CITATION REPORT List of articles citing

DOI: 10.1038/nnano.2008.99 Nature Nanotechnology, 2008, 3, 284-8.

Source: https://exaly.com/paper-pdf/43662034/citation-report.pdf

Version: 2024-04-17

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
675	Bioorthogonal Fluorescent Nanodiamonds for Continuous Long-Term Imaging and Tracking of Membrane Proteins.		
674	Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. 2008 , 4, 2236-9		179
673	A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm. 2008 , 4, 2154-7		73
672	Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. 2008, 13, 064031		215
671	Preparation of fluorescent magnetic nanodiamonds and cellular imaging. 2008, 130, 15476-81		120
670	One- and two-photon absorption properties of diamond nitrogen-vacancy defect centers: A theoretical study. 2008 , 129, 124714		18
669	One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. <i>Nano Letters</i> , 2008 , 8, 3911-5	11.5	100
668	Novel and Practical Separation Processes for Fullerenes, Carbon Nanotubes and Nanodiamonds. 2009 , 52, 73-80		7
667	Comparison of the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells. 2009 , 4,		30
666	Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation. <i>Applied Physics Letters</i> , 2009 , 94, 013104	3.4	23
665	Nanodiamond particles induce I1-8 expression through a transcript stabilization mechanism in human airway epithelial cells. 2009 , 3, 152-160		12
664	Nanodiamond Particles in Electronic and Optical Applications. 2009, 1203, 1		1
663	Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor F o F 1 -ATP synthase. 2009 ,		11
662	Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells. 2009 , 2, 596-606		84
661	Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. 2009 , 30, 5720-8		219
660	Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. 2009, 5, 1649-53		132
659	Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds. 2009 , 5, 1667-74		65

(2009-2009)

658	Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. 2009 , 5, 2716-21		124
657	Diamond nanoparticles as photoluminescent nanoprobes for biology and near-field optics. 2009 , 129, 1475-1477		13
656	Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. 2009 , 30, 4249-59		171
655	Diamond standard in diagnostics: nanodiamond biolabels make their mark. 2009 , 134, 1751-64		126
654	Nanodiamond Particles: Properties and Perspectives for Bioapplications. 2009, 34, 18-74		598
653	Nanodiamonds for nanomedicine. 2009 , 4, 207-18		161
652	Functionalized fluorescent nanodiamonds for biomedical applications. 2009, 4, 47-55		146
651	Near-field optical microscopy with a nanodiamond-based single-photon tip. 2009 , 17, 19969-80		68
650	High yield fabrication of fluorescent nanodiamonds. <i>Nanotechnology</i> , 2009 , 20, 235602	3.4	267
649	Fluorescence and spin properties of defects in single digit nanodiamonds. 2009 , 3, 1959-65		270
648	Preparation and characterization of green fluorescent nanodiamonds for biological applications. 2009 , 18, 567-573		84
647	Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit. <i>Physical Review B</i> , 2009 , 79,	3.3	67
646	Predicting the distribution and stability of photoactive defect centers in nanodiamond biomarkers. 2009 , 19, 360-365		33
645	Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale. <i>Nano Letters</i> , 2009 , 9, 3555-64	11.5	84
644	Nanodiamonds as vehicles for systemic and localized drug delivery. 2009 , 6, 883-95		77
643	Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface. 2009 , 11, 1508-14		45
642	Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. 2009 , 3, 3955-62		276
641	The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. <i>Nanotechnology</i> , 2009 , 20, 425103	3.4	134

640	Beyond the sparkle: the impact of nanodiamonds as biolabeling and therapeutic agents. 2009 , 3, 3825-9	100
639	Nanodiamond-polymer composite fibers and coatings. 2009 , 3, 363-9	251
638	Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. 2009 , 3, 2609-16	316
637	One-by-one coupling of single photon emitters to high-Q modes of optical microresonators. 2009 ,	
636	Bio-Orthogonal Protein Labeling Methods for Single Molecule FRET. 2010 , 57, 505-513	
635	Applications of Surface-Functionalized Diamond Nanoparticles for Mass-Spectrometry-Based Proteomics. 2010 , 57, 583-594	17
634	Nanodiamonds for optical bioimaging. 2010 , 43, 374021	108
633	Detonation Nanodiamond Particles Processing, Modification and Bioapplications. 2010 , 79-116	9
632	Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. <i>Physical Review B</i> , 2010 , 82,	192
631	Detonation Nanodiamond and Onion-Like-Carbon-Embedded Polyaniline for Supercapacitors. 2010 , 20, 3979-3986	208
630	Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. 2010 , 22, 843-7	114
629	Efficient production of NV colour centres in nanodiamonds using high-energy electron irradiation. 2010 , 130, 1655-1658	42
628	Group IV nanoparticles: synthesis, properties, and biological applications. 2010 , 6, 2080-98	242
627	Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. 2010 , 6, 687-94	93
626	Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds. 2010 , 92, 102-106	17
625	Graphene oxide as a chemically tunable platform for optical applications. 2010 , 2, 1015-24	2633
624	Towards all-diamond optical devices. 2010 ,	
623	The effects of surface oxidation on luminescence of nano diamonds. 2010 , 19, 314-318	87

(2011-2010)

622	Fabrication strategies for diamond based ultra bright single photon sources. 2010 , 19, 729-733		13
621	Development and Use of Fluorescent Nanodiamonds as Cellular Markers. 2010 , 127-150		7
620	Transferrin-coupled fluorescence nanodiamonds as targeting intracellular transporters: An investigation of the uptake mechanism. 2010 , 19, 1163-1167		32
619	Photoluminescent nanodiamonds: Comparison of the photoluminescence saturation properties of the NV color center and a cyanine dye at the single emitter level, and study of the color center concentration under different preparation conditions. 2010 , 19, 988-995		15
618	In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Letters, 2010 , 10, 3692-9	11.5	444
617	Design of Nanodiamond Based Drug Delivery Patch for Cancer Therapeutics and Imaging Applications. 2010 , 249-284		2
616	Pulmonary toxicity and translocation of nanodiamonds in mice. 2010 , 19, 291-299		116
615	Protein-assisted self-assembly of multifunctional nanoparticles. 2010 , 107, 5827-32		86
614	Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. 2010 , 18, 5896-905		69
613	Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. <i>Nature Nanotechnology</i> , 2010 , 5, 345-9	28.7	354
612	Preparation of Fluorescent Diamond Nanoparticles Stably Dispersed under a Physiological Environment through Multistep Organic Transformations. 2010 , 22, 3462-3471		76
611	Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. 2010 , 12, 9751-6		53
610	First-principles prediction of the negatively-charged nitrogen-silicon-vacancy center in cubic silicon carbide. <i>Journal of Applied Physics</i> , 2010 , 108, 043917	2.5	13
609	Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. 2010 , 20, 8064		89
608	Single molecule Fluorescent Resonance Energy Transfer Scanning Near-field Optical Microscopy. 2011 ,		
607	Surface properties of hydrogenated nanodiamonds: a chemical investigation. 2011 , 13, 11517-23		96
606	Fluorescent Nanodiamond [A Novel Nanomaterial for In Vivo Applications. 2011 , 1362, 1		6
605	Measuring FEster resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes by acceptor photobleaching. 2011 , 20, 803-807		22

604	Confirmation of the electrostatic self-assembly of nanodiamonds. 2011 , 3, 958-62		108
603	Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: what should be the policy?. 2011 , 54 Suppl 1, S106-24		118
602	Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. <i>Physical Review B</i> , 2011 , 84,	3.3	99
601	Leakage radiation microscopy of surface plasmons launched by a nanodiamond-based tip. 2011 , 20, 995	5-998	5
600	Optimal conditions for NVIzenter formation in type-1b diamond studied using photoluminescence and positron annihilation spectroscopies. <i>Physical Review B</i> , 2011 , 84,	3.3	44
599	. 2011,		
598	Surface chemical modifications and surface reactivity of nanodiamonds hydrogenated by CVD plasma. 2011 , 13, 11481-7		64
597	Nanocrystalline diamond. 2011 , 20, 621-640		313
596	Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. <i>Langmuir</i> , 2011 , 27, 1085-91	4	77
595	Factors Affecting DNP NMR in Polycrystalline Diamond Samples. 2011 , 115, 19041-19048		64
594	Nanodiamond mediated delivery of chemotherapeutic drugs. 2011 , 21, 16406		53
593	Preparation and characterization of Zonyl-coated nanodiamonds with antifouling properties. 2011 , 47, 5178-80		20
592	Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. <i>Nature Nanotechnology</i> , 2011 , 6, 358-63	28.7	452
591	Electric-field sensing using single diamond spins. 2011 , 7, 459-463		720
590	Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. 2011 , 5, 7893-8		93
589	Nitrogen Control in Nanodiamond Produced by Detonation Shock-Wave-Assisted Synthesis. 2011 , 115, 14014-14024		72
588	Polarization modulation spectroscopy of single fluorescent nanodiamonds with multiple nitrogen vacancy centers. 2011 , 115, 1878-84		12
587	Stability of Nanodiamond Surfaces Exposed to N, NH, and NH2. 2011 , 115, 6218-6228		39

586	Beyond the shine: recent progress in applications of nanodiamond. 2011 , 21, 12571		98
585	Diamond photonics. 2011 , 5, 397-405		432
5 ⁸ 4	Diamond-based single-photon emitters. 2011 , 74, 076501		363
583	Luminescent nanodiamonds for biomedical applications. 2011 , 3, 171-184		61
582	Enormously high concentrations of fluorescent nitrogen-vacancy centers fabricated by sintering of detonation nanodiamonds. 2011 , 7, 1533-7		55
581	Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. 2011 , 7, 3087-95		162
580	The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. 2011 , 7, 3363-70		111
579	Medical applications of diamond particles & surfaces. 2011 , 14, 154-163		50
578	Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. 2011 , 23, 4770-5		186
577	Superresolution Imaging of Albumin-Conjugated Fluorescent Nanodiamonds in Cells by Stimulated Emission Depletion. 2011 , 123, 2310-2313		7
576	Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. 2011 , 50, 2262-5		149
575	Electrostatic self-assembly of diamond nanoparticles. 2011 , 509, 12-15		113
574	Mechanism of light emission in low energy ion implanted silicon. 2011 , 131, 2621-2624		1
573	WITHDRAWN: Cellular uptake and phototoxicity of bioconjugated fluorescent nanodiamonds. 2011		
572	Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films. <i>Applied Physics Letters</i> , 2011 , 98, 243107	·4	90
571	The negatively charged nitrogen-vacancy centre in diamond: the electronic solution. 2011 , 13, 025019		143
570	Introduction to medical applications of diamond particles and surfaces * *Please note that this chapter was originally published in Materials Today, 14(4), Narayan, R. J., Boehm, R. D. and Sumant, A. V., Medical applications of diamond particles and surfaces \$\mathbb{I}\$154\mathbb{I}\$63, Copyright (2011), and is		O
569	reused here with permission from Elsevier 2011 , 3-24 680-890nm spectral range of nickel-nitrogen and nickel-silicon complex single centres in diamond. 2012 ,		4

