A complex barcode underlies the heterogeneous respon

Nature Reviews Molecular Cell Biology 9, 702-712 DOI: 10.1038/nrm2451

Citation Report

#	Article	IF	CITATIONS
1	p53 Pre- and Post-Binding Event Theories Revisited: Stresses Reveal Specific and Dynamic p53-Binding Patterns on the <i>p21</i> Gene Promoter. Cancer Research, 2009, 69, 8463-8471.	0.9	14
2	Control of Thymic T Cell Maturation, Deletion and Egress by the RNA-Binding Protein HuR. Journal of Immunology, 2009, 182, 6779-6788.	0.8	89
3	The Enteropathogenic <i>Escherichia coli</i> Effector Cif Induces Delayed Apoptosis in Epithelial Cells. Infection and Immunity, 2009, 77, 5471-5477.	2.2	59
4	Altered tumor formation and evolutionary selection of genetic variants in the human MDM4 oncogene. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10236-10241.	7.1	62
5	The do's and don'ts of p53 isoforms. Biological Chemistry, 2009, 390, 951-963.	2.5	21
6	A role for Chk1 in blocking transcriptional elongation of p21 RNA during the S-phase checkpoint. Genes and Development, 2009, 23, 1364-1377.	5.9	53
7	Microenvironmental Independence Associated with Tumor Progression. Cancer Research, 2009, 69, 8797-8806.	0.9	60
8	The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior. Cell Cycle, 2009, 8, 3120-3124.	2.6	60
9	Regulation of p53: TRIM24 enters the RING. Cell Cycle, 2009, 8, 3668-3674.	2.6	65
10	A Common Biological Mechanism in Cancer and Alzheimers Disease?. Current Alzheimer Research, 2009, 6, 196-204.	1.4	165
11	Recent Natural Selection Identifies a Genetic Variant in a Regulatory Subunit of Protein Phosphatase 2A that Associates with Altered Cancer Risk and Survival. Clinical Cancer Research, 2009, 15, 6301-6308.	7.0	23
12	Structural biology of the p53 tumour suppressor. Current Opinion in Structural Biology, 2009, 19, 197-202.	5.7	56
13	Papillomavirus E6 proteins. Virology, 2009, 384, 324-334.	2.4	276
14	p53-Dependent Translational Control of Senescence and Transformation via 4E-BPs. Cancer Cell, 2009, 16, 439-446.	16.8	104
15	Proteins selectively killing tumor cells. European Journal of Pharmacology, 2009, 625, 165-173.	3.5	39
16	Mechanism of diepoxybutaneâ€induced p53 regulation in human cells. Journal of Biochemical and Molecular Toxicology, 2009, 23, 373-386.	3.0	7
17	Genetic and epigenetic heterogeneity in cancer: A genomeâ€centric perspective. Journal of Cellular Physiology, 2009, 220, 538-547.	4.1	135
18	Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO Journal, 2009, 28, 3015-3026.	7.8	347

ARTICLE IF CITATIONS # The nonâ€apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO 19 4.5 137 Reports, 2009, 10, 576-583. Cytoplasmic functions of the tumour suppressor p53. Nature, 2009, 458, 1127-1130. 27.8 The ups and downs of p53: understanding protein dynamics in single cells. Nature Reviews Cancer, 21 28.4 208 2009, 9, 371-377. Tumour suppression by p53: a role for the DNA damage response?. Nature Reviews Cancer, 2009, 9, 28.4 714-723. p53 and E2f: partners in life and death. Nature Reviews Cancer, 2009, 9, 738-748. 23 28.4 421 miR-29 miRNAs activate p53 by targeting p851[±] and CDC42. Nature Structural and Molecular Biology, 8.2 2009, 16, 23-29. Two Mammalian MOF Complexes Regulate Transcription Activation by Distinct Mechanisms. Molecular 25 9.7 151 Cell, 2009, 36, 290-301. Targeting the DNA Damage Response in Cancer. Chemical Reviews, 2009, 109, 2929-2950. 47.7 26 139 27 Cell Death. New England Journal of Medicine, 2009, 361, 1570-1583. 27.0 1,037 p53 ubiquitination by Mdm2: A never ending tail?. DNA Repair, 2009, 8, 483-490. 2.8 Individual Telomere Lengths in Chronic Myeloid Leukemia. Neoplasia, 2009, 11, 1146-IN6. 29 5.324 Functions of p53 in metabolism and invasion. Biochemical Society Transactions, 2009, 37, 511-517. 3.4 30 ING Proteins in Cellular Senescence. Current Drug Targets, 2009, 10, 406-417. $\mathbf{31}$ 2.1 11 Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in 1.4 adult acute myelogenous leukemia. Blood, 2010, 116, 71-80. Lessons from interconnected ubiquitylation and acetylation of p53: think metastable networks. 33 3.4 20 Biochemical Society Transactions, 2010, 38, 98-103. AMP-activated protein kinase and its downstream transcriptional pathways. Cellular and Molecular 336 Life Sciences, 2010, 67, 3407-3423. The regulation of MDM2 by multisite phosphorylationâ€"Opportunities for molecular-based 35 9.6 69 intervention to target tumours?. Seminars in Cancer Biology, 2010, 20, 19-28. Modulating the p53 pathway. Seminars in Cancer Biology, 2010, 20, 3-9.

#	Article	IF	CITATIONS
37	A role for p53 in mitochondrial stress response control of longevity in C. elegans. Experimental Gerontology, 2010, 45, 550-557.	2.8	34
38	The oncofetal H19 RNA connection: Hypoxia, p53 and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 443-451.	4.1	210
39	Chemotherapyâ€induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated <i>via</i> the extrinsic and the intrinsic pathway. International Journal of Cancer, 2010, 126, 2049-2066.	5.1	78
40	p53 functions and cell lines: Have we learned the lessons from the past?. BioEssays, 2010, 32, 392-400.	2.5	13
41	Inhibition of C6 rat glioma proliferation by [Ru2Cl(Ibp)4] depends on changes in p21, p27, Bax/Bcl2 ratio and mitochondrial membrane potential. Journal of Inorganic Biochemistry, 2010, 104, 928-935.	3.5	38
42	Massively regulated genes: the example of <i>TP53</i> . Journal of Pathology, 2010, 220, 164-173.	4.5	111
43	p53-Mediated transactivation of LIMK2b links actin dynamics to cell cycle checkpoint control. Oncogene, 2010, 29, 2864-2876.	5.9	45
44	p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death and Differentiation, 2010, 17, 901-911.	11.2	196
45	p53 at a glance. Journal of Cell Science, 2010, 123, 2527-2532.	2.0	311
46	Regulation of the p53 transcriptional response by structurally diverse core promoters. Genes and Development, 2010, 24, 135-147.	5.9	76
47	Graded enhancement of p53 binding to CREB-binding protein (CBP) by multisite phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19290-19295.	7.1	188
48	p53 Binding to Nucleosomal DNA Depends on the Rotational Positioning of DNA Response Element. Journal of Biological Chemistry, 2010, 285, 1321-1332.	3.4	45
49	Coordination between Cell Cycle Progression and Cell Fate Decision by the p53 and E2F1 Pathways in Response to DNA Damage. Journal of Biological Chemistry, 2010, 285, 31571-31580.	3.4	56
50	Analysis of the DNA-binding activity of p53 mutants using functional protein microarrays and its relationship to transcriptional activation. Biological Chemistry, 2010, 391, 197-205.	2.5	17
51	Transcriptional Regulation by P53. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000935-a000935.	5.5	473
52	In vivo analysis of p53 tumor suppressor function using genetically engineered mouse models. Carcinogenesis, 2010, 31, 1311-1318.	2.8	67
53	HDMX regulates p53 activity and confers chemoresistance to 3-Bis(2-chloroethyl)-1-nitrosourea. Neuro-Oncology, 2010, 12, 956-966.	1.2	11
54	Regulation of the endothelial cell cycle by the ubiquitin-proteasome system. Cardiovascular Research, 2010, 85, 272-280.	3.8	40

