Nanoparticle-mediated cellular response is size-depend

Nature Nanotechnology 3, 145-150

DOI: 10.1038/nnano.2008.30

Citation Report

#	Article	IF	CITATIONS
2	Combinatorial foundations of information theory and the calculus of probabilities. Russian Mathematical Surveys, 1983, 38, 29-40.	0.2	221
3	Bioconjugated silica nanoparticles: Development and applications. Nano Research, 2008, 1, 99-115.	5.8	337
4	A Facile and Scalable Process for Sizeâ€Controllable Separation of Nanodiamond Particles as Small as 4 nm. Small, 2008, 4, 2154-2157.	5.2	80
5	Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia. Advanced Materials, 2008, 20, 3832-3838.	11.1	371
6	A Blown Film Process to Diskâ€Shaped Polymer Ellipsoids. Advanced Materials, 2008, 20, 4599-4602.	11,1	44
7	Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chemical Physics Letters, 2008, 463, 145-149.	1.2	319
8	Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra. Analytical Chemistry, 2008, 80, 6620-6625.	3.2	255
9	Composite Nanoparticles Take Aim at Cancer. ACS Nano, 2008, 2, 2200-2205.	7.3	125
10	Spectroturbidimetric determination of the size, concentration, and refractive index of silica nanoparticles. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 105, 732-738.	0.2	6
11	Nanomaterials at work in biomedical research. Nature Materials, 2008, 7, 758-760.	13.3	227
12	Beyond drug delivery. Nature Nanotechnology, 2008, 3, 131-132.	15.6	216
13	Quantum Dotâ^'Amphipol Nanocomplex for Intracellular Delivery and Real-Time Imaging of siRNA. ACS Nano, 2008, 2, 1403-1410.	7.3	206
14	Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging. Journal of the American Chemical Society, 2008, 130, 15476-15481.	6.6	132
15	Self-Assembled Lipidâ^'Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano, 2008, 2, 1696-1702.	7.3	851
16	Ultrasmall c(RGDyK)-Coated Fe $<$ sub $>$ 3 $<$ /sub $>$ O $<$ sub $>$ 4 $<$ /sub $>$ Nanoparticles and Their Specific Targeting to Integrin α $<$ sub $>$ v $<$ /sub $>$ Î2 $<$ sub $>$ 3 $<$ /sub $>$ -Rich Tumor Cells. Journal of the American Chemical Society, 2008, 130, 7542-7543.	6.6	405
17	Determination of the Size, Concentration, and Refractive Index of Silica Nanoparticles from Turbidity Spectra. Langmuir, 2008, 24, 8964-8970.	1.6	119
18	Self-assembly approaches to nanomaterial encapsulation in viral protein cages. Journal of Materials Chemistry, 2008, 18, 3763.	6.7	106
19	Multiplexed Screening of Cellular Uptake of Gold Nanoparticles Using Laser Desorption/Ionization Mass Spectrometry. Journal of the American Chemical Society, 2008, 130, 14139-14143.	6.6	126

#	Article	IF	Citations
20	The Effect of Gold Nanorods on Cell-Mediated Collagen Remodeling. Nano Letters, 2008, 8, 3409-3412.	4.5	45
21	Function follows form: shape complementarity and nanoparticle toxicity. Nanomedicine, 2008, 3, 601-603.	1.7	35
22	Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: Implications for uptake of nanoparticles in animal cells. Physical Review E, 2008, 78, 061914.	0.8	58
23	Morphological and biochemical changes after intravenous injection of gold nanoparticles. , 2008, , .		0
25	Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opinion on Drug Delivery, 2009, 6, 1091-1112.	2.4	94
26	From Polymers to Colloids: Engineering the Dynamic Properties of Hairy Particles. Advances in Polymer Science, 2009, , 1-54.	0.4	36
27	Interactions of nanoparticles with lipid vesicles: A population based computer aided image analysis approach., 2009, 2009, 1400-3.		2
28	Preparation of lisinopril-capped gold nanoparticles for molecular imaging of angiotensin-converting enzyme. Proceedings of SPIE, 2009, , .	0.8	1
29	Nanocrystallization Mechanism of Organic Compounds in the Reprecipitation Method by Stopped-Flow Analysis. Japanese Journal of Applied Physics, 2009, 48, 105003.	0.8	13
30	Application of semiconductor and metal nanostructures in biology and medicine. Hematology American Society of Hematology Education Program, 2009, 2009, 701-707.	0.9	30
31	Morphological studies of living cells using gold nanoparticles and dark-field optical section microscopy. Journal of Biomedical Optics, 2009, 14, 1.	1.4	18
33	In Situ Bioconjugation: Single Step Approach to Tailored Nanoparticleâ€Bioconjugates by Ultrashort Pulsed Laser Ablation. Advanced Functional Materials, 2009, 19, 1167-1172.	7.8	145
34	Immunotargeting of Functional Nanoparticles for MRI detection of Apoptotic Tumor Cells. Advanced Materials, 2009, 21, 541-545.	11.1	32
35	Assessing cytotoxicity of (iron oxideâ€based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media and Molecular Imaging, 2009, 4, 207-219.	0.4	114
36	Oneâ€Pot Fabrication of Highâ€Quality InP/ZnS (Core/Shell) Quantum Dots and Their Application to Cellular Imaging. ChemPhysChem, 2009, 10, 1466-1470.	1.0	78
37	Preparation of Size Tunable Amphiphilic Poly(amino acid) Nanoparticles. Macromolecular Bioscience, 2009, 9, 842-848.	2.1	40
39	Photoactive Hybrid Nanomaterial for Targeting, Labeling, and Killing Antibioticâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2009, 48, 7928-7931.	7.2	159
40	The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials, 2009, 30, 5979-5987.	5.7	454

3

#	ARTICLE	IF	Citations
41	Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting. Biomaterials, 2009, 30, 6912-6919.	5.7	147
42	Nanoparticles in cellular drug delivery. Bioorganic and Medicinal Chemistry, 2009, 17, 2950-2962.	1.4	744
43	In quest of a systematic framework for unifying and defining nanoscience. Journal of Nanoparticle Research, 2009, 11, 1251-1310.	0.8	238
44	Numerical evaluation of the effectiveness of colloidal gold as a contrast agent. Radiological Physics and Technology, 2009, 2, 33-39.	1.0	7
45	Cancerâ€Cellâ€Phenotypeâ€Dependent Differential Intracellular Trafficking of Unconjugated Quantum Dots. Small, 2009, 5, 370-376.	5.2	88
46	Imaging Viral Behavior in Mammalian Cells with Selfâ€Assembled Capsid–Quantumâ€Dot Hybrid Particles. Small, 2009, 5, 718-726.	5.2	120
47	Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos. Small, 2009, 5, 1897-1910.	5.2	551
48	Size Effect on Cell Uptake in Wellâ€Suspended, Uniform Mesoporous Silica Nanoparticles. Small, 2009, 5, 1408-1413.	5.2	898
49	Nanofountainâ€Probeâ€Based Highâ€Resolution Patterning and Singleâ€Cell Injection of Functionalized Nanodiamonds. Small, 2009, 5, 1667-1674.	5.2	74
50	Gold Nanoparticles of Diameter 1.4 nm Trigger Necrosis by Oxidative Stress and Mitochondrial Damage. Small, 2009, 5, 2067-2076.	5.2	685
51	Probing Cellâ€Typeâ€Specific Intracellular Nanoscale Barriers Using Sizeâ€Tuned Quantum Dots. Small, 2009, 5, 2581-2588.	5.2	68
52	Towards Ideal Magnetofluorescent Nanoparticles for Bimodal Detection of Breastâ€Cancer Cells. Small, 2009, 5, 2555-2564.	5.2	40
53	Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Research, 2009, 19, 1031-1034.	5.7	94
54	Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 2009, 4, 634-641.	15.6	1,586
55	The uptake of N-(2-hydroxypropyl)-methacrylamide based homo, random and block copolymers by human multi-drug resistant breast adenocarcinoma cells. Biomaterials, 2009, 30, 5682-5690.	5.7	89
56	The defined presentation of nanoparticles to cells and their surface controlled uptake. Biomaterials, 2009, 30, 3766-3770.	5.7	31
57	The design of polyvalent scaffolds for targeted deliveryâ [*] †. Advanced Drug Delivery Reviews, 2009, 61, 931-939.	6.6	44
58	An examination of the ability of titanium dioxide nanoparticles and its conjugates with oligonucleotides to penetrate into eucariotis cells. Nanotechnologies in Russia, 2009, 4, 732.	0.7	9

#	ARTICLE	IF	CITATIONS
59	Unexpected In Vivo Anti-Inflammatory Activity Observed for Simple, Surface Functionalized Poly(amidoamine) Dendrimers. Biomacromolecules, 2009, 10, 1195-1202.	2.6	169
60	Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents. ACS Nano, 2009, 3, 4003-4008.	7.3	92
61	Production of Functionalized Biopolyester Granules by Recombinant <i>Lactococcus lactis</i> Applied and Environmental Microbiology, 2009, 75, 4668-4675.	1.4	46
62	Nanoparticle Processing in the Solid State Dramatically Increases the Cell Membrane Permeation of a Cholesterol-Lowering Drug, Probucol. Molecular Pharmaceutics, 2009, 6, 1029-1035.	2.3	26
64	Characterization of Protein Clusters of Diverse Magnetic Nanoparticles and Their Dynamic Interactions with Human Cells. Journal of Physical Chemistry C, 2009, 113, 5390-5395.	1.5	51
65	Synergistic Effects of Mutations and Nanoparticle Templating in the Self-Assembly of Cowpea Chlorotic Mottle Virus Capsids. Nano Letters, 2009, 9, 393-398.	4.5	57
66	Synthesis and Surface Modification of Highly Monodispersed, Spherical Gold Nanoparticles of 50â^'200 nm. Journal of the American Chemical Society, 2009, 131, 17042-17043.	6.6	589
67	Poly(ε-caprolactone)/Poly(ethylene glycol)/Poly(ε-caprolactone) Nanoparticles: Preparation, Characterization, and Application in Doxorubicin Delivery. Journal of Physical Chemistry B, 2009, 113, 12928-12933.	1.2	72
68	Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles. ACS Nano, 2009, 3, 149-158.	7.3	491
69	Single Gold Nanoparticles Counter: An Ultrasensitive Detection Platform for One-Step Homogeneous Immunoassays and DNA Hybridization Assays. Journal of the American Chemical Society, 2009, 131, 12763-12770.	6.6	54
70	Synthesis and Characterization of Tb ³⁺ -Doped Gd ₂ O ₃ Nanocrystals: A Bifunctional Material with Combined Fluorescent Labeling and MRI Contrast Agent Properties. Journal of Physical Chemistry C, 2009, 113, 6913-6920.	1.5	154
71	Single-Domain Antibody Functionalized CdSe/ZnS Quantum Dots for Cellular Imaging of Cancer Cells. Journal of Physical Chemistry C, 2009, 113, 496-499.	1.5	55
72	Comparing methods for detecting and characterizing metal oxide nanoparticles in unmodified commercial sunscreens. Nanomedicine, 2009, 4, 145-159.	1.7	115
73	Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. Journal of Materials Chemistry, 2009, 19, 5737.	6.7	232
74	Cancer imaging and therapy with metal nanoparticles. , 2009, 2009, 2005-7.		6
75	Enhancement of 5-Aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radical Research, 2009, 43, 1214-1224.	1.5	38
76	Mediating Tumor Targeting Efficiency of Nanoparticles Through Design. Nano Letters, 2009, 9, 1909-1915.	4.5	1,344
77	Polymer-functionalized nanoparticles: from stealth viruses to biocompatible quantum dots. Nanomedicine, 2009, 4, 951-966.	1.7	23

#	ARTICLE	IF	Citations
78	Gastrin Releasing Protein Receptor Specific Gold Nanorods: Breast and Prostate Tumor Avid Nanovectors for Molecular Imaging. Nano Letters, 2009, 9, 1798-1805.	4.5	119
79	Nanoparticle-Mediated IgEâ^Receptor Aggregation and Signaling in RBL Mast Cells. Journal of the American Chemical Society, 2009, 131, 17328-17334.	6.6	76
80	Nanodiamonds as vehicles for systemic and localized drug delivery. Expert Opinion on Drug Delivery, 2009, 6, 883-895.	2.4	84
81	Multifunctional Coreâ^'Shell Nanoparticles as Highly Efficient Imaging and Photosensitizing Agents. Langmuir, 2009, 25, 10153-10158.	1.6	88
82	Multimodal drug delivery using gold nanoparticles. Nanoscale, 2009, 1, 61.	2.8	243
83	Small monodisperse unilamellar vesicles from binary copolymer mixtures. Soft Matter, 2009, 5, 4169.	1.2	19
84	Field theoretical modeling of the coexistence of micelles and vesicles in binary copolymer mixtures. Soft Matter, 2009, 5, 4173.	1.2	13
85	Water dispersible semiconductor nanorod assemblies via a facile phase transfer and their application as fluorescent biomarkers. Journal of Materials Chemistry, 2009, 19, 8974.	6.7	17
86	Size and geometry dependent protein–nanoparticle self-assembly. Chemical Communications, 2009, , 2157.	2.2	72
87	Template-free synthesis of biodegradable nanogels with tunable sizes as potential carriers for drug delivery. Journal of Materials Chemistry, 2009, 19, 7856.	6.7	23
88	Role of Reactive Oxygen Species in Determining Nitrification Inhibition by Metallic/Oxide Nanoparticles. Journal of Environmental Engineering, ASCE, 2009, 135, 1365-1370.	0.7	32
89	Characterization of Antiplatelet Properties of Silver Nanoparticles. ACS Nano, 2009, 3, 1357-1364.	7.3	301
90	Kinetics of Nanoparticle Targeting by Dissipative Particle Dynamics Simulations. Biomacromolecules, 2009, 10, 3089-3097.	2.6	31
91	Novel methods of targeted drug delivery: the potential of multifunctional nanoparticles. Expert Review of Clinical Pharmacology, 2009, 2, 265-282.	1.3	27
92	Macrophage Responses to Silica Nanoparticles are Highly Conserved Across Particle Sizes. Toxicological Sciences, 2009, 107, 553-569.	1.4	207
93	Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy. ACS Nano, 2009, 3, 2686-2696.	7.3	187
94	IN VITRO CHARACTERIZATION OF A TARGETED, DYE-LOADED NANODEVICE FOR INTRAOPERATIVE TUMOR DELINEATION. Neurosurgery, 2009, 64, 965-972.	0.6	56
95	Design and development of multifunctional contrast agents for photoacoustic imaging. Proceedings of SPIE, 2009, , .	0.8	3

#	ARTICLE	IF	CITATIONS
96	Therapeutic Nanoparticles to Combat Cancer Drug Resistance. Current Drug Metabolism, 2009, 10, 836-841.	0.7	196
97	Biodegradable near-infrared plasmonic nanoclusters for biomedical applications. Proceedings of SPIE, 2010, , .	0.8	0
98	Harmonic phase angle as a concentrationâ€independent measure of nanoparticle dynamics. Medical Physics, 2010, 37, 2587-2592.	1.6	45
101	Study on Controllable Preparation of Silica Nanoparticles with Multi-sizes and Their Size-dependent Cytotoxicity in Pheochromocytoma Cells and Human Embryonic Kidney Cells. Journal of Health Science, 2010, 56, 632-640.	0.9	25
102	Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 2010, 62, 284-304.	6.6	1,683
103	Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 2010, 62, 362-374.	6.6	624
104	Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis. Journal of the American Chemical Society, 2010, 132, 1517-1519.	6.6	611
105	The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility. Biomaterials, 2010, 31, 8188-8197.	5.7	149
106	Current Application of Micro/Nano-Interfaces to Stimulate and Analyze Cellular Responses. Annals of Biomedical Engineering, 2010, 38, 2056-2067.	1.3	4
107	Investigating the specific uptake of EGF-conjugated nanoparticles in lung cancer cells using fluorescence imaging. Cancer Nanotechnology, 2010, 1, 71-78.	1.9	20
108	The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Science Bulletin, 2010, 55, 1013-1019.	1.7	54
109	The hydrogel template method for fabrication of homogeneous nano/microparticles. Journal of Controlled Release, 2010, 141, 314-319.	4.8	128
110	Nanosystem drug targeting: Facing up to complex realities. Journal of Controlled Release, 2010, 141, 265-276.	4.8	243
111	A novel size-tunable nanocarrier system for targeted anticancer drug delivery. Journal of Controlled Release, 2010, 144, 314-323.	4.8	113
112	Gold nanoparticle platforms as drug and biomacromolecule delivery systems. Journal of Controlled Release, 2010, 148, 122-127.	4.8	405
113	In-vivo tumor targeting of pluronic-based nano-carriers. Journal of Controlled Release, 2010, 147, 109-117.	4.8	72
114	Docetaxel loaded oleic acid-coated hydroxyapatite nanoparticles enhance the docetaxel-induced apoptosis through activation of caspase-2 in androgen independent prostate cancer cells. Journal of Controlled Release, 2010, 147, 278-288.	4.8	74
115	Using carbon magnetic nanoparticles to target, track, and manipulate dendritic cells. Journal of Immunological Methods, 2010, 356, 47-59.	0.6	26

#	Article	IF	CITATIONS
116	Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Science of the Total Environment, 2010, 408, 2268-2272.	3.9	196
117	Polyblend nanofibers for biomedical applications: perspectives and challenges. Trends in Biotechnology, 2010, 28, 189-197.	4.9	198
118	Amphiphilic Poly(Amino Acid) Nanoparticles Induce Sizeâ€Dependent Dendritic Cell Maturation. Advanced Functional Materials, 2010, 20, 3925-3931.	7.8	58
119	Targeting of Cancer Cells Using Quantum Dot–Polypeptide Hybrid Assemblies That Function as Molecular Imaging Agents and Carrier Systems. Advanced Functional Materials, 2010, 20, 4091-4097.	7.8	25
120	Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications. Advanced Functional Materials, 2010, 20, 3684-3694.	7.8	216
121	Exploring Primary Liver Macrophages for Studying Quantum Dot Interactions with Biological Systems. Advanced Materials, 2010, 22, 2520-2524.	11.1	7 3
124	Gold Nanoparticles for Biology and Medicine. Angewandte Chemie - International Edition, 2010, 49, 3280-3294.	7.2	2,096
125	A Simple Spectroscopic Method for Differentiating Cellular Uptakes of Gold Nanospheres and Nanorods from Their Mixtures. Angewandte Chemie - International Edition, 2010, 49, 1976-1980.	7.2	53
126	Characterization of a clinical polymerâ€drug conjugate using multiscale modeling. Biopolymers, 2010, 93, 936-951.	1.2	20
127	A GFP complementation system for monitoring and directing nanomaterial mediated protein delivery to human cellular organelles. Biotechnology and Bioengineering, 2010, 107, 1040-1047.	1.7	13
128	Multifunctional Magnetoplasmonic Nanoparticle Assemblies for Cancer Therapy and Diagnostics (Theranostics). Macromolecular Rapid Communications, 2010, 31, 228-236.	2.0	86
129	Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1-35.	1.1	551
130	Internalization and kinetics of nuclear migration of protein-only, arginine-rich nanoparticles. Biomaterials, 2010, 31, 9333-9339.	5.7	22
131	Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology, 2010, 267, 178-181.	2.0	63
132	Size-mediated cytotoxicity and apoptosis of hydroxyapatite nanoparticles in human hepatoma HepG2 cells. Biomaterials, 2010, 31, 730-740.	5.7	222
133	Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials, 2010, 31, 1342-1348.	5.7	104
134	Coreâ€"shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Biomaterials, 2010, 31, 7555-7566.	5.7	213
135	Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. Journal of Nanobiotechnology, 2010, 8, 33.	4.2	235

#	Article	IF	Citations
136	Intracellular Nanoparticle Coating Stability Determines Nanoparticle Diagnostics Efficacy and Cell Functionality. Small, 2010, 6, 2136-2145.	5.2	169
137	Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging. Small, 2010, 6, 2026-2034.	5.2	136
138	Effect of Surface Properties on Nanoparticle–Cell Interactions. Small, 2010, 6, 12-21.	5.2	2,252
139	Gold Nanoparticles Capped with Polyethyleneimine for Enhanced siRNA Delivery. Small, 2010, 6, 239-246.	5.2	269
140	HDLâ€Mimicking Peptide–Lipid Nanoparticles with Improved Tumor Targeting. Small, 2010, 6, 430-437.	5.2	122
141	Multifunctional Magnetic–Optical Nanoparticle Probes for Simultaneous Detection, Separation, and Thermal Ablation of Multiple Pathogens. Small, 2010, 6, 283-289.	5.2	160
142	The Effects of Size, Shape, and Surface Functional Group of Gold Nanostructures on Their Adsorption and Internalization by Cells. Small, 2010, 6, 517-522.	5.2	304
143	Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small, 2010, 6, 1952-1967.	5.2	907
144	High Intracellular Iron Oxide Nanoparticle Concentrations Affect Cellular Cytoskeleton and Focal Adhesion Kinaseâ€Mediated Signaling. Small, 2010, 6, 832-842.	5.2	232
145	Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nature Nanotechnology, 2010, 5, 579-583.	15.6	617
146	Biodegradable near-infrared plasmonic nanoclusters for biomedical applications. , 2010, , .		0
147	A straightforward route to the synthesis of a surface-enhanced Raman scattering probe for targeting transferrin receptor-overexpressed cells. Nanotechnology, 2010, 21, 345101.	1.3	24
148	Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. Nanomedicine, 2010, 5, 999-1007.	1.7	69
149	Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14541-14546.	3.3	126
150	A simple method to evaluate the optimal size of nanoparticles for endocytosis based on kinetic diffusion of receptors. Applied Physics Letters, 2010, 97, .	1.5	19
151	Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 565-570.	3.3	541
153	Challenging nature's monopoly on the creation of well-defined nanoparticles. Nanomedicine, 2010, 5, 633-639.	1.7	26
154	G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10667-10672.	3.3	51

#	Article	IF	CITATIONS
155	Nanoparticle-Mediated Cytoplasmic Delivery of Proteins To Target Cellular Machinery. ACS Nano, 2010, 4, 1493-1500.	7.3	119
156	Anionic Amino Acid Dendrimerâ^'Trastuzumab Conjugates for Specific Internalization in HER2-Positive Cancer Cells. Molecular Pharmaceutics, 2010, 7, 1318-1327.	2.3	55
157	Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications. Molecular Membrane Biology, 2010, 27, 364-381.	2.0	140
158	An Integrated Approach for the Rational Design of Nanovectors for Biomedical Imaging and Therapy. Advances in Genetics, 2010, 69, 31-64.	0.8	48
159	Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with Polyvinylpyrrolidone-Coated Iron Oxide Nanoparticles. ACS Nano, 2010, 4, 7151-7160.	7.3	417
160	Physicochemical properties affecting cellular uptake of carbon nanotubes. Nanomedicine, 2010, 5, 89-97.	1.7	157
161	Synergistically Enhanced Osteogenic Differentiation of Human Mesenchymal Stem Cells by Culture on Nanostructured Surfaces with Induction Media. Biomacromolecules, 2010, 11, 1856-1862.	2.6	109
162	Probing the Size Effect of Co ₂ FeGa-SiO ₂ @C Nanocomposite Particles Prepared by a Chemical Approach. Chemistry of Materials, 2010, 22, 6575-6582.	3.2	27
163	Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology, 2010, 21, 295101.	1.3	194
164	Microfluidic Directed Self-Assembly of Liposomeâ^'Hydrogel Hybrid Nanoparticles. Langmuir, 2010, 26, 11581-11588.	1.6	90
165	Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer. Soft Matter, 2010, 6, 5589.	1.2	75
166	Intracellular uptake, transport, and processing of gold nanostructures. Molecular Membrane Biology, 2010, 27, 299-311.	2.0	177
167	Iron oxide-based nanomagnets in nanomedicine: fabrication and applications. Nano Reviews, 2010, 1, 4883.	3.7	59
168	Self-assembled filamentous nanostructures for drug/gene delivery applications. Expert Opinion on Drug Delivery, 2010, 7, 341-351.	2.4	27
169	Metallic nanoparticles: technology overview & amp; drug delivery applications in oncology. Expert Opinion on Drug Delivery, 2010, 7, 927-942.	2.4	179
170	HER2 targeting as a two-sided strategy for breast cancer diagnosis and treatment: Outlook and recent implications in nanomedical approaches. Pharmacological Research, 2010, 62, 150-165.	3.1	63
171	Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules. Toxicology Letters, 2010, 195, 161-168.	0.4	98
172	Continuum model of mechanical interactions between biological cells and artificial nanostructures. Biointerphases, 2010, 5, 37-44.	0.6	20

#	Article	IF	CITATIONS
173	Effects of PEGylation and Acetylation of PAMAM Dendrimers on DNA Binding, Cytotoxicity and <i>in Vitro</i> Transfection Efficiency. Molecular Pharmaceutics, 2010, 7, 1734-1746.	2.3	119
174	What the Cell "Sees―in Bionanoscience. Journal of the American Chemical Society, 2010, 132, 5761-5768.	6.6	1,075
175	Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opinion on Drug Delivery, 2010, 7, 479-495.	2.4	263
176	Modeling the effects of nanoparticles on neuronal cells: From ionic channels to network dynamics. , 2010, 2010, 3816-9.		7
177	A Rapid Pathway Toward a Superb Gene Delivery System: Programming Structural and Functional Diversity into a Supramolecular Nanoparticle Library. ACS Nano, 2010, 4, 6235-6243.	7.3	122
178	Quantifying the Cellular Uptake of Antibody-Conjugated Au Nanocages by Two-Photon Microscopy and Inductively Coupled Plasma Mass Spectrometry. ACS Nano, 2010, 4, 35-42.	7.3	150
179	Diacetylene-Containing Ligand As a New Capping Agent for the Preparation of Water-Soluble Colloidal Nanoparticles of Remarkable Stability. Langmuir, 2010, 26, 7072-7077.	1.6	37
180	One-Phase Synthesis of Water-Soluble Gold Nanoparticles with Control over Size and Surface Functionalities. Langmuir, 2010, 26, 7604-7613.	1.6	155
181	Kinetic Assembly of Near-IR-Active Gold Nanoclusters Using Weakly Adsorbing Polymers to Control the Size. Langmuir, 2010, 26, 8988-8999.	1.6	60
182	Targeted Cytosolic Delivery of Cell-Impermeable Compounds by Nanoparticle-Mediated, Light-Triggered Endosome Disruption. Nano Letters, 2010, 10, 2211-2219.	4.5	110
183	Depth resolved photothermal OCT detection of macrophages in tissue using nanorose. Biomedical Optics Express, 2010, 1, 2.	1.5	35
184	Biology on the NanoscaleBiology on the nanoscale. , 2010, , 527-614.		0
185	Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology, 2010, 7, 653-664.	12.5	2,666
186	Interaction of Gold Nanoparticles with Common Human Blood Proteins. ACS Nano, 2010, 4, 365-379.	7.3	863
187	Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opinion on Drug Delivery, 2010, 7, 705-719.	2.4	123
188	Inorganic nanoparticle-based contrast agents for molecular imaging. Trends in Molecular Medicine, 2010, 16, 561-573.	3.5	221
189	Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Research, 2010, 44, 6095-6103.	5.3	226
190	On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1405-1453.	1.6	230

#	Article	IF	CITATIONS
191	Nanotechnology, bionanotechnology and microbial cell factories. Microbial Cell Factories, 2010, 9, 53.	1.9	48
192	Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chemical Society Reviews, 2010, 39, 4326.	18.7	866
193	The Complex Role of Multivalency in Nanoparticles Targeting the Transferrin Receptor for Cancer Therapies. Journal of the American Chemical Society, 2010, 132, 11306-11313.	6.6	298
194	Assessing iron oxide nanoparticle toxicity <i>in vitro</i> : current status and future prospects. Nanomedicine, 2010, 5, 1261-1275.	1.7	127
195	Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opinion on Drug Delivery, 2010, 7, 577-587.	2.4	163
196	Nanodiamond Vectors Functionalized with Polyethylenimine for siRNA Delivery. Journal of Physical Chemistry Letters, 2010, 1, 3167-3171.	2.1	146
197	Quantum dot-based theranostics. Nanoscale, 2010, 2, 60-68.	2.8	240
198	Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats. ACS Nano, 2010, 4, 3023-3032.	7.3	316
199	Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nature Reviews Clinical Oncology, 2010, 7, 266-276.	12.5	173
200	Half-Antibody Functionalized Lipidâ [^] Polymer Hybrid Nanoparticles for Targeted Drug Delivery to Carcinoembryonic Antigen Presenting Pancreatic Cancer Cells. Molecular Pharmaceutics, 2010, 7, 914-920.	2.3	181
201	A Rational Approach for Controlled Adsorption of Metal Ions on Bovine Serum Albuminâ [^] 'Malachite Bionanocomposite. Journal of Physical Chemistry C, 2010, 114, 9817-9825.	1.5	18
202	Endo- and Exocytosis of Zwitterionic Quantum Dot Nanoparticles by Live HeLa Cells. ACS Nano, 2010, 4, 6787-6797.	7.3	279
203	The effect of PEG-coated gold nanoparticles on the anti-proliferative potential of Specific Nutrient Synergy. Nanotoxicology, 2010, 4, 177-185.	1.6	14
204	Activatable nanomaterials at the forefront of biomedical sciences. Journal of Materials Chemistry, 2010, 20, 8194.	6.7	21
205	Rapid Cellular Internalization of Multifunctional Star Polymers Prepared by Atom Transfer Radical Polymerization. Biomacromolecules, 2010, 11, 2199-2203.	2.6	45
206	Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1235-1240.	3.3	614
207	Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7449-7454.	3.3	233
208	Acetate–citrate gel combustion: a strategy for the synthesis of nanosized lutetium hafnate phosphor powders. Journal of Materials Chemistry, 2011, 21, 8975.	6.7	6

#	Article	IF	CITATIONS
209	Mobility of fluorescently labeled polymer micelles in living cells. Soft Matter, 2011, 7, 1214-1218.	1.2	5
210	Permeation of nanocrystals across lipid membranes. Molecular Physics, 2011, 109, 1511-1526.	0.8	33
211	Toxicological assessment of TiO2nanoparticles by recombinant Escherichia coli bacteria. Journal of Environmental Monitoring, 2011, 13, 42-48.	2.1	32
212	Molecular understanding of receptor-mediated membrane responses to ligand-coated nanoparticles. Soft Matter, 2011, 7, 9104.	1.2	99
213	Toroidal \hat{I}^2 -barrels from self-assembling \hat{I}^2 -sheet peptides. Journal of Materials Chemistry, 2011, 21, 11680.	6.7	15
214	On the possible effects of nanoparticles on neuronal feedback circuits: A modeling study. , 2011, , .		1
215	Mixed Charged Zwitterionic Self-Assembled Monolayers as a Facile Way to Stabilize Large Gold Nanoparticles. Langmuir, 2011, 27, 5242-5251.	1.6	78
216	HER2 Expression in Breast Cancer Cells Is Downregulated Upon Active Targeting by Antibody-Engineered Multifunctional Nanoparticles in Mice. ACS Nano, 2011, 5, 6383-6393.	7.3	66
217	Short Ligands Affect Modes of QD Uptake and Elimination in Human Cells. ACS Nano, 2011, 5, 4909-4918.	7.3	85
218	Controlled Morphogenesis of Organic Polyhedral Nanocrystals from Cubes, Cubooctahedrons, to Octahedrons by Manipulating the Growth Kinetics. Journal of the American Chemical Society, 2011, 133, 1895-1901.	6.6	103
220	Nanoparticle targeting using multivalent ligands: computer modeling. Soft Matter, 2011, 7, 4435.	1.2	29
221	One-Pot Tuning of Au Nucleation and Growth: From Nanoclusters to Nanoparticles. Langmuir, 2011, 27, 8424-8429.	1.6	16
222	Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses. ACS Nano, 2011, 5, 3059-3068.	7.3	91
223	Cellular Uptake and Fate of PEGylated Gold Nanoparticles Is Dependent on Both Cell-Penetration Peptides and Particle Size. ACS Nano, 2011, 5, 6434-6448.	7.3	381
224	Tuning Physical Properties of Nanocomplexes through Microfluidics-Assisted Confinement. Nano Letters, 2011, 11, 2178-2182.	4.5	51
225	Selective Targeting of Antibody Conjugated Multifunctional Nanoclusters (Nanoroses) to Epidermal Growth Factor Receptors in Cancer Cells. Langmuir, 2011, 27, 7681-7690.	1.6	38
226	Gold nanostructures: a class of multifunctional materials for biomedical applications. Chemical Society Reviews, 2011, 40, 44-56.	18.7	727
227	The effect of interactions on the cellular uptake of nanoparticles. Physical Biology, 2011, 8, 046002.	0.8	70

#	Article	IF	CITATIONS
228	On the edge of new technologies (advanced therapies, nanomedicines). Drug Discovery Today: Technologies, 2011, 8, e21-e28.	4.0	10
229	Antibody-targeted nanoparticles for cancer therapy. Immunotherapy, 2011, 3, 381-394.	1.0	140
230	Principles of conjugating quantum dots to proteins via carbodiimide chemistry. Nanotechnology, 2011, 22, 494006.	1.3	44
231	Copper Selenide Nanocrystals for Photothermal Therapy. Nano Letters, 2011, 11, 2560-2566.	4.5	1,264
232	Collagen: Materials Analysis and Implant Uses. , 2011, , 261-278.		19
233	Mesoporous silica nanoparticles as nanocarriers. Chemical Communications, 2011, 47, 9972.	2.2	317
234	Proteinâ^'Nanoparticle Interactions: Opportunities and Challenges. Chemical Reviews, 2011, 111, 5610-5637.	23.0	1,242
235	Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2 ⁺ Breast Cancer. ACS Nano, 2011, 5, 9718-9725.	7.3	246
236	Single metal nanoparticles: optical detection, spectroscopy and applications. Reports on Progress in Physics, 2011, 74, 106401.	8.1	233
237	A biophysical perspective of understanding nanoparticles at large. Physical Chemistry Chemical Physics, 2011, 13, 7273.	1.3	63
238	Competitive Protection of Aptamer-Functionalized Gold Nanoparticles by Controlling the DNA Assembly. Analytical Chemistry, 2011, 83, 6464-6467.	3.2	26
239	Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles. ACS Nano, 2011, 5, 5729-5745.	7.3	286
240	Visualizing Gold Nanoparticle Uptake in Live Cells with Liquid Scanning Transmission Electron Microscopy. Nano Letters, 2011, 11, 1733-1738.	4.5	157
242	Integrated metabonomics analysis of the size-response relationship of silica nanoparticles-induced toxicity in mice. Nanotechnology, 2011, 22, 055101.	1.3	81
243	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202
244	Single particle technique for one-step homogeneous detection of cancer marker using gold nanoparticle probes. Analyst, The, 2011, 136, 4247.	1.7	36
245	Delay Time and Concentration Effects During Bioconjugation of Nanosecond Laser-Generated Nanoparticles in a Liquid Flow. Journal of Physical Chemistry C, 2011, 115, 5094-5101.	1.5	36
246	Identification of single nanoparticles. Nanoscale, 2011, 3, 31-44.	2.8	36

#	Article	IF	CITATIONS
247	siRNA-Aptamer Chimeras on Nanoparticles: Preserving Targeting Functionality for Effective Gene Silencing. ACS Nano, 2011, 5, 8131-8139.	7.3	94
248	De Novo Design of Bioactive Protein-Resembling Nanospheres via Dendrimer-Templated Peptide Amphiphile Assembly. Nano Letters, 2011, 11, 3946-3950.	4.5	49
249	Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 361-373.	1.1	408
250	Nanomedicine(s) under the Microscope. Molecular Pharmaceutics, 2011, 8, 2101-2141.	2.3	815
251	The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility <i>in Vivo</i> . ACS Nano, 2011, 5, 5390-5399.	7.3	788
252	Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews, 2011, 40, 233-245.	18.7	684
253	Polyelectrolyte complex optimization for macrophage delivery of redox enzyme nanoparticles. Nanomedicine, 2011, 6, 25-42.	1.7	54
254	Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2011, 726, 129-135.	0.9	188
255	Wrapping and Internalization of Nanoparticles by Lipid Bilayers: a Computer Simulation Study. Australian Journal of Chemistry, 2011, 64, 894.	0.5	19
256	Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews Drug Discovery, 2011, 10, 835-852.	21.5	341
257	Beating cancer in multiple ways using nanogold. Chemical Society Reviews, 2011, 40, 3391.	18.7	552
258	Targeted Cellular Uptake and siRNA Silencing by Quantumâ€Dot Nanoparticles Coated with β yclodextrin Coupled to Amino Acids. Chemistry - A European Journal, 2011, 17, 5171-5179.	1.7	39
259	Perspectives for the use of silver nanoparticles in dental practice. International Dental Journal, 2011, 61, 297-301.	1.0	111
260	Structural properties of soluble peptide amphiphile micelles. Soft Matter, 2011, 7, 9572.	1.2	160
261	DNA Damage in Embryonic Stem Cells Caused by Nanodiamonds. ACS Nano, 2011, 5, 2376-2384.	7.3	153
262	Gold Nanoparticles Induce Autophagosome Accumulation through Size-Dependent Nanoparticle Uptake and Lysosome Impairment. ACS Nano, 2011, 5, 8629-8639.	7.3	543
263	Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology, 2011, 5, 254-268.	1.6	139
264	Conjugation of Quantum Dots and JT95 IgM Monoclonal Antibody for Thyroid Carcinoma Without Abolishing the Specificity and Activity of the Antibody. IEEE Transactions on Nanobioscience, 2011, 10, 30-35.	2.2	8

#	Article	IF	CITATIONS
265	An Ancient Model Organism to Test In Vivo Novel Functional Nanocrystals. , 2011, , .		5
267	Editorial [Hot Topic: Gold Derivatives as Anti-Cancer Agents (Guest Editor: Laura Rodriguez Raurell)]. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 920-920.	0.9	0
268	Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer. Theranostics, 2011, 1, 3-17.	4.6	74
269	Polystyrene nanoparticles activate ion transport in human airway epithelial cells. International Journal of Nanomedicine, 2011, 6, 1343.	3.3	49
270	Anti-Inflammatory Properties of Dendrimers <i>per se</i> . Scientific World Journal, The, 2011, 11, 1367-1382.	0.8	36
271	In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. International Journal of Nanomedicine, 2011, 6, 1889.	3.3	99
272	Multifunctional Gold Nanoparticles for Cancer Therapy. , 2011, , 1-24.		0
273	Subtle cytotoxicity and genotoxicity differences in superparamagnetic iron oxide nanoparticles coated with various functional groups. International Journal of Nanomedicine, 2011, 6, 3219.	3.3	106
274	The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature Materials, 2011, 10, 389-397.	13.3	933
275	The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nature Nanotechnology, 2011, 6, 385-391.	15.6	637
276	Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: toward models of uptake kinetics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 818-826.	1.7	268
277	Toxicology and clinical potential of nanoparticles. Nano Today, 2011, 6, 585-607.	6.2	558
278	Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. Journal of Controlled Release, 2011, 150, 204-211.	4.8	107
279	Magnetic PLGA Nanospheres: A Dual Therapy for Cancer. IEEE Transactions on Magnetics, 2011, 47, 2882-2886.	1.2	5
280	Golden Perspective: Application of Laserâ€Generated Gold Nanoparticle Conjugates in Reproductive Biology. Reproduction in Domestic Animals, 2011, 46, 42-52.	0.6	31
281	Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials, 2011, 32, 8291-8303.	5.7	160
282	Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials, 2011, 32, 8645-8653.	5.7	62
283	Assessment of nanomaterial cytotoxicity with SOLiD sequencing-based microRNA expression profiling. Biomaterials, 2011, 32, 9021-9030.	5.7	64