568	Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity. 2012 , 13, 1046-56		66
567	Single-walled carbon nanotubes induce airway hyperreactivity and parenchymal injury in mice. 2012 , 46, 257-67		26
566	Photoacoustic emission from fluorescent nanodiamonds enhanced with gold nanoparticles. 2012 , 3, 1662-29		41
565	Electronic transitions of single silicon vacancy centers in the near-infrared spectral region. <i>Physical Review B</i> , 2012 , 85,	3.3	28
564	Surface electrostatic potential transformation of nanodiamond induced by graphitization. 2012 , 137, 154702		1
563	Production of Multiple Diamond-Based Single-Photon Sources. 2012 , 18, 1792-1798		16
562	The nitrogen-vacancy spin qubit for sensing in biology. 2012 ,		
561	Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds. 2012 ,		10
560	Correlative light and electron microscopy using cathodoluminescence from nanoparticles with distinguishable colours. 2012 , 2, 865		61
559	Surface phase diagram and thermodynamic stability of functionalisation of nanodiamonds. 2012 , 22, 16774		22
558	CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+. 2012 , 48, 11528-30		90
557	Processing 15-nm Nanodiamonds Containing Nitrogen-vacancy Centres for Single-molecule FRET. 2012 , 65, 496		9
556	The biocompatibility of nanodiamonds and their application in drug delivery systems. 2012 , 2, 302-12		274
555	Exploiting the light-metal interaction for biomolecular sensing and imaging. 2012 , 45, 209-55		57
554	Quantification of nanodiamonds in aqueous solutions by spectrophotometry and thermal lens spectrometry. 2012 , 67, 842-850		12
553	Room-temperature operation of a radiofrequency diamond magnetometer near the shot-noise limit. <i>Journal of Applied Physics</i> , 2012 , 112, 124519	2.5	32
552	Nanotechnology: A Revolution in Cancer Diagnosis. 2012 , 27, 214-20		30
551	Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. 2012 , 22, 96-104		29

(2012-2012)

550	BmK CT-conjugated fluorescence nanodiamond as potential glioma-targeted imaging and drug. 2012 , 21, 73-76	25
549	Anomalous saturation effects due to optical spin depolarization in nitrogen-vacancy centers in diamond nanocrystals. <i>Physical Review B</i> , 2012 , 86,	14
548	Fractionation of carbon-based nanomaterials by anion-exchange HPLC. 2012 , 84, 1178-83	60
547	Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. 2012 , 109, 13493-7	93
546	PEGylation and polyPEGylation of nanodiamond. 2012 , 53, 3178-3184	124
545	The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. 2012 , 17, 101512	32
544	PolyPEGylated nanodiamond for intracellular delivery of a chemotherapeutic drug. 2012, 3, 2716	98
543	Fluorescent diamond nanoparticle as a probe of intracellular traffic in primary neurons in culture. 2012 ,	3
542	Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing. 2012 , 209, 1609-1618	35
541	Bucky-diamond versus onion-like carbon: End of graphitization. <i>Physical Review B</i> , 2012 , 86, 3.3	13
540	Surface modification of nanodiamond: Photoluminescence and Raman Studies. 2012 , 24, 134-138	27
539	Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. <i>Nano Letters</i> , 2012 , 12, 5726-32	147
538	Advances in Synthesis of Nanodiamond Particles. 2012 , 133-164	6
537	Stability of Diamond at the Nanoscale. 2012 , 3-52	1
536	Optical and Spin Properties of Nitrogen-Vacancy Color Centers in Diamond Crystals, Nanodiamonds, and Proximity to Surfaces. 2012 , 327-354	5
535	Engineering Nanoparticulate Diamond for Applications in Nanomedicine and Biology. 2012 , 493-518	2
534	Characterization of Detonation Nanodiamonds for Biocompatibility. 2012, 519-548	2
533	The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. 2012 , 33, 7794-802	197

532	Observing the confinement potential of bacterial pore-forming toxin receptors inside rafts with nonblinking Eu(3+)-doped oxide nanoparticles. 2012 , 102, 2299-308		26
531	A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. 2012 , 1, 62-68		384
530	Infrared microspectroscopy of natural Argyle pink diamond. 2012 , 23, 125-129		11
529	Diamond-Based Nanomedicine: Enhanced Drug Delivery and Imaging. 2012 , 1, 54-61		13
528	Oxygen hole doping of nanodiamond. 2012 , 4, 6792-9		52
527	Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. 2012 , 7, e52207		45
526	SiC as a Biocompatible Marker for Cell Labeling. 2012 , 377-429		3
525	Excessive sodium ions delivered into cells by nanodiamonds: implications for tumor therapy. 2012 , 8, 1771-9		40
524	Nanodiamond for intracellular imaging in the microorganisms in vivo. 2012 , 5, 838-47		32
523	The properties and applications of nanodiamonds. <i>Nature Nanotechnology</i> , 2011 , 7, 11-23	28.7	1955
523 522	The properties and applications of nanodiamonds. <i>Nature Nanotechnology</i> , 2011 , 7, 11-23 Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. 2012 , 6, 400-9	28.7	1955 409
	Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon	28.7	
522	Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. 2012 , 6, 400-9	28.7	409
522 521	Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. 2012 , 6, 400-9 SHG nanoprobes: advancing harmonic imaging in biology. 2012 , 34, 351-60 Saccharide-modified nanodiamond conjugates for the efficient detection and removal of	28.7	409
522 521 520	Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. 2012, 6, 400-9 SHG nanoprobes: advancing harmonic imaging in biology. 2012, 34, 351-60 Saccharide-modified nanodiamond conjugates for the efficient detection and removal of pathogenic bacteria. 2012, 18, 6485-92 Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial	28.7	409 68 78
522521520519	Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. 2012, 6, 400-9 SHG nanoprobes: advancing harmonic imaging in biology. 2012, 34, 351-60 Saccharide-modified nanodiamond conjugates for the efficient detection and removal of pathogenic bacteria. 2012, 18, 6485-92 Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial cell. 2012, 32, 594-598 Luminescence induced in diamond by He+ ion implantation into SiC/C composites with an inverse	28.7	409 68 78 30
522521520519518	Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. 2012, 6, 400-9 SHG nanoprobes: advancing harmonic imaging in biology. 2012, 34, 351-60 Saccharide-modified nanodiamond conjugates for the efficient detection and removal of pathogenic bacteria. 2012, 18, 6485-92 Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial cell. 2012, 32, 594-598 Luminescence induced in diamond by He+ ion implantation into SiC/C composites with an inverse opal structure. 2012, 54, 586-592 Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection	28.7	409 68 78 30 3

514	Single KTP nanocrystals as second-harmonic generation biolabels in cortical neurons. 2013 , 5, 8466-71	31
513	Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications. 2013 , 2, 335	167
512	NanodiamondAn Emerging Nano-carbon Material. 2013 , 89-102	4
511	Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds. <i>Nanotechnology</i> , 2013 , 24, 315702	70
510	Biological activity of detonation nanodiamond and prospects in its medical and biological applications. 2013 , 83, 851-883	17
509	Surface modification and intrinsic green fluorescence emission of a detonation nanodiamond. 2013 , 1, 6630	21
508	Room Temperature High-Field Spin Dynamics of NV Defects in Sintered Diamonds. 2013, 44, 1235-1244	8
507	Nanodiamonds as platforms for biology and medicine. 2013 , 18, 12-8	28
506	Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. 2013, 34, 8352-60	67
505	PEGylated nanodiamond for chemotherapeutic drug delivery. 2013 , 36, 26-34	86
504	Fluorescence lifetime imaging microscopy of nanodiamonds in vivo. 2013,	29
503	Quantum confinement and Coulomb blockade in isolated nanodiamond crystallites. <i>Physical Review B</i> , 2013 , 88,	16
502	Nanodiamonds. 2013 , 263-300	5
501	Carbon and carbon-silicon carbide nanocomposites with inverse opal structure. 2013 , 83, 2167-2172	
500	Highly Fluorescent Nanodiamonds Protein-Functionalized for Cell Labeling and Targeting. 2013 , 23, 5737-574	15 106
499	Biomedical Applications of Nanomaterials: An Overview. 2013 , 1-32	11
498	Size-controlled fluorescent nanodiamonds: a facile method of fabrication and color-center counting. 2013 , 5, 11776-82	21

496	Nanoscale magnetometry through quantum control of nitrogenWacancy centres in rotationally diffusing nanodiamonds. 2013 , 15, 013041	1	18
495	Nanodiamond imaging: molecular imaging with optically detected spin resonance of nitrogen-vacancy centers in nanodiamonds. 2013 ,		
494	Effect of the nanodiamond host on a nitrogen-vacancy color-centre emission state. 2013 , 9, 132-9	5	56
493	Peptide-coated nanoparticles: Adsorption and desorption studies of cationic peptides on nanodiamonds. 2013 , 431, 73-79	6	Ó
492	Glycan-functionalized diamond nanoparticles as potent E. coli anti-adhesives. 2013, 5, 2307-16	8	31
49 ¹	Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. <i>Chemical Reviews</i> , 2013 , 113, 1904-2074	1 1	2008
490	Encapsulated nanodiamonds in smart microgels toward self-assembled diamond nanoarrays. 2013 , 33, 32-37	7	,
489	Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. 2013 , 5, 3931-40	4	1 6
488	Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. 2013 , 5, 3713-22	8	38
487	Nitrogen-Vacancy Color Centers in Diamond: Properties, Synthesis, and Applications. 2013 , 143-175	5	
486	Surface Doping of Diamond and Induced Optical Effects. 2013 , 209-238	1	
485	Fluorescent Nanodiamonds and Their Prospects in Bioimaging. 2013 , 445-471	1	
484	Tailoring of structure, surface, and luminescence properties of nanodiamonds using rapid oxidative treatment. <i>Journal of Applied Physics</i> , 2013 , 113, 114907	1	12
483	Carbon-dots derived from nanodiamond: photoluminescence tunable nanoparticles for cell imaging. 2013 , 397, 39-44	1	161
482	Quenching nitrogenMacancy center photoluminescence with an infrared pulsed laser. 2013 , 15, 033030	2	21
481	Nanoscale sensing and imaging in biology using the nitrogen-vacancy center in diamond. 2013 , 38, 162-167	1	18
480	A novel surface plasmon resonance biosensor based on graphene oxide decorated with gold nanorod-antibody conjugates for determination of transferrin. 2013 , 45, 230-6	9)1
479	Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds. <i>Nano Letters</i> , 2013 , 13, 1173-8	5	54