	CITATION	N REPORT	
#	Article	IF	Citations
55	Promoter Complexity and Tissue-Specific Expression of Stress Response Components in Mytilus galloprovincialis, a Sessile Marine Invertebrate Species. PLoS Computational Biology, 2010, 6, e1000847.	3.2	9
56	Making sense of ubiquitin ligases that regulate p53. Cancer Biology and Therapy, 2010, 10, 665-672.	3.4	53
57	Life or death. Cell Cycle, 2010, 9, 4068-4076.	2.6	44
58	Ubiquitin and Ubiquitin-Like Proteins in the Nucleolus: Multitasking Tools for a Ribosome Factory. Genes and Cancer, 2010, 1, 681-689.	1.9	26
59	Evidence for a differential modulation of p53-phosphorylating kinases by the cyclin-dependent kinase inhibitor p21WAFI/C1P1. Cell Cycle, 2010, 9, 3575-3583.	2.6	7
60	Specificity landscapes of DNA binding molecules elucidate biological function. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4544-4549.	7.1	97
61	Coordination of the Nuclear and Cytoplasmic Activities of p53 in Response to DNA Damage. Biophysical Journal, 2010, 99, 1696-1705.	0.5	22
62	Tied Up in Loops: Positive and Negative Autoregulation of p53. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000984-a000984.	5.5	46
63	Single-nucleotide Polymorphisms in the p53 Signaling Pathway. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001032-a001032.	5.5	90
64	Systematic Identification of Methyllysine-Driven Interactions for Histone and Nonhistone Targets. Journal of Proteome Research, 2010, 9, 5827-5836.	3.7	37
65	Phosphorylation of Ser312 contributes to tumor suppression by p53 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19479-19484.	7.1	23
66	Oxidative stress alters the regulatory control of p66Shc and Akt in PINK1 deficient cells. Biochemical and Biophysical Research Communications, 2010, 399, 331-335.	2.1	19
67	Exploring a minimal two-component p53 model. Physical Biology, 2010, 7, 036008.	1.8	11
68	Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18708-18713.	7.1	381
69	p53 Isoforms: An Intracellular Microprocessor?. Genes and Cancer, 2011, 2, 453-465.	1.9	141
70	Quaternary structure of the specific p53–DNA complex reveals the mechanism of p53 mutant dominance. Nucleic Acids Research, 2011, 39, 8960-8971.	14.5	43
71	Primary Hepatocellular Carcinoma. Molecular Pathology Library, 2011, , 831-848.	0.1	0
72	Naturally occurring, tumor-specific, therapeutic proteins. Experimental Biology and Medicine, 2011, 236, 524-536.	2.4	26

#	Article	IF	CITATIONS
73	The Methyltransferase Set7/9 (Setd7) Is Dispensable for the p53-Mediated DNA Damage Response InÂVivo. Molecular Cell, 2011, 43, 681-688.	9.7	77
74	Oleanolic acid induces Apoptosis by modulating p53, Bax, Bcl-2 and caspase-3 gene expression and regulates the activation of transcription factors and cytokine profile in B16F. Journal of Environmental Pathology, Toxicology and Oncology, 2011, 30, 21-31.	1.2	38
75	Modeling the Basal Dynamics of P53 System. PLoS ONE, 2011, 6, e27882.	2.5	36
76	Tissue-Specific Therapeutic Targeting of p53 in Cancer: One Size Does Not Fit All. Current Pharmaceutical Design, 2011, 17, 618-630.	1.9	6
77	Reactivation of p53 by Inhibiting Mdm2 E3 Ligase: A Novel Antitumor Approach. Current Cancer Drug Targets, 2011, 11, 987-994.	1.6	19
78	Mortalin–p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death and Differentiation, 2011, 18, 1046-1056.	11.2	143
79	Pharmacological activation of p53 triggers anticancer innate immune response through induction of ULBP2. Cell Cycle, 2011, 10, 3346-3358.	2.6	93
80	Inhibition of Glycolytic Enzymes Mediated by Pharmacologically Activated p53. Journal of Biological Chemistry, 2011, 286, 41600-41615.	3.4	101
81	Repression of Mammary Stem/Progenitor Cells by p53 Is Mediated by Notch and Separable from Apoptotic Activity. Stem Cells, 2011, 29, 119-127.	3.2	60
82	p53 transactivation is involved in the antiproliferative activity of the putative tumor suppressor RBM5. International Journal of Cancer, 2011, 128, 304-318.	5.1	30
83	Autophagy process is associated with anti-neoplastic function. Acta Biochimica Et Biophysica Sinica, 2011, 43, 425-432.	2.0	25
84	Crosstalk between phosphorylation and multi-site arginine/lysine methylation in C/EBPs. Transcription, 2011, 2, 3-8.	3.1	26
85	MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15840-15845.	7.1	168
86	PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. Journal of Cell Biology, 2011, 193, 867-884.	5.2	100
87	Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics, 2011, 6, 1068-1077.	2.7	92
88	A minimally invasive assay for individual assessment of the ATM/CHEK2/p53 pathway activity. Cell Cycle, 2011, 10, 1152-1161.	2.6	36
89	In the right place at the right time: Analysis of p53 serine 312 phosphorylation in vivo. Cell Cycle, 2011, 10, 1345-1346.	2.6	1
90	p73 as a Pharmaceutical Target for Cancer Therapy. Current Pharmaceutical Design, 2011, 17, 578-590.	1.9	33

