Fluorescent probes for super-resolution imaging in livin

Nature Reviews Molecular Cell Biology 9, 929-943 DOI: 10.1038/nrm2531

Citation Report

#	Article	IF	CITATIONS
4	Commentaries on Viewpoint: The cardiac contraction cycle: Is Ca2+ going local?. Journal of Applied Physiology, 2009, 107, 1985-1987.	1.2	0
5	Novel Application of Fluorescence Lifetime and Fluorescence Microscopy Enables Quantitative Access to Subcellular Dynamics in Plant Cells. PLoS ONE, 2009, 4, e5716.	1.1	29
6	A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation. Nature Precedings, 2009, , .	0.1	0
7	Validating the Location of Fluorescent Protein Fusions in the Endomembrane System. Plant Cell, 2009, 21, 1632-1636.	3.1	65
8	Photoactivatable DCDHF fluorophores for single-molecule imaging. Proceedings of SPIE, 2009, , .	0.8	0
9	Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in Cell Biology, 2009, 19, 555-565.	3.6	303
10	Simultaneous tracking of movement and gene expression in multiple Drosophila melanogaster flies using GFP and DsRED fluorescent reporter transgenes. BMC Research Notes, 2009, 2, 58.	0.6	24
11	Photoswitchable Fluorescent Nanoparticles: Preparation, Properties and Applications. ChemPhysChem, 2009, 10, 2577-2591.	1.0	123
12	Photochromic Oxazines with Extended Conjugation. European Journal of Organic Chemistry, 2009, 2009, 4333-4339.	1.2	34
15	Superâ€Resolution Imaging with Small Organic Fluorophores. Angewandte Chemie - International Edition, 2009, 48, 6903-6908.	7.2	386
16	A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins. Angewandte Chemie - International Edition, 2009, 48, 9658-9662.	7.2	217
17	Optical microscopy in photosynthesis. Photosynthesis Research, 2009, 102, 111-141.	1.6	38
18	Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biology, 2009, 10, 88.	3.0	75
19	Two-stimuli manipulation of a biological motor. Journal of Nanobiotechnology, 2009, 7, 3.	4.2	0
20	Ligand-directed tosyl chemistry for protein labeling in vivo. Nature Chemical Biology, 2009, 5, 341-343.	3.9	318
21	Cell culture medium affects GFP photostability: a solution. Nature Methods, 2009, 6, 859-860.	9.0	70
22	Nano-imaging with STORM. Nature Photonics, 2009, 3, 365-367.	15.6	146
23	Mechanisms and functions for the duration of intercellular contacts made by lymphocytes. Nature Reviews Immunology, 2009, 9, 543-555.	10.6	87

#	Article	IF	CITATIONS
24	Biology under construction: in vitro reconstitution of cellular function. Nature Reviews Molecular Cell Biology, 2009, 10, 644-650.	16.1	194
25	And then there was light. Nature Reviews Molecular Cell Biology, 2009, 10, 814-814.	16.1	0
26	Singleâ€particle tracking methods for the study of membrane receptors dynamics. European Journal of Neuroscience, 2009, 30, 987-997.	1.2	86
27	Inhibitors Target Actin Nucleators. Chemistry and Biology, 2009, 16, 1125-1126.	6.2	5
28	FLAG-tag selective covalent protein labeling via a binding-induced acyl-transfer reaction. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6696-6699.	1.0	18
29	Nanomedicine for targeted drug delivery. Journal of Materials Chemistry, 2009, 19, 6294.	6.7	127
30	The potential of microfluidic water-in-oil droplets in experimental biology. Molecular BioSystems, 2009, 5, 1392.	2.9	131
31	PALM and STORM: What hides beyond the Rayleigh limit?. Biotechnology Journal, 2009, 4, 846-857.	1.8	44
32	Fluorescent Protein Tracking and Detection: Fluorescent Protein Structure and Color Variants. Cold Spring Harbor Protocols, 2009, 2009, pdb.top63.	0.2	63
33	Photoswitching Mechanism of Cyanine Dyes. Journal of the American Chemical Society, 2009, 131, 18192-18193.	6.6	336
34	Substituent Effects on the Photochromism of Bichromophoric Oxazines. Journal of Physical Chemistry C, 2009, 113, 8491-8497.	1.5	53
35	Mass Spectrometry-Based Structural Dissection of Fluorescent Proteins. Biochemistry, 2009, 48, 3810-3812.	1.2	8
36	Tag–probe labeling methods for live-cell imaging of membrane proteins. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 2124-2131.	1.4	58
37	New fluorescence microscopy methods for microbiology: sharper, faster, and quantitative. Current Opinion in Microbiology, 2009, 12, 341-346.	2.3	47
38	Site specific protein labeling by enzymatic posttranslational modification. Organic and Biomolecular Chemistry, 2009, 7, 3361.	1.5	86
39	The fluorescent protein palette: tools for cellular imaging. Chemical Society Reviews, 2009, 38, 2887.	18.7	711
40	How to measure quantum yields in scattering media: Application to the quantum yield measurement of fluorescein molecules encapsulated in sub-100 nm silica particles. Journal of Applied Physics, 2009, 106, 094304.	1.1	32
41	Highly Sensitive and Selective Colorimetric and Offâ~'On Fluorescent Chemosensor for Cu ²⁺ in Aqueous Solution and Living Cells. Analytical Chemistry, 2009, 81, 7022-7030.	3.2	431

ARTICLE IF CITATIONS # The photochemistry of fluorescent proteins: implications for their biological applications. Chemical 42 18.7 46 Society Reviews, 2009, 38, 2842. Live-cell microscopy – tips and tools. Journal of Cell Science, 2009, 122, 753-767. 1.2 Photoreactions and dynamics of the green fluorescent protein. Chemical Society Reviews, 2009, 38, 44 18.7 115 2935. Advances in Bioconjugation. Current Organic Chemistry, 2010, 14, 138-147. 0.9 "Microenvironmental contaminations―induced by fluorescent lipophilic dyes used for noninvasive in 46 0.6 131 vitro and in vivo cell tracking. Blood, 2010, 115, 5347-5354. Kinetochore–Microtubule Dynamics and Attachment Stability. Methods in Cell Biology, 2010, 97, 53-79. A Stilbene That Binds Selectively to Transthyretin in Cells and Remains Dark until It Undergoes a Chemoselective Reaction To Create a Bright Blue Fluorescent Conjugate. Journal of the American 48 6.6 45 Chemical Society, 2010, 132, 16043-16051. Binuclear Ni^{II}â€DpaTyr Complex as a High Affinity Probe for an Oligoâ€Aspartate Tag Tethered 1.7 to Proteins. Chemistry - an Asian Journal, 2010, 5, 877-886. Fluorescent proteins as light-inducible photochemical partners. Photochemical and Photobiological 50 39 1.6 Sciences, 2010, 9, 1301-1306. A New Wave of Cellular Imaging. Annual Review of Cell and Developmental Biology, 2010, 26, 285-314. Broadly tunable UV-blue picosecond pulsed laser and its application for biological imaging. Optical 52 0 1.2 Review, 2010, 17, 305-308. Fluorescent Biosensors of Intracellular Targets from Genetically Encoded Reporters to Modular Polypeptide Probes. Cell Biochemistry and Biophysics, 2010, 56, 19-37. A new multicompartmental reaction-diffusion modeling method links transient membrane attachment 54 1.0 72 of E. coli MinE to E-ring formation. Systems and Synthetic Biology, 2010, 4, 35-53. Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends in Biotechnology, 2010, 28, 73-83. Chemical reporters for the illumination of protein and cell dynamics. Current Opinion in 2.0 56 16 Neurobiology, 2010, 20, 623-630. 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet \hat{I}^2 -cells, an experimental model of type-2 diabetes. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 1327-1341. Make them Blink: Probes for Superâ€Resolution Microscopy. ChemPhysChem, 2010, 11, 2475-2490. 58 1.0 183 A Versatile Route to Redâ \in Emitting Carbopyronine Dyes for Optical Microscopy and Nanoscopy. 59 1.2 European Journal of Organic Chemistry, 2010, 2010, 3593-3610.

	CITATION	Report	
#	Article	IF	CITATIONS
61	Blue Fluorescent Amino Acids as In Vivo Building Blocks for Proteins. ChemBioChem, 2010, 11, 305-314.	1.3	32
62	Cell ycle Markers and Biosensors. ChemBioChem, 2010, 11, 1037-1047.	1.3	23
63	Targeted Photoswitchable Probe for Nanoscopy of Biological Structures. ChemBioChem, 2010, 11, 1361-1363.	1.3	19
64	Redâ€Emitting Rhodamine Dyes for Fluorescence Microscopy and Nanoscopy. Chemistry - A European Journal, 2010, 16, 158-166.	1.7	216
65	New Fluorinated Rhodamines for Optical Microscopy and Nanoscopy. Chemistry - A European Journal, 2010, 16, 4477-4488.	1.7	101
67	Scanning Imaging of Magnetic Nanoparticles for Quantitative Molecular Imaging. Angewandte Chemie, 2010, 122, 7655-7658.	1.6	5
68	Rhodaminesâ€NN: A Novel Class of Caged Fluorescent Dyes. Angewandte Chemie - International Edition, 2010, 49, 3520-3523.	7.2	162
69	Scanning Imaging of Magnetic Nanoparticles for Quantitative Molecular Imaging. Angewandte Chemie - International Edition, 2010, 49, 7493-7496.	7.2	19
70	Combining mechanical and optical approaches to dissect cellular mechanobiology. Journal of Biomechanics, 2010, 43, 45-54.	0.9	36
71	Fluorescence microscopy beyond the diffraction limit. Journal of Biotechnology, 2010, 149, 243-251.	1.9	108
72	A novel platform for in situ investigation of cells and tissues under mechanical strain. Acta Biomaterialia, 2010, 6, 2979-2990.	4.1	34
73	Super-resolution optical microscopy: multiple choices. Current Opinion in Chemical Biology, 2010, 14, 10-14.	2.8	144
74	Construction of a â€~turn-on' fluorescent probe system for His-tagged proteins. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6905-6908.	1.0	14
75	The impact of CdSe/ZnS Quantum Dots in cells of Medicago sativa in suspension culture. Journal of Nanobiotechnology, 2010, 8, 24.	4.2	66
76	Atomic force microscopy of biological samples. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 618-634.	3.3	160
77	Are the Fluorescent Properties of the Cyan Fluorescent Protein Sensitive to Conditions of Oxidative Stress?. Photochemistry and Photobiology, 2010, 86, 55-61.	1.3	14
78	Modeling Three-Dimensional Spatial Regulation of Bacterial Cell Division (Dissertation). Nature Precedings, 2010, , .	0.1	1
79	Fluorescent Reporter Proteins. , 2010, , 3-40.		4

#	Article	IF	CITATIONS
80	A New Approach to Fluorescence Microscopy. Science, 2010, 330, 1334-1335.	6.0	2
81	Super-Resolution Imaging of Plasmodesmata Using Three-Dimensional Structured Illumination Microscopy Â. Plant Physiology, 2010, 153, 1453-1463.	2.3	140
82	Understanding Plant Vacuolar Trafficking from a Systems Biology Perspective. Plant Physiology, 2010, 154, 545-550.	2.3	1
83	Signalling complexes and clusters: functional advantages and methodological hurdles. Journal of Cell Science, 2010, 123, 309-320.	1.2	116
84	Nanometer resolution imaging by single molecule switching. Nano Reviews, 2010, 1, 5122.	3.7	2
85	A straightforward and quantitative approach for characterizing the photoactivation performance of optical highlighter fluorescent proteins. Applied Physics Letters, 2010, 97, 203701.	1.5	3
86	Molecular Basis of the Light-driven Switching of the Photochromic Fluorescent Protein Padron. Journal of Biological Chemistry, 2010, 285, 14603-14609.	1.6	65
87	In situ assembly of macromolecular complexes triggered by light. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6146-6151.	3.3	56
88	Exploring soft matter with x-rays: from the discovery of the DNA structure to the challenges of free electron lasers. Journal of Physics Condensed Matter, 2010, 22, 323102.	0.7	6
89	Chromatin conformation signatures: ideal human disease biomarkers?. Biomarkers in Medicine, 2010, 4, 611-629.	0.6	39
90	Optical and magnetic resonance imaging as complementary modalities in drug discovery. Future Medicinal Chemistry, 2010, 2, 317-337.	1.1	11
91	Single-Molecule Imaging of Platinum Ligand Exchange Reaction Reveals Reactivity Distribution. Journal of the American Chemical Society, 2010, 132, 15167-15169.	6.6	45
92	Single-Molecule Spectroscopy and Imaging of Biomolecules in Living Cells. Analytical Chemistry, 2010, 82, 2192-2203.	3.2	140
93	Biodegradable Main-Chain Phosphate-Caged Fluorescein Polymers for the Evaluation of Enzymatic Activity. Macromolecules, 2010, 43, 6180-6184.	2.2	18
94	Stimulated Emission Depletion Nanoscopy of Living Cells Using SNAP-Tag Fusion Proteins. Biophysical Journal, 2010, 98, 158-163.	0.2	128
95	Superresolution Localization of Single Functional IP3R Channels Utilizing Ca2+ÂFlux as a Readout. Biophysical Journal, 2010, 99, 437-446.	0.2	41
96	New fluorescent trans-dihydrofluoren-3-ones from aldol–Robinson annulation–regioselective addition involved one-pot reaction. Organic and Biomolecular Chemistry, 2010, 8, 5048.	1.5	5
97	FISH Applications for Genomics and Plant Breeding Strategies in Tomato and Other Solanaceous Crops. Cytogenetic and Genome Research, 2010, 129, 199-210.	0.6	33

ARTICLE IF CITATIONS # Photoswitchable Fluorescent Dyads Incorporating BODIPY and [1,3]Oxazine Components. Journal of 1.1 50 98 Physical Chemistry A, 2010, 114, 11567-11575. Fast Fluorescence Photoswitching in a BODIPYâ[^]Oxazine Dyad with Excellent Fatigue Resistance. Journal of Physical Chemistry Letters, 2010, 1, 1690-1693. 2.1 Combining SELEX Screening and Rational Design to Develop Light-Up Fluorophoreâ[^] RNA Aptamer Pairs 100 1.6 41 for RNA Tagging. ACS Chemical Biology, 2010, 5, 1065-1074. Intrinsically Resolution Enhancing Probes for Confocal Microscopy. Nano Letters, 2010, 10, 672-679. Fluorescence Lifetime Measurements and Biological Imaging. Chemical Reviews, 2010, 110, 2641-2684. 103 23.0 1,860 Azido Pushâ[^]Pull Fluorogens Photoactivate to Produce Bright Fluorescent Labels. Journal of Physical Chemistry B, 2010, 114, 14157-14167. 1.2 Superresolution Imaging using Single-Molecule Localization. Annual Review of Physical Chemistry, 105 4.8 507 2010, 61, 345-367. Filamentous microtubules in the neuronal spinous process and the role of microtubule regulatory 106 1.9 drugs in neuropathic pain. Neurochemistry International, 2010, 57, 497-503. Mechanism of membrane nanotube formation by molecular motors. Biochimica Et Biophysica Acta -107 1.4 51 Biomembranes, 2010, 1798, 1418-1426. Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells. Cell, 2010, 143, 1047-1058. 13.5 1,038 Cytokinesis and the contractile ring in fission yeast: towards a systems-level understanding. Trends in 109 3.5 52 Microbiology, 2010, 18, 38-45. Sample Preparation for STED Microscopy. Methods in Molecular Biology, 2010, 591, 185-199. 0.4 A guide to super-resolution fluorescence microscopy. Journal of Cell Biology, 2010, 190, 165-175. 111 2.3 1,131 Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiological Reviews, 13.1 1,175 2010, 90, 1103-1163. Selective Covalent Labeling of Tag-Fused GPCR Proteins on Live Cell Surface with a Synthetic Probe 113 93 6.6 for Their Functional Analysis. Journal of the American Chemical Society, 2010, 132, 9301-9309. Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting. Journal 114 494 of the American Chemical Society, 2010, 132, 15410-15417. Single-Particle Tracking Photoactivated Localization Microscopy for Mapping Single-Molecule 115 0.4 62 Dynamics. Methods in Enzymology, 2010, 475, 109-120. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Natural 5.2 Product Reports, 2010, 27, 969.

#	Article	IF	CITATIONS
117	Turn-on fluorescence switch involving aggregation and elimination processes for β-lactamase-tag. Chemical Communications, 2010, 46, 7403.	2.2	31
118	Fluorescence patterning in films of a photoswitchable BODIPY–spiropyran dyad. Physical Chemistry Chemical Physics, 2010, 12, 11630.	1.3	28
119	Photoswitching of E222Q GFP mutants: "concerted―mechanism of chromophore isomerization and protonation. Photochemical and Photobiological Sciences, 2010, 9, 1307.	1.6	23
120	Super-resolution fluorescence nanoscopy applied to imaging core–shell photoswitching nanoparticles and their self-assemblies. Chemical Communications, 2011, 47, 1258-1260.	2.2	51
121	Molecular strategies to read and write at the nanoscale with far-field optics. Nanoscale, 2011, 3, 59-70.	2.8	28
122	A photoswitchable bichromophoric oxazine with fast switching speeds and excellent fatigue resistance. Canadian Journal of Chemistry, 2011, 89, 110-116.	0.6	16
123	Automated Single-Molecule Imaging To Track DNA Shape. Langmuir, 2011, 27, 6149-6154.	1.6	9
124	Supramolecular Strategies To Construct Biocompatible and Photoswitchable Fluorescent Assemblies. Journal of the American Chemical Society, 2011, 133, 871-879.	6.6	141
126	Quantum-Yield-Optimized Fluorophores for Site-Specific Labeling and Super-Resolution Imaging. Journal of the American Chemical Society, 2011, 133, 8090-8093.	6.6	35
127	Superresolution Imaging of Multiple Fluorescent Proteins with Highly Overlapping Emission Spectra in Living Cells. Biophysical Journal, 2011, 101, 1522-1528.	0.2	139
128	BF ₂ -Azadipyrromethenes: Probing the Excited-State Dynamics of a NIR Fluorophore and Photodynamic Therapy Agent. Journal of Physical Chemistry A, 2011, 115, 14034-14039.	1.1	88
129	Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques. Nanotoxicology, 2011, 5, 381-392.	1.6	55
130	Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy. Annual Review of Physical Chemistry, 2011, 62, 507-530.	4.8	517
131	PHOTOSWITCHABLE NANOFLUOROPHORES FOR INNOVATIVE BIOIMAGING. Journal of Innovative Optical Health Sciences, 2011, 04, 395-408.	0.5	10
132	Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale, 2011, 3, 2009.	2.8	278
133	Localization imaging using blinking quantum dots. Analyst, The, 2011, 136, 1608.	1.7	41
134	Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 6699.	1.3	78
135	High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Reports on Progress in Physics, 2011, 74, 086601.	8.1	118

#	Article	IF	CITATIONS
136	Multicolor, One- and Two-Photon Imaging of Enzymatic Activities in Live Cells with Fluorescently Quenched Activity-Based Probes (qABPs). Journal of the American Chemical Society, 2011, 133, 12009-12020.	6.6	124
137	Real-Time Imaging of Platinumâ^'Sulfur Ligand Exchange Reactions at the Single-Molecule Level via a General Chemical Technique. Organometallics, 2011, 30, 2901-2907.	1.1	28
138	Optical switch probes and optical lock-in detection (OLID) imaging microscopy: high-contrast fluorescence imaging within living systems. Biochemical Journal, 2011, 433, 411-422.	1.7	47
140	Photoswitching-Induced Frequency-Locked Donor–Acceptor Fluorescence Double Modulations Identify the Target Analyte in Complex Environments. Journal of the American Chemical Society, 2011, 133, 16092-16100.	6.6	43
141	Rapid, Photoactivatable Turn-On Fluorescent Probes Based on an Intramolecular Photoclick Reaction. Journal of the American Chemical Society, 2011, 133, 11912-11915.	6.6	110
142	Balance between Fluorescence Enhancement and Association Affinity in Fluorescent Heteroditopic Indicators for Imaging Zinc Ion in Living Cells. Inorganic Chemistry, 2011, 50, 10493-10504.	1.9	25
143	Tumor-stroma: In vivo assays and intravital imaging to study cell migration and metastasis. Drug Discovery Today: Disease Models, 2011, 8, 95-102.	1.2	14
144	Bridging Structure and Process in Developmental Biology through New Imaging Technologies. Developmental Cell, 2011, 21, 5-10.	3.1	16
145	Fluorescent proteins illuminate the structure and function of the hyphal tip apparatus. Fungal Genetics and Biology, 2011, 48, 849-857.	0.9	34
146	Fluorescent "Turn-on―system utilizing a quencher-conjugated peptide for specific protein labeling of living cells. Biochemical and Biophysical Research Communications, 2011, 404, 211-216.	1.0	10
147	Pure optical photoacoustic microscopy. Optics Express, 2011, 19, 9027.	1.7	106
148	Localization-based super-resolution microscopy with an sCMOS camera. Optics Express, 2011, 19, 19156.	1.7	72
149	A FRET-based indicator for imaging mitochondrial zinc ions. Chemical Communications, 2011, 47, 11730.	2.2	77
150	Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature, 2011, 478, 260-263.	13.7	309
151	"Off-On―based fluorescent chemosensor for Cu2+ in aqueous media and living cells. Talanta, 2011, 85, 1627-1633.	2.9	118
153	Modern fluorescent proteins: from chromophore formation to novel intracellular applications. BioTechniques, 2011, 51, 313-327.	0.8	137
154	Design and Synthesis of Fluorescent Probe for Polyhistidine Tag Using Macrocyclic Nickel(II) Complex and Fluorescein Conjugate. Bulletin of the Chemical Society of Japan, 2011, 84, 386-394.	2.0	5
155	Single-molecule Photoswitching and Localization. Australian Journal of Chemistry, 2011, 64, 503.	0.5	19