(2013-2013)

478	Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials. <i>Applied Physics Letters</i> , 2013 , 102, 173114	55
477	Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy. 2013 , 5, 4701-5	23
476	Boosting nanodiamond fluorescence: towards development of brighter probes. 2013 , 5, 3208-11	85
475	3D-nanostructured scaffold electrodes based on single-walled carbon nanotubes and nanodiamonds for high performance biosensors. 2013 , 61, 349-356	18
474	Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. 2013 , 8, e52997	43
473	Luminescent Nanomaterials for Molecular-Specific Cellular Imaging. 2013 , 563-596	2
472	Luminescent nanoparticles and their applications in the life sciences. 2013 , 25, 194101	37
471	Hydrogen and carbon monoxide generation from laser-induced graphitized nanodiamonds in water. 2013 , 15, 7155-60	8
470	Detection of a few metallo-protein molecules using color centers in nanodiamonds. <i>Nano Letters</i> , 2013 , 13, 3305-9	5 140
469	Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance. 2013 , 18, 26018	28
468	Electrical conductivity of thermally hydrogenated nanodiamond powders. <i>Journal of Applied Physics</i> , 2013 , 113, 214307	50
467	Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope. 2013 , 21, 17639-46	33
466	Raman Spectra of Nanodiamonds: New Treatment Procedure Directed for Improved Raman Signal Marker Detection. 2013 , 2013, 1-11	3
465	Nanodiamond molecular imaging with enhanced contrast and expanded field of view. 2014 , 19, 011015	7
464	Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. 2013 , 110, 10894-8	89
463	photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds. 2013 , 8815,	3
462	Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology. 2013 , 210, 2055-2059	38
461	Generation of nitrogen-vacancy color center in nanodiamonds by high temperature annealing. Applied Physics Letters, 2013 , 102, 133109 3-4	17

460	Observing the rotational diffusion of nanodiamonds with arbitrary nitrogen vacancy center configurations. <i>Physical Review B</i> , 2013 , 88,	3.3	5
459	Nanodiamond landmarks for subcellular multimodal optical and electron imaging. 2013 , 3, 2668		19
458	Quantum statistical imaging of particles without restriction of the diffraction limit. 2013 , 110, 153901		35
457	Nanodiamond as a multimodal platform for drug delivery and radiosensitization of tumor cells. 2013 ,		1
456	Tip-enhanced sub-diffraction fluorescence imaging of nitrogen-vacancy centers in nanodiamonds. <i>Applied Physics Letters</i> , 2013 , 102, 013102	3.4	9
455	Spatially and spectrally resolved cathodoluminescence with fast electrons: A tool for background subtraction in luminescence intensity second-order correlation measurements applied to subwavelength inhomogeneous diamond nanocrystals. 2013 , 210, 2060-2065		13
454	Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems. 2013 , 8, 203-20		102
453	Direct-write electron beam fabrication of optically active diamond nanostructures. 2014,		
452	Defects in Nanodiamonds: Application of High-Frequency cw and Pulse EPR, ODMR. 2014 , 45, 1035-104	19	6
451	Diamond Nanoparticles. 2014 , 379-406		1
450	Production of Nanodiamond Particles. 2014 , 143-171		2
449	Single Color Centers in Diamond: Materials, Devices, and Applications. 2014 , 469-491		
448	Optical nanoscopy with inorganic fluorescent nanoparticles. 2014,		
447	Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. 2014 , 5, 1190-202		65
446	In vivo imaging and tracking of individual nanodiamonds in drosophila melanogaster embryos. 2014 , 5, 1250-61		32
445	Towards single-molecule NMR detection and spectroscopy using single spins in diamond. <i>Physical Review B</i> , 2014 , 89,	3.3	21
444	Utilizing nitrogen-vacancy centers to measure oscillating magnetic fields. 2014, 90,		10
443	Surface Structure of Aerobically Oxidized Diamond Nanocrystals. 2014 , 118, 26695-26702		44

442	Rapid solgel synthesis of nanodiamond aerogel. 2014 , 29, 2905-2911	16
441	A visualized investigation at the atomic scale of the antitumor effect of magnetic nanomedicine on gastric cancer cells. 2014 , 9, 1389-402	5
440	Quantum microscopy using nanodiamonds. 2014 , 219-239	
439	Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. 2014 , 8, 12151-66	143
438	Recent Developments and Applications of Nanodiamonds as Versatile Bioimaging Agents. 2014 , 61, 67-76	18
437	Multi-color imaging of fluorescent nanodiamonds in living HeLa cells using direct electron-beam excitation. 2014 , 15, 721-6	29
436	Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. 2015 , 20, 051014	30
435	CHAPTER 1:Distribution, Diffusion and Concentration of Defects in Colloidal Diamond. 2014 , 1-26	2
434	Fluorescent nanodiamonds for ultrasensitive detection. 2014,	
433	Nanodiamonds as Intracellular Probes for Imaging in Biology and Medicine. 2014 , 363-401	12
432	Fluorescent nanodiamonds embedded in biocompatible translucent shells. 2014 , 10, 1106-15	74
431	Small and bright: nanodiamonds for tissue repair, drug delivery, and biodetection. 2014 , 5, 34-9	6
430	Graphene-based sensors for detection of heavy metals in water: a review. 2014 , 406, 3957-75	134
429	Therapeutic applications of low-toxicity spherical nanocarbon materials. <i>NPG Asia Materials</i> , 2014 , 6, e84-e84	64
428	Magnetic iron oxide-fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. 2014 , 2, 915-923	114
427	Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. <i>Nano Letters</i> , 2014 , 14, 32-6	56
426	Intracellular Delivery II. 2014 ,	7
425	Carbon-Dot-Decorated Nanodiamonds. 2014 , 31, 580-590	33

424	Silicon-vacancy color centers in nanodiamonds: cathodoluminescence imaging markers in the near infrared. 2014 , 10, 1908-13		34
423	Reversible nanodiamond-carbon onion phase transformations. <i>Nano Letters</i> , 2014 , 14, 3645-52	11.5	93
422	Platinum on Nanodiamond: A Promising Prodrug Conjugated with Stealth Polyglycerol, Targeting Peptide and Acid-Responsive Antitumor Drug. 2014 , 24, 5348-5357		89
421	Laser-induced graphitization of colloidal nanodiamonds for excellent oxygen reduction reaction. 2014 , 16, 2411-6		11
420	Time-resolved magnetic sensing with electronic spins in diamond. <i>Nature Communications</i> , 2014 , 5, 314	11 17.4	42
419	Electrophysical properties of carbon nanocomposites based on nanodiamonds irradiated with fast neutrons. 2014 , 56, 152-156		Ο
418	Spatially controlled fabrication of a bright fluorescent nanodiamond-array with enhanced far-red Si-V luminescence. <i>Nanotechnology</i> , 2014 , 25, 045302	3.4	21
417	Localized chemical switching of the charge state of nitrogen-vacancy luminescence centers in diamond. <i>Applied Physics Letters</i> , 2014 , 105, 063103	3.4	29
416	Nanodiamond/carbon nitride hybrid nanoarchitecture as an efficient metal-free catalyst for oxidant- and steam-free dehydrogenation. 2014 , 2, 13442-13451		59
415	Multifunctional 1D magnetic and fluorescent nanoparticle chains for enhanced MRI, fluorescent cell imaging, and combined photothermal/chemotherapy. 2014 , 6, 15309-17		41
414	Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging. 2014 , 6, 8162-70		82
413	Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination. 2014 , 4, 11305		33
412	The impact of structural polydispersivity on the surface electrostatic potential of nanodiamond. 2014 , 6, 1188-94		29
411	Optimal vacancy concentrations to maximize the NIV yield in nanodiamonds. 2014 , 1, 286		9
410	Biophysical and morphological effects of nanodiamond/nanoplatinum solution (DPV576) on metastatic murine breast cancer cells in vitro. <i>Nanotechnology</i> , 2014 , 25, 465101	3.4	7
409	Effective production of fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy centers by ion irradiation. 2014 , 49, 33-38		16
408	Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. 2014 , 6, 13001-11		89
407	Silicon nanocrystals and nanodiamonds in live cells: photoluminescence characteristics, cytotoxicity and interaction with cell cytoskeleton. 2014 , 4, 10334-10342		15

406	Directly thiolated modification onto the surface of detonation nanodiamonds. 2014 , 6, 7198-203		31
405	Magnetometry with nitrogen-vacancy defects in diamond. 2014 , 77, 056503		615
404	Fe3O4/carbon quantum dots hybrid nanoflowers for highly active and recyclable visible-light driven photocatalyst. 2014 , 2, 15740-15745		79
403	Facile route to highly photoluminescent carbon nanodots for ion detection, pH sensors and bioimaging. 2014 , 6, 9139-47		70
402	Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. 2014 , 8 Suppl 1, 46-56		99
401	Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. 2014 , 35, 5393-5406		130
400	Helium ion microscope generated nitrogen-vacancy centres in type Ib diamond. <i>Applied Physics Letters</i> , 2014 , 104, 031109	3.4	19
399	Bactericidal activity of partially oxidized nanodiamonds. 2014 , 8, 6475-83		150
398	A nanodiamond/CNT-SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene. 2014 , 50, 7810-2		76
397	Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. 2014 , 46, 21-24		42
396	Nitrogen-Vacancy color center in diamond-emerging nanoscale applications in bioimaging and biosensing. 2014 , 20, 69-77		78
395	Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects. <i>Applied Physics Letters</i> , 2014 , 105, 243112	3.4	41
394	Applications of Detonation Nanodiamonds. 2014 , 253-280		1
393	Gold/diamond nanohybrids for quantum sensing applications. 2015 , 2,		32
392	Suppression of Nonspecific ProteinNanodiamond Adsorption Enabling Specific Targeting of Nanodiamonds to Biomolecules of Interest. 2015 , 44, 354-356		20
391	Comprehensive and quantitative analysis for controlling the physical/chemical states and particle properties of nanodiamonds for biological applications. 2015 , 5, 13818-13827		37
390	Tracking and Finding Slow-Proliferating/Quiescent Cancer Stem Cells with Fluorescent Nanodiamonds. 2015 , 11, 4394-402		26
389	Programmable Biopolymers for Advancing Biomedical Applications of Fluorescent Nanodiamonds. 2015 , 25, 6576-6585		59