#	Article	IF	CITATIONS
284	Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere, 2011, 83, 1124-1132.	4.2	210
285	Cellular Uptake, Intracellular Trafficking and Biological Responses of Gold Nanoparticles. Journal of the Chinese Chemical Society, 2011, 58, 273-281.	0.8	17
286	Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity. ACS Nano, 2011, 5, 5478-5489.	7.3	716
287	Biodistribution and toxicity of gold nanoparticles. Nanotechnologies in Russia, 2011, 6, 17-42.	0.7	11
288	Acute toxicity analysis of polyelectrolyte microcapsules with zinc oxide nanoparticles and microcapsule shell components using aquatic organisms. Nanotechnologies in Russia, 2011, 6, 244-255.	0.7	3
289	Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. Journal of Materials Chemistry, 2011, 21, 5845.	6.7	626
290	Methodologies for Toxicity Monitoring and Nanotechnology Risk Assessment. ACS Symposium Series, 2011, , 141-180.	0.5	6
291	Nanoparticle microinjection and Raman spectroscopy as tools for nanotoxicology studies. Analyst, The, 2011, 136, 4402.	1.7	47
292	Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chemical Society Reviews, 2011, 40, 1647-1671.	18.7	1,331
293	Triggered disassembly of hierarchically assembled onion-like micelles into the pristine core–shell micelles via a small change in pH. Acta Biomaterialia, 2011, 7, 3729-3737.	4.1	32
294	Oxide and hybrid nanostructures for therapeutic applications. Advanced Drug Delivery Reviews, 2011, 63, 1267-1281.	6.6	115
295	Inorganic Nanoparticles in Cancer Therapy. Pharmaceutical Research, 2011, 28, 237-259.	1.7	323
296	Effect of serum proteins on polystyrene nanoparticle uptake and intracellular trafficking in endothelial cells. Journal of Nanoparticle Research, 2011, 13, 4295-4309.	0.8	74
297	Differential toxicity of amorphous silica nanoparticles toward phagocytic and epithelial cells. Journal of Nanoparticle Research, 2011, 13, 5381-5396.	0.8	23
298	Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Archives of Toxicology, 2011, 85, 813-826.	1.9	122
299	Variation in the internalization of differently sized nanoparticles induces different DNA-damaging effects on a macrophage cell line. Archives of Toxicology, 2011, 85, 1575-1588.	1.9	32
300	The labeling of cationic iron oxide nanoparticle-resistant hepatocellular carcinoma cells using targeted magnetoliposomes. Biomaterials, 2011, 32, 1748-1758.	5.7	34
301	Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid and Interface Science, 2011, 16, 135-148.	3.4	235

#	Article	IF	CITATIONS
302	Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement. Journal of Nanobiotechnology, 2011, 9, 16.	4.2	206
303	T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Research Letters, 2011, 6, 283.	3.1	107
304	A New Era for Cancer Treatment: Goldâ€Nanoparticleâ€Mediated Thermal Therapies. Small, 2011, 7, 169-183.	5.2	773
305	Oxidative Stress Mediates the Effects of Ramanâ€Active Gold Nanoparticles in Human Cells. Small, 2011, 7, 126-136.	5.2	79
306	Nanomaterials Can Dynamically Steer Cell Responses to Biological Ligands. Small, 2011, 7, 242-251.	5.2	5
307	Advanced Optical Imaging Reveals the Dependence of Particle Geometry on Interactions Between CdSe Quantum Dots and Immune Cells. Small, 2011, 7, 334-341.	5.2	39
308	Protein Nanocapsules Containing Doxorubicin as a pHâ€Responsive Delivery System. Small, 2011, 7, 1051-1060.	5.2	111
309	Cellular Uptake, Intracellular Trafficking, and Cytotoxicity of Nanomaterials. Small, 2011, 7, 1322-1337.	5.2	975
310	More Effective Nanomedicines through Particle Design. Small, 2011, 7, 1919-1931.	5.2	403
311	Correlation of the Cytotoxicity of TiO ₂ Nanoparticles with Different Particle Sizes on a Subâ€200â€nm Scale. Small, 2011, 7, 3026-3031.	5. 2	69
312	Nanotechnology and the treatment of inner ear diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 212-221.	3.3	8
313	Gold nanoparticles and quantum dots for bioimaging. Microscopy Research and Technique, 2011, 74, 592-604.	1.2	116
314	A Multifuntional Nanoplatform Based on Responsive Fluorescent Plasmonic ZnOâ€Au@PEG Hybrid Nanogels. Advanced Functional Materials, 2011, 21, 2830-2839.	7.8	61
315	Synthesis of Sizeâ€Tunable Polymeric Nanoparticles Enabled by 3D Hydrodynamic Flow Focusing in Singleâ€Layer Microchannels. Advanced Materials, 2011, 23, H79-83.	11.1	200
316	Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery Across Biological Barriers. Advanced Materials, 2011, 23, H217-47.	11.1	432
318	Programming the Cellular Uptake of Physiologically Stable Peptide–Gold Nanoparticle Hybrids with Single Amino Acids. Angewandte Chemie - International Edition, 2011, 50, 9643-9646.	7.2	50
319	Cell-Specific Radiosensitization by Gold Nanoparticles at Megavoltage Radiation Energies. International Journal of Radiation Oncology Biology Physics, 2011, 79, 531-539.	0.4	388
320	Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM. Colloids and Surfaces B: Biointerfaces, 2011, 82, 316-324.	2.5	70

#	Article	IF	CITATIONS
321	Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker. Analytica Chimica Acta, 2011, 686, 115-120.	2.6	84
322	Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials, 2011, 32, 2213-2221.	5.7	64
323	Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials, 2011, 32, 2625-2633.	5.7	157
324	Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials, 2011, 32, 3447-3458.	5.7	253
325	In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials, 2011, 32, 5855-5862.	5.7	177
326	Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles. Biomaterials, 2011, 32, 6226-6233.	5.7	169
327	Cytotoxicity of, and innate immune response to, size-controlled polypyrrole nanoparticles in mammalian cells. Biomaterials, 2011, 32, 2342-2350.	5.7	111
328	Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today, 2011, 6, 176-185.	6.2	1,063
329	Enhancing cell therapies from the outside in: Cell surface engineering using synthetic nanomaterials. Nano Today, 2011, 6, 309-325.	6.2	215
330	Phosphine-Gold(I) Compounds as Anticancer Agents: General Description and Mechanisms of Action. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 921-928.	0.9	84
331	Nanoparticles in Oncology: The New Theragnostic Molecules. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 669-686.	0.9	37
332	Gold Nanostructures as Photothermal Therapy Agent for Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 953-964.	0.9	51
333	Cancer-Targeting Multifunctionalized Gold Nanoparticles in Imaging and Therapy. Current Medicinal Chemistry, 2011, 18, 2086-2102.	1.2	88
334	Ultrafine PEG-coated poly(lactic- <i>co</i> glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications. Nanotechnology, 2011, 22, 185601.	1.3	28
335	New short interfering RNA-based therapies for glomerulonephritis. Nature Reviews Nephrology, 2011, 7, 407-415.	4.1	9
336	Bridging the fields of nanoscience and toxicology: nanoparticle impact on biological models. Proceedings of SPIE, 2011, , .	0.8	3
337	Nanoparticulate architecture of protein-based artificial viruses is supported by protein–DNA interactions. Nanomedicine, 2011, 6, 1047-1061.	1.7	14
338	A New <i>In Vivo</i> Model System to Assess the Toxicity of Semiconductor Nanocrystals. International Journal of Biomaterials, 2011, 2011, 1-8.	1.1	17

#	Article	IF	Citations
340	Microfluidic Technologies for Synthetic Biology. International Journal of Molecular Sciences, 2011, 12, 3576-3593.	1.8	32
341	Ligand oligomerization state controls Tie2 receptor trafficking and Angiopoietin-2 ligand-specific responses. Journal of Cell Science, 2012, 125, 2212-23.	1.2	24
342	Fine Particles in Medicine and Pharmacy. , 2012, , .		9
343	The impact of UVB exposure and differentiation state of primary keratinocytes on their interaction with quantum dots. Nanotoxicology, 2013, 7, 1244-1254.	1.6	7
344	Fighting cancer with nanoparticle medicines―The nanoscale matters. MRS Bulletin, 2012, 37, 828-835.	1.7	25
345	Quantum Dots in Biomedical Research. , 2012, , .		10
346	Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. International Journal of Nanomedicine, 2012, 7, 2673.	3.3	150
347	High-pressure freezing/freeze substitution and transmission electron microscopy for characterization of metal oxide nanoparticles within sunscreens. Nanomedicine, 2012, 7, 541-551.	1.7	10
348	Optical sorting of gold nanoparticles based on the red-shift of plasmon resonance. Proceedings of SPIE, $2012, \ldots$	0.8	0
349	Effect of mega-hertz repetition rate on the agglomerated particle size of femtosecond synthesized nanostructures. Optical Materials Express, 2012, 2, 987.	1.6	8
350	Role of surface ligands in nanoparticle permeation through a model membrane: a coarse-grained molecular dynamics simulations study. Molecular Physics, 2012, 110, 2181-2195.	0.8	33
351	Reactive Oxygen Species-Mediated p53 Core-Domain Modifications Determine Apoptotic or Necrotic Death in Cancer Cells. Antioxidants and Redox Signaling, 2012, 16, 400-412.	2.5	16
352	Can nanotechnology potentiate photodynamic therapy?. Nanotechnology Reviews, 2012, 1, 111-146.	2.6	125
353	Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology, 2012, 6, 691-699.	1.6	52
354	Cytotoxicity of Gold Nanoparticles Prepared by Ultrasonic Spray Pyrolysis. Journal of Biomaterials Applications, 2012, 26, 595-612.	1.2	27
355	Dual-wavelength multifrequency photothermal wave imaging combined with optical coherence tomography for macrophage and lipid detection in atherosclerotic plaques using gold nanoparticles. Journal of Biomedical Optics, 2012, 17, 1.	1.4	7
356	Size-Dependent Passage of Liposome Nanocarriers With Preserved Posttransport Integrity Across the Middle-Inner Ear Barriers in Rats. Otology and Neurotology, 2012, 33, 666-673.	0.7	37
357	Toxicological Profile of Therapeutic Nanodelivery Systems. Current Drug Metabolism, 2012, 13, 1068-1086.	0.7	39

#	Article	IF	CITATIONS
358	Biomedical Engineering - Technical Applications in Medicine. , 2012, , .		10
359	Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. Journal of Materials Research, 2012, 27, 2891-2901.	1.2	30
360	Virus Capsid Coating of Gold Nanoparticles via Cysteine–Au Interactions and Their Effective Cellular Uptakes. Chemistry Letters, 2012, 41, 113-115.	0.7	6
361	Peptide-Based Materials viaMolecular Self-Assembly. , 2012, , 81-106.		1
362	Multifunctional Tumor-Targeted Nanoparticles for Lung Cancer. , 2012, , 15-44.		2
363	Gold nanoparticle–enzyme conjugates based FRET for highly sensitive determination of hydrogen peroxide, glucose and uric acid using tyramide reaction. Analyst, The, 2012, 137, 3659.	1.7	34
364	Cooperative Effect in Receptor-Mediated Endocytosis of Multiple Nanoparticles. ACS Nano, 2012, 6, 3196-3205.	7.3	186
365	Theranostic Applications of Plasmonic Nanosystems. ACS Symposium Series, 2012, , 383-413.	0.5	2
366	Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake. Journal of the American Chemical Society, 2012, 134, 2139-2147.	6.6	1,601
367	Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications. Nanoscale, 2012, 4, 3319.	2.8	81
368	Biomedical Applications of Metal Oxide Nanoparticles. , 2012, , 57-100.		38
369	Autophagy induction by silver nanowires: A new aspect in the biocompatibility assessment of nanocomposite thin films. Toxicology and Applied Pharmacology, 2012, 264, 451-461.	1.3	61
370	Bioadhesiveness and efficient mechanotransduction stimuli synergistically provided by bacterial inclusion bodies as scaffolds for tissue engineering. Nanomedicine, 2012, 7, 79-93.	1.7	40
371	Europium-Doped TiO ₂ Hollow Nanoshells: Two-Photon Imaging of Cell Binding. Chemistry of Materials, 2012, 24, 4222-4230.	3.2	45
372	In vitro and in vivo genotoxicity of silver nanoparticles. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 749, 60-69.	0.9	194
373	Recent advances in the rational design of silica-based nanoparticles for gene therapy. Therapeutic Delivery, 2012, 3, 1217-1237.	1.2	36
374	Selectivity of Ligand-Receptor Interactions between Nanoparticle and Cell Surfaces. Physical Review Letters, 2012, 109, 238102.	2.9	44
375	Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities. Science, 2012, 338, 903-910.	6.0	1,166

#	Article	IF	Citations
376	Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nature Nanotechnology, 2012, 7, 62-68.	15.6	526
377	Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Advanced Drug Delivery Reviews, 2012, 64, 1363-1384.	6.6	365
378	Cytotoxicity and inflammation in human alveolar epithelial cells following exposure to occupational levels of gold and silver nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	23
379	Increased Accumulation and Retention of Micellar Paclitaxel inÂDrug-Sensitive and P-Glycoprotein–Expressing Cell Lines Following Ultrasound Exposure. Ultrasound in Medicine and Biology, 2012, 38, 736-744.	0.7	28
381	Magnetic Silica Nanoparticle Cellular Uptake and Cytotoxicity Regulated by Electrostatic Polyelectrolytes–DNA Loading at Their Surface. ACS Nano, 2012, 6, 747-759.	7.3	40
382	Controllable synthesis of Gd2O(CO3)2·H2O@silica–FITC nanoparticles with size-dependent optical and magnetic resonance imaging properties. New Journal of Chemistry, 2012, 36, 2599.	1.4	15
383	Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Drug Development and Industrial Pharmacy, 2012, 38, 1039-1046.	0.9	24
384	Size control of gold nanoparticles by intense X-ray irradiation: the relevant parameters and imaging applications. RSC Advances, 2012, 2, 6185.	1.7	7
385	Ultrasensitive On-Chip Immunoassays with a Nanoparticle-Assembled Photonic Crystal. ACS Nano, 2012, 6, 8570-8582.	7.3	19
386	Size-Dependent Toxicity of Nano-C60 Aggregates: More Sensitive Indication by Apoptosis-Related Bax Translocation in Cultured Human Cells. Environmental Science & Environmental Science & 2012, 46, 3457-3464.	4.6	53
387	Cationic lipids percentage and processing temperature are critical in designing siRNA lipid nanoparticles. Journal of Drug Targeting, 2012, 20, 281-289.	2.1	3
388	Design rules for cancer nanomedicines. , 2012, , .		1
389	Selective Gene Delivery to Cancer Cells Using an Integrated Cationic Amphiphilic Peptide. Langmuir, 2012, 28, 16126-16132.	1.6	33
390	Hydrodynamic Size-Dependent Cellular Uptake of Aqueous QDs Probed by Fluorescence Correlation Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 12125-12132.	1.2	37
391	Spontaneous Vesicle Self-Assembly: A Mesoscopic View of Membrane Dynamics. Langmuir, 2012, 28, 541-547.	1.6	38
392	Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles. Scientific Reports, 2012, 2, 868.	1.6	48
393	Scavenger Receptor Mediated Endocytosis of Silver Nanoparticles into J774A.1 Macrophages Is Heterogeneous. ACS Nano, 2012, 6, 7122-7132.	7.3	113
394	Development of Iron-Doped Silicon Nanoparticles As Bimodal Imaging Agents. ACS Nano, 2012, 6, 5596-5604.	7.3	62

#	Article	IF	CITATIONS
395	Toxicity of nanomaterials. Chemical Society Reviews, 2012, 41, 2323-2343.	18.7	1,221
396	Enabling Biomedical Research with Designer Quantum Dots. Methods in Molecular Biology, 2012, 811, 245-265.	0.4	7
397	Size matters: gold nanoparticles in targeted cancer drug delivery. Therapeutic Delivery, 2012, 3, 457-478.	1.2	502
398	Mechanisms of Budding of Nanoscale Particles through Lipid Bilayers. Journal of Physical Chemistry B, 2012, 116, 9595-9603.	1.2	44
399	Size-Dependent Attenuation of TLR9 Signaling by Gold Nanoparticles in Macrophages. Journal of Immunology, 2012, 188, 68-76.	0.4	142
400	Accessing the genomic effects of naked nanoceria in murine neuronal cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 599-608.	1.7	27
401	Cancer nanomedicines targeting tumor extracellular pH. Colloids and Surfaces B: Biointerfaces, 2012, 99, 116-126.	2.5	110
402	Functional ionic liquids induced the formation of mitochondria targeted fluorescent core–shell ellipsoidal nanoparticles with anticancer properties. Colloids and Surfaces B: Biointerfaces, 2012, 98, 91-96.	2.5	14
403	Impact of the Nanoparticle–Protein Corona on Colloidal Stability and Protein Structure. Langmuir, 2012, 28, 9673-9679.	1.6	291
404	Pericellular Matrix Enhances Retention and Cellular Uptake of Nanoparticles. Journal of the American Chemical Society, 2012, 134, 13404-13409.	6.6	42
405	Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer., 2012, 136, 202-215.		89
406	Incorporation of Nanoparticles into Polymersomes: Size and Concentration Effects. ACS Nano, 2012, 6, 7254-7262.	7.3	71
408	Surface Roughness and Charge Influence the Uptake of Nanoparticles: Fluorescently Labeled Pickeringâ€Type Versus Surfactantâ€Stabilized Nanoparticles. Macromolecular Bioscience, 2012, 12, 1459-1471.	2.1	41
409	Layerâ€byâ€Layer Coated Gold Nanoparticles: Sizeâ€Dependent Delivery of DNA into Cells. Small, 2012, 8, 3847-3856.	5.2	72
410	Quantifying size-dependent interactions between fluorescently labeled polystyrene nanoparticles and mammalian cells. Journal of Nanobiotechnology, 2012, 10, 39.	4.2	116
411	Cytotoxicity and cellular uptake of tri-block copolymer nanoparticles with different size and surface characteristics. Particle and Fibre Toxicology, 2012, 9, 11.	2.8	71
412	Antiandrogen Gold Nanoparticles Dual-Target and Overcome Treatment Resistance in Hormone-Insensitive Prostate Cancer Cells. Bioconjugate Chemistry, 2012, 23, 1507-1512.	1.8	68
413	The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. International Journal of Nanomedicine, 2012, 7, 5577.	3.3	1,823

#	Article	IF	Citations
414	The differential effect of apoferritin-PbS nanocomposites on cell cycle progression in normal and cancerous cells. Journal of Materials Chemistry, 2012, 22, 660-665.	6.7	14
415	Cytotoxicity evaluations of pristine graphene and carbon nanotubes in fibroblastic cells. Journal of the Korean Physical Society, 2012, 61, 873-877.	0.3	22
416	Bidirectional Optical Sorting of Gold Nanoparticles. Nano Letters, 2012, 12, 1923-1927.	4.5	124
417	Cellular Uptake of Gold Nanoparticles Bearing HIV gp120 Oligomannosides. Bioconjugate Chemistry, 2012, 23, 814-825.	1.8	88
418	Radiative damping suppressing and refractive index sensing with elliptical split nanorings. Applied Physics Letters, 2012, 100 , .	1.5	12
419	A Solution to the PEG Dilemma: Efficient Bioconjugation of Large Gold Nanoparticles for Biodiagnostic Applications using Mixed Layers. Langmuir, 2012, 28, 15634-15642.	1.6	43
420	Cisplatin-Tethered Gold Nanoparticles That Exhibit Enhanced Reproducibility, Drug Loading, and Stability: a Step Closer to Pharmaceutical Approval?. Inorganic Chemistry, 2012, 51, 3490-3497.	1.9	94
421	Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine, 2012, 7, 1253-1271.	1.7	491
422	An Orally Administered Redox Nanoparticle That Accumulates in the Colonic Mucosa and Reduces Colitis in Mice. Gastroenterology, 2012, 143, 1027-1036.e3.	0.6	158
423	Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 2012, 64, 967-978.	6.6	607
424	Challenges and opportunities in the advancement of nanomedicines. Journal of Controlled Release, 2012, 164, 236-246.	4.8	100
425	Inhibitory effects of trolox-encapsulated chitosan nanoparticles on tert-butylhydroperoxide induced RAW264.7 apoptosis. Biomaterials, 2012, 33, 8517-8528.	5.7	44
426	Non-amyloidogenic peptide tags for the regulatable self-assembling of protein-only nanoparticles. Biomaterials, 2012, 33, 8714-8722.	5.7	65
427	Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials, 2012, 33, 9080-9086.	5.7	105
428	Mimicking dynamic in vivo environments with stimuli-responsive materials for cell culture. Trends in Biotechnology, 2012, 30, 426-439.	4.9	103
429	The orchestration of cellular and humoral responses is facilitated by divergent intracellular antigen trafficking in nanoparticle-based therapeutic vaccine. Pharmacological Research, 2012, 65, 189-197.	3.1	35
430	Surface modification of paclitaxel-loaded polymeric nanoparticles: Evaluation of inÂvitro cellular behavior and inÂvivo pharmacokinetic. Polymer, 2012, 53, 5078-5086.	1.8	13
431	Preparation, morphology, and antibacterial properties of polyacrylonitrile/montmorillonite/silver nanocomposites. Materials Chemistry and Physics, 2012, 136, 613-623.	2.0	52

#	Article	IF	CITATIONS
432	Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1133-1142.	1.7	106
433	Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Advances, 2012, 2, 12515.	1.7	132
434	Gold nanoparticles as novel agents for cancer therapy. British Journal of Radiology, 2012, 85, 101-113.	1.0	822
435	Thermophysical and biological responses of gold nanoparticle laser heating. Chemical Society Reviews, 2012, 41, 1191-1217.	18.7	486
436	Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery. Journal of the American Chemical Society, 2012, 134, 8848-8855.	6.6	413
438	Mechanism of Membrane Tube Formation Induced by Adhesive Nanocomponents. Physical Review Letters, 2012, 109, 188101.	2.9	112
439	Nanoparticle Permeation Induces Water Penetration, Ion Transport, and Lipid Flip-Flop. Langmuir, 2012, 28, 16989-17000.	1.6	39
440	Gold Nanoparticle Uptake by Tumour Cells of B16 Mouse Melanoma. Plasmonics, 2012, 7, 717-724.	1.8	7
441	Noninvasive assessment of magnetic nanoparticle–cancer cell interactions. Integrative Biology (United Kingdom), 2012, 4, 1283-1288.	0.6	22
442	Effects of Solution Concentration on the Physicochemical Properties of a Polymeric Anticancer Therapeutic. Molecular Pharmaceutics, 2012, 9, 37-47.	2.3	3
443	Interplay of structural and electronic stabilizing factors in neutral and cationic phosphine protected Au13 clusters. European Physical Journal D, 2012, 66, 1.	0.6	16
444	Distribution of Functionalized Gold Nanoparticles between Water and Lipid Bilayers as Model Cell Membranes. Environmental Science & Environmental Scie	4.6	73
445	Photothermal Response of Photoluminescent Silicon Nanocrystals. Journal of Physical Chemistry Letters, 2012, 3, 1793-1797.	2.1	32
446	Facile synthesis of bifunctional silica-coated core–shell Y2O3:Eu3+,Co2+ composite particles for biomedical applications. RSC Advances, 2012, 2, 9495.	1.7	37
447	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	2.8	63
448	Silver Nanoparticles Inhibit Sodium Uptake in Juvenile Rainbow Trout (<i>Oncorhynchus mykiss</i>). Environmental Science & Env	4.6	75
449	Molecular Control of TiO2-NPs Toxicity Formation at Predicted Environmental Relevant Concentrations by Mn-SODs Proteins. PLoS ONE, 2012, 7, e44688.	1.1	62
450	Influences of surface coatings and components of FePt nanoparticles on the suppression of glioma cell proliferation. International Journal of Nanomedicine, 2012, 7, 3295.	3.3	18

#	ARTICLE	IF	CITATIONS
451	Subcellular Carrier-Based Optical Ion-Selective Nanosensors. Frontiers in Pharmacology, 2012, 3, 70.	1.6	12
452	Immunosuppressive Activity of Size-Controlled PEG-PLGA Nanoparticles Containing Encapsulated Cyclosporine A. Journal of Transplantation, 2012, 2012, 1-9.	0.3	41
453	Smart Delivery and Controlled Drug Release with Gold Nanoparticles: New Frontiers in Nanomedicine. Recent Patents on Nanomedicine, 2012, 2, 34-44.	0.5	28
454	Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods. International Journal of Nanomedicine, 2012, 7, 4373.	3.3	20
455	Exosomes as Extrapulmonary Signaling Conveyors for Nanoparticleâ€Induced Systemic Immune Activation. Small, 2012, 8, 404-412.	5.2	93
456	Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells. Small, 2012, 8, 1029-1037.	5.2	45
457	Formation of Lipid Sheaths around Nanoparticleâ€Supported Lipid Bilayers. Small, 2012, 8, 1740-1751.	5.2	9
458	Influence of the Shape of Nanostructured Metal Surfaces on Adsorption of Single Peptide Molecules in Aqueous Solution. Small, 2012, 8, 1049-1059.	5.2	92
459	Smallâ€Sized Carbon Nanohorns Enabling Cellular Uptake Control. Small, 2012, 8, 2524-2531.	5.2	44
460	Synthesis, Characterization, and Direct Intracellular Imaging of Ultrasmall and Uniform Glutathioneâ€Coated Gold Nanoparticles. Small, 2012, 8, 2277-2286.	5.2	67
461	The Interplay of Monolayer Structure and Serum Protein Interactions on the Cellular Uptake of Gold Nanoparticles. Small, 2012, 8, 2659-2663.	5.2	71
462	Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 2012, 41, 2256-2282.	18.7	1,629
463	Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chemical Society Reviews, 2012, 41, 2943.	18.7	725
464	Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chemical Society Reviews, 2012, 41, 2780-2799.	18.7	1,385
465	The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 2012, 41, 2740-2779.	18.7	2,900
466	Endocytosis at the nanoscale. Chemical Society Reviews, 2012, 41, 2718.	18.7	786
467	Surface functionalization of nanoparticles for nanomedicine. Chemical Society Reviews, 2012, 41, 2539.	18.7	651
468	Engineering Particles for Therapeutic Delivery: Prospects and Challenges. ACS Nano, 2012, 6, 3663-3669.	7.3	160

#	Article	IF	CITATIONS
469	Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors <i>in Vivo</i> . ACS Nano, 2012, 6, 4483-4493.	7.3	724
470	Chrominance to Dimension: A Real-Time Method for Measuring the Size of Single Gold Nanoparticles. Analytical Chemistry, 2012, 84, 4284-4291.	3.2	116
471	Mechanisms of cellular adaptation to quantum dots $\hat{a} \in$ the role of glutathione and transcription factor EB. Nanotoxicology, 2012, 6, 249-262.	1.6	45
472	Detecting and Destroying Cancer Cells in More than One Way with Noble Metals and Different Confinement Properties on the Nanoscale. Accounts of Chemical Research, 2012, 45, 1854-1865.	7.6	114
473	Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation. Nano Letters, 2012, 12, 4060-4064.	4.5	186
474	Scalable Imprinting of Shape-Specific Polymeric Nanocarriers Using a Release Layer of Switchable Water Solubility. ACS Nano, 2012, 6, 2524-2531.	7.3	33
475	Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society Reviews, 2012, 41, 2971.	18.7	1,469
476	Unraveling the Uptake Mechanisms of Mannan Nanogel in Boneâ€Marrowâ€Derived Macrophages. Macromolecular Bioscience, 2012, 12, 1172-1180.	2.1	4
477	Magnetoluminescent Agents for Dual MRI and Time-Gated Fluorescence Imaging. European Journal of Inorganic Chemistry, 2012, 2012, 2141-2147.	1.0	11
478	Cytotoxicity and cell imaging potentials of submicron colorâ€tunable yttria particles. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2287-2294.	2.1	12
479	Structural and Functional Effects of Cu Metalloprotein-Driven Silver Nanoparticle Dissolution. Environmental Science & Dissolution.	4.6	24
480	Effect of Gold Nanosphere Surface Chemistry on Protein Adsorption and Cell Uptake In Vitro. Applied Biochemistry and Biotechnology, 2012, 167, 327-337.	1.4	28
481	Physicochemical Characteristics of Protein–NP Bioconjugates: The Role of Particle Curvature and Solution Conditions on Human Serum Albumin Conformation and Fibrillogenesis Inhibition. Langmuir, 2012, 28, 9113-9126.	1.6	192
482	Influence of Particle Size on the Binding Activity of Proteins Adsorbed onto Gold Nanoparticles. Langmuir, 2012, 28, 2736-2744.	1.6	58
483	Luminescent nanoparticles and their use forin vitroandin vivodiagnostics. Expert Review of Molecular Diagnostics, 2012, 12, 49-64.	1.5	29
484	The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annual Review of Biomedical Engineering, 2012, 14, 1-16.	5.7	3,078
485	Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d < 2 nm). Nanoscale, 2012, 4, 4091.	2.8	21
486	Biomimetic Design of Protein Nanomaterials for Hydrophobic Molecular Transport. Advanced Functional Materials, 2012, 22, 3170-3180.	7.8	55

#	Article	IF	CITATIONS
487	Enhancing the Cellular Delivery of Nanoparticles Using Lipoâ€Oligoarginine Peptides. Advanced Functional Materials, 2012, 22, 4924-4930.	7.8	12
488	A Strategy in The Design of Micellar Shape for Cancer Therapy. Advanced Healthcare Materials, 2012, 1, 214-224.	3.9	44
489	Uptake and Intracellular Fate of Fluorescentâ€Magnetic Glycoâ€nanoparticles. Advanced Healthcare Materials, 2012, 1, 302-307.	3.9	16
490	Functional Silica Nanoparticles for Redoxâ€Triggered Drug/ssDNA Coâ€delivery. Advanced Healthcare Materials, 2012, 1, 690-697.	3.9	69
491	Engineering Plasmonic Gold Nanostructures and Metamaterials for Biosensing and Nanomedicine. Advanced Materials, 2012, 24, 5153-5165.	11.1	128
492	Peptide Targeted Lipid Nanoparticles for Anticancer Drug Delivery. Advanced Materials, 2012, 24, 3803-3822.	11.1	164
495	Probing Bioinspired Transport of Nanoparticles into Polymersomes. Angewandte Chemie - International Edition, 2012, 51, 4613-4617.	7.2	45
496	Nonblinking Plasmonic Quantum Dot Assemblies for Multiplex Biological Detection. Angewandte Chemie - International Edition, 2012, 51, 8773-8777.	7.2	41
497	Efficient Intracellular Delivery of Camptothecin by Silica/Titania Hollow Nanoparticles. Chemistry - A European Journal, 2012, 18, 4902-4908.	1.7	46
498	Paramagnetic selfâ€assembled nanoparticles as supramolecular MRI contrast agents. Contrast Media and Molecular Imaging, 2012, 7, 356-361.	0.4	57
499	Synthesis and Biological Response of Size-Specific, Monodisperse Drug–Silica Nanoconjugates. ACS Nano, 2012, 6, 3954-3966.	7.3	163
500	Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. ACS Nano, 2012, 6, 5845-5857.	7.3	918
501	Nanoparticles Labeled with Positron Emitting Nuclides: Advantages, Methods, and Applications. Bioconjugate Chemistry, 2012, 23, 671-682.	1.8	106
502	Surface-structure-regulated penetration of nanoparticles across a cell membrane. Nanoscale, 2012, 4, 3768.	2.8	172
503	Size-mediated cytotoxicity of nanocrystalline titanium dioxide, pure and zinc-doped hydroxyapatite nanoparticles in human hepatoma cells. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	33
504	Silver Nano Particles Prevent Platelet Adhesion on Immobilized Fibrinogen. Indian Journal of Clinical Biochemistry, 2012, 27, 164-170.	0.9	19
505	Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery. Biomedical Microdevices, 2012, 14, 259-270.	1.4	70
506	Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. Advanced Drug Delivery Reviews, 2012, 64, 179-189.	6.6	182

#	Article	IF	CITATIONS
507	Luminescent quantum dots as platforms for probing in vitro and in vivo biological processes. Advanced Drug Delivery Reviews, 2012, 64, 138-166.	6.6	386
508	One-pot aqueous phase growth of biocompatible 15–130nm gold nanoparticles stabilized with bidentate PEG. Journal of Colloid and Interface Science, 2012, 376, 107-111.	5.0	16
509	Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials, 2012, 33, 856-866.	5.7	310
510	Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials, 2012, 33, 1180-1189.	5.7	280
511	Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials, 2012, 33, 1948-1958.	5.7	59
512	Target delivery of a gene into the brain using the RVG29-oligoarginine peptide. Biomaterials, 2012, 33, 3456-3463.	5.7	45
513	Responsive fluorescent Bi2O3@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Biomaterials, 2012, 33, 3058-3069.	5.7	81
514	The role of the lateral dimension of graphene oxide in the regulation of cellular responses. Biomaterials, 2012, 33, 4013-4021.	5.7	344
515	The accumulation of dual pH and temperature responsive micelles in tumors. Biomaterials, 2012, 33, 4576-4588.	5.7	69
516	InÂvivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials, 2012, 33, 4628-4638.	5.7	386
517	Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials, 2012, 33, 6408-6419.	5.7	431
518	Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosensors and Bioelectronics, 2012, 31, 17-25.	5.3	116
519	Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications. Materials Science and Engineering C, 2012, 32, 296-302.	3.8	18
520	Nanotoxicology and in vitro studies: The need of the hour. Toxicology and Applied Pharmacology, 2012, 258, 151-165.	1.3	456
521	Evaluation of lauryl chitosan graft polyethyleneimine as a potential carrier of genes and anticancer drugs. Process Biochemistry, 2012, 47, 1079-1088.	1.8	17
522	The journey of a drug-carrier in the body: An anatomo-physiological perspective. Journal of Controlled Release, 2012, 161, 152-163.	4.8	568
523	βâ€Cyclodextrin/Glycyrrhizic Acid Functionalised Quantum Dots Selectively Enter Hepatic Cells and Induce Apoptosis. Chemistry - A European Journal, 2012, 18, 1650-1658.	1.7	27
524	Sizeâ€dependent cellular toxicity of silver nanoparticles. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1033-1043.	2.1	380

#	Article	IF	CITATIONS
525	Switching the Targeting Pathways of a Therapeutic Antibody by Nanodesign. Angewandte Chemie - International Edition, 2012, 51, 1563-1567.	7.2	41
526	Size-tunable nanoparticles composed of dextran-b-poly(D,L-lactide) for drug delivery applications. Nano Research, 2012, 5, 49-61.	5. 8	64
527	A cellular level biocompatibility and biosafety evaluation of mesoporous SiO2-based nanocomposite with lanthanum species. Journal of Materials Science, 2012, 47, 1514-1521.	1.7	7
528	Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. Journal of Biological Physics, 2013, 39, 301-325.	0.7	53
529	In Situ Nanoplasmonic Probing of Enzymatic Activity of Monolayer-Confined Glucose Oxidase on Colloidal Nanoparticles. Analytical Chemistry, 2013, 85, 4546-4553.	3.2	47
530	A single-layer peptide nanofiber for enhancing the cytotoxicity of trastuzumab (anti-HER). Journal of Nanoparticle Research, $2013,15,1.$	0.8	1
531	Influence of geometric nanoparticle rotation on cellular internalization process. Nanoscale, 2013, 5, 7998.	2.8	37
532	Biomimetic mucin modified PLGA nanoparticles for enhanced blood compatibility. Journal of Colloid and Interface Science, 2013, 409, 237-244.	5.0	33
533	Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency. Journal of the American Chemical Society, 2013, 135, 1438-1444.	6.6	670
534	A Spherical Nucleic Acid Platform Based on Self-Assembled DNA Biopolymer for High-Performance Cancer Therapy. ACS Nano, 2013, 7, 6545-6554.	7.3	91
535	THE CHEMISTRY AND BIOLOGY OF GOLD NANOPARTICLE-MEDIATED PHOTOTHERMAL THERAPY: PROMISES AND CHALLENGES. Nano LIFE, 2013, 03, 1330001.	0.6	31
536	Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis. RSC Advances, 2013, 3, 15589.	1.7	42
537	Elucidating the Dependence of Size and Concentration of Gold Nanoparticles in Cellular Uptake. Materials Science Forum, 0, 756, 205-211.	0.3	2
538	Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro. Nanoscale, 2013, 5, 3723.	2.8	127
539	Effect of CdTe Quantum Dots Size on the Conformational Changes of Human Serum Albumin: Results of Spectroscopy and Isothermal Titration Calorimetry. Biological Trace Element Research, 2013, 155, 150-158.	1.9	34
540	Size-dependent cellular toxicity and uptake of commercial colloidal gold nanoparticles in DU-145 cells. Cancer Nanotechnology, 2013, 4, 13-20.	1.9	18
541	Size distribution effects of cadmium tellurium quantum dots (CdS/CdTe) immunotoxicity on aquatic organisms. Environmental Sciences: Processes and Impacts, 2013, 15, 596.	1.7	28
542	Very small photoluminescent gold nanoparticles for multimodality biomedical imaging. Biotechnology Advances, 2013, 31, 362-368.	6.0	19

#	Article	IF	CITATIONS
543	Rosiglitazone-loaded nanospheres for modulating macrophage-specific inflammation in obesity. Journal of Controlled Release, 2013, 170, 460-468.	4.8	41
544	Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions. Biomaterials Science, $2013, 1, 896$.	2.6	67
545	Controllable formation of aromatic nanoparticles in a three-dimensional hydrodynamic flow focusing microfluidic device. RSC Advances, 2013, 3, 17762.	1.7	16
546	Role of Nanoparticle Geometry in Endocytosis: Laying Down to Stand Up. Nano Letters, 2013, 13, 4546-4550.	4.5	221
547	Cytotoxicity Evaluation and Subcellular Location of Titanium Dioxide Nanotubes. Applied Biochemistry and Biotechnology, 2013, 171, 1568-1577.	1.4	6
548	Stepwise Orthogonal Click Chemistry toward Fabrication of Paclitaxel/Galactose Functionalized Fluorescent Nanoparticles for HepG2 Cell Targeting and Delivery. Bioconjugate Chemistry, 2013, 24, 1698-1709.	1.8	41
549	Preparation, characterization, cellular uptake and evaluation <i>in vivo</i> of solid lipid nanoparticles loaded with cucurbitacin B. Drug Development and Industrial Pharmacy, 2013, 39, 770-779.	0.9	29
550	Tannic Acid Coated Gold Nanorods Demonstrate a Distinctive Form of Endosomal Uptake and Unique Distribution within Cells. ACS Applied Materials & Interfaces, 2013, 5, 8366-8373.	4.0	47
551	Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. Nanoscale, 2013, 5, 11234.	2.8	166
552	Gold nanoparticle delivery-enhanced proteasome inhibitor effect in adenocarcinoma cells. Expert Opinion on Drug Delivery, 2013, 10, 1345-1352.	2.4	26
553	Exocytosis of nanoparticles from cells: Role in cellular retention and toxicity. Advances in Colloid and Interface Science, 2013, 201-202, 18-29.	7.0	212
554	Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials, 2013, 34, 2719-2730.	5.7	228
555	Cyclodextrin-functionalised gold nanoparticles via streptavidin: a supramolecular approach. Supramolecular Chemistry, 2013, 25, 465-473.	1.5	11
556	Evaluation of Doxorubicin-Loaded 3-Helix Micelles as Nanocarriers. Biomacromolecules, 2013, 14, 3697-3705.	2.6	31
557	Triblock Copolymer-Encapsulated Nanoparticles with Outstanding Colloidal Stability for siRNA Delivery. ACS Applied Materials & Samp; Interfaces, 2013, 5, 2845-2852.	4.0	22
558	Multivalent ligands control stem cell behaviour in vitro and in vivo. Nature Nanotechnology, 2013, 8, 831-838.	15.6	97
559	Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nature Communications, 2013, 4, 2718.	5.8	264
560	Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. Nanoscale, 2013, 5, 11362.	2.8	66