#	Article	IF	CITATIONS
156	12 Chemical modifi cation of proteins in living cells. , 2011, , 197-218.		1
157	Fast, three-dimensional super-resolution imaging of live cells. Nature Methods, 2011, 8, 499-505.	9.0	703
158	Imaging techniques for assaying lymphocyte activation in action. Nature Reviews Immunology, 2011, 11, 21-33.	10.6	93
159	Proteins on the move: insights gained from fluorescent protein technologies. Nature Reviews Molecular Cell Biology, 2011, 12, 656-668.	16.1	122
160	The Singapore high resolution single cell imaging facility. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2168-2174.	0.6	30
161	Biophysics of single molecules. Biophysics (Russian Federation), 2011, 56, 858-882.	0.2	0
162	A novel fluorescent probe for more effective monitoring of nanosized drug delivery systems within the cells. International Journal of Pharmaceutics, 2011, 416, 384-393.	2.6	18
163	Photophysical properties of fluorescently-labeled peptoids. European Journal of Medicinal Chemistry, 2011, 46, 4457-4465.	2.6	16
164	Imaging and characterisation of the surface of live cells. Current Opinion in Chemical Biology, 2011, 15, 696-703.	2.8	31
165	Label-free optical imaging of nonfluorescent molecules by stimulated radiation. Current Opinion in Chemical Biology, 2011, 15, 831-837.	2.8	12
166	A starter kit for point-localization super-resolution imaging. Current Opinion in Chemical Biology, 2011, 15, 813-821.	2.8	21
167	Advances in the chemistry of small molecule fluorescent probes. Current Opinion in Chemical Biology, 2011, 15, 752-759.	2.8	230
168	Switchable fluorophores for protein labeling in living cells. Current Opinion in Chemical Biology, 2011, 15, 768-774.	2.8	34
169	In vitro and in vivo single-molecule fluorescence imaging of ribosome-catalyzed protein synthesis. Current Opinion in Chemical Biology, 2011, 15, 853-863.	2.8	19
170	Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nature Methods, 2011, 8, 1027-1036.	9.0	1,198
171	Genetically Encodable Fluorescent Biosensors for Tracking Signaling Dynamics in Living Cells. Chemical Reviews, 2011, 111, 3614-3666.	23.0	309
172	Fast and Stable Photochromic Oxazines for Fluorescence Switching. Langmuir, 2011, 27, 11773-11783.	1.6	73
173	Bioorthogonal Chemistry for Site-Specific Labeling and Surface Immobilization of Proteins. Accounts of Chemical Research, 2011, 44, 762-773.	7.6	156

		CITATION REPORT		
#	Article		IF	CITATIONS
174	Diamond-based single-photon emitters. Reports on Progress in Physics, 2011, 74, 076	501.	8.1	462
175	Cis–trans photoisomerization properties of GFP chromophore analogs. European Bio 2011, 40, 1205-1214.	ophysics Journal,	1.2	22
176	Calcium regulation of nucleocytoplasmic transport. Protein and Cell, 2011, 2, 291-302	<u>.</u>	4.8	14
177	Oneâ€Pot Synthesis of Nearâ€Infrared Fluorescent Gold Clusters for Cellular Fluoresce Imaging. Small, 2011, 7, 2614-2620.	nce Lifetime	5.2	334
178	Superâ€resolution microscopy for nanosensing. Wiley Interdisciplinary Reviews: Nanor Nanobiotechnology, 2011, 3, 247-255.	nedicine and	3.3	5
180	Singleâ€Molecule Fluorescence Coincidence Spectroscopy and its Application to Reso Transfer. ChemPhysChem, 2011, 12, 491-499.	nance Energy	1.0	12
181	Chemical tags: Applications in live cell fluorescence imaging. Journal of Biophotonics, 2	2011, 4, 391-402.	1.1	79
183	Facile and General Synthesis of Photoactivatable Xanthene Dyes. Angewandte Chemie Edition, 2011, 50, 11206-11209.	- International	7.2	116
184	Selective Two‧tep Labeling of Proteins with an Off/On Fluorescent Probe. Chemistry Journal, 2011, 17, 14763-14771.	y - A European	1.7	10
185	Switching Modulation for Protein Labeling with Activatable Fluorescent Probes. Cheml 12, 1299-1308.	BioChem, 2011,	1.3	11
186	Measuring InÂVivo Protein Half-Life. Chemistry and Biology, 2011, 18, 805-815.		6.2	71
187	Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano 6, 401-418.	o Today, 2011,	6.2	1,345
188	Structure and single crystal spectroscopy of Green Fluorescent Proteins. Biochimica Et Acta - Proteins and Proteomics, 2011, 1814, 824-833.	Biophysica	1.1	12
189	Bleaching/blinking assisted localization microscopy for superresolution imaging using fluorescent molecules. Proceedings of the National Academy of Sciences of the United America, 2011, 108, 21081-21086.	standard I States of	3.3	191
190	Probes for Nanoscopy: Fluorescent Proteins. Springer Series on Fluorescence, 2011, , 1	111-158.	0.8	3
191	Setting Up and Running an Advanced Light Microscopy and Imaging Facility. Current P Cytometry, 2011, 57, Unit 12.22.	rotocols in	3.7	2
192	Functioning Nanomachines Seen in Real-Time in Living Bacteria Using Single-Molecule Super-Resolution Fluorescence Imaging. International Journal of Molecular Sciences, 20 2518-2542.	and 011, 12,	1.8	48
193	Single Molecule Fluorescence Detection and Tracking in Mammalian Cells: The State-o Future Perspectives. International Journal of Molecular Sciences, 2012, 13, 14742-147	f-the-Art and 65.	1.8	25

#	Article	IF	CITATIONS
194	A network-oriented perspective on cardiac calcium signaling. American Journal of Physiology - Cell Physiology, 2012, 303, C897-C910.	2.1	15
195	Probes for Nanoscopy: Photoswitchable Fluorophores. Springer Series on Fluorescence, 2012, , 189-213.	0.8	4
196	Scanning two-photon microscopy with upconverting lanthanide nanoparticles via Richardson-Lucy deconvolution. Journal of Biomedical Optics, 2012, 17, 0760031.	1.4	25
197	Localization-based super-resolution microscopy with an sCMOS camera Part II: Experimental methodology for comparing sCMOS with EMCCD cameras. Optics Express, 2012, 20, 17741.	1.7	66
198	Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores. Optics Express, 2012, 20, 18525.	1.7	24
199	Dynamic and high-resolution live cell imaging by direct electron beam excitation. Optics Express, 2012, 20, 5629.	1.7	41
200	Investigation of the Autofluorescence of Various Abalone (Haliotis midae) Tissues and the Implications for Future use of Fluorescent Molecules. Journal of Shellfish Research, 2012, 31, 785-788.	0.3	2
201	Tailoring Fluorescent Labels for Far-Field Nanoscopy. Springer Series on Fluorescence, 2012, , 159-188.	0.8	2
202	Visualizing Cell Structure and Function with Point-Localization Superresolution Imaging. Developmental Cell, 2012, 23, 1092-1102.	3.1	89
203	New method for effectively and quantitatively labeling cysteine residues on chicken eggshell membrane. Organic and Biomolecular Chemistry, 2012, 10, 8082.	1.5	13
204	Mechanistic Insights into Reversible Photoactivation in Proteins of the GFP Family. Biophysical Journal, 2012, 103, 2521-2531.	0.2	30
205	A cyanine based fluorophore emitting both single photon near-infrared fluorescence and two-photon deep red fluorescence in aqueous solution. Organic and Biomolecular Chemistry, 2012, 10, 5366.	1.5	17
206	Dual-mode fluorescence switching of photochromic bisthiazolylcoumarin. Chemical Communications, 2012, 48, 765-767.	2.2	59
207	Active learning framework with iterative clustering for bioimage classification. Nature Communications, 2012, 3, 1032.	5.8	42
208	Fluorescent labeling techniques in biomolecules: a flashback. RSC Advances, 2012, 2, 7017.	1.7	110
209	Photoinduced Fluorescence Activation and Nitric Oxide Release with Biocompatible Polymer Nanoparticles. Chemistry - A European Journal, 2012, 18, 15782-15787.	1.7	51
210	Arginine Topology Controls Escape of Minimally Cationic Proteins from Early Endosomes to the Cytoplasm. Chemistry and Biology, 2012, 19, 819-830.	6.2	146
211	Integrating Sphere Setup for the Traceable Measurement of Absolute Photoluminescence Quantum Yields in the Near Infrared. Analytical Chemistry, 2012, 84, 1345-1352.	3.2	86

#	Article	IF	CITATIONS
212	Energy transfer of CdSe/ZnS nanocrystals encapsulated with rhodamine-dye functionalized poly(acrylic acid). Journal of Photochemistry and Photobiology A: Chemistry, 2012, 248, 24-29.	2.0	15
213	Mechanical Strain in Actin Networks Regulates FilGAP and Integrin Binding to Filamin A. Biophysical Journal, 2012, 102, 348a.	0.2	2
214	Quantification of sub-resolution sized targets in cell fluorescent imaging. , 2012, , .		1
215	Rational design of ZnSalen as a single and two photon activatable fluorophore in living cells. Chemical Science, 2012, 3, 3315.	3.7	57
216	CEA fluorescence biosensor based on the FRET between polymer dots and Au nanoparticles. Chemical Communications, 2012, 48, 9918.	2.2	79
217	A Thermal Dehydrogenative Diels–Alder Reaction of Styrenes for the Concise Synthesis of Functionalized Naphthalenes. Organic Letters, 2012, 14, 4430-4433.	2.4	62
218	Photoactivatable Fluorophores for Super-Resolution Imaging Based on Oxazine Auxochromes. Journal of Physical Chemistry C, 2012, 116, 6058-6068.	1.5	123
219	Organelle-Localizable Fluorescent Chemosensors for Site-Specific Multicolor Imaging of Nucleoside Polyphosphate Dynamics in Living Cells. Journal of the American Chemical Society, 2012, 134, 18779-18789.	6.6	148
220	Inducible Biosynthetic Nanoscaffolds as Recruitment Platforms for Detecting Molecular Target Interactions inside Living Cells. Journal of the American Chemical Society, 2012, 134, 11346-11349.	6.6	3
221	Origin of Fluorescence in 11- <i>cis</i> Locked Bovine Rhodopsin. Journal of Chemical Theory and Computation, 2012, 8, 2559-2563.	2.3	31
222	Fluorescence Photoactivation by Intermolecular Proton Transfer. Journal of Physical Chemistry A, 2012, 116, 9928-9933.	1.1	31
223	Second-Generation Covalent TMP-Tag for Live Cell Imaging. Journal of the American Chemical Society, 2012, 134, 13692-13699.	6.6	118
224	Enabling Biomedical Research with Designer Quantum Dots. Methods in Molecular Biology, 2012, 811, 245-265.	0.4	7
225	Live-Cell Super-Resolution Imaging with Synthetic Fluorophores. Annual Review of Physical Chemistry, 2012, 63, 519-540.	4.8	262
226	A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4455-4460.	3.3	120
227	High photostability and enhanced fluorescence of gold nanoclusters by silver doping. Nanoscale, 2012, 4, 7624.	2.8	102
228	Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols. Coordination Chemistry Reviews, 2012, 256, 2333-2356.	9.5	283
229	Types of Imaging, Part 2: An Overview of Fluorescence Microscopy. Anatomical Record, 2012, 295, 1621-1627.	0.8	24

#	Article	IF	CITATIONS
230	GraspJ: an open source, real-time analysis package for super-resolution imaging. Optical Nanoscopy, 2012, 1, 11.	4.0	15
231	Superresolution microscopy for microbiology. Cellular Microbiology, 2012, 14, 1808-1818.	1.1	110
232	High resolution imaging of neuronal connectivity. Journal of Microscopy, 2012, 248, 111-116.	0.8	7
233	Fluorophore Targeting to Cellular Proteins via Enzyme-Mediated Azide Ligation and Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2012, 134, 3720-3728.	6.6	114
234	Visualizing the Quadruplex: From Fluorescent Ligands to Light-Up Probes. Topics in Current Chemistry, 2012, 330, 111-177.	4.0	109
235	Photoinduced Enhancement in the Luminescence of Hydrophilic Quantum Dots Coated with Photocleavable Ligands. Journal of the American Chemical Society, 2012, 134, 2276-2283.	6.6	51
236	Photoactivatable Synthetic Dyes for Fluorescence Imaging at the Nanoscale. Journal of Physical Chemistry Letters, 2012, 3, 2379-2385.	2.1	64
237	A Caged, Localizable Rhodamine Derivative for Superresolution Microscopy. ACS Chemical Biology, 2012, 7, 289-293.	1.6	79
238	Imaging Nanometer-Sized α-Synuclein Aggregates by Superresolution Fluorescence Localization Microscopy. Biophysical Journal, 2012, 102, 1598-1607.	0.2	60
239	Nano Resolution Optical Imaging Through Localization Microscopy. , 2012, , 81-100.		3
240	Atomic Force Microscopy in Bioengineering Applications. Nanoscience and Technology, 2012, , 397-430.	1.5	1
241	CHAPTER 2. Fluorophore Conjugates for Single Molecule Work. RSC Biomolecular Sciences, 2012, , 34-74.	0.4	0
242	2.4 Super-Resolution Microscopy. , 2012, , 39-58.		3
243	Monitoring Conformational Dynamics with Single-Molecule Fluorescence Energy Transfer: Applications in Nucleosome Remodeling. Methods in Enzymology, 2012, 513, 59-86.	0.4	17
244	TubStain: a universal peptide-tool to label microtubules. Histochemistry and Cell Biology, 2012, 138, 531-540.	0.8	18
245	Single-molecule studies of nucleocytoplasmic transport: from one dimension to three dimensions. Integrative Biology (United Kingdom), 2012, 4, 10-21.	0.6	29
246	The relative brightness of PEG lipid-conjugated polymer nanoparticles as fluid-phase markers in live cells. Analytical and Bioanalytical Chemistry, 2012, 404, 3003-3014.	1.9	11
247	Quantum dots impair macrophagic morphology and the ability of phagocytosis by inhibiting the Rho-associated kinase signaling. Nanoscale, 2012, 4, 2239.	2.8	32

ARTICLE IF CITATIONS # Coiled-Coil Tag–Probe Labeling Methods for Live-Cell Imaging of Membrane Receptors. Methods in 248 0.4 16 Enzymology, 2012, 504, 355-370. 2.8 Super-Resolution Near-Field Optical Microscopy., 2012, , 144-164. 249 250 2.10 Quantitative Fluorescent Speckle Microscopy., 2012, , 180-209. 0 Anti-Fading Media for Live Cell GFP Imaging. PLoS ONE, 2012, 7, e53004. 1.1 59 Optimization of Cell Morphology Measurement via Single-Molecule Tracking PALM. PLoS ONE, 2012, 7, 252 1.1 21 e36751. Multi-Color Single Particle Tracking with Quantum Dots. PLoS ONE, 2012, 7, e48521. 1.1 37 Transmembrane Adaptor Proteins in the High-Affinity IgE Receptor Signaling. Frontiers in Immunology, 254 2.2 33 2011, 2, 95. Direct Visualization of Single-Molecule DNA-Binding Proteins Along DNA to Understand DNA-Protein Interactions., 2012,,. Characterization of Differential Tollâ€like Receptor Responses below the Optical Diffraction Limit. 256 5.2 26 Small, 2012, 8, 3041-3049. Insights into the isomerization of photochromic oxazines from the excitation dynamics of 1.3 BODIPY–oxazine dyads. Physical Chemistry Chemical Physics, 2012, 14, 10300. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophysical 258 1.5 80 Reviews, 2012, 4, 313-322. Multicolored pH-Tunable and Activatable Fluorescence Nanoplatform Responsive to Physiologic pH 6.6 312 Stimuli. Journal of the American Chemical Society, 2012, 134, 7803-7811 Synthesis and Photophysical Properties of a Series of Cyclopenta[<i>b</i>)naphthalene 260 6.6 118 Solvatochromic Fluorophores. Journal of the American Chemical Society, 2012, 134, 12418-12421. Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging. Chemical 2.2 89 Communications, 2012, 48, 3745. Image analysis in fluorescence microscopy: Bacterial dynamics as a case study. BioEssays, 2012, 34, 262 1.2 26 427-436. The lipid raft hypothesis revisited – New insights on raft composition and function from 1.2 150 superâ€resolution fluorescence microscopy. BioEssays, 2012, 34, 739-747. A Need for Speed: Genetic Encoding of Rapid Cycloaddition Chemistries for Protein Labelling in Living 264 1.318 Cells. ChemBioChem, 2012, 13, 1553-1557. Genetically Targetable and Colorâ€Switching Fluorescent Probe. ChemBioChem, 2012, 13, 1564-1568. 1.3

#	Article	IF	Citations
266	Liveâ€Cell Superâ€Resolution Imaging Goes Multicolor. ChemBioChem, 2012, 13, 1861-1863.	1.3	19
267	Fast Fluorescence Switching within Hydrophilic Supramolecular Assemblies. Chemistry - A European Journal, 2012, 18, 10399-10407.	1.7	35
268	Pump-probe optical microscopy for imaging nonfluorescent chromophores. Analytical and Bioanalytical Chemistry, 2012, 403, 2197-2202.	1.9	30
269	Advances in light-based imaging of three-dimensional cellular ultrastructure. Current Opinion in Cell Biology, 2012, 24, 125-133.	2.6	27
270	Correlative microscopy: Providing new understanding in the biomedical and plant sciences. Micron, 2012, 43, 565-582.	1.1	59
271	Surfaced-enhanced cellular fluorescence imaging. Progress in Surface Science, 2012, 87, 23-45.	3.8	26
272	Live ell dSTORM of Cellular DNA Based on Direct DNA Labeling. ChemBioChem, 2012, 13, 298-301.	1.3	66
273	Multicolor Superâ€Resolution Fluorescence Imaging via Multiâ€Parameter Fluorophore Detection. ChemPhysChem, 2012, 13, 99-107.	1.0	137
274	Bifunctional coumarin derivatives that inhibit transthyretin amyloidogenesis and serve as fluorescent transthyretin folding sensors. Chemical Communications, 2013, 49, 9188.	2.2	35
275	Optical control and study of biological processes at the single-cell level in a live organism. Reports on Progress in Physics, 2013, 76, 072601.	8.1	14
276	Adhesion Protein Protocols. Methods in Molecular Biology, 2013, , .	0.4	5
277	Localization-Based Super-Resolution Imaging of Cellular Structures. Methods in Molecular Biology, 2013, 1046, 59-84.	0.4	7
278	Stimulated emission depletion-based raster image correlation spectroscopy reveals biomolecular dynamics in live cells. Nature Communications, 2013, 4, 2093.	5.8	87
279	Cell Senescence. Methods in Molecular Biology, 2013, , .	0.4	4
280	<scp>STED</scp> microscopy of living cells – new frontiers in membrane and neurobiology. Journal of Neurochemistry, 2013, 126, 203-212.	2.1	62
281	New Frontiers in Photochromism. , 2013, , .		110
282	DNA Switches on the Two-Photon Efficiency of an Ultrabright Triphenylamine Fluorescent Probe Specific of AT Regions. Journal of the American Chemical Society, 2013, 135, 12697-12706.	6.6	91
283	Fluorescence Activation with Photochromic Auxochromes. Israel Journal of Chemistry, 2013, 53, 247-255.	1.0	12

ARTICLE IF CITATIONS # Stochastic Optical Reconstruction Microscopy (STORM): A Method for Superresolution Fluorescence 284 0.2 92 Imaging. Cold Spring Harbor Protocols, 2013, 2013, pdb.top075143. Super-Resolution mbPAINT for Optical Localization of Single-Stranded DNA. ACS Applied Materials 44 & Interfaces, 2013, 5, 9338-9343. A User's Guide to Localization-Based Super-Resolution Fluorescence Imaging. Methods in Cell Biology, 286 0.5 30 2013, 114, 561-592. Optimized Design and Synthesis of a Cell-Permeable Biarsenical Cyanine Probe for Imaging Tagged 1.8 Cytosolic Bacterial Proteins. Bioconjugate Chemistry, 2013, 24, 251-259. Luminescent gold nanoparticles: A new class of nanoprobes for biomedical imaging. Experimental 288 1.1 41 Biology and Medicine, 2013, 238, 1199-1209. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chemistry, 2013, 24, 1445-1454. 1.8 Superresolution Imaging with Switchable Fluorophores Based on Oxazine Auxochromes. 290 1.3 21 Photochemistry and Photobiology, 2013, 89, 1391-1398. Photoactivatable synthetic fluorophores. Physical Chemistry Chemical Physics, 2013, 15, 14840. 291 1.3 87 292 Nanophotonics for live cell observation with high resolution., 2013, , . 0 Photochemical properties of Spinach and its use in selective imaging. Chemical Science, 2013, 4, 2865. 44 Fluorescence imaging in the last two decades. Microscopy (Oxford, England), 2013, 62, 63-68. 294 0.7 25 Single-molecule imaging in live bacteria cells. Philosophical Transactions of the Royal Society B: 1.8 Biological Sciences, 2013, 368, 20120355. Imaging the cell surface and its organization down to the level of single molecules. Philosophical 296 1.8 19 Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120027. Surfaceâ€enhanced Raman scattering imaging using noble metal nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 180-189. 3.3 A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. 298 3.7 187 Chemical Science, 2013, 4, 1079. Tighter focusing of amplitude modulated radially polarized vector beams in ultra-high numerical 1.0 aperture lens systems. Optics Communications, 2013, 294, 21-23. Studying genomic processes at the single-molecule level: introducing the tools and applications. 300 7.7 83 Nature Reviews Genetics, 2013, 14, 9-22. Ground state depletion microscopy for imaging interactions between gold nanowires and 301 1.3 28 fluorophore-labeled ligands. Physical Chemistry Chemical Physics, 2013, 15, 4136-4145.