388	Disaggregation and Anionic Activation of Nanodiamonds Mediated by Sodium Hydride New Route to Functional Aliphatic Polyester-Based Nanodiamond Materials. 2015 , 32, 35-42	12
387	Capillary electrophoretic study of green fluorescent hollow carbon nanoparticles. 2015 , 36, 2110-9	15
386	Nanodiamond-Mediated Intercellular Transport of Proteins through Membrane Tunneling Nanotubes. 2015 , 11, 6097-105	23
385	N-V-related fluorescence of the monoenergetic high-energy electron-irradiated diamond nanoparticles. 2015 , 212, 2519-2524	9
384	Selective Antimicrobial and Antibiofilm Disrupting Properties of Functionalized Diamond Nanoparticles Against Escherichia coli and Staphylococcus aureus. 2015 , 32, 822-830	29
383	Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. 2015 , 2015, 834079	35
382	Facile access to B-doped solid-state fluorescent carbon dots toward light emitting devices and cell imaging agents. 2015 , 3, 6668-6675	84
381	Impairing the radioresistance of cancer cells by hydrogenated nanodiamonds. 2015 , 61, 290-8	49
380	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. <i>Chemical Reviews</i> , 2015 , 115, 10816-906	902
379	Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. 2015 , 44, 4853-921	199
378	Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Applications. 2015 , 85-122	16
377	Efficient fabrication method for nitrogen-vacancy color centers for a biomarker. 2015 , 66, 1009-1012	
376	Confinement effects in irradiation of nanocrystalline diamond. 2015 , 93, 458-464	14
375	Carbon dots isolated from chromatographic fractions for sensing applications. 2015 , 5, 106838-106847	7
374	Fabrication of graphene oxide-Eyclodextrin nanoparticle releasing doxorubicin and topotecan for combination chemotherapy. 2015 , 30, 242-249	9
373	Carbon Nitride Encapsulated Nanodiamond Hybrid with Improved Catalytic Performance for Clean and Energy-Saving Styrene Production via Direct Dehydrogenation of Ethylbenzene. 2015 , 3, 3355-3364	27
372	Near-field microscopy with a scanning nitrogen-vacancy color center in a diamond nanocrystal: A brief review. 2015 , 70, 55-63	16
371	Impact of diamond nanoparticles on neural cells. 2015 , 29, 25-30	13

(2015-2015)

Antimicrobial activity of menthol modified nanodiamond particles. 2015 , 57, 2-8		32
Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds. 2015 , 27, 072203		20
Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. 2015 , 45, 93-8		38
Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. 2014 , 4, 5574		65
On the relation between chemical composition and optical properties of detonation nanodiamonds. 2015 , 94, 79-84		39
Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposesa review. 2015 , 407, 7521-36		66
A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. 2015 , 54, 1379-1409		39
DNA-Based Self-Assembly of Fluorescent Nanodiamonds. 2015 , 137, 9776-9		58
Sensitive determination of kaempferol using carbon dots as a fluorescence probe. 2015 , 144, 390-7		17
Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. 2015 , 5, 11661		77
Detecting the presence of weak magnetic fields using nitrogen-vacancy centers. 2015, 91,		4
Charge-sensitive fluorescent nanosensors created from nanodiamonds. 2015 , 7, 12307-11		30
Singlet levels of the NVDentre in diamond. 2015 , 17, 013048		22
Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. 2015 , 210, 230-45		161
Thermo- and pH-responsive fluorescence behaviors of sulfur-functionalized detonation nanodiamond-poly(N-isopropylacrylamide). 2015 , 293, 1299-1305		19
Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. 2015 , 12, 2		33
Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. <i>Nano Letters</i> , 2015 , 15, 3945-52	11.5	78
Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy. 2015 , 53, 117-26		95
	Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. 2015, 45, 93-8 Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. 2014, 4, 5574 On the relation between chemical composition and optical properties of detonation nanodiamonds. 2015, 94, 79-84 Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review. 2015, 407, 7521-36 A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. 2015, 54, 1379-1409 DNA-Based Self-Assembly of Fluorescent Nanodiamonds. 2015, 137, 9776-9 Sensitive determination of kaempferol using carbon dots as a fluorescence probe. 2015, 144, 390-7 Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. 2015, 5, 11661 Detecting the presence of weak magnetic fields using nitrogen-vacancy centers. 2015, 91, Charge-sensitive fluorescent nanosensors created from nanodiamonds. 2015, 7, 12307-11 Singlet levels of the NVBentre in diamond. 2015, 17, 013048 Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. 2015, 210, 230-45 Thermo- and pH-responsive fluorescence behaviors of sulfur-functionalized detonation nanodiamond-poly(N-isopropylacrylamide). 2015, 293, 1299-1305 Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. 2015, 12, 2 Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. Nano Letters, 2015, 15, 3945-52 Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug	Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds. 2015, 27, 072203 Plasma hydrogenated cationic detonation nanodiamonds efficiently deliver to human cells in culture functional siRNA targeting the Ewing sarcoma junction oncogene. 2015, 45, 93-8 Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating. 2014, 4, 5574 On the relation between chemical composition and optical properties of detonation nanodiamonds. 2015, 94, 79-84 Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review. 2015, 407, 7521-36 A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. 2015, 54, 1379-1409 DNA-Based Self-Assembly of Fluorescent Nanodiamonds. 2015, 137, 9776-9 Sensitive determination of kaempferol using carbon dots as a fluorescence probe. 2015, 144, 390-7 Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery. 2015, 5, 11661 Detecting the presence of weak magnetic fields using nitrogen-vacancy centers. 2015, 91, Charge-sensitive fluorescent nanosensors created from nanodiamonds. 2015, 7, 12307-11 Singlet levels of the NVBentre in diamond. 2015, 17, 013048 Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. 2015, 210, 230-45 Thermo- and pH-responsive fluorescence behaviors of sulfur-functionalized detonation nanodiamond-poly(N-isopropylacylamide). 2015, 293, 1299-1305 Nanodiamonds act as Trojan horse for intracellular delivery of metal ions to trigger cytotoxicity. 2015, 12, 2 Time-Resolved Luminescence Nanothermometry with Nitrogen-Vacancy Centers in Nanodiamonds. Nano Letters, 2015, 15, 3945-52 Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug

352	Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles. 2015 , 7, 7885-95	51
351	Myramistin adsorption on detonation nanodiamonds in the development of drug delivery platforms. 2015 , 55, 45-51	26
350	Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. 2015 , 10, 573-87	30
349	High-resolution vector microwave magnetometry based on solid-state spins in diamond. <i>Nature Communications</i> , 2015 , 6, 6631	62
348	[Supramolecular Agents for Theranostics]. 2015 , 41, 539-52	8
347	A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications. 2015 , 5, 87528-87534	33
346	Direct surface PEGylation of nanodiamond via RAFT polymerization. 2015 , 357, 2147-2153	37
345	Laser induced fluorescence spectroscopy of various carbon nanostructures (GO, G and nanodiamond) in Rd6G solution. 2015 , 6, 1679-93	20
344	Fluorescent Nanodiamond Silk Fibroin Spheres: Advanced Nanoscale Bioimaging Tool. 2015 , 1, 1104-1113	28
343	High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond. <i>Applied Physics Letters</i> , 2015 , 106, 063111	31
342	Sensing Inside the Living Cells. 2015 , 603-675	2
341	Single molecule fluorescence resonance energy transfer scanning near-field optical microscopy: potentials and challenges. 2015 , 184, 51-69	4
340	Highly dispersed nanodiamonds supported on few-layer graphene as robust metal-free catalysts for ethylbenzene dehydrogenation reaction. 2015 , 5, 4950-4953	25
339	Science and engineering of nanodiamond particle surfaces for biological applications (Review). 2015 , 10, 030802	115
338	Near-Infrared- and Visible-Light-Enhanced Metal-Free Catalytic Degradation of Organic Pollutants over Carbon-Dot-Based Carbocatalysts Synthesized from Biomass. 2015 , 7, 27703-12	60
337	Nanodiamond-mediated drug delivery and imaging: challenges and opportunities. 2015 , 12, 735-49	85
336	Inhibition of type 1 fimbriae-mediated Escherichia coli adhesion and biofilm formation by trimeric cluster thiomannosides conjugated to diamond nanoparticles. 2015 , 7, 2325-35	45
335	Enhancing fluorescence in vivo imaging using inorganic nanoprobes. 2015 , 34, 65-72	30

334	The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis. 2014 , 4, 6919	49
333	Labeling of neuronal differentiation and neuron cells with biocompatible fluorescent nanodiamonds. 2014 , 4, 5004	54
332	Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. 2015 , 44, 4672-98	202
331	Unambiguous observation of shape effects on cellular fate of nanoparticles. 2014 , 4, 4495	165
330	Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells. 2015 , 7, 415-20	68
329	Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods. 2016 , 2016, 1-8	39
328	Selective Labeling of Proteins on Living Cell Membranes Using Fluorescent Nanodiamond Probes. 2016 , 6,	18
327	Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. 2016 , 10, 250	64
326	Antibacterial Applications of Nanodiamonds. 2016 , 13, 413	41
325	Nanodiamonds for Medical Applications: Interaction with Blood in Vitro and in Vivo. 2016 , 17,	47
324	8 nm nanodiamonds as markers for 2 photon excited luminescent microscopy. <i>Journal of Physics:</i> Conference Series, 2016 , 740, 012010	1
323	Impact of speciation on the electron charge transfer properties of nanodiamond drug carriers. 2016 , 8, 14264-70	8
322	Nano-assembly of nanodiamonds by conjugation to actin filaments. 2016 , 9, 296-304	9
321	Nanodiamond for biolabelling and toxicity evaluation in the zebrafish embryo in vivo. 2016 , 9, 827-36	31
320	High-resolution fast ion microscopy of single whole biological cells. 2016 , 3, 041102	7
319	Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol. 2016 , 6, 33966	39
318	Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures. 2016 , 145, 024303	1
317	Photoluminescent Carbon Nanostructures. 2016 , 28, 4085-4128	150