#	Article	IF	Citations
561	Exploiting Endocytosis for Nanomedicines. Cold Spring Harbor Perspectives in Biology, 2013, 5, a016980-a016980.	2.3	173
562	Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide. Nanoscale, 2013, 5, 12375.	2.8	49
563	Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots. Scientific Reports, 2013, 3, 2184.	1.6	37
564	A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors. Nano Today, 2013, 8, 566-576.	6.2	43
565	Fundamentals of Pharmaceutical Nanoscience., 2013,,.		16
567	New derivative of carnosine for nanoparticle assemblies. European Journal of Medicinal Chemistry, 2013, 70, 225-232.	2.6	17
568	The role of surface chemistry in determining inÂvivo biodistribution and toxicity of CdSe/ZnS core–shell quantum dots. Biomaterials, 2013, 34, 8741-8755.	5.7	131
569	A Detailed Investigation on the Interactions between Magnetic Nanoparticles and Cell Membrane Models. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13063-13068.	4.0	31
570	Design considerations of polymeric nanoparticle micelles for chemotherapeutic delivery. Current Opinion in Chemical Engineering, 2013, 2, 53-59.	3.8	17
571	HDAT: web-based high-throughput screening data analysis tools. Computational Science & Discovery, 2013, 6, 014006.	1.5	12
572	Etoposide encapsulation in surfaceâ€modified poly(lactideâ€ <i>co</i> â€glycolide) nanoparticles strongly enhances glioma antitumor efficiency. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1319-1327.	2.1	30
573	Multifunctional PEG encapsulated Fe3O4@silver hybrid nanoparticles: antibacterial activity, cell imaging and combined photothermo/chemo-therapy. Journal of Materials Chemistry B, 2013, 1, 6225.	2.9	52
574	JAM-2 siRNA intracellular delivery and real-time imaging by proton-sponge coated quantum dots. Journal of Materials Chemistry B, 2013, 1, 654-660.	2.9	21
575	Photoinduced luminescent carbon nanostructures with ultra-broadly tailored size ranges. Nanoscale, 2013, 5, 12092.	2.8	19
576	Physicochemical aspects behind the size of biodegradable polymeric nanoparticles: A step forward. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 1092-1102.	2.3	49
577	Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release, 2013, 172, 782-794.	4.8	784
578	REVIEW OF METAL, CARBON AND POLYMER NANOPARTICLES FOR INFRARED PHOTOTHERMAL THERAPY. Nano LIFE, 2013, 03, 1330002.	0.6	26
579	Large Uptake of Titania and Iron Oxide Nanoparticles in the Nucleus of Lung Epithelial Cells as Measured by Raman Imaging and Multivariate Classification. Biophysical Journal, 2013, 105, 310-319.	0.2	57

#	Article	IF	CITATIONS
580	Conducting Polymer Nanomaterials for Biomedical Applications: Cellular Interfacing and Biosensing. Polymer Reviews, 2013, 53, 407-442.	5. 3	103
581	Sequential drug release for synergistic cancer treatment and immunity promotion. RSC Advances, 2013, 3, 13399.	1.7	13
582	The holistic 3M modality of drug delivery nanosystems for cancer therapy. Nanoscale, 2013, 5, 845.	2.8	19
583	A toolbox of differently sized and labeled PMMA nanoparticles for cellular uptake investigations. Soft Matter, 2013, 9, 99-108.	1.2	46
584	An unusual pathway for the membrane wrapping of rodlike nanoparticles and the orientation- and membrane wrapping-dependent nanoparticle interaction. Nanoscale, 2013, 5, 9888.	2.8	51
585	Non-blinking, highly luminescent, pH- and heavy-metal-ion-stable organic nanodots for bio-imaging. Journal of Materials Chemistry B, 2013, 1, 3144.	2.9	26
586	Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide. Nanoscale, 2013, 5, 10327.	2.8	21
587	Opposites attract: influence of the molar mass of branched poly(ethylene imine) on biophysical characteristics of siRNA-based polyplexese. RSC Advances, 2013, 3, 12774.	1.7	30
588	Health and Ecosystem Risks of Graphene. Chemical Reviews, 2013, 113, 3815-3835.	23.0	325
589	Programmable Cellular Retention of Nanoparticles by Replacing the Synergistic Anion of Transferrin. ACS Nano, 2013, 7, 365-375.	7.3	18
590	Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Toxicology, 2013, 313, 38-48.	2.0	96
591	Vesicles and Vesicle Fusion: Coarse-Grained Simulations. Methods in Molecular Biology, 2013, 924, 659-697.	0.4	9
592	Carbon nanostructured materials for applications in nano-medicine, cultural heritage, and electrochemical biosensors. Analytical and Bioanalytical Chemistry, 2013, 405, 451-465.	1.9	70
593	Fate and Health Impact of Inorganic Manufactured Nanoparticles. , 2013, , 245-267.		2
594	Surface engineering of inorganic nanoparticles for imaging and therapy. Advanced Drug Delivery Reviews, 2013, 65, 622-648.	6.6	305
595	Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate. Accounts of Chemical Research, 2013, 46, 622-631.	7.6	627
596	Immune Response to Nanomaterials: Implications for Medicine and Literature Review. Current Allergy and Asthma Reports, 2013, 13, 50-57.	2.4	65
597	Poly(acrylic acid) modified lanthanide-doped GdVO ₄ hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release. Nanoscale, 2013, 5, 253-261.	2.8	94

#	ARTICLE	IF	CITATIONS
598	Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnology Advances, 2013, 31, 593-606.	6.0	308
599	Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. Nanoscale, 2013, 5, 390-400.	2.8	48
600	Size-Dependent Tumor Penetration and <i>in Vivo</i> Efficacy of Monodisperse Drug–Silica Nanoconjugates. Molecular Pharmaceutics, 2013, 10, 883-892.	2.3	145
601	Cytophilic/Cytophobic Design of Nanomaterials at Biointerfaces. Small, 2013, 9, 1444-1448.	5.2	14
602	Mechanistic aspects of fluorescent gold nanocluster internalization by live HeLa cells. Nanoscale, 2013, 5, 1537.	2.8	126
604	Quantitative Analysis of the Fate of Gold Nanocages Inâ€Vitro and Inâ€Vivo after Uptake by U87â€MG Tumor Cells. Angewandte Chemie - International Edition, 2013, 52, 1152-1155.	7.2	25
605	Toxicity of Engineered Nanomaterials: A Physicochemical Perspective. Journal of Biochemical and Molecular Toxicology, 2013, 27, 50-55.	1.4	103
606	The effect of PEG-5K grafting level and particle size on tumor accumulation and cellular uptake. International Journal of Pharmaceutics, 2013, 456, 424-431.	2.6	24
607	Gold nanoparticles (GNPs) as multifunctional materials for cancer treatment., 2013,, 349-389e.		9
608	Polyacrylamide hybrid nanogels for targeted cancer chemotherapy via co-delivery of gold nanoparticles and MTX. Journal of Colloid and Interface Science, 2013, 412, 46-55.	5.0	43
609	Analysis of nanoprobe penetration through a lipid bilayer. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1667-1673.	1.4	14
610	SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chemical Reviews, 2013, 113, 1391-1428.	23.0	1,170
611	New views on cellular uptake and trafficking of manufactured nanoparticles. Journal of the Royal Society Interface, 2013, 10, 20120939.	1.5	294
612	Nanoparticle mediated non-covalent drug delivery. Advanced Drug Delivery Reviews, 2013, 65, 607-621.	6.6	145
613	Targeting and delivery of platinum-based anticancer drugs. Chemical Society Reviews, 2013, 42, 202-224.	18.7	588
614	Effect of ligand density, receptor density, and nanoparticle size on cell targeting. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 194-201.	1.7	291
615	Substrate Stiffness Regulates Cellular Uptake of Nanoparticles. Nano Letters, 2013, 13, 1611-1615.	4.5	102
616	Applications and Potential Toxicity of Magnetic Iron Oxide Nanoparticles. Small, 2013, 9, 1533-1545.	5.2	456

#	Article	IF	CITATIONS
617	Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles $\hat{a} \in \hat{a}$ a review. Journal of Materials Chemistry B, 2013, 1, 1994.	2.9	92
618	Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Advances in Colloid and Interface Science, 2013, 189-190, 1-20.	7.0	164
619	Influence of Serum Supplemented Cell Culture Medium on Colloidal Stability of Polymer Coated Iron Oxide and Polystyrene Nanoparticles With Impact on Cell Interactions In Vitro. IEEE Transactions on Magnetics, 2013, 49, 402-407.	1.2	10
620	Surface Functionality as a Means to Impact Polymer Nanoparticle Size and Structure. Langmuir, 2013, 29, 4092-4095.	1.6	9
621	Nano–bio effects: interaction of nanomaterials with cells. Nanoscale, 2013, 5, 3547.	2.8	223
622	Nanoparticle Characterization: State of the Art, Challenges, and Emerging Technologies. Molecular Pharmaceutics, 2013, 10, 2093-2110.	2.3	274
623	Big Signals from Small Particles: Regulation of Cell Signaling Pathways by Nanoparticles. Chemical Reviews, 2013, 113, 3391-3406.	23.0	146
624	Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3270-3275.	3.3	456
625	Electrical Method to Quantify Nanoparticle Interaction with Lipid Bilayers. ACS Nano, 2013, 7, 932-942.	7.3	89
626	Triple-stimuli (pH/thermo/reduction) sensitive copolymers for intracellular drug delivery. Journal of Materials Chemistry B, 2013, 1, 1860.	2.9	50
627	Uniform Polypyrrole Nanoparticles with High Photothermal Conversion Efficiency for Photothermal Ablation of Cancer Cells. Advanced Materials, 2013, 25, 777-782.	11.1	683
628	Influence of outer membrane <i>c</i> â€type cytochromes on particle size and activity of extracellular nanoparticles produced by <i>Shewanella oneidensis</i> . Biotechnology and Bioengineering, 2013, 110, 1831-1837.	1.7	72
629	Understanding magnetic nanoparticle osteoblast receptor-mediated endocytosis using experiments and modeling. Nanotechnology, 2013, 24, 185102.	1.3	16
630	Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Molecular Pharmaceutics, 2013, 10, 2111-2126.	2.3	49
631	Computer simulation of cell entry of graphene nanosheet. Biomaterials, 2013, 34, 4296-4301.	5.7	89
632	Nanovacuums: Nanoparticle Uptake and Differential Cellular Migration on a Carpet of Nanoparticles. Nano Letters, 2013, 13, 2295-2302.	4.5	62
633	Preparation and photodynamic therapy application of NaYF4:Yb, Tm–NaYF4:Yb, Er multifunctional upconverting nanoparticles. New Journal of Chemistry, 2013, 37, 1782.	1.4	59
634	Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale, 2013, 5, 4462.	2.8	189

#	Article	IF	Citations
635	Tuning core–shell SiO2@CdTe@SiO2 fluorescent nanoparticles for cell labeling. Journal of Materials Chemistry B, 2013, 1, 2315.	2.9	29
636	Nanoengineered Colloidal Probes for Ramanâ€based Detection of Biomolecules inside Living Cells. Small, 2013, 9, 351-356.	5.2	53
637	Quantum dots as a platform for nanoparticle drug delivery vehicle design. Advanced Drug Delivery Reviews, 2013, 65, 703-718.	6.6	375
638	Nanoâ€Graphene Oxide: A Potential Multifunctional Platform for Cancer Therapy. Advanced Healthcare Materials, 2013, 2, 1072-1090.	3.9	154
639	Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds. Nanoscale, 2013, 5, 4321.	2.8	26
640	The role of cell cycle in the efficiency and activity of cancer nanomedicines. Expert Opinion on Drug Delivery, 2013, 10, 775-786.	2.4	19
641	Current options for drug delivery to the spinal cord. Expert Opinion on Drug Delivery, 2013, 10, 385-396.	2.4	61
642	Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses <i>in Vitro</i> and <i>in Vivo</i> ACS Nano, 2013, 7, 3926-3938.	7.3	533
643	Carbon nanostructures as multi-functional drug delivery platforms. Journal of Materials Chemistry B, 2013, 1, 401-428.	2.9	186
644	Nanostructured Porous Siliconâ€Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release. Advanced Functional Materials, 2013, 23, 1893-1902.	7.8	72
645	Self-assembly of nanoparticles adsorbed on fluid and elastic membranes. Soft Matter, 2013, 9, 6677.	1.2	67
646	In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nature Nanotechnology, 2013, 8, 363-368.	15.6	137
647	Metallofullerene nanoparticles promote osteogenic differentiation of bone marrow stromal cells through BMP signaling pathway. Nanoscale, 2013, 5, 1205.	2.8	47
648	Designing Tripodal and Triangular Gadolinium Oxide Nanoplates and Self-Assembled Nanofibrils as Potential Multimodal Bioimaging Probes. ACS Nano, 2013, 7, 2850-2859.	7.3	115
649	Folate Conjugation to Polymeric Micelles via Boronic Acid Ester to Deliver Platinum Drugs to Ovarian Cancer Cell Lines. Biomacromolecules, 2013, 14, 962-975.	2.6	101
650	Nanoâ€6AR Development for Bioactivity of Nanoparticles with Considerations of Decision Boundaries. Small, 2013, 9, 1842-1852.	5.2	75
651	Molecular modeling of the pathways of vesicleâ€"membrane interaction. Soft Matter, 2013, 9, 559-569.	1.2	60
652	Phytostimulation of Poplars and <i>Arabidopsis</i> Exposed to Silver Nanoparticles and Ag ⁺ at Sublethal Concentrations. Environmental Science & Environmental Scien	4.6	201

#	Article	IF	CITATIONS
653	<i>In Vivo</i> Targeting of Intratumor Regulatory T Cells Using PEG-Modified Single-Walled Carbon Nanotubes. Bioconjugate Chemistry, 2013, 24, 852-858.	1.8	81
654	Understanding the Particokinetics of Engineered Nanomaterials for Safe and Effective Therapeutic Applications. Small, 2013, 9, 1619-1634.	5.2	39
655	Application of activated nucleoside analogs for the treatment of drug-resistant tumors by oral delivery of nanogel-drug conjugates. Journal of Controlled Release, 2013, 167, 200-209.	4.8	31
656	Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking. Small, 2013, 9, 1521-1532.	5.2	694
657	From Cradle-to-Grave at the Nanoscale: Gaps in U.S. Regulatory Oversight along the Nanomaterial Life Cycle. Environmental Science & Environmental Scie	4.6	55
658	Gold nanoparticles: A paradigm shift in biomedical applications. Advances in Colloid and Interface Science, 2013, 199-200, 44-58.	7.0	143
659	Surface and Size Effects on Cell Interaction of Gold Nanoparticles with Both Phagocytic and Nonphagocytic Cells. Langmuir, 2013, 29, 9138-9148.	1.6	183
660	Smart Polymersomes: Formation, Characterisation and Applications. RSC Smart Materials, 2013, , 179-207.	0.1	8
661	Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nature Nanotechnology, 2013, 8, 594-601.	15.6	1,260
662	Nanovaccines and their mode of action. Methods, 2013, 60, 226-231.	1.9	117
663	Oxidative DNA damage corresponds to the long term survival of human cells treated with silver		
	nanoparticles. Toxicology Letters, 2013, 219, 151-159.	0.4	58
664	nanoparticles. Toxicology Letters, 2013, 219, 151-159. Overcoming cisplatin resistance in chemotherapy by biomineralization. Chemical Communications, 2013, 49, 4932.	2.2	27
665	nanoparticles. Toxicology Letters, 2013, 219, 151-159. Overcoming cisplatin resistance in chemotherapy by biomineralization. Chemical Communications,		
	nanoparticles. Toxicology Letters, 2013, 219, 151-159. Overcoming cisplatin resistance in chemotherapy by biomineralization. Chemical Communications, 2013, 49, 4932. Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical	2.2	27
665	nanoparticles. Toxicology Letters, 2013, 219, 151-159. Overcoming cisplatin resistance in chemotherapy by biomineralization. Chemical Communications, 2013, 49, 4932. Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling. Nanomedicine, 2013, 8, 995-1011. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.	2.2	27 52
665	nanoparticles. Toxicology Letters, 2013, 219, 151-159. Overcoming cisplatin resistance in chemotherapy by biomineralization. Chemical Communications, 2013, 49, 4932. Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling. Nanomedicine, 2013, 8, 995-1011. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Advanced Drug Delivery Reviews, 2013, 65, 1470-1495.	2.2 1.7 6.6	27 52 84
665 666 667	overcoming cisplatin resistance in chemotherapy by biomineralization. Chemical Communications, 2013, 49, 4932. Advances in the understanding of nanomaterial–biomembrane interactions and their mathematical and numerical modeling. Nanomedicine, 2013, 8, 995-1011. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Advanced Drug Delivery Reviews, 2013, 65, 1470-1495. Biomedical. Interface Science and Technology, 2013, 19, 385-427. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance.	2.2 1.7 6.6	27 52 84 2

#	Article	IF	CITATIONS
671	Polyplex Exposure Inhibits Cell Cycle, Increases Inflammatory Response, and Can Cause Protein Expression without Cell Division. Molecular Pharmaceutics, 2013, 10, 1306-1317.	2.3	27
672	Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). Journal of Nanoparticle Research, 2013, 15, 2101.	0.8	163
673	Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction, 2013, 145, R15-R30.	1.1	58
674	Polymeric Nanoparticles with Sequential and Multiple FRET Cascade Mechanisms for Multicolor and Multiplexed Imaging. Small, 2013, 9, 2129-2139.	5.2	59
675	Uptake and Toxicology of Nanoparticles. Frontiers of Nanoscience, 2013, 5, 123-138.	0.3	1
676	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12127-12134.	4.0	45
677	Reduction of Nanoparticle Avidity Enhances the Selectivity of Vascular Targeting and PET Detection of Pulmonary Inflammation. ACS Nano, 2013, 7, 2461-2469.	7.3	94
678	Driving the Interactions between Organic Nanoparticles and Phospolipidic Membranes by an Easy Treatment of the Surface Stabilizer. Langmuir, 2013, 29, 11405-11412.	1.6	6
679	Hydrogel nanosensors for biophotonic imaging of chemical analytes. Nanomedicine, 2013, 8, 1829-1838.	1.7	12
680	Therapeutic nanomedicine for brain cancer. Therapeutic Delivery, 2013, 4, 687-704.	1.2	97
681	Difference between Toxicities of Iron Oxide Magnetic Nanoparticles with Various Surface-Functional Groups against Human Normal Fibroblasts and Fibrosarcoma Cells. Materials, 2013, 6, 4689-4706.	1.3	51
682	Efficient Hepatic Delivery of Drugs: Novel Strategies and Their Significance. BioMed Research International, 2013, 2013, 1-20.	0.9	89
683	Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8662-8667.	3.3	391
684	EFFECTS OF POLYMERIC NANOPARTICLE SURFACE PROPERTIES ON INTERACTION WITH BRAIN TUMOR ENVIRONMENT. Nano LIFE, 2013, 03, 1343003.	0.6	16
685	The Synthesis of Methylene Blue Photosensitiser Conjugated with Gold Nanoparticles. Advanced Materials Research, 2013, 829, 299-303.	0.3	2
686	Superior Penetration and Retention Behavior of 50 nm Gold Nanoparticles in Tumors. Cancer Research, 2013, 73, 319-330.	0.4	281
687	Size-Dependent Photodynamic Activity of Gold Nanoparticles Conjugate of Water Soluble Purpurin-18-N-Methyl-D-Glucamine. BioMed Research International, 2013, 2013, 1-10.	0.9	29
688	Synthesis of Alginate-Curcumin Nanocomposite and Its Protective Role in Transgenic <i>Drosophila</i> Model of Parkinson's Disease. ISRN Pharmacology, 2013, 2013, 1-8.	1.6	54

#	Article	IF	CITATIONS
689	What are the limitations on the wider therapeutic use of phage?. Bacteriophage, 2013, 3, e24872.	1.9	88
690	Pressure-induced evaporation dynamics of gold nanoparticles on oxide substrate. Physical Review E, 2013, 87, 012405.	0.8	18
691	Nanomedicine—Biological Warfare at the Cellular Level. Frontiers of Nanoscience, 2013, 5, 1-26.	0.3	1
692	Synthesis and characterization of novel brush copolymers with biodegradable polyphosphoester side chains for gene delivery. Journal of Polymer Science Part A, 2013, 51, 2150-2160.	2.5	18
693	Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19048-19053.	3.3	205
694	The â€~nanobig rod' class of gold nanorods: optimized dimensions for improved <i>in vivo</i> therapeutic and imaging efficacy. Nanotechnology, 2013, 24, 215102.	1.3	10
696	Engineering particles for therapeutic delivery: Prospects and challenges. Proceedings of the Royal Society of Victoria, 2013, 125, 77.	0.3	1
697	Antiâ€CRLF2 Antibodyâ€Armored Biodegradable Nanoparticles for Childhood Bâ€ALL. Particle and Particle Systems Characterization, 2013, 30, 355-364.	1.2	7
698	Synthesis and characterization of surface-enhanced Raman-scattered gold nanoparticles. International Journal of Nanomedicine, 2013, 8, 4327.	3.3	22
699	Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection. International Journal of Nanomedicine, 2013, 8, 555.	3.3	52
700	Estimating the modulatory effects of nanoparticles on neuronal circuits using computational upscaling. International Journal of Nanomedicine, 2013, 8, 3559.	3.3	3
701	Molecular recognition by gold, silver and copper nanoparticles. World Journal of Biological Chemistry, 2013, 4, 35.	1.7	76
702	Potential toxicity and safety evaluation of nanomaterials for the respiratory system and lung cancer. Lung Cancer: Targets and Therapy, 2013, 4, 71.	1.3	8
703	Biochemical responses of nanosize titanium dioxide in the heart of rats following administration of idepenone and quercetin L.M. Faddah*, Nayira A. Abdel Baky, Nouf M. Al-Rasheed and Nawal M. Al-Rasheed. African Journal of Pharmacy and Pharmacology, 2013, 7, 2639-2651.	0.2	19
704	Particle Size of Latex Beads Dictates IL- $1\hat{l}^2$ Production Mechanism. PLoS ONE, 2013, 8, e68499.	1.1	11
705	Local Targeted Therapy of Liver Metastasis from Colon Cancer by Galactosylated Liposome Encapsulated with Doxorubicin. PLoS ONE, 2013, 8, e73860.	1.1	32
706	Adjusting the Balance between Effective Loading and Vector Migration of Macrophage Vehicles to Deliver Nanoparticles. PLoS ONE, 2013, 8, e76024.	1.1	18
707	Appropriate <i>ln Vitro</i> Methods for Genotoxicity Testing of Silver Nanoparticles. Environmental Health and Toxicology, 2013, 28, e2013003.	1.8	55

#	Article	IF	CITATIONS
708	Application of Nanotechnology in Drug Delivery. , 0, , .		14
709	Heterobifunctional PEG Ligands for Bioconjugation Reactions on Iron Oxide Nanoparticles. PLoS ONE, 2014, 9, e109475.	1.1	30
710	Cytotoxic Potential of Silver Nanoparticles. Yonsei Medical Journal, 2014, 55, 283.	0.9	340
711	Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. International Journal of Nanomedicine, 2014, 9, 1505.	3.3	77
712	Nanoparticles in the Development of Therapeutic Cancer Vaccines. Pharmaceutical Nanotechnology, 2014, 2, 2-22.	0.6	6
713	Applications of Nanotechnology in Cancer: A Literature Review of Imaging and Treatment. Journal of Nuclear Medicine & Radiation Therapy, 2014, 05, .	0.2	17
714	The Relationships among Structure, Activity, and Toxicity of Engineered Nanoparticles. KONA Powder and Particle Journal, 2014, 31, 10-21.	0.9	16
715	High Content Screening and Analysis with Nanotechnologies. , 2014, , 379-389.		1
716	Nanoparticle Drug Formulations for Cancer Diagnosis and Treatment. Critical Reviews in Oncogenesis, 2014, 19, 223-245.	0.2	15
718	Applications of nanomaterials as vaccine adjuvants. Human Vaccines and Immunotherapeutics, 2014, 10, 2761-2774.	1.4	109
719	Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of poly(L-lactide) composites. Macromolecular Research, 2014, 22, 1032-1041.	1.0	10
720	Novel titanium oxide nanoparticles for effective delivery of paclitaxel to human breast cancer cells. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	7
721	Surface association and uptake of poly(lactic-co-glycolic) acid nanoparticles by Aspergillus flavus. Therapeutic Delivery, 2014, 5, 1179-1190.	1.2	3
722	Binary self-assembled monolayers modified Au nanoparticles as carriers in biological applications. Biointerphases, 2014, 9, 041005.	0.6	4
723	Cell-Based in Vitro Blood–Brain Barrier Model Can Rapidly Evaluate Nanoparticles' Brain Permeability in Association with Particle Size and Surface Modification. International Journal of Molecular Sciences, 2014, 15, 1812-1825.	1.8	135
724	Investigation of Cytotoxicity of Phosphoryl Choline Modified Single-Walled Carbon Nanotubes under a Live Cell Station. BioMed Research International, 2014, 2014, 1-12.	0.9	2
725	Effects of Uptake of Hydroxyapatite Nanoparticles into Hepatoma Cells on Cell Adhesion and Proliferation. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	17
726	Nonlinear Effects of Nanoparticles: Biological Variability from Hormetic Doses, Small Particle Sizes, and Dynamic Adaptive Interactions. Dose-Response, 2014, 12, dose-response.1.	0.7	62

#	Article	IF	CITATIONS
727	Receptor-targeted drug delivery: current perspective and challenges. Therapeutic Delivery, 2014, 5, 1007-1024.	1.2	51
728	Shape-Mediated Biological Effects of Mesoporous Silica Nanoparticles. Journal of Biomedical Nanotechnology, 2014, 10, 2508-2538.	0.5	45
729	Structure–Activity Relationships for Tumor-Targeting Gold Nanoparticles. Frontiers in Nanobiomedical Research, 2014, , 519-563.	0.1	1
731	Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos <i>Paracentrotus lividus</i> . Environmental Science & Early Stage of Development of Sea Urchin Embryos <i 12302-12311.<="" td=""><td>4.6</td><td>509</td></i>	4.6	509
732	Nano-Oncologicals. Advances in Delivery Science and Technology, 2014, , .	0.4	7
733	How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation. Physical Review E, 2014, 90, 052701.	0.8	14
734	Orientational switching of protein conformation as a function of nanoparticle curvature and their geometrical fitting. Journal of Chemical Physics, 2014, 141, 084707.	1.2	18
735	Quantum microscopy using nanodiamonds. , 2014, , 219-239.		0
736	Elucidating the endocytosis, intracellular trafficking, and exocytosis of carbon dots in neural cells. RSC Advances, 0, , .	1.7	24
737	Nonhomogeneous Silica Promotes the Biologically Induced Delivery of Metal Ions from Silica-Coated Magnetic Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 28266-28273.	1.5	4
738	Optimizing the bio-nano interface for gold nanoparticles. , 2014, , 87-106.		0
739	Emerging Research and Clinical Development Trends of Liposome and Lipid Nanoparticle Drug Delivery Systems. Journal of Pharmaceutical Sciences, 2014, 103, 29-52.	1.6	437
740	Nanotoxicity and Cellular Stress Response: Physical and Chemical Properties and Their Link to Translational Research., 2014,, 69-80.		1
741	A multilayered cell culture model for transport study in solid tumors: Evaluation of tissue penetration of polyethyleneimine based cationic micelles. Nano Today, 2014, 9, 695-704.	6.2	61
743	TERS Detection of $\hat{l}_{sub} < sub} < sub} < sub} < sub} < sub} > i^2 < sub} < sub} > integrins in Intact Cell Membranes. ChemPhysChem, 2014, 15, 3944-3949.$	1.0	27
744	Nanoparticles: Cellular Uptake and Cytotoxicity. Advances in Experimental Medicine and Biology, 2014, 811, 73-91.	0.8	116
745	Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of ^{64 < /sup > Cuâ€"Au alloy nanoclusters. Nanoscale, 2014, 6, 13501-13509.}	2.8	76
746	Selective intracellular free radical generation against cancer cells by bioactivation of low-dose artesunate with a functionalized mesoporous silica nanosystem. Journal of Materials Chemistry B, 2014, 2, 6984-6994.	2.9	12

#	Article	IF	CITATIONS
747	In Vitro Toxicology Systems. Methods in Pharmacology and Toxicology, 2014, , .	0.1	8
748	Quantitative evaluation and visualization of size effect on cellular uptake of gold nanoparticles by multiphoton imaging-UV/Vis spectroscopic analysis. Journal of Biomedical Optics, 2014, 19, 101505.	1.4	17
749	The Significance of Nanoparticles in Medicine and Their Potential Application in Asthma. , 2014, , 247-275.		3
750	Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8131-8141.	2.9	43
751	Polymeric Nanocarriers for Cancer Therapy. Advances in Delivery Science and Technology, 2014, , 67-94.	0.4	1
752	EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage. International Journal of Nanomedicine, 2014, 9, 3825.	3.3	27
753	Induced T cell cytokine production is enhanced by engineered nanoparticles. Nanotoxicology, 2014, 8, 11-23.	1.6	13
754	Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine, 2014, 9 Suppl 1, 51.	3.3	534
755	Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy. Journal of Contemporary Brachytherapy, 2014, 4, 377-385.	0.4	3
756	Engineering Nanomaterials for Biosensors and Therapeutics. , 2014, , 513-534.		1
757	The more exotic shapes of semiconductor nanocrystals: emerging applications in bioimaging. Current Opinion in Chemical Engineering, 2014, 4, 137-143.	3.8	18
758	Clinical Nanomedicine: A Solution to the Chemotherapy Conundrum in Pediatric Leukemia Therapy. Clinical Pharmacology and Therapeutics, 2014, 95, 168-178.	2.3	38
759	Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angewandte Chemie - International Edition, 2014, 53, 1756-1789.	7.2	793
760	Designing nanoparticle carriers for enhanced drug efficacy in photodynamic therapy. Biomaterials Science, 2014, 2, 827-832.	2.6	20
761	Shape and Orientation Matter for the Cellular Uptake of Nonspherical Particles. Nano Letters, 2014, 14, 687-693.	4.5	432
762	Self-assembled plasmonic nanostructures. Chemical Society Reviews, 2014, 43, 3976.	18.7	276
763	Transferrin Receptor-Mediated Endocytosis: A Useful Target for Cancer Therapy. Journal of Membrane Biology, 2014, 247, 291-307.	1.0	234
764	Engineered nanoparticles interacting with cells: size matters. Journal of Nanobiotechnology, 2014, 12, 5.	4.2	1,030

#	Article	IF	Citations
765	Inorganic nanoparticles for therapeutic delivery: Trials, tribulations and promise. Current Opinion in Colloid and Interface Science, 2014, 19, 49-55.	3.4	45
766	Techniques for physicochemical characterization of nanomaterials. Biotechnology Advances, 2014, 32, 711-726.	6.0	497
767	Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale, 2014, 6, 3274.	2.8	239
768	Combination of UV–vis spectroscopy and chemometrics to understand protein–nanomaterial conjugate: A case study on human serum albumin and gold nanoparticles. Talanta, 2014, 119, 320-330.	2.9	64
769	Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environmental Toxicology and Chemistry, 2014, 33, 481-492.	2.2	322
770	Wrapping of nanoparticles by membranes. Advances in Colloid and Interface Science, 2014, 208, 214-224.	7.0	186
771	Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opinion on Drug Delivery, 2014, 11, 741-752.	2.4	121
772	Biodegradable polymers for electrospinning: Towards biomedical applications. Materials Science and Engineering C, 2014, 45, 659-670.	3.8	318
773	Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions. Radiotherapy and Oncology, 2014, 110, 342-347.	0.3	72
774	Mesoporous silica encapsulation of silicon nanocrystals: Synthesis, aqueous dispersibility and drug release. Materials Letters, 2014, 115, 21-24.	1.3	11
775	Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnology Advances, 2014, 32, 679-692.	6.0	62
776	Toxicity of differentâ€sized copper nano―and submicron particles and their shed copper ions to zebrafish embryos. Environmental Toxicology and Chemistry, 2014, 33, 1774-1782.	2.2	69
777	Excellent antimicrobial properties of silver-loaded mesoporous silica SBA-15. Journal of Applied Microbiology, 2014, 116, 1106-1118.	1.4	23
778	Surface Chemistry of Gold Nanoparticles Mediates Their Exocytosis in Macrophages. ACS Nano, 2014, 8, 6232-6241.	7.3	143
779	Metabolizable Bi ₂ Se ₃ Nanoplates: Biodistribution, Toxicity, and Uses for Cancer Radiation Therapy and Imaging. Advanced Functional Materials, 2014, 24, 1718-1729.	7.8	226
780	Organ-on-a-chip platforms for studying drug delivery systems. Journal of Controlled Release, 2014, 190, 82-93.	4.8	308
781	Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials, 2014, 35, 3650-3665.	5.7	100
782	Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials, 2014, 35, 5795-5804.	5.7	129

#	Article	IF	CITATIONS
783	Rigid nanoparticle-based delivery of anti-cancer siRNA: Challenges and opportunities. Biotechnology Advances, 2014, 32, 831-843.	6.0	67
784	Investigating the Impact of Nanoparticle Size on Active and Passive Tumor Targeting Efficiency. ACS Nano, 2014, 8, 5696-5706.	7.3	528
785	Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent Nuclear Entry. ACS Nano, 2014, 8, 5852-5862.	7.3	347
786	Secreted Biomolecules Alter the Biological Identity and Cellular Interactions of Nanoparticles. ACS Nano, 2014, 8, 5515-5526.	7.3	225
787	Selective Uptake and Imaging of Aptamer- and Antibody-Conjugated Hollow Nanospheres Targeted to Epidermal Growth Factor Receptors Overexpressed in Head and Neck Cancer. ACS Nano, 2014, 8, 4530-4538.	7.3	109
788	Biotechnological approaches toward nanoparticle biofunctionalization. Trends in Biotechnology, 2014, 32, 11-20.	4.9	107
789	Nanomedicine: de novo design of nanodrugs. Nanoscale, 2014, 6, 663-677.	2.8	56
790	Nanotechnology meets 3D in vitro models: Tissue engineered tumors and cancer therapies. Materials Science and Engineering C, 2014, 34, 270-279.	3.8	50
791	Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Science of the Total Environment, 2014, 468-469, 968-976.	3.9	192
792	Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 160-169.	1.1	38
793	Nanotoxicology. Nanomedicine and Nanotoxicology, 2014, , .	0.1	20
794	Nanoparticles Interacting with Proteins and Cells: A Systematic Study of Protein Surface Charge Effects. Advanced Materials Interfaces, 2014, 1, 1300079.	1.9	69
795	DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nature Nanotechnology, 2014, 9, 148-155.	15.6	385
796	Effects of Functionalized Gold Nanoparticle Size on X-ray Attenuation and Substrate Binding Affinity. Chemistry of Materials, 2014, 26, 1187-1194.	3.2	50
797	XAV939: From a Small Inhibitor to a Potent Drug Bioconjugate When Delivered by Gold Nanoparticles. Bioconjugate Chemistry, 2014, 25, 207-215.	1.8	28
798	Uptake of Engineered Gold Nanoparticles into Mammalian Cells. Chemical Reviews, 2014, 114, 1258-1288.	23.0	253
799	Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 2014, 66, 2-25.	6.6	2,275
800	Computer simulation studies on the interactions between nanoparticles and cell membrane. Science China Chemistry, 2014, 57, 1662-1671.	4.2	19

#	Article	IF	CITATIONS
801	Conjugation of Gold Nanorods with Bovine Serum Albumin Protein. Journal of Physical Chemistry C, 2014, 118, 27459-27464.	1.5	34
802	Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy. Chemical Communications, 2014, 50, 15928-15931.	2.2	66
803	Nano-Size Effect of Hyperbranched Polyglycerol-Grafted Fe ₃ O ₄ Nanoparticles. Soft Materials, 2014, 12, 306-314.	0.8	6
804	Size-Dependent Knockdown Potential of siRNA-Loaded Cationic Nanohydrogel Particles. Biomacromolecules, 2014, 15, 4111-4121.	2.6	59
805	Surfactant Titration of Nanoparticle–Protein Corona. Analytical Chemistry, 2014, 86, 12055-12063.	3.2	49
806	In vitro dosimetry of agglomerates. Nanoscale, 2014, 6, 7325-7331.	2.8	33
807	Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. Journal of Materials Chemistry B, 2014, 2, 452-470.	2.9	108
808	Gold nanoparticles regulate the blimp1/pax5 pathway and enhance antibody secretion in B-cells. Nanotechnology, 2014, 25, 125103.	1.3	16
809	Characterization of the antioxidant activity of gold@platinum nanoparticles. RSC Advances, 2014, 4, 19824.	1.7	19
810	Optimizing the selective recognition of protein isoforms through tuning of nanoparticle hydrophobicity. Nanoscale, 2014, 6, 6492.	2.8	20
811	Synthesis of an acid-cleavable and fluorescent amphiphilic block copolymer as a combined delivery vector of DNA and doxorubicin. Journal of Materials Chemistry B, 2014, 2, 4237-4249.	2.9	28
812	Back to Basics: Exploiting the Innate Physicoâ€chemical Characteristics of Nanomaterials for Biomedical Applications. Advanced Functional Materials, 2014, 24, 5936-5955.	7.8	192
813	Reduction breakable cholesteryl pullulan nanoparticles for targeted hepatocellular carcinoma chemotherapy. Journal of Materials Chemistry B, 2014, 2, 3500-3510.	2.9	40
814	Asymmetrically functionalized \hat{l}^2 -cyclodextrin-based star copolymers for integrated gene delivery and magnetic resonance imaging contrast enhancement. Polymer Chemistry, 2014, 5, 1743-1750.	1.9	39
815	Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. Nanoscale, 2014, 6, 5116.	2.8	61
816	The effect of amphiphilic polymers on the association, morphology and photophysical properties of hypocrellin coordination polymer/fullerene assemblies. Photochemical and Photobiological Sciences, 2014, 13, 1529-1540.	1.6	5
817	Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells. Nanoscale, 2014, 6, 10207-10215.	2.8	22
818	Revisiting the principles of preparing aqueous quantum dots for biological applications: the effects of surface ligands on the physicochemical properties of quantum dots. RSC Advances, 2014, 4, 13805-13816.	1.7	24