#	Article	IF	CITATIONS
302	Rapid Fluorescence Switching by Using a Fast Photochromic [2.2]Paracyclophane-Bridged Imidazole Dimer. Journal of Physical Chemistry C, 2013, 117, 4808-4814.	1.5	48
303	Photoswitching-Enabled Novel Optical Imaging: Innovative Solutions for Real-World Challenges in Fluorescence Detections. Accounts of Chemical Research, 2013, 46, 269-279.	7.6	139
305	A Common Diaryl Ether Intermediate for the Gramâ€Scale Synthesis of Oxazine and Xanthene Fluorophores. Angewandte Chemie - International Edition, 2013, 52, 650-654.	7.2	38
306	Single Cell Optical Imaging and Spectroscopy. Chemical Reviews, 2013, 113, 2469-2527.	23.0	250
307	Lead–vitamin complex [Pb(C19H15N7O6)]·4H2O and its application in bioimaging. Inorganic Chemistry Communication, 2013, 29, 165-168.	1.8	5
308	Resolving multi-molecular protein interactions by photoactivated localization microscopy. Methods, 2013, 59, 261-269.	1.9	26
309	Super-resolution measurements related to uncertainty relations in optical and biological fluorescence systems. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 131, 43-51.	1.1	2
310	Investigating Cellular Structures at the Nanoscale with Organic Fluorophores. Chemistry and Biology, 2013, 20, 8-18.	6.2	54
311	Single-Molecule Fluorescence Imaging in Living Cells. Annual Review of Physical Chemistry, 2013, 64, 459-480.	4.8	148
312	Superresolution microscopy in heart — Cardiac nanoscopy. Journal of Molecular and Cellular Cardiology, 2013, 58, 13-21.	0.9	20
313	Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. Journal of Materials Chemistry B, 2013, 1, 1994.	2.9	92
314	Single-molecule methods for studying gene regulation in vivo. Pflugers Archiv European Journal of Physiology, 2013, 465, 383-395.	1.3	3
316	Characterization of a fluorescence probe based on gold nanoclusters for cell and animal imaging. Nanotechnology, 2013, 24, 055704.	1.3	34
317	Microspectroscopy reveals mechanisms of lymphocyte activation. Integrative Biology (United) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
318	Enzymatic activation of nitro-aryl fluorogens in live bacterial cells for enzymatic turnover-activated localization microscopy. Chemical Science, 2013, 4, 220-225.	3.7	56
319	Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses. Lab on A Chip, 2013, 13, 2028.	3.1	52
320	STED Microscopy. , 2013, , 375-392.		7
321	Bioanalysis of Eukaryotic Organelles. Chemical Reviews, 2013, 113, 2733-2811.	23.0	110

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
322	A two-photon fluorescent probe with near-infrared emission for hydrogen sulfide imaging in biosystems. Chemical Communications, 2013, 49, 3890.	2.2	295
323	In-cell covalent labeling of reactive His-tag fused proteins. Chemical Communications, 2013, 49, 5022.	2.2	47
324	Super-Resolution Fluorescence Imaging with Blink Microscopy. , 2013, 950, 111-129.		2
325	Microwave-assisted Intramolecular Dehydrogenative Diels-Alder Reactions for the Synthesis of Functionalized Naphthalenes/Solvatochromic Dyes. Journal of Visualized Experiments, 2013, , .	0.2	0
326	Chemical tags: inspiration for advanced imaging techniques. Current Opinion in Chemical Biology, 2013, 17, 637-643.	2.8	31
327	Plasmonic nanoprobes for intracellular sensing and imaging. Analytical and Bioanalytical Chemistry, 2013, 405, 6165-6180.	1.9	56
328	Tunable Near Infrared to Ultraviolet Upconversion Luminescence Enhancement in (αâ€NaYF ₄ :Yb,Tm)/CaF ₂ Core/Shell Nanoparticles for In situ Realâ€ŧime Recorded Biocompatible Photoactivation. Small, 2013, 9, 3213-3217.	5.2	69
329	Tuning Photoswitchable Dual olor Fluorescence from Core‧hell Polymer Nanoparticles. Israel Journal of Chemistry, 2013, 53, 294-302.	1.0	13
330	Activation of BODIPY fluorescence by the photoinduced dealkylation of a pyridinium quencher. Physical Chemistry Chemical Physics, 2013, 15, 14851.	1.3	21
331	Understanding super-resolution nanoscopy and its biological applications in cell imaging. Physical Chemistry Chemical Physics, 2013, 15, 14856.	1.3	6
332	Ligand-Free Palladium-Mediated Site-Specific Protein Labeling Inside Gram-Negative Bacterial Pathogens. Journal of the American Chemical Society, 2013, 135, 7330-7338.	6.6	144
333	Photoswitching Emission with Rhodamine Spiroamides for Superâ€resolution Fluorescence nanoscopies. Israel Journal of Chemistry, 2013, 53, 267-279.	1.0	22
334	Smart fluorescent proteins: Innovation for barrierâ€free superresolution imaging in living cells. Development Growth and Differentiation, 2013, 55, 491-507.	0.6	25
335	Monitoring DNA Damage During Cell Senescence. Methods in Molecular Biology, 2013, 965, 197-213.	0.4	8
336	Tissue Clearing for Optical Anatomy. Angewandte Chemie - International Edition, 2013, 52, 10949-10951.	7.2	9
338	Lyophilization of Semiconducting Polymer Dot Bioconjugates. Analytical Chemistry, 2013, 85, 4316-4320.	3.2	20
339	Wide-Field Multispectral Super-Resolution Imaging Using Spin-Dependent Fluorescence in Nanodiamonds. Nano Letters, 2013, 13, 2073-2077.	4.5	82
340	Designing disorder. Intrinsically Disordered Proteins, 2013, 1, e26790.	1.9	14

#	Article	IF	CITATIONS
341	A sub wavelength localization scheme in optical imaging using conical diffraction. Optics Express, 2013, 21, 10133.	1.7	29
342	Localization microscopy coming of age: from concepts to biological impact. Journal of Cell Science, 2013, 126, 3505-3513.	1.2	86
343	Reversible optical control of cyanine fluorescence in fixed and living cells: optical lock-in detection immunofluorescence imaging microscopy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120031.	1.8	10
344	Labeling Thiols on Proteins, Living Cells and Tissues with Enhanced Emission Induced by FRET. Scientific Reports, 2013, 3, 3523.	1.6	26
345	Snap-, CLIP- and Halo-Tag Labelling of Budding Yeast Cells. PLoS ONE, 2013, 8, e78745.	1.1	86
346	Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus, 2013, 4, 166-175.	0.6	31
347	4â€Trifluoromethylâ€Substituted Coumarins with Large Stokes Shifts: Synthesis, Bioconjugates, and Their Use in Superâ€Resolution Fluorescence Microscopy. Chemistry - A European Journal, 2013, 19, 16556-16565.	1.7	72
348	Energy transfer from pyridine molecules towards europium cations contained in sub 5-nm Eu ₂ O ₃ nanoparticles: Can a particle be an efficient multiple donor-acceptor system?. Journal of Applied Physics, 2013, 114, 114308.	1.1	4
349	Identifying dynamical systems with bifurcations from noisy partial observation. Physical Review E, 2013, 87, 042716.	0.8	5
350	Light-Matter Interaction. , 2013, , 87.		1
352	Super-Resolution Imaging Through Stochastic Switching and Localization of Single Molecules: An Overview. Springer Series on Fluorescence, 2013, , 27-64.	0.8	7
353	Recent Advances in Fluorescent Probes for the Detection of Hydrogen Sulfide. Current Organic Chemistry, 2013, 17, 641-653.	0.9	39
354	Correlative Photoactivated Localization and Scanning Electron Microscopy. PLoS ONE, 2013, 8, e77209.	1.1	65
355	Looking for the Forest and the Trees : Exercises to Provoke Abstract Thinking. Journal of Microbiology and Biology Education, 2013, 14, 127-128.	0.5	2
356	Towards the Physics of Calcium Signalling in Plants. Plants, 2013, 2, 541-588.	1.6	27
357	Advanced Methods in Fluorescence Microscopy. Analytical Cellular Pathology, 2013, 36, 5-17.	0.7	12
358	Nanoscale Imaging by Superresolution Fluorescence Microscopy and Its Emerging Applications in Biomedical Research. Critical Reviews in Biomedical Engineering, 2013, 41, 281-308.	0.5	10
359	Cross-Talk-Free Multi-Color STORM Imaging Using a Single Fluorophore. PLoS ONE, 2014, 9, e101772.	1.1	71

		EPORT	
#	Article	IF	Citations
360	Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology. Molecules, 2014, 19, 12116-12149.	1.7	43
361	Focus on Super-Resolution Imaging with Direct Stochastic Optical Reconstruction Microscopy (dSTORM). Australian Journal of Chemistry, 2014, 67, 179.	0.5	24
362	Micelle-templated composite quantum dots for super-resolution imaging. Nanotechnology, 2014, 25, 195601.	1.3	10
363	Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	10
364	Methodologies in the Era of Cardiovascular "Omics― , 2014, , 15-55.		0
365	Combining Wide-Field Super-Resolution Microscopy and Electron Tomography. Methods in Cell Biology, 2014, 124, 129-149.	0.5	3
366	Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts. MBio, 2014, 5, e02172.	1.8	47
367	Construction and Computation with Nucleic Acids on the Cell Surface. , 2014, , 157-173.		0
368	Pathways to optical STED microscopy. NanoBiolmaging, 2014, 1, .	1.0	18
369	Single-molecule imaging and kinetic analysis of cooperative cofilin–actin filament interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9810-9815.	3.3	58
370	Nanofocusing of terahertz wave in a tapered hyperbolic metal waveguide. Optics Express, 2014, 22, 32071.	1.7	9
371	Saturated Excitation Microscopy with Optimized Excitation Modulation. ChemPhysChem, 2014, 15, 743-749.	1.0	11
372	Subdiffraction Focusing Enabled by a Fano Resonance. Physical Review X, 2014, 4, .	2.8	21
373	Singleâ€Molecule Superâ€Resolution Lightâ€Sheet Microscopy. ChemPhysChem, 2014, 15, 577-586.	1.0	45
374	Dynamics and morphometric characterization of hippocampus neurons using digital holographic microscopy. , 2014, , .		0
375	3D high resolution photoacoustic imaging based on pure optical photoacoustic microscopy with microring resonator. Proceedings of SPIE, 2014, , .	0.8	3
377	STED Fluorescence Nanoscopy. Springer Series on Fluorescence, 2014, , 3-25.	0.8	2
378	Single-shot sub-Rayleigh imaging with pixel-limited detection. Applied Physics Express, 2014, 7, 062503.	1.1	4

#	Article	IF	CITATIONS
379	Review of recent developments in stimulated emission depletion microscopy: applications on cell imaging. Journal of Biomedical Optics, 2014, 19, 080901.	1.4	24
380	Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 15-33.	1.4	95
381	Nano-sensitive optical coherence tomography. Nanoscale, 2014, 6, 3545-3549.	2.8	33
382	Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nature Methods, 2014, 11, 156-162.	9.0	229
383	Biomolecular dynamics and binding studies in the living cell. Physics of Life Reviews, 2014, 11, 1-30.	1.5	30
384	Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, 2014, , .	0.2	5
385	Superâ€Resolution Microscopy: Going Live and Going Fast. ChemPhysChem, 2014, 15, 630-636.	1.0	33
387	Imaging Fluorescence Fluctuation Spectroscopy: New Tools for Quantitative Bioimaging. Annual Review of Physical Chemistry, 2014, 65, 225-248.	4.8	53
388	Engineered fluorescence tags for in vivo protein labelling. RSC Advances, 2014, 4, 7235-7245.	1.7	18
389	Live-cell reporters for fluorescence imaging. Current Opinion in Chemical Biology, 2014, 20, 36-45.	2.8	36
390	Quantum Dot and Superparamagnetic Nanoparticle Interaction with Pathogenic Fungi: Internalization and Toxicity Profile. ACS Applied Materials & amp; Interfaces, 2014, 6, 9100-9110.	4.0	71
391	Siliconâ€Vacancy Color Centers in Nanodiamonds: Cathodoluminescence Imaging Markers in the Near Infrared. Small, 2014, 10, 1908-1913.	5.2	39
392	Cellular Incorporation of Unnatural Amino Acids and Bioorthogonal Labeling of Proteins. Chemical Reviews, 2014, 114, 4764-4806.	23.0	861
393	Design of a binuclear Ni(II)–iminodiacetic acid (IDA) complex for selective recognition and covalent labeling of His-tag fused proteins. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2855-2858.	1.0	16
394	Superresolution Localization Methods. Annual Review of Physical Chemistry, 2014, 65, 107-125.	4.8	34
395	Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nature Reviews Microbiology, 2014, 12, 9-22.	13.6	232
396	Ultra-stable organic fluorophores for single-molecule research. Chemical Society Reviews, 2014, 43, 1044-1056.	18.7	323
397	Fluorogenic small molecules requiring reaction with a specific protein to create a fluorescent conjugate for biological imaging–what we know and what we need to learn. Biopolymers, 2014, 101,	1.2	8

#	Article	IF	CITATIONS
398	Noise in biology. Reports on Progress in Physics, 2014, 77, 026601.	8.1	347
399	Fundamentals of Fluorescence Microscopy. , 2014, , .		28
400	Phosphorescent Iridium(III) Complexes for Bioimaging. Structure and Bonding, 2014, , 131-180.	1.0	18
401	Self-Immolative Phthalate Esters Sensitive to Hydrogen Peroxide and Light. Journal of Organic Chemistry, 2014, 79, 11740-11743.	1.7	8
402	A photochromic and thermochromic fluorescent protein. RSC Advances, 2014, 4, 56762-56765.	1.7	8
403	Dynamic, inÂvivo, real-time detection of retinal oxidative status in a model of elevated intraocular pressure using a novel, reversibly responsive, profluorescent nitroxide probe. Experimental Eye Research, 2014, 129, 48-56.	1.2	18
404	Photoactivatable turn-on fluorescence based on the photo-cleavage of the C–Br bond in 1,2-bis(5-(bromoethyl)benzoxazol-2-yl)ethane. New Journal of Chemistry, 2014, 38, 3468.	1.4	2
405	A tetraphenylethene-based caged compound: synthesis, properties and applications. Chemical Communications, 2014, 50, 8134-8136.	2.2	45
406	Progress on the labeling and single-particle tracking technologies of viruses. Analyst, The, 2014, 139, 3336-3346.	1.7	25
407	A coumarin-based fluorescent probe for differential identification of sulfide and sulfite in CTAB micelle solution. Analyst, The, 2014, 139, 3373.	1.7	47
408	Reversible photoswitching conjugated polymer nanoparticles for cell and ex vivo tumor imaging. Nanoscale, 2014, 6, 4141-4147.	2.8	55
409	Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy. Analyst, The, 2014, 139, 3174-3178.	1.7	20
410	A modular designed copolymer with anti-thrombotic activity and imaging capability. Chemical Communications, 2014, 50, 9539-9542.	2.2	7
411	A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH. Chemical Communications, 2014, 50, 7184.	2.2	106
412	Intracellular Microenvironmentâ€Responsive Labelâ€Free Autofluorescent Nanogels for Traceable Gene Delivery. Advanced Healthcare Materials, 2014, 3, 1839-1848.	3.9	28
413	Superâ€resolution imaging with stochastic singleâ€molecule localization: Concepts, technical developments, and biological applications. Microscopy Research and Technique, 2014, 77, 502-509.	1.2	31
414	Turn-On Fluorescence Sensor for Intracellular Imaging of Glutathione Using g-C ₃ N ₄ Nanosheet–MnO ₂ Sandwich Nanocomposite. Analytical Chemistry, 2014, 86, 3426-3434.	3.2	378
415	Optically induced forces in scanning probe microscopy. Nanophotonics, 2014, 3, 105-116.	2.9	7

#	Article	IF	Citations
416	Rhodamine-triazine based probes for Cu2+ in aqueous media and living cells. Sensors and Actuators B: Chemical, 2014, 204, 24-30.	4.0	30
417	Photoactivatable Fluorescein Derivatives Caged with a (3-Hydroxy-2-naphthalenyl)methyl Group. Journal of Organic Chemistry, 2014, 79, 7665-7671.	1.7	8
418	Nearâ€Field Hyperspectral Optical Imaging. ChemPhysChem, 2014, 15, 619-629.	1.0	8
419	Masked Rhodamine Dyes of Five Principal Colors Revealed by Photolysis of a 2â€Điazoâ€1â€Indanone Caging Group: Synthesis, Photophysics, and Light Microscopy Applications. Chemistry - A European Journal, 2014, 20, 13162-13173.	1.7	68
420	Molecular probes to visualize the location, organization and dynamics of lipids. Journal of Cell Science, 2014, 127, 4801-12.	1.2	81
421	<scp>STED</scp> microscopy: increased resolution for medical research?. Journal of Internal Medicine, 2014, 276, 560-578.	2.7	29
422	Ab initio study of solvent-dependent one-, two- and three-photon absorption properties of PRODAN-based chemo-sensors. Journal of Chemical Sciences, 2014, 126, 1217-1226.	0.7	2
423	Utilization of the photophysical and photochemical properties of phosphorescent transition metal complexes in the development of photofunctional cellular sensors, imaging reagents, and cytotoxic agents. RSC Advances, 2014, 4, 10560.	1.7	84
424	Overview of nano-drugs characteristics for clinical application: the journey from the entry to the exit point. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	53
425	Twinkle, twinkle little star: Photoswitchable fluorophores for superâ€resolution imaging. FEBS Letters, 2014, 588, 3603-3612.	1.3	117
426	Nanoprobes for super-resolution fluorescence imaging at the nanoscale. Science China Chemistry, 2014, 57, 100-106.	4.2	27
427	Structured illumination microscopy for super-resolution and optical sectioning. Science Bulletin, 2014, 59, 1291-1307.	1.7	44
428	Polar Redâ€Emitting Rhodamine Dyes with Reactive Groups: Synthesis, Photophysical Properties, and Twoâ€Color STED Nanoscopy Applications. Chemistry - A European Journal, 2014, 20, 146-157.	1.7	52
429	Zn(<scp>ii</scp>)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Zn(<scp>ii</scp>) ions. RSC Advances, 2014, 4, 20398-20440.	1.7	99
430	Dark-Field Illumination on Zero-Mode Waveguide/Microfluidic Hybrid Chip Reveals T4 Replisomal Protein Interactions. Nano Letters, 2014, 14, 1952-1960.	4.5	28
431	Quantitative super-resolution microscopy: pitfalls and strategies for image analysis. Current Opinion in Chemical Biology, 2014, 20, 22-28.	2.8	72
432	Synthesis, spectral properties of cell-permeant dimethine cyanine dyes and their application as fluorescent probes in living cell imaging and flow cytometry. Dyes and Pigments, 2014, 100, 232-240.	2.0	22
433	Live-cell fluorescent microscopy platforms for real-time monitoring of polyplex–cell interaction: Basic guidelines. Methods, 2014, 68, 300-307.	1.9	10

#	Article	IF	CITATIONS
434	A highly selective and sensitive photoswitchable fluorescent probe for Hg2+ based on bisthienylethene–rhodamine 6G dyad and for live cells imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 128, 567-574.	2.0	19
435	The Covalent Trimethoprim Chemical Tag Facilitates Single Molecule Imaging with Organic Fluorophores. Biophysical Journal, 2014, 106, 272-278.	0.2	14
436	High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics. Nature Protocols, 2014, 9, 1713-1726.	5.5	110
437	Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8452-8457.	3.3	319
439	Affinity Protein-Based FRET Tools for Cellular Tracking of Chitosan Nanoparticles and Determination of the Polymer Degree of Acetylation. Biomacromolecules, 2014, 15, 2532-2539.	2.6	14
440	In vivo singleâ€molecule imaging of bacterial DNA replication, transcription, and repair. FEBS Letters, 2014, 588, 3585-3594.	1.3	62
441	New Generation of Bioorthogonally Applicable Fluorogenic Dyes with Visible Excitations and Large Stokes Shifts. Bioconjugate Chemistry, 2014, 25, 1370-1374.	1.8	34
442	Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science. Frontiers in Bioengineering and Biotechnology, 2014, 2, 20.	2.0	25
443	Production and Targeting of Monovalent Quantum Dots. Journal of Visualized Experiments, 2014, , e52198.	0.2	2
444	New Trends in Near-Infrared Fluorophores for Bioimaging. Analytical Sciences, 2014, 30, 327-349.	0.8	157
446	A single design strategy for dual sensitive pH probe with a suitable range to map pH in living cells. Scientific Reports, 2015, 5, 15540.	1.6	16
447	Superresolution imaging with optical fluctuation using speckle patterns illumination. Scientific Reports, 2015, 5, 16525.	1.6	40
448	Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers. Scientific Reports, 2015, 5, 11613.	1.6	32
449	Spectrum analysis of liquid immersion to transparent microsphere based optical nanoscopy. Optik, 2015, 126, 3079-3083.	1.4	5
451	Nanoscopy—imaging life at the nanoscale: a Nobel Prize achievement with a bright future. Physica Scripta, 2015, 90, 108010.	1.2	3
453	A Phosphole Oxide Based Fluorescent Dye with Exceptional Resistance to Photobleaching: A Practical Tool for Continuous Imaging in STED Microscopy. Angewandte Chemie - International Edition, 2015, 54, 15213-15217.	7.2	104
454	Carbon nanotube biosensors. Frontiers in Chemistry, 2015, 3, 59.	1.8	252

