrhizal fungi interaction in rice for plant growth development and enhancing phosphorus use efficiency through recent development of regulatory genes. Journal of Plant Nutrition, 2023, 46, 3184-3220.	0.9	4
1561	Multi-Enzymatic Synthesis of Lactobionic Acid Using Wood-Degrading Enzymes Produced by White Rot Fungi. Metabolites, 2023, 13, 469.	1.3	1
1562	Disentangling arbuscular mycorrhizal fungi and bacteria at the soil-root interface. Mycorrhiza, 2023, 33, 119-137.	1.3	8
1563	Soil Mercury Pollution Changes Soil Arbuscular Mycorrhizal Fungal Community Composition. Journal of Fungi (Basel, Switzerland), 2023, 9, 395.	1.5	2
1565	Microbial Management of Fusarium Wilt in Banana: A Comprehensive Overview. , 2023, , 413-435.		4
1566	Traitâ€based assembly of arbuscular mycorrhizal fungal communities determines soil carbon formation	3.5	7

1567	Diversity and assembly of root-associated microbiomes of rubber trees. Frontiers in Plant Science, 0, 14, .	1.7	1	
1568	A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus	0.8	5	

#	Article	IF	CITATIONS
1569	Plant Mycobiome in Sustainable Agriculture. , 2023, , 121-136.		0
1570	Analysis of the structure and function of the LYK cluster of Medicago truncatula A17 and R108. Plant Science, 2023, 332, 111696.	1.7	3
1571	Field inoculation by arbuscular mycorrhizal fungi with contrasting life-history strategies differently affects tomato nutrient uptake and residue decomposition dynamics. Plant and Soil, 0, , .	1.8	5
1573	Mechanistic basis of the symbiotic signaling pathway between the host and the pathogen. , 2023, , 375-387.		Ο
1576	Arbuscular Mycorrhizal Fungi: Role as Biofertilizers, Technology Development, and Economics. , 2023, , 3-30.		0
1578	Current Status of Mycorrhizal Biofertilizer in Crop Improvement and Its Future Prospects. Rhizosphere Biology, 2023, , 465-485.	0.4	0
1589	Development and Resource Exchange Processes in Root Symbioses of Legumes. , 0, , .		0
1591	Insight into the Interaction of Strigolactones, Abscisic Acid, and Reactive Oxygen Species Signals. , 2023, , 179-211.		1
1600	Insights of Microbial Inoculants in Complementing Organic Soil Fertility Management in African Smallholder Farming Systems. , 2023, , 59-83.		1
1607	Arbuscular Mycorrhizal Fungi: A Keystone to Climate-Smart Agriculture. , 2023, , 283-296.		0
1608	MicroRNAs Involved in Nutritional Regulation During Plant–Microbe Symbiotic and Pathogenic Interactions with Rice as a Model. Molecular Biotechnology, 0, , .	1.3	1
1609	Molecular genetics of arbuscular mycorrhizal symbiosis. , 2023, , 67-97.		0
1610	Signaling in arbuscular mycorrhizal association. , 2023, , 127-135.		0
1612	Microbial symbionts for alleviation of heavy metal toxicity in crop plants. , 2023, , 371-400.		1
1613	Diversity of various symbiotic associations between microbes and host plants. , 2023, , 1-18.		0
1618	Ecological Functions of Arbuscular Mycorrhizal Fungi in Agriculture. , 2023, , 139-180.		0
1620	The soil plastisphere. Nature Reviews Microbiology, 2024, 22, 64-74.	13.6	9
1632	The Rhizosphere–A Hub of Emerging Importance for Plant Biotic Interactions. Environmental Science and Engineering, 2023, , 289-327.	0.1	0

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
1651	Knockdown of Lotus japonicus ROP3 alters the root symbiotic phenotype and alters the expression of genes involved in nutrient acquisition during both rhizobial and mycorrhizal symbioses. Symbiosis, 0,	1.2	0	
1657	Plant growth-promoting bacteria (PGPB) in horticulture. Proceedings of the Indian National Science Academy, 2024, 90, 1-11.	0.5	0	
1659	Arbuscular Mycorrhizal Fungi Under Intercrop, Regenerative, and Conventional Agriculture Systems. , 2024, , 287-318.		0	
1662	Signaling Events During the Establishment of Symbiosis Between Arbuscular Mycorrhizal Fungi and Plant Roots. , 2024, , 67-97.		0	
1663	Roles of Arbuscular Mycorrhizal Fungi for Essential Nutrient Acquisition Under Nutrient Deficiency in Plants. , 2024, , 123-148.		0	
1666	Mycorrhizal symbiosis response under pathogen attack in plants. , 2024, , 81-94.		0	
1668	Arbuscular mycorrhizal fungi in alleviation of biotic stress tolerance in plants: A new direction in sustainable agriculture. , 2024, , 355-369.		0	
1670	Metabolic Constraints and Dependencies Between "Uncultivable―Fungi and Their Hosts. , 2024, , 33-57.		0	
1672	Impact of Environmental Gases on Mycorrhizal Symbiosis and Its Influence on Ecosystem Functioning Under the Current Climate Change Scenario. , 2024, , 51-76.		0	
1676	Soil Microbiota and Mechanisms of Plant Parasitic Nematode Suppression. Sustainability in Plant and Crop Protection, 2024, , 49-87.	0.2	0	
1678	Biological control of Plasmopara viticola: where are we now?. , 2024, , 67-100.		0	
1679	Endophytic microorganisms as a source of bioactive compounds. , 2024, , 247-274.		0	
1681	Role of Phenolics in Establishing Mycorrhizal Association in Plants for Management of Biotic Stress. , 2024, , 35-74.		0	