#	Article	IF	CITATIONS
819	Co-delivery of small interfering RNA using a camptothecin prodrug as the carrier. Chemical Communications, 2014, 50, 1323-1325.	2.2	26
820	Targeting peptide iRGD-conjugated amphiphilic chitosan-co-PLA/DPPE drug delivery system for enhanced tumor therapy. Journal of Materials Chemistry B, 2014, 2, 3232.	2.9	28
821	Robust Route to Unimolecular Core–Shell and Hollow Polymer Nanoparticles. Chemistry of Materials, 2014, 26, 6058-6067.	3.2	42
822	Nanoconjugation: a materials approach to enhance epidermal growth factor induced apoptosis. Biomaterials Science, 2014, 2, 156-166.	2.6	19
823	Nanomaterial-mediated photothermal cancer treatment: the pivotal role of cellular uptake on photothermal therapeutic efficacy. RSC Advances, 2014, 4, 53297-53306.	1.7	15
824	Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today, 2014, 9, 457-477.	6.2	169
825	Nano Regulation of Cisplatin Chemotherapeutic Behaviors by Biomineralization Controls. Small, 2014, 10, 3644-3649.	5.2	21
826	Nanosurgical Resection of Malignant Brain Tumors: Beyond the Cutting Edge. ACS Nano, 2014, 8, 9716-9722.	7. 3	18
827	Multifunctional Tumor pH-Sensitive Self-Assembled Nanoparticles for Bimodal Imaging and Treatment of Resistant Heterogeneous Tumors. Journal of the American Chemical Society, 2014, 136, 5647-5655.	6.6	452
828	Biological Targeting of Plasmonic Nanoparticles Improves Cellular Imaging via the Enhanced Scattering in the Aggregates Formed. Journal of Physical Chemistry Letters, 2014, 5, 2555-2561.	2.1	44
829	Metallic glass nanostructures: fabrication, properties, and applications. Nanoscale, 2014, 6, 2027.	2.8	44
830	NMR as Evaluation Strategy for Cellular Uptake of Nanoparticles. Nano Letters, 2014, 14, 3959-3965.	4.5	5
831	The Aspect Ratio of Nanoparticle Assemblies and the Spatial Arrangement of Ligands can be Optimized to Enhance the Targeting of Cancer Cells. Advanced Healthcare Materials, 2014, 3, 1739-1744.	3.9	11
832	TPGS-g-PLGA/Pluronic F68 mixed micelles for tanshinone IIA delivery in cancer therapy. International Journal of Pharmaceutics, 2014, 476, 185-198.	2.6	75
833	Characteristics of three sizes of silica nanoparticles in the osteoblastic cell line, MC3T3-E1. RSC Advances, 2014, 4, 46481-46487.	1.7	11
834	Gold nanoparticles and gold nanoparticle-conjugates for delivery of therapeutic molecules. Progress and challenges. Journal of Materials Chemistry B, 2014, 2, 4204-4220.	2.9	95
835	Nano-hydroxyapatite and Nano-titanium Dioxide Exhibit Different Subcellular Distribution and Apoptotic Profile in Human Oral Epithelium. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6248-6256.	4.0	87
836	Particle geometry, charge, and wettability., 2014,, 443-467.		3

#	Article	IF	CITATIONS
837	Role of size of drug delivery carriers for pulmonary and intravenous administration with emphasis on cancer therapeutics and lung-targeted drug delivery. RSC Advances, 2014, 4, 32673-32689.	1.7	85
838	Cytotoxicity of graphene: recent advances and future perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 452-474.	3.3	101
839	Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles. International Journal of Pharmaceutics, 2014, 473, 286-295.	2.6	38
840	Bombesin Peptide Conjugated Gold Nanocages Internalize via Clathrin Mediated Endocytosis. Bioconjugate Chemistry, 2014, 25, 1565-1579.	1.8	37
841	A silica-gold core-shell structure to mimic the large size of gold particles for promoting cell growth: A comparative study of the silica core size and the nanogold amount in the shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459, 211-216.	2.3	5
842	Development of U11-Functionalized Gold Nanoparticles for Selective Targeting of Urokinase Plasminogen Activator Receptor-Positive Breast Cancer Cells. Bioconjugate Chemistry, 2014, 25, 1381-1386.	1.8	19
843	Delivering Colloidal Nanoparticles to Mammalian Cells: A Nano–Bio Interface Perspective. Advanced Healthcare Materials, 2014, 3, 957-976.	3.9	39
845	Polyethylene Glycol Backfilling Mitigates the Negative Impact of the Protein Corona on Nanoparticle Cell Targeting. Angewandte Chemie - International Edition, 2014, 53, 5093-5096.	7.2	276
846	Double Fano resonances in nanoring cavity dimers: The effect of plasmon hybridization between dark subradiant modes. AIP Advances, 2014, 4, .	0.6	26
847	Surfactant-free polymeric nanoparticles composed of PEG, cholic acid and a sucrose moiety. Journal of Materials Chemistry B, 2014, 2, 3946-3955.	2.9	12
848	Morphological effect of gold nanoparticles on the adsorption of bovine serum albumin. Physical Chemistry Chemical Physics, 2014, 16, 20471-20482.	1.3	53
849	Internalization and subcellular fate of aptamer and peptide dual-functioned nanoparticles. Journal of Drug Targeting, 2014, 22, 450-459.	2.1	32
850	Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15344-15349.	3.3	523
851	Validation of a Janus role of methotrexate-based PEGylated chitosan nanoparticles in vitro. Nanoscale Research Letters, 2014, 9, 363.	3.1	25
852	Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). Journal of Zhejiang University: Science A, 2014, 15, 662-670.	1.3	28
853	Advances in targeting strategies for nanoparticles in cancer imaging and therapy. Nanoscale, 2014, 6, 13383-13390.	2.8	53
854	Silver nanoparticles augment releasing of pyrogenic factors by blood cells stimulated with LPS. Open Life Sciences, 2014, 9, 1058-1067.	0.6	5
855	Quantification of Al2O3 nanoparticles in human cell lines applying inductively coupled plasma mass spectrometry (neb-ICP-MS, LA-ICP-MS) and flow cytometry-based methods. Journal of Nanoparticle Research, 2014, 16, 2592.	0.8	40

#	Article	IF	CITATIONS
856	Multimedia Environmental Distribution of Engineered Nanomaterials. Environmental Science & Enchnology, 2014, 48, 3281-3292.	4.6	192
857	Gas-injection of gold nanoparticles and anti-oxidants promotes diabetic wound healing. RSC Advances, 2014, 4, 4656-4662.	1.7	18
860	Neuropilin-1-Targeted Gold Nanoparticles Enhance Therapeutic Efficacy of Platinum(IV) Drug for Prostate Cancer Treatment. ACS Nano, 2014, 8, 4205-4220.	7.3	146
861	Nanocarrier: A potential tool for future antioxidant therapy. Free Radical Research, 2014, 48, 1061-1069.	1.5	21
862	Intracellular Delivery of Universal Proteins Using a Lysine Headgroup Containing Cationic Liposomes: Deciphering the Uptake Mechanism. Molecular Pharmaceutics, 2014, 11, 164-174.	2.3	39
863	The interaction of nanoparticles with plasma proteins and the consequent influence on nanoparticles behavior. Expert Opinion on Drug Delivery, 2014, 11, 409-420.	2.4	126
864	Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials, 2014, 35, 8467-8478.	5.7	176
865	A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 2014, 6, 7052.	2.8	383
866	Size-Dependent Programming of the Dynamic Range of Graphene Oxide–DNA Interaction-Based Ion Sensors. Analytical Chemistry, 2014, 86, 4047-4051.	3.2	63
867	Magnetic Nanoparticles to Recover Cellular Organelles and Study the Time Resolved Nanoparticle ell Interactome throughout Uptake. Small, 2014, 10, 3307-3315.	5. 2	59
868	Nanodevices for studying nano-pathophysiology. Advanced Drug Delivery Reviews, 2014, 74, 35-52.	6.6	30
869	Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. Journal of Controlled Release, 2014, 189, 141-149.	4.8	176
870	Nanoparticle multivalency counterbalances the ligand affinity loss upon PEGylation. Journal of Controlled Release, 2014, 194, 20-27.	4.8	53
871	Biocompatibility of porous silicon for biomedical applications., 2014,, 129-181.		3
872	Engineered drug-protein nanoparticle complexes for folate receptor targeting. Biochemical Engineering Journal, 2014, 89, 33-41.	1.8	57
873	Ultra-small fluorescent inorganic nanoparticles for bioimaging. Journal of Materials Chemistry B, 2014, 2, 2793-2818.	2.9	104
874	Enhancing the receptor-mediated cell uptake of PLGA nanoparticle for targeted drug delivery by incorporation chitosan onto the particle surface. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	9
875	Aptamer-Targeted DNA Nanostructures for Therapeutic Delivery. Molecular Pharmaceutics, 2014, 11, 1721-1725.	2.3	114

#	Article	IF	Citations
876	Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e1075-e1087.	1.7	77
877	Comparison of nanosilver removal by flocculent and granular sludge and short- and long-term inhibition impacts. Water Research, 2014, 58, 62-70.	5.3	76
878	Nanotechnology for the Detection and Therapy of Stroke. Advanced Healthcare Materials, 2014, 3, 1703-1720.	3.9	52
879	Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. Nanotoxicology, 2014, 8, 813-823.	1.6	23
880	Antibody-Functionalized Inorganic NPs: Mimicking Nature for Targeted Diagnosis and Therapy. , 2014, , 1-28.		1
881	Magneticâ€directed patterning of cell spheroids. Journal of Biomedical Materials Research - Part A, 2014, 102, 1537-1547.	2.1	66
882	Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chemical Reviews, 2014, 114, 5161-5214.	23.0	2,163
883	Molecular mechanisms and physiology of disease. , 2014, , .		1
884	High elastic modulus nanoparticles: a novel tool for subfailure connective tissue matrix damage. Translational Research, 2014, 164, 244-257.	2.2	13
885	Controlled Production of Poly (3-Hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx) Nanoparticles for Targeted and Sustained Drug Delivery. Journal of Pharmaceutical Sciences, 2014, 103, 2498-2508.	1.6	15
886	Attenuation of endothelial-dependent vasodilator responses, induced by dye-encapsulated silica nanoparticles, in aortic vessels. Nanomedicine, 2014, 9, 413-425.	1.7	16
887	Nanoparticle-Mediated Systemic Delivery of siRNA for Treatment of Cancers and Viral Infections. Theranostics, 2014, 4, 872-892.	4.6	195
888	Development of a novel liposomal nanodelivery system for bioluminescence imaging and targeted drug delivery in ErbB2-overexpressing metastatic ovarian carcinoma. International Journal of Molecular Medicine, 2014, 34, 1225-1232.	1.8	14
890	Silver nanoparticles induce p53-mediated apoptosis in human bronchial epithelial (BEAS-2B) cells. Journal of Toxicological Sciences, 2014, 39, 401-412.	0.7	26
892	Applications of Detonation Nanodiamonds. , 2014, , 253-280.		1
893	Effect of Reflux Time on Nanoparticle Shape. Microscopy and Microanalysis, 2014, 20, 847-851.	0.2	1
894	Multivalent nanoparticles bind the retinal and choroidal vasculature. Journal of Controlled Release, 2015, 220, 265-274.	4.8	13
895	Analysis of cytotoxic effects of silver nanoclusters on human peripheral blood mononuclear cells $\hat{a}\in^{\sim}$ (i) in vitro (i) $\hat{a}\in^{\infty}$. Journal of Applied Toxicology, 2015, 35, 1189-1199.	1.4	30

#	Article	IF	CITATIONS
898	Voyage inside the cell: Microsystems and nanoengineering for intracellular measurement and manipulation. Microsystems and Nanoengineering, $2015,1,.$	3.4	66
899	Nanoparticles modulate autophagic effect in a dispersity-dependent manner. Scientific Reports, 2015, 5, 14361.	1.6	66
900	Overcoming Multiple Drug Resistance by Spatial-Temporal Synchronization of Epirubicin and Pooled siRNAs. Small, 2015, 11, 1775-1781.	5.2	15
901	Optimizing the Size of Micellar Nanoparticles for Efficient siRNA Delivery. Advanced Functional Materials, 2015, 25, 4778-4787.	7.8	64
902	Tailoring Cellular Uptake of Gold Nanoparticles Via the Hydrophilicâ€toâ€Hydrophobic Ratio of their (Co)polymer Coating. Advanced Functional Materials, 2015, 25, 3433-3439.	7.8	16
903	Biocompatible PEGâ€Chitosan@Carbon Dots Hybrid Nanogels for Twoâ€Photon Fluorescence Imaging, Nearâ€Infrared Light/pH Dualâ€Responsive Drug Carrier, and Synergistic Therapy. Advanced Functional Materials, 2015, 25, 5537-5547.	7.8	201
904	Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie - International Edition, 2015, 54, 11526-11530.	7.2	906
905	Synthesis of Iron Oxide Nanoclusters with Enhanced Magnetization and Their Applications in Pulsed Magneto-Motive Ultrasound Imaging. Nano, 2015, 10, 1550073.	0.5	6
908	Glycocalyxâ€Mimicking Nanoparticles for Stimulation and Polarization of Macrophages via Specific Interactions. Small, 2015, 11, 4191-4200.	5.2	88
909	SAXS Analysis of Shell Formation During Nanocapsule Synthesis via Inverse Miniemulsion Periphery RAFT Polymerization. Macromolecular Rapid Communications, 2015, 36, 1267-1271.	2.0	9
911	Size Effects of Nanocomplex on Tumor Associated Macrophages Targeted Delivery for Glioma. Journal of Nanomedicine & Nanotechnology, 2015, 06, .	1.1	4
912	Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization. Beilstein Journal of Nanotechnology, 2015, 6, 300-312.	1.5	33
913	Enhanced X-ray absorption by using gold nanoparticles in a biological tissue. Radioprotection, 2015, 50, 281-285.	0.5	5
914	Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines. Theranostics, 2015, 5, 1007-1020.	4.6	151
915	Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials, 2015, 5, 1351-1365.	1.9	228
916	Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake. International Journal of Nanomedicine, 2015, 10, 2363.	3.3	6
917	Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells. PLoS ONE, 2015, 10, e0129039.	1.1	115
918	Glycosylation of Sodium/Iodide Symporter (NIS) Regulates Its Membrane Translocation and Radioiodine Uptake. PLoS ONE, 2015, 10, e0142984.	1.1	30

#	Article	IF	CITATIONS
919	Protein corona $\hat{a} \in \text{``from molecular adsorption to physiological complexity. Beilstein Journal of Nanotechnology, 2015, 6, 857-873.}$	1.5	108
920	Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy. Theranostics, 2015, 5, 1233-1248.	4.6	78
921	Uptake of bright fluorophore core-silica shell nanoparticles by biological systems. International Journal of Nanomedicine, 2015, 10, 1547.	3.3	17
922	Pretreatment with chemotherapeutics for enhanced nanoparticles accumulation in tumor: the potential role of G2 cycle retention effect. Scientific Reports, 2014, 4, 4492.	1.6	20
923	The effects of size and surface modification of amorphous silica particles on biodistribution and liver metabolism in mice. Nanotechnology, 2015, 26, 175101.	1.3	19
924	Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations. Soft Matter, 2015, 11, 3165-3175.	1.2	57
925	Selective aggregation of PAMAM dendrimer nanocarriers and PAMAM/ZnPc nanodrugs on human atheromatous carotid tissues: a photodynamic therapy for atherosclerosis. Nanoscale Research Letters, 2015, 10, 210.	3.1	42
926	A Gold@Polydopamine Core–Shell Nanoprobe for Long-Term Intracellular Detection of MicroRNAs in Differentiating Stem Cells. Journal of the American Chemical Society, 2015, 137, 7337-7346.	6.6	202
927	Size Distributions. Frontiers of Nanoscience, 2015, 8, 91-121.	0.3	2
928	Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity. Materials Science and Engineering C, 2015, 55, 497-505.	3.8	85
929	A model of vesicle tubulation and pearling induced by adsorbing particles. Soft Matter, 2015, 11, 4054-4060.	1.2	7
930	Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer. Journal of Biomedical Optics, 2015, 20, 051043.	1.4	48
931	Biomedical applications of gold nanomaterials: opportunities and challenges. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 779-796.	3.3	65
932	ls the autophagy a friend or foe in the silver nanoparticles associated radiotherapy for glioma?. Biomaterials, 2015, 62, 47-57.	5.7	62
933	How Nanoparticles Interact with Cancer Cells. Cancer Treatment and Research, 2015, 166, 227-244.	0.2	16
934	Supramolecular hydrogels: synthesis, properties and their biomedical applications. Biomaterials Science, 2015, 3, 937-954.	2.6	226
935	Bionanotechnology and the Future of Glioma. , 2015, 6, 45.		24
936	Effects of the physicochemical properties of gold nanostructures on cellular internalization. International Journal of Energy Production and Management, 2015, 2, 273-280.	1.9	42

#	Article	IF	CITATIONS
937	External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1107-1112.	2.5	18
938	Broadening the versatility of lentiviral vectors as a tool in nucleic acid research via genetic code expansion. Nucleic Acids Research, 2015, 43, e73-e73.	6.5	23
939	Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality. Langmuir, 2015, 31, 13773-13782.	1.6	29
940	Size-dependent effects of layered double hydroxide nanoparticles on cellular functions of mouse embryonic stem cells. Nanomedicine, 2015, 10, 3469-3482.	1.7	14
941	Study on size effect of the silica nanospheres with solid core and mesoporous shell on cellular uptake. Biomedical Materials (Bristol), 2015, 10, 065012.	1.7	14
942	Nanotechnology applications in hematological malignancies (Review). Oncology Reports, 2015, 34, 1097-1105.	1.2	14
943	Measurement of the Average Mass of Proteins Adsorbed to a Nanoparticle by Using a Suspended Microchannel Resonator. Journal of Pharmaceutical Sciences, 2015, 104, 698-704.	1.6	21
944	Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent. Physical Chemistry Chemical Physics, 2015, 17, 1189-1196.	1.3	66
945	Surface-Functionalized Nanoparticle Permeation Triggers Lipid Displacement and Water and Ion Leakage. Langmuir, 2015, 31, 1074-1085.	1.6	33
946	Adhesion of an Ultrasmall Nanoparticle on a Bilayer Membrane is Still Size and Shape Dependent. Journal of Materials Science and Technology, 2015, 31, 660-663.	5.6	4
947	The effect of self-assembly conditions on the size of di- and tri-block copolymer micelles: solicitation from response surface methodology. Pharmaceutical Development and Technology, 2015, 20, 957-965.	1.1	2
948	Magneto-Optical Nanoparticles for Cyclic Magnetomotive Photoacoustic Imaging. ACS Nano, 2015, 9, 1964-1976.	7.3	50
949	Superior Intratumoral Penetration of Paclitaxel Nanodots Strengthens Tumor Restriction and Metastasis Prevention. Small, 2015, 11, 2518-2526.	5.2	54
950	Toxicology Considerations in Nanomedicine. , 2015, , 239-261.		1
951	Orthogonally Functionalized Nanoscale Micelles for Active Targeted Codelivery of Methotrexate and Mitomycin C with Synergistic Anticancer Effect. Molecular Pharmaceutics, 2015, 12, 769-782.	2.3	56
952	Designing Nanoparticle Translocation through Cell Membranes by Varying Amphiphilic Polymer Coatings. Journal of Physical Chemistry B, 2015, 119, 3786-3794.	1.2	60
953	Growth and Origami Folding of DNA on Nanoparticles for Highâ€Efficiency Molecular Transport in Cellular Imaging and Drug Delivery. Angewandte Chemie, 2015, 127, 2461-2465.	1.6	25
954	Monoclonal Antibody-Targeted Fluorescein-5-isothiocyanate-Labeled Biomimetic Nanoapatites: A Promising Fluorescent Probe for Imaging Applications. Langmuir, 2015, 31, 1766-1775.	1.6	26

#	Article	IF	Citations
955	Molecular Mechanism of Specific Recognition of Cubic Pt Nanocrystals by Peptides and of the Concentrationâ€Dependent Formation from Seed Crystals. Advanced Functional Materials, 2015, 25, 1374-1384.	7.8	65
956	Simulations Show that Virus Assembly and Budding Are Facilitated by Membrane Microdomains. Biophysical Journal, 2015, 108, 585-595.	0.2	42
957	Growth of Nanoparticles and Microparticles by Controlled Reaction-Diffusion Processes. Langmuir, 2015, 31, 1828-1834.	1.6	33
958	Towards understanding of nanoparticle–protein corona. Archives of Toxicology, 2015, 89, 519-539.	1.9	135
959	Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier. Nanoscale, 2015, 7, 4529-4544.	2.8	33
960	The Impact of Aspect Ratio on the Biodistribution and Tumor Homing of Rigid Softâ€Matter Nanorods. Advanced Healthcare Materials, 2015, 4, 874-882.	3.9	148
961	Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells. Nanotechnology, 2015, 26, 055101.	1.3	54
962	Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte–Carlo simulation. Nanotechnology, 2015, 26, 045708.	1.3	18
963	Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton's lymphoma cells. Colloids and Surfaces B: Biointerfaces, 2015, 126, 546-552.	2.5	55
964	Growth and Origami Folding of DNA on Nanoparticles for Highâ€Efficiency Molecular Transport in Cellular Imaging and Drug Delivery. Angewandte Chemie - International Edition, 2015, 54, 2431-2435.	7.2	108
965	Chromatogram Analysis on Revealing Aggregated Number and Location of Gold Nanoparticles Within Living Cells. Plasmonics, 2015, 10, 873-880.	1.8	10
966	A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide. Journal of Materials Chemistry B, 2015, 3, 2522-2529.	2.9	56
967	One step synthesis of quantum dot–magnetic nanoparticle heterodimers for dual modal imaging applications. Analyst, The, 2015, 140, 2864-2868.	1.7	18
968	Design, Synthesis, and Characterization of Graphene–Nanoparticle Hybrid Materials for Bioapplications. Chemical Reviews, 2015, 115, 2483-2531.	23.0	603
969	Comparative study of aluminum phthalocyanine incorporating into two types of block copolymer: photo-physical property, size, and in vitro photodynamic therapy efficacy. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	8
970	Protein adsorption and cellular uptake of AuNPs capped with alkyl acids of different length. RSC Advances, 2015, 5, 22792-22801.	1.7	11
971	Mechanism of Multivalent Nanoparticle Encounter with HIV-1 for Potency Enhancement of Peptide Triazole Virus Inactivation. Journal of Biological Chemistry, 2015, 290, 529-543.	1.6	46
972	Nanomaterial-assisted light-induced poration and transfection of mammalian cells. , 2015, , 331-376.		6

#	Article	IF	CITATIONS
973	Using nano-QSAR to determine the most responsible factor(s) in gold nanoparticle exocytosis. RSC Advances, 2015, 5, 57030-57037.	1.7	33
974	Gold nanostars coated with neutral and charged polyethylene glycols: A comparative study of in-vitro biocompatibility and of their interaction with SH-SY5Y neuroblastoma cells. Journal of Inorganic Biochemistry, 2015, 151, 123-131.	1.5	14
975	Morphological Evolution of Hydroxyapatite Particles in the Presence of Different Citrate: Calcium Ratios. Crystal Growth and Design, 2015, 15, 4417-4426.	1.4	33
976	Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chemical Society Reviews, 2015, 44, 8174-8199.	18.7	268
977	Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models. Materials Science and Engineering C, 2015, 57, 222-231.	3.8	86
978	Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chemical Reviews, 2015, 115, 10637-10689.	23.0	827
979	Physical Principles of Nanoparticle Cellular Endocytosis. ACS Nano, 2015, 9, 8655-8671.	7.3	852
980	Supramolecular nanoscale assemblies for cancer diagnosis and therapy. Journal of Controlled Release, 2015, 213, 152-167.	4.8	26
981	A novel process for size controlled biosynthesis of gold nanoparticles using bromelain. Materials Letters, 2015, 159, 373-376.	1.3	42
982	Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology, 2016, 42, 1-24.	2.7	167
983	SERS enhancement of silver nanoparticles prepared by a template-directed triazole ligand strategy. Chemical Communications, 2015, 51, 13028-13031.	2.2	7
984	Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale, 2015, 7, 16631-16646.	2.8	268
985	Inorganic nanoparticles engineered to attack bacteria. Chemical Society Reviews, 2015, 44, 7787-7807.	18.7	228
986	Gold Nanoparticles Inhibit Matrix Metalloproteases without Cytotoxicity. Journal of Dental Research, 2015, 94, 1085-1091.	2.5	39
987	Keeping it small: towards a molecular definition of nanotoxicology. European Journal of Nanomedicine, 2015, 7, .	0.6	15
988	Engineering nanoparticles to silence bacterial communication. Frontiers in Microbiology, 2015, 6, 189.	1.5	57
989	Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. Nano Letters, 2015, 15, 4364-4373.	4.5	80
990	A novel legumain protease-activated micelle cargo enhances anticancer activity and cellular internalization of doxorubicin. Journal of Materials Chemistry B, 2015, 3, 6001-6012.	2.9	13

#	Article	IF	CITATIONS
991	Anisotropic gold nanoparticles for the highly sensitive colorimetric detection of glucose in human urine. RSC Advances, 2015, 5, 40849-40855.	1.7	10
992	Solvent selection causes remarkable shifts of the "Ouzo region―for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation. Nanoscale, 2015, 7, 9215-9221.	2.8	57
993	Intracellular uptake and toxicity of three different Titanium particles. Dental Materials, 2015, 31, 734-744.	1.6	30
994	Silica microspheres are superior to polystyrene for microvesicle analysis by flow cytometry. Thrombosis Research, 2015, 135, 1000-1006.	0.8	18
995	Comparative effects of macro-sized aluminum oxide and aluminum oxide nanoparticles on erythrocyte hemolysis: influence of cell source, temperature, and size. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	25
996	Validation of a dual role of methotrexate-based chitosan nanoparticles in vivo. RSC Advances, 2015, 5, 41393-41400.	1.7	3
997	Superparamagnetic core/shell GoldMag nanoparticles: size-, concentration- and time-dependent cellular nanotoxicity on human umbilical vein endothelial cells and the suitable conditions for magnetic resonance imaging. Journal of Nanobiotechnology, 2015, 13, 24.	4.2	20
998	CD19-Targeted Nanodelivery of Doxorubicin Enhances Therapeutic Efficacy in B-Cell Acute Lymphoblastic Leukemia. Molecular Pharmaceutics, 2015, 12, 2101-2111.	2.3	40
999	Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biology International, 2015, 39, 881-890.	1.4	416
1000	Nanotechnology-Based Precision Tools for the Detection and Treatment of Cancer. Cancer Treatment and Research, 2015, , .	0.2	25
1001	In vivo pharmacokinetic features and biodistribution of star and rod shaped gold nanoparticles by multispectral optoacoustic tomography. RSC Advances, 2015, 5, 7529-7538.	1.7	35
1002	POxylated Polyurea Dendrimers: Smart Core-Shell Vectors with IC ₅₀ Lowering Capacity. Macromolecular Bioscience, 2015, 15, 1045-1051.	2.1	27
1003	Quantitative Comparison of Tumor Delivery for Multiple Targeted Nanoparticles Simultaneously by Multiplex ICP-MS. Scientific Reports, 2014, 4, 5840.	1.6	23
1004	Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale, 2015, 7, 9664-9675.	2.8	118
1005	Effects of Size, Shape, Surface Charge and Functionalization on Cytotoxicity of Gold Nanoparticles. Nano LIFE, 2015, 05, 1540003.	0.6	8
1006	Inhaled Titanium Dioxide Nanoparticles: A Review of Their Pulmonary Responses with Particular Focus on the Agglomeration State. Nano LIFE, 2015, 05, 1450008.	0.6	4
1007	Molecular interactions between gold nanoparticles and model cell membranes. Physical Chemistry Chemical Physics, 2015, 17, 9873-9884.	1.3	31
1008	Nanotechnologies in Food and Agriculture. , 2015, , .		49

#	Article	IF	CITATIONS
1009	Gold mining for PDT: Great expectations from tiny nanoparticles. Photodiagnosis and Photodynamic Therapy, 2015, 12, 221-231.	1.3	34
1010	Shape-Switching Microrobots for Medical Applications: The Influence of Shape in Drug Delivery and Locomotion. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6803-6811.	4.0	124
1011	Design attributes of long-circulating polymeric drug delivery vehicles. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 304-317.	2.0	49
1012	Molecular modeling of interaction between lipid monolayer and graphene nanosheets: implications for pulmonary nanotoxicity and pulmonary drug delivery. RSC Advances, 2015, 5, 30092-30106.	1.7	27
1013	Amine-functionalized siloxane oligomer facilitated synthesis of subnanometer colloidal Au particles. Journal of Materials Chemistry A, 2015, 3, 1743-1751.	5.2	8
1014	Nanoparticle Mediated Tumor Vascular Disruption: A Novel Strategy in Radiation Therapy. Nano Letters, 2015, 15, 7488-7496.	4.5	143
1015	The Interplay of Size and Surface Functionality on the Cellular Uptake of Sub-10 nm Gold Nanoparticles. ACS Nano, 2015, 9, 9986-9993.	7.3	328
1016	Improving cell-based therapies by nanomodification. Journal of Controlled Release, 2015, 219, 560-575.	4.8	16
1018	Oxidative Stress and Nanomaterial-Cellular Interactions. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , 347-367.	0.4	8
1019	Nanotoxicology: advances and pitfalls in research methodology. Nanomedicine, 2015, 10, 2931-2952.	1.7	70
1020	Cuboplexes: Topologically Active siRNA Delivery. ACS Nano, 2015, 9, 10214-10226.	7.3	112
1021	Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands. ACS Nano, 2015, 9, 11886-11897.	7.3	53
1022	UVB Dependence of Quantum Dot Reactive Oxygen Species Generation in Common Skin Cell Models. Journal of Biomedical Nanotechnology, 2015, 11, 1644-1652.	0.5	8
1023	Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine, 2015, 10, 2365-2377.	1.7	91
1024	Synthesis of Calcium Phosphate Nanoparticleâ€Based Docetaxel Delivery System and its <i>In Vitro</i> Anticancer Activity. International Journal of Applied Ceramic Technology, 2015, 12, 300-305.	1.1	1
1025	Synergistic Integration of Layer-by-Layer Assembly of Photosensitizer and Gold Nanorings for Enhanced Photodynamic Therapy in the Near Infrared. ACS Nano, 2015, 9, 8744-8754.	7.3	43
1026	Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging. ACS Nano, 2015, 9, 8718-8728.	7.3	41
1027	A biodegradable and fluorescent nanovehicle with enhanced selective uptake by tumor cells. Polymer Chemistry, 2015, 6, 6529-6542.	1.9	10

#	ARTICLE	IF	Citations
1028	The cytotoxicity of gold nanoparticles is dispersity-dependent. Dalton Transactions, 2015, 44, 17911-17915.	1.6	24
1029	Analysis of Nanomaterials by Particle Size Distribution Methods. , 2015, , 129-157.		O
1030	Nanomedicine: Implications from Nanotoxicity., 2015,, 147-168.		0
1031	Studies on Experimental Toxicology and Pharmacology. Oxidative Stress in Applied Basic Research and Clinical Practice, 2015, , .	0.4	7
1033	At the Crossroads of Nanotoxicology (i) in vitro (i): Past Achievements and Current Challenges. Toxicological Sciences, 2015, 147, 5-16.	1.4	74
1034	Natural liposomes and synthetic polymeric structures for biomedical applications. Biochemical and Biophysical Research Communications, 2015, 468, 411-418.	1.0	47
1035	Mycofabrication of common plasmonic colloids, theoretical considerations, mechanism and potential applications. Advances in Colloid and Interface Science, 2015, 225, 37-52.	7.0	6
1036	Design considerations for nanotherapeutics in oncology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1893-1907.	1.7	208
1037	Evaluation of Toxicity Ranking for Metal Oxide Nanoparticles <i>via</i> an <i>in Vitro</i> Dosimetry Model. ACS Nano, 2015, 9, 9303-9313.	7.3	65
1038	Clustering of CdSe/CdS Quantum Dot/Quantum Rods into Micelles Can Form Bright, Non-blinking, Stable, and Biocompatible Probes. Langmuir, 2015, 31, 9441-9447.	1.6	18
1039	Effect of Size-Dependent Photodestructive Efficacy by Gold Nanomaterials with Multiphoton Laser. ACS Applied Materials & Distriction (2015), 7, 17318-17329.	4.0	13
1040	Folic acid-targeted magnetic Tb-doped CeF ₃ fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging. Dalton Transactions, 2015, 44, 16304-16312.	1.6	11
1041	pH-Sensitive pullulan–DOX conjugate nanoparticles for co-loading PDTC to suppress growth and chemoresistance of hepatocellular carcinoma. Journal of Materials Chemistry B, 2015, 3, 8070-8078.	2.9	30
1042	Uptake of Gold Nanoparticles by Intestinal Epithelial Cells: Impact of Particle Size on Their Absorption, Accumulation, and Toxicity. Journal of Agricultural and Food Chemistry, 2015, 63, 8044-8049.	2.4	99
1043	Nanoparticle uptake: The phagocyte problem. Nano Today, 2015, 10, 487-510.	6.2	967
1044	Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Advanced Drug Delivery Reviews, 2015, 95, 2-14.	6.6	67
1045	Reductant-assisted synthesis, characterization and photovoltaic characteristics of ligand-protected gold nanoparticles. RSC Advances, 2015, 5, 81093-81102.	1.7	5
1046	Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle. Journal of Physical Chemistry Letters, 2015, 6, 3688-3697.	2.1	76

#	Article	IF	CITATIONS
1047	Stimuli responsive drug delivery application of polymer and silica in biomedicine. Journal of Materials Chemistry B, 2015, 3, 8599-8622.	2.9	88
1048	Chemical Control over Cellular Uptake of Organic Nanoparticles by Fine Tuning Surface Functional Groups. ACS Nano, 2015, 9, 10227-10236.	7.3	47
1049	Enhanced Human Epidermal Growth Factor Receptor 2 Degradation in Breast Cancer Cells by Lysosome-Targeting Gold Nanoconstructs. ACS Nano, 2015, 9, 9859-9867.	7.3	98
1050	Dose dependent distribution and aggregation of gold nanoparticles within human lung adeno-carcinoma cells. RSC Advances, 2015, 5, 98309-98317.	1.7	2
1051	Bactericidal sodium alginate films containing nanosized silver particles. Colloid Journal, 2015, 77, 707-714.	0.5	4
1052	Stably Doped Conducting Polymer Nanoshells by Surface Initiated Polymerization. Nano Letters, 2015, 15, 8217-8222.	4.5	24
1053	High-Throughput, Algorithmic Determination of Nanoparticle Structure from Electron Microscopy Images. ACS Nano, 2015, 9, 12488-12495.	7.3	58
1054	"Wet―Chemical Synthesis and Manipulation of Upconversion Nanoparticles. Nanostructure Science and Technology, 2015, , 21-71.	0.1	O
1055	Nanoparticle hardness controls the internalization pathway for drug delivery. Nanoscale, 2015, 7, 2758-2769.	2.8	86
1056	Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry. Nanoscale, 2015, 7, 1349-1362.	2.8	28
1057	Targeting delivery of liposomes with conjugated p-aminophenyl- $\langle b \rangle$ 1± $\langle b \rangle$ 1- $\langle scp \rangle$ 4- $\langle scp \rangle$ 4-manno-pyranoside and apolipoprotein E for inhibiting neuronal degeneration insulted with $\langle b \rangle$ 12- $\langle b \rangle$ 4-amyloid peptide. Journal of Drug Targeting, 2015, 23, 147-158.	2.1	14
1058	Development of Therapeutic Au–Methylene Blue Nanoparticles for Targeted Photodynamic Therapy of Cervical Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 432-441.	4.0	81
1059	Physical and Biophysical Characteristics of Nanoparticles: Potential Impact on Targeted Drug Delivery. Advances in Delivery Science and Technology, 2015, , 649-666.	0.4	1
1060	Nanoparticle–blood interactions: the implications on solid tumour targeting. Chemical Communications, 2015, 51, 2756-2767.	2.2	226
1061	A Versatile †Click Chemistry' Route to Sizeâ€Restricted, Robust, and Functionalizable Hydrophilic Nanocrystals. Small, 2015, 11, 1644-1648.	5.2	12
1062	Stiffnessâ€Dependent In Vitro Uptake and Lysosomal Acidification of Colloidal Particles. Angewandte Chemie - International Edition, 2015, 54, 1365-1368.	7.2	169
1063	Preparation and Size Control of Sub-100 nm Pure Nanodrugs. Nano Letters, 2015, 15, 313-318.	4.5	82
1064	Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction. Materials Research Bulletin, 2015, 64, 17-21.	2.7	18

#	Article	IF	CITATIONS
1065	Enhanced transcellular penetration and drug delivery by crosslinked polymeric micelles into pancreatic multicellular tumor spheroids. Biomaterials Science, 2015, 3, 1085-1095.	2.6	88
1066	Evaluation of Phototoxic Effects of Curcumin Loaded in Organically Modified Silica Nanoparticles in Tumor Spheroids of Oral Cancer Cells. BioNanoScience, 2015, 5, 10-21.	1.5	16
1067	Recent Advances in Engineering Polyvalent Biological Interactions. Biomacromolecules, 2015, 16, 43-55.	2.6	60
1068	Nanoparticle-Based Immunotherapy for Cancer. ACS Nano, 2015, 9, 16-30.	7.3	391
1069	Ultrasmall Integrinâ€Targeted Silica Nanoparticles Modulate Signaling Events and Cellular Processes in a Concentrationâ€Dependent Manner. Small, 2015, 11, 1721-1732.	5.2	28
1070	A fluorescent light-up nanoparticle probe with aggregation-induced emission characteristics and tumor-acidity responsiveness for targeted imaging and selective suppression of cancer cells. Materials Horizons, 2015, 2, 100-105.	6.4	68
1071	Skin cancer and new treatment perspectives: A review. Cancer Letters, 2015, 357, 8-42.	3.2	272
1072	Theoretical and Computational Investigations of Nanoparticle–Biomembrane Interactions in Cellular Delivery. Small, 2015, 11, 1055-1071.	5.2	232
1073	Functional Supramolecular Polymers for Biomedical Applications. Advanced Materials, 2015, 27, 498-526.	11.1	429
1074	Molecular modeling of membrane responses to the adsorption of rotating nanoparticles: promoted cell uptake and mechanical membrane rupture. Soft Matter, 2015, 11, 456-465.	1.2	32
1075	Biocompatible PEGylated MoS2 nanosheets: Controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials, 2015, 39, 206-217.	5.7	304
1076	Assessment of the developmental toxicity of nanoparticles in an <i>ex vivo</i> 3D model, the murine limb bud culture system. Nanotoxicology, 2015, 9, 780-791.	1.6	2
1077	Uptake of gold nanoparticles in primary human endothelial cells. Toxicology Research, 2015, 4, 655-666.	0.9	58
1078	Nanomaterials and Cardiovascular Toxicity. , 2015, , 547-570.		0
1079	Clathrinâ€Mediated Endocytosis of Gold Nanoparticles <i>In Vitro</i> . Anatomical Record, 2015, 298, 418-427.	0.8	74
1080	Metformin-Loaded BSA Nanoparticles in Cancer Therapy: A New Perspective for an Old Antidiabetic Drug. Cell Biochemistry and Biophysics, 2015, 71, 627-636.	0.9	31
1081	Upconverting nanoparticles: assessing the toxicity. Chemical Society Reviews, 2015, 44, 1561-1584.	18.7	520
1082	Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles. Journal of Colloid and Interface Science, 2015, 437, 10-16.	5.0	28