	CHATION	KEPOKI	
#	Article	IF	CITATIONS
456	Current approaches to studying membrane organization. F1000Research, 2015, 4, 1380.	0.8	21
457	Exploiting Fast Exciton Diffusion in Dye-Doped Polymer Nanoparticles to Engineer Efficient Photoswitching. Journal of Physical Chemistry Letters, 2015, 6, 2259-2264.	2.1	35
458	Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chemical Society Reviews, 2015, 44, 5495-5551.	18.7	427
459	Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level. Molecular Cell, 2015, 58, 644-659.	4.5	419
460	Gated Luminescence Imaging of Silicon Nanoparticles. ACS Nano, 2015, 9, 6233-6241.	7.3	114
461	Membrane Trafficking. Methods in Molecular Biology, 2015, 1270, v-vi.	0.4	1
462	Two-colour fluorescent imaging in organisms using self-assembled nano-systems of upconverting nanoparticles and molecular switches. Nanoscale, 2015, 7, 11263-11266.	2.8	27
463	Direct observation of the growth and shrinkage of microtubules by single molecule Förster resonance energy transfer. Physical Chemistry Chemical Physics, 2015, 17, 6687-6690.	1.3	11
464	Stochastic optical reconstruction microscopy (<scp>STORM</scp>) in comparison with stimulated emission depletion (<scp>STED</scp>) and other imaging methods. Journal of Neurochemistry, 2015, 135, 643-658.	2.1	95
465	A review of progress in single particle tracking: from methods to biophysical insights. Reports on Progress in Physics, 2015, 78, 124601.	8.1	424
466	Super-resolution in high-contrast media. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140946.	1.0	22
467	Quantifying Multistate Cytoplasmic Molecular Diffusion in Bacterial Cells via Inverse Transform of Confined Displacement Distribution. Journal of Physical Chemistry B, 2015, 119, 14451-14459.	1.2	17
468	Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies. Trends in Cell Biology, 2015, 25, 730-748.	3.6	223
469	Subwavelength imaging through ion-beam-induced upconversion. Nature Communications, 2015, 6, 8832.	5.8	38
470	Fluorescent dyes with large Stokes shifts for super-resolution optical microscopy of biological objects: a review. Methods and Applications in Fluorescence, 2015, 3, 042004.	1.1	168
471	Quantitative fluorescence nanoscopy for cancer biomedicine. , 2015, , .		2
472	The 2015 super-resolution microscopy roadmap. Journal Physics D: Applied Physics, 2015, 48, 443001.	1.3	291
473	High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device. Optics Letters, 2015, 40, 4875.	1.7	38

#	Article	IF	CITATIONS
474	Dual Peptide Conjugation Strategy for Improved Cellular Uptake and Mitochondria Targeting. Bioconjugate Chemistry, 2015, 26, 71-77.	1.8	72
475	Fluorescence imaging of metal ions implicated in diseases. Chemical Society Reviews, 2015, 44, 4487-4493.	18.7	308
476	The elegance of localization microscopy and the promise it holds. Microscopy Research and Technique, 2015, 78, 11-12.	1.2	0
477	Nanoscopy for nanoscience: how superâ€resolution microscopy extends imaging for nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 266-281.	3.3	5
478	Singleâ€Molecule Methods to Study Membrane Receptor Oligomerization. ChemPhysChem, 2015, 16, 713-721.	1.0	22
479	The nanoscale organization of the B lymphocyte membrane. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 830-840.	1.9	34
480	A highly sensitive and selective "turn-on―fluorescent probe for hypochlorous acid monitoring. RSC Advances, 2015, 5, 18275-18278.	1.7	31
481	Far-Field Optical Nanoscopy. Springer Series on Fluorescence, 2015, , .	0.8	9
482	Super-Resolution Single-Molecule Localization Microscopy: Tricks of the Trade. Journal of Physical Chemistry Letters, 2015, 6, 374-382.	2.1	45
483	Genetic Encoding of Unnatural Amino Acids for Labeling Proteins. Methods in Molecular Biology, 2015, 1266, 217-228.	0.4	18
484	Site-Specific Protein Labeling. Methods in Molecular Biology, 2015, 1266, v-viii.	0.4	29
485	Fluorescence imaging of selenol in HepC2 cell apoptosis induced by Na ₂ SeO ₃ . Chemical Communications, 2015, 51, 3102-3105.	2.2	56
486	Photoactivable Platforms for Nitric Oxide Delivery with Fluorescence Imaging. Chemistry - an Asian Journal, 2015, 10, 1116-1125.	1.7	37
487	Multiplex Imaging and Cellular Target Identification of Kinase Inhibitors via an Affinity-Based Proteome Profiling Approach. Scientific Reports, 2015, 5, 7724.	1.6	34
488	Exploring color tuning strategies in red fluorescent proteins. Photochemical and Photobiological Sciences, 2015, 14, 200-212.	1.6	15
489	Blue fluorogenic probes for cell plasma membranes fill the gap in multicolour imaging. RSC Advances, 2015, 5, 22899-22905.	1.7	38
490	A turn-on fluorescence probe for imaging iodide in living cells based on an elimination reaction. Chemical Communications, 2015, 51, 6925-6927.	2.2	16
491	Developing new chemical tools for DNA methyltransferase 1 (DNMT 1): A small-molecule activity-based probe and novel tetrazole-containing inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 2917-2927.	1.4	23

#	Article	IF	CITATIONS
492	Ligand-Induced Dynamics of Neurotrophin Receptors Investigated by Single-Molecule Imaging Approaches. International Journal of Molecular Sciences, 2015, 16, 1949-1979.	1.8	20
493	Reflecting microscope system with a 0.99 numerical aperture designed for three-dimensional fluorescence imaging of individual molecules at cryogenic temperatures. Scientific Reports, 2015, 5, 12833.	1.6	13
494	Characterization of Porous Materials by Fluorescence Correlation Spectroscopy Super-resolution Optical Fluctuation Imaging. ACS Nano, 2015, 9, 9158-9166.	7.3	80
495	Intramolecular Didehydro-Diels–Alder Reaction and Its Impact on the Structure–Function Properties of Environmentally Sensitive Fluorophores Accounts of Chemical Research, 2015, 48, 2320-2329.	7.6	47
496	Expanding discriminative dimensions for analysis and imaging. Chemical Science, 2015, 6, 2968-2978.	3.7	10
497	Heavy water: a simple solution to increasing the brightness of fluorescent proteins in super-resolution imaging. Chemical Communications, 2015, 51, 13451-13453.	2.2	25
498	Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation. Scientific Reports, 2015, 5, 11447.	1.6	40
499	Enhanced fluorescence emitted by microdroplets containing organic dye emulsions. Biomicrofluidics, 2015, 9, 014126.	1.2	15
500	Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy. Nano Letters, 2015, 15, 4737-4744.	4.5	137
501	A matter of scale: how emerging technologies are redefining our view of chromosome architecture. Trends in Genetics, 2015, 31, 454-464.	2.9	20
502	Microtubule-Targetable Fluorescent Probe: Site-Specific Detection and Super-Resolution Imaging of Ultratrace Tubulin in Microtubules of Living Cancer Cells. Analytical Chemistry, 2015, 87, 5216-5222.	3.2	46
503	Labeling proteins on live mammalian cells using click chemistry. Nature Protocols, 2015, 10, 780-791.	5.5	127
504	Ion beam induced fluorescence imaging in biological systems. Nuclear Instruments & Methods in Physics Research B, 2015, 348, 131-136.	0.6	6
505	Highly efficient near-infrared organic dots based on novel AEE fluorogen for specific cancer cell imaging. RSC Advances, 2015, 5, 36837-36844.	1.7	26
506	A Mathematical Theory of Super-Resolution by Using a System of Sub-Wavelength Helmholtz Resonators. Communications in Mathematical Physics, 2015, 337, 379-428.	1.0	48
507	Quantitatively Mapping Cellular Viscosity with Detailed Organelle Information via a Designed PET Fluorescent Probe. Scientific Reports, 2014, 4, 5418.	1.6	109
508	Advanced microscopy methods for visualizing chromatin structure. FEBS Letters, 2015, 589, 3023-3030.	1.3	48
509	<i>Bis</i> -Arylidene Oxindole–Betulinic Acid Conjugate: A Fluorescent Cancer Cell Detector with Potent Anticancer Activity. ACS Medicinal Chemistry Letters, 2015, 6, 612-616.	1.3	26

#	Article	IF	CITATIONS
510	Synthesis and Properties of Novel Fluorescently Labeled Oligonucleotides Possessing Silylated Pyrene at the 5′-Terminus. Chemistry Letters, 2015, 44, 44-46.	0.7	5
511	Multiplexed DNA detection based on positional encoding/decoding with self-assembled DNA nanostructures. Chemical Science, 2015, 6, 930-934.	3.7	15
512	Spatial modulation spectroscopy for imaging and quantitative analysis of single dye-doped organic nanoparticles inside cells. Nanoscale, 2015, 7, 9779-9785.	2.8	9
513	Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood–brain barrier model. Nanoscale, 2015, 7, 10050-10058.	2.8	14
514	BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chemical Society Reviews, 2015, 44, 4953-4972.	18.7	1,091
515	Photoluminescence imaging of Zn ²⁺ in living systems. Chemical Society Reviews, 2015, 44, 4517-4546.	18.7	225
516	Photophysical Properties and Synthesis of New Dye–Cyclooctyne Conjugates for Multicolor and Advanced Microscopy. Bioconjugate Chemistry, 2015, 26, 718-724.	1.8	4
517	Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein Journal of Nanotechnology, 2015, 6, 263-280.	1.5	77
518	Preparation, cytotoxicity and <i>in vivo</i> bioimaging of highly luminescent water-soluble silicon quantum dots. Nanotechnology, 2015, 26, 215703.	1.3	25
519	Localizable and Photoactivatable Fluorophore for Spatiotemporal Two-Photon Bioimaging. Analytical Chemistry, 2015, 87, 5626-5631.	3.2	60
520	Nanoparticle-based multimodal PET/MRI probes. Nanomedicine, 2015, 10, 1343-1359.	1.7	54
521	Development of Targetable Two-Photon Fluorescent Probes to Image Hypochlorous Acid in Mitochondria and Lysosome in Live Cell and Inflamed Mouse Model. Journal of the American Chemical Society, 2015, 137, 5930-5938.	6.6	472
522	Photoelectrocyclization as an Activation Mechanism for Organelle‧pecific Live ell Imaging Probes. Angewandte Chemie - International Edition, 2015, 54, 6442-6446.	7.2	40
523	Photo-imprint super-resolution photoacoustic microscopy. , 2015, , .		2
524	High-resolution far-field ghost imaging via sparsity constraint. Scientific Reports, 2015, 5, 9280.	1.6	102
525	Simple and aberration-free 4color-STED - multiplexing by transient binding. Optics Express, 2015, 23, 8630.	1.7	28
526	Site-specific incorporation of a fluorescent terphenyl unnatural amino acid. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5277-5280.	1.0	19
527	Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nature Communications, 2015, 6, 8433.	5.8	133

#	Article	IF	CITATIONS
528	Farâ€Red Emitting Fluorescent Dyes for Optical Nanoscopy: Fluorinated Silicon–Rhodamines (SiRF Dyes) and Phosphorylated Oxazines. Chemistry - A European Journal, 2015, 21, 13344-13356.	1.7	47
529	Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. Journal of the American Chemical Society, 2015, 137, 10420-10429.	6.6	163
530	Photoswitchable fluorescent nanoparticles and their emerging applications. Nanoscale, 2015, 7, 19342-19357.	2.8	63
531	Automated cell segmentation with 3D fluorescence microscopy images. , 2015, 2015, 1212-1215.		21
532	Using fluorescence for studies of biological membranes: a review. Methods and Applications in Fluorescence, 2015, 3, 042003.	1.1	33
533	ADAM10: a new player in breast cancer progression?. British Journal of Cancer, 2015, 113, 945-951.	2.9	61
534	Basic Concepts of Fluorescence and Fluorescent Probes. , 2015, , 3-18.		0
535	Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties. ACS Applied Materials & amp; Interfaces, 2015, 7, 21465-21471.	4.0	6
536	Genetically encoded phenyl azide photochemistry drives positive and negative functional modulation of a red fluorescent protein. RSC Advances, 2015, 5, 77734-77738.	1.7	15
537	Bis-triazolyl BODIPYs: a simple dye with strong red-light emission. RSC Advances, 2015, 5, 76342-76345.	1.7	10
538	Methods To Locate and Track Ion Channels and Receptors Expressed in Live Neurons. ACS Chemical Neuroscience, 2015, 6, 189-198.	1.7	3
539	A fluorescent probe for detection of an intracellular prognostic indicator in early-stage cancer. Chemical Communications, 2015, 51, 1479-1482.	2.2	10
540	Super-resolution imaging in live cells. Developmental Biology, 2015, 401, 175-181.	0.9	70
541	Simultaneous size and color tuning of polymer microparticles in a single-step microfluidic synthesis: particles for fluorescence labeling. Journal of Materials Chemistry C, 2015, 3, 844-853.	2.7	30
542	Functionalization of the <i>meso</i> â€Phenyl Ring of Rhodamine Dyes Through S _N Ar with Sulfur Nucleophiles: Synthesis, Biophysical Characterizations, and Comprehensive NMR Analysis. European Journal of Organic Chemistry, 2015, 2015, 337-349.	1.2	17
543	Unveiling the Inner Workings of Live Bacteria Using Super-Resolution Microscopy. Analytical Chemistry, 2015, 87, 42-63.	3.2	62
544	Live-cell imaging of cyanobacteria. Photosynthesis Research, 2015, 126, 33-46.	1.6	30
545	A highly selective fluorescent ESIPT probe for the detection of Human carboxylesterase 2 and its biological applications. Biosensors and Bioelectronics, 2015, 65, 9-15.	5.3	97

#	Article	IF	CITATIONS
546	Advanced fluorescence microscopy techniques for the life sciences. Global Cardiology Science & Practice, 2016, 2016, e201616.	0.3	11
547	Fluorescent Cell Imaging in Regenerative Medicine. Biomedical Engineering and Computational Biology, 2016, 7s1, BECB.S39045.	0.8	3
548	Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes. Nanomaterials, 2016, 6, 56.	1.9	24
549	Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations. PLoS ONE, 2016, 11, e0161336.	1.1	21
550	Real-time imaging of single synaptic vesicles in live neurons. Frontiers in Biology, 2016, 11, 109-118.	0.7	12
551	A viscosity sensitive fluorescent dye for real-time monitoring of mitochondria transport in neurons. Biosensors and Bioelectronics, 2016, 86, 885-891.	5.3	98
552	Bacterial Surfaces: Front Lines in Host–Pathogen Interaction. Advances in Experimental Medicine and Biology, 2016, 915, 129-156.	0.8	12
553	New Redâ€Emitting Tetrazineâ€Phenoxazine Fluorogenic Labels for Liveâ€Cell Intracellular Bioorthogonal Labeling Schemes. Chemistry - A European Journal, 2016, 22, 8972-8979.	1.7	58
554	Imaging the Hydrated Microbe-Metal Interface Using Nanoscale Spectrum Imaging. Particle and Particle Systems Characterization, 2016, 33, 833-841.	1.2	2
555	In Situ Proteome Profiling and Bioimaging Applications of Smallâ€Molecule Affinityâ€Based Probes Derived From DOT1L Inhibitors. Chemistry - A European Journal, 2016, 22, 7824-7836.	1.7	21
556	Development of Photoactivated Fluorescent <i>N</i> â€Hydroxyoxindoles and Their Application for Cellâ€Selective Imaging. Chemistry - A European Journal, 2016, 22, 6361-6367.	1.7	10
557	Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. ChemPhysChem, 2016, 17, 1396-1413.	1.0	12
558	High-resolution fast ion microscopy of single whole biological cells. Applied Physics Reviews, 2016, 3, .	5.5	9
559	Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm. Scientific Reports, 2016, 6, 18459.	1.6	51
560	Two-photon excited photoconversion of cyanine-based dyes. Scientific Reports, 2016, 6, 23866.	1.6	18
561	Highly sensitive and selective fluorescence detection of Hg(<scp>ii</scp>) ions based on R-phycoerythrin from Porphyra yezoensis. RSC Advances, 2016, 6, 114685-114689.	1.7	11
562	Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD). Journal of Chemical Physics, 2016, 145, 094101.	1.2	19
563	Nanometer resolved single-molecule colocalization of nuclear factors by two-color super resolution microscopy imaging. Methods, 2016, 105, 44-55.	1.9	32

		CITATION REPORT		
#	Article		IF	CITATIONS
564	Two-Photon Small Molecule Enzymatic Probes. Accounts of Chemical Research, 2016,	49, 626-634.	7.6	129
565	Fluorescent Rhodamines and Fluorogenic Carbopyronines for Superâ€Resolution STED Living Cells. Angewandte Chemie - International Edition, 2016, 55, 3290-3294.	Microscopy in	7.2	200
566	Dual PET and Near-Infrared Fluorescence Imaging Probes as Tools for Imaging in Oncold Journal of Roentgenology, 2016, 207, 266-273.	ogy. American	1.0	43
567	Biophysics of Infection. Advances in Experimental Medicine and Biology, 2016, , .		0.8	3
568	Spatial frequency characterisation of a far-field superlens to facilitate general purpose i Proceedings of SPIE, 2016, , .	maging.	0.8	0
569	Fluoreszierende Rhodamine und fluorogene Carbopyronine für die STEDâ€Mikrosko Angewandte Chemie, 2016, 128, 3350-3355.	pie lebender Zellen.	1.6	35
570	Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. <i>A</i> 10, 3918-3935.	NCS Nano, 2016,	7.3	296
571	Specific Fluorescence Probes for Lipid Droplets Based on Simple AlEgens. ACS Applied Interfaces, 2016, 8, 10193-10200.	Materials &	4.0	132
572	Labelling Bacterial Nanocages with Photoâ \in switchable Fluorophores. ChemPhysChem,	2016, 17, 1815-1818.	1.0	28
573	Harnessing the Potential of Small Molecule Intracellular Fluorescent Sensors. ACS Sens 328-333.	ors, 2016, 1,	4.0	67
574	Micro-flow assisted synthesis of fluorescent polymer nanoparticles with tuned size and properties. Nanotechnology Reviews, 2016, 5, .	surface	2.6	16
575	Imaging and Intracellular Tracking of Cancer-Derived Exosomes Using Single-Molecule Localization-Based Super-Resolution Microscope. ACS Applied Materials & amp; Interfac 25825-25833.	ces, 2016, 8,	4.0	105
576	Nanoscopic Cellular Imaging: Confinement Broadens Understanding. ACS Nano, 2016,	10, 8143-8153.	7.3	13
577	Fluorescence Probing of Fluctuating Microtubule using a Covalent Fluorescent Probe: F Taxol. ChemistrySelect, 2016, 1, 1841-1847.	Effect of	0.7	2
578	Semiconductor Quantum Dots with Photoresponsive Ligands. Topics in Current Chemi 73.	stry, 2016, 374,	3.0	10
579	Single-molecule analysis of fluorescent carbon dots towards localization-based super-reminer microscopy. Methods and Applications in Fluorescence, 2016, 4, 044006.	esolution	1.1	17
580	Overcoming Autofluorescence: Longâ€Lifetime Infrared Nanoparticles for Timeâ€Gated Advanced Materials, 2016, 28, 10188-10193.	l In Vivo Imaging.	11.1	108
581	Conformation Selective Antibody Enables Genome Profiling and Leads to Discovery of G-Quadruplex in Human Telomeres. Cell Chemical Biology, 2016, 23, 1261-1270.	Parallel	2.5	102

#	Article	IF	CITATIONS
582	Near-Atomic Three-Dimensional Mapping for Site-Specific Chemistry of â€~Superbugs'. Nano Letters, 2016, 16, 7113-7120.	4.5	26
583	Synthesis, spectroscopic, physicochemical properties and binding site analysis of 4-(1H-phenanthro[9,10-d]-imidazol-2-yl)-benzaldehyde fluorescent probe for imaging in cell biology: Experimental and theoretical study. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 112-122.	1.7	15
584	Super-resolution imaging for monitoring cytoskeleton dynamics. Analyst, The, 2016, 141, 5674-5688.	1.7	10
585	Synthesis of fluorinated rhodamines and application for confocal laser scanning microscopy. Journal of Fluorine Chemistry, 2016, 189, 70-78.	0.9	5
586	Colocalization coefficients evaluating the distribution of molecular targets in microscopy methods based on pointed patterns. Histochemistry and Cell Biology, 2016, 146, 391-406.	0.8	12
587	A photoactivatable Znsalen complex for super-resolution imaging of mitochondria in living cells. Chemical Communications, 2016, 52, 11583-11586.	2.2	24
588	Organelle-specific bioprobes based on fluorogens with aggregation-induced emission (AIE) characteristics. Organic and Biomolecular Chemistry, 2016, 14, 9931-9944.	1.5	126
589	Quantitative Super-Resolution Microscopy for Cancer Biology and Medicine. Series in Cellular and Clinical Imaging, 2016, , 321-350.	0.2	0
590	The past, present and future of fluorescent protein tags in anaerobic protozoan parasites. Parasitology, 2016, 143, 260-275.	0.7	1
591	Improving the image of nanoparticles. Nature, 2016, 539, 505-506.	13.7	14
592	High spatial dynamics-photoluminescence imaging reveals the metallurgy of the earliest lost-wax cast object. Nature Communications, 2016, 7, 13356.	5.8	57
593	High-Speed Calcium Imaging of Neuronal Activity Using Acousto-Optic Deflectors. , 2016, , 331-356.		1
594	Photocontrolled Reversible Luminescent Lanthanide Molecular Switch Based on a Diarylethene–Europium Dyad. Inorganic Chemistry, 2016, 55, 7962-7968.	1.9	44
595	Vector-Field Nonlinear Microscopy of Nanostructures. ACS Photonics, 2016, 3, 1351-1370.	3.2	60
596	"Reduced―Coumarin Dyes with an <i>O</i> â€Phosphorylated 2,2â€Dimethylâ€4â€(hydroxymethyl)â€1,2,3,4â€tetrahydroquinoline Fragment: Synthesis, Spectra, and STED Microscopy. Chemistry - A European Journal, 2016, 22, 11631-11642.	1.7	20
597	A FRET based dual emission nanoprobe (FREDEN) with improved blinking behavior for single molecule localization imaging. Nanoscale, 2016, 8, 19110-19119.	2.8	17
598	Versatile protein tagging in cells with split fluorescent protein. Nature Communications, 2016, 7, 11046.	5.8	331
599	Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nature Communications, 2016, 7, 10773.	5.8	137