316	Incorporation of SiV-centers in diamond nanoparticles using silicon background doping. 2016 , 65, 87-90	7	
315	Inorganic nanoparticles for optical bioimaging. 2016 , 8, 1	13	39
314	Moderate plasma treatment enhances the quality of optically detected magnetic resonance signals of nitrogen-vacancy centres in nanodiamonds. 2016 , 122, 1	1	
313	Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. 2016 , 8, 12002-12	44	4
312	Surface modification of nanodiamond through metal free atom transfer radical polymerization. 2016 , 390, 710-717	29	9
311	Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence. 2016 , 11, 425	13	3
310	Preloading of Hydrophobic Anticancer Drug into Multifunctional Nanocarrier for Multimodal Imaging, NIR-Responsive Drug Release, and Synergistic Therapy. 2016 , 12, 6388-6397	37	7
309	Biomaterials in siRNA Delivery: A Comprehensive Review. 2016 , 5, 2715-2731	50	O
308	Characterization of Nanodiamond Seeded Interdigitated Electrodes using Impedance Spectroscopy of Pure Water. 2016 , 210, 375-382	6	
307	Quantum confinement effects on optical transitions in nanodiamonds containing nitrogen vacancies. <i>Physical Review B</i> , 2016 , 94,	28	3
306	Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process. 2016 , 12, 747-752	4	
305	Nanosized carbon dots from organic matter and biomass. 2016 , 31, 823-826	8	
304	Nanodiamond-PMO for two-photon PDT and drug delivery. 2016 , 4, 5803-5808	41	ſ
303	Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Materials, 2016 , 8, e295-e295	3 10	05
302	Identification and Detection of Carbon Nanomaterials in Biological Systems. 2016, 29-54		
301	Detonation Nanodiamonds. 2016 , 525-540	1	
300	Robust Co-catalytic Performance of Nanodiamonds Loaded on WO3 for the Decomposition of Volatile Organic Compounds under Visible Light. 2016 , 6, 8350-8360	81	ſ
299	pH-responsive phenylboronic acid-modified diamond particles: Switch in carbohydrate capture ability triggers modulation of physicochemical and lectin-recognition properties. 2016 , 213, 2124-2130	2	

298	Direct Synthesis of Multicolor Fluorescent Hollow Carbon Spheres Encapsulating Enriched Carbon Dots. 2016 , 6, 19382		10
297	On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. 2016 , 6, 35244		34
296	Redox and Organic Post-Annealing Chemical Processes Impacting the Fluorescence of N V Centers into Nanodiamonds: A Competitive Process Between Exfoliation and Functionalisation. <i>Journal of Fluorescence</i> , 2016 , 26, 2321-2332	2.4	
295	3D Single-Molecule Imaging of Transmembrane Signaling by Targeting Nanodiamonds. 2016 , 26, 365-37	5	24
294	Benchtop Fluorination of Fluorescent Nanodiamonds on a Preparative Scale: Toward Unusually Hydrophilic Bright Particles. 2016 , 26, 4134-4142		28
293	Carbon Nanoparticles and Nanostructures. Carbon Nanostructures, 2016,	0.6	14
292	Nanodiamonds: From Synthesis and Purification to Deposition Techniques, Hybrids Fabrication and Applications. <i>Carbon Nanostructures</i> , 2016 , 1-45	0.6	2
291	Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA. 2016 , 40, 1571-1579		45
290	Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation. 2016 , 12, 823-833		15
289	Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing. 2016 , 49, 400-7		208
288	Generation of Nitrogen-Vacancy Center Pairs in Bulk Diamond by Molecular Nitrogen Implantation. 2016 , 33, 026105		
287	Purification and functionalization of nanodiamond to serve as a platform for amoxicillin delivery. 2016 , 63, 323-32		19
286	Scanning Nanospin Ensemble Microscope for Nanoscale Magnetic and Thermal Imaging. <i>Nano Letters</i> , 2016 , 16, 326-33	11.5	65
285	. 2016 , 22, 235-245		6
284	Nanodiamonds: Behavior in Biological Systems and Emerging Bioapplications. 2016 , 319-361		5
283	Mass production of fluorescent nanodiamonds with a narrow emission intensity distribution. 2016 , 96, 812-818		32
282	Coating nanodiamonds with biocompatible shells for applications in biology and medicine. 2017 , 21, 43-53		75
281	Single particle tracking of fluorescent nanodiamonds in cells and organisms. 2017 , 21, 35-42		42

280	Phagocytosis and immune response studies of Macrophage-Nanodiamond Interactions in vitro and in vivo. 2017 , 10, 1315-1326	10
279	Measuring Nanoscale Thermostability of Cell Membranes with Single Gold-Diamond Nanohybrids. 2017 , 56, 3025-3030	53
278	Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy. 2017 , 6, 1601080	20
277	Commercial quantities of ultrasmall fluorescent nanodiamonds containing color centers. 2017,	21
276	Dual Functional Core-Shell Fluorescent AgS@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment. 2017 , 2, 371-378	16
275	Hydrothermal synthesis of well crystallized C8 and diamond nanocrystals and pH-controlled C8 <-h diamond phase transition. 2017 , 19, 1248-1252	9
274	Determination of dihydralazine based on chemiluminescence resonance energy transfer of hollow carbon nanodots. 2017 , 183, 103-108	5
273	Efficiency of Cathodoluminescence Emission by Nitrogen-Vacancy Color Centers in Nanodiamonds. 2017 , 13, 1700543	7
272	Nanotoxicity in Systemic Circulation and Wound Healing. 2017 , 30, 1253-1274	32
271	Measuring Nanoscale Thermostability of Cell Membranes with Single GoldDiamond Nanohybrids. 2017 , 129, 3071-3076	O
270	Electrospraying preparation and characterization of harmonic Ba2TiSi2O8 microparticles. 2017, 83, 109-114	
269	Heterogeneous PEGylation of diamond nanoparticles. 2017 , 9, 70-74	7
268	Glycosaminoglycans-Specific Cell Targeting and Imaging Using Fluorescent Nanodiamonds Coated with Viral Envelope Proteins. 2017 , 89, 6527-6534	14
267	Magnetic Resonance in Semiconductor Micro- and Nanostructures. 2017 , 357-433	
266	Production and purification of nanodiamonds. 2017 , 25-56	9
265	Photoluminescence of color centers in nanodiamonds. 2017 , 155-181	6
264	Fe doped Magnetic Nanodiamonds made by Ion Implantation. 2017 , 7, 41938	10
263	Local density of electromagnetic states in plasmonic nanotapers: spatial resolution limits with nitrogen-vacancy centers in diamond nanospheres. <i>Nanotechnology</i> , 2017 , 28, 205207	6

(2017-2017)

262	miniature pigs. 2017 , 7, 45607	50
261	Diverse Applications of Nanomedicine. 2017 , 11, 2313-2381	714
260	Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. 2017 , 7, 17387-17397	19
259	Mesoporous carbon nanoshells for high hydrophobic drug loading, multimodal optical imaging, controlled drug release, and synergistic therapy. 2017 , 9, 1434-1442	31
258	Paramagnetic Properties of Metal-Free Boron-Doped Graphene Quantum Dots and Their Application for Safe Magnetic Resonance Imaging. 2017 , 29, 1605416	85
257	Diamond nanostructures for drug delivery, bioimaging, and biosensing. 2017 , 46, 734-760	79
256	Fluorescent Glyco Single-Chain Nanoparticle-Decorated Nanodiamonds. 2017, 6, 1168-1174	23
255	Fluence-Dependent Evolution of Paramagnetic Triplet Centers in e-Beam Irradiated Microcrystalline Ib Type HPHT Diamond. 2017 , 121, 22335-22346	18
254	Synthesis, Thermal Properties and Application of Nanodiamond. 2017 , 85-112	2
253	Nanodiamonds as pH-switchable oxidation and reduction catalysts with enzyme-like activities for immunoassay and antioxidant applications. 2017 , 9, 15673-15684	30
252	Surface Redox Chemistry of Immobilized Nanodiamond: Effects of Particle Size and Electrochemical Environment. 2017 , 46, 4512-4526	4
251	Diamond Nanoparticles for Drug Delivery and Monitoring. 2017 , 119-140	1
250	Nanomaterials for Drug Delivery. 2017 , 57-77	6
249	Nanocarbon materials fabricated using plasmas. 2017 , 1, 1	25
248	Defined functionality and increased luminescence of nanodiamonds for sensing and diagnostic applications by targeted high temperature reactions and electron beam irradiation. 2017 , 1, 2527-2540	10
247	Multifunctional nitrogen-doped carbon dots from maleic anhydride and tetraethylenepentamine via pyrolysis for sensing, adsorbance, and imaging applications. 2017 , 253, 1026-1033	32
246	Intracellular Trafficking of Fluorescent Nanodiamonds and Regulation of Their Cellular Toxicity. 2017 , 2, 2689-2693	26
245	Electromagnetic Interference Shielding of Polymer/Nanodiamond, Polymer/Carbon Nanotube, and Polymer/NanodiamondCarbon Nanotube Nanobifiller Composite: A Review. 2017 , 56, 347-363	16