#	ARTICLE	IF	CITATIONS
1083	Effect of size on biological properties of nanoparticles employed in gene delivery. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 83-91.	1.9	118
1084	Gold nanomaterials for gene therapy. , 2016, , 189-214.		4
1085	La mitocondria como un sistema de multicapas \tilde{A}^3 pticas para la propagaci \tilde{A}^3 n de los campos electromagn \tilde{A} ©ticos. Entramado, 2016, 12, 246-253.	0.1	0
1086	Targeting Human \hat{l}^2 -Microglobulin with Monoclonal Antibodies in Multiple Myeloma - A Potential in Treatment. Chemotherapy, 2016, 05, .	0.0	0
1087	Structural and Biological Assessment of Zinc Doped Hydroxyapatite Nanoparticles. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	59
1088	Hybrid Nanomaterials Based on Iron Oxide Nanoparticles and Mesoporous Silica Nanoparticles: Overcoming Challenges in Current Cancer Treatments. Journal of Chemistry, 2016, 2016, 1-15.	0.9	27
1089	Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. International Journal of Nanomedicine, 2016, 11, 625.	3.3	73
1090	Cholesterol-Modified Amino-Pullulan Nanoparticles as a Drug Carrier: Comparative Study of Cholesterol-Modified Carboxyethyl Pullulan and Pullulan Nanoparticles. Nanomaterials, 2016, 6, 165.	1.9	35
1091	Transport of Gold Nanoparticles by Vascular Endothelium from Different Human Tissues. PLoS ONE, 2016, 11, e0161610.	1.1	42
1092	The Developmental Toxicity of Complex Silica-Embedded Nickel Nanoparticles Is Determined by Their Physicochemical Properties. PLoS ONE, 2016, 11, e0152010.	1.1	6
1093	Codelivery of thioridazine and doxorubicin using nanoparticles for effective breast cancer therapy. International Journal of Nanomedicine, 2016, Volume 11, 4545-4552.	3.3	21
1094	Magnetically based nanocarriers in drug delivery. , 2016, , 285-331.		16
1095	Targeted polyethylene glycol gold nanoparticles for the treatment of pancreatic cancer: from synthesis to proof-of-concept in vitro studies. International Journal of Nanomedicine, 2016, 11, 791.	3.3	86
1096	Effects of nanoparticle size on antitumor activity of 10-hydroxycamptothecin-conjugated gold nanoparticles: in vitro and in vivo studies. International Journal of Nanomedicine, 2016, 11, 929.	3.3	35
1097	Biopolymer Thin Films Synthesized by Advanced Pulsed Laser Techniques. , 0, , .		10
1098	Co-delivery of HIV-1 entry inhibitor and nonnucleoside reverse transcriptase inhibitor shuttled by nanoparticles. Aids, 2016, 30, 827-838.	1.0	26
1099	Nanoparticle dosageâ€"a nontrivial task of utmost importance for quantitative nanosafety research. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 479-492.	3.3	22
1100	Nanoparticle-mediated delivery of multinuclear platinum(IV) prodrugs with enhanced drug uptake and the activity of overcoming drug resistance. Anti-Cancer Drugs, 2016, 27, 77-83.	0.7	7

#	Article	IF	Citations
1101	Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells. Journal of Nanoparticle Research, 2016, 18, 182.	0.8	21
1102	Targeted Nanotherapies for the Treatment of Surgical Diseases. Annals of Surgery, 2016, 263, 900-907.	2.1	14
1103	Evolution of gold nanoparticle clusters in living cells studied by sectional darkâ€field optical microscopy and chromatic analysis. Journal of Biophotonics, 2016, 9, 738-749.	1.1	8
1104	The role of substrate topography on the cellular uptake of nanoparticles. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 488-495.	1.6	31
1105	Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 842-871.	3.3	84
1106	Programmed Nanococktail for Intracellular Cascade Reaction Regulating Selfâ€Synergistic Tumor Targeting Therapy. Small, 2016, 12, 733-744.	5.2	47
1107	Polymeric nanoparticles: the future of nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 271-299.	3.3	328
1108	The interaction of protein-coated bionanoparticles and surface receptors reevaluated: how important is the number of bonds?. Soft Matter, 2016, 12, 6451-6462.	1.2	2
1109	A Framework to Account for Sedimentation and Diffusion in Particle–Cell Interactions. Langmuir, 2016, 32, 12394-12402.	1.6	48
1110	Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Scientific Reports, 2016, 6, 21803.	1.6	45
1111	Facile biosynthesis of Ag-NPs using <i>Otostegia limbata</i> plant extract: Physical characterization and auspicious biological activities. AIP Advances, 2016, 6, .	0.6	8
1112	In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice. Scientific Reports, 2016, 6, 38382.	1.6	92
1113	Biocatalytic Synthesis of Phospholipids and Their Application as Coating Agents for CaCO ₃ Nano-crystals: Characterization and Intracellular Localization Analysis. ChemistrySelect, 2016, 1, 6507-6514.	0.7	15
1115	Single-Nanoparticle Plasmonic Spectroelectrochemistry. ACS Symposium Series, 2016, , 57-96.	0.5	7
1117	Evaluation of Biocompatibility and Release of Reactive Oxygen Species of Aluminum Oxide-Coated Materials. ACS Omega, 2016, 1, 706-713.	1.6	14
1118	Impact of a physiological medium on the aggregation state of C60 and C70 fullerenes. Journal of Surface Investigation, 2016, 10, 1125-1128.	0.1	6
1119	Comparative analysis of the effect of low-dimensional alumina structures on cell lines L929 and Neuro-2a. AIP Conference Proceedings, 2016, , .	0.3	3
1120	Polymeric nanoparticleâ€based delivery of TRAIL DNA for cancerâ€specific killing. Bioengineering and Translational Medicine, 2016, 1, 149-159.	3.9	33

#	Article	IF	CITATIONS
1121	Inner ear barriers to nanomedicine-augmented drug delivery and imaging. Journal of Otology, 2016, 11, 165-177.	0.4	19
1122	Investigating Interactions Between Nanoparticles and Cells: Internalization and Intracellular Trafficking., 2016,, 291-323.		3
1123	Wrapping of a deformable nanoparticle by the cell membrane: Insights into the flexibility-regulated nanoparticle-membrane interaction. Journal of Applied Physics, 2016, 120, .	1.1	13
1124	A Bioâ€Inspired Rodâ€Shaped Nanoplatform for Strongly Infecting Tumor Cells and Enhancing the Delivery Efficiency of Anticancer Drugs. Advanced Functional Materials, 2016, 26, 66-79.	7.8	90
1125	Transcending epithelial and intracellular biological barriers; a prototype DNA delivery device. Journal of Controlled Release, 2016, 226, 238-247.	4.8	51
1126	Laser-Generated Functional Nanoparticle Bioconjugates. , 2016, , .		3
1127	Delivery of Anticancer Molecules Using Carbon Nanotubes. , 2016, , 563-572.		0
1128	Nanomedicine. Advances in Delivery Science and Technology, 2016, , .	0.4	6
1129	Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs. Biomaterials, 2016, 101, 1-9.	5.7	94
1130	Surface reactivity and in vitro toxicity on human bronchial epithelial cells (BEAS-2B) of nanomaterials intermediates of the production of titania-based composites. Toxicology in Vitro, 2016, 34, 171-178.	1.1	10
1131	Boosting clinical translation of nanomedicine. Nanomedicine, 2016, 11, 1495-1497.	1.7	40
1132	PCL–F68–PCL/PLGA–PEG–PLGA mixed micelles mediated delivery of mitoxantrone for reversing multidrug resistant in breast cancer. RSC Advances, 2016, 6, 35318-35327.	1.7	7
1133	Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polymer Chemistry, 2016, 7, 2888-2903.	1.9	68
1134	Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity. Materials Science and Engineering C, 2016, 63, 678-685.	3.8	25
1135	Imaging Intratumoral Nanoparticle Uptake After Combining Nanoembolization with Various Ablative Therapies in Hepatic VX2 Rabbit Tumors. Journal of Biomedical Nanotechnology, 2016, 12, 296-307.	0.5	21
1136	Fullerenol nanoparticles as a new delivery system for doxorubicin. RSC Advances, 2016, 6, 38563-38578.	1.7	23
1137	Transport and Toxicity of Silver Nanoparticles in HepaRG Cell Spheroids. Bulletin of Experimental Biology and Medicine, 2016, 160, 831-834.	0.3	7
1138	Steroid Probes Conjugated with Protein-Protected Gold Nanocluster: Specific and Rapid Fluorescence Imaging of Steroid Receptors in Target Cells. Journal of Fluorescence, 2016, 26, 1239-1248.	1.3	6

#	Article	IF	CITATIONS
1139	Nanoparticles: Surface Modification. , 0, , 5569-5584.		1
1140	Formulation of hydrophobic therapeutics with self-assembling peptide and amino acid: A new platform for intravenous drug delivery. Journal of Controlled Release, 2016, 239, 211-222.	4.8	9
1141	Free Energy of Bare and Capped Gold Nanoparticles Permeating through a Lipid Bilayer. ChemPhysChem, 2016, 17, 3504-3514.	1.0	9
1142	The Configuration of Copolymer Ligands on Nanoparticles Affects Adhesion and Uptake. Langmuir, 2016, 32, 10136-10143.	1.6	9
1143	Carbohydrate Nanoparticles for Brain Delivery. International Review of Neurobiology, 2016, 130, 115-153.	0.9	15
1144	Use of Baicalin-Conjugated Gold Nanoparticles for Apoptotic Induction of Breast Cancer Cells. Nanoscale Research Letters, 2016, 11, 381.	3.1	38
1145	Rotation-Facilitated Rapid Transport of Nanorods in Mucosal Tissues. Nano Letters, 2016, 16, 7176-7182.	4.5	140
1146	Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems. International Journal of Pharmaceutics, 2016, 515, 132-164.	2.6	83
1147	Interplay between Nanoparticle Wrapping and Clustering of Inner Anchored Membrane Proteins. Journal of Physical Chemistry B, 2016, 120, 11000-11009.	1.2	10
1148	Heliumâ€based cold atmospheric plasmaâ€induced reactive oxygen speciesâ€mediated apoptotic pathway attenuated by platinum nanoparticles. Journal of Cellular and Molecular Medicine, 2016, 20, 1737-1748.	1.6	43
1149	Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio) Tj ETQq0 0 0 rgBT	/8.gerlock	10 Tf 50 34
1150	Enhanced Radiosensitization of Gold Nanospikes via Hyperthermia in Combined Cancer Radiation and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28480-28494.	4.0	124
1152	Immunization with functionalized carbon nanotubes enhances the antibody response against mode antigen ovalbumin. Immunology Letters, 2016, 178, 77-84.	1.1	4
1153	Shape-dependent cellular behaviors and relaxivity of iron oxide-based T ₁ MRI contrast agents. Nanoscale, 2016, 8, 17506-17515.	2.8	40
1154	Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy. Analyst, The, 2016, 141, 5037-5055.	1.7	86
1156	PLGA nanoparticles augmented the anticancer potential of pentacyclic triterpenediol in vivo in mice. RSC Advances, 2016, 6, 74586-74597.	1.7	23
1157	Cancer Cell Internalization of Gold Nanostars Impacts Their Photothermal Efficiency In Vitro and In Vivo: Toward a Plasmonic Thermal Fingerprint in Tumoral Environment. Advanced Healthcare Materials, 2016, 5, 1040-1048.	3.9	124
1158	Quantum Dots. , 2016, , 131-158.		7

#	Article	IF	CITATIONS
1159	Synthesis of Stable Multifunctional Perfluorocarbon Nanoemulsions for Cancer Therapy and Imaging. Langmuir, 2016, 32, 10870-10880.	1.6	73
1160	Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy. Nanoscale Research Letters, 2016, 11, 294.	3.1	10
1161	Simple Synthesis of Cladribine-Based Anticancer Polymer Prodrug Nanoparticles with Tunable Drug Delivery Properties. Chemistry of Materials, 2016, 28, 6266-6275.	3.2	30
1162	Supramolecular Nanotube of Chaperonin GroEL: Length Control for Cellular Uptake Using Single-Ring GroEL Mutant as End-Capper. Journal of the American Chemical Society, 2016, 138, 11152-11155.	6.6	28
1163	Aggregation and protein corona formation on gold nanoparticles affect viability and liver functions of primary rat hepatocytes. Nanomedicine, 2016, 11, 2275-2287.	1.7	17
1164	A plasmon-tuned â€~gold sandwich' for metal enhanced fluorescence in silica coated NaYF ₄ :Yb,Er upconversion nanoparticles. RSC Advances, 2016, 6, 87088-87095.	1.7	19
1166	Acid-base and adsorption properties of the AlOOH 2D nanostructures as factors for regulating parameters of model biological solutions. Nanotechnologies in Russia, 2016, 11, 506-511.	0.7	11
1167	Fast Targeting and Cancer Cell Uptake of Luminescent Antibodyâ€Nanozeolite Bioconjugates. Small, 2016, 12, 5431-5441.	5.2	15
1168	Dual contribution of surface charge and protein-binding affinity to the cytotoxicity of polystyrene nanoparticles in nonphagocytic A549 cells and phagocytic THP-1 cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 925-937.	1.1	15
1169	Preparation of iron oxide nanoparticles functionalized with Y-shaped ligands for brain tumor targeting. Journal of Materials Chemistry B, 2016, 4, 6074-6080.	2.9	15
1170	Sheathless Focusing and Separation of Diverse Nanoparticles in Viscoelastic Solutions with Minimized Shear Thinning. Analytical Chemistry, 2016, 88, 12547-12553.	3.2	74
1171	Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine, 2016, 11, 3185-3203.	1.7	87
1172	Effective mRNA Inhibition in PANC-1 Cells <i>in Vitro</i> Mediated <i>via</i> an mPEG–SeSe–PEI Delivery System. Biological and Pharmaceutical Bulletin, 2016, 39, 680-688.	0.6	4
1173	Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Scientific Reports, 2016, 6, 26269.	1.6	167
1174	Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicology and Applied Pharmacology, 2016, 310, 98-107.	1.3	45
1175	Ultrasmall polymersomes of poly- $\hat{l}\pm,\hat{l}^2$ -(N-2-hydroxyethyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 147 Td (< RSC Advances, 2016, 6, 86361-86372.	scp>l1.7)>-aspartam 8
1176	Tackling breast cancer chemoresistance with nano-formulated siRNA. Gene Therapy, 2016, 23, 821-828.	2.3	25
1177	Anticancer nanoparticulate polymerâ€drug conjugate. Bioengineering and Translational Medicine, 2016, 1, 277-296.	3.9	71

#	Article	IF	CITATIONS
1178	Molecular Interactions between Gold Nanoparticles and Model Cell Membranes: A Study of Nanoparticle Surface Charge Effect. Journal of Physical Chemistry C, 2016, 120, 22718-22729.	1.5	21
1179	Effects of Desolvating Agent Types, Ratios, and Temperature on Size and Nanostructure of Nanoparticles from αâ€Lactalbumin and Ovalbumin. Journal of Food Science, 2016, 81, E2511-E2520.	1.5	27
1180	Synthesis and cytotoxic effects of SrAl_2O_4 persistent luminescence nanoparticles co-doped with Eu^2+/Dy^3+ ions. Optical Materials Express, 2016, 6, 1488.	1.6	11
1181	Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacological Research, 2016, 111, 577-591.	3.1	46
1182	Melanin-Like Nanoquencher on Graphitic Carbon Nitride Nanosheets for Tyrosinase Activity and Inhibitor Assay. Analytical Chemistry, 2016, 88, 8355-8358.	3.2	67
1183	Size-dependent interaction of silica nanoparticles with lysozyme and bovine serum albumin proteins. Physical Review E, 2016, 93, 052601.	0.8	33
1184	Mechanism for the Cellular Uptake of Targeted Gold Nanorods of Defined Aspect Ratios. Small, 2016, 12, 5178-5189.	5.2	70
1185	Fructose-Coated Nanodiamonds: Promising Platforms for Treatment of Human Breast Cancer. Biomacromolecules, 2016, 17, 2946-2955.	2.6	47
1186	Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms. Scientific Reports, 2016, 6, 31030.	1.6	76
1187	Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins. Journal of Nanoparticle Research, 2016, 18, 286.	0.8	50
1188	Profluorescent PPV-Based Micellar System as a Versatile Probe for Bioimaging and Drug Delivery. Biomacromolecules, 2016, 17, 4086-4094.	2.6	28
1189	Photo Relaxation Change and Emission Quenching in Different Sizes of PbSâ€Nanoparticlesâ€Protein Corona. ChemistrySelect, 2016, 1, 5768-5778.	0.7	6
1190	The nanomaterial toolkit for neuroengineering. Nano Convergence, 2016, 3, 25.	6.3	20
1192	Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice?. Future Medicinal Chemistry, 2016, 8, 2091-2112.	1.1	50
1193	Nonspecific Colloidal-Type Interaction Explains Size-Dependent Specific Binding of Membrane-Targeted Nanoparticles. ACS Nano, 2016, 10, 9974-9982.	7.3	21
1194	Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polymer Chemistry, 2016, 7, 7002-7010.	1.9	54
1195	Theranostic Nanocages for Imaging and Photothermal Therapy of Prostate Cancer Cells by Active Targeting of Neuropeptide-Y Receptor. Bioconjugate Chemistry, 2016, 27, 2911-2922.	1.8	24
1196	Nanocarrier-Based Anticancer Therapies with the Focus on Strategies for Targeting the Tumor Microenvironment. Fundamental Biomedical Technologies, 2016, , 67-122.	0.2	0

#	Article	IF	CITATIONS
1197	One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13318-13323.	3.3	124
1198	Size-Dependent Facilitation of Cancer Cell Targeting by Proteins Adsorbed on Nanoparticles. ACS Applied Materials & Cancer Cell Targeting by Proteins Adsorbed on Nanoparticles. ACS Applied Materials & Cancer Cell Targeting by Proteins Adsorbed on Nanoparticles. ACS Applied Materials & Cancer Cell Targeting by Proteins Adsorbed on Nanoparticles. ACS	4.0	29
1199	Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Scientific Reports, 2016, 6, 27421.	1.6	216
1200	Role of Zn doping in oxidative stress mediated cytotoxicity of TiO2 nanoparticles in human breast cancer MCF-7 cells. Scientific Reports, 2016, 6, 30196.	1.6	74
1201	Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines. Journal of Photochemistry and Photobiology B: Biology, 2016, 165, 163-173.	1.7	62
1202	Noble Metal Nanoparticles to Probe and Alter Biological Phenomena. , 2016, , 103-149.		1
1203	Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions. Langmuir, 2016, 32, 13124-13136.	1.6	6
1204	The Intracellular Destiny of the Protein Corona: A Study on its Cellular Internalization and Evolution. ACS Nano, 2016, 10, 10471-10479.	7.3	154
1205	Role of metal oxide nanostructures in extracellular pH regulations. AIP Conference Proceedings, 2016, , .	0.3	4
1206	Antitumor activity of low-dimensional alumina structures. AIP Conference Proceedings, 2016, , .	0.3	4
1208	Cellular Response of Therapeutic Nanoparticles. , 2016, , 153-172.		1
1209	Nanoparticles-cell association predicted by protein corona fingerprints. Nanoscale, 2016, 8, 12755-12763.	2.8	75
1210	Nanoscale Materials in Targeted Drug Delivery, Theragnosis and Tissue Regeneration. , 2016, , .		10
1211	Pathogen Inhibition by Multivalent Ligand Architectures. Journal of the American Chemical Society, 2016, 138, 8654-8666.	6.6	155
1212	Particle-mediated Intravenous Delivery of Antigen mRNA Results in Strong Antigen-specific T-cell Responses Despite the Induction of Type I Interferon. Molecular Therapy - Nucleic Acids, 2016, 5, e326.	2.3	75
1213	Regulation of size and uniformity of In2O3nanooctahedra. Nanoscale, 2016, 8, 13708-13713.	2.8	3
1214	The Importance of Particle Geometry in Design of Therapeutic and Imaging Nanovectors. Advances in Delivery Science and Technology, 2016, , 157-200.	0.4	1
1215	Simulating the interaction of lipid membranes with polymer and ligand-coated nanoparticles. Advances in Physics: X , 2016, 1, 276-296.	1.5	21

#	Article	IF	Citations
1216	Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers. Physical Chemistry Chemical Physics, 2016, 18, 18923-18933.	1.3	13
1217	Induction of Calcium Influx in Cortical Neural Networks by Nanomagnetic Forces. ACS Nano, 2016, 10, 2331-2341.	7.3	88
1218	HER2 Targeted Breast Cancer Therapy with Switchable "Off/On―Multifunctional "Smart―Magnetic Polymer Core–Shell Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2262-2279.	4.0	46
1219	Appropriate Size of Magnetic Nanoparticles for Various Bioapplications in Cancer Diagnostics and Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3092-3106.	4.0	88
1220	Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells. ACS Nano, 2016, 10, 648-662.	7.3	32
1221	Different-Sized Gold Nanoparticle Activator/Antigen Increases Dendritic Cells Accumulation in Liver-Draining Lymph Nodes and CD8+ T Cell Responses. ACS Nano, 2016, 10, 2678-2692.	7.3	109
1222	Sol–gel based materials for biomedical applications. Progress in Materials Science, 2016, 77, 1-79.	16.0	608
1223	Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews, 2016, 45, 1457-1501.	18.7	1,152
1224	Antibody-targeted biodegradable nanoparticles for cancer therapy. Nanomedicine, 2016, 11, 63-79.	1.7	76
1226	Amine modification of nonporous silica nanoparticles reduces inflammatory response following intratracheal instillation in murine lungs. Toxicology Letters, 2016, 241, 207-215.	0.4	43
1227	Polysaccharide-based nanoparticles for theranostic nanomedicine. Advanced Drug Delivery Reviews, 2016, 99, 70-84.	6.6	329
1228	Folate Receptor Targeted Delivery of siRNA and Paclitaxel to Ovarian Cancer Cells via Folate Conjugated Triblock Copolymer to Overcome TLR4 Driven Chemotherapy Resistance. Biomacromolecules, 2016, 17, 76-87.	2.6	72
1229	iRGD-mediated reduction-responsive DSPE–PEG/LA–PLGA–TPGS mixed micelles used in the targeted delivery and triggered release of docetaxel in cancer. RSC Advances, 2016, 6, 28331-28342.	1.7	6
1230	Nanosized, peptide-based multicomponent DNA delivery systems: optimization of endosome escape activity. Nanomedicine, 2016, 11, 907-919.	1.7	14
1231	Rapid Degradation and High Renal Clearance of Cu ₃ BiS ₃ Nanodots for Efficient Cancer Diagnosis and Photothermal Therapy <i>in Vivo</i> . ACS Nano, 2016, 10, 4587-4598.	7.3	173
1232	The effect of nanoparticle size on $\langle i \rangle$ in $\forall i \rangle$ pharmacokinetics and cellular interaction. Nanomedicine, 2016, 11, 673-692.	1.7	1,197
1233	Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	129
1234	Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence, 2016 , 3 , 1 .	6.3	296

#	Article	IF	Citations
1235	Multicolor nanoprobes based on silica-coated gadolinium oxide nanoparticles with highly reduced toxicity. RSC Advances, 2016, 6, 19758-19762.	1.7	26
1236	Statistics, damned statistics and nanoscience $\hat{a} \in ``using data science to meet the challenge of nanomaterial complexity. Nanoscale Horizons, 2016, 1, 89-95.$	4.1	34
1237	DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science, 2016, 351, 841-845.	6.0	180
1238	Size-Controlled Synthesis of Porphyrinic Metal–Organic Framework and Functionalization for Targeted Photodynamic Therapy. Journal of the American Chemical Society, 2016, 138, 3518-3525.	6.6	683
1239	Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian Journal of Pharmaceutical Sciences, 2016, 11, 349-364.	4.3	203
1240	Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art. Journal of Controlled Release, 2016, 227, 23-37.	4.8	193
1241	Tuning Cellular Uptake of Molecular Probes by Rational Design of Their Assembly into Supramolecular Nanoprobes. Journal of the American Chemical Society, 2016, 138, 3533-3540.	6.6	125
1242	Integrin Targeted Gold Nanoparticles Potentiate Cancer Radiation Sensitivity: Synthesizing and modifying gold nanorods to target cancer cells IEEE Nanotechnology Magazine, 2016, 10, 4-15.	0.9	1
1243	Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications. Biosensors and Bioelectronics, 2016, 80, 543-559.	5.3	80
1244	Influence of Solution Chemistry and Soft Protein Coronas on the Interactions of Silver Nanoparticles with Model Biological Membranes. Environmental Science & Environmental Science & 2301-2309.	4.6	37
1245	Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers. Langmuir, 2016, 32, 1601-1610.	1.6	19
1246	Using the power of organic synthesis for engineering the interactions of nanoparticles with biological systems. Nano Today, 2016, 11, 31-40.	6.2	29
1247	Quantifying the Impact of Nanoparticle Coatings and Nonuniformities on XPS Analysis: Gold/Silver Core–Shell Nanoparticles. Analytical Chemistry, 2016, 88, 3917-3925.	3.2	55
1248	Low Cytotoxicity and Genotoxicity of Two-Dimensional MoS ₂ and WS ₂ . ACS Biomaterials Science and Engineering, 2016, 2, 361-367.	2.6	186
1249	A novel monolithic controlled delivery system of resveratrol for enhanced hepatoprotection: nanoformulation development, pharmacokinetics and pharmacodynamics. Drug Development and Industrial Pharmacy, 2016, 42, 1524-1536.	0.9	19
1250	Shape-Dependent Activation of Cytokine Secretion by Polymer Capsules in Human Monocyte-Derived Macrophages. Biomacromolecules, 2016, 17, 1205-1212.	2.6	49
1251	Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nature Nanotechnology, 2016, 11, 479-486.	15.6	393
1252	Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout. Aquatic Toxicology, 2016, 174, 70-81.	1.9	72

#	Article	IF	Citations
1253	Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 2016, 231, 103-113.	4.8	67
1254	Mean-field and linear regime approach to magnetic hyperthermia of core–shell nanoparticles: can tiny nanostructures fight cancer?. Nanoscale, 2016, 8, 8363-8377.	2.8	35
1255	Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1241-1251.	1.7	26
1256	Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. Journal of Controlled Release, 2016, 231, 2-16.	4.8	45
1257	Photonic Materials for Sensing, Biosensing and Display Devices. Springer Series in Materials Science, 2016, , .	0.4	17
1258	Sensing on Single Plasmonics. Springer Series in Materials Science, 2016, , 209-235.	0.4	1
1259	Vascular Calcification in Uremia: New-Age Concepts about an Old-Age Problem. Methods in Molecular Biology, 2016, 1397, 175-208.	0.4	30
1260	Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chemical Society Reviews, 2016, 45, 412-448.	18.7	176
1261	Medical Applications of SERS. Biological and Medical Physics Series, 2016, , 149-211.	0.3	7
1262	Selenium-substituted hydroxyapatite nanoparticles and their in vivo antitumor effect on hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces, 2016, 140, 297-306.	2.5	84
1263	Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues. Molecular Cancer Therapeutics, 2016, 15, 106-113.	1.9	27
1264	New Insights on the Influence of Organic Co-Contaminants on the Aquatic Toxicology of Carbon Nanomaterials. Environmental Science & Environmental Scie	4.6	89
1265	Enhancing both CT imaging and natural killer cell-mediated cancer cell killing by a GD2-targeting nanoconstruct. Journal of Materials Chemistry B, 2016, 4, 513-520.	2.9	26
1266	Drug Targeting to Macrophages With Solid Lipid Nanoparticles Harboring Paromomycin: an In Vitro Evaluation Against L. major and L. tropica. AAPS PharmSciTech, 2016, 17, 1110-1119.	1.5	38
1267	Gold Nanoparticles for Biomedical Applications: Synthesis and In Vitro Evaluation. Methods in Pharmacology and Toxicology, 2016, , 87-111.	0.1	11
1268	The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron- and nano-sized capsules. Environment International, 2016, 86, 68-74.	4.8	51
1269	Cytotoxic and sublethal effects of silver nanoparticles on tendon-derived stem cells – implications for tendon engineering. Toxicology Research, 2016, 5, 318-330.	0.9	6
1270	Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage. Journal of Biochemistry, 2016, 159, 225-237.	0.9	33

#	Article	IF	CITATIONS
1271	Cytotoxicity of chitosan/streptokinase nanoparticles as a function of size: An artificial neural networks study. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 171-180.	1.7	35
1272	Development of long-term antimicrobial poly (ε-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polymer Bulletin, 2016, 73, 1207-1227.	1.7	42
1273	InÂvivo dual-targeted chemotherapy of drug resistant cancer by rationally designed nanocarrier. Biomaterials, 2016, 75, 71-81.	5.7	66
1274	Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74, 144-154.	5.7	247
1275	Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry, 2017, 110, 167-177.	2.8	291
1276	Effects of Co and Ni nanoparticles on biogas and methane production from anaerobic digestion of slurry. Energy Conversion and Management, 2017, 141, 108-119.	4.4	152
1277	Nanoparticle design considerations for molecular imaging of apoptosis: Diagnostic, prognostic, and therapeutic value. Advanced Drug Delivery Reviews, 2017, 113, 122-140.	6.6	33
1278	Gold nanostar–polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells. International Journal of Pharmaceutics, 2017, 519, 113-124.	2.6	22
1279	Lysosomes activating chain reactions against cancer cells with a pH-switched prodrug/procatalyst co-delivery nanosystem. Journal of Materials Chemistry B, 2017, 5, 996-1004.	2.9	20
1280	Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. Journal of Controlled Release, 2017, 263, 211-222.	4.8	57
1281	Biodegradable nanoparticles as nanomedicines: are drug-loading content and release mechanism dictated by particle density?. Colloid and Polymer Science, 2017, 295, 1271-1280.	1.0	17
1282	Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli. Acta Biomaterialia, 2017, 50, 502-509.	4.1	14
1283	Shape tunable synthesis of anisotropic gold nanostructures through binary surfactant mixtures. Materials Today Chemistry, 2017, 3, 1-9.	1.7	20
1284	Multi-functional nanotracers for image-guided stem cell gene therapy. Nanoscale, 2017, 9, 4665-4676.	2.8	13
1285	Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle–Protein Systems. Langmuir, 2017, 33, 1227-1238.	1.6	37
1286	Specifically Formed Corona on Silica Nanoparticles Enhances Transforming Growth Factor \hat{I}^21 Activity in Triggering Lung Fibrosis. ACS Nano, 2017, 11, 1659-1672.	7.3	76
1287	The in vitro and in vivo toxicity of gold nanoparticles. Chinese Chemical Letters, 2017, 28, 691-702.	4.8	223
1288	A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures. Chemical Science, 2017, 8, 2832-2840.	3.7	87

#	Article	IF	CITATIONS
1289	Physical principles of graphene cellular interactions: computational and theoretical accounts. Journal of Materials Chemistry B, 2017, 5, 4290-4306.	2.9	25
1290	Quantitative analysis of gold and carbon nanoparticles in mammalian cells by flow cytometry light scattering. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	3
1291	Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surface Science Reports, 2017, 72, 1-58.	3.8	419
1292	Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal? Journal of Materials Chemistry B, 2017, 5, 2714-2725.	2.9	10
1293	Statins anticancer targeted delivery systems: re-purposing an old molecule. Journal of Pharmacy and Pharmacology, 2017, 69, 613-624.	1.2	39
1294	CeO 2 NPs, toxic or protective to phytoplankton? Charge of nanoparticles and cell wall as factors which cause changes in cell complexity. Science of the Total Environment, 2017, 590-591, 304-315.	3.9	54
1295	Hybrid Alginate–Protein-Coated Graphene Oxide Microcapsules Enhance the Functionality of Erythropoietin Secreting C ₂ C ₁₂ Myoblasts. Molecular Pharmaceutics, 2017, 14, 885-898.	2.3	13
1296	Improved Targeting of Cancers with Nanotherapeutics. Methods in Molecular Biology, 2017, 1530, 13-37.	0.4	11
1297	Reduction of calcium flux from the extracellular region and endoplasmic reticulum by amorphous nano-silica particles owing to carboxy group addition on their surface. Biochemistry and Biophysics Reports, 2017, 9, 330-334.	0.7	4
1298	Designing nanomedicine for immuno-oncology. Nature Biomedical Engineering, 2017, 1, .	11.6	178
1299	Acoustic Separation of Nanoparticles in Continuous Flow. Advanced Functional Materials, 2017, 27, 1606039.	7.8	106
1300	Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice. Nanotechnology, 2017, 28, 135101.	1.3	15
1301	Single-Chain Polymeric Nanocarriers: A Platform for Determining Structure–Function Correlations in the Delivery of Molecular Cargo. Biomacromolecules, 2017, 18, 1434-1439.	2.6	16
1302	Flow Cytometry and Its Utility. , 2017, , 109-126.		0
1303	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6109.	23.0	670
1304	Intrinsic functional and architectonic heterogeneity of tumor-targeted protein nanoparticles. Nanoscale, 2017, 9, 6427-6435.	2.8	21
1305	Amino acid-modified chitosan nanoparticles for Cu ²⁺ chelation to suppress CuO nanoparticle cytotoxicity. Journal of Materials Chemistry B, 2017, 5, 3521-3530.	2.9	14
1306	Ultrasmall Semimetal Nanoparticles of Bismuth for Dual-Modal Computed Tomography/Photoacoustic Imaging and Synergistic Thermoradiotherapy. ACS Nano, 2017, 11, 3990-4001.	7.3	282

#	Article	IF	CITATIONS
1307	Conserved effects and altered trafficking of Cetuximab antibodies conjugated to gold nanoparticles with precise control of their number and orientation. Nanoscale, 2017, 9, 6111-6121.	2.8	33
1308	Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives. Expert Opinion on Drug Delivery, 2017, 14, 1407-1422.	2.4	86
1309	Rodâ€Shaped Drug Particles for Cancer Therapy: The Importance of Particle Size and Participation of Caveolae Pathway. Particle and Particle Systems Characterization, 2017, 34, 1600371.	1.2	24
1310	Control of Localized Surface Plasmon Resonances in Metal Oxide Nanocrystals. Annual Review of Materials Research, 2017, 47, 1-31.	4.3	163
1311	In vitro biocompatibility study of sub-5 nm silica-coated magnetic iron oxide fluorescent nanoparticles for potential biomedical application. Scientific Reports, 2017, 7, 46513.	1.6	39
1312	The impact of microfluidic mixing of triblock micelleplexes on <i>in vitro</i> \$/\$ <i>in vivo</i> gene silencing and intracellular trafficking. Nanotechnology, 2017, 28, 224001.	1.3	20
1313	Smart Asymmetric Vesicles with Triggered Availability of Inner Cell-Penetrating Shells for Specific Intracellular Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17727-17735.	4.0	42
1314	Hyaluronan-Inorganic Nanohybrid Materials for Biomedical Applications. Biomacromolecules, 2017, 18, 1677-1696.	2.6	66
1315	Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density. Advanced Healthcare Materials, 2017, 6, 1700317.	3.9	26
1316	Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nature Nanotechnology, 2017, 12, 763-769.	15.6	136
1317	Theoretical modeling and simulations of self-assembly of copolymers in solution. Progress in Polymer Science, 2017, 75, 1-30.	11.8	95
1318	Gold nanoparticles based sensor for in vitro analysis of drug-drug interactions using imipramine and isoniazid drugs: A proof of concept approach. Sensors and Actuators B: Chemical, 2017, 252, 1055-1062.	4.0	8
1319	The effect of nanoparticle size on the ability to cross the blood–brain barrier: an ⟨i⟩in vivo⟨ i⟩ study. Nanomedicine, 2017, 12, 1533-1546.	1.7	205
1320	Frizzled7 Antibodyâ€Functionalized Nanoshells Enable Multivalent Binding for Wnt Signaling Inhibition in Triple Negative Breast Cancer Cells. Small, 2017, 13, 1700544.	5.2	54
1321	Antimicrobial Gold Nanoclusters. ACS Nano, 2017, 11, 6904-6910.	7.3	469
1322	Protein Corona around Gold Nanorods as a Drug Carrier for Multimodal Cancer Therapy. ACS Biomaterials Science and Engineering, 2017, 3, 1039-1050.	2.6	36
1323	Revisiting the value of competition assays in folate receptor-mediated drug delivery. Biomaterials, 2017, 138, 35-45.	5.7	56
1324	Au–Cu _{2â^'x} Se heterogeneous nanocrystals for efficient photothermal heating for cancer therapy. Journal of Materials Chemistry B, 2017, 5, 4934-4942.	2.9	35

#	Article	IF	Citations
1325	Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids. Lab on A Chip, 2017, 17, 2243-2255.	3.1	55
1326	Effect of Alkylation on the Cellular Uptake of Polyethylene Glycol-Coated Gold Nanoparticles. ACS Nano, 2017, 11, 6085-6101.	7.3	48
1327	Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity. Toxicology in Vitro, 2017, 43, 29-39.	1.1	25
1328	Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nature Communications, 2017, 8, 15646.	5.8	163
1329	Ultrasmall Conjugated Polymer Nanoparticles with High Specificity for Targeted Cancer Cell Imaging. Advanced Science, 2017, 4, 1600407.	5.6	40
1330	Reduction- and pH-Sensitive Hyaluronan Nanoparticles for Delivery of Iridium(III) Anticancer Drugs. Biomacromolecules, 2017, 18, 2102-2117.	2.6	48
1331	Molecular Elucidation of Biological Response to Mesoporous Silica Nanoparticles in Vitro and in Vivo. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22235-22251.	4.0	82
1332	Current and future prospects for nanotechnology in animal production. Journal of Animal Science and Biotechnology, 2017, 8, 26.	2.1	124
1333	Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles. Scientific Reports, 2017, 7, 43731.	1.6	10
1334	In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis, 2017, 32, 371-387.	1.0	50
1335	Background-free three-dimensional selective imaging of anisotropic plasmonic nanoparticles. Nano Research, 2017, 10, 1423-1433.	5.8	10
1336	Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids and Surfaces B: Biointerfaces, 2017, 154, 297-306.	2.5	64
1337	Contribution of engineered nanomaterials physicochemical properties to mast cell degranulation. Scientific Reports, 2017, 7, 43570.	1.6	11
1338	A novel polymeric micelle used for in vivo MR imaging tracking of neural stem cells in acute ischemic stroke. RSC Advances, 2017, 7, 15041-15052.	1.7	26
1339	Nanoparticles for drug delivery to the anterior segment of the eye. Advanced Drug Delivery Reviews, 2017, 122, 31-64.	6.6	239
1340	Impact of Semiconducting Perylene Diimide Nanoparticle Size on Lymph Node Mapping and Cancer Imaging. ACS Nano, 2017, 11, 4247-4255.	7.3	157
1341	Small nanosized poly(vinyl benzyl trimethylammonium chloride) based polyplexes for siRNA delivery. International Journal of Pharmaceutics, 2017, 525, 388-396.	2.6	16
1342	Gd2O3-doped silica @ Au nanoparticles for in vitro imaging cancer biomarkers using surface-enhanced Raman scattering. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 181, 218-225.	2.0	10

#	Article	IF	CITATIONS
1343	Interactions of Renalâ€Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angewandte Chemie - International Edition, 2017, 56, 4314-4319.	7.2	51
1344	Effect of Nanoparticle Surface Coating on Cell Toxicity and Mitochondria Uptake. Journal of Biomedical Nanotechnology, 2017, 13, 155-166.	0.5	35
1345	Interactions of Renalâ€Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angewandte Chemie, 2017, 129, 4378-4383.	1.6	16
1346	Plant Stress Signaling Through Corresponding Nanobiotechnology. , 2017, , 381-391.		1
1347	Generation of biocompatible nanogold using H 2 O 2 –starch and their catalytic/antimicrobial activities. European Polymer Journal, 2017, 90, 354-367.	2.6	70
1348	Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomaterialia, 2017, 49, 45-65.	4.1	79
1349	Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy, 2017, 120, 842-853.	4.5	210
1350	Galectin-1 Reduces Neuroinflammation via Modulation of Nitric Oxide-Arginase Signaling in HIV-1 Transfected Microglia: a Gold Nanoparticle-Galectin-1 "Nanoplex―a Possible Neurotherapeutic?. Journal of NeuroImmune Pharmacology, 2017, 12, 133-151.	2.1	25
1351	Platinum-Coated Gold Nanorods: Efficient Reactive Oxygen Scavengers That Prevent Oxidative Damage toward Healthy, Untreated Cells during Plasmonic Photothermal Therapy. ACS Nano, 2017, 11, 579-586.	7.3	205
1352	Cellular internalization of rod-like nano hydroxyapatite particles and their size and dose-dependent effects on pre-osteoblasts. Journal of Materials Chemistry B, 2017, 5, 1205-1217.	2.9	22
1353	Insight into the interactions between nanoparticles and cells. Biomaterials Science, 2017, 5, 173-189.	2.6	78
1354	In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of Zinc oxide doped TiO 2 nanocrystals: Investigation of bio-medical application by chemical method. Materials Science and Engineering C, 2017, 74, 325-333.	3.8	223
1355	Silver nanoparticles and dissolved silver activate contrasting immune responses and stressâ€induced heat shock protein expression in sea urchin. Environmental Toxicology and Chemistry, 2017, 36, 1872-1886.	2.2	17
1356	Local Radiation Treatment of HER2-Positive Breast Cancer Using Trastuzumab-Modified Gold Nanoparticles Labeled with 177Lu. Pharmaceutical Research, 2017, 34, 579-590.	1.7	61
1357	General synthesis of high-performing magneto-conjugated polymer core–shell nanoparticles for multifunctional theranostics. Nano Research, 2017, 10, 704-717.	5.8	26
1358	Enhancing the photothermal stability and photothermal efficacy of AuNRs and AuNTs by grafting with Ru(<scp>ii</scp>) complexes. Journal of Materials Chemistry B, 2017, 5, 671-678.	2.9	17
1359	Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways. Drug Delivery, 2017, 24, 45-55.	2.5	45
1360	Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Scientific Reports, 2017, 7, 14177.	1.6	23