#	ARTICLE	IF	Citations
91	Inhibitor of apoptosis-stimulating protein of p53 (iASPP) prevents senescence and is required for epithelial stratification. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16645-16650.	7.1	48
92	Two-phase dynamics of p53 in the DNA damage response. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8990-8995.	7.1	275
93	One Function—Multiple Mechanisms: The Manifold Activities of p53 as a Transcriptional Repressor. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-15.	3.0	44
94	p53 Regulates Cell Cycle and MicroRNAs to Promote Differentiation of Human Embryonic Stem Cells. PLoS Biology, 2012, 10, e1001268.	5.6	207
95	Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation. International Journal of Inflammation, 2012, 2012, 1-13.	1.5	21
96	MdmX Is Required for p53 Interaction with and Full Induction of the <i>Mdm2</i> Promoter after Cellular Stress. Molecular and Cellular Biology, 2012, 32, 1214-1225.	2.3	23
97	Overexpression of Hepatocyte Nuclear Factor-4α Initiates Cell Cycle Entry, but Is not Sufficient to Promote β-Cell Expansion in Human Islets. Molecular Endocrinology, 2012, 26, 1590-1602.	3.7	48
98	How p53 wields the scales of fate. Transcription, 2012, 3, 240-244.	3.1	11
99	Analysis of <i>p53</i> Tumor Suppressor Pathway Genes in Chronic Lymphocytic Leukemia. DNA and Cell Biology, 2012, 31, 777-782.	1.9	5
100	The p53 cofactor Strap exhibits an unexpected TPR motif and oligonucleotide-binding (OB)–fold structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3778-3783.	7.1	17
101	The E3 ubiquitin ligase Mule acts through the ATM–p53 axis to maintain B lymphocyte homeostasis. Journal of Experimental Medicine, 2012, 209, 173-186.	8.5	58
102	Using targeted transgenic reporter mice to study promoter-specific p53 transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1685-1690.	7.1	23
103	Antioxidant Role of p53 and of Its Target TP53INP1. , 0, , .		2
104	mTOR: good, bad, or ugly?. Cardiovascular Research, 2012, 95, 261-262.	3.8	5
105	A novel facet of tumor suppression by p53. Oncolmmunology, 2012, 1, 541-543.	4.6	8
106	The Filamentous Growth MAPK Pathway Responds to Glucose Starvation Through the Mig1/2 Transcriptional Repressors in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 192, 869-887.	2.9	51
107	Driving Apoptosis-relevant Proteins Toward Neural Differentiation. Molecular Neurobiology, 2012, 46, 316-331.	4.0	25
108	Regulation of the DNA Damage Response by p53 Cofactors. Biophysical Journal, 2012, 102, 2251-2260.	0.5	28

~		~	
(15	ГАТ	DEI	
	IAL	NL	PORT

#	Article	IF	CITATIONS
109	Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood, 2012, 120, 3986-3996.	1.4	301
110	Irinotecan induces senescence and apoptosis in colonic cells in vitro. Toxicology Letters, 2012, 214, 1-8.	0.8	24
111	p53 Requires an Intact C-Terminal Domain for DNA Binding and Transactivation. Journal of Molecular Biology, 2012, 415, 843-854.	4.2	36
112	Postâ€ŧranslational modification: nature's escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 565-583.	6.6	288
113	Inhibition of AMP-activated Protein Kinase α (AMPKα) by Doxorubicin Accentuates Genotoxic Stress and Cell Death in Mouse Embryonic Fibroblasts and Cardiomyocytes. Journal of Biological Chemistry, 2012, 287, 8001-8012.	3.4	92
114	Gatekeeper Between Quiescence and Differentiation. International Review of Neurobiology, 2012, 105, 71-89.	2.0	25
115	Effects of resveratrol on blood homocysteine level, on homocysteine induced oxidative stress, apoptosis and cognitive dysfunctions in rats. Brain Research, 2012, 1484, 29-38.	2.2	32
116	p53., 2012, , 197-213.		4
117	Speed-Dependent Cellular Decision Making in Nonequilibrium Genetic Circuits. PLoS ONE, 2012, 7, e32779.	2.5	25
118	The Inhibition of Autophagy Sensitises Colon Cancer Cells with Wild-Type p53 but Not Mutant p53 to Topotecan Treatment. PLoS ONE, 2012, 7, e45058.	2.5	36
119	A Natural Small Molecule Harmine Inhibits Angiogenesis and Suppresses Tumour Growth through Activation of p53 in Endothelial Cells. PLoS ONE, 2012, 7, e52162.	2.5	66
120	Molecular Basis for Modulation of the p53 Target Selectivity by KLF4. PLoS ONE, 2012, 7, e48252.	2.5	9
121	Surf the Post-translational Modification Network of p53 Regulation. International Journal of Biological Sciences, 2012, 8, 672-684.	6.4	185
122	The melanoma-associated antigen MAGE-D2 suppresses TRAIL receptor 2 and protects against TRAIL-induced apoptosis in human melanoma cells. Carcinogenesis, 2012, 33, 1871-1881.	2.8	26
123	Targeting Sirtuin 1 to Improve Metabolism: All You Need Is NAD ⁺ ?. Pharmacological Reviews, 2012, 64, 166-187.	16.0	326
124	Synthetic memory circuits for tracking human cell fate. Genes and Development, 2012, 26, 1486-1497.	5.9	66
125	p53-dependent pathways in neurite outgrowth and axonal regeneration. Cell and Tissue Research, 2012, 349, 87-95.	2.9	33
126	p53 at the crossroads between cancer and neurodegeneration. Free Radical Biology and Medicine, 2012, 52, 1727-1733.	2.9	84

#	Article	IF	CITATIONS
127	Regulation of p14ARF expression by miR-24: a potential mechanism compromising the p53 response during retinoblastoma development. BMC Cancer, 2012, 12, 69.	2.6	39
128	The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. Journal of Cellular Biochemistry, 2012, 113, 1368-1376.	2.6	95
129	DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control. BMC Biology, 2013, 11, 73.	3.8	89
130	Loss of P53 facilitates invasion and metastasis of prostate cancer cells. Molecular and Cellular Biochemistry, 2013, 384, 121-127.	3.1	32
131	Cancer Biology: Some Causes for a Variety of Different Diseases. , 2013, , 121-159.		1
132	Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts. Nature Protocols, 2013, 8, 1416-1432.	12.0	87
133	Stress-Induced Mutagenesis. , 2013, , .		4
134	p53 in the Clinics. , 2013, , .		1
135	Regulation of autophagy by stress-responsive transcription factors. Seminars in Cancer Biology, 2013, 23, 310-322.	9.6	215
136	Controlled Access of p53 to the Nucleus Regulates Its Proteasomal Degradation by MDM2. Molecular Pharmaceutics, 2013, 10, 1340-1349.	4.6	14
137	NOX4 induces oxidative stress and apoptosis through upregulation of caspases 3 and 9 and downregulation of TIGAR in HCV-infected Huh-7 cells. Future Virology, 2013, 8, 707-716.	1.8	3
138	The RNA helicase p68 (DDX5) is selectively required for the induction of p53-dependent p21 expression and cell-cycle arrest after DNA damage. Oncogene, 2013, 32, 3461-3469.	5.9	76
139	Seven sirtuins for seven deadly diseases ofaging. Free Radical Biology and Medicine, 2013, 56, 133-171.	2.9	332
140	Crosstalk between poly(ADP-ribose) polymerase and sirtuin enzymes. Molecular Aspects of Medicine, 2013, 34, 1168-1201.	6.4	202
141	A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis. Cell Death and Differentiation, 2013, 20, 576-588.	11.2	225
142	Human papillomavirus early proteins and apoptosis. Archives of Gynecology and Obstetrics, 2013, 287, 541-548.	1.7	21
143	Stra6, a retinoic acid-responsive gene, participates in p53-induced apoptosis after DNA damage. Cell Death and Differentiation, 2013, 20, 910-919.	11.2	39
144	Strategies for optimizing the response of cancer and normal tissues to radiation. Nature Reviews Drug Discovery, 2013, 12, 526-542.	46.4	335