ARTICLE IF CITATIONS AlE opens new applications in super-resolution imaging. Journal of Materials Chemistry B, 2016, 4, 600 2.9 24 7761-7765. Super Temporal-Resolved Microscopy (STReM). Journal of Physical Chemistry Letters, 2016, 7, 4524-4529. 2.1 Digital in-line holographic microscope based on the grating illumination with improved resolution by 602 0 interpolation., 2016, ,. Ultrabright organic fluorescent microparticles for in vivo tracing applications. Journal of Materials Chemistry B, 2016, 4, 7226-7232. Site-Specific Bioorthogonal Labeling for Fluorescence Imaging of Intracellular Proteins in Living 604 6.6 95 Cells. Journal of the American Chemical Society, 2016, 138, 14423-14433. Single-Molecule Localization Super-Resolution Microscopy of Synaptic Proteins. Springer Protocols, 0.1 2016, , 157-198. 606 A comparative study of multi-scale image super-resolution techniques., 2016,,. 1 A Mitochondrionâ€Specific Photoactivatable Fluorescence Turnâ€On AlEâ€Based Bioprobe for Localization 11.1 166 Superâ€Resolution Microscope. Advanced Materials, 2016, 28, 5064-5071. Multiplexed imaging of intracellular protein networks. Cytometry Part A: the Journal of the 608 1.1 21 International Society for Analytical Cytology, 2016, 89, 761-775. A BODIPYâ€Based Waterâ€Soluble Fluorescent Probe for Mitochondria Targeting. European Journal of 609 1.2 34 Organic Chemistry, 2016, 2016, 2851-2857. Unusual blue-shifted acid-responsive photoluminescence behavior in 610 1.7 48 6-amino-8-cyanobenzo[1,2-b]indolizines. RSC Advances, 2016, 6, 61249-61253. Activatable Water-Soluble Probes Enhance Tumor Imaging by Responding to Dysregulated pH and Exhibiting High Tumor-to-Liver Fluorescence Emission Contrast. Bioconjugate Chemistry, 2016, 27, 1.8 1737-1744. Lighting up the gold nanoparticles quenched fluorescence by silver nanoparticles: a separation 612 1.7 33 distance study. RSC Advances, 2016, 6, 58566-58572. Radiative Cascades in Semiconductor Quantum Dots., 2016, , 333-376. Photon counting imaging and centroiding with an electron-bombarded CCD using single molecule 614 localisation software. Nuclear Instruments and Methods in Physics Research, Section A: 0.7 8 Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 820, 121-125. Superresolution imaging reveals nanometer- and micrometer-scale spatial distributions of T-cell receptors in lymph nodes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7201-7206. A library-screening approach for developing a fluorescence sensing array for the detection of metal 616 1.7 19 ions. Analyst, The, 2016, 141, 4608-4613. Precision targeted ruthenium(<scp>ii</scp>) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy. Chemical Science, 2016, 7, 6551-6562.

#	Article	IF	CITATIONS
618	Selective amine labeling of cell surface proteins guided by coiledâ€coil assembly. Biopolymers, 2016, 106, 484-490.	1.2	14
619	Hydrophilic <i>trans</i> yclooctenylated Noncanonical Amino Acids for Fast Intracellular Protein Labeling. ChemBioChem, 2016, 17, 1518-1524.	1.3	39
620	Polarity Sensitive Bioorthogonally Applicable Far-Red Emitting Labels for Postsynthetic Nucleic Acid Labeling by Copper-Catalyzed and Copper-Free Cycloaddition. Bioconjugate Chemistry, 2016, 27, 457-464.	1.8	25
621	Superresolution microscopy with transient binding. Current Opinion in Biotechnology, 2016, 39, 8-16.	3.3	20
622	Reviews in Plasmonics 2015. International Journal of Behavioral and Consultation Therapy, 2016, , .	0.4	3
623	3d transition metal complexes with a julolidine–quinoline based ligand: structures, spectroscopy and optical properties. Inorganic Chemistry Frontiers, 2016, 3, 286-295.	3.0	10
624	Novel Tumor-Specific and Mitochondria-Targeted near-Infrared-Emission Fluorescent Probe for SO ₂ Derivatives in Living Cells. ACS Sensors, 2016, 1, 166-172.	4.0	104
625	A two-photon fluorescent sensor revealing drug-induced liver injury via tracking γ-glutamyltranspeptidase (GCT) level inÂvivo. Biomaterials, 2016, 80, 46-56.	5.7	141
626	Unique optical properties and applications of hollow gold nanospheres (HGNs). Coordination Chemistry Reviews, 2016, 320-321, 18-37.	9.5	42
627	Super-Resolution Based on Clustered Examples. International Journal of Pattern Recognition and Artificial Intelligence, 2016, 30, 1655015.	0.7	1
628	Photoluminescence emission from a nanofabricated scanning probe tip made of epitaxial germanium. Microelectronic Engineering, 2016, 159, 164-168.	1.1	1
629	Water-soluble poly(2,7-dibenzosilole) as an ultra-bright fluorescent label for antibody-based flow cytometry. Chemical Communications, 2016, 52, 4022-4024.	2.2	15
630	Higher-order assemblies of BAR domain proteins for shaping membranes. Microscopy (Oxford,) Tj ETQq0 0 0 rgBT	Overloch	10 Tf 50 26
631	Fish-on-a-chip: microfluidics for zebrafish research. Lab on A Chip, 2016, 16, 1106-1125.	3.1	71
632	FRET analysis using sperm-activating peptides tagged with fluorescent proteins reveals that ligand-binding sites exist as clusters. Journal of Experimental Biology, 2016, 219, 508-515.	0.8	2
633	Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity. ACS Applied Materials & Interfaces, 2016, 8, 4399-4406.	4.0	18
634	Where Do We Stand with Super-Resolution Optical Microscopy?. Journal of Molecular Biology, 2016, 428, 308-322.	2.0	76
635	Intra-molecular triplet energy transfer is a general approach to improve organic fluorophore photostability. Photochemical and Photobiological Sciences, 2016, 15, 196-203.	1.6	45

#	Article	IF	CITATIONS
636	Synthetic fluorescent probes to map metallostasis and intracellular fate of zinc and copper. Coordination Chemistry Reviews, 2016, 311, 125-167.	9.5	81
637	A highly sensitive and selective hypochlorite fluorescent probe based on oxidation of hydrazine via free radical mechanism. Dyes and Pigments, 2016, 126, 218-223.	2.0	48
638	Pore-forming toxins: Properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 576-592.	1.4	29
639	Nanostar probes for tip-enhanced spectroscopy. Nanoscale, 2016, 8, 987-994.	2.8	35
640	Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Progress in Lipid Research, 2016, 62, 1-24.	5.3	134
641	Quench-Shield Ratiometric Upconversion Luminescence Nanoplatform for Biosensing. Analytical Chemistry, 2016, 88, 1639-1646.	3.2	59
642	Phototherapeutic Release of Nitric Oxide with Engineered Nanoconstructs. Topics in Current Chemistry, 2016, 370, 225-257.	4.0	26
643	Fluorescent probes for nanoscopy: four categories and multiple possibilities. Journal of Biophotonics, 2017, 10, 11-23.	1.1	28
644	PhotoGate microscopy to track single molecules in crowded environments. Nature Communications, 2017, 8, 13978.	5.8	13
645	Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers. Acta Biomaterialia, 2017, 50, 361-369.	4.1	45
646	Nanoscale Molecular Reorganization of the Inhibitory Postsynaptic Density Is a Determinant of GABAergic Synaptic Potentiation. Journal of Neuroscience, 2017, 37, 1747-1756.	1.7	81
647	The photoluminescence spectral profiles of water-soluble aggregates of PbS quantum dots assembled through reversible metal coordination. Chemical Communications, 2017, 53, 1981-1984.	2.2	13
648	Exciton dynamics in solid-state green fluorescent protein. Applied Physics Letters, 2017, 110, .	1.5	5
649	A new fluorescent material and its application in sulfite and bisulfite bioimaging. Sensors and Actuators B: Chemical, 2017, 246, 615-622.	4.0	50
650	Site-Specific Dual Functionalization of Cysteine Residue in Peptides and Proteins with 2-Azidoacrylates. Bioconjugate Chemistry, 2017, 28, 897-902.	1.8	41
651	Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin. Nature Protocols, 2017, 12, 748-763.	5.5	32
652	PEGylated Perylenemonoimide-Dithienylethene for Super-Resolution Imaging of Liposomes. ACS Applied Materials & Interfaces, 2017, 9, 10338-10343.	4.0	26
653	Subcellular Optogenetics Enacted by Targeted Nanotransformers of Near-Infrared Light. ACS Photonics, 2017, 4, 806-814.	3.2	52

#	Article	IF	CITATIONS
654	Turning single-molecule localization microscopy into a quantitative bioanalytical tool. Nature Protocols, 2017, 12, 453-460.	5.5	149
655	Gold nanostructure materials in diabetes management. Journal Physics D: Applied Physics, 2017, 50, 134003.	1.3	9
656	Stimulated Emission Depletion Microscopy. Chemical Reviews, 2017, 117, 7377-7427.	23.0	226
657	Tuning the Photophysical Properties of Photostable Benzo[<i>b</i>]phosphole <i>P</i> -Oxide-Based Fluorophores. Inorganic Chemistry, 2017, 56, 8718-8725.	1.9	26
658	Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals. Langmuir, 2017, 33, 4840-4846.	1.6	23
659	Supramolecular conjugated polymer materials for organelle imaging in living cells. Materials Chemistry Frontiers, 2017, 1, 1768-1772.	3.2	7
660	An integrated microfluidic system for live bacteria detection from human joint fluid samples by using ethidium monoazide and loop-mediated isothermal amplification. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	13
661	Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis. Chemical Reviews, 2017, 117, 7276-7330.	23.0	77
662	Single-molecule and super-resolution imaging of transcription in living bacteria. Methods, 2017, 120, 103-114.	1.9	54
663	Bioorthogonal double-fluorogenic siliconrhodamine probes for intracellular super-resolution microscopy. Chemical Communications, 2017, 53, 6696-6699.	2.2	78
664	Visualizing the Conversion Process of Alcohol-Induced Fatty Liver to Steatohepatitis in Vivo with a Fluorescent Nanoprobe. Analytical Chemistry, 2017, 89, 6196-6201.	3.2	30
665	Super-resolution optical microscopy for studying membrane structure and dynamics. Journal of Physics Condensed Matter, 2017, 29, 273001.	0.7	75
666	Colorâ€Change Photoswitching of an Alkynylpyrene Excimer Dye. Angewandte Chemie, 2017, 129, 6597-6601.	1.6	7
667	Dramatic Effect of Solvent on the Rate of Photobleaching of Organic Pyrroleâ€BF ₂ (BOPHY) Dyes. ChemPhotoChem, 2017, 1, 317-325.	1.5	12
668	Colorâ€Change Photoswitching of an Alkynylpyrene Excimer Dye. Angewandte Chemie - International Edition, 2017, 56, 6497-6501.	7.2	34
669	Rotational Anisotropy Nonlinear Harmonic Generation. , 2017, , 1-49.		5
670	Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals. Journal of Materials Chemistry C, 2017, 5, 118-126.	2.7	26
671	Single Particle Tracking: From Theory to Biophysical Applications. Chemical Reviews, 2017, 117, 7331-7376.	23.0	392

#	Article	IF	CITATIONS
672	Three-Dimensional Localization of an Individual Fluorescent Molecule with Angstrom Precision. Journal of the American Chemical Society, 2017, 139, 8990-8994.	6.6	15
673	Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nature Reviews Chemistry, 2017, 1, .	13.8	204
674	An iridium(III) complex-based chemosensor for the detection of thiourea in living cells. Sensors and Actuators B: Chemical, 2017, 251, 374-379.	4.0	33
675	Fluorescent anticancer quinazolines as molecular probes for Î ² -tubulin colchicine site competition assay and visualization of microtubules as intracellular targeting sites. Dyes and Pigments, 2017, 145, 233-238.	2.0	12
676	Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nature Communications, 2017, 8, 15646.	5.8	163
678	A novel mitochondria-targeted near-infrared fluorescence probe for ultrafast and ratiometric detection of SO 2 derivatives in live cells. Talanta, 2017, 168, 203-209.	2.9	33
679	Introduction to Modern Methods in Light Microscopy. Methods in Molecular Biology, 2017, 1563, 1-15.	0.4	11
680	Aromatization of 9,10-Dihydroacridine Derivatives: Discovering a Highly Selective and Rapid-Responding Fluorescent Probe for Peroxynitrite. ACS Sensors, 2017, 2, 501-505.	4.0	48
681	Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nature Communications, 2017, 8, 14786.	5.8	62
682	Optical Super-Resolution Imaging of Surface Reactions. Chemical Reviews, 2017, 117, 7510-7537.	23.0	140
683	Navigating challenges in the application of superresolution microscopy. Journal of Cell Biology, 2017, 216, 53-63.	2.3	79
685	Nanoscale architecture of cadherin-based cellÂadhesions. Nature Cell Biology, 2017, 19, 28-37.	4.6	135
686	Protein-based fluorescent nanoparticles for super-resolution STED imaging of live cells. Chemical Science, 2017, 8, 2396-2400.	3.7	36
687	Development of a Long-Lived Luminescence Probe for Visualizing Î ² -Galactosidase in Ovarian Carcinoma Cells. Analytical Chemistry, 2017, 89, 11679-11684.	3.2	140
688	Recent advances in hybrid measurement methods based on atomic force microscopy and surface sensitive measurement techniques. RSC Advances, 2017, 7, 47464-47499.	1.7	22
689	Fluorescent Graphene Quantum Dots for Bioimaging. Frontiers in Nanobiomedical Research, 2017, , 97-113.	0.1	0
690	DNA-aided Super-resolution Bioimaging. , 2017, , 163-188.		0
691	Synthesis, photophysical and biological properties of a new oxazolone fluorescent probe for bioimaging: an experimental and theoretical study. Organic and Biomolecular Chemistry, 2017, 15, 8952-8966	1.5	10

#	Article	IF	CITATIONS
692	Eigenstate expansion of the quasistatic electric field of a point charge in a spherical inclusion structure. Physical Review A, 2017, 96, .	1.0	7
694	Fluorescent Indicators of Membrane Permeabilization Due to Electroporation. , 2017, , 1305-1323.		2
695	STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells. Methods in Molecular Biology, 2017, 1663, 65-78.	0.4	15
696	Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chemical Reviews, 2017, 117, 12942-13038.	23.0	258
697	Multiplexed Exchange-PAINT imaging reveals ligand-dependent EGFR and Met interactions in the plasma membrane. Scientific Reports, 2017, 7, 12150.	1.6	29
698	A two-photon fluorescent probe for ratiometric imaging of endogenous hypochlorous acid in live cells and tissues. Chemical Communications, 2017, 53, 10800-10803.	2.2	93
699	Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B, 2017, 5, 6701-6727.	2.9	265
700	Super-Photostable Phosphole-Based Dye for Multiple-Acquisition Stimulated Emission Depletion Imaging. Journal of the American Chemical Society, 2017, 139, 10374-10381.	6.6	120
701	Near-Infrared Neodymium Tag for Quantifying Targeted Biomarker and Counting Its Host Circulating Tumor Cells. Analytical Chemistry, 2017, 89, 9239-9246.	3.2	22
702	Towards Integrating Synchrotron FTIR Microscopy with Mass Spectrometry at the Berkeley Synchrotron Infrared Structural Biology (BSISB) Program. Synchrotron Radiation News, 2017, 30, 17-23.	0.2	1
703	Morpholine Derivative-Functionalized Carbon Dots-Based Fluorescent Probe for Highly Selective Lysosomal Imaging in Living Cells. ACS Applied Materials & Interfaces, 2017, 9, 28222-28232.	4.0	104
704	Fluorescent probes for selective protein labeling in lysosomes: a case of αâ€galactosidase A. FASEB Journal, 2017, 31, 5258-5267.	0.2	4
705	Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nature Protocols, 2017, 12, 1792-1816.	5.5	146
706	Ratiometric fluorescent detection of acidic pH in lysosome with carbon nanodots. Chinese Chemical Letters, 2017, 28, 1969-1974.	4.8	37
707	Visualizing endocytic recycling and trafficking in live neurons by subdiffractional tracking of internalized molecules. Nature Protocols, 2017, 12, 2590-2622.	5.5	48
708	Full-wave modeling of broadband near field scanning microwave microscopy. Scientific Reports, 2017, 7, 16064.	1.6	13
709	Theoretical studies on the interaction between chalcone dyes and Concanavalin A—The reactive group effects on the photophysical and biological properties of the fluorescence probe. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 327-337.	2.0	7
710	A novel fluorescent probe with a large Stokes shift for real-time imaging mitochondria in different living cell lines. Tetrahedron Letters, 2017, 58, 3287-3293.	0.7	16

	Citation R	EPORT	
		IF	Citations
orms micro	domains with	1.6	59

711	High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart. Scientific Reports, 2017, 7, 40620.	1.6	59
712	NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors. Analytical Chemistry, 2017, 89, 8863-8869.	3.2	65
713	Choosing proper fluorescent dyes, proteins, and imaging techniques to study mitochondrial dynamics in mammalian cells. Biophysics Reports, 2017, 3, 64-72.	0.2	21
714	High-resolution imaging of a cell-attached nanointerface using a gold-nanoparticle two-dimensional sheet. Scientific Reports, 2017, 7, 3720.	1.6	31
715	Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nature Biotechnology, 2017, 35, 773-780.	9.4	157
716	AAV-based dual-reporter circuit for monitoring cell signaling in living human cells. Journal of Biological Engineering, 2017, 11, 18.	2.0	3
717	Novel fluorophores: Syntheses and photophysical studies of boron-aminotroponimines. Dyes and Pigments, 2017, 137, 532-538.	2.0	13
718	Synthesis, photophysical properties and systematic evaluations of new phenanthroimidazole fluorescent probe for bioimaging: Experimental and theoretical study. Journal of Photochemistry and Photobiology B: Biology, 2017, 166, 74-85.	1.7	21
719	Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?. Chemical Reviews, 2017, 117, 758-795.	23.0	203
720	Green- to far-red-emitting fluorogenic tetrazine probes – synthetic access and no-wash protein imaging inside living cells. Chemical Science, 2017, 8, 1506-1510.	3.7	158
721	Nearâ€Infrared Fluorescent Nanomaterials for Bioimaging and Sensing. Advanced Optical Materials, 2017, 5, 1600446.	3.6	128
722	Recent progress in the development of fluorescent probes for the detection of hypochlorous acid. Sensors and Actuators B: Chemical, 2017, 240, 18-36.	4.0	216
723	Specific protein labeling with caged fluorophores for dual-color imaging and super-resolution microscopy in living cells. Chemical Science, 2017, 8, 559-566.	3.7	54
724	Rapid preparation of branched and degradable AIE-active fluorescent organic nanoparticles via formation of dynamic phenyl borate bond. Colloids and Surfaces B: Biointerfaces, 2017, 150, 114-120.	2.5	15
725	Live bio-imaging with fully bio-compatible organic fluorophores. Journal of Photochemistry and Photobiology B: Biology, 2017, 166, 52-57.	1.7	11
726	Exploring Morphological and Biochemical Linkages in Fungal Growth with Labelâ€Free Light Sheet Microscopy and Raman Spectroscopy. ChemPhysChem, 2017, 18, 72-78.	1.0	26
727	Development toward high-resolution X-ray phase imaging. Journal of Electron Microscopy, 2017, 66, 155-166.	0.9	18
728	Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines. Chemical and Pharmaceutical Bulletin, 2017, 65, 642-648.	0.6	8

#

ARTICLE

ARTICLE IF CITATIONS # The Growing Influence of Nanotechnology in Our Lives., 2017, , 1-20. 729 5 Super-resolution Microscopy – Applications in Plant Cell Research. Frontiers in Plant Science, 2017, 8, 1.7 531. Improvement of Optical Properties for Semiconductor Nanoparticles by the Precise Control of 731 0.6 3 Electron and Energy Transfer. Electrochemistry, 2017, 85, 543-551. Understanding and assessing low-light cameras for super-resolution localization microscopy., 2017,, Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells. Annual Review 733 8.6 38 of Plant Biology, 2018, 69, 525-551. A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging. Nature 734 5.8 139 Communications, 2018, 9, 930 Combined effect of hydrogen bonding interactions and freezing of rotameric equilibrium on the 735 1.3 12 enhancement of photostability. Physical Chemistry Chemical Physics, 2018, 20, 13306-13315. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clinical Microbiology Reviews, 5.7 150 2018, 31, . 737 Noncanonical Amino Acids. Methods in Molecular Biology, 2018, , . 0.4 1 Nitrogen-Doped Biocompatible Carbon Dot as a Fluorescent Probe for STORM Nanoscopy. Journal of 1.5 Physical Chemistry C, 2018, 122, 4704-4709. Genetic Code Expansion- and Click Chemistry-Based Site-Specific Protein Labeling for Intracellular 739 0.4 10 DNA-PAINT Imaging. Methods in Molecular Biology, 2018, 1728, 279-295. Fluorogenic Tetrazine-Siliconrhodamine Probe for the Labeling of Noncanonical Amino Acid Tagged 740 0.4 Proteins. Methods in Molecular Biology, 2018, 1728, 337-363 Bioorthogonally Applicable Fluorogenic Cyanine-Tetrazines for No-Wash Super-Resolution Imaging. 741 1.8 58 Bioconjugate Chemistry, 2018, 29, 1312-1318. <i>In Situ</i> Construction of Protein-Based Semisynthetic Biosensors. ACS Sensors, 2018, 3, 527-539. 742 4.0 Super-resolution imaging of lysosomes with a nitroso-caged rhodamine. Chemical Communications, 743 2.2 45 2018, 54, 2842-2845. Visualization and intracellular dynamic tracking of exosomes and exosomal miRNAs using single molecule localization microscopy. Nanoscale, 2018, 10, 5154-5162. 744 50 Cuttingâ€Edge Nanomaterials for Advanced Multimodal Bioimaging Applications. Small Methods, 2018, 2, 745 4.6 32 1700265. Crystalline Dipeptide Nanobelts Based on Solidâ€"Solid Phase Transformation Self-Assembly and Their 746 Polarization Imaging of Cells. ACS Applied Materials & amp; Interfaces, 2018, 10, 2368-2376.