#	Article	IF	CITATIONS
1361	Nanoparticles in dentistry. Dental Materials, 2017, 33, 1298-1314.	1.6	78
1362	Sugarâ€Coated Nanobullet: Growth Inhibition of Cancer Cells Induced by Metformin‣oaded Glyconanoparticles. ChemMedChem, 2017, 12, 1823-1827.	1.6	14
1363	Quantification of nanoparticle concentration in colloidal suspensions by a non-destructive optical method. Nanotechnology, 2017, 28, 475702.	1.3	9
1364	Assessment of Ferrous Glycinate Liposome Absorption Using <i>in Situ</i> Single-Pass Perfusion Model. International Journal of Food Engineering, 2017, 13, .	0.7	0
1365	Semiconductor Quantum Dots for Photothermal Cancer Therapy. , 2017, , 111-139.		1
1366	Recent development of nanoparticles for molecular imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170022.	1.6	74
1367	Fluorescence-coded DNA Nanostructure Probe System to Enable Discrimination of Tumor Heterogeneity via a Screening of Dual Intracellular microRNA Signatures in situ. Scientific Reports, 2017, 7, 13499.	1.6	5
1368	Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus. Biomaterials, 2017, 145, 207-222.	5.7	26
1369	Erlotinib-loaded albumin nanoparticles: A novel injectable form of erlotinib and its in vivo efficacy against pancreatic adenocarcinoma ASPC-1 and PANC-1 cell lines. International Journal of Pharmaceutics, 2017, 531, 299-305.	2.6	25
1370	A Method for Investigation of Size-Dependent Protein Binding to Nanoholes Using Intrinsic Fluorescence of Proteins. ACS Omega, 2017, 2, 4772-4778.	1.6	3
1371	Mammalian cell defence mechanisms against the cytotoxicity of NaYF ₄ :(Er,Yb,Gd) nanoparticles. Nanoscale, 2017, 9, 14259-14271.	2.8	18
1372	Novel Magneticâ€Luminescent Janus Nanoparticles for Cell Labeling and Tumor Photothermal Therapy. Small, 2017, 13, 1701129.	5.2	40
1373	The role played by modified bioinspired surfaces in interfacial properties of biomaterials. Biophysical Reviews, 2017, 9, 683-698.	1.5	38
1374	Combination Cancer Therapy Using Chimeric Antigen Receptor-Engineered Natural Killer Cells as Drug Carriers. Molecular Therapy, 2017, 25, 2607-2619.	3.7	72
1375	Molecular-Oriented Self-Assembly of Small Organic Molecules into Uniform Microspheres. Crystal Growth and Design, 2017, 17, 4527-4532.	1.4	5
1376	On-Demand Drug Release from Dual-Targeting Small Nanoparticles Triggered by High-Intensity Focused Ultrasound Enhanced Glioblastoma-Targeting Therapy. ACS Applied Materials & Diterfaces, 2017, 9, 31612-31625.	4.0	75
1377	The Effects of Physicochemical Properties of Nanomaterials on Their Cellular Uptake In Vitro and In Vivo. Small, 2017, 13, 1701815.	5.2	48
1378	Substance P Mediated DGLs Complexing with DACHPt for Targeting Therapy of Glioma. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34603-34617.	4.0	15

#	Article	IF	CITATIONS
1379	Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis. Journal of Environmental Sciences, 2017, 62, 100-114.	3.2	50
1380	Nanoparticle size-specific actin rearrangement and barrier dysfunction of endothelial cells. Nanotoxicology, 2017, 11, 846-856.	1.6	27
1381	Enzymes as key features in therapeutic cell mimicry. Advanced Drug Delivery Reviews, 2017, 118, 94-108.	6.6	36
1382	First-Principles Study of Fluorescence in Silver Nanoclusters. Journal of Physical Chemistry C, 2017, 121, 23875-23885.	1.5	15
1383	Mineralized State of the Avian Influenza Virus in the Environment. Angewandte Chemie - International Edition, 2017, 56, 12908-12912.	7.2	21
1384	Mineralized State of the Avian Influenza Virus in the Environment. Angewandte Chemie, 2017, 129, 13088-13092.	1.6	2
1385	Modifying Dendritic Cell Activation with Plasmonic Nano Vectors. Scientific Reports, 2017, 7, 5513.	1.6	25
1386	Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews, 2017, 46, 4218-4244.	18.7	1,709
1387	<scp>DNA</scp> origami applications in cancer therapy. Cancer Science, 2017, 108, 1535-1543.	1.7	77
1388	Iron oxide nanoclusters for T 1 magnetic resonance imaging of non-human primates. Nature Biomedical Engineering, 2017, 1 , 637-643.	11.6	151
1389	ET&C Best Paper of 2016. Environmental Toxicology and Chemistry, 2017, 36, 1693-1694.	2.2	0
1390	Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 2017, 115, 115-154.	6.6	307
1391	Carbon Dots for Bioimaging and Biosensing Applications. Springer Series on Chemical Sensors and Biosensors, 2017, , 201-231.	0.5	4
1392	Single-cell mechanogenetics using monovalent magnetoplasmonic nanoparticles. Nature Protocols, 2017, 12, 1871-1889.	5.5	48
1393	Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2096-2105.	1.4	9
1394	Nanoparticles of Various Degrees of Hydrophobicity Interacting with Lipid Membranes. Journal of Physical Chemistry Letters, 2017, 8, 4069-4076.	2.1	41
1395	Engineering Stability-Tunable DNA Micelles Using Photocontrollable Dissociation of an Intermolecular G-Quadruplex. ACS Nano, 2017, 11, 12087-12093.	7.3	49
1397	Pharmaceutical Applications of Curcumin-Loaded Nanoparticles. , 2017, , 139-154.		4

#	Article	IF	CITATIONS
1399	An Introduction to Chiral Nanomaterials: Origin, Construction, and Optical Application. , 0, , 1-28.		1
1400	Biocompatible Magnetic Oxide Nanoparticles with Metal Ions Coated with Organic Shell as Potential Therapeutic Agents in Cancer., 2017,, 219-256.		3
1401	Tailoring of physicochemical properties of nanocarriers for effective anti ancer applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 2906-2928.	2.1	26
1402	Antimicrobial peptide-gold nanoscale therapeutic formulation with high skin regenerative potential. Journal of Controlled Release, 2017, 262, 58-71.	4.8	48
1403	Endocytic pathways of optimized resveratrol cubosomes capturing into human hepatoma cells. Biomedicine and Pharmacotherapy, 2017, 93, 561-569.	2.5	48
1404	Synthesis of reduced-size gold nanostars and internalization in SH-SY5Y cells. Journal of Colloid and Interface Science, 2017, 505, 1055-1064.	5.0	16
1405	Efficient Receptor Mediated siRNA Delivery in Vitro by Folic Acid Targeted Pentablock Copolymer-Based Micelleplexes. Biomacromolecules, 2017, 18, 2654-2662.	2.6	18
1406	Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery Systems. Biomacromolecules, 2017, 18, 2231-2246.	2.6	147
1407	Nanoparticles for live cell microscopy: A surface-enhanced Raman scattering perspective. Scientific Reports, 2017, 7, 4471.	1.6	43
1408	pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. Journal of Controlled Release, 2017, 259, 160-167.	4.8	54
1409	Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells. Toxicology Mechanisms and Methods, 2017, 27, 58-71.	1.3	11
1410	Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchemical Journal, 2017, 130, 316-328.	2.3	34
1411	Exploiting the protein corona around gold nanorods for low-dose combined photothermal and photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 254-268.	2.9	70
1412	Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties. Acta Biomaterialia, 2017, 49, 36-44.	4.1	64
1413	Effect of Gold Nanoparticle Size and Coating on Labeling Monocytes for CT Tracking. Bioconjugate Chemistry, 2017, 28, 260-269.	1.8	40
1414	Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan. Journal of Magnetism and Magnetic Materials, 2017, 421, 316-325.	1.0	35
1415	Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 2017, 30, 1-14.	2.0	525
1416	Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers. Acta Pharmacologica Sinica, 2017, 38, 1-8.	2.8	50

#	Article	IF	CITATIONS
1417	Chirality Controls Reactionâ€Diffusion of Nanoparticles for Inhibiting Cancer Cells. ChemNanoMat, 2017, 3, 17-21.	1.5	23
1418	Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opinion on Drug Delivery, 2017, 14, 201-214.	2.4	106
1419	Color-stable water-dispersed cesium lead halide perovskite nanocrystals. Nanoscale, 2017, 9, 631-636.	2.8	113
1420	Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nature Nanotechnology, 2017, 12, 81-89.	15.6	295
1421	Polyanhydride micelles with diverse morphologies for shape-regulated cellular internalization and blood circulation. International Journal of Energy Production and Management, 2017, 4, 149-157.	1.9	8
1425	Numerical investigation of size effects on mechanical behaviors of Fe nanoparticles through an atomistic field theory. Journal of Micromechanics and Molecular Physics, 2017, 02, 1750010.	0.7	6
1426	Effect of Different Doping Concentrations and Its Characterizations of Nanocrystalline ITO Nano Particles. Journal of Powder Metallurgy and Mining, 2017, 06, .	0.2	0
1427	Cytotoxicity of Poly(Alkyl Cyanoacrylate) Nanoparticles. International Journal of Molecular Sciences, 2017, 18, 2454.	1.8	38
1428	Interfacial engineering of nanoparticles for cancer therapeutics., 2017,, 177-209.		16
1429	Dual-linker gold nanoparticles as adjuvanting carriers for multivalent display of recombinant influenza hemagglutinin trimers and flagellin improve the immunological responses in vivo and in vitro. International Journal of Nanomedicine, 2017, Volume 12, 4747-4762.	3.3	41
1430	SR-B1-targeted nanodelivery of anti-cancer agents: a promising new approach to treat triple-negative breast cancer. Breast Cancer: Targets and Therapy, 2017, Volume 9, 383-392.	1.0	9
1431	Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. International Journal of Nanomedicine, 2017, Volume 12, 8483-8493.	3.3	114
1432	The Diverse Range of Possible Cell Membrane Interactions with Substrates: Drug Delivery, Interfaces and Mobility. Molecules, 2017, 22, 2197.	1.7	10
1433	Endocytosis of Corn Oil-Caseinate Emulsions In Vitro: Impacts of Droplet Sizes. Nanomaterials, 2017, 7, 349.	1.9	29
1434	Advanced Nanocomposites With Noble Metal Antimicrobial Nanoparticles., 2017,, 623-651.		2
1435	Evaluation of iron transport from ferrous glycinate liposomes using Caco-2 cell model. African Health Sciences, 2017, 17, 933.	0.3	6
1436	Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure. Frontiers in Immunology, 2017, 8, 169.	2.2	48
1437	Human Scavenger Receptor A1-Mediated Inflammatory Response to Silica Particle Exposure Is Size Specific. Frontiers in Immunology, 2017, 8, 379.	2.2	38

#	Article	IF	CITATIONS
1438	One-Pot Aqueous Synthesis of Fluorescent Ag-In-Zn-S Quantum Dot/Polymer Bioconjugates for Multiplex Optical Bioimaging of Glioblastoma Cells. Contrast Media and Molecular Imaging, 2017, 2017, 1-15.	0.4	23
1440	A Nanosystem of Amphiphilic Oligopeptide-Drug Conjugate Actualizing Both $\hat{l}\pm v\hat{l}^2$ 3 Targeting and Reduction-Triggered Release for Maytansinoid. Theranostics, 2017, 7, 3306-3318.	4.6	22
1441	Pro-Inflammatory Versus Anti-Inflammatory Effects of Dendrimers: The Two Faces of Immuno-Modulatory Nanoparticles. Nanomaterials, 2017, 7, 251.	1.9	31
1442	Synthesis of Superparamagnetic Hydroxyapatite Core-Shell Nanostructure by a Rapid Sol-Gel Route. E-Journal of Surface Science and Nanotechnology, 2017, 15, 121-126.	0.1	17
1443	Nanobiotechnology for Breast Cancer Treatment. , 0, , .		12
1444	TRAIL-functionalized gold nanoparticles selectively trigger apoptosis in polarized macrophages. Nanotheranostics, 2017, 1, 326-337.	2.7	20
1445	Current Perspective on Nanomaterial-Induced Adverse Effects. , 2017, , 75-98.		7
1446	In vitro and in vivo delivery of siRNA via VIPER polymer system to lung cells. Journal of Controlled Release, 2018, 276, 50-58.	4.8	52
1447	Cellular localization and biological effects of 20nmâ€gold nanoparticles. Journal of Biomedical Materials Research - Part A, 2018, 106, 1708-1721.	2.1	23
1448	Real-time cellular and molecular dynamics of bi-metallic self-therapeutic nanoparticle in cancer cells. Applied Nanoscience (Switzerland), 2018, 8, 115-124.	1.6	3
1449	Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chemical Society Reviews, 2018, 47, 3574-3620.	18.7	352
1450	A detour strategy for colloidally stable block-copolymer grafted MAPbBr ₃ quantum dots in water with long photoluminescence lifetime. Nanoscale, 2018, 10, 5820-5826.	2.8	45
1451	Lightâ€Responsive Shape: From Micrometerâ€Long Nanocylinders to Compact Particles in Electrostatic Selfâ€Assembly. Macromolecular Rapid Communications, 2018, 39, e1700860.	2.0	14
1452	Structure and Interaction of Nanoparticle–Protein Complexes. Langmuir, 2018, 34, 5679-5695.	1.6	55
1453	Silverâ€Assisted Synthesis of Gold Nanorods: the Relation between Silver Additive and Iodide Impurities. Small, 2018, 14, e1703879.	5.2	30
1454	Supramolecular dendritic polymers for diagnostic and theranostic applications. Science China Materials, 2018, 61, 1444-1453.	3.5	5
1455	The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chemical Society Reviews, 2018, 47, 4757-4780.	18.7	70
1456	Controlling Cargo Trafficking in Multicomponent Membranes. Nano Letters, 2018, 18, 5350-5356.	4.5	19

#	Article	IF	CITATIONS
1457	Probing Molecular Basis for Constructing Interface Bionanostructures. Topics in Catalysis, 2018, 61, 1125-1138.	1.3	0
1458	Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. Journal of Controlled Release, 2018, 279, 326-335.	4.8	79
1459	Surface Ligand Chemistry of Gold Nanoclusters Determines Their Antimicrobial Ability. Chemistry of Materials, 2018, 30, 2800-2808.	3.2	115
1460	Largeâ€Scale Synthesis and Medical Applications of Uniformâ€Sized Metal Oxide Nanoparticles. Advanced Materials, 2018, 30, e1704290.	11.1	97
1461	Selfâ€assembled, ellipsoidal polymeric nanoparticles for intracellular delivery of therapeutics. Journal of Biomedical Materials Research - Part A, 2018, 106, 2048-2058.	2.1	22
1462	A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity <i>via</i> destroying oxidase-like CoOOH nanoflakes. Journal of Materials Chemistry B, 2018, 6, 2843-2850.	2.9	92
1463	Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3905-E3913.	3.3	119
1464	Gold nanoparticles conjugating recombinant influenza hemagglutinin trimers and flagellin enhanced mucosal cellular immunity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1349-1360.	1.7	66
1465	Nanoparticles-Caused Oxidative Imbalance. Advances in Experimental Medicine and Biology, 2018, 1048, 85-98.	0.8	23
1466	Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chemical Reviews, 2018, 118, 3121-3207.	23.0	656
1467	AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Advances, 2018, 8, 4249-4258.	1.7	75
1468	Molecular Engineering of Photoacoustic Performance by Chalcogenide Variation in Conjugated Polymer Nanoparticles for Brain Vascular Imaging. Small, 2018, 14, e1703732.	5.2	37
1469	Physiological uptake and retention of radiolabeled resveratrol loaded gold nanoparticles (99mTc-Res-AuNP) in colon cancer tissue. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1059-1071.	1.7	49
1471	NIRâ€responsive nanomaterials and their applications; upconversion nanoparticles and carbon dots: a perspective. Journal of Chemical Technology and Biotechnology, 2018, 93, 1519-1528.	1.6	37
1472	Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 nm. Chemistry of Materials, 2018, 30, 1427-1435.	3.2	161
1473	Magnetic nanoparticles: recent developments in drug delivery system. Drug Development and Industrial Pharmacy, 2018, 44, 697-706.	0.9	52
1474	Assessment of copper nanoparticles (Cu-NPs) and copper (II) oxide (CuO) induced hemato- and hepatotoxicity in <i>Cyprinus carpio</i> <in>i>. Nanotechnology, 2018, 29, 144003.</in>	1.3	18
1475	Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes. Nanoscale, 2018, 10, 4545-4560.	2.8	60

#	Article	IF	CITATIONS
1476	Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy. Journal of Materials Chemistry B, 2018, 6, 1373-1386.	2.9	56
1477	Multimodality Imaging of Silica and Silicon Materials In Vivo. Advanced Materials, 2018, 30, e1703651.	11.1	53
1478	Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using clove eugenol. Applied Organometallic Chemistry, 2018, 32, e4276.	1.7	29
1479	Gold nanoparticles cause size-dependent inhibition of embryonic development during murine pregnancy. Nano Research, 2018, 11, 3419-3433.	5.8	16
1480	Effects of gold core size on regulating the performance of doxorubicin-conjugated gold nanoparticles. Nano Research, 2018, 11, 3396-3410.	5.8	23
1481	A study of the diffusion dynamics and concentration distribution of gold nanospheres (GNSs) without fluorescent labeling inside live cells using fluorescence single particle spectroscopy. Nanoscale, 2018, 10, 5309-5317.	2.8	4
1482	Medicinal Uses of Soil Components, Geophagia and Podoconiosis. , 2018, , 35-97.		1
1483	Optimization and comparison of CD4â€targeting lipid–polymer hybrid nanoparticles using different binding ligands. Journal of Biomedical Materials Research - Part A, 2018, 106, 1177-1188.	2.1	12
1484	The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules. Macromolecular Bioscience, 2018, 18, 1700309.	2.1	11
1485	On-Chip Stochastic Detection of Silver Nanoparticles without a Reference Electrode. ACS Sensors, 2018, 3, 93-98.	4.0	12
1486	Drug Delivery. , 2018, , 247-271.		3
1487	Effect of Retroâ€Inverso Isomer of Bradykinin on Sizeâ€Dependent Penetration of Blood–Brain Tumor Barrier. Small, 2018, 14, 1702331.	5.2	20
1488	Entry of nanoparticles into cells: the importance of nanoparticle properties. Polymer Chemistry, 2018, 9, 259-272.	1.9	294
1489	Selectivity of Glycine for Facets on Gold Nanoparticles. Journal of Physical Chemistry B, 2018, 122, 3491-3499.	1.2	12
1490	Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy. Analytical Chemistry, 2018, 90, 1177-1185.	3.2	29
1491	Nanoparticle. Series in Bioengineering, 2018, , 1-36.	0.3	3
1492	Destroying Deep Lung Tumor Tissue through Lung-Selective Accumulation and by Activation of Caveolin Uptake Channels Using a Specific Width of Carbon Nanodrug. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4419-4428.	4.0	8
1493	Internalization studies on zeolite nanoparticles using human cells. Journal of Materials Chemistry B, 2018, 6, 469-476.	2.9	10

#	Article	IF	CITATIONS
1494	Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. Nanoscale, 2018, 10, 1716-1726.	2.8	19
1495	Biotin conjugated organic molecules and proteins for cancer therapy: A review. European Journal of Medicinal Chemistry, 2018, 145, 206-223.	2.6	90
1496	Cytotoxicity of CeO2 nanoparticles using in vitro assay with Mytilus galloprovincialis hemocytes: Relevance of zeta potential, shape and biocorona formation. Aquatic Toxicology, 2018, 200, 13-20.	1.9	39
1497	Hyaluronic acid-coated cisplatin conjugated gold nanoparticles for combined cancer treatment. Journal of Industrial and Engineering Chemistry, 2018, 65, 236-243.	2.9	35
1498	Maternal exposure to silver nanoparticles are associated with behavioral abnormalities in adulthood: Role of mitochondria and innate immunity in developmental toxicity. NeuroToxicology, 2018, 66, 66-77.	1.4	37
1499	Thiol-stabilized atomically precise, superatomic silver nanoparticles for catalysing cycloisomerization of alkynyl amines. National Science Review, 2018, 5, 694-702.	4.6	63
1500	Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Critical Reviews in Food Science and Nutrition, 2018, 58, 297-317.	5.4	269
1501	Copper doping enhanced the oxidative stress–mediated cytotoxicity of TiO ₂ nanoparticles in A549 cells. Human and Experimental Toxicology, 2018, 37, 496-507.	1.1	21
1502	Size-dependent cell uptake of carbon nanotubes by macrophages: A comparative and quantitative study. Carbon, 2018, 127, 93-101.	5.4	60
1503	Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydrate Polymers, 2018, 179, 19-27.	5.1	68
1504	Is the cell wall of marine phytoplankton a protective barrier or a nanoparticle interaction site? Toxicological responses of Chlorella autotrophica and Dunaliella salina to Ag and CeO2 nanoparticles. Ecological Indicators, 2018, 95, 1053-1067.	2.6	48
1505	para-Sulfonatocalix[4]arene stabilized gold nanoparticles multilayers interfaced to electrodes through host-guest interaction for sensitive ErbB2 detection. Biosensors and Bioelectronics, 2018, 99, 375-381.	5.3	14
1506	Aptamer micelles targeting fractalkine-expressing cancer cells in vitro and in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 85-96.	1.7	15
1507	Size-dependent effect of cystine/citric acid-capped confeito-like gold nanoparticles on cellular uptake and photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 161, 365-374.	2.5	55
1508	Thionine Conjugated Gold Nanoparticles Trigger Apoptotic Activity Toward HepG2 Cancer Cell Line. ACS Biomaterials Science and Engineering, 2018, 4, 635-646.	2.6	13
1509	Intracellular trafficking of a dynein-based nanoparticle designed for gene delivery. European Journal of Pharmaceutical Sciences, 2018, 112, 71-78.	1.9	11
1510	Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials, 2018, 155, 217-235.	5.7	404
1511	Nanoparticle radio-enhancement: principles, progress and application to cancer treatment. Physics in Medicine and Biology, 2018, 63, 02TR01.	1.6	163

#	Article	IF	CITATIONS
1512	Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances. Applied Catalysis B: Environmental, 2018, 225, 51-75.	10.8	257
1513	Titanium dioxide nanoparticles preferentially bind in subdomains IB, IIA of HSA and minor groove of DNA. Journal of Biomolecular Structure and Dynamics, 2018, 36, 2530-2542.	2.0	20
1514	Ligand density-dependent influence of arginine–glycine–aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells. Nano Research, 2018, 11, 1247-1261.	5.8	36
1515	Particle Targeting in Complex Biological Media. Advanced Healthcare Materials, 2018, 7, 1700575.	3.9	94
1516	Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Food and Chemical Toxicology, 2018, 112, 507-517.	1.8	42
1517	Overcoming the Blood–Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Advanced Materials, 2018, 30, e1801362.	11.1	415
1518	Atomic Force Microscopy Study of Monodisperse Carbon Nanoparticles. Semiconductors, 2018, 52, 2065-2067.	0.2	2
1519	Growing gold nanostructures for shape-selective cellular uptake. Nanoscale Research Letters, 2018, 13, 254.	3.1	20
1520	Tiny Rare-Earth Fluoride Nanoparticles Activate Tumour Cell Growth via Electrical Polar Interactions. Nanoscale Research Letters, 2018, 13, 370.	3.1	29
1521	The Toxicity of Nanoparticles to Organisms in Freshwater. Reviews of Environmental Contamination and Toxicology, 2018, 248, 1-80.	0.7	11
1522	Impact of lithiated cobalt oxide and phosphate nanoparticles on rainbow trout gill epithelial cells. Nanotoxicology, 2018, 12, 1166-1181.	1.6	20
1523	Biosynthesis of flower-shaped Au nanoclusters with EGCG and their application for drug delivery. Journal of Nanobiotechnology, 2018, 16, 90.	4.2	23
1524	Injectable hydrogel composite containing modified gold nanoparticles: implication in bone tissue regeneration. International Journal of Nanomedicine, 2018, Volume 13, 7019-7031.	3.3	57
1525	Highly Efficient In Vivo Targeting of the Pulmonary Endothelium Using Novel Modifications of Polyethylenimine: An Importance of Charge. Advanced Healthcare Materials, 2018, 7, e1800876.	3.9	41
1526	How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nature Biomedical Engineering, 2018, 2, 797-809.	11.6	99
1527	Evaluation of Three Morphologically Distinct Virus-Like Particles as Nanocarriers for Convection-Enhanced Drug Delivery to Glioblastoma. Nanomaterials, 2018, 8, 1007.	1.9	64
1528	Polydopamine/Transferrin Hybrid Nanoparticles for Targeted Cell-Killing. Nanomaterials, 2018, 8, 1065.	1.9	22
1529	Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Research Letters, 2018, 13, 339.	3.1	872

#	Article	IF	CITATIONS
1530	Ligand Density and Nanoparticle Clustering Cooperate in the Multivalent Amplification of Epidermal Growth Factor Receptor Activation. ACS Nano, 2018, 12, 10473-10485.	7.3	31
1531	Challenges facing nanotoxicology and nanomedicine due to cellular diversity. Clinica Chimica Acta, 2018, 487, 186-196.	0.5	17
1532	Efficient magnetic enrichment of antigen-specific T cells by engineering particle properties. Biomaterials, 2018, 187, 105-116.	5.7	19
1533	Biocompatibility of Magnetic Resonance Imaging Nanoprobes Improved by Transformable Gadolinium Oxide Nanocoils. Journal of the American Chemical Society, 2018, 140, 14211-14216.	6.6	41
1534	Evaluating cellular uptake of gold nanoparticles in HL-7702 and HepG2 cells for plasmonic photothermal therapy. Nanomedicine, 2018, 13, 2245-2259.	1.7	14
1535	The Bioimaging Applications of Mesoporous Silica Nanoparticles. The Enzymes, 2018, 43, 123-153.	0.7	14
1536	Selfâ€Assembled Nanomedicines for Anticancer and Antibacterial Applications. Advanced Healthcare Materials, 2018, 7, e1800670.	3.9	63
1537	Intracellular Delivery of Gold Nanocolloids Promoted by a Chemically Conjugated Anticancer Peptide. ACS Omega, 2018, 3, 12754-12762.	1.6	22
1538	Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. International Journal of Pharmaceutics, 2018, 553, 483-509.	2.6	54
1539	Biodegradable Gene Carriers Containing Rigid Aromatic Linkage with Enhanced DNA Binding and Cell Uptake. Polymers, 2018, 10, 1080.	2.0	7
1540	Osmotic Shock-Triggered Assembly of Highly Charged, Nanoparticle-Supported Membranes. Langmuir, 2018, 34, 13000-13005.	1.6	6
1541	Pharmacokinetic and anti-colon cancer properties of curcumin-containing chitosan-pectinate composite nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 2281-2298.	1.9	38
1542	Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide–protein complexes from Corbicula fluminea. Food Bioscience, 2018, 26, 177-184.	2.0	47
1543	Noble metal nanoparticles with anisotropy in shape and surface functionality for biomedical applications., 2018,, 313-333.		2
1544	Antimicrobial peptide modification enhances the gene delivery and bactericidal efficiency of gold nanoparticles for accelerating diabetic wound healing. Biomaterials Science, 2018, 6, 2757-2772.	2.6	125
1546	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	15.6	455
1548	Pharmaceutical perspectives of selection criteria and toxicity profiling of nanotheranostic agents., 2018,, 45-74.		3
1549	Human & Description of the series of the ser	3.3	39

#	ARTICLE	IF	CITATIONS
1550	Adaptive Polymersome and Micelle Morphologies in Anticancer Nanomedicine: From Design Rationale to Fabrication and Proofâ€ofâ€Concept Studies. Advanced Therapeutics, 2018, 1, 1800068.	1.6	12
1551	Meniscus Shape around Nanoparticles Embedded in Molecularly Thin Liquid Films. Langmuir, 2018, 34, 11364-11373.	1.6	5
1552	Mechanotargeting: Mechanicsâ€Dependent Cellular Uptake of Nanoparticles. Advanced Materials, 2018, 30, e1707464.	11.1	38
1553	Length <i>vs.</i> stiffness: which plays a dominant role in the cellular uptake of fructose-based rod-like micelles by breast cancer cells in 2D and 3D cell culture models?. Journal of Materials Chemistry B, 2018, 6, 4223-4231.	2.9	40
1554	Cellulose Mineralization as a Route for Novel Functional Materials. Advanced Functional Materials, 2018, 28, 1705042.	7.8	50
1555	Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. Nano Research, 2018, 11, 4999-5016.	5.8	60
1556	PLA-PEG-FA NPs for drug delivery system: Evaluation of carrier micro-structure, degradation and size-cell proliferation relationship. Materials Science and Engineering C, 2018, 91, 297-302.	3.8	6
1557	Size-, Shape- and Charge-Dependent Pharmacokinetics of Radiolabeled Nanoparticles. Biological and Medical Physics Series, 2018, , 313-329.	0.3	O
1558	Co-solvent polarity controlled self-assembly of tetraphenylethylene-buried amphiphile for size-regulated tumor accumulation. International Journal of Energy Production and Management, 2018, 5, 275-282.	1.9	5
1559	<i>In vitro</i> models of molecular and nano-particle transport across the blood-brain barrier. Biomicrofluidics, 2018, 12, 042213.	1.2	61
1560	Co-delivery of paclitaxel and gemcitabine by methoxy poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 347 Td Anti-Cancer Drugs, 2018, 29, 637-645.	(glycol)âŧ 0.7	
1561	Release Testing of Selected Drugs from Surface Magnetic Nanoparticles and Their Diffusion Through a Membrane. Pharmaceutical Chemistry Journal, 2018, 52, 257-265.	0.3	1
1562	Responsive polymer nanoparticles for drug delivery applications. , 2018, , 289-320.		17
1563	Sorting Metal Nanoparticles with Dynamic and Tunable Optical Driven Forces. Nano Letters, 2018, 18, 4500-4505.	4.5	38
1564	Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Advanced Materials, 2018, 30, e1707634.	11.1	504
1565	Nanotechnology in Brain Tumor Targeting. , 2018, , 111-145.		3
1566	Pre-drug Self-assembled Nanoparticles: Recovering activity and overcoming glutathione-associated cell antioxidant resistance against photodynamic therapy. Free Radical Biology and Medicine, 2018, 124, 431-446.	1.3	5
1567	Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2104-2111.	1.1	18

#	Article	IF	Citations
1568	Intracellular ROS Induction by Ag@ZnO Core–Shell Nanoparticles: Frontiers of Permanent Optically Active Holes in Breast Cancer Theranostic. ACS Applied Materials & Interfaces, 2018, 10, 24370-24381.	4.0	46
1569	A rational and iterative process for targeted nanoparticle design and validation. Colloids and Surfaces B: Biointerfaces, 2018, 171, 579-589.	2.5	6
1570	Promoting intracellular delivery of sub-25 nm nanoparticles <i>via < /i>defined levels of compression. Nanoscale, 2018, 10, 15090-15102.</i>	2.8	13
1571	Strategies to improve micelle stability for drug delivery. Nano Research, 2018, 11, 4985-4998.	5.8	311
1572	The potential for clinical translation of antibody-targeted nanoparticles in the treatment of acute myeloid leukaemia. Journal of Controlled Release, 2018, 286, 154-166.	4.8	19
1573	Extracting multivalent detachment rates from heterogeneous nanoparticle populations. Physical Chemistry Chemical Physics, 2018, 20, 21430-21440.	1.3	1
1574	Preparation and inÂvitro diffusion study of essential oil Pickering emulsions stabilized by silica nanoparticles. Flavour and Fragrance Journal, 2018, 33, 385-396.	1.2	13
1575	Toxicity of nanomaterials to biomedical applications— A review. , 2018, , 439-473.		3
1576	Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases, 2018, 13, 040801.	0.6	12
1577	Exploring the performance of nanostructured reagents with organic-group-defined morphology in cross-coupling reaction. Nature Communications, 2018, 9, 2936.	5.8	34
1578	Molecular insights to alkaline based bio-fabrication of silver nanoparticles for inverse cytotoxicity and enhanced antibacterial activity. Materials Science and Engineering C, 2018, 92, 807-818.	3.8	50
1579	Quantifying the Ligand-Coated Nanoparticle Delivery to Cancer Cells in Solid Tumors. ACS Nano, 2018, 12, 8423-8435.	7.3	444
1580	Combinatorial Approach in Rationale Design of Polymeric Nanomedicines for Cancer., 2018,, 371-398.		1
1581	Oligomer Formation Propensities of Dimeric Bundle Peptides Correlate with Cell Penetration Abilities. ACS Central Science, 2018, 4, 885-893.	5.3	16
1582	Perspectives of Nanotechnology in the Management of Gliomas. Progress in Neurological Surgery, 2018, 32, 196-210.	1.3	4
1583	Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. Advanced Therapeutics, 2018, 1, 1800059.	1.6	14
1584	Design of Gold Nanoparticles in Dendritic Cellâ€Based Vaccines. Particle and Particle Systems Characterization, 2018, 35, 1800109.	1.2	13
1585	Targeting Somatostatin Receptors By Functionalized Mesoporous Silica Nanoparticles - Are We Striking Home?. Nanotheranostics, 2018, 2, 320-346.	2.7	8

#	Article	IF	CITATIONS
1586	Bottom-up synthesis of MoS2 nanospheres for photothermal treatment of tumors. Photochemical and Photobiological Sciences, 2018, 17, 1337-1345.	1.6	20
1587	Spectroscopic Insights into the Nano-Bio Interface. , 2018, , .		0
1588	Technique and Application of Sex-Sorted Sperm in Domestic Farm Animals., 2018,, 65-106.		3
1589	Colloidal plasmonic gold nanoparticles and gold nanorings: shape-dependent generation of singlet oxygen and their performance in enhanced photodynamic cancer therapy. International Journal of Nanomedicine, 2018, Volume 13, 2065-2078.	3.3	29
1590	Testing thousands of nanoparticles inÂvivo using DNA barcodes. Current Opinion in Biomedical Engineering, 2018, 7, 1-8.	1.8	52
1591	Single/Dual Alkaline Earth Metalâ€Doped Hollow Nanoparticles as Nanocarrier for Accelerating Neurite Development by Activating pERK and pJNK. Particle and Particle Systems Characterization, 2018, 35, 1800132.	1.2	3
1592	Process-dependent photocatalytic performance of quantum sized ZnO nanoparticles. Materials Research Express, 2018, 5, 115027.	0.8	5
1593	The Dependence of the Magnetic-Resonance Contrast Imaging Properties of Ultrasmall Nanoparticles of Complex Iron Oxide on Their Chemical Composition. Biophysics (Russian Federation), 2018, 63, 325-329.	0.2	1
1594	Acute toxicity and biodistribution of different sized copper nano-particles in rats after oral administration. Materials Science and Engineering C, 2018, 93, 649-663.	3.8	41
1595	Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics, 2018, 8, 3038-3058.	4.6	159
1596	Potential applications of engineered nanoparticles in medicine and biology: an update. Journal of Biological Inorganic Chemistry, 2018, 23, 1185-1204.	1,1	118
1597	Porous Silicon Particles for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 305-340.	0.1	3
1598	HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1919-1929.	1.7	52
1599	Cationic Polyelectrolyte Mediated Synthesis of MnO ₂ â€Based Core–Shell Structures as Activatable MRI Theranostic Platform for Tumor Cell Ablation. Particle and Particle Systems Characterization, 2018, 35, 1800078.	1.2	13
1600	Antimicrobial Activity of Metal and Metalâ€Oxide Based Nanoparticles. Advanced Therapeutics, 2018, 1, 1700033.	1.6	380
1601	A nanoformulation for the preferential accumulation in adult neurogenic niches. Journal of Controlled Release, 2018, 284, 57-72.	4.8	30
1602	Strontium-Doped Bioactive Glass Nanoparticles in Osteogenic Commitment. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23311-23320.	4.0	55
1603	Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS ONE, 2018, 13, e0191020.	1.1	30

#	Article	IF	CITATIONS
1604	Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomaterials Science and Engineering, 2018, 4, 2237-2275.	2.6	217
1605	Gold nanoparticles for cancer diagnostics, spectroscopic imaging, drug delivery, and plasmonic photothermal therapy., 2018,, 41-91.		10
1606	Biosynthesized composites of Au-Ag nanoparticles using Trapa peel extract induced ROS-mediated p53 independent apoptosis in cancer cells. Drug and Chemical Toxicology, 2019, 42, 43-53.	1.2	26
1607	Preparation and Characterization of Novel Food Packaging Materials Based on Biodegradable PCL/Ag-Kaolinite Nanocomposites with Controlled Release Properties. Polymer-Plastics Technology and Materials, 2019, 58, 328-340.	0.6	18
1608	Probing the biological obstacles of nanomedicine with gold nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1542.	3.3	51
1609	Development of theranostic active-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT). Colloids and Surfaces B: Biointerfaces, 2019, 183, 110387.	2.5	38
1610	Antifolate SERS-active nanovectors: quantitative drug nanostructuring and selective cell targeting for effective theranostics. Nanoscale, 2019, 11, 15224-15233.	2.8	12
1611	Fabrication of innocuous gold nanoparticles using plant cells in culture. Scientific Reports, 2019, 9, 12040.	1.6	11
1612	Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. Advances in Colloid and Interface Science, 2019, 271, 101991.	7.0	102
1613	MoS ₂ -Modified Curcumin Nanostructures: The Novel Theranostic Hybrid Having Potent Antibacterial and Antibiofilm Activities against Multidrug-Resistant Hypervirulent <i>Klebsiella pneumoniae</i> . Chemical Research in Toxicology, 2019, 32, 1599-1618.	1.7	16
1614	Dual-color fluorescent nanoparticles showing perfect color-specific photoswitching for bioimaging and super-resolution microscopy. Nature Communications, 2019, 10, 3089.	5.8	85
1615	Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Advanced Drug Delivery Reviews, 2019, 144, 112-132.	6.6	140
1616	Enhancing chemoradiation of colorectal cancer through targeted delivery of raltitrexed by hyaluronic acid coated nanoparticles. Nanoscale, 2019, 11, 13947-13960.	2.8	16
1617	Introduction to Nanotechnology (NT) and Nanomaterials (NMs). Advanced Structured Materials, 2019, , 1-47.	0.3	16
1618	Biogenic synthesis of gold nanoparticles from Halymenia dilatata for pharmaceutical applications: Antioxidant, anti-cancer and antibacterial activities. Process Biochemistry, 2019, 85, 219-229.	1.8	43
1619	Unexpected Size Effect: The Interplay between Differentâ€Sized Nanoparticles in Their Cellular Uptake. Small, 2019, 15, e1901687.	5.2	49
1620	Biostimulation of anaerobic digestion using nanomaterials for increasing biogas production. Reviews in Environmental Science and Biotechnology, 2019, 18, 525-541.	3.9	40
1621	Nuclear Uptake of Gold Nanoparticles Deduced Using Dualâ€Angle Xâ€Ray Fluorescence Mapping. Particle and Particle Systems Characterization, 2019, 36, 1900140.	1.2	7