#	Article	IF	CITATIONS
145	Histone arginine methylation keeps RUNX1 target genes in an intermediate state. Oncogene, 2013, 32, 2565-2575.	5.9	47
146	Cell-Death Pathways and Mitochondria. , 2013, , 225-241.		0
147	Unravelling mechanisms of cisplatin sensitivity and resistance in testicular cancer. Expert Reviews in Molecular Medicine, 2013, 15, e12.	3.9	46
148	Higher antiâ€tumour efficacy of platinum(<scp>IV</scp>) complex <scp>LA</scp> â€12 is associated with its ability to bypass Mâ€phase entry block induced in oxaliplatinâ€treated human colon cancer cells. Cell Proliferation, 2013, 46, 665-676.	5.3	7
149	Requirement for phosphorylation of P53 at Ser312 in suppression of chemical carcinogenesis. Scientific Reports, 2013, 3, 3105.	3.3	8
150	Coordination between p21 and DDB2 in the Cellular Response to UV Radiation. PLoS ONE, 2013, 8, e80111.	2.5	14
151	Natural Compounds and Their Role in Autophagic Cell Signaling Pathways. , 2013, , .		1
152	Contributions of the Histone Arginine Methyltransferase PRMT6 to the Epigenetic Function of RUNX1. Critical Reviews in Eukaryotic Gene Expression, 2013, 23, 265-274.	0.9	13
153	Identification of p53 and Its Isoforms in Human Breast Carcinoma Cells. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	17
154	The dynamics of p53 in single cells: physiologically based ODE and reaction–diffusion PDE models. Physical Biology, 2014, 11, 045001.	1.8	35
155	Profiling Dose-Dependent Activation of p53-Mediated Signaling Pathways by Chemicals with Distinct Mechanisms of DNA Damage. Toxicological Sciences, 2014, 142, 56-73.	3.1	43
156	Human papillomavirus oncoproteins and apoptosis (Review). Experimental and Therapeutic Medicine, 2014, 7, 3-7.	1.8	47
157	Method to Study Stoichiometry of Protein Post-Translational Modification. Analytical Chemistry, 2014, 86, 12138-12142.	6.5	13
158	The Role of Signaling Pathways in Cervical Cancer and Molecular Therapeutic Targets. Archives of Medical Research, 2014, 45, 525-539.	3.3	75
159	Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. Journal of Inflammation, 2014, 11, 23.	3.4	96
160	The p53-Mdm2 Loop: A Critical Juncture of Stress Response. Sub-Cellular Biochemistry, 2014, 85, 161-186.	2.4	31
161	Oxidative Stress and Cell Death in Cardiovascular Disease. , 2014, , 471-498.		12
162	Critical role for p53-serine 15 phosphorylation in stimulating transactivation at p53-responsive promoters. Nucleic Acids Research, 2014, 42, 7666-7680.	14.5	235

#	Article	IF	CITATIONS
163	The p53 protein and its molecular network: Modelling a missing link between DNA damage and cell fate. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 232-247.	2.3	60
164	Targeting the MDM2–p53 Protein–Protein Interaction. , 2014, , 391-426.		3
165	Restoring the tumour suppressive function of p53 as a parallel strategy in melanoma therapy. FEBS Letters, 2014, 588, 2616-2621.	2.8	36
166	Disarming mutant p53 oncogenic function. Pharmacological Research, 2014, 79, 75-87.	7.1	20
167	p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation. Oncogene, 2014, 33, 3830-3838.	5.9	58
168	Illuminating p53 function in cancer with genetically engineered mouse models. Seminars in Cell and Developmental Biology, 2014, 27, 74-85.	5.0	52
169	miR-19b promotes tumor growth and metastasis via targeting TP53. Rna, 2014, 20, 765-772.	3.5	58
170	XAF1 directs apoptotic switch of p53 signaling through activation of HIPK2 and ZNF313. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15532-15537.	7.1	59
171	Oxidative stress-induced p53 activity is enhanced by a redox-sensitive TP53INP1 SUMOylation. Cell Death and Differentiation, 2014, 21, 1107-1118.	11.2	64
172	Grp1-associated scaffold protein regulates skin homeostasis after ultraviolet irradiation. Photochemical and Photobiological Sciences, 2014, 13, 531-540.	2.9	2
173	An Approach to Investigate Intracellular Protein Network Responses. Chemical Research in Toxicology, 2014, 27, 17-26.	3.3	13
174	The antioxidant butylated hydroxyanisole potentiates the toxic effects of propylparaben in cultured mammalian cells. Food and Chemical Toxicology, 2014, 72, 195-203.	3.6	18
175	Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15155-15160.	7.1	80
176	Mutant p53 and MDM2 in Cancer. Sub-Cellular Biochemistry, 2014, , .	2.4	6
177	Senescence and apoptosis: dueling or complementary cell fates?. EMBO Reports, 2014, 15, 1139-1153.	4.5	643
178	Cephalotaxus griffithii Hook.f. needle extract induces cell cycle arrest, apoptosis and suppression of hTERT and hTR expression on human breast cancer cells. BMC Complementary and Alternative Medicine, 2014, 14, 305.	3.7	14
179	TRIM24 Is a p53-Induced E3-Ubiquitin Ligase That Undergoes ATM-Mediated Phosphorylation and Autodegradation during DNA Damage. Molecular and Cellular Biology, 2014, 34, 2695-2709.	2.3	74
180	Interplay between Mdm2 and HIPK2 in the DNA damage response. Journal of the Royal Society Interface, 2014, 11, 20140319.	3.4	13