#	Article	IF	CITATIONS
747	A highly fluorescent water soluble spirobifluorene dye with a large Stokes shift: synthesis, characterization and bio-applications. Chemical Communications, 2018, 54, 642-645.	2.2	31
748	In vitro electroporation detection methods – An overview. Bioelectrochemistry, 2018, 120, 166-182.	2.4	130
749	Far-red fluorescent probes for canonical and non-canonical nucleic acid structures: current progress and future implications. Chemical Society Reviews, 2018, 47, 1098-1131.	18.7	167
750	Recent advances in iridium(<scp>iii</scp>) complex-assisted nanomaterials for biological applications. Journal of Materials Chemistry B, 2018, 6, 537-544.	2.9	42
751	Multiplex Photoluminescent Silicon Nanoprobe for Diagnostic Bioimaging and Intracellular Analysis. Advanced Science, 2018, 5, 1700548.	5.6	19
753	A guide to integrating immunohistochemistry and chemical imaging. Chemical Society Reviews, 2018, 47, 3770-3787.	18.7	52
754	Three-Dimensional Orientation of Anisotropic Plasmonic Aggregates at Intracellular Nuclear Indentation Sites by Integrated Light Sheet Super-Resolution Microscopy. ACS Nano, 2018, 12, 4156-4163.	7.3	22
755	Overcoming diffraction limit: From microscopy to nanoscopy. Applied Spectroscopy Reviews, 2018, 53, 290-312.	3.4	30
756	Near infrared quantum dots in biomedical applications: current status and future perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1483.	3.3	113
757	High‣patial Resolution Mass Spectrometry Imaging: Toward Single Cell Metabolomics in Plant Tissues. Chemical Record, 2018, 18, 65-77.	2.9	54
758	Technical Review: Microscopy and Image Processing Tools to Analyze Plant Chromatin: Practical Considerations. Methods in Molecular Biology, 2018, 1675, 537-589.	0.4	16
759	Quality of biological images, reconstructed using localization microscopy data. Bioinformatics, 2018, 34, 845-852.	1.8	4
760	3D chemical imaging of the brain using quantitative IR spectro-microscopy. Chemical Science, 2018, 9, 189-198.	3.7	7
761	Single-molecule techniques in biophysics: a review of the progress in methods and applications. Reports on Progress in Physics, 2018, 81, 024601.	8.1	136
762	Analytical techniques and methods for study of drug-lipid membrane interactions. Reviews in Analytical Chemistry, 2018, 37, .	1.5	24
763	Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton. Journal of the American Chemical Society, 2018, 140, 974-983.	6.6	97
764	Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine. Science China Chemistry, 2018, 61, 76-87.	4.2	51
765	Two-photon fluorescent probe for hydrogen sulfide based on a red-emitting benzocoumarin dye. Tetrahedron Letters, 2018, 59, 49-53.	0.7	16

#	ARTICLE	IF	CITATIONS
 766	Aggregation-responsive ON–OFF–ON fluorescence-switching behaviour of twisted tetrakis(benzo[<i>b</i>]furyl)ethene made by hafnium-mediated McMurry coupling. Materials Chemistry Frontiers, 2018, 2, 296-299	3.2	8
767	Promises and Pitfalls of Metal Imaging in Biology. Cell Chemical Biology, 2018, 25, 7-18.	2.5	37
768	On the Organization of a Drug Discovery Platform. , 2018, , .		2
769	Submicron infrared imaging of an oesophageal cancer cell with chemical specificity using an IR-FEL. Biomedical Physics and Engineering Express, 2018, 5, 015009.	0.6	5
770	Enhancing porphyrin photostability when locked in metal–organic frameworks. Dalton Transactions, 2018, 47, 15765-15771.	1.6	24
771	Facile fabrication of water-dispersible nanocomposites based on hexa- <i>peri</i> -hexabenzocoronene and Fe ₃ O ₄ for dual mode imaging (fluorescent/MR) and drug delivery. RSC Advances, 2018, 8, 40554-40563.	1.7	4
773	A Polymerizable Photoswitchable Fluorophore for Super-Resolution Imaging of Polymer Self-Assembly and Dynamics. ACS Macro Letters, 2018, 7, 1432-1437.	2.3	35
774	Atomic Force Microscopy in Molecular and Cell Biology. , 2018, , .		6
775	Fluorescent Tracking of the Endoplasmic Reticulum in Live Pathogenic Fungal Cells. ACS Chemical Biology, 2018, 13, 3325-3332.	1.6	26
776	The Hyphenated Technique of High Speed Atomic Force Microscopy and Super Resolution Optical Detection System. , 2018, , 105-130.		1
777	Post-Golgi Trafficking and Transport of Cell Wall Components. Frontiers in Plant Science, 2018, 9, 1784.	1.7	25
778	Progress on photochromic diarylethenes with aggregation induced emission. Frontiers of Optoelectronics, 2018, 11, 317-332.	1.9	20
779	Improving the Photostability of Semiconducting Polymer Dots Using Buffers. Analytical Chemistry, 2018, 90, 11785-11790.	3.2	9
780	Plasma dispersion effect based super-resolved imaging in silicon. Optics Express, 2018, 26, 25370.	1.7	13
781	Experimental Dissection of the Lytic Replication Cycles of Herpes Simplex Viruses in vitro. Frontiers in Microbiology, 2018, 9, 2406.	1.5	37
782	Spectroscopic Study of Solvent Polarity on the Optical and Photo-Physical Properties of Novel 9,10-bis(coumarinyl)anthracene. Journal of Fluorescence, 2018, 28, 1421-1430.	1.3	7
783	Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI. PLoS ONE, 2018, 13, e0198416.	1.1	11
784	AIE-Active Fluorescent Nonconjugated Polymer Dots for Dual-Alternating-Color Live Cell Imaging. Industrial & Engineering Chemistry Research, 2018, 57, 14889-14898.	1.8	15

#	Article	IF	Citations
785	Switchable Fluorophores for Single-Molecule Localization Microscopy. Chemical Reviews, 2018, 118, 9412-9454.	23.0	223
786	Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chemical Reviews, 2018, 118, 10294-10348.	23.0	136
787	Highly fluorescent and water soluble turn-on type diarylethene for super-resolution bioimaging over a broad pH range. Dyes and Pigments, 2018, 158, 36-41.	2.0	15
788	Systematic Excited State Studies of Reversibly Switchable Fluorescent Proteins. Journal of Chemical Theory and Computation, 2018, 14, 3163-3172.	2.3	10
789	ExTzBox: A Glowing Cyclophane for Live-Cell Imaging. Journal of the American Chemical Society, 2018, 140, 7206-7212.	6.6	84
790	<i>In situ</i> generation of photoactivatable aggregation-induced emission probes for organelle-specific imaging. Chemical Science, 2018, 9, 5730-5735.	3.7	57
791	Synthesis, Characterization, and Biodistribution of Quantum Dot-Celecoxib Conjugate in Mouse Paw Edema Model. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-8.	1.9	10
792	A BODIPY Based Fluorescent Probe for the Rapid Detection of Hypochlorite. Journal of Fluorescence, 2018, 28, 933-941.	1.3	14
793	Multicolor Fluorescence Photoswitching: Color orrelated versus Colorâ€Specific Switching. Advanced Optical Materials, 2018, 6, 1800678.	3.6	78
794	Bridgeâ€Caging Strategy in Phosphorusâ€Substituted Rhodamine for Modular Development of Nearâ€Infrared Fluorescent Probes. Chemistry - A European Journal, 2018, 24, 14506-14512.	1.7	26
795	Reactionâ€based AIEâ€active Fluorescent Probes for Selective Detection and Imaging. Israel Journal of Chemistry, 2018, 58, 845-859.	1.0	33
796	Mislocalization in Plasmon-Enhanced Single-Molecule Fluorescence Microscopy as a Dynamical Young's Interferometer. ACS Photonics, 2018, 5, 3141-3151.	3.2	18
797	Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. Biomacromolecules, 2018, 19, 2750-2758.	2.6	10
798	Design and Synthesis of Reactive Perylene Tetracarboxylic Diimide Derivatives for Rapid Cell Imaging. ACS Omega, 2018, 3, 8691-8696.	1.6	12
799	Precise design and synthesis of an AIE fluorophore with near-infrared emission for cellular bioimaging. Materials Science and Engineering C, 2018, 93, 399-406.	3.8	15
800	Fluorescence modulation by fast photochromism of a [2.2]paracyclophane-bridged imidazole dimer possessing a perylene bisimide moiety. Journal of Materials Chemistry C, 2018, 6, 9523-9531.	2.7	15
801	Widefield standing wave microscopy of red blood cell membrane morphology with high temporal resolution. Biomedical Optics Express, 2018, 9, 1745.	1.5	8
802	Quantum Dot–Dye Conjugates for Biosensing, Imaging, and Therapy. Advanced Healthcare Materials, 2018, 7, e1800252.	3.9	51

#	Article	IF	CITATIONS
803	Image-Based Tracking of Anticancer Drug-Loaded Nanoengineered Polyelectrolyte Capsules in Cellular Environments Using a Fast Benchtop Mid-Infrared (MIR) Microscope. ACS Omega, 2018, 3, 6143-6150.	1.6	3
804	AIE-based super-resolution imaging probes for β-amyloid plaques in mouse brains. Materials Chemistry Frontiers, 2018, 2, 1554-1562.	3.2	68
805	Dissecting the role of the tubulin code in mitosis. Methods in Cell Biology, 2018, 144, 33-74.	0.5	23
806	Near-room-temperature phase-change fluorescent molecular rotor and its hybrids. Journal of Molecular Liquids, 2018, 265, 260-268.	2.3	5
807	Cryogenic Fluorescence Localization Microscopy of Spectrally Selected Individual FRET Pairs in a Water Matrix. Journal of Physical Chemistry B, 2018, 122, 6906-6911.	1.2	7
808	Multiscale and Multimodal Imaging for Connectomics. Progress in Optical Science and Photonics, 2019, , 3-45.	0.3	0
809	Chemistry, chemical biology and photophysics of certain new chromene–triazole–coumarin triads as fluorescent inhibitors of CDK2 and CDK4 induced cancers. New Journal of Chemistry, 2019, 43, 13863-13872.	1.4	5
810	Supramolecular caging for cytosolic delivery of anionic probes. Chemical Science, 2019, 10, 8930-8938.	3.7	21
811	Self-assembled multilayer surfaces of highly fluorescent spirobifluorene-based dye for label-free protein recognition. Journal of Materials Chemistry B, 2019, 7, 4933-4939.	2.9	5
812	Novel Rhodamine B and 2 H â€benzo[b][1,4]oxazinâ€3(4 H)â€oneâ€derived Fluorescent Sensor for Low pH Value Detection. Bulletin of the Korean Chemical Society, 2019, 40, 787-790.	1.0	1
813	Dual-color fluorescent nanoparticles showing perfect color-specific photoswitching for bioimaging and super-resolution microscopy. Nature Communications, 2019, 10, 3089.	5.8	85
814	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. Journal of the American Chemical Society, 2019, 141, 11938-11946.	6.6	37
816	Rhenium (I) Complexes as Probes for Prokaryotic and Fungal Cells by Fluorescence Microscopy: Do Ligands Matter?. Frontiers in Chemistry, 2019, 7, 454.	1.8	24
817	Development of an endoplasmic reticulum-targeting fluorescent probe for the imaging of polarity in living cells and tissues. New Journal of Chemistry, 2019, 43, 12103-12108.	1.4	28
818	Graphene setting the stage: tracking DNA hybridization with nanoscale resolution. 2D Materials, 2019, 6, 045056.	2.0	4
819	Nanometer Accuracy in Cryogenic Far-Field Localization Microscopy of Individual Molecules. Journal of Physical Chemistry Letters, 2019, 10, 5841-5846.	2.1	12
820	Photoâ€isomerization of the Cyanine Dye Alexaâ€Fluor 647 (AFâ€647) in the Context of dSTORM Superâ€Resolution Microscopy. Chemistry - A European Journal, 2019, 25, 14983-14998.	1.7	14
821	Characterization of Flagellar Filaments and Flagellin through Optical Microscopy and Label-Free Nanopore Responsiveness. Analytical Chemistry, 2019, 91, 13665-13674.	3.2	12

	CITATION R	EPORT	
#	Article	IF	CITATIONS
822	Optimal Imaging of Remote Bodies Using Quantum Detectors. Physical Review Letters, 2019, 123, 143604.	2.9	19
823	Photoactivatable Fluorogens by Intramolecular C–H Insertion of Perfluoroaryl Azide. Journal of Organic Chemistry, 2019, 84, 14520-14528.	1.7	10
824	"Second-generation―fluorogenic RNA-based sensors. Methods, 2019, 161, 24-34.	1.9	25
825	Live-cell imaging and profiling of c-Jun N-terminal kinases using covalent inhibitor-derived probes. Chemical Communications, 2019, 55, 1092-1095.	2.2	15
826	Fluorogenic probes for super-resolution microscopy. Organic and Biomolecular Chemistry, 2019, 17, 215-233.	1.5	95
827	Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging. Communications Biology, 2019, 2, 177.	2.0	46
828	Efficient Modulation of β-Amyloid Peptide Fibrillation with Polymer Nanoparticles Revealed by Super-Resolution Optical Microscopy. Analytical Chemistry, 2019, 91, 8582-8590.	3.2	27
829	A Malonyl-Based Scaffold for Conjugatable Multivalent Carbohydrate-BODIPY Presentations. Molecules, 2019, 24, 2050.	1.7	6
830	ICTâ€Based Blueâ€Emitting Dualâ€Functional Probe (Ugi EML BLUE) for Bioâ€Imaging and Cytotoxic Activities on HeLa Cells. ChemistrySelect, 2019, 4, 5366-5374.	0.7	3
831	Facilitated diffusion of Argonaute-mediated target search. RNA Biology, 2019, 16, 1093-1107.	1.5	7
832	Green Fluorescent Probe for Imaging His ₆ -Tagged Proteins Inside Living Cells. ACS Sensors, 2019, 4, 1190-1196.	4.0	11
834	Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles. Chinese Journal of Polymer Science (English Edition), 2019, 37, 767-773.	2.0	5
835	Fluorescent Probes for Nanoscopic Imaging of Mitochondria. CheM, 2019, 5, 1697-1726.	5.8	104
836	SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging. Journal of the American Chemical Society, 2019, 141, 7562-7571.	6.6	99
837	A lysosome-targetable fluorescent probe for the simultaneous sensing of Cys/Hcy and GSH from different emission channels. RSC Advances, 2019, 9, 7955-7960.	1.7	16
838	Long-lived iridium(III) complexes as luminescent probes for the detection of periodate in living cells. Sensors and Actuators B: Chemical, 2019, 288, 392-398.	4.0	23
839	Cellâ€permeable organic fluorescent probes for liveâ€cell superâ€resolution imaging of actin filaments. Journal of Chemical Technology and Biotechnology, 2019, 94, 2040-2046.	1.6	5
840	Crystal structure of a domainâ€swapped photoactivatable sfGFP variant provides evidence for GFP folding pathway. FEBS Journal, 2019, 286, 2329-2340.	2.2	5

#	Article	IF	CITATIONS
841	Microfluidic Synthesis of Semiconducting Colloidal Quantum Dots and Their Applications. ACS Applied Nano Materials, 2019, 2, 1773-1790.	2.4	69
843	Nanoscale monitoring of mitochondria and lysosome interactions for drug screening and discovery. Nano Research, 2019, 12, 1009-1015.	5.8	45
844	Improvement of telescope resolution using a diffractive phase modulater. Scientific Reports, 2019, 9, 3475.	1.6	2
845	Strategy to Lengthen the On-Time of Photochromic Rhodamine Spirolactam for Super-resolution Photoactivated Localization Microscopy. Journal of the American Chemical Society, 2019, 141, 6527-6536.	6.6	96
846	Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation. Frontiers in Immunology, 2019, 10, 675.	2.2	57
847	Development of sensing method for mercury ions and cell imaging based on highly fluorescent gold nanoclusters. Microchemical Journal, 2019, 146, 1140-1149.	2.3	14
848	Intracellular Imaging with Genetically Encoded RNA-based Molecular Sensors. Nanomaterials, 2019, 9, 233.	1.9	32
849	Photocaged probes for spatiotemporal imaging. Sensors and Actuators B: Chemical, 2019, 288, 113-119.	4.0	1
850	Labeling Strategies Matter for Super-Resolution Microscopy: A Comparison between HaloTags and SNAP-tags. Cell Chemical Biology, 2019, 26, 584-592.e6.	2.5	100
851	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7.	2.5	128
851 852	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7. Tetradecanuclear and Octadecanuclear Gold(I) Sulfido Clusters: Synthesis, Structures, and Luminescent Selective Tracking of Lysosomes in Living Cells. Inorganic Chemistry, 2019, 58, 3690-3697.	2.5 1.9	128 24
851 852 853	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7. Tetradecanuclear and Octadecanuclear Gold(I) Sulfido Clusters: Synthesis, Structures, and Luminescent Selective Tracking of Lysosomes in Living Cells. Inorganic Chemistry, 2019, 58, 3690-3697. A Novel Genetic Circuit Supports Laboratory Automation and High Throughput Monitoring of Inflammation in Living Human Cells. , 2019, .	2.5	128 24 0
851 852 853 854	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7. Tetradecanuclear and Octadecanuclear Gold(I) Sulfido Clusters: Synthesis, Structures, and Luminescent Selective Tracking of Lysosomes in Living Cells. Inorganic Chemistry, 2019, 58, 3690-3697. A Novel Genetic Circuit Supports Laboratory Automation and High Throughput Monitoring of Inflammation in Living Human Cells. , 2019, , . pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging. Beilstein Journal of Nanotechnology, 2019, 10, 2428-2439.	2.5 1.9 1.5	128 24 0 11
851 852 853 854 855	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7. Tetradecanuclear and Octadecanuclear Gold(I) Sulfido Clusters: Synthesis, Structures, and Luminescent Selective Tracking of Lysosomes in Living Cells. Inorganic Chemistry, 2019, 58, 3690-3697. A Novel Genetic Circuit Supports Laboratory Automation and High Throughput Monitoring of Inflammation in Living Human Cells., 2019, pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging. Beilstein Journal of Nanotechnology, 2019, 10, 2428-2439. A facile method to incorporate tetraphenylethylene into polymeric amphiphiles: High emissive nanoparticles for cell-imaging. Dyes and Pigments, 2019, 160, 711-716.	2.5 1.9 1.5 2.0	128 24 0 11 4
851 852 853 854 855	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7. Tetradecanuclear and Octadecanuclear Gold(I) Sulfido Clusters: Synthesis, Structures, and Luminescent Selective Tracking of Lysosomes in Living Cells. Inorganic Chemistry, 2019, 58, 3690-3697. A Novel Genetic Circuit Supports Laboratory Automation and High Throughput Monitoring of Inflammation in Living Human Cells. , 2019, , . PH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging. Beilstein Journal of Nanotechnology, 2019, 10, 2428-2439. A facile method to incorporate tetraphenylethylene into polymeric amphiphiles: High emissive nanoparticles for cell-imaging. Dyes and Pigments, 2019, 160, 711-716. Using an RNA aptamer probe for super-resolution imaging of native EGFR. Nanoscale Advances, 2019, 1, 291-298.	2.5 1.9 1.5 2.0 2.2	128 24 0 11 4 19
 851 852 853 854 855 856 857 	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7. Tetradecanuclear and Octadecanuclear Gold(I) Sulfido Clusters: Synthesis, Structures, and Luminescent Selective Tracking of Lysosomes in Living Cells. Inorganic Chemistry, 2019, 58, 3690-3697. A Novel Genetic Circuit Supports Laboratory Automation and High Throughput Monitoring of Inflammation in Living Human Cells. , 2019, pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging. Beilstein Journal of Nanotechnology, 2019, 10, 2428-2439. A facile method to incorporate tetraphenylethylene into polymeric amphiphiles: High emissive nanoparticles for cell-imaging. Dyes and Pigments, 2019, 160, 711-716. Using an RNA aptamer probe for super-resolution imaging of native EGFR. Nanoscale Advances, 2019, 1, 291-298. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjugate Chemistry, 2019, 30, 184-191.	2.5 1.9 1.5 2.0 2.2 1.8	128 24 0 11 4 19
 851 852 853 854 855 856 857 858 	MemBright: A Family of Fluorescent Membrane Probes for Advanced Cellular Imaging and Neuroscience. Cell Chemical Biology, 2019, 26, 600-614.e7. Tetradecanuclear and Octadecanuclear Gold(I) Sulfido Clusters: Synthesis, Structures, and Luminescent Selective Tracking of Lysosomes in Living Cells. Inorganic Chemistry, 2019, 58, 3690-3697. A Novel Genetic Circuit Supports Laboratory Automation and High Throughput Monitoring of Inflammation in Living Human Cells., 2019, PH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging. Beilstein Journal of Nanotechnology, 2019, 10, 2428-2439. A facile method to incorporate tetraphenylethylene into polymeric amphiphiles: High emissive nanoparticles for cell-Imaging. Dyes and Pigments, 2019, 160, 711-716. Using an RNA aptamer probe for super-resolution imaging of native EGFR. Nanoscale Advances, 2019, 1, 291-298. Development of Acrylamide-Based Rapid and Multicolor Fluorogenic Probes for High Signal-to-Noise Live Cell Imaging. Bioconjugate Chemistry, 2019, 30, 184-191. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation, 2019, 26, e12520.	2.5 1.9 1.5 2.0 2.2 1.8 1.0	128 24 0 11 4 19 8 8