244	Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. 2017, 489, 114-125	45
243	Diamonds for quantum nano sensing. 2017 , 21, 25-34	17
242	Wilkinson-Type Immobilized Catalyst on Diamond Nanoparticles for Alkene Reduction. 2017 , 9, 432-439	8
241	Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. <i>Nature Nanotechnology</i> , 2017 , 12, 322-328	79
240	Live bio-imaging with fully bio-compatible organic fluorophores. 2017 , 166, 52-57	7
239	Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway. 2017 , 13, 187-200	16
238	Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits. 2017 , 4, 557	25
237	Salt-Assisted Ultrasonicated De-Aggregation and Advanced Redox Electrochemistry of Detonation Nanodiamond. 2017 , 10,	5
236	Dipole Emission to Surface Plasmon-Coupled Enhanced Transmission in Diamond Substrates with Nitrogen Vacancy Center- Near the Surface. 2017 , 4, 10	3
235	Bitistatin-functionalized fluorescent nanodiamond particles specifically bind to purified human platelet integrin receptor activated platelets. 2017 , 12, 3711-3720	11
234	Uptake and intracellular accumulation of diamond nanoparticles - a metabolic and cytotoxic study. 2017 , 8, 1649-1657	6
233	An efficient fluorescent single-particle position tracking system for long-term pulsed measurements of nitrogen-vacancy centers in diamond. 2018 , 89, 023702	1
232	Fluorescent nanodiamond-bacteriophage conjugates maintain host specificity. 2018, 115, 1427-1436	10
231	Light Emission from Plasmonic Nanostructures Enhanced with Fluorescent Nanodiamonds. 2018 , 8, 3605	16
230	Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics. 2018 , 132, 616-622	22
229	Enrichment of ODMR-active nitrogen-vacancy centres in five-nanometre-sized detonation-synthesized nanodiamonds: Nanoprobes for temperature, angle and position. 2018 , 8, 5463	21
228	Fabrication of blue-fluorescent nanodiamonds modified with alkyl isocyanate for cellular bioimaging. 2018 , 167, 191-196	4
227	Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout. 2018 , 12, 4678-4686	26

(2018-2018)

226	Functionalisation of Detonation Nanodiamond for Monodispersed, Soluble DNA-Nanodiamond Conjugates Using Mixed Silane Bead-Assisted Sonication Disintegration. 2018 , 8, 728	15
225	Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. 2018 , 30, 1701460	99
224	STED-TEM Correlative Microscopy Leveraging Nanodiamonds as Intracellular Dual-Contrast Markers. 2018 , 14, 1701807	26
223	Facile preparation of fluorescent nanodiamond-based polymer composites through a metal-free photo-initiated RAFT process and their cellular imaging. 2018 , 337, 82-90	92
222	Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. 2018, 1-92	4
221	One-step fabrication of PEGylated fluorescent nanodiamonds through the thiol-ene click reaction and their potential for biological imaging. 2018 , 439, 1143-1151	27
220	Correlative Light-Electron Microscopy of Lipid-Encapsulated Fluorescent Nanodiamonds for Nanometric Localization of Cell Surface Antigens. 2018 , 90, 1566-1571	22
219	Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates. 2018 , 8, 4521	35
218	Quantum-optical characterization of single-photon emitters created by MeV proton irradiation of HPHT diamond nanocrystals. 2018 , 435, 318-322	2
217	Nanodiamonds: Synthesis and Applications. 2018 , 1-26	2
216	Improving Defect-Based Quantum Emitters in Silicon Carbide via Inorganic Passivation. 2018, 30, 1704543	12
215	Luminescent hybrid materials based on nanodiamonds. 2018 , 127, 170-176	18
214	Tracking Photoluminescent Carbon Nanomaterials in Biological Systems. 2018 , 115-137	
213	One step conversion of waste polyethylene to Cr3C2 nanorods and Cr2AlC particles under mild conditions. 2018 , 5, 2893-2897	13
212	Catalysis by hybrid sp/sp nanodiamonds and their role in the design of advanced nanocarbon materials. 2018 , 47, 8438-8473	80
211	NIR-responsive carbon-based nanocarriers for switchable on/off drug release and synergistic cancer therapy. 2018 , 6, 7794-7799	9
21 0	An ultrasensitive fluorescent aptasensor for detection of cancer marker proteins based on graphene oxide-ssDNA 2018 , 8, 41143-41149	6
209	. 2018,	19

208	Electronic structures and spectroscopic signatures of silicon-vacancy containing nanodiamonds. <i>Physical Review B</i> , 2018 , 98,	9
207	Nanodiamonds. 2018 , 19-35	
206	Producing Fluorescent Nanodiamonds. 2018, 91-112	
205	Cell Labeling and Fluorescence Imaging. 2018 , 135-153	
204	Functionalized Carbon Nanomaterials for Drug Delivery. 2018 , 265-288	
203	Production of Metal-Free Diamond Nanoparticles. 2018 , 3, 16099-16104	7
202	Molecular imaging with nanoparticles: the dwarf actors revisited 10lyears later. 2018, 150, 733-794	8
201	Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy. 2018 , 289, 70-78	41
200	Single Particle Detection and Tracking. 2018 , 113-133	
199	Visible-light excited red-emitting vacancies at carbon interstitials as indicators of irradiated and annealed Type Ia diamonds. 2018 , 90, 188-193	O
198	Extremely rapid isotropic irradiation of nanoparticles with ions generated in situ by a nuclear reaction. <i>Nature Communications</i> , 2018 , 9, 4467	15
197	Engineering bright fluorescent nitrogen-vacancy (NV) nano-diamonds: Role of low-energy ion-irradiation parameters. 2018 , 8, 085023	8
196	Fabrication of Silicon-Vacancy Color Centers in Nanodiamonds by using Si-Ion Implantation. 2018 , 73, 661-666	5
195	Supported Lipid Bilayers on Fluorescent Nanodiamonds: A Structurally Defined and Versatile Coating for Bioapplications. 2018 , 28, 1803406	13
194	Inorganic nanotheranostics: Strategy development and applications. 2018, 377-419	1
193	Nanoparticles for super-resolution microscopy and single-molecule tracking. 2018 , 15, 415-423	142
192	Orientation-independent room temperature optical C hyperpolarization in powdered diamond. 2018 , 4, eaar5492	55
191	One-Pot Synthesis of Highly Dispersible Fluorescent Nanodiamonds for Bioconjugation. 2018 , 29, 2786-2792	23

190	Nanosized Optical Thermometers. 2018 , 199-217	3
189	Fluorescent nanodiamonds: past, present, and future. 2018 , 7, 1423-1453	80
188	Fluorescent nanodiamonds for luminescent thermometry in the biological transparency window. Optics Letters, 2018, 43, 3317-3320	25
187	Fluorescent Nanodiamond Applications for Cellular Process Sensing and Cell Tracking. 2018, 9,	35
186	Polyglycerols. 2018 , 103-171	9
185	Fluorescence and Raman Spectroscopy of Doped Nanodiamonds. 2018 , 85, 295-299	O
184	Functionalization of stable fluorescent nanodiamonds towards reliable detection of biomarkers for Alzheimer's disease. 2018 , 16, 60	22
183	The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. 2018 , 287, 24-34	40
182	Single-Step Metal-Free Grafting of Cationic Polymer Brushes on Fluorescent Nanodiamonds. 2018 , 11,	6
181	Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. 2018 , 3, 9126-9145	42
180	Manipulating the distribution of electric field intensity to effectively enhance the spatial and spectral fluorescence intensity of fluorescent nanodiamonds. 2018 , 10, 17576-17584	3
179	Tin-vacancy in diamonds for luminescent thermometry. <i>Applied Physics Letters</i> , 2018 , 112, 241902 3.4	34
178	Polydopamine encapsulation of fluorescent nanodiamonds for biomedical applications. 2018, 28, 1801252	36
177	Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. <i>Chemical Reviews</i> , 2019 , 119, 9559-9656	219
176	Nanodiamond Integration with Photonic Devices. 2019 , 13, 1800316	32
175	Spontaneous Complexation of Fullerene Aggregates on Nanodiamond Aggregates and Their Enhanced Photocurrent Generation. 2019 , 14, 4042-4047	2
174	Creation of uniformly dispersed nitrogen-vacancy centers in nano-diamonds by low energy ion-irradiation. 2019 , 6, 115097	1
173	IR-enhanced photothermal therapeutic effect of graphene magnetite nanocomposite on human liver cancer HepG2 cell model. 2019 , 14, 4397-4412	17

172	Intracellular Delivery of Luciferase with Fluorescent Nanodiamonds for Dual-Modality Imaging of Human Stem Cells. 2019 , 30, 2228-2237	9
171	Facile Production of Hexagonal Boron Nitride Nanoparticles by Cryogenic Exfoliation. <i>Nano Letters</i> , 2019 , 19, 5417-5422	12
170	Self-Quenching Origin of Carbon Dots and the Guideline for Their Solid-State Luminescence. 2019 , 123, 27124-27131	21
169	Water-Soluble Nanoconjugate for Enhanced Cellular Delivery of Receptor-Targeted Magnetic Resonance Contrast Agents. 2019 , 30, 2947-2957	6
168	. 2019,	8
167	Laser-driven nanomaterials and laser-enabled nanofabrication for industrial applications. 2019 , 181-203	7
166	Fluorescent Nanodiamonds Enable Long-Term Detection of Human Adipose-Derived Stem/Stromal Cells in an In Vivo Chondrogenesis Model Using Decellularized Extracellular Matrices and Fibrin Glue Polymer. 2019 , 11,	3
165	Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy. 2019 , 6, 190589	7
164	Synthesis of Loose Nanodiamonds Containing Nitrogen-Vacancy Centers for Magnetic and Thermal Sensing. <i>ACS Applied Nano Materials</i> , 2019 , 2, 5952-5962	8
163	All-Optical Quantum Sensing of Rotational Brownian Motion of Magnetic Molecules. <i>Nano Letters</i> , 2019 , 19, 7342-7348	5
162	Controlling the fluorescence properties of nitrogen vacancy centers in nanodiamonds. 2019 , 11, 1770-1783	18
161	Not All Fluorescent Nanodiamonds Are Created Equal: A Comparative Study. 2019 , 36, 1900009	34
160	A Perspective on Fluorescent Nanodiamond Bioimaging. 2019 , 15, e1902151	42
159	Influence of degree of air oxidation and functionality on ensemble emission from nitrogen vacancy centers in nano-diamonds. 2019 , 97, 107431	8
158	Knockdown of microRNA-135b in Mammary Carcinoma by Targeted Nanodiamonds: Potentials and Pitfalls of In Vivo Applications. 2019 , 9,	3
157	Bioorthogonal Fluorescent Nanodiamonds for Continuous Long-Term Imaging and Tracking of Membrane Proteins. 2019 , 11, 19774-19781	23
156	Reconstruction of vector static magnetic field by different axial NV centers using continuous wave optically detected magnetic resonance in diamond. <i>Chinese Physics B</i> , 2019 , 28, 047601	2
155	Does Twinning Impact Structure/Property Relationships in Diamond Nanoparticles?. 2019 , 123, 11207-11215	7