		CITATION	Report	
#	Article		IF	CITATIONS
181	Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair, 2014, 21	, 78-86.	2.8	10
182	Reaction–diffusion systems for spatio-temporal intracellular protein networks: A begin with two examples. Computational and Structural Biotechnology Journal, 2014, 10, 12-2	ner's guide 2.	4.1	13
183	Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell deat inhibits tumor growth in mouse xenograft models. Journal of Surgical Research, 2014, 18	:h and 38, 387-395.	1.6	41
184	Growth of the Developing Cerebral Cortex Is Controlled by MicroRNA-7 through the p53 Reports, 2014, 7, 1184-1196.	Pathway. Cell	6.4	85
185	Aberrant expression of p53, p21, cyclin D1, and Bcl2 and their clinicopathological correla ampullary adenocarcinoma. Human Pathology, 2014, 45, 1015-1023.	ition in	2.0	18
186	Extensive Post-translational Modification of Active and Inactivated Forms of Endogenous Molecular and Cellular Proteomics, 2014, 13, 1-17.	s p53.	3.8	54
187	Postâ€ŧranslational control of transcription factors: methylation ranks highly. FEBS Journ 4450-4465.	ial, 2015, 282,	4.7	38
188	JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle ar proliferation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2286	nd -2295.	4.1	28
189	Regulation of the p53 response and its relationship to cancer. Biochemical Journal, 2015	, 469, 325-346.	3.7	243
190	Sedanolide induces autophagy through the PI3K, p53 and NF-ήB signaling pathways in hi cells. International Journal of Oncology, 2015, 47, 2240-2246.	uman liver cancer	3.3	22
191	Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochimic Biophysica Acta - General Subjects, 2015, 1850, 2048-2060.	:a Et	2.4	24
192	RBM5 and p53 expression after rat spinal cord injury: Implications for neuronal apoptosis International Journal of Biochemistry and Cell Biology, 2015, 60, 43-52.	5.	2.8	40
193	Hsp27 (HSPB1) differential expression in normal salivary glands and pleomorphic adenor association with an increased Bcl2/Bax ratio. Tumor Biology, 2015, 36, 213-217.	nas and	1.8	9
194	PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer. 2015, 34, 2897-2909.	Oncogene,	5.9	63
195	Impact of the Adenoviral E4 Orf3 Protein on the Activity and Posttranslational Modificati Journal of Virology, 2015, 89, 3209-3220.	on of p53.	3.4	6
196	Dose- and time-dependent gene expression alterations in prostate and colon cancer cells exposure to carbon ion and X-irradiation. Journal of Radiation Research, 2015, 56, 11-21.	after in vitro	1.6	36
197	The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a s isoform of p53, through an IRES-dependent mechanism. Neurobiology of Aging, 2015, 3	short 6, 2725-2736.	3.1	18
198	Resveratrol induces DNA damage in colon cancer cells by poisoning topoisomerase II and ATM kinase to trigger p53-dependent apoptosis. Toxicology in Vitro, 2015, 29, 1156-116	l activates the 55.	2.4	65

#	Article	IF	CITATIONS
199	Time, Dose and Ataxia Telangiectasia Mutated (ATM) Status Dependency of Coding and Noncoding RNA Expression after Ionizing Radiation Exposure. Radiation Research, 2015, 183, 325-337.	1.5	46
200	p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells. Biochemical and Biophysical Research Communications, 2015, 467, 348-353.	2.1	9
201	Dynamics of P53 in response to DNA damage: Mathematical modeling and perspective. Progress in Biophysics and Molecular Biology, 2015, 119, 175-182.	2.9	25
202	Evidence for anti-apoptotic roles of proteasome activator 28Î ³ via inhibiting caspase activity. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 1211-1228.	4.9	20
203	Novel Functions of the Human Papillomavirus E6 Oncoproteins. Annual Review of Virology, 2015, 2, 403-423.	6.7	50
204	Role of the nucleus in apoptosis: signaling and execution. Cellular and Molecular Life Sciences, 2015, 72, 4593-4612.	5.4	84
205	A cell-free system toward deciphering the post-translational modification barcodes of Oct4 in different cellular contexts. Biochemical and Biophysical Research Communications, 2015, 456, 714-720.	2.1	9
206	Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters. Oncogene, 2015, 34, 2461-2470.	5.9	22
207	Cofactor Strap regulates oxidative phosphorylation and mitochondrial p53 activity through ATP synthase. Cell Death and Differentiation, 2015, 22, 156-163.	11.2	12
208	MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance. International Journal of Nanomedicine, 2016, Volume 11, 4221-4229.	6.7	11
209	Concomitant Evaluation of a Panel of Exosome Proteins and MiRs for Qualification of Cultured Human Corneal Endothelial Cells. , 2016, 57, 4393.		20
210	Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Frontiers in Oncology, 2016, 6, 77.	2.8	59
211	The Double Role of p53 in Cancer and Autoimmunity and Its Potential as Therapeutic Target. International Journal of Molecular Sciences, 2016, 17, 1975.	4.1	21
212	Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow?. Mechanisms of Ageing and Development, 2016, 156, 17-24.	4.6	23
213	Dynamical decision making in a genetic perceptron. Physica D: Nonlinear Phenomena, 2016, 318-319, 112-115.	2.8	8
214	Posttranscriptional Upregulation of p53 by Reactive Oxygen Species in Chronic Lymphocytic Leukemia. Cancer Research, 2016, 76, 6311-6319.	0.9	5
215	p53 controls CDC7 levels to reinforce G1 cell cycle arrest upon genotoxic stress. Cell Cycle, 2016, 15, 2958-2972.	2.6	18
216	Efficacy of Adoptive T-cell Therapy Is Improved by Treatment with the Antioxidant N-Acetyl Cysteine, Which Limits Activation-Induced T-cell Death. Cancer Research, 2016, 76, 6006-6016.	0.9	56

#	Article	IF	CITATIONS
217	Inhibition of cell proliferation, migration and invasion by a gliomaâ€targeted fusion protein combining the p53 C terminus and MDM2â€binding domain. Cell Proliferation, 2016, 49, 79-89.	5.3	9
218	BTK Modulates p53 Activity to Enhance Apoptotic and Senescent Responses. Cancer Research, 2016, 76, 5405-5414.	0.9	50
219	Inverted repeatAluelements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function. Nucleic Acids Research, 2016, 44, gkw599.	14.5	64
220	Differential TGFÎ ² pathway targeting by miR-122 in humans and mice affects liver cancer metastasis. Nature Communications, 2016, 7, 11012.	12.8	47
221	Synergy between von Hippel-Lindau and P53 contributes to chemosensitivity of clear cell renal cell carcinoma. Molecular Medicine Reports, 2016, 14, 2785-2790.	2.4	11
222	Diverse spatio-temporal dynamical patterns of p53 and cell fate decisions. AIP Conference Proceedings, 2016, , .	0.4	2
223	Two p53 tetramers bind one consensus DNA response element. Nucleic Acids Research, 2016, 44, 6185-6199.	14.5	28
224	The world of protein acetylation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1372-1401.	2.3	601
225	DTIE, a novel core promoter element that directs start site selection in TATA-less genes. Nucleic Acids Research, 2016, 44, 1080-1094.	14.5	31
226	Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by CSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Molecular Cancer Therapeutics, 2016, 15, 379-391.	4.1	36
227	The downregulation of the RNA-binding protein Staufen2 in response to DNA damage promotes apoptosis. Nucleic Acids Research, 2016, 44, 3695-3712.	14.5	15
228	Nuclear DNA damage signalling to mitochondria in ageing. Nature Reviews Molecular Cell Biology, 2016, 17, 308-321.	37.0	294
229	Bridged Analogues for p53-Dependent Cancer Therapy Obtained by S-Alkylation. International Journal of Peptide Research and Therapeutics, 2016, 22, 67-81.	1.9	8
230	p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks. Radiation Research, 2017, 187, 424-432.	1.5	31
231	Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death and Disease, 2017, 8, e2646-e2646.	6.3	56
232	Acetylation-dependent regulation of MDM2 E3 ligase activity dictates its oncogenic function. Science Signaling, 2017, 10, .	3.6	52
233	Cardio-Oncology. , 2017, , .		1
235	Recent progress and open challenges in modeling p53 dynamics in single cells. Current Opinion in Systems Biology, 2017, 3, 54-59.	2.6	20