#	Article	IF	Citations
860	BODIPY with Tuned Amphiphilicity as a Fluorogenic Plasma Membrane Probe. Bioconjugate Chemistry, 2019, 30, 192-199.	1.8	48
861	Photons in - numbers out: perspectives in quantitative fluorescence microscopy for in situ protein counting. Methods and Applications in Fluorescence, 2019, 7, 012003.	1.1	20
862	A novel luminescent sensor for disaccharide detection in food: Synthesis and application of a water-soluble rod-coil ionic block copolymer. European Polymer Journal, 2019, 112, 248-254.	2.6	4
863	Development of a mitochondrial-targeted ratiometric probe for the detection of SO2 in living cells and zebrafishes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 209, 196-201.	2.0	11
864	Single-Molecule Kinetics in Living Cells. Annual Review of Biochemistry, 2019, 88, 635-659.	5.0	91
865	Amorphous Quantum Nanomaterials. Advanced Materials, 2019, 31, 1806993.	11.1	15
866	Conformational change due to intramolecular hydrophobic interaction leads to large blue-shifted emission from single molecular cage solutions. Chemical Communications, 2019, 55, 330-333.	2.2	14
867	Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. Journal of the American Chemical Society, 2019, 141, 2770-2781.	6.6	357
868	Lightâ€Activated Nanoprobes for Biosensing and Imaging. Advanced Materials, 2019, 31, e1804745.	11.1	47
869	Polyethylene glycol-modified cystamine for fluorescent sensing. Journal of Materials Science, 2019, 54, 313-322.	1.7	1
870	Inorganic hydrogen polysulfides: chemistry, chemical biology and detection. British Journal of Pharmacology, 2019, 176, 616-627.	2.7	67
871	Highly selective mitochondrial probes based on fluorinated pentamethinium salts: On two-photon properties and microscopic applications. Dyes and Pigments, 2020, 172, 107802.	2.0	5
872	Dual Illumination Enhances Transformation of an Engineered Greenâ€ŧoâ€Red Photoconvertible Fluorescent Protein. Angewandte Chemie, 2020, 132, 1661-1669.	1.6	2
873	Dual Illumination Enhances Transformation of an Engineered Greenâ€ŧoâ€Red Photoconvertible Fluorescent Protein. Angewandte Chemie - International Edition, 2020, 59, 1644-1652.	7.2	21
874	7-(diethylamino)-4-methyl-3-vinylcoumarin as a new important intermediate to the synthesis of photosensitizers for DSSCs and fluorescent labels for biomolecules. Dyes and Pigments, 2020, 174, 108026.	2.0	11
875	Scalable synthesis of fluorescent organic nanodots by block copolymer templating. Journal of Polymer Science, 2020, 58, 30-34.	2.0	2
876	Exploring the Relationship between BODIPY Structure and Spectroscopic Properties to Design Fluorophores for Bioimaging. Chemistry - A European Journal, 2020, 26, 863-872.	1.7	21
877	<i>De novo</i> formation of citrate-based fluorophores on N-termini of peptides and proteins in cells and tissues. Chemical Communications, 2020, 56, 74-77.	2.2	6

#	Article	IF	CITATIONS
878	9,10-(Divinyl) Anthracene Based Bright Aggregation-Induced Emission Organic Dots for HeLa Cells Imaging. Journal of Nanoscience and Nanotechnology, 2020, 20, 2072-2078.	0.9	2
879	Optical super-resolution microscopy in polymer science. Progress in Polymer Science, 2020, 111, 101312.	11.8	22
880	High Axial and Lateral Resolutions on Self-Assembled Gold Nanoparticle Metasurfaces for Live-Cell Imaging. ACS Applied Nano Materials, 2020, 3, 11135-11142.	2.4	5
881	Full Color Tunable Aggregation-Induced Emission Luminogen for Bioimaging Based on an Indolizine Molecular Framework. Bioconjugate Chemistry, 2020, 31, 2522-2532.	1.8	25
882	A cytosolically localized far-red to near-infrared rhodamine-based fluorescent probe for calcium ions. Analyst, The, 2020, 145, 7736-7740.	1.7	11
883	Nanobiophotonics and fluorescence nanoscopy in 2020. , 2020, , 113-162.		2
884	Correlative cathodoluminescence electron microscopy bioimaging: towards single protein labelling with ultrastructural context. Nanoscale, 2020, 12, 15588-15603.	2.8	9
885	Dual functional luminescent nanoprobes for monitoring oxygen and chloride concentration changes in cells. Chemical Communications, 2020, 56, 14980-14983.	2.2	5
886	Multiple Factors Regulate the Spirocyclization Equilibrium of Si-Rhodamines. Journal of Physical Chemistry B, 2020, 124, 7467-7474.	1.2	8
887	Blind deconvolution for spike inference from fluorescence recordings. Journal of Neuroscience Methods, 2020, 342, 108763.	1.3	11
888	SERS-fluorescence-superresolution triple-mode nanoprobe based on surface enhanced Raman scattering and surface enhanced fluorescence. Journal of Materials Chemistry B, 2020, 8, 8459-8466.	2.9	7
889	Fluorolabeling of the PPTase-Related Chemical Tags: Comparative Study of Different Membrane Receptors and Different Fluorophores in the Labeling Reactions. Frontiers in Molecular Biosciences, 2020, 7, 195.	1.6	10
890	Optical nanoscopy. Rivista Del Nuovo Cimento, 2020, 43, 385-455.	2.0	22
891	A Cyclometalated Iridium (III) Complex as a Microtubule Probe for Correlative Superâ€Resolution Fluorescence and Electron Microscopy. Advanced Materials, 2020, 32, e2003901.	11.1	20
892	Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules, 2020, 25, 5964.	1.7	26
893	Anionic Quantum Dots reveal actin-microridges in zebrafish epidermis. Methods and Applications in Fluorescence, 2020, 8, 035007.	1.1	0
894	Theoretical and Experimental Investigations of Large Stokes Shift Fluorophores Based on a Quinoline Scaffold. Molecules, 2020, 25, 2488.	1.7	28
895	Quo vadis FRET? Förster's method in the era of superresolution. Methods and Applications in Fluorescence, 2020, 8, 032003.	1.1	14

#	Article	IF	CITATIONS
896	Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. Nano Letters, 2020, 20, 5228-5235.	4.5	52
897	Improving resolving ability of expansion microscopy by varying crosslinker concentration. Chemical Communications, 2020, 56, 4176-4179.	2.2	5
898	The near-infrared fluorescent probes based on phenoxazine for the rapid detection of hypochlorous acid. Dyes and Pigments, 2020, 179, 108404.	2.0	24
899	Label-free deeply subwavelength optical microscopy. Applied Physics Letters, 2020, 116, .	1.5	16
900	4-(4-Chloro-2-oxo-3(1H-phenanthro[9,10-d]imidazol-2-yl)-2H-chromen-6-yl) benzaldehyde as a fluorescent probe for medical imaging: linear and nonlinear optical properties. Photochemical and Photobiological Sciences, 2020, 19, 473-484.	1.6	0
901	Coumarins as Fluorescent Labels of Biomolecules. , 0, , .		4
902	Encapsulins—Bacterial Protein Nanocompartments: Structure, Properties, and Application. Biomolecules, 2020, 10, 966.	1.8	29
903	Single-Cell Multimodal Analytical Approach by Integrating Raman Optical Tweezers and RNA Sequencing. Analytical Chemistry, 2020, 92, 10433-10441.	3.2	17
904	DNA nanostructure-based fluorescent probes for cellular sensing. Analytical Methods, 2020, 12, 1415-1429.	1.3	13
905	MitoBlue as a tool to analyze the mitochondria-lysosome communication. Scientific Reports, 2020, 10, 3528.	1.6	7
906	Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. TrAC - Trends in Analytical Chemistry, 2020, 125, 115811.	5.8	33
907	Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods and Applications in Fluorescence, 2020, 8, 022001.	1.1	183
908	A Trojan Horse for live-cell super-resolution microscopy. Light: Science and Applications, 2020, 9, 2.	7.7	2
909	Aptamer-based biosensor for detecting carcinoembryonic antigen. Talanta, 2020, 214, 120716.	2.9	104
910	Long-term live-cell microscopy with labeled nanobodies delivered by laser-induced photoporation. Nano Research, 2020, 13, 485-495.	5.8	14
911	Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chemical Reviews, 2020, 120, 1936-1979.	23.0	131
912	Dual-emission hydrogel nanoparticles with linear and reversible luminescence-response to pH for intracellular fluorescent probes. Talanta, 2020, 211, 120755.	2.9	6
913	Scalable synthesis of fluorescent organic nanodots by block copolymer templating. Journal of Polymer Science, 2020, 58, 30-34.	2.0	2

#	Article	IF	CITATIONS
914	Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. International Journal of Pharmaceutics, 2020, 582, 119314.	2.6	106
915	Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. Biomaterials, 2020, 250, 120059.	5.7	77
916	A Novel Phenoxazineâ€based Fluorescent Probe for the Detection of HOCl in Living Cells. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 431-436.	0.6	7
917	Three-Dimensional Single-Molecule Localization Microscopy in Whole-Cell and Tissue Specimens. Annual Review of Biomedical Engineering, 2020, 22, 155-184.	5.7	20
918	Luminescent gold nanoclusters for bioimaging applications. Beilstein Journal of Nanotechnology, 2020, 11, 533-546.	1.5	31
919	Aggregation-induced emission-active hyperbranched polymer-based nanoparticles and their biological imaging applications. Dyes and Pigments, 2021, 186, 108975.	2.0	17
920	Fluorineâ€18 Radiolabelling and Photophysical Characteristics of Multimodal PET–Fluorescence Molecular Probes. Chemistry - A European Journal, 2021, 27, 861-876.	1.7	19
921	Oligo(ethylene glycol) (OEG) functionalized 2-(2′-Hydroxy benzofuranyl) benzoxazole (HBBO) derivatives: Synthesis, photophysical properties and biomolecules binding studies. Dyes and Pigments, 2021, 185, 108895.	2.0	3
922	Bacteria-dye combination screening: Diamine-containing BMeS-p-A dye for specific fluorescence imaging of Acinetobacter baumannii. Dyes and Pigments, 2021, 185, 108939.	2.0	10
923	Unveiling Fourier Ptychography via Fisher Information. Optics Communications, 2021, 483, 126642.	1.0	1
924	Resolution Enhancement and Background Suppression in Optical Superâ€Resolution Imaging for Biological Applications. Laser and Photonics Reviews, 2021, 15, .	4.4	13
925	Near-infrared fluorescent probes: a next-generation tool for protein-labeling applications. Chemical Science, 2021, 12, 3437-3447.	3.7	71
926	Fluorescent labeling of biocompatible block copolymers: synthetic strategies and applications in bioimaging. Materials Advances, 2021, 2, 3213-3233.	2.6	19
927	A nonlocal Weickert type PDE applied to multi-frame super-resolution. Evolution Equations and Control Theory, 2021, 10, 633.	0.7	5
928	A 1,8-Naphthalimide Based Fluorescent Probe for Sensing Tyrosinase in Zebrafish. SSRN Electronic Journal, 0, , .	0.4	0
929	A design strategy for D–A conjugated polymers for NIR-II fluorescence imaging. Polymer Chemistry, 2021, 12, 4707-4713.	1.9	20
930	BODIPY derivatives as fluorescent reporters of molecular activities in living cells. Russian Chemical Reviews, 2021, 90, 1213-1262.	2.5	18
931	Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. Methods in Molecular Biology, 2021, 2282, 209-244.	0.4	5

	CI	TATION REPORT	i .
#	Article	IF	CITATIONS
932	Choosing Fluorescent Probes and Labeling Systems. Methods in Molecular Biology, 2021, 2304, 37-6	4. 0.4	2
933	A Labeling Strategy for Living Specimens in Long-Term/Super-Resolution Fluorescence Imaging. Frontiers in Chemistry, 2020, 8, 601436.	1.8	7
934	Fundamental photophysical properties of fluorescent carbon dots and their applications in metal ion sensing and bioimaging. , 2021, , 159-209.		0
935	An updated toolkit for exploring bacterial cell wall structure and dynamics. Faculty Reviews, 2021, 10 14.	1.7	0
936	Modular Synthetic Approach to Silicon-Rhodamine Homologues and Analogues via Bis-aryllanthanum Reagents. Organic Letters, 2021, 23, 2604-2609.	2.4	14
937	Twisted Intramolecular Charge Transfer—Aggregation-Induced Emission Fluorogen with Polymer Encapsulation-Enhanced Near-Infrared Emission for Bioimaging. CCS Chemistry, 2021, 3, 2084-2094.	4.6	16
938	The Benefits of Unnatural Amino Acid Incorporation as Protein Labels for Single Molecule Localization Microscopy. Frontiers in Chemistry, 2021, 9, 641355.	1.8	16
939	Super-resolving Microscopy in Neuroscience. Chemical Reviews, 2021, 121, 11971-12015.	23.0	0 40
940	Ground state depletion microscopy as a tool for studying microglia–synapse interactions. Journal o Neuroscience Research, 2021, 99, 1515-1532.	f 1.3	6
941	Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes. Molecules, 2021, 26, 1868.	1.7	29
942	Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. Annual Review of Physical Chemistry, 2021, 72, 253-278.	4.8	44
943	Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods and Applications in Fluorescence, 2021, 9, 032001.	1.1	18
944	Broad Applications of Thiazole Orange in Fluorescent Sensing of Biomolecules and Ions. Molecules, 2021, 26, 2828.	1.7	27
945	Electrochemical Analysis for Multiscale Single Entities on the Confined Interface ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1745-1752.	2.6	9
946	Quantitative Assessment of Labeling Probes for Superâ€Resolution Microscopy Using Designer DNA Nanostructures. ChemPhysChem, 2021, 22, 911-914.	1.0	18
947	Dual-locked spectroscopic probes for sensing and therapy. Nature Reviews Chemistry, 2021, 5, 406-4	21. 13.8	3 144
948	Activityâ€based smart AlEgens for detection, bioimaging, and therapeutics: Recent progress and outle Aggregate, 2021, 2, e51.	ook. 5.2	112
949	Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry - A European Journal, 2021, 27, 8605-8641.	1.7	12

#	Article	IF	CITATIONS
950	Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation. Nature Chemistry, 2021, 13, 902-908.	6.6	74
951	Single-molecule localization microscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	390
953	Coherent Confocal Light Scattering Spectroscopic Microscopy Evaluates Cancer Progression and Aggressiveness in Live Cells and Tissue. ACS Photonics, 2021, 8, 2050-2059.	3.2	3
954	How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription. International Journal of Molecular Sciences, 2021, 22, 6694.	1.8	3
955	Nitric Oxide Photoreleasers with Fluorescent Reporting. Chemistry - A European Journal, 2021, 27, 12714-12725.	1.7	13
956	A comprehensive review of deep learning-based single image super-resolution. PeerJ Computer Science, 2021, 7, e621.	2.7	61
957	Localization, proteomics, and metabolite profiling reveal a putative vesicular transporter for UDP-glucose. ELife, 2021, 10, .	2.8	6
958	Extremely Bright, Near-IR Emitting Spontaneously Blinking Fluorophores Enable Ratiometric Multicolor Nanoscopy in Live Cells. ACS Central Science, 2021, 7, 1419-1426.	5.3	40
959	Silicon-substituted rhodamines for stimulated emission depletion fluorescence nanoscopy. Chinese Chemical Letters, 2022, 33, 133-140.	4.8	8
960	Super-resolution STED microscopy in live brain tissue. Neurobiology of Disease, 2021, 156, 105420.	2.1	24
961	isoSTED microscopy with water-immersion lenses and background reduction. Biophysical Journal, 2021, 120, 3303-3314.	0.2	7
962	A Fluorescent Probe for The Visible Colorimetric Detection of Tyrosinase. ChemistrySelect, 2021, 6, 9046-9051.	0.7	1
963	Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. Small, 2021, 17, e2103127.	5.2	31
964	Ratiometric Detection of Hypochlorous Acid in Brain Tissues of Neuroinflammation and Maternal Immune Activation Models with a Deep-Red/Near-Infrared Emitting Probe. ACS Sensors, 2021, 6, 3253-3261.	4.0	27
965	Super-Resolution Microscopy: Shedding New Light on In Vivo Imaging. Frontiers in Chemistry, 2021, 9, 746900.	1.8	18
966	A colorimetric fluorescent probe for the detection of tyrosinase and its application for the food industry. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 419, 113458.	2.0	9
967	(INVITED) Fluorescent probes for optical investigation of the plasma membrane. Optical Materials: X, 2021, 12, 100085.	0.3	5
968	Dual photonic bandgap hollow sphere colloidal photonic crystals for real-time fluorescence enhancement in living cells. Biosensors and Bioelectronics, 2021, 194, 113577.	5.3	3

#	Article	IF	CITATIONS
969	Protein-, polymer-, and silica-based luminescent nanomaterial probes for super resolution microscopy: a review. Nanoscale Advances, 2021, 3, 1853-1864.	2.2	2
970	Green facile synthesis to develop nanoscale coordination polymers as lysosome-targetable luminescent bioprobes. Biomaterials Science, 2021, 9, 124-132.	2.6	7
971	Molecular photoswitches in aqueous environments. Chemical Society Reviews, 2021, 50, 12377-12449.	18.7	170
972	Direct visualization of virus removal process in hollow fiber membrane using an optical microscope. Scientific Reports, 2021, 11, 1095.	1.6	11
973	Emergence of Carbon Nanodots as a Probe for Super-Resolution Microscopy. Journal of Physical Chemistry C, 2021, 125, 1637-1653.	1.5	14
974	Point by Point: An Introductory Guide to Sample Preparation for Singleâ€Molecule, Superâ€Resolution Fluorescence Microscopy. Current Protocols in Chemical Biology, 2015, 7, 103-120.	1.7	33
976	Measurement of Microtubule Half-Life and Poleward Flux in the Mitotic Spindle by Photoactivation of Fluorescent Tubulin. Methods in Molecular Biology, 2020, 2101, 235-246.	0.4	11
977	Considerations and Protocols for the Synthesis of Custom Protein Labeling Probes. Methods in Molecular Biology, 2015, 1266, 55-79.	0.4	5
978	2-Cyanobenzothiazole (CBT) Condensation for Site-Specific Labeling of Proteins at the Terminal Cysteine Residues. Methods in Molecular Biology, 2015, 1266, 81-92.	0.4	12
979	Does Super-Resolution Fluorescence Microscopy Obsolete Previous Microscopic Approaches to Protein Co-localization?. Methods in Molecular Biology, 2015, 1270, 255-275.	0.4	41
980	Aptamer Stainings for Super-resolution Microscopy. Methods in Molecular Biology, 2016, 1380, 197-210.	0.4	13
981	Live Imaging Mouse Embryonic Development: Seeing Is Believing and Revealing. Methods in Molecular Biology, 2014, 1092, 405-420.	0.4	13
982	Imaging-Based Approaches to Understanding G Protein-Coupled Receptor Signalling Complexes. Methods in Molecular Biology, 2011, 756, 37-60.	0.4	10
983	Photoactivated Localization Microscopy for Cellular Imaging. Neuromethods, 2014, , 87-111.	0.2	1
984	Application of Three-Dimensional Structured Illumination Microscopy in Cell Biology: Pitfalls and Practical Considerations. Neuromethods, 2014, , 167-188.	0.2	3
985	Interferometric Scattering (iSCAT) Microscopy and Related Techniques. Biological and Medical Physics Series, 2019, , 25-65.	0.3	21
986	Enhanced Confocal Fluorescence Microscope performance using a differential pinhole. Springer Proceedings in Physics, 2015, , 153-159.	0.1	1
987	Controlled Assembly of Plasmonic Nanostructures Templated by Porous Anodic Alumina Membranes. International Journal of Behavioral and Consultation Therapy, 2016, , 249-274.	0.4	2

ARTICLE IF CITATIONS # Inhibitory and Regulatory Immune Synapses. Current Topics in Microbiology and Immunology, 2010, 988 0.7 22 340, 63-79. High Performance Thermally Irreversible Photochromism Based on 6i€-Electrocyclization. , 2013, , 989 137-159. 990 Super-resolution Fluorescence Microscopy., 2014, , 161-187. 2 Fluorescence Imaging of MACPF/CDC Proteins: New Techniques and Their Application. Sub-Cellular 991 1.0 Biochemistry, 2014, 80, 293-319. Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets. Methods in 992 0.4 3 Enzymology, 2020, 638, 233-257. Lysosomal-Targeted Two-Photon Fluorescent Probe to Sense Hypochlorous Acid in Live Cells. Analytical Chemistry, 2017, 89, 10384-10390. 3.2 Highly Photostable Fluorescent Tracker with pH-Insensitivity for Long-Term Imaging of Lysosomal 994 4.0 22 Dynamics in Live Cells. ACS Sensors, 2021, 6, 786-796. Synthesis of photoactivatable azido-acyl caged oxazine fluorophores for live-cell imaging. Chemical Communications, 2016, 52, 9442-9445. A fluorogenic and red-shifted diphenyl phosphinate-based probe for selective peroxynitrite detection 996 1.4 37 as demonstrated in fixed cells. New Journal of Chemistry, 2017, 41, 11934-11940. 1002 Small- molecule labeling probes., 2014, , 98-123. Development of Optical Highlighter Fluorescent Proteins and Their Applications in Super-Resolution 1003 3 Fluorescence Microscopy., 2014, , 326-361. Super resolution microscopy is poised to reveal new insights into the formation and maturation of 0.8 dendritic spines. F1000Reséarch, 2016, 5, 1468. 1005 Live Cell Imaging Methods Review. Materials and Methods, 0, 2, . 0.0 6 Multiplexed structured illumination microscopy for simultaneous, sub-diffraction resolution 1006 fluorescent and quantitative-phase imaging. , 2014, , . Supercontinuum radiation in fluorescence microscopy and biomedical imaging applications. Journal 1007 0.9 58 of the Optical Society of America B: Optical Physics, 2019, 36, A139. Highly luminescent YAlO₃: Gd³⁺ thin films as a nanoscale optical source for super-resolution bioimaging. Optical Materials Express, 2019, 9, 1803. Enhanced Fluorescence Imaging of Live Cells by Effective Cytosolic Delivery of Probes. PLoS ONE, 2010, 1009 1.1 80 5, e10459. Determination of a Threshold Dose to Reduce or Eliminate CdTe-Induced Toxicity in L929 Cells by 1.1 24 Controlling the Exposure Dose. PLoS ONE, 2013, 8, e59359.