154	OFFIDN nanodiamond drug platform for targeted cancer imaging and therapy. 2019 , 7, 3390-3402	13
153	Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. 2019 , 269, 122-151	67
152	Biconcave Carbon Nanodisks for Enhanced Drug Accumulation and Chemo-Photothermal Tumor Therapy. 2019 , 8, e1801505	18
151	Fluorescent Fe Embedded Magnetic Nanodiamonds Made by Ion Implantation. 2019 , 9, 1297	6
150	Review Article: Synthesis, properties, and applications of fluorescent diamond particles. 2019 , 37, 030802	61
149	Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. 2019 , 18, 185-201	173
148	Surface Modifications of Nanodiamonds and Current Issues for Their Biomedical Applications. 2019 , 415-460	2
147	From Fancy Blue to Red: Controlled Production of a Vibrant Color Spectrum of Fluorescent Diamond Particles. 2019 , 29, 1808362	23
146	Carbon-Based Nanosensor Technology. 2019 ,	3
145	High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. <i>Nano Letters</i> , 2019 , 19, 2178-2185	26
144	The Role of Functionalization in the Applications of Carbon Materials: An Overview. 2019 , 5, 84	26
143	Optically Active Nanomaterials for Bioimaging and Targeted Therapy. 2019 , 7, 320	31
142	Study of nitrogen content in HPHT diamond by nuclear reaction analysis. 2019 , 450, 315-318	1
141	Water-dispersible fluorescent nanodiamonds for biological imaging prepared by thiol-ene click chemistry. 2019 , 95, 481-486	7
140	A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. 2019 , 196, 456-478	203
139	Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. 2019 , 97, 913-931	57
138	Nanocrystalline Diamond: A High-Impact Carbon Nanomaterial for Multifunctional Applications Including as Nanofiller in Biopolymeric Matrices. 2019 , 123-181	4
137	Nanodiamonds: Emerging face of future nanotechnology. 2019 , 143, 678-699	71

136	Hybrids made of defective nanodiamonds interacting with DNA nucleobases. <i>Nanotechnology</i> , 2019 , 30, 065601	1
135	Carbon-based nanomaterials as an emerging platform for theranostics. 2019 , 6, 434-469	173
134	Nanodiamonds: Minuscule gems that ferry antineoplastic drugs to resistant tumors. 2019 , 558, 165-176	12
133	Tunable charge states of nitrogen-vacancy centers in diamond for ultrafast quantum devices. 2019 , 142, 662-672	20
132	Growing synergy of nanodiamonds in neurodegenerative interventions. 2019 , 24, 584-594	11
131	A Random Laser Based on Hybrid Fluorescent Dye and Diamond Nanoneedles. 2019 , 13, 1800513	O
130	Fluorescence microscopy for visualizing single-molecule protein dynamics. 2020 , 1864, 129362	12
129	Surface engineering and applications of nanodiamonds in cancer treatment and imaging. 2020 , 65, 189-225	24
128	Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in⊡vivo study and patents. 2020 , 10, 1-12	69
127	Facile preparation of fluorescent nanodiamond based polymer nanoparticles via ring-opening polymerization and their biological imaging. 2020 , 106, 110297	7
126	Nanodiamond in composite: Biomedical application. 2020 , 108, 906-922	22
125	Stability, elastic properties and deformation behavior of graphene-based diamond-like phases. 2020 , 172, 109355	12
124	Carbon nanomaterials: fundamental concepts, biological interactions, and clinical applications. 2020 , 223-242	4
123	Features of High-Frequency EPR/ESE/ODMR Spectroscopy of NV-Defects in Diamond. 2020 , 62, 2024-2032	1
122	Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. 2020 , 587, 588-593	82
121	Coated nanodiamonds interact with tubulin beta-III negative cells of adult brain tissue. 2020 , 15, 061009	O
120	Enhanced Optical 13C Hyperpolarization in Diamond Treated by High-Temperature Rapid Thermal Annealing. <i>Advanced Quantum Technologies</i> , 2020 , 3, 2000050	5
119	Chemical Functionalization of Nanodiamond for Nanobiomedicine. 2020 , 229-246	

(2021-2020)

118	Various Allotropes of Diamond Nanoparticles Generated in the Gas Phase during Hot Filament Chemical Vapor Deposition. 2020 , 10,	3
117	High Nanodiamond Content-PCL Composite for Tissue Engineering Scaffolds. 2020, 10,	10
116	Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. 2020 , 10, 4094	25
115	Simultaneous label-free live imaging of cell nucleus and luminescent nanodiamonds. 2020, 10, 9791	6
114	Nanoscale magnetic imaging enabled by nitrogen vacancy centres in nanodiamonds labelled by iron-oxide nanoparticles. 2020 , 12, 8847-8857	8
113	Single-particle spectroscopy for functional nanomaterials. 2020 , 579, 41-50	82
112	Molecular-Scale Nanodiamond with High-Density Color Centers Fabricated from Graphite by Laser Shocking. <i>Cell Reports Physical Science</i> , 2020 , 1, 100054	3
111	Room temperature "optical nanodiamond hyperpolarizer": Physics, design, and operation. 2020 , 91, 023106	10
110	Nitrogen in Diamond. <i>Chemical Reviews</i> , 2020 , 120, 5745-5794 68.1	41
109	Principles, mechanisms, and application of carbon quantum dots in sensors: a review. 2020 , 12, 1266-1287	127
109	Principles, mechanisms, and application of carbon quantum dots in sensors: a review. 2020 , 12, 1266-1287 A review of recent advances in nanodiamond-mediated drug delivery in cancer. 2021 , 18, 369-382	127
		, i
108	A review of recent advances in nanodiamond-mediated drug delivery in cancer. 2021 , 18, 369-382 Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and	13
108	A review of recent advances in nanodiamond-mediated drug delivery in cancer. 2021 , 18, 369-382 Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. 2021 , 587, 101-109	13 4 3
108	A review of recent advances in nanodiamond-mediated drug delivery in cancer. 2021, 18, 369-382 Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. 2021, 587, 101-109 Emerging applications of nanodiamonds in photocatalysis. 2021, 1, 93-109	13 4 3
108 107 106	A review of recent advances in nanodiamond-mediated drug delivery in cancer. 2021, 18, 369-382 Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. 2021, 587, 101-109 Emerging applications of nanodiamonds in photocatalysis. 2021, 1, 93-109 Fluorescent nanodiamond - hyaluronate conjugates for target-specific molecular imaging. 2021, 11, 23073-23	13 4 3
108 107 106 105	A review of recent advances in nanodiamond-mediated drug delivery in cancer. 2021, 18, 369-382 Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. 2021, 587, 101-109 Emerging applications of nanodiamonds in photocatalysis. 2021, 1, 93-109 Fluorescent nanodiamond - hyaluronate conjugates for target-specific molecular imaging. 2021, 11, 23073-23 Nanodiamonds for Theragnostic: Manufacturing and Biomedical Applications. 2021, 139-171	13 4 3 3081

100	Biocompatibility and biomedical applications of various carbon-based materials. 2021, 829-875		1
99	Ground-State Depletion Nanoscopy of Nitrogen-Vacancy Centres in Nanodiamonds. 2021 , 16, 44		1
98	Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. <i>Molecules</i> , 2021 , 26,	3	5
97	Low-Temperature CO2 Thermal Reduction to Graphitic and Diamond-like Carbons Using Perovskite-Type Titanium Nanoceramics by Quasi-High-Pressure Reactions. 2021 , 9, 3860-3873		2
96	Ultrafast nonthermal NV center formation in diamond. 2021 , 174, 524-530		4
95	High ensemble concentration of photo-stable NV centers in Type Ib nanodiamonds by thermal assisted migration of native vacancies. 2021 , 114, 108337		1
94	Regulation of fluorescence emission of carbon dots via hydrogen bonding assembly. 2021 , 126, 108500		O
93	Thermometric Characterization of Fluorescent Nanodiamonds Suitable for Biomedical Applications. 2021 , 11, 4065		2
92	Nanometer-scale ordered arrangement of diamond nanoparticles on substrates via electrostatic deposition. 2021 , 14, 055003		O
91	Nanodiamonds and their potential applications in breast cancer therapy: a narrative review. 2021 , 1		О
90	Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. 2021, 6, 2077-2107		16
89	All-Optical Wide-Field Selective Imaging of Fluorescent Nanodiamonds in Cells, and. 2021,		1
88	Quantifying nanodiamonds biodistribution in whole cells with correlative iono-nanoscopy. <i>Nature Communications</i> , 2021 , 12, 4657	·4	4
87	Nanodiamonds as nanomaterial for biomedical field. 2021 , 15, 334-351		4
86	Carboxylated/Oxidized Diamond Nanoparticles for Quantifying Immunoglobulin G Antibodies Using Mass Spectrometry. <i>ACS Applied Nano Materials</i> , 2021 , 4, 8922-8936 5.6	ó	O
85	Nanodiamonds: Synthesis, properties, and applications in nanomedicine. 2021 , 210, 110091		13
84	Enhancement of concentration of XeV and GeV centers in microcrystalline diamond films through He+ irradiation. 2021 , 120, 108587		1
83	CHAPTER 8:Nanodiamonds and Their Biological Applications. 2021 , 257-292		O

(2021-2021)