#	Article	IF	CITATIONS
236	Testosterone modulates FoxO3a and p53-related genes to protect C2C12 skeletal muscle cells against apoptosis. Steroids, 2017, 124, 35-45.	1.8	15
237	Thymic epithelial cells require p53 to support their long-term function in thymopoiesis in mice. Blood, 2017, 130, 478-488.	1.4	29
238	Coumarin-chalcone hybrid instigates DNA damage by minor groove binding and stabilizes p53 through post translational modifications. Scientific Reports, 2017, 7, 45287.	3.3	23
239	HDAC4 and HDAC6 sustain DNA double strand break repair and stem-like phenotype by promoting radioresistance in glioblastoma cells. Cancer Letters, 2017, 397, 1-11.	7.2	72
240	p53 pulses lead to distinct patterns of gene expression albeit similar DNA-binding dynamics. Nature Structural and Molecular Biology, 2017, 24, 840-847.	8.2	83
241	Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nature Communications, 2017, 8, 313.	12.8	104
242	Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system. Experimental Cell Research, 2017, 359, 50-61.	2.6	5
243	Spleen Tyrosine Kinase Inhibition Modulates p53 Activity. Journal of Cell Death, 2017, 10, 117906601773156.	0.8	6
244	Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. International Journal of Oncology, 2017, 50, 1330-1340.	3.3	41
245	Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. International Journal of Molecular Sciences, 2017, 18, 1821.	4.1	22
246	How Human Papillomavirus Replication and Immune Evasion Strategies Take Advantage of the Host DNA Damage Repair Machinery. Viruses, 2017, 9, 390.	3.3	38
247	Variations within 3â€2-UTR of <i>MDM4</i> gene contribute to clinical outcomes of advanced non-small cell lung cancer patients following platinum-based chemotherapy. Oncotarget, 2017, 8, 16313-16324.	1.8	14
248	<i>De novo</i> expression of transfected sirtuin 3 enhances susceptibility of human MCF-7 breast cancer cells to hyperoxia treatment. Free Radical Research, 2018, 52, 672-684.	3.3	9
249	How many human proteoforms are there?. Nature Chemical Biology, 2018, 14, 206-214.	8.0	580
250	Understanding non-linear effects from Hill-type dynamics with application to decoding of p53 signaling. Scientific Reports, 2018, 8, 2147.	3.3	3
251	Diepoxybutane-induced apoptosis is mediated through the ERK1/2 pathway. Human and Experimental Toxicology, 2018, 37, 1080-1091.	2.2	3
252	Cell-Cycle-Specific Function of p53 in Fanconi Anemia Hematopoietic Stem and Progenitor Cell Proliferation. Stem Cell Reports, 2018, 10, 339-346.	4.8	18
253	Twoâ€dimensional polynomial type canonical relaxation oscillator model for p53 dynamics. IET Systems Biology, 2018, 12, 138-147.	1.5	6

#	Article	IF	CITATIONS
254	Revealing determinants of twoâ€phase dynamics of P53Ânetwork under gamma irradiation based on a reduced 2D relaxation oscillator model. IET Systems Biology, 2018, 12, 26-38.	1.5	5
255	Theoretical study on the oscillation mechanism of p53-Mdm2 network. International Journal of Biomathematics, 2018, 11, 1850112.	2.9	8
256	BTK modulates p73 activity to induce apoptosis independently of p53. Cell Death Discovery, 2018, 4, 30.	4.7	22
257	Endothelial progenitor cells from aged subjects display decreased expression of sirtuin 1, angiogenic functions, and increased senescence. Cell Biology International, 2018, 42, 1212-1220.	3.0	15
258	Estimating the Distribution of Protein Post-Translational Modification States by Mass Spectrometry. Journal of Proteome Research, 2018, 17, 2727-2734.	3.7	33
259	The Inability of the Choroid to Revascularize in Oxygen-Induced Retinopathy Results from Increased p53/miR-Let-7b Activity. American Journal of Pathology, 2019, 189, 2340-2356.	3.8	7
260	The Molecular Physiology of Ageing: New Targets for Regenerative Medicine. , 2019, , 15-29.		0
261	Identification of p53 Activators in a Human Microarray Compendium. Chemical Research in Toxicology, 2019, 32, 1748-1759.	3.3	6
262	p32 is a negative regulator of p53 tetramerization and transactivation. Molecular Oncology, 2019, 13, 1976-1992.	4.6	17
263	Residual apoptotic activity of a tumorigenic p53 mutant improves cancer therapy responses. EMBO Journal, 2019, 38, e102096.	7.8	22
264	Negative feedback and time delay regulate p53 oscillation in response to DNA damage. , 2019, , .		1
265	Transcription-independent and -dependent p53-mediated apoptosis in response to genotoxic and non-genotoxic stress. Cell Death Discovery, 2019, 5, 131.	4.7	22
266	Melatonin: A new inhibitor agent for cervical cancer treatment. Journal of Cellular Physiology, 2019, 234, 21670-21682.	4.1	59
267	ROS Reduction Does Not Decrease the Anticancer Efficacy of X-Ray in Two Breast Cancer Cell Lines. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	12
268	Extract of <i> Rhus verniciflua</i> Stokes Induces p53-Mediated Apoptosis in MCF-7 Breast Cancer Cells. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-9.	1.2	14
269	p53-TP53-Induced Glycolysis Regulator Mediated Glycolytic Suppression Attenuates DNA Damage and Genomic Instability in Fanconi Anemia Hematopoietic Stem Cells. Stem Cells, 2019, 37, 937-947.	3.2	9
270	Stochastic transcription in the p53â€mediated response to <scp>DNA</scp> damage is modulated by burst frequency. Molecular Systems Biology, 2019, 15, e9068.	7.2	27
271	Multisite Phosphorylation of S6K1 Directs a Kinase Phospho-code that Determines Substrate Selection. Molecular Cell, 2019, 73, 446-457.e6.	9.7	36