#	Article	IF	CITATIONS
1011	Spectral Properties of Single Gold Nanoparticles in Close Proximity to Biological Fluorophores Excited by 2-Photon Excitation. PLoS ONE, 2015, 10, e0124975.	1.1	8
1012	Cry Protein Crystals: A Novel Platform for Protein Delivery. PLoS ONE, 2015, 10, e0127669.	1.1	20
1013	LSPR-mediated high axial-resolution fluorescence imaging on a silver nanoparticle sheet. PLoS ONE, 2017, 12, e0189708.	1.1	6
1014	Current standing and future prospects for the technologies proposed to transform toxicity testing in the 21st century. ALTEX: Alternatives To Animal Experimentation, 2011, 28, 17-44.	0.9	79
1015	Plasmon-enhanced fluorometry based on gold nanostructure arrays. Method and device. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2015, 18, 272-278.	0.3	2
1016	It is all about location: how to pinpoint microorganisms and their functions in multispecies biofilms. Future Microbiology, 2017, 12, 987-999.	1.0	13
1017	Advanced methods in fluorescence microscopy. Analytical Cellular Pathology, 2013, 36, 5-17.	0.7	3
1018	Fluorescent Probes for Nucleic Acid Visualization in Fixed and Live Cells. Molecules, 2013, 18, 15357-15397.	1.7	90
1019	A guide to investigating colloidal nanoparticles by cryogenic transmission electron microscopy: pitfalls and benefits. AIMS Biophysics, 2015, 2, 245-258.	0.3	8
1020	Photoactivatable Fluorophores. , 2012, 2012, 1-15.		13
1020 1021	Photoactivatable Fluorophores. , 2012, 2012, 1-15. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chemical Society Reviews, 2021, 50, 12656-12678.	18.7	13 221
1020 1021 1022	Photoactivatable Fluorophores. , 2012, 2012, 1-15. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chemical Society Reviews, 2021, 50, 12656-12678. Computerized fluorescence microscopy of microbial cells. World Journal of Microbiology and Biotechnology, 2021, 37, 189.	18.7	13 221 0
1020 1021 1022 1023	Photoactivatable Fluorophores., 2012, 2012, 1-15. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chemical Society Reviews, 2021, 50, 12656-12678. Computerized fluorescence microscopy of microbial cells. World Journal of Microbiology and Biotechnology, 2021, 37, 189. Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazoleâ€Pyrene Bioâ€Probe. Chemistry - A European Journal, 2021, 27, 16690-16700.	18.7 1.7 1.7	13 221 0 13
1020 1021 1022 1023	Photoactivatable Fluorophores., 2012, 2012, 1-15. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chemical Society Reviews, 2021, 50, 12656-12678. Computerized fluorescence microscopy of microbial cells. World Journal of Microbiology and Biotechnology, 2021, 37, 189. Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazoleâ€Pyrene Bioâ€Probe. Chemistry - A European Journal, 2021, 27, 16690-16700. Imaging organelle membranes in live cells at the nanoscale with lipid-based fluorescent probes. Current Opinion in Chemical Biology, 2021, 65, 154-162.	18.7 1.7 1.7 2.8	13 221 0 13 21
1020 1021 1022 1023 1024	Photoactivatable Fluorophores. , 2012, 2012, 1-15. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chemical Society Reviews, 2021, 50, 12656-12678. Computerized fluorescence microscopy of microbial cells. World Journal of Microbiology and Biotechnology, 2021, 37, 189. Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazoleâ€Pyrene Bioâ€Probe. Chemistry - A European Journal, 2021, 27, 16690-16700. Imaging organelle membranes in live cells at the nanoscale with lipid-based fluorescent probes. Current Opinion in Chemical Biology, 2021, 65, 154-162. Super-resolution Localization Microscopy by Quantum Dot Blinking. , 2009, , .	18.7 1.7 1.7 2.8	 13 221 0 13 21 0
1020 1021 1022 1023 1024 1025	 Photoactivatable Fluorophores. , 2012, 2012, 1-15. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chemical Society Reviews, 2021, 50, 12656-12678. Computerized fluorescence microscopy of microbial cells. World Journal of Microbiology and Biotechnology, 2021, 37, 189. Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazoleâ€Pyrene Bioâ€Probe. Chemistry - A European Journal, 2021, 27, 16690-16700. Imaging organelle membranes in live cells at the nanoscale with lipid-based fluorescent probes. Current Opinion in Chemical Biology, 2021, 65, 154-162. Super-resolution Localization Microscopy by Quantum Dot Blinking. , 2009, , . Chapter 18. New Detection Methods for Single Cells. RSC Nanoscience and Nanotechnology, 2010, , 285-309. 	18.7 1.7 1.7 2.8	13 221 0 13 21 21 0
1020 1021 1022 1023 1024 1025 1026	Photoactivatable Fluorophores. , 2012, 2012, 1-15. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chemical Society Reviews, 2021, 50, 12656-12678. Computerized fluorescence microscopy of microbial cells. World Journal of Microbiology and Biotechnology, 2021, 37, 189. Tunable Linear and Nonlinear Optical Properties from Room Temperature Phosphorescent Cyclic Triimidazoleâ€Pyrene Bioâ€Probe. Chemistry - A European Journal, 2021, 27, 16690-16700. Imaging organelle membranes in live cells at the nanoscale with lipid-based fluorescent probes. Current Opinion in Chemical Biology, 2021, 65, 154-162. Super-resolution Localization Microscopy by Quantum Dot Blinking. , 2009, , . Chapter 18. New Detection Methods for Single Cells. RSC Nanoscience and Nanotechnology, 2010, , 285-309. Emerging Concepts and Techniques. , 2010, , 731-741.	18.7 1.7 1.7 2.8 0.2	 13 221 0 13 21 0 0 0 0 0 0

		CITATION REPORT		
#	ARTICLE Site-Specific Labeling of Proteins in Living Cells Using Synthetic Fluorescent Dyes. , 2011, , 1	11-130.	IF	CITATIONS
1027				Ũ
1030	Near-Field Scanning Optical Microscopy of Biological Membranes. , 2011, , 185-207.			0
1031	活细èfžæ^åfæ−1法å>žé¡¾. 实验ææ−™å'Œæ−1法, 0, cn2, .		0.0	0
1032	Optische und Elektronenmikroskopische Detektion – Erregerschnelldiagnostik, hochauflö Lichtmikroskopie und Live-Cell-Imaging. , 2012, , 636-739.	sende		0
1033	Live In-Cell Visualization of Proteins Using Super Resolution Imaging. , 0, , .			0
1034	Image Analysis of Membrane Receptors in Living Cells by Coiled-coil Labeling Method. Memb 38, 82-86.	rane, 2013,	0.0	0
1036	Biomolecules and Microscopy. Springer Theses, 2014, , 3-56.		0.0	0
1037	Super-Resolution Fluorescence Optical Microscopy: Targeted and Stochastic Read-Out Appro Advances in Atom and Single Molecule Machines, 2014, , 27-43.	aches.	0.0	1
1038	Fiber optic microscopy. , 2014, , 192-211.			0
1039	Structured illumination microscopy. , 2014, , 23-60.			3
1040	Targeting Dyes for Biology. , 2014, , 362-387.			0
1041	High-Resolution Optical Microscopy for Biological Applications. , 2016, , 1-21.			0
1042	Fluorescent Indicators of Membrane Permeabilization Due to Electroporation. , 2016, , 1-19.			2
1043	Biological Applications of Photoluminescent Semiconductor Quantum Dots. , 2016, , 423-45	8.		0
1044	High-Resolution Optical Microscopy for Biological Applications. , 2017, , 407-427.			0
1045	Principles and Application of Confocal Microscopy to Understand Symbiotic Fungi. , 2017, , 3	41-354.		0
1047	Tetrazine-Containing Colorful Bioorthogonal Probes Based on the Indolizine Core Skeleton. S Theses, 2018, , 43-84.	pringer	0.0	0
1048	Applications of AlEgens in Super-ResolutionÂlmaging, Fluorescence Lifetime Imaging, and Flu Anisotropy Imaging. , 2019, , 409-423.	orescence		0

#	Article	IF	CITATIONS
1050	Superresolution. , 2019, , 171-188.		0
1051	Near-Field Scanning Optical Microscopy of Biological Membranes. , 2019, , 185-208.		0
1052	Large field-of-view scanning small-angle X-ray scattering of mammalian cells. Journal of Synchrotron Radiation, 2020, 27, 1059-1068.	1.0	1
1053	Analytics and visualization tools to characterize single-cell stochasticity using bacterial single-cell movie cytometry data. BMC Bioinformatics, 2021, 22, 531.	1.2	5
1055	Three-Dimensional Super-Resolution Imaging of the Cytoskeleton in Hippocampal Neurons Using Selective Plane Illumination. Neuromethods, 2020, , 261-293.	0.2	0
1056	Localization Microscopy with Active Control. Springer Series in Optical Sciences, 2020, , 307-369.	0.5	0
1057	High-Resolution Molecular Imaging and Its Applications in Brain and Synapses. Neuromethods, 2020, , 37-58.	0.2	1
1058	Site-Specific Labeling of Proteins in Living Cells Using Synthetic Fluorescent Dyes. , 2011, , 111-130.		0
1061	A 1,8-naphthalimide based fluorescent probe for sensing tyrosinase in zebrafish. Microchemical Journal, 2022, 173, 107007.	2.3	9
1062	A Dinuclear Osmium(II) Complex Near-Infrared Nanoscopy Probe for Nuclear DNA. Journal of the American Chemical Society, 2021, 143, 20442-20453.	6.6	17
1063	Fluorescence nanoscopy at the sub-10Ânm scale. Biophysical Reviews, 2021, 13, 1101-1112.	1.5	13
1064	Single-molecule imaging of replication fork conflicts at genomic DNA G4 structures in human cells. Methods in Enzymology, 2021, 661, 77-94.	0.4	0
1065	A convenient approach for the synthesis of substituted pyrroles by using phosphoric acid as a catalyst and their photophysical properties. Journal of Molecular Structure, 2022, 1252, 132123.	1.8	3
1066	AIE materials for lysosome imaging. Progress in Molecular Biology and Translational Science, 2021, 184, 145-178.	0.9	5
1067	Cationic π-extended heteroaromatics <i>via</i> a catalytic C–H activation annulative alkyne-insertion sequence. Chemical Communications, 2021, 58, 133-154.	2.2	21
1068	Use of SRS microscopy for imaging drugs. , 2022, , 403-419.		3
1069	Recent advance in dual-functional luminescent probes for reactive species and common biological ions. Analytical and Bioanalytical Chemistry, 2022, 414, 5087-5103.	1.9	5
1070	Super-Resolution Microscopy for Structural Cell Biology. Annual Review of Biophysics, 2022, 51, 301-326.	4.5	71

#	Article	IF	Citations
1071	Futureâ€Oriented Advanced Diarylethene Photoswitches: From Molecular Design to Spontaneous Assembly Systems. Advanced Materials, 2022, 34, e2108289.	11.1	71
1072	Two-Photon Time-Gated In Vivo Imaging of Dihydrolipoic-Acid-Decorated Gold Nanoclusters. Materials, 2021, 14, 7744.	1.3	2
1073	Water-dispersed CsPbBr ₃ nanocrystals for single molecule localization microscopy with high location accuracy for targeted bioimaging. Nanoscale, 2022, 14, 6392-6401.	2.8	7
1074	Light Sheet Microscopy Using Line Scan Confocal with Bidirectional Bessel Beam Illumination. SSRN Electronic Journal, 0, , .	0.4	0
1075	Rhodamine Fluorophores for STED Superâ€Resolution Biological Imaging. Analysis & Sensing, 2022, 2, .	1.1	4
1076	Orientation-selective sub-Rayleigh imaging with spatial coherence lattices. Optics Express, 2022, 30, 9548.	1.7	5
1077	Specific fluorescence release based on synergistic activation of enzymes and position-dependent of electrophilic groups to diagnose intrahepatic cholestasis of pregnancy. Chemical Engineering Journal, 2022, 440, 135978.	6.6	11
1078	Fluorescent Probes for STED Optical Nanoscopy. Nanomaterials, 2022, 12, 21.	1.9	15
1079	Color-Tunable Indolizine-Based Fluorophores and Fluorescent pH Sensor. Molecules, 2022, 27, 12.	1.7	12
1091	CHAPTER 9. Quantum Dots in Biological Imaging. Monographs in Supramolecular Chemistry, 2022, , 278-321.	0.2	1
1092	Enhancing Brightness and Photostability of Organic Small Molecular Fluorescent Dyes Through Inhibiting Twisted Intramolecular Charge Transfer (TICT) [※] . Acta Chimica Sinica, 2022, 80, 553.	0.5	2
1094	Estimating entropy production rates with first-passage processes. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 304005.	0.7	6
1097	Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Topics in Current Chemistry, 2022, 380, .	3.0	22
1098	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews, 2022, 122, 12495-12543.	23.0	82
1099	Photoactivatable Fluorogenic Azideâ€Alkyne Click Reaction: A Dualâ€Activation Fluorescent Probe. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
1100	DNA Supramolecular Assembly on Micro/Nanointerfaces for Bioanalysis. Accounts of Chemical Research, 2022, 55, 2043-2054.	7.6	27
1101	A Multiscale Molecular Dynamic Analysis Reveals the Effect of Sialylation on EGFR Clustering in a CRISPR/Cas9-Derived Model. International Journal of Molecular Sciences, 2022, 23, 8754.	1.8	3
1103	A tetrazole-ene photoactivatable fluorophore with improved brightness and stability in protic solution. Chemical Communications, 2022, 58, 10404-10407.	2.2	3

#	Article	IF	CITATIONS
1104	Hydrogen evolution-enabled rhodaelectro-catalyzed [4+2] annulations of purines and 7-deazapurines with alkynes. Chemical Communications, 2022, 58, 9508-9511.	2.2	9
1105	Single-Colour, Visible Light Activation and Excitation of the Luminescence of a â€~Switch-On' Dye and Enhancement by Silver Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0
1106	Overcoming the Diffraction Limit on the Size of Dielectric Resonators Using an Amplifying Medium. Physical Review Letters, 2022, 129, .	2.9	1
1107	Photochemical Mechanisms of Fluorophores Employed in Singleâ€Molecule Localization Microscopy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
1108	Photochemical Mechanisms of Fluorophores Employed in Singleâ€Molecule Localization Microscopy. Angewandte Chemie, 2023, 135, .	1.6	2
1109	Synthesis and Characterization of Dye-Doped Au@SiO ₂ Core-Shell Nanoparticles for Super-Resolution Fluorescence Microscopy. Applied Spectroscopy, 2022, 76, 1367-1374.	1.2	2
1110	Rapid Depolarizationâ€Free Nanoscopic Background Elimination of Cellular Metallic Nanoprobes. Advanced Intelligent Systems, 2022, 4, .	3.3	5
1111	Single-colour, visible light activation and excitation of the luminescence of a â€ ⁻ switch-on' dye and enhancement by silver nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114369.	2.0	0
1112	Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging. Nature Communications, 2022, 13, .	5.8	6
1113	White-light-driven fluorescence switch for super-resolution imaging guided photodynamic and photoacid therapy. Science China Chemistry, 2022, 65, 2528-2537.	4.2	3
1114	On the impact of realistic point sources in spatial mode demultiplexing super resolution imaging. Quantum Science and Technology, 2023, 8, 015024.	2.6	2
1115	Nanometer Resolution Imaging and Tracking of Single Fluorophores by Sequential Structured Illumination. ACS Photonics, 2022, 9, 3777-3785.	3.2	3
1116	To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Science, 2023, 32, .	3.1	5
1117	Nanoparticles for super-resolution microscopy: intracellular delivery and molecular targeting. Chemical Society Reviews, 2022, 51, 9882-9916.	18.7	6
1118	Advances in image-guided drug delivery for antibacterial therapy. Advanced Drug Delivery Reviews, 2023, 192, 114634.	6.6	18
1119	N4-phenylquinazoline-4,6-diamine as a tunable fluorescent scaffold for the development of fluorescent probes. Dyes and Pigments, 2023, 210, 110987.	2.0	1
1120	Super-Resolution Optical Imaging of Bacterial Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-13.	1.9	1
1121	Choosing the Probe for Single-Molecule Fluorescence Microscopy. International Journal of Molecular Sciences, 2022, 23, 14949.	1.8	10

#	Article	IF	CITATIONS
1123	Gene activation guided by nascent RNA-bound transcription factors. Nature Communications, 2022, 13, •	5.8	2
1124	Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
1126	Fluorescent Pyranoindole Congeners: Synthesis and Photophysical Properties of Pyrano[3,2-f], [2,3-g], [2,3-f], and [2,3-e]Indoles. Molecules, 2022, 27, 8867.	1.7	1
1127	Singleâ€molecule localization microscopy goes quantitative. Microscopy Research and Technique, 2023, 86, 494-504.	1.2	0
1128	Classification of quantum correlation using deep learning. Optics Express, 2023, 31, 3479.	1.7	2
1129	Choosing the Right Fluorescent Probe. Springer Series on Fluorescence, 2022, , .	0.8	0
1130	Fluorescent Carbon Dots for Super-Resolution Microscopy. Materials, 2023, 16, 890.	1.3	4
1131	A dual-emission ratiometric fluorescent sensor based on copper nanoclusters encapsulated in zeolitic imidazolate framework-90 for rapid detection and imaging of adenosine triphosphate. Analytical Methods, 2023, 15, 788-796.	1.3	7
1132	A guide to small fluorescent probes for single-molecule biophysics. Chemical Physics Reviews, 2023, 4,	2.6	5
1133	Antibody Functionalization of Ultrasmall Fluorescent Core–Shell Aluminosilicate Nanoparticle Probes for Advanced Intracellular Labeling and Optical Super Resolution Microscopy. Chemistry of Materials, 2023, 35, 1047-1061.	3.2	4
1134	Acrylate-based polymeric nanotheranostics. , 2023, , 85-111.		0
1135	A review of methods for solving the optical molecular tomography. Journal of Applied Physics, 2023, 133, .	1.1	6
1137	Using fluorescence lifetime imaging to disentangle microbes from the heterogeneous soil matrix. Biology and Fertility of Soils, 2023, 59, 249-260.	2.3	3
1138	Subtle Structural Translation Magically Modulates the Super-Resolution Imaging of Self-Blinking Rhodamines. Analytical Chemistry, 2023, 95, 4172-4179.	3.2	6
1139	A far red emissive RNA aptamer–fluorophore system for demethylase FTO detection: design and optimization. New Journal of Chemistry, 2023, 47, 5238-5243.	1.4	0
1140	When Superâ€Resolution Microscopy Meets Microfluidics: Enhanced Biological Imaging and Analysis with Unprecedented Resolution. Small, 0, , 2207341.	5.2	0
1141	The power of super-resolution microscopy in modern biomedical science. Advances in Colloid and Interface Science, 2023, 314, 102880.	7.0	4
1142	When optical microscopy meets all-optical analog computing: A brief review. Frontiers of Physics, 2023, 18, .	2.4	6

#	Article	IF	CITATIONS
1143	The Pd-catalyzed precise synthesis of self-assembled fluorescent nanoprobes with different molecular weights for enhancing the permeability of cell membrane and targeting lysosomes. Reactive and Functional Polymers, 2023, 188, 105577.	2.0	1
1144	Revolutionary meta-imaging: from superlens to metalens. , 2023, 2, R01.		21
1145	Disruption of aggregates of a Zn2+-complex of a schiff base in water by surfactants: Insights from fluorescence spectroscopy in ensemble and single molecule levels. Journal of the Indian Chemical Society, 2023, 100, 100986.	1.3	1
1146	Super-resolution STED imaging in the inner and outer whole-mount mouse retina. Frontiers in Ophthalmology, 0, 3, .	0.2	0
1148	A Bright Surprise: Liveâ€Cell Labeling with Negatively Charged Fluorescent Probes based on Disulfonated Rhodamines and HaloTag. Chemistry Methods, 2023, 3, .	1.8	4
1149	An Iridium (III) complex revealing cytoskeleton nanostructures under super-resolution nanoscopy and liquid-phase electron microscopy. Sensors and Actuators B: Chemical, 2023, 388, 133839.	4.0	0
1169	Nanotechnology: creating, manipulating, and observing nanostructured systems in biology and medicine. , 2024, , 727-747.		0
1172	Organic fluorescent probes for live-cell super-resolution imaging. Frontiers of Optoelectronics, 2023, 16, .	1.9	1

1176 History and Science of Immunofluorescence. , 2023, , 1-30.