#	Article	IF	Citations
1622	The Effect of Gold Nanoparticle Size in the Cellular Uptake. Solid State Phenomena, 0, 290, 75-80.	0.3	4
1623	Annular Mesoporous Carbonaceous Nanospheres from Biomass-Derived Building Units with Enhanced Biological Interactions. Chemistry of Materials, 2019, 31, 7186-7191.	3.2	28
1624	Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules, 2019, 20, 4053-4064.	2.6	21
1625	Transient Photoinactivation of Cell Membrane Protein Activity without Genetic Modification by Molecular Hyperthermia. ACS Nano, 2019, 13, 12487-12499.	7.3	21
1626	CT/Bioluminescence Dualâ€Modal Imaging Tracking of Mesenchymal Stem Cells in Pulmonary Fibrosis. Small, 2019, 15, e1904314.	5. 2	27
1627	Sensitive Detection of Iodine in Rat Brain Dialysate by Dark Field Microscopy Based on Iodine Etching Au@Ag Nanocubes. Chinese Journal of Analytical Chemistry, 2019, 47, 1695-1707.	0.9	1
1628	Macroscopic and microscopic characteristics of particles in a novel gas–solid cyclone reactor. Chemical Engineering Research and Design, 2019, 152, 288-299.	2.7	3
1629			

#	Article	IF	CITATIONS
1640	Size effect of mesoporous organosilica nanoparticles on tumor penetration and accumulation. Biomaterials Science, 2019, 7, 4790-4799.	2.6	27
1641	Multicomponent Conjugates of Anticancer Drugs and Monoclonal Antibody with PAMAM Dendrimers to Increase Efficacy of HER-2 Positive Breast Cancer Therapy. Pharmaceutical Research, 2019, 36, 154.	1.7	54
1642	Biofabrication of supported metal nanoparticles: exploring the bioinspiration strategy to mitigate the environmental challenges. Green Chemistry, 2019, 21, 5469-5500.	4.6	46
1643	Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. Nanomaterials, 2019, 9, 1248.	1.9	30
1644	Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Advanced Drug Delivery Reviews, 2019, 151-152, 94-129.	6.6	63
1645	Enhanced stability of an intrinsically disordered protein against proteolytic cleavage through interactions with silver nanoparticles. RSC Advances, 2019, 9, 28746-28753.	1.7	6
1646	Toxicity assessment of magnesium oxide nano and microparticles on cancer and non-cancer cell lines. Nucleus (India), 2019, 62, 227-241.	0.9	9
1647	Cellular Uptake, Cytotoxicity and Trafficking of Supported Lipid-Bilayer-Coated Lanthanide Upconverting Nanoparticles in Alveolar Lung Cancer Cells. ACS Applied Bio Materials, 2019, 2, 4527-4536.	2.3	12
1648	<p>Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 6957-6970.	3.3	94
1649	Selective eradication of human non-small cell lung cancer cells using aptamer-decorated nanoparticles harboring a cytotoxic drug cargo. Cell Death and Disease, 2019, 10, 702.	2.7	33
1650	Probing the Aggregation and Immune Response of Human Islet Amyloid Polypeptides with Ligand-Stabilized Gold Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 10462-10471.	4.0	37
1651	Preparation of albumin nanoparticles: Optimum size for cellular uptake of entrapped drug (Curcumin). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 86-95.	2.3	34
1652	Direct and Noninvasive Penetration of Bare Hydrophobic Quantum Dots through Live Cell Membranes. ACS Biomaterials Science and Engineering, 2019, 5, 468-477.	2.6	1
1653	Coatings on mammalian cells: interfacing cells with their environment. Journal of Biological Engineering, 2019, 13, 5.	2.0	24
1654	Protein Corona Fingerprints of Liposomes: New Opportunities for Targeted Drug Delivery and Early Detection in Pancreatic Cancer. Pharmaceutics, 2019, 11, 31.	2.0	39
1655	Graphene Oxide as a Multifunctional Platform for Intracellular Delivery, Imaging, and Cancer Sensing. Scientific Reports, 2019, 9, 416.	1.6	115
1656	Rational Design of Cancer Nanomedicine for Simultaneous Stealth Surface and Enhanced Cellular Uptake. ACS Nano, 2019, 13, 954-977.	7.3	156
1657	Role of Endocytosis in Nanoparticle Penetration of 3D Pancreatic Cancer Spheroids. Molecular Pharmaceutics, 2019, 16, 1074-1082.	2.3	29

#	Article	IF	Citations
1658	Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 Aptamer as a targeting delivery system for cytotoxic agents. Pharmaceutical Development and Technology, 2019, 24, 1063-1075.	1.1	34
1659	<p>In vitro and in vivo mechanism of hepatocellular carcinoma inhibition by beta-TCP nanoparticles</p> . International Journal of Nanomedicine, 2019, Volume 14, 3491-3502.	3.3	24
1660	Developing Body-Components-Based Theranostic Nanoparticles for Targeting Ovarian Cancer. Pharmaceutics, 2019, 11, 216.	2.0	17
1661	Design of Small Nanoparticles Decorated with Amphiphilic Ligands: Self-Preservation Effect and Translocation into a Plasma Membrane. ACS Applied Materials & Interfaces, 2019, 11, 23822-23831.	4.0	29
1662	X-ray tomography shows the varying three-dimensional morphology of gold nanoaggregates in the cellular ultrastructure. Nanoscale Advances, 2019, 1, 2937-2945.	2.2	14
1663	Biofilm-Templated Heteroatom-Doped Carbon–Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction. ACS Applied Materials & Interfaces, 2019, 11, 24018-24026.	4.0	24
1664	Effect of Ni-Ferrite and Ni-Co-Ferrite nanostructures on biogas production from anaerobic digestion. Fuel, 2019, 254, 115673.	3.4	36
1665	Synthesis and Enhanced Cellular Uptake In Vitro of Anti-HER2 Multifunctional Gold Nanoparticles. Cancers, 2019, 11, 870.	1.7	33
1666	Cancer nanotechnology: Enhancing tumor cell response to chemotherapy for hepatocellular carcinoma therapy. Asian Journal of Pharmaceutical Sciences, 2019, 14, 581-594.	4.3	97
1667	High Co-loading Capacity and Stimuli-Responsive Release Based on Cascade Reaction of Self-Destructive Polymer for Improved Chemo-Photodynamic Therapy. ACS Nano, 2019, 13, 7010-7023.	7.3	116
1668	Ultrasonic-assisted synthesis and in vitro biological assessments of a novel herceptin-stabilized graphene using three dimensional cell spheroid. Ultrasonics Sonochemistry, 2019, 58, 104615.	3.8	41
1669	Self-Assembly of Luminescent Gold Nanoparticles with Sensitive pH-Stimulated Structure Transformation and Emission Response toward Lysosome Escape and Intracellular Imaging. Analytical Chemistry, 2019, 91, 8237-8243.	3.2	37
1670	The origin of heterogeneous nanoparticle uptake by cells. Nature Communications, 2019, 10, 2341.	5.8	104
1671	<p>Internalization and effects on cellular ultrastructure of nickel nanoparticles in rat kidneys</p> . International Journal of Nanomedicine, 2019, Volume 14, 3995-4005.	3.3	14
1672	Silica-Coated TiN Particles for Killing Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22550-22560.	4.0	33
1673	Methods for Structural Studies of CPPs. , 2019, , 289-323.		0
1674	Highly versatile cell-penetrating peptide loaded scaffold for efficient and localised gene delivery to multiple cell types: From development to application in tissue engineering. Biomaterials, 2019, 216, 119277.	5.7	51
1675	A repertoire of biomedical applications of noble metal nanoparticles. Chemical Communications, 2019, 55, 6964-6996.	2.2	263

#	Article	IF	CITATIONS
1676	Optimisation of Folate-Mediated Liposomal Encapsulated Arsenic Trioxide for Treating HPV-Positive Cervical Cancer Cells In Vitro. International Journal of Molecular Sciences, 2019, 20, 2156.	1.8	17
1677	pHâ€responsive squeezing polysaccharidic nanogels for efficient docetaxel delivery. Polymers for Advanced Technologies, 2019, 30, 2067-2074.	1.6	17
1678	Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides. Theranostics, 2019, 9, 3191-3212.	4.6	50
1679	Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells. ACS Applied Materials & Diterfaces, 2019, 11, 17157-17166.	4.0	20
1680	Anisotropic polymer nanoparticles with solvent and temperature dependent shape and size from triblock copolymers. Polymer Chemistry, 2019, 10, 3436-3443.	1.9	7
1681	Applications of Microfluidic Systems in Biology and Medicine. Bioanalysis, 2019, , .	0.1	7
1682	Targeted drug delivery and gene therapy through natural biodegradable nanostructures in pharmaceuticals., 2019,, 437-472.		6
1683	Photothermal/Photodynamic Therapy with Immuneâ€Adjuvant Liposomal Complexes for Effective Gastric Cancer Therapy. Particle and Particle Systems Characterization, 2019, 36, 1900015.	1.2	20
1684	Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 68-96.	6.6	561
1685	Exploring the cell–protein–mineral interfaces: Interplay of silica (nano)rods@collagen biocomposites with human dermal fibroblasts. Materials Today Bio, 2019, 1, 100004.	2.6	7
1686	Nanobiodevices for Cancer Diagnostics and Stem Cell Therapeutics. Bioanalysis, 2019, , 275-300.	0.1	0
1687	Soft mesoporous organosilica nanorods with gold plasmonic core for significantly enhanced cellular uptake. Journal of Colloid and Interface Science, 2019, 550, 81-89.	5.0	7
1688	Influenza A virus mimetic nanoparticles trigger selective cell uptake. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9831-9836.	3.3	28
1689	<p>Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy</p> . Biologics: Targets and Therapy, 2019, Volume 13, 33-51.	3.0	115
1690	Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles. Biomedical Microdevices, 2019, 21, 46.	1.4	64
1691	Remote Magnetic Control of Autophagy in Mouse B-Lymphoma Cells with Iron Oxide Nanoparticles. Nanomaterials, 2019, 9, 551.	1.9	9
1692	Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromolecular Bioscience, 2019, 19, e1900063.	2.1	57
1693	A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. International Journal of Pharmaceutics, 2019, 565, 151-161.	2.6	20

#	Article	IF	CITATIONS
1694	Multifunctional Superparamagnetic Stiff Nanoreservoirs for Blood Brain Barrier Applications. Nanomaterials, 2019, 9, 449.	1.9	16
1695	Insight into the effect of A-site cations on structural and optical properties of RE2Hf2O7:U nanoparticles. Journal of Luminescence, 2019, 210, 425-434.	1.5	16
1696	<i>In vitro</i> haemocompatibility and cytocompatibility evaluation of silver thin film-deposited heart valve prosthesis material. Materials Technology, 2019, 34, 471-479.	1.5	3
1697	State of aggregation and toxicity of aqueous fullerene solutions. Applied Surface Science, 2019, 483, 69-75.	3.1	29
1698	Two-Dimensional and Three-Dimensional Single Particle Tracking of Upconverting Nanoparticles in Living Cells. International Journal of Molecular Sciences, 2019, 20, 1424.	1.8	23
1699	Gold Nanoparticles for Photothermal Cancer Therapy. Frontiers in Chemistry, 2019, 7, 167.	1.8	547
1700	Size-controlled synthesis of polymerized DNA nanoparticles for targeted anticancer drug delivery. Chemical Communications, 2019, 55, 4905-4908.	2.2	21
1701	Functionalized magnetic nanoparticles attenuate cancer cells proliferation: Transmission electron microscopy analysis. Microscopy Research and Technique, 2019, 82, 983-992.	1.2	11
1702	Macrophages-Mediated Delivery of Small Gold Nanorods for Tumor Hypoxia Photoacoustic Imaging and Enhanced Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15251-15261.	4.0	71
1703	AS101-Loaded PLGA–PEG Nanoparticles for Autoimmune Regulation and Chemosensitization. ACS Applied Bio Materials, 2019, 2, 2246-2251.	2.3	3
1704	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
1705	Switchable up-conversion luminescence bioimaging and targeted photothermal ablation in one core–shell-structured nanohybrid by alternating near-infrared light. Dalton Transactions, 2019, 48, 5817-5830.	1.6	8
1706	Particokinetics and <i>in vitro</i> dose of high aspect ratio nanoparticles. Nanoscale, 2019, 11, 5209-5214.	2.8	12
1707	A Paperâ€Based Platform for Longâ€∓erm Deposition of Nanoparticles with Exceptional Redispersibility, Stability, and Functionality. Particle and Particle Systems Characterization, 2019, 36, 1800483.	1.2	14
1708	Regulation of the cellular uptake of nanoparticles by the orientation of helical polypeptides. Nano Research, 2019, 12, 889-896.	5.8	14
1709	Application of Nano-Photocatalysts for Degradation and Disinfection of Wastewater. Nanotechnology in the Life Sciences, 2019, , 249-261.	0.4	1
1710	Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, 2019, , .	0.5	3
1711	Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Applied Microbiology and Biotechnology, 2019, 103, 2913-2935.	1.7	88

#	Article	IF	CITATIONS
1712	The Cooperative Effect Analysis when Nanoparticles Enter a Biological Cell. Nano, 2019, 14, 1950039.	0.5	2
1713	Gold nanoparticles in combinatorial cancer therapy strategies. Coordination Chemistry Reviews, 2019, 387, 299-324.	9.5	147
1714	Revisiting the mechanistic pathways for bacterial mediated synthesis of noble metal nanoparticles. Journal of Microbiological Methods, 2019, 159, 18-25.	0.7	111
1715	Impact of gold nanoparticles shape on their cytotoxicity against human osteoblast and osteosarcoma in in vitro model. Evaluation of the safety of use and anti-cancer potential. Journal of Materials Science: Materials in Medicine, 2019, 30, 22.	1.7	127
1716	Exploring clinical communication in a teaching hospital in Ghana. International Journal of Health Governance, 2019, 24, 155-168.	0.6	3
1717	Toxicological considerations of clinically applicable nanoparticles. , 2019, , 425-483.		2
1718	Novel Drug Delivery Technologies. , 2019, , .		6
1719	A Humanized Cancer-Bone Metastasis Mouse Model Based on Silica Nanoparticles-Incorporated Human Demineralized Bone Matrix. Journal of Biomedical Nanotechnology, 2019, 15, 2363-2375.	0.5	3
1720	Potential role of gold nanoparticles in cancer diagnosis and targeted drug delivery., 2019,, 267-286.		0
1721	Size-Dependent in Vitro Biocompatibility and Uptake Process of Polymeric Carbon Nitride. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47739-47749.	4.0	14
1722	Biomimetic Mineralization-Based CRISPR/Cas9 Ribonucleoprotein Nanoparticles for Gene Editing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 47762-47770.	4.0	14
1723	Cancer Cell Membrane-Camouflaged Nanorods with Endoplasmic Reticulum Targeting for Improved Antitumor Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46614-46625.	4.0	64
1724	Size-dependent tissue-specific biological effects of core–shell structured Fe3O4@SiO2–NH2 nanoparticles. Journal of Nanobiotechnology, 2019, 17, 124.	4.2	16
1725	<p>Optimum Preparation Method for Self-Assembled PEGylation Nano-Adjuvant Based on Rehmannia glutinosa Polysaccharide and Its Immunological Effect on Macrophages</p> . International Journal of Nanomedicine, 2019, Volume 14, 9361-9375.	3.3	18
1726	siRNA Conjugated Nanoparticles—A Next Generation Strategy to Treat Lung Cancer. International Journal of Molecular Sciences, 2019, 20, 6088.	1.8	65
1727	Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF ₄ :Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale, 2019, 11, 20598-20613.	2.8	37
1728	Thermodynamic analysis of multivalent binding of functionalized nanoparticles to membrane surface reveals the importance of membrane entropy and nanoparticle entropy in adhesion of flexible nanoparticles. Soft Matter, 2019, 15, 9271-9286.	1.2	7
1729	The appliances and prospects of aurum nanomaterials in biodiagnostics, imaging, drug delivery and combination therapy. Asian Journal of Pharmaceutical Sciences, 2019, 14, 349-364.	4.3	8

#	Article	IF	Citations
1730	Differential neural cell adhesion and neurite outgrowth on carbon nanotube and graphene reinforced polymeric scaffolds. Materials Science and Engineering C, 2019, 97, 539-551.	3.8	50
1731	Impact of metal nanoparticles on biogas production from poultry litter. Bioresource Technology, 2019, 275, 200-206.	4.8	99
1732	Carrier-free nanoparticles of cathepsin B-cleavable peptide-conjugated doxorubicin prodrug for cancer targeting therapy. Journal of Controlled Release, 2019, 294, 376-389.	4.8	113
1733	In Vitro Methods for Assessing Nanoparticle Toxicity. Methods in Molecular Biology, 2019, 1894, 1-29.	0.4	75
1734	Membrane Wrapping Efficiency of Elastic Nanoparticles during Endocytosis: Size and Shape Matter. ACS Nano, 2019, 13, 215-228.	7.3	125
1735	Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomaterialia, 2019, 85, 203-217.	4.1	47
1736	Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells. Nanomaterials, 2019, 9, 14.	1.9	57
1737	Size-Dependent Transport and Cytotoxicity of Mitomycin-Gold Nanoparticle Conjugates in 2D and 3D Mammalian Cell Models. Bioconjugate Chemistry, 2019, 30, 242-252.	1.8	17
1738	Magnetometry based method for investigation of nanoparticle clearance from circulation in a liver perfusion model. Nanotechnology, 2019, 30, 105101.	1.3	14
1739	Disruption of artificial lipid bilayers in the presence of transition metal oxide and rare earth metal oxide nanoparticles. Journal Physics D: Applied Physics, 2019, 52, 044002.	1.3	6
1740	Multiscale Modeling and Simulation of Nano arriers Delivery through Biological Barriersâ€"A Review. Advanced Theory and Simulations, 2019, 2, 1800105.	1.3	34
1741	Delivery of Cancer Nanotherapeutics. Bioanalysis, 2019, , 163-205.	0.1	2
1742	Nanocarriers for drug delivery applications. Environmental Chemistry Letters, 2019, 17, 849-865.	8.3	204
1743	Synthesis and biological evaluation of 2.4 nm thiolate-protected gold nanoparticles conjugated to Cetuximab for targeting glioblastoma cancer cells via the EGFR. Nanotechnology, 2019, 30, 184005.	1.3	24
1744	Scatter Enhanced Phase Contrast Microscopy for Discriminating Mechanisms of Active Nanoparticle Transport in Living Cells. Nano Letters, 2019, 19, 793-804.	4.5	17
1745	Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Materials Science and Engineering C, 2019, 98, 685-695.	3.8	95
1746	High-Performance Chromatographic Characterization of Surface Chemical Heterogeneities of Fluorescent Organic–Inorganic Hybrid Core–Shell Silica Nanoparticles. ACS Nano, 2019, 13, 1795-1804.	7.3	17
1747	Photonic Nanoparticles for Cellular and Tissular Labeling. , 2019, , 147-170.		0

#	Article	IF	CITATIONS
1748	Nanoparticles as Delivery Systems in Cancer Therapy. , 2019, , 257-295.		16
1749	Ligand Density and Linker Length are Critical Factors for Multivalent Nanoparticle–Receptor Interactions. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1311-1320.	4.0	75
1750	Polyethylene glycol-decorated doxorubicin/carboxymethyl chitosan/gold nanocomplex for reducing drug efflux in cancer cells and extending circulation in blood stream. International Journal of Biological Macromolecules, 2019, 125, 61-71.	3.6	31
1751	Suppression of Gold Nanoparticle Aggregation on Lipid Membranes Using Nanosized Liposomes To Increase Steric Hindrance. Langmuir, 2019, 35, 229-236.	1.6	8
1752	Anti-Helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: Multifaceted application. Arabian Journal of Chemistry, 2019, 12, 33-40.	2.3	72
1753	Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. Journal of King Saud University - Science, 2019, 31, 398-411.	1.6	85
1754	A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chinese Chemical Letters, 2020, 31, 189-192.	4.8	42
1755	Development of novel cationic microemulsion as parenteral adjuvant for influenza vaccine. Asian Journal of Pharmaceutical Sciences, 2020, 15, 591-604.	4.3	5
1756	Supramolecular protection-mediated one-pot synthesis of cationic gold nanoparticles. Journal of Industrial and Engineering Chemistry, 2020, 81, 303-308.	2.9	3
1757	Sensing and localized surface plasmon resonance properties of silver polygonal nanorings: Beyond the material's limit. Optik, 2020, 202, 163549.	1.4	0
1758	Reviews of Environmental Contamination and Toxicology Volume 248. Reviews of Environmental Contamination and Toxicology, 2020, , .	0.7	1
1759	Single-molecule nanoscale drug carriers with quantitative supramolecular loading. Molecular Systems Design and Engineering, 2020, 5, 197-204.	1.7	8
1760	Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. International Journal of Biological Macromolecules, 2020, 145, 985-997.	3.6	123
1761	Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules, 2020, 25, 204.	1.7	78
1762	Enhanced Transport of Shape and Rigidity-Tuned α-Lactalbumin Nanotubes across Intestinal Mucus and Cellular Barriers. Nano Letters, 2020, 20, 1352-1361.	4.5	124
1763	Superparamagnetic nanoparticles for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 354-367.	2.9	135
1764	Engineering the Orientation, Density, and Flexibility of Single-Domain Antibodies on Nanoparticles To Improve Cell Targeting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5593-5600.	4.0	30
1765	Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomaterials Science, 2020, 8, 1045-1057.	2.6	20

#	Article	IF	CITATIONS
1766	How a lipid bilayer membrane responds to an oscillating nanoparticle: Promoted membrane undulation and directional wave propagation. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110651.	2.5	2
1767	The interaction of nanostructured antimicrobials with biological systems: Cellular uptake, trafficking and potential toxicity. Food Science and Human Wellness, 2020, 9, 8-20.	2.2	73
1768	Continuous 2000 K droplet-to-particle synthesis. Materials Today, 2020, 35, 106-114.	8.3	43
1769	Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae?. Nanotoxicology, 2020, 14, 310-325.	1.6	18
1770	Understanding cellular interactions with nanomaterials: towards a rational design of medical nanodevices. Nanotechnology, 2020, 31, 132002.	1.3	90
1771	Protein corona impact on nanoparticle-cell interactions: toward an energy-based model of endocytosis. Journal of Physics Condensed Matter, 2020, 32, 115101.	0.7	11
1772	Biodegradable Bi ₂ O ₂ Se Quantum Dots for Photoacoustic Imagingâ€Guided Cancer Photothermal Therapy. Small, 2020, 16, e1905208.	5.2	56
1773	Organs Distribution and Injury After Repeated Intratracheal Instillations of Nano-In2O3 Particles into the Lungs of Wistar Rats. Journal of Nanoscience and Nanotechnology, 2020, 20, 1383-1390.	0.9	3
1774	Internalized Carbon Dots for Enhanced Extracellular Electron Transfer in the Dark and Light. Small, 2020, 16, e2004194.	5.2	23
1775	Virtual Molecular Projections and Convolutional Neural Networks for the End-to-End Modeling of Nanoparticle Activities and Properties. Analytical Chemistry, 2020, 92, 13971-13979.	3.2	15
1776	Surface-enhanced Raman scattering holography. Nature Nanotechnology, 2020, 15, 1005-1011.	15.6	59
1777	Ultrasound and Magnetic Responsive Drug Delivery Systems for Cardiovascular Application. Journal of Cardiovascular Pharmacology, 2020, 76, 414-426.	0.8	11
1778	Metal Nanoparticles: a Promising Treatment for Viral and Arboviral Infections. Biological Trace Element Research, 2021, 199, 3159-3176.	1.9	68
1779	Microfluidic production of protein loaded chimeric stealth liposomes. International Journal of Pharmaceutics, 2020, 590, 119955.	2.6	14
1780	DNA hybridization as a general method to enhance the cellular uptake of nanostructures. Nanoscale, 2020, 12, 21299-21305.	2.8	5
1781	Functionalisation of gold nanoparticles with ruthenium(ii) polypyridyl complexes for their application in cellular imaging. Dalton Transactions, 2020, 49, 14158-14168.	1.6	5
1782	Nanotoxicity: a challenge for future medicine. Turkish Journal of Medical Sciences, 2020, 50, 1180-1196.	0.4	57
1783	Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules, 2020, 25, 3159.	1.7	236

#	Article	IF	Citations
1784	Photo-reactive oligodeoxynucleotide-embedded nanovesicles (PROsomes) with switchable stability for efficient cellular uptake and gene knockdown. Chemical Communications, 2020, 56, 9477-9480.	2.2	2
1785	A concise review of metallic nanoparticles encapsulation methods and their potential use in anticancer therapy and medicine. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 153-165.	2.0	15
1786	Nanotoxicology and Its Remediation. , 2020, , 163-178.		3
1787	Complex Formation of Silica Nanoparticles with Collagen: Effects of the Conformation of Collagen. Langmuir, 2020, 36, 14425-14431.	1.6	6
1788	Endoplasmic Reticulum Stress Provocation by Different Nanoparticles: An Innovative Approach to Manage the Cancer and Other Common Diseases. Molecules, 2020, 25, 5336.	1.7	25
1789	Sonochemical Synthesis of Differentlyâ€Sized Nanoparticles of a Silver(I) Compound: An Optical, Anticancer, and Thermal Activity Evaluation Study. ChemistrySelect, 2020, 5, 13081-13090.	0.7	2
1790	Gold Nanoparticles Enhance EGFR Inhibition and Irradiation Effects in Head and Neck Squamous Carcinoma Cells. BioMed Research International, 2020, 2020, 1-10.	0.9	11
1791	Cationic Nanoliposomes Efficiently Delivering Phenylethyl Resorcinol Produce Enhanced Skin Lightening Effect. Nano LIFE, 2020, 10, 2040009.	0.6	1
1792	BC@DNA-Mn ₃ (PO ₄) ₂ Nanozyme for Real-Time Detection of Superoxide from Living Cells. Analytical Chemistry, 2020, 92, 15927-15935.	3.2	18
1793	Silver nanoparticles induce cellular cytotoxicity, genotoxicity, DNA damage, and cell death. , 2020, , 589-622.		2
1794	Understanding Nanomedicine Size and Biological Response Dependency: What Is the Relevance of Previous Relationships Established on Only Batch-Mode DLS-Measured Sizes?. Pharmaceutical Research, 2020, 37, 161.	1.7	4
1795	Study on different particle sizes of DOX-loaded mixed micelles for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111303.	2.5	22
1796	Electrophoretic extraction of highly monodispersed graphene quantum dots from widely polydispersed bulk and its cytotoxicity effect against cancer cells. Microchemical Journal, 2020, 159, 105391.	2.3	5
1798	Antimony-Doped Tin Oxide Nanocrystals for Enhanced Photothermal Theragnosis Therapy of Cancers. Frontiers in Bioengineering and Biotechnology, 2020, 8, 673.	2.0	6
1799	Electrosprayed Alginate Nanoparticles as CRISPR Plasmid DNA Delivery Carrier: Preparation, Optimization, and Characterization. Pharmaceuticals, 2020, 13, 158.	1.7	28
1800	Peptide Spiders: Peptide–Polymer Conjugates to Traffic Nucleic Acids. Molecular Pharmaceutics, 2020, 17, 3633-3642.	2.3	5
1801	Application of advances in endocytosis and membrane trafficking to drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 118-141.	6.6	44
1802	Role of physicochemical parameters associated with the hydrophobic vs. amphiphilic biodegradable polymer nanoparticles formation. Journal of Molecular Liquids, 2020, 318, 113977.	2.3	7

#	Article	IF	CITATIONS
1803	Monodisperse Fe 2 O 3 Supraparticles: Ecoâ€Friendly Fabrication, Gallic Acid Modification, Sizeâ€Dependent Photothermal Conversion Efficiency, and Cellular Uptake. Advanced Materials Interfaces, 2020, 7, 2000804.	1.9	7
1804	Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. Journal of Controlled Release, 2020, 327, 316-349.	4.8	236
1805	Tailoring Azlactone-Based Block Copolymers for Stimuli-Responsive Disassembly of Nanocarriers. Langmuir, 2020, 36, 10200-10209.	1.6	5
1806	Sizeâ€Transformable Nanostructures: From Design to Biomedical Applications. Advanced Materials, 2020, 32, e2003752.	11.1	52
1807	Anionic nanoparticle-induced perturbation to phospholipid membranes affects ion channel function. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27854-27861.	3.3	24
1808	Investigations of EGFR configurations on tumor cell surface by high-resolution electron microscopy. Biochemical and Biophysical Research Communications, 2020, 532, 179-184.	1.0	2
1809	Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Delivery, 2020, 27, 1474-1490.	2.5	71
1810	A Monte Carlo study on the effect of nanoparticle shapes on dose enhancement and distribution using 197Au and 195Pt. Journal of Radiation Research and Applied Sciences, 2020, 13, 698-703.	0.7	1
1811	Emerging Structural and Interfacial Features of Particulate Polymers at the Nanoscale. Langmuir, 2020, 36, 13125-13143.	1.6	2
1812	Emergence of nanomaterials as potential immobilization supports for whole cell biocatalysts and cell toxicity effects. Biotechnology and Applied Biochemistry, 2020, , .	1.4	6
1813	Propolis nanoparticle enhances the potency of antimicrobial photodynamic therapy against Streptococcus mutans in a synergistic manner. Scientific Reports, 2020, 10, 15560.	1.6	19
1814	A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angewandte Chemie, 2020, 132, 23398-23405.	1.6	10
1815	A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angewandte Chemie - International Edition, 2020, 59, 23198-23205.	7.2	94
1816	Ever-Evolving Identity of Magnetic Nanoparticles within Human Cells: The Interplay of Endosomal Confinement, Degradation, Storage, and Neocrystallization. Accounts of Chemical Research, 2020, 53, 2212-2224.	7.6	39
1817	<i>In situ</i> plasma-assisted synthesis of polydopamine-functionalized gold nanoparticles for biomedical applications. Green Chemistry, 2020, 22, 6588-6599.	4.6	41
1818	Self-assembled non-covalent protein-drug nanoparticles: an emerging delivery platform for anti-cancer drugs. Expert Opinion on Drug Delivery, 2020, 17, 1437-1458.	2.4	28
1819	Selective targeting of cancer signaling pathways with nanomedicines: challenges and progress. Future Oncology, 2020, 16, 2959-2979.	1,1	22
1820	Graphene Oxide as a Nanocarrier for Biochemical Molecules: Current Understanding and Trends. Processes, 2020, 8, 1636.	1.3	9

#	Article	IF	CITATIONS
1821	Photodynamic cancer therapy: role of Ag- and Au-based hybrid nano-photosensitizers. Journal of Biomolecular Structure and Dynamics, 2022, 40, 4766-4773.	2.0	17
1822	PLGA-PEG Nanoparticles Show Minimal Risks of Interference with Platelet Function of Human Platelet-Rich Plasma. International Journal of Molecular Sciences, 2020, 21, 9716.	1.8	6
1823	Mechanism of Coupling Nanoparticle Stiffness with Shape for Endocytosis: From Rodlike Penetration to Wormlike Wriggling. Journal of Physical Chemistry B, 2020, 124, 11145-11156.	1.2	15
1824	Poly(<i>N</i> -vinylpyrrolidone) Antimalaria Conjugates of Membrane-Disruptive Peptides. Biomacromolecules, 2020, 21, 5053-5066.	2.6	5
1825	Chemical Investigation and Screening of Anti-Proliferative Activity on Human Cell Lines of Pure and Nano-Formulated Lavandin Essential Oil. Pharmaceuticals, 2020, 13, 352.	1.7	15
1826	Systemic Delivery Technologies in Anti-Aging Medicine: Methods and Applications. Healthy Ageing and Longevity, 2020, , .	0.2	2
1827	Photothermal Transduction Efficiencies of Plasmonic Group 4 Metal Nitride Nanocrystals. Langmuir, 2020, 36, 5058-5064.	1.6	27
1828	Understanding the synergistic effect of physicochemical properties of nanoparticles and their cellular entry pathways. Communications Biology, 2020, 3, 205.	2.0	57
1829	Biofunctional Janus particles promote phagocytosis of tumor cells by macrophages. Chemical Science, 2020, 11, 5323-5327.	3.7	12
1830	Flow Rate Affects Nanoparticle Uptake into Endothelial Cells. Advanced Materials, 2020, 32, e1906274.	11.1	69
1831	Cellular fate of deformable needle-shaped PLGA-PEG fibers. Acta Biomaterialia, 2020, 112, 182-189.	4.1	7
1832	Lipid-Raft-Mediated Direct Cytosolic Delivery of Polymer-Coated Soft Nanoparticles. Journal of Physical Chemistry B, 2020, 124, 5323-5333.	1.2	21
1833	Hydroxyapatite as a biomaterial – a gift that keeps on giving. Drug Development and Industrial Pharmacy, 2020, 46, 1035-1062.	0.9	64
1834	Size-dependent 2D nanoclay against ultraviolet B-induced damage in vitro and in vivo. Applied Clay Science, 2020, 190, 105212.	2.6	0
1835	Molecular-level effects on cell membrane models to explain the phototoxicity of gold shell-isolated nanoparticles to cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111189.	2.5	13
1836	Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano, 2020, 14, 7760-7782.	7.3	289
1836	Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano, 2020, 14, 7760-7782. pH-Sensitive Folic Acid Conjugated Alginate Nanoparticle for Induction of Cancer-Specific Fluorescence Imaging. Pharmaceutics, 2020, 12, 537.	7.3	289

#	Article	IF	CITATIONS
1840	Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chemical Engineering Journal, 2020, 400, 126009.	6.6	144
1841	DNA-conjugated layered double hydroxides penetrating into a plasma membrane: Layer size, thickness and DNA grafting density matter. NanoImpact, 2020, 18, 100222.	2.4	7
1842	Smart Gold Nanostructures for Light Mediated Cancer Theranostics: Combining Optical Diagnostics with Photothermal Therapy. Advanced Science, 2020, 7, 1903441.	5. 6	117
1843	Unique cellular interaction of macrophage-targeted liposomes potentiates anti-inflammatory activity. Chemical Communications, 2020, 56, 8253-8256.	2.2	7
1844	Theranostic applications of smart nanomedicines for tumor-targeted chemotherapy: a review. Environmental Chemistry Letters, 2020, 18, 1509-1527.	8.3	14
1845	Biocompatibility and Functionalization of Nanomaterials. , 2020, , 85-103.		3
1846	Cell-nanoparticle interactions. , 2020, , 125-142.		0
1847	Mucosal Delivery of Drugs and Biologics in Nanoparticles. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , .	0.2	5
1848	Gold nanoparticles in cancer diagnosis and therapy. , 2020, , 43-58.		6
1849	Arginine-Terminated Nanoparticles of <10 nm Size for Direct Membrane Penetration and Protein Delivery for Straight Access to Cytosol and Nucleus. Journal of Physical Chemistry Letters, 2020, 11, 2363-2368.	2.1	26
1850	EGFR-Targeted Nanobody Functionalized Polymeric Micelles Loaded with mTHPC for Selective Photodynamic Therapy. Molecular Pharmaceutics, 2020, 17, 1276-1292.	2.3	43
1851	2D nanostructures beyond graphene: preparation, biocompatibility and biodegradation behaviors. Journal of Materials Chemistry B, 2020, 8, 2974-2989.	2.9	50
1852	Construction of a novel "ball-and-rod―MSNs-pp-PEG system: a promising antitumor drug delivery system with a particle size switchable function. Chemical Communications, 2020, 56, 4785-4788.	2.2	8
1853	Extra-Small Gold Nanospheres Decorated With a Thiol Functionalized Biodegradable and Biocompatible Linear Polyamidoamine as Nanovectors of Anticancer Molecules. Frontiers in Bioengineering and Biotechnology, 2020, 8, 132.	2.0	19
1854	Comparative Study on the Fungicidal Activity of Metallic MgO Nanoparticles and Macroscale MgO Against Soilborne Fungal Phytopathogens. Frontiers in Microbiology, 2020, 11, 365.	1.5	104
1855	Engineered iron oxide nanoparticles to improve regenerative effects of mesenchymal stem cells. Biomedical Engineering Letters, 2020, 10, 259-273.	2.1	13
1856	Graphene-extracted membrane lipids facilitate the activation of integrin $\hat{l}\pm\nu\hat{l}^28$. Nanoscale, 2020, 12, 7939-7949.	2.8	22
1857	Characterizing protein G B1 orientation and its effect on immunoglobulin G antibody binding using XPS, ToF-SIMS, and quartz crystal microbalance with dissipation monitoring. Biointerphases, 2020, 15, 021002.	0.6	15

#	Article	IF	CITATIONS
1858	<p>Development of Dual Functional Nucleic Acid Delivery Nanosystem for DNA Induced Silencing of Bcl-2 Oncogene</p> . International Journal of Nanomedicine, 2020, Volume 15, 1693-1708.	3.3	19
1859	<p>Size-Dependent Effects of Suspended Graphene Oxide Nanoparticles on the Cellular Fate of Mouse Neural Stem Cells</p> . International Journal of Nanomedicine, 2020, Volume 15, 1421-1435.	3.3	22
1860	Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Materials Today, 2020, 37, 112-125.	8.3	196
1861	Dual Regulation of miR-34a and Notch Signaling in Triple-Negative Breast Cancer by Antibody/miRNA Nanocarriers. Molecular Therapy - Nucleic Acids, 2020, 21, 290-298.	2.3	30
1862	Photocatalytic inactivation of microorganisms in water. , 2020, , 229-248.		3
1863	Labelling primary immune cells using bright blue fluorescent nanoparticles. Biomaterials Science, 2020, 8, 1897-1909.	2.6	9
1864	Influences of Nanoparticles Characteristics on the Cellular Responses: The Example of Iron Oxide and Macrophages. Nanomaterials, 2020, 10, 266.	1.9	23
1865	Thermodynamic, Spatial and Methodological Considerations for the Manufacturing of Therapeutic Polymer Nanoparticles. Pharmaceutical Research, 2020, 37, 59.	1.7	9
1866	Recent Progress of Potentiating Immune Checkpoint Blockade with External Stimuli—an Industry Perspective. Advanced Science, 2020, 7, 1903394.	5.6	40
1867	The Effect of Ligand Mobility on the Cellular Interaction of Multivalent Nanoparticles. Macromolecular Bioscience, 2020, 20, e1900427.	2.1	18
1868	Stimuli-responsive nanoparticle-assisted immunotherapy: a new weapon against solid tumours. Journal of Materials Chemistry B, 2020, 8, 1823-1840.	2.9	32
1869	Optimization of the interaction of graphene quantum dots with lipase for biological applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2471-2483.	1.6	8
1870	Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. International Journal of Biological Macromolecules, 2020, 151, 136-158.	3.6	18
1871	Ionic Liquidâ€dependent Gold Nanoparticles of Purpurinâ€18 for Cellular Imaging and Photodynamic Therapy <i>In Vitro</i> . Bulletin of the Korean Chemical Society, 2020, 41, 230-233.	1.0	7
1872	Size-Tunable Strategies for a Tumor Targeted Drug Delivery System. ACS Central Science, 2020, 6, 100-116.	5.3	281
1873	Colorectal cancer stem cells: a review of targeted drug delivery by gold nanoparticles. RSC Advances, 2020, 10, 973-985.	1.7	34
1874	Inorganic Biomaterials for Regenerative Medicine. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5319-5344.	4.0	135
1875	Probing Nanoparticle/Membrane Interactions by Combining Amphiphilic Diblock Copolymer Assembly and Plasmonics. Journal of Physical Chemistry B, 2020, 124, 742-750.	1.2	7