#	Article	IF	CITATIONS
272	Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene, 2019, 38, 2108-2122.	5.9	35
273	Tetra-substituted pyrrole derivatives act as potent activators of p53 in melanoma cells. Investigational New Drugs, 2020, 38, 634-649.	2.6	7
274	The RNF20/40 complex regulates p53-dependent gene transcription and mRNA splicing. Journal of Molecular Cell Biology, 2020, 12, 113-124.	3.3	16
275	Mitophagy and DNA damage signaling in human aging. Mechanisms of Ageing and Development, 2020, 186, 111207.	4.6	40
276	HOPS and p53: thick as thieves in life and death. Cell Cycle, 2020, 19, 2996-3003.	2.6	7
277	Microchip-Based Structure Determination of Disease-Relevant p53. Analytical Chemistry, 2020, 92, 15558-15564.	6.5	9
278	Deciphering p53 dynamics and cell fate in DNA damage response using mathematical modeling. Genome Instability & Disease, 2020, 1, 265-277.	1.1	5
279	Cell fate decisions by c-Myc depend on ZBTB5 and p53. Biochemical and Biophysical Research Communications, 2020, 533, 1247-1254.	2.1	5
280	Role of microRNAs in epidermal growth factor receptor signaling pathway in cervical cancer. Molecular Biology Reports, 2020, 47, 4553-4568.	2.3	15
281	Insights into amebiasis using a human <scp>3D</scp> â€intestinal model. Cellular Microbiology, 2020, 22, e13203.	2.1	8
282	Nuclear factor erythroid 2 (NFâ€E2) p45â€related factor 2 interferes with homeodomainâ€interacting protein kinase 2/p53 activity to impair solid tumors chemosensitivity. IUBMB Life, 2020, 72, 1634-1639.	3.4	7
283	Dynamic Behavior of p53 Driven by Delay and a Microrna-34a-Mediated Feedback Loop. International Journal of Molecular Sciences, 2020, 21, 1271.	4.1	5
284	Pifithrin-Î \pm alters p53 post-translational modifications pattern and differentially inhibits p53 target genes. Scientific Reports, 2020, 10, 1049.	3.3	42
285	Plasma Neurofilament Light Chain May Be a Biomarker for the Inverse Association Between Cancers and Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2020, 12, 10.	3.4	12
287	Oscillation and bistable switching dynamical behavior of p53 regulated by PTEN upon DNA damage. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 712-723.	3.4	4
288	Low testicular zinc level, p53 expression and impairment of Sertoli cell phagocytosis of residual bodies in rat subjected to psychological stress. Andrologia, 2021, 53, e13958.	2.1	1
290	Temporal gene regulation by p53 is associated with the rotational setting of its binding sites in nucleosomes. Cell Cycle, 2021, 20, 792-807.	2.6	2
291	Structure-Based Design of Potent and Orally Active Isoindolinone Inhibitors of MDM2-p53 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 4071-4088.	6.4	30

#	Article	IF	CITATIONS
292	The guardian's choice: how p53 enables contextâ€specific decisionâ€making in individual cells. FEBS Journal, 2022, 289, 40-52.	4.7	15
293	The Role of p53 Signaling in Colorectal Cancer. Cancers, 2021, 13, 2125.	3.7	106
294	Genotoxic effects of 1-nitropyrene in macrophages are mediated through a p53-dependent pathway involving cytochrome c release, caspase activation, and PARP-1 cleavage. Ecotoxicology and Environmental Safety, 2021, 213, 112062.	6.0	22
295	Codimension-3 Bifurcation in the p53 Regulatory Network Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150104.	1.7	2
297	Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants, 2021, 10, 1483.	5.1	22
298	The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses, 2021, 13, 1892.	3.3	44
299	P53 Is Involved in Sunitinib Resistance and Poor Progression-free Survival After Sunitinib Treatment of Renal Cell Carcinoma. Anticancer Research, 2021, 41, 4287-4294.	1.1	6
300	Stress Induced Mutagenesis, Genetic Diversification, and Cell Survival via Anastasis, the Reversal of Late Stage Apoptosis. , 2013, , 223-241.		1
301	Targeted Senolytic Strategies Based on the Senescent Surfaceome. Healthy Ageing and Longevity, 2020, , 103-130.	0.2	3
302	p53., 2010, , 345-357.		1
302 303	p53., 2010, , 345-357. Mortalin-p53 Interaction as a Target for Liver Cancer Therapy. , 2012, , 267-278.		1
302 303 304	p53., 2010, , 345-357. Mortalin-p53 Interaction as a Target for Liver Cancer Therapy. , 2012, , 267-278. Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer. Sub-Cellular Biochemistry, 2014, 85, 41-70.	2.4	1 1 10
302 303 304 305	p53., 2010, , 345-357.Mortalin-p53 Interaction as a Target for Liver Cancer Therapy., 2012, , 267-278.Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer. Sub-Cellular Biochemistry, 2014, 85, 41-70.Neoplasia., 2010, , 259-330.	2.4	1 1 10 26
302 303 304 305 306	p53., 2010, , 345-357.Mortalin-p53 Interaction as a Target for Liver Cancer Therapy., 2012, , 267-278.Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer. Sub-Cellular Biochemistry, 2014, 85, 41-70.Neoplasia., 2010,, 259-330.Bifurcation analysis of bistable and oscillatory dynamics in biological networks using the rootâ€bocus method. IET Systems Biology, 2019, 13, 333-345.	2.4	1 1 10 26 4
302 303 304 305 306 308	p53., 2010, , 345-357.Mortalin-p53 Interaction as a Target for Liver Cancer Therapy. , 2012, , 267-278.Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer. Sub-Cellular Biochemistry, 2014, 85, 41-70.Neoplasia. , 2010, , 259-330.Bifurcation analysis of bistable and oscillatory dynamics in biological networks using the rootâ€ocus method. IET Systems Biology, 2019, 13, 333-345.p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. Journal of Clinical Investigation, 2020, 130, 5011-5026.	2.4 1.5 8.2	1 1 10 26 4 110
 302 303 304 305 306 308 309 	p53., 2010, , 345-357.Mortalin-p53 Interaction as a Target for Liver Cancer Therapy., 2012, , 267-278.Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer. Sub-Cellular Biochemistry, 2014, 85, 41-70.Neoplasia., 2010, , 259-330.Bifurcation analysis of bistable and oscillatory dynamics in biological networks using the rootâ€bocus method. IET Systems Biology, 2019, 13, 333-345.p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. Journal of Clinical Investigation, 2020, 130, 5011-5026.Theoretical analysis of the delay on the p53 micronetwork. Advances in Difference Equations, 2020, 2020,	2.4 1.5 8.2 3.5	1 10 26 4 110 3
 302 303 304 305 306 308 309 310 	p53., 2010, , 345-357.Mortalin-p53 Interaction as a Target for Liver Cancer Therapy. , 2012, , 267-278.Cooperation of p53 Mutations with Other Oncogenic Alterations in Cancer. Sub-Cellular Biochemistry, 2014, 85, 41-70.Neoplasia. , 2010, , 259-330.Bifurcation analysis of bistable and oscillatory dynamics in biological networks using the rootâCłocus method. IET Systems Biology, 2019, 13, 333-345.p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. Journal of Clinical Investigation, 2020, 130, 5011-5026.Theoretical analysis of the delay on the p53 micronetwork. Advances in Difference Equations, 2020, 2020, .A Two-Step Mechanism for Cell Fate Decision by Coordination of Nuclear and Mitochondrial p53 Activities. PLoS ONE, 2012, 7, e38164.	2.4 1.5 8.2 3.5 2.5	1 10 26 4 110 3 31