82	Peptide-Engineered Fluorescent Nanomaterials: Structure Design, Function Tailoring, and Biomedical Applications. 2021 , 17, e2005578		13	
81	Perspectives on Carbon Nanomaterials in Medicine Based upon Physicochemical Properties: Nanotubes, Nanodiamonds, and Carbon Nanobombs. 2016 , 3-29		5	
80	Bioimaging and Quantum Sensing Using NV Centers in Diamond Nanoparticles. <i>Carbon Nanostructures</i> , 2016 , 109-137	0.6	3	•
79	Red emission doublets in diamond from vacancies interacting with interstitial carbon aggregates in tunneling configurations. 2017 , 120, 294-303		2	
78	Nitrogen-doped carbon-coated nanodiamonds for electrocatalytic applications. 2021 , 54, 085303		3	
77	Nanodiamond ensemble-based temperature measurement in living cells and its limitations. 2021 , 32, 015701		6	
76	General top-down strategy for generating single-digit nanodiamonds for bioimaging. <i>Nanotechnology</i> , 2020 , 31, 485601	3.4	2	
75	NV center pumped and enhanced by nanowire ring resonator laser to integrate a 10 fh-scale spin-based sensor structure. <i>Nanotechnology</i> , 2021 , 32, 055502	3.4	2	
74	Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene. <i>Chinese Physics B</i> , 2020 , 29, 108102	1.2	6	
73	Plasmonic enhancement of a silicon-vacancy center in a nanodiamond crystal. <i>Physical Review Materials</i> , 2017 , 1,	3.2	7	
72	Background-free two-photon fluorescence readout via a three-photon charge-state modulation of nitrogen-vacancy centers in diamond. <i>Optics Letters</i> , 2019 , 44, 3737-3740	3	8	
71	Production of fluorescent nano-diamonds through femtosecond pulsed laser ablation. <i>Optical Materials Express</i> , 2019 , 9, 4734	2.6	13	
70	FRET enhanced fluorescent nanodiamonds. Current Pharmaceutical Biotechnology, 2014, 14, 1127-33	2.6	14	
69	Recent progress in nanodiamonds: Synthesis, properties and their potential applications. 2018 , 2, 1-23		6	
68	Vacancy-impurity centers in diamond: perspectives of synthesis and applications. <i>Uspekhi Fizicheskikh Nauk</i> , 2017 , 187, 577-598	0.5	5	
67	Nanodiamond for Structural Biomimetic Scaffolds. <i>Journal of Materials Science and Chemical Engineering</i> , 2018 , 06, 6-17	0.3	1	
66	Dispersion of nanodiamond by Chemical treatment. <i>Journal of the Korea Academia-Industrial Cooperation Society</i> , 2011 , 12, 999-1004		2	
65	Advances in the Surface Functionalization of Nanodiamonds for Biological Applications: A Review. <i>ACS Applied Nano Materials</i> , 2021 , 4, 9985-10005	5.6	6	

64	Mass producing glowing nanodiamonds. NPG Asia Materials,	10.3	
63	Supramolecular Chemistry Meets Hybrid (Nano)Materials: A Brief Look Ahead. 689-700		
62	Nanodiamond Particles. The Electrical Engineering Handbook, 2012, 789-866		1
61	Enhanced Multi-Photon Emission from Single NV Center Coupled to Graphene by Laser-Shaping. 2015 ,		
60	Carbon Allotropes and Fascinated Nanostructures: The High-Impact Engineering Materials of the Millennium. 2015 , 2-27		
59	Immunotherapy and Vaccines. 2016 , 441-464		
58	Polyglycerol-Functionalized Nanoparticles for Biomedical Imaging. Carbon Nanostructures, 2016, 139-1.	5% .6	2
57	Fluorescent Nanodiamonds in Biological and Biomedical Imaging and Sensing. <i>Series in Cellular and Clinical Imaging</i> , 2016 , 215-232		
56	Chapter 3:Carbon Nanomaterials in Analytical Separations. RSC Detection Science, 2018, 69-104	0.4	
55	Characterization and applications of fluorescent nanodiamonds surface-coated with photo-crosslinked lipids. 2018 ,		
54	Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds. 2018,		
53	Nanodiamonds enable adaptive-optics enhanced, super-resolution, two-photon excitation microscopy.		
52	Carbon-Based Tumour-targeted Systems. 2020 , 231-269		
51	Caenorhabditis elegans: A Model Organism to Decipher Biological Activities of Nanoparticles. 2020 , 13	9-175	
50	Investigation of the spectral characteristics of silicon-vacancy centers in ultrananocrystalline diamond nanostructures and single crystalline diamond. <i>Journal of Applied Physics</i> , 2020 , 127, 035302	2.5	
49	Why nanodiamond carriers manage to overcome drug resistance in cancer 2020 , 3, 854-866		O
48	Ag ${f D}$ iamond Core ${f B}$ hell Nanostructures Incorporated with Silicon-Vacancy Centers. ACS Materials Au,		0
47	Opportunities for hybrid diamond nanosensors targeting photothermal applications in biological systems. <i>Applied Physics Letters</i> , 2021 , 119, 190502	3.4	3

46	Laser Ablation and Fluid Flows Show a Single Force Mechanism Governs Spindle Positioning.		Ο
45	General Method to Increase Carboxylic Acid Content on Nanodiamonds <i>Molecules</i> , 2022 , 27,	4.8	1
44	Tellurite Glass Rods with Submicron-Size Diamonds as Photonic Magnetic Field and Temperature Sensors. <i>Advanced Quantum Technologies</i> , 2100128	4.3	1
43	Bleaching-Resistant Super-Resolution Fluorescence Microscopy Advanced Science, 2022, e2101817	13.6	1
42	Steric Interaction of Polyglycerol-Functionalized Detonation Nanodiamonds Langmuir, 2022,	4	1
41	Explainable prediction of N-V-related defects in nanodiamond using neural networks and Shapley values. <i>Cell Reports Physical Science</i> , 2022 , 3, 100696	6.1	1
40	Metastable Brominated Nanodiamond Surface Enables Room Temperature and Catalysis-Free Amine Chemistry <i>Journal of Physical Chemistry Letters</i> , 2022 , 1147-1158	6.4	1
39	A Review on Properties, Synthesis, Surface Functionalization and Application of Nanodiamonds for Antimicrobial Activity. <i>Current Nanomaterials</i> , 2022 , 07,	1.3	
38	Synthesis, Characterization, Properties, and Novel Applications of Fluorescent Nanodiamonds <i>Journal of Fluorescence</i> , 2022 , 1	2.4	1
37	Chemistry-mediated Ostwald ripening in carbon-rich C/O systems at extreme conditions <i>Nature Communications</i> , 2022 , 13, 1424	17.4	O
36	Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry <i>Nano Letters</i> , 2022 ,	11.5	3
35	Application of Nanodiamonds in Modelled Bioremediation of Phenol Pollution in River Sediments. <i>Processes</i> , 2022 , 10, 602	2.9	1
34	NV-center distribution and ODMR spectra in two types of natural diamonds. <i>Journal of Physics:</i> Conference Series, 2022 , 2227, 012002	0.3	
33	References. 2021 , 317-358		
32	On-Demand, Direct Printing of Nanodiamonds at the Quantum Level Advanced Science, 2021, e210359	98 13.6	3
31	Recent Advances in the Applications of Carbon Nanostructures on Optical Sensing of Emerging Aquatic Pollutants. <i>ChemNanoMat</i> ,	3.5	2
30	Carbon nanomaterial-based sensors: An efficient tool in the environmental sectors. 2022 , 149-165		
29	Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications review. <i>Journal of Materials Science</i> , 2022 , 57, 8064-8099	4.3	O

28	Long spin coherence times of nitrogen vacancy centers in milled nanodiamonds. <i>Physical Review B</i> , 2022 , 105,	3.3	0
27	Beauty beyond the Eye: Color Centers in Diamond Particles for Imaging and Quantum Sensing Applications. <i>Reviews and Advances in Chemistry</i> , 2022 , 12, 1-21	0	O
26	Applications of Fluorescent Nanodiamond in Biology. 1-43		
25	Electrostatic Layer-by-Layer Deposition of Diamond Nanoparticles Onto Substrate Surfaces. <i>SSRN Electronic Journal</i> ,	1	
24	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews,	68.1	10
23	Nanodiamonds as Possible Tools for Improved Management of Bladder Cancer and Bacterial Cystitis. 2022 , 23, 8183		1
22	All-Optical Modulation of Single Defects in Nanodiamonds: Revealing Rotational and Translational Motions in Cell Traction Force Fields.		1
21	High-resolution two-photon fluorescence microscope imaging of nanodiamonds containing NV color centers. 2022 , 40, 105874		O
20	Electrostatic layer-by-layer deposition of diamond nanoparticles onto substrate surfaces. 2022 , 9, 1002	202	
19	Microgels based on 0D-3D carbon materials: Synthetic techniques, properties, applications, and challenges. 2022 , 307, 135981		O
18	Fluorescent nanodiamond-based spin-enhanced lateral flow immunoassay for detection of SARS-CoV-2 nucleocapsid protein and spike protein from different variants. 2022 , 1230, 340389		2
17	Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity. 2022 , 19, n/a		O
16	Single-Particle Tracking and Trajectory Analysis of Fluorescent Nanodiamonds in Cell-Free Environment and Live Cells. 2022 , 18, 2201395		0
15	De novo design of allochroic zwitterions. 2022 ,		4
14	Nanobiotechnology. 2022 , 209-254		0
13	Fluorescent nanodiamond for nanotheranostic applications. 2022 , 189,		O
12	Nanodiamond; insight from introduction to application. 2022 , 19,		0
11	Evaluation of Cytotoxicity and Bioimaging of Nitrogen-Vacancy Nanodiamonds. 2022 , 12, 4196		O

CITATION REPORT

10	Versatile Nanodiamond-Based Tools for Therapeutics and Bioimaging.	1
9	A guide to small fluorescent probes for single-molecule biophysics. 2023 , 4, 011302	O
8	Targeting EGFR and Monitoring Tumorigenesis of Human Lung Cancer Cells In Vitro and In Vivo Using Nanodiamond-Conjugated Specific EGFR Antibody. 2023 , 15, 111	O
7	Imaging and Sensing Inside the Living Cells. From Seeing to Believing. 2023 , 529-596	O
6	Electronic Structures and Spectroscopic Signatures of Noble-Gas-Doped Nanodiamonds.	O
5	Fanatical Clout of Porous Carbon Materials Peek in Therapeutics. 2023, 841-883	O
4	Multifunctional Carbon-Based Nanoparticles: Theranostic Applications in Cancer Therapy and Diagnosis. 2023 , 6, 1323-1338	O
3	Inorganic-based nanotheranostics: current status and challenges. 2023 , 1-41	O
2	Atomically Precise Detection and Manipulation of Nitrogen-Vacancy Centers in Nanodiamonds.	O
1	Highly Dispersed 3C Silicon Carbide Nanoparticles with a Polydopamine/Polyglycerol Shell for Versatile Functionalization.	O