#	Article	IF	CITATIONS
312	Long Noncoding RNA MEG3 Interacts with p53 Protein and Regulates Partial p53 Target Genes in Hepatoma Cells. PLoS ONE, 2015, 10, e0139790.	2.5	132
313	Differences of immune disorders between Alzheimer's disease and breast cancer based on transcriptional regulation. PLoS ONE, 2017, 12, e0180337.	2.5	10
314	Regulation in Cell Cycle via p53 and PTEN Tumor Suppressors. Cancer Studies and Molecular Medicine: Open Journal, 2014, 1, 1-7.	0.5	2
315	Unfolded p53 in the pathogenesis of Alzheimer's disease: is HIPK2 the link?. Aging, 2010, 2, 545-554.	3.1	44
316	Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging, 2019, 11, 2512-2540.	3.1	129
317	Activation of p53 and destabilization of androgen receptor by combinatorial inhibition of MDM2 and MDMX in prostate cancer cells. Oncotarget, 2018, 9, 6270-6281.	1.8	14
318	miR-30e controls DNA damage-induced stress responses by modulating expression of the CDK inhibitor p21WAF1/CIP1 and caspase-3. Oncotarget, 2016, 7, 15915-15929.	1.8	14
319	Radiation-enhanced therapeutic targeting of galectin-1 enriched malignant stroma in triple negative breast cancer. Oncotarget, 0, 7, 41559-41574.	1.8	15
320	Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish. ELife, 2020, 9, .	6.0	24
321	Switching on p53: an essential role for protein phosphorylation?. BioDiscovery, 2013, , .	0.1	11
323	Reactive Oxygen Species Mediate 6c-Induced Mitochondrial and Lysosomal Dysfunction, Autophagic Cell Death, and DNA Damage in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 10987.	4.1	4
324	The p53 Master Regulator and Rules of Engagement with Target Sequences. , 2010, , 2205-2216.		0
325	The p53-Mdm2 Loop: A Critical Juncture of Stress Response. Molecular Biology Intelligence Unit, 2010, , 65-84.	0.2	0
326	Humanised Mouse Models: Targeting the Murine p53 Locus with Human Sequences. , 2013, , 95-108.		1
330	Structure, Genome, Infection Cycle and Clinical Manifestations Associated with Human Papillomavirus. Current Pharmaceutical Biotechnology, 2019, 20, 1260-1280.	1.6	10
331	Complex and Surprising Dynamics in Gene Regulatory Networks. , 2020, , 147-187.		0
334	Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Translational Cancer Research, 2013, 2, 412-421.	1.0	51
335	p53-mediated neurodegeneration in the absence of the nuclear protein Akirin2. IScience, 2022, 25, 103814.	4.1	3

#	Article	IF	CITATIONS
336	A noninvasive iRFP713 p53 reporter reveals dynamic p53 activity in response to irradiation and liver regeneration in vivo. Science Signaling, 2022, 15, eabd9099.	3.6	4
338	Compound cellular stress maximizes apoptosis independently of p53 in glioblastoma. Cell Cycle, 2022, , 1-13.	2.6	2
339	A peptidoform based proteomic strategy for studying functions of postâ€ŧranslational modifications. Proteomics, 2022, 22, 2100316.	2.2	7
340	Oscillatory dynamics of p53 pathway in etoposide sensitive and resistant cell lines. Electronic Research Archive, 2022, 30, 2075-2108.	0.9	0
341	Single-cell analysis of p53 transitional dynamics unravels stimulus- and cell type-dependent signaling output motifs. BMC Biology, 2022, 20, 85.	3.8	2
342	Molecular Mechanisms of HIV Protease Inhibitors Against HPV-Associated Cervical Cancer: Restoration of TP53 Tumour Suppressor Activities. Frontiers in Molecular Biosciences, 2022, 9, .	3.5	6
344	At the Crossroads of Life and Death: The Proteins That Influence Cell Fate Decisions. Cancers, 2022, 14, 2745.	3.7	5
345	Network pharmacology-based strategy for predicting therapy targets of Sanqi and Huangjing in diabetes mellitus. World Journal of Clinical Cases, 2022, 10, 6900-6914.	0.8	2
346	Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency. International Journal of Molecular Sciences, 2022, 23, 7960.	4.1	1
348	Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Frontiers in Molecular Biosciences, 0, 9, .	3.5	9
349	EPR-Selective Biodegradable Polymer-Based Nanoparticles for Modulating ROS in the Management of Cervical Cancer. , 2022, , 2863-2889.		0
350	Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS Journal, 0, , .	4.7	6
351	Defect in Ser312 phosphorylation of Tp53 dysregulates lipid metabolism for fatty accumulation and fatty liver susceptibility: Revealed by lipidomics. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1211, 123491.	2.3	0
352	Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Biochemistry, 2022, 61, 2709-2719.	2.5	4
353	Coordination of the AMPK, Akt, mTOR, and p53 Pathways under Glucose Starvation. International Journal of Molecular Sciences, 2022, 23, 14945.	4.1	2
354	Complete Models of p53 Better Inform the Impact of Hotspot Mutations. International Journal of Molecular Sciences, 2022, 23, 15267.	4.1	2
355	NRF2 in Cancer: Cross-Talk with Oncogenic Pathways and Involvement in Gammaherpesvirus-Driven Carcinogenesis. International Journal of Molecular Sciences, 2023, 24, 595.	4.1	9
356	Encoding and Decoding of p53 Dynamics in Cellular Response to Stresses. Cells, 2023, 12, 490.	4.1	5

#	Article	IF	CITATIONS
357	Zeaxanthin prevents ferroptosis by promoting mitochondrial function and inhibiting the p53 pathway in free fatty acid-induced HepG2 cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2023, 1868, 159287.	2.4	4
358	The mechanism accounting for DNA damage strength modulation of p53 dynamical properties. Journal of Bioinformatics and Computational Biology, 2023, 21, .	0.8	0
359	Development of a fluorescence reporter system to quantify transcriptional activity of endogenous p53 in living cells. Journal of Cell Science, 2023, 136, .	2.0	1
360	Prion protein-dependent regulation of p53-MDM2 crosstalk during endoplasmic reticulum stress and doxorubicin treatments might be essential for cell fate in human breast cancer cell line, MCF-7. Experimental Cell Research, 2023, 429, 113656.	2.6	0
362	Roundup® disrupts tissue architecture, attenuates Na+/K+-ATPase expression, and induces protein oxidation/nitration, cellular apoptosis, and antioxidant enzyme expressions in the gills of goldfish, Carassius auratus. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2023, 272, 109710.	2.6	1
363	Histone Modification of Colorectal Cancer by Natural Products. Pharmaceuticals, 2023, 16, 1095.	3.8	1
364	Vitamin E ameliorates oral mucositis in gamma-irradiated rats (an in vivo study). BMC Oral Health, 2023, 23, .	2.3	0
365	SUMO1-regulated DBC1 promotes p53-dependent stress-induced apoptosis of lens epithelial cells. Aging, 2023, 15, 8812-8832.	3.1	0
367	The AP-2 complex interacts with γ-TuRC and regulates the proliferative capacity of neural progenitors. Life Science Alliance, 2024, 7, e202302029.	2.8	0
368	Stability and Hopf bifurcation analysis of a fractional-order p53 multiple time delays model under PD\$\$^alpha \$\$ control. Nonlinear Dynamics, 2024, 112, 5663-5686.	5.2	0