#	Article	IF	CITATIONS
1876	Optimization of hydrophobic nanoparticles to better target lipid rafts with molecular dynamics simulations. Nanoscale, 2020, 12, 4101-4109.	2.8	23
1877	A 50â€nmâ€Sized Micellar Assembly of Thermoresponsive Polymerâ€Antisense Oligonucleotide Conjugates for Enhanced Gene Knockdown in Lung Cancer by Intratracheal Administration. Advanced Therapeutics, 2020, 3, 1900123.	1.6	5
1878	Enhanced Antimicrobial and Cytotoxicity on Cancer Cell using Bio-Originated Selenium Nanoparticles. Asian Journal of Chemistry, 2020, 32, 543-549.	0.1	6
1879	Installation of a Thermoswitchable Hydrophobic Domain into a Unimer Polyion Complex for Enhanced Cellular Uptake of siRNA. Bioconjugate Chemistry, 2020, 31, 1320-1326.	1.8	4
1880	Understanding the In Vivo Fate of Advanced Materials by Imaging. Advanced Functional Materials, 2020, 30, 1910369.	7.8	5
1881	Biodegradable calcium phosphate nanoparticles for cancer therapy. Advances in Colloid and Interface Science, 2020, 279, 102157.	7.0	99
1882	Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release, 2020, 322, 64-80.	4.8	37
1883	A Multiparametric Evaluation of Quantum Dot Size and Surface-Grafted Peptide Density on Cellular Uptake and Cytotoxicity. Bioconjugate Chemistry, 2020, 31, 1077-1087.	1.8	15
1884	Biosignal-responsive polymer nanorods that specifically recognize hydrogen polysulfide (H ₂ S _n) from reactive sulfur species. Polymer Chemistry, 2020, 11, 2781-2785.	1.9	0
1885	Utilisation of the chemiluminescence method to measure the radiation dose enhancement caused by gold nanoparticles: A phantom-based study. Radiation Measurements, 2020, 134, 106317.	0.7	6
1886	Near Infrared-Emitting Nanoparticles for Biomedical Applications. , 2020, , .		20
1887	Nanoscale characterization of nanocarriers. , 2020, , 49-65.		2
1888	Metal nanoparticles toxicity: role of physicochemical aspects. , 2020, , 1-11.		18
1889	Nanoliposomes codelivering bioactive peptides produce enhanced anti-aging effect in human skin. Journal of Drug Delivery Science and Technology, 2020, 57, 101693.	1.4	17
1890	Schwann Cell Migration through Magnetic Actuation Mediated by Fluorescent–Magnetic Bifunctional Fe ₃ O ₄ ·Rhodamine 6G@Polydopamine Superparticles. ACS Chemical Neuroscience, 2020, 11, 1359-1370.	1.7	5
1891	Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell. Journal of Hazardous Materials, 2021, 401, 123349.	6.5	98
1892	Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. National Science Review, 2021, 8, nwaa155.	4.6	31
1893	A highly selective iron oxide-based imaging nanoparticle for long-term monitoring of drug-induced tumor cell apoptosis. Biomaterials Science, 2021, 9, 471-481.	2.6	5

#	Article	IF	CITATIONS
1894	Effect of silver nanoparticles (AgNPs) exposure on microRNA expression and global DNA methylation in endothelial cells EA.hy926. Environmental Toxicology and Pharmacology, 2021, 81, 103543.	2.0	10
1895	Size matters: Zebrafish (Danio rerio) as a model to study toxicity of nanoplastics from cells to the whole organism. Environmental Pollution, 2021, 268, 115769.	3.7	71
1896	Biologically active PET/polysaccharide-based nanofibers post-treated with selenium/Tragacanth Gum nanobiocomposites. Carbohydrate Polymers, 2021, 251, 117125.	5.1	8
1897	High-pressure homogenization and tailoring of size-tunable Ganoderma lucidum spore oil nanosystem for enhanced anticancer therapy. Chemical Engineering Journal, 2021, 406, 127125.	6.6	10
1898	Dye‣oaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Advanced Healthcare Materials, 2021, 10, e2001289.	3.9	54
1899	Nanotherapy for Brain Tumor Drug Delivery. Neuromethods, 2021, , .	0.2	2
1900	Cellular gene delivery via poly(hexamethylene biguanide)/pDNA self-assembled nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 62-71.	2.0	6
1901	Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 2021, 5, 21-45.	13.8	154
1902	The application of nano-medicine to overcome the challenges related to immune checkpoint blockades in cancer immunotherapy: Recent advances and opportunities. Critical Reviews in Oncology/Hematology, 2021, 157, 103160.	2.0	26
1903	The Integrin Interactome. Methods in Molecular Biology, 2021, , .	0.4	0
1904	Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomaterialia, 2021, 119, 312-322.	4.1	14
1905	Comparison study on the effect of gold nanoparticles shape in the forms of star, hallow, cage, rods, and Si-Au and Fe-Au core-shell on photothermal cancer treatment. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102144.	1.3	27
1906	An ultra-stable bio-inspired bacteriochlorin analogue for hypoxia-tolerant photodynamic therapy. Chemical Science, 2021, 12, 1295-1301.	3.7	32
1907	Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102156.	1.3	20
1908	Effect of an alkyl spacer on the morphology and internalization of <scp>MUC1</scp> aptamerâ€naphthalimide amphiphiles for targeting and imaging triple negative breast cancer cells. Bioengineering and Translational Medicine, 2021, 6, e10194.	3.9	6
1909	Trend in creatinine determining methods: Conventional methods to molecularâ€based methods. Analytical Science Advances, 2021, 2, 308-325.	1.2	24
1910	Mesoporous silica nanoparticles: synthesis methods and their therapeutic use-recent advances. Journal of Drug Targeting, 2021, 29, 131-154.	2.1	60
1911	Explore the effect of Fe ₃ O ₄ nanoparticles (NPs) on anaerobic digestion of sludge. Environmental Technology (United Kingdom), 2021, 42, 1542-1551.	1.2	17

#	Article	IF	CITATIONS
1912	Enzyme-responsive polymer composites and their applications. , 2021, , 169-182.		0
1913	Analytical methods for the characterization of bionanomaterials., 2021,, 117-131.		0
1914	Kinetics of nanoparticle uptake into and distribution in human cells. Nanoscale Advances, 2021, 3, 2196-2212.	2.2	19
1915	Nanotechnology for the Development of Nanovaccines in Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2021, 1295, 303-315.	0.8	1
1916	Nanoparticle-Mediated Adsorption of Pollutants: A Way Forward to Mitigation of Environmental Pollution. Microorganisms for Sustainability, 2021, , 317-348.	0.4	1
1917	Predictive nanotoxicology: from nanotoxicity to nanosafety of select and commonly used nanomaterials., 2021,, 459-477.		0
1918	Regulation of Dental Materials. , 2021, , 1-31.		0
1919	Multienzyme nanoassemblies: from rational design to biomedical applications. Biomaterials Science, 2021, 9, 7323-7342.	2.6	7
1920	Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomaterials Science, 2021, 9, 4568-4590.	2.6	28
1921	All-purpose nanostrategy based on dose deposition enhancement, cell cycle arrest, DNA damage, and ROS production as prostate cancer radiosensitizer for potential clinical translation. Nanoscale, 2021, 13, 14525-14537.	2.8	7
1922	Quantification by Luminescence Tracking of Red Emissive Gold Nanoparticles in Cells. Jacs Au, 2021, 1, 174-186.	3.6	13
1923	Intracellular Uptake Mechanism of Bioorthogonally Conjugated Nanoparticles on Metabolically Engineered Mesenchymal Stem Cells. Bioconjugate Chemistry, 2021, 32, 199-214.	1.8	8
1924	Luminescent Nanomaterials (I). Advances in Experimental Medicine and Biology, 2021, 1309, 67-96.	0.8	1
1925	Variability, Behaviour and Impact of Nanoparticles in the Environment. Nanotechnology in the Life Sciences, 2021, , 315-328.	0.4	1
1926	Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chemical Papers, 2021, 75, 2277-2293.	1.0	12
1927	Organic nanocarriers for targeted delivery of anticancer agents. , 2021, , 467-497.		1
1928	Mesoporous silica coated CeO2 nanozymes with combined lipid-lowering and antioxidant activity induce long-term improvement of the metabolic profile in obese Zucker rats. Nanoscale, 2021, 13, 8452-8466.	2.8	12
1929	Emerging applications for living crystallization-driven self-assembly. Chemical Science, 2021, 12, 4661-4682.	3.7	126

#	Article	IF	CITATIONS
1930	Multifunctional nanoparticlesâ€"cost versus benefit of adding targeting and imaging capabilities. , 2021, , 367-387.		O
1931	Nanomaterials for Targeted Delivery of Anticancer Drugs: An Overview. Current Nanomaterials, 2021, 06, .	0.2	0
1932	Biocompatibility and biomedical applications of various carbon-based materials., 2021,, 829-875.		3
1933	Role of Gold Nanoparticles in Drug Delivery and Cancer Therapy. Advances in Chemical and Materials Engineering Book Series, 2021, , 124-140.	0.2	1
1934	Microorganisms Photocatalytic Inactivation on Ag3PO4 Sub-Microcrystals Under WLEDs Light Source. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2233-2241.	1.9	6
1935	Sub-10 nm Substrate Roughness Promotes the Cellular Uptake of Nanoparticles by Upregulating Endocytosis-Related Genes. Nano Letters, 2021, 21, 1839-1847.	4.5	18
1936	Nexus between in silico and in vivo models to enhance clinical translation of nanomedicine. Nano Today, 2021, 36, 101057.	6.2	58
1937	Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. Advanced Science, 2021, 8, 2004025.	5.6	96
1938	Silver Nanoparticle-Based Nanocomposites for Combating Infectious Pathogens: Recent Advances and Future Prospects. Nanomaterials, $2021,11,581.$	1.9	54
1939	Antibody cooperative adsorption onto AuNPs and its exploitation to force natural killer cells to kill HIV-infected T cells. Nano Today, 2021, 36, 101056.	6.2	7
1940	Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas. ACS Applied Materials & Despite the Influence of Protein Coronas.	4.0	27
1941	Nanoâ€Oncologicals: A Tortoise Trail Reaching New Avenues. Advanced Functional Materials, 2021, 31, 2009860.	7.8	13
1942	Cellular Uptake, Organelle Enrichment, and <i>In Vitro</i> Antioxidation of Fullerene Derivatives, Mediated by Surface Charge. Langmuir, 2021, 37, 2740-2748.	1.6	9
1943	Multi-Quantum Dots-Embedded Silica-Encapsulated Nanoparticle-Based Lateral Flow Assay for Highly Sensitive Exosome Detection. Nanomaterials, 2021, 11, 768.	1.9	27
1944	Electromagnetically Stimuli-Responsive Nanoparticles-Based Systems for Biomedical Applications: Recent Advances and Future Perspectives. Nanomaterials, 2021, 11, 848.	1.9	29
1945	Uptake of polymeric nanoparticles in a human induced pluripotent stem cell-based blood–brain barrier model: Impact of size, material, and protein corona. Biointerphases, 2021, 16, 021004.	0.6	7
1946	Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Delivery and Translational Research, 2021, 11, 1634-1654.	3.0	33
1947	Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomaterials, 2021, 11, 746.	1.9	30

#	Article	IF	CITATIONS
1948	A comparison of hepatotoxicity induced by different lengths of tungsten trioxide nanorods and the protective effects of melatonin in BALB/c mice. Environmental Science and Pollution Research, 2021, 28, 40793-40807.	2.7	9
1949	Biocompatible DNA/5-Fluorouracil-Gemini Surfactant-Functionalized Gold Nanoparticles as Promising Vectors in Lung Cancer Therapy. Pharmaceutics, 2021, 13, 423.	2.0	10
1950	Nanotechnology for modern medicine: next step towards clinical translation. Journal of Internal Medicine, 2021, 290, 486-498.	2.7	88
1951	Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies. Nanomaterials, 2021, 11, 627.	1.9	45
1952	Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants, 2021, 10, 547.	2.2	5
1953	Embracing nanomaterials' interactions with the innate immune system. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1719.	3.3	10
1954	Perinatal exposure to silver nanoparticles reprograms immunometabolism and promotes pancreatic beta-cell death and kidney damage in mice. Nanotoxicology, 2021, 15, 636-660.	1.6	9
1955	In-situ incorporation of highly dispersed silver nanoparticles in nanoporous carbon nitride for the enhancement of antibacterial activities. Journal of Hazardous Materials, 2021, 408, 124919.	6.5	23
1956	Potential Osteoinductive Effects of Hydroxyapatite Nanoparticles on Mesenchymal Stem Cells by Endothelial Cell Interaction. Nanoscale Research Letters, 2021, 16, 67.	3.1	11
1957	Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective. Frontiers in Pharmacology, 2021, 12, 664123.	1.6	55
1958	Design of a novel electrospun PVA platform for gene therapy applications using the CHAT peptide. International Journal of Pharmaceutics, 2021, 598, 120366.	2.6	9
1959	Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opinion on Drug Delivery, 2021, 18, 1261-1290.	2.4	69
1960	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annual Review of Biomedical Engineering, 2021, 23, 493-516.	5 . 7	4
1961	Nanoplastics are neither microplastics nor engineered nanoparticles. Nature Nanotechnology, 2021, 16, 501-507.	15.6	377
1962	Modified gold and polymeric gold nanostructures: Toxicology and biomedical applications. Colloids and Interface Science Communications, 2021, 42, 100412.	2.0	20
1963	The Role of Biosynthesized Silver Nanoparticles in Antimicrobial Mechanisms. Current Pharmaceutical Biotechnology, 2021, 22, 762-772.	0.9	11
1964	Development of Catechin, Poly- <scp>l</scp> -lysine, and Double-Stranded RNA Nanoparticles. ACS Applied Bio Materials, 2021, 4, 4310-4318.	2.3	21
1965	Multifaceted Therapy of Nanocatalysts in Neurological Diseases. Journal of Biomedical Nanotechnology, 2021, 17, 711-743.	0.5	4

#	Article	IF	CITATIONS
1966	A Comparative Analysis of In Vitro Toxicity of Synthetic Zeolites on IMR-90 Human Lung Fibroblast Cells. Molecules, 2021, 26, 3194.	1.7	4
1967	A polymeric micellar drug delivery system developed through a design of Experiment approach improves pancreatic tumor accumulation of calcipotriol and paclitaxel. International Journal of Pharmaceutics, 2021, 601, 120523.	2.6	6
1968	Novel Strategies for Disrupting Cancer-Cell Functions with Mitochondria-Targeted Antitumor Drug–Loaded Nanoformulations. International Journal of Nanomedicine, 2021, Volume 16, 3907-3936.	3.3	31
1969	Structure and stability of biodegradable polymer nanoparticles in electrolyte solution. Materials Letters: X, 2021, 10, 100066.	0.3	5
1970	Synthesis and Characterization of Novel Copper Nanoparticles for the Control of Leaf Spot and Anthracnose Diseases of Olive. Nanomaterials, 2021, 11, 1667.	1.9	17
1971	Periodic mesoporous organosilica-coated magnetite nanoparticles combined with lipiodol for transcatheter arterial chemoembolization to inhibit the progression of liver cancer. Journal of Colloid and Interface Science, 2021, 591, 211-220.	5.0	15
1972	Distribution of Gold Nanoparticles in the Anterior Chamber of the Eye after Intracameral Injection for Glaucoma Therapy. Pharmaceutics, 2021, 13, 901.	2.0	7
1973	Supramolecular poly(vinyl alcohol)-folate structure as functional layer and colloidal stabilizer of poly(vinyl acetate) nanoparticles with potential use as nanocarrier for hydrophobic antitumor agents. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	1
1974	Stabilin-1 is required for the endothelial clearance of small anionic nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102395.	1.7	17
1975	Nanoemulsions for drug delivery. Particuology, 2022, 64, 85-97.	2.0	104
1976	The Multifunctionally Graded System for a Controlled Size Effect on Iron Oxide–Gold Based Core-Shell Nanoparticles. Nanomaterials, 2021, 11, 1695.	1.9	5
1977	Neurotrophic Factors in Parkinson's Disease: Clinical Trials, Open Challenges and Nanoparticle-Mediated Delivery to the Brain. Frontiers in Cellular Neuroscience, 2021, 15, 682597.	1.8	36
1978	Morphologically homogeneous, pH-responsive gold nanoparticles for non-invasive imaging of HeLa cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102394.	1.7	8
1979	Augmenting the Immune Response against a Stabilized HIV-1 Clade C Envelope Trimer by Silica Nanoparticle Delivery. Vaccines, 2021, 9, 642.	2.1	9
1980	Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT). Cancers, 2021, 13, 3185.	1.7	22
1981	In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies. Nanomaterials, 2021, 11, 1906.	1.9	1
1982	Nanoparticle Size Effects in Biomedical Applications. ACS Applied Nano Materials, 2021, 4, 6471-6496.	2.4	90
1983	Size, geometry and mobility of protein assemblage regulate the kinetics of membrane wrapping on nanoparticles. Journal of Molecular Liquids, 2021, 333, 115990.	2.3	7

#	Article	IF	CITATIONS
1984	Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress. European Journal of Pharmacology, 2021, 902, 174120.	1.7	18
1985	A pH-sensitive drug delivery system based on hyaluronic acid co-deliver doxorubicin and aminoferrocene for the combined application of chemotherapy and chemodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111750.	2.5	33
1986	<i>In vivo</i> CT imaging tracking of stem cells labeled with Au nanoparticles. View, 2022, 3, 20200119.	2.7	16
1987	Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers, 2021, 13, 2870.	2.0	13
1988	Water-Stable All-Inorganic Perovskite Nanocrystals with Nonlinear Optical Properties for Targeted Multiphoton Bioimaging. ACS Applied Nano Materials, 2021, 4, 9022-9033.	2.4	29
1989	CYTOTOXIC PROPERTIES OF NANOSTRUCTURES BASED ON ALUMINUM OXIDE AND HYDROXIDE PHASES IN RELATION TO TUMOR CELLS. Siberian Journal of Oncology, 2021, 20, 73-83.	0.1	0
1990	Emerging strategies in developing multifunctional nanomaterials for cancer nanotheranostics. Advanced Drug Delivery Reviews, 2021, 178, 113907.	6.6	46
1991	Nanotherapeutics and nanotheragnostics for cancers: properties, pharmacokinetics, biopharmaceutics, and biosafety. Current Pharmaceutical Design, 2021, 27, .	0.9	1
1992	Persistent luminescent nanoparticles: Challenges and opportunities for a shimmering future. Journal of Applied Physics, 2021, 130, .	1.1	20
1993	Unmodified single nanoparticles undergo a motion-pattern transition on the plasma membrane before cellular uptake. Nano Today, 2021, 39, 101158.	6.2	4
1994	Understanding the interactions between inorganic-based nanomaterials and biological membranes. Advanced Drug Delivery Reviews, 2021, 175, 113820.	6.6	23
1995	The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles. Beilstein Journal of Nanotechnology, 2021, 12, 924-938.	1.5	15
1996	Metallic Nanoscaffolds as Osteogenic Promoters: Advances, Challenges and Scope. Metals, 2021, 11, 1356.	1.0	19
1997	Dihydrolipoic acid-coated gold nanocluster bioactivity against senescence and inflammation through the mitochondria-mediated JNK/AP-1 pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 36, 102427.	1.7	4
1998	Influencing factors and strategies of enhancing nanoparticles into tumors inÂvivo. Acta Pharmaceutica Sinica B, 2021, 11, 2265-2285.	5.7	94
1999	Photothermal therapy based on magnetic nanoparticles in cancer. Journal of Applied Physics, 2021, 130,	1.1	9
2000	Magnetoâ€Endosomalytic Therapy for Cancer. Advanced Healthcare Materials, 2022, 11, e2101010.	3.9	6
2001	Kinetics of the complex formation of silica nanoparticles with collagen. Polymer Journal, 2021, 53, 1481-1484.	1.3	4

#	ARTICLE	IF	Citations
2002	Engineered nanomaterials for biomedical applications and their toxicity: a review. Environmental Chemistry Letters, 2022, 20, 445-468.	8.3	32
2003	Functional siRNA Delivery by Extracellular Vesicle–Liposome Hybrid Nanoparticles. Advanced Healthcare Materials, 2022, 11, e2101202.	3.9	77
2004	Dopamine Receptor-Mediated Binding and Cellular Uptake of Polydopamine-Coated Nanoparticles. ACS Nano, 2021, 15, 13871-13890.	7.3	35
2005	Scalable synthesis of multicomponent multifunctional inorganic core@mesoporous silica shell nanocomposites. Materials Science and Engineering C, 2021, 128, 112272.	3.8	9
2006	Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics, 2021, 13, 1565.	2.0	12
2007	Synthesis of sub-50Ânm bio-inspired silica particles using a C-terminal-modified ferritin template with a silica-forming peptide. Journal of Industrial and Engineering Chemistry, 2021, 101, 262-269.	2.9	7
2008	The mechanism of the interaction between the formed emulsification and yeast cells in biotransformation system. Journal of Chemical Technology and Biotechnology, 0, , .	1.6	1
2009	Nanotherapies for sepsis by regulating inflammatory signals and reactive oxygen and nitrogen species: New insight for treating COVID-19. Redox Biology, 2021, 45, 102046.	3.9	52
2010	Cancer-Nano-Interaction: From Cellular Uptake to Mechanobiological Responses. International Journal of Molecular Sciences, 2021, 22, 9587.	1.8	22
2011	Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. Polymer, 2021, 230, 124024.	1.8	21
2012	Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chemico-Biological Interactions, 2021, 347, 109601.	1.7	12
2013	Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. Nanomaterials, 2021, 11, 2516.	1.9	10
2014	Distinct Methodologies to Produce Capped Mesoporous Silica with Hydroxyapatite and the Influence in Intracellular Signaling as Cytotoxicity on Human Umbilical Vein Endothelial Cells. Bioengineering, 2021, 8, 125.	1.6	2
2015	T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy. Nature Nanotechnology, 2021, 16, 1271-1280.	15.6	75
2016	Redefining high-k dielectric materials vision at nanoscale for energy storage: A new electrochemically active protection barrier. Electrochimica Acta, 2021, 389, 138727.	2.6	3
2017	Zwitterionic Block Copolymer Prodrug Micelles for pH Responsive Drug Delivery and Hypoxia-Specific Chemotherapy. Molecular Pharmaceutics, 2022, 19, 1766-1777.	2.3	11
2018	Ligand-targeted Theranostic Liposomes combining methylene blue attached upconversion nanoparticles for NIR activated bioimaging and photodynamic therapy against HER-2 positive breast cancer. Journal of Luminescence, 2021, 237, 118143.	1.5	17
2019	Nanoparticle-mediated specific elimination of soft cancer stem cells by targeting low cell stiffness. Acta Biomaterialia, 2021, 135, 493-505.	4.1	13

#	Article	IF	CITATIONS
2020	Nanotechnology as a Promising Platform for Rheumatoid Arthritis Management: Diagnosis, Treatment, and Treatment Monitoring. International Journal of Pharmaceutics, 2021, 609, 121137.	2.6	5
2021	Microvilli Adhesion: An Alternative Route for Nanoparticle Cell Internalization. ACS Nano, 2021, 15, 15803-15814.	7.3	10
2022	Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111854.	2.5	5
2023	Design and Optimization of the Circulatory Cell-Driven Drug Delivery Platform. Stem Cells International, 2021, 2021, 1-21.	1.2	2
2024	Growth and site-specific organization of micron-scale biomolecular devices on living mammalian cells. Nature Communications, 2021, 12, 5729.	5.8	6
2025	Impact of macroporous silica nanoparticles at sub-50nm on bio-behaviors and biosafety in drug-resistant cancer models. Colloids and Surfaces B: Biointerfaces, 2021, 206, 111912.	2.5	5
2026	The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 272, 115363.	1.7	62
2027	Nanoparticles as fingermark sensors. TrAC - Trends in Analytical Chemistry, 2021, 143, 116378.	5.8	28
2028	Multicomponent nanoparticles as means to improve anaerobic digestion performance. Chemosphere, 2021, 283, 131277.	4.2	21
2029	Impact of electro-conductive nanoparticles additives on anaerobic digestion performance - A review. Bioresource Technology, 2021, 342, 126023.	4.8	22
2030	The sustainable, one-pot and high-yield synthesis of ultrafine carbonaceous nanospheres with high anionic separation efficiency. Applied Surface Science, 2022, 571, 151249.	3.1	3
2031	Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines. International Journal of Nanomedicine, 2021, Volume 16, 161-184.	3.3	49
2032	Effect of Cetuximab-Conjugated Gold Nanoparticles on the Cytotoxicity and Phenotypic Evolution of Colorectal Cancer Cells. Molecules, 2021, 26, 567.	1.7	26
2033	Targeted Nanoparticles Harboring Jasmine-Oil-Entrapped Paclitaxel for Elimination of Lung Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 1019.	1.8	10
2034	Gold Nanoparticles Promote the Bone Regeneration of Periodontal Ligament Stem Cell Sheets Through Activation of Autophagy. International Journal of Nanomedicine, 2021, Volume 16, 61-73.	3.3	38
2035	Regulation of Dental Materials. , 2021, , 1153-1183.		0
2036	Revealing the Dynamic Mechanism by Which Transferrin Promotes the Cellular Uptake of HAIYPRH Peptide-Conjugated Nanostructures by Force Tracing. Molecular Pharmaceutics, 2021, 18, 1480-1485.	2.3	11
2037	The detrimental invasiveness of glioma cells controlled by gadolinium chelate-coated gold nanoparticles. Nanoscale, 2021, 13, 9236-9251.	2.8	7

#	Article	IF	CITATIONS
2038	Liposomes for Biomedical Applications. RSC Soft Matter, 2021, , 392-404.	0.2	2
2039	Strategies to promote permeation and vectorization, and reduce cytotoxicity of metal complex luminophores for bioimaging and intracellular sensing. RSC Chemical Biology, 2021, 2, 1021-1049.	2.0	21
2040	Perylene diimide-based treatment and diagnosis of diseases. Journal of Materials Chemistry B, 2021, 9, 8937-8950.	2.9	16
2042	Renalâ€Clearable PEGylated Porphyrin Nanoparticles for Imageâ€Guided Photodynamic Cancer Therapy. Advanced Functional Materials, 2017, 27, 1702928.	7.8	113
2043	Dynamics and Physics of Integrin Activation in Tumor Cells by Nano-Sized Extracellular Ligands and Electromagnetic Fields. Methods in Molecular Biology, 2021, 2217, 197-233.	0.4	4
2044	Inorganic Nanostructures for Brain Tumor Management. Neuromethods, 2021, , 145-178.	0.2	4
2045	Sensitivity Enhancement of NIR Fluorescence Contrast Agent Utilizing Gold Nanoparticles. Advances in Experimental Medicine and Biology, 2012, 737, 285-291.	0.8	2
2046	Medical Nanomaterials. Nanostructure Science and Technology, 2014, , 83-99.	0.1	1
2047	Nanostability. Nanomedicine and Nanotoxicology, 2014, , 57-95.	0.1	8
2048	Porous Silicon Nanoparticles. , 2013, , 235-275.		1
2049	Biocompatibility of Nanomaterials. Methods in Pharmacology and Toxicology, 2016, , 185-199.	0.1	11
2050	Polymer-Functionalized NIR-Emitting Nanoparticles: Applications in Cancer Theranostics and Treatment of Bacterial Infections. , 2020, , 231-277.		5
2051	Application of Nanotechnology in Diagnosis and Therapeutics. Green Energy and Technology, 2020, , 413-440.	0.4	5
2052	Passive vs. Active Targeting: An Update of the EPR Role in Drug Delivery to Tumors. Advances in Delivery Science and Technology, 2014, , 3-45.	0.4	7
2053	Nanoecotoxicology: The State of the Art. , 2015, , 301-319.		3
2054	Fluoride Nanoparticles for Biomedical Applications. , 2020, , 135-174.		5
2055	Nuclear Magnetic Resonance Spectroscopy in Nanomedicine. Progress in Optical Science and Photonics, 2015, , 59-84.	0.3	2
2056	Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Delivery and Translational Research, 2018, 8, 1545-1563.	3.0	123

#	Article	IF	CITATIONS
2057	Gold nanoparticles: An advanced drug delivery and diagnostic tool., 2020,, 609-669.		3
2058	Development of nanomaterials for bone-targeted drug delivery. Drug Discovery Today, 2017, 22, 1336-1350.	3.2	103
2059	Recombinant Acetylcholinesterase purification and its interaction with silver nanoparticle. Protein Expression and Purification, 2017, 136, 58-65.	0.6	7
2060	Facile Synthesis of Uniform Virus-like Mesoporous Silica Nanoparticles for Enhanced Cellular Internalization. ACS Central Science, 2017, 3, 839-846.	5.3	207
2061	Rapid transport of deformation-tuned nanoparticles across biological hydrogels and cellular barriers. Nature Communications, 2018, 9, 2607.	5.8	186
2062	Control of Cytolocalization and Mechanism of Cell Death by Encapsulation of a Photosensitizer. Journal of Biomedical Nanotechnology, 2013, 9, 1307-1317.	0.5	18
2063	Self-adjuvanting nanoemulsion targeting dendritic cell receptor Clec9A enables antigen-specific immunotherapy. Journal of Clinical Investigation, 2018, 128, 1971-1984.	3.9	73
2064	Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Research Letters, 2020, 15, 115.	3.1	341
2065	Biosynthesis, characterization of PLGA coated folate-mediated multiple drug loaded copper oxide (CuO) nanoparticles and it's cytotoxicity on nasopharyngeal cancer cell lines. AMB Express, 2020, 10, 160.	1.4	9
2066	Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence, 2015, 2, .	6.3	2
2067	Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines. Advances in Nano Research, 2015, 3, 97-109.	0.9	4
2068	Uptake quantification of gold nanoparticles inside of cancer cells using high order image correlation spectroscopy. Biomedical Optics Express, 2021, 12, 539.	1.5	5
2069	Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra. PLoS ONE, 2009, 4, e7698.	1.1	44
2070	Virus-Inspired Design Principles of Nanoparticle-Based Bioagents. PLoS ONE, 2010, 5, e13495.	1.1	23
2071	EGFR-Targeted Hybrid Plasmonic Magnetic Nanoparticles Synergistically Induce Autophagy and Apoptosis in Non-Small Cell Lung Cancer Cells. PLoS ONE, 2011, 6, e25507.	1.1	89
2072	Electrospun Poly(L-lactide)/Poly(ε-caprolactone) Blend Nanofibrous Scaffold: Characterization and Biocompatibility with Human Adipose-Derived Stem Cells. PLoS ONE, 2013, 8, e71265.	1.1	40
2073	Multi-Level Kinetic Model of mRNA Delivery via Transfection of Lipoplexes. PLoS ONE, 2014, 9, e107148.	1.1	29
2074	Selective DNA Delivery to Tumor Cells Using an Oligoarginine-LTVSPWY Peptide. PLoS ONE, 2014, 9, e110632.	1.1	10

#	Article	IF	CITATIONS
2075	Drought Impact Is Alleviated in Sugar Beets (Beta vulgaris L.) by Foliar Application of Fullerenol Nanoparticles. PLoS ONE, 2016, 11, e0166248.	1.1	84
2076	Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS ONE, 2017, 12, e0177592.	1.1	51
2077	Bioimpacts of nanoparticle size: why it matters?. BioImpacts, 2015, 5, 113-115.	0.7	21
2078	USE OF THE NANODIAMONDS IN BIOMEDICINE. Biotechnologia Acta, 2015, 8, 9-25.	0.3	9
2079	Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy. Critical Reviews in Oncogenesis, 2014, 19, 143-176.	0.2	22
2080	Gold Nanoparticle and Mean Inactivation Dose of Human Intestinal Colon Cancer HT-29 Cells. Jundishapur Journal of Natural Pharmaceutical Products, 2015, 10, .	0.3	7
2081	Near-infrared dye-loaded magnetic nanoparticles as photoacoustic contrast agent for enhanced tumor imaging. Cancer Biology and Medicine, 2016, 13, 349-359.	1.4	15
2082	The Fate of Nanocarriers As Nanomedicines In Vivo: Important Considerations and Biological Barriers to Overcome. Current Medicinal Chemistry, 2013, 20, 2759-2778.	1.2	41
2083	Toxicity of Nanoparticles. Current Medicinal Chemistry, 2014, 21, 3837-3853.	1.2	179
2084	Nanosafety: Towards Safer Nanoparticles by Design. Current Medicinal Chemistry, 2018, 25, 4587-4601.	1.2	19
2085	Gold Nanoparticles as Targeted Delivery Systems and Theranostic Agents in Cancer Therapy. Current Medicinal Chemistry, 2019, 26, 6493-6513.	1.2	35
2085		0.9	35
	Medicinal Chemistry, 2019, 26, 6493-6513. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Current		
2086	Medicinal Chemistry, 2019, 26, 6493-6513. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Current Pharmaceutical Design, 2020, 26, 1181-1190. Polymer-Based Cancer Nanotheranostics: Retrospectives of Multi-Functionalities and	0.9	35
2086	Medicinal Chemistry, 2019, 26, 6493-6513. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Current Pharmaceutical Design, 2020, 26, 1181-1190. Polymer-Based Cancer Nanotheranostics: Retrospectives of Multi-Functionalities and Pharmacokinetics. Current Drug Metabolism, 2013, 14, 661-674. Nanoparticle Enabled Drug Delivery Across the Blood Brain Barrier: in vivo and in vitro Models,	0.9	35 15
2086 2087 2088	Medicinal Chemistry, 2019, 26, 6493-6513. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Current Pharmaceutical Design, 2020, 26, 1181-1190. Polymer-Based Cancer Nanotheranostics: Retrospectives of Multi-Functionalities and Pharmacokinetics. Current Drug Metabolism, 2013, 14, 661-674. Nanoparticle Enabled Drug Delivery Across the Blood Brain Barrier: in vivo and in vitro Models, Opportunities and Challenges. Current Pharmaceutical Biotechnology, 2014, 14, 1201-1212. Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives. Current Topics in Medicinal	0.9	35 15 55
2086 2087 2088 2089	Medicinal Chemistry, 2019, 26, 6493-6513. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Current Pharmaceutical Design, 2020, 26, 1181-1190. Polymer-Based Cancer Nanotheranostics: Retrospectives of Multi-Functionalities and Pharmacokinetics. Current Drug Metabolism, 2013, 14, 661-674. Nanoparticle Enabled Drug Delivery Across the Blood Brain Barrier: in vivo and in vitro Models, Opportunities and Challenges. Current Pharmaceutical Biotechnology, 2014, 14, 1201-1212. Nanoparticle Therapy for Prostate Cancer: Overview and Perspectives. Current Topics in Medicinal Chemistry, 2019, 19, 57-73. Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for	0.9	35 15 55 33

#	Article	IF	CITATIONS
2093	Recent progress in Monte Carlo simulation on gold nanoparticle radiosensitization. AIMS Biophysics, 2018, 5, 231-244.	0.3	34
2095	Intracellular Behavior of Nanoparticles Based on their Physicochemical Properties. Advances in Chemical and Materials Engineering Book Series, 2015, , 10-35.	0.2	1
2096	Applications of Gold Nanoparticles in Cancer. , 2018, , 780-808.		6
2097	Lipid Nanocarriers for Intracellular Delivery. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 129-156.	0.3	1
2098	Modulating the Glucose Transport by Engineering Gold Nanoparticles. Journal of Nanomedicine & Biotherapeutic Discovery, 2016, 06, .	0.6	6
2099	Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters. Journal of Nanomedicine & Nanotechnology, 2011, 02, 1-8.	1.1	15
2100	Probing Real-Time Response to Multitargeted Tyrosine Kinase Inhibitor 4-N-($3\hat{a}\in^2$ -Bromo-Phenyl) Amino-6, 7-Dimethoxyquinazoline in Single Living Cells Using Biofuntionalized Quantum Dots. Journal of Nanomedicine & Nanotechnology, 2011, 02, .	1,1	12
2101	Dose Distribution of Electrons from Gold Nanoparticles by Proton Beam Irradiation. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2015, 04, 49-53.	0.3	7
2102	Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Medical Weekly, 2012, 142, w13559.	0.8	45
2103	Nanomaterials and the human lung: what is known and what must be deciphered to realise their potential advantages?. Swiss Medical Weekly, 2013, 143, w13758.	0.8	21
2104	Silver Nanoparticles Effect on Antimicrobial and Antifungal Activity of New Heterocycles. Bulletin of the Korean Chemical Society, 2010, 31, 3530-3538.	1.0	41
2105	Optimization of Bio-Nano Interface Using Gold Nanostructures as a Model Nanoparticle System. Insciences Journal, 0, , 115-135.	0.7	24
2106	Exploring geometric properties of gold nanoparticles using TEM images to explain their chaperone like activity for citrate synthase. Bioinformation, 2011, 7, 320-323.	0.2	7
2107	Tissue Reaction and Biocompatibility of Implanted Mineral Trioxide Aggregate with Silver Nanoparticles in a Rat Model. Iranian Endodontic Journal, 2016, 11, 13-6.	0.8	26
2108	Evaluation of a new Argovit as an antiviral agent included in feed to protect the shrimp <i>Litopenaeus vannamei</i> li>against White Spot Syndrome Virus infection. PeerJ, 2020, 8, e8446.	0.9	29
2109	Natural polysaccharides based self-assembled nanoparticles for biomedical applications – A review. International Journal of Biological Macromolecules, 2021, 192, 1240-1255.	3.6	31
2110	Optimizing the Design of Blood–Brain Barrier-Penetrating Polymer-Lipid-Hybrid Nanoparticles for Delivering Anticancer Drugs to Glioblastoma. Pharmaceutical Research, 2021, 38, 1897-1914.	1.7	10
2111	DNA Origami Frameworks Enabled Selfâ€Protective siRNA Delivery for Dual Enhancement of Chemoâ€Photothermal Combination Therapy. Small, 2021, 17, e2101780.	5.2	23

#	Article	IF	CITATIONS
2112	Membrane Nanopores Induced by Nanotoroids via an Insertion and Pore-Forming Pathway. Nano Letters, 2021, 21, 8545-8553.	4.5	4
2113	MAGNETIZATION HARMONICS AS A REMOTE METHOD FOR MONITORING ENDOCYTOSIS OF NANOPARTICLES. , 2010, , .		0
2115	Mapping PVS by Molecular Imaging with Contrast Agents. , 2012, , 227-234.		O
2116	Nanoparticle Processing of Cholesterol-Lowering Drug. , 2011, , 263-283.		0
2118	Nanotoxicology in Green Nanoscience. , 2012, , 513-529.		0
2119	Nanotoxicology nanotoxicology in Green Nanoscience nanotoxicology in green nanoscience. , 2012, , 6790-6804.		O
2120	Nanocarriers of Antisense Oligonucleotides in Diabetes. , 2012, , 59-78.		0
2121	Nanotoxicology in Green Nanoscience. , 2013, , 157-178.		0
2122	Water Dispersible Semiconductor Nanorod Assemblies Via a Facile Phase Transfer and Their Application as Fluorescent Biomarkers. Springer Proceedings in Physics, 2013, , 95-110.	0.1	0
2123	Investigating Histological Alterations in the Liver and ALP Enzyme Level in Male Mice Induced by Gold Nanoparticles. Journal of Biology and Today's World, 2013, 2, .	0.1	O
2125	Current Advances in Self-Assembly RNAi Nanoparticles		0
2126	- Quantitative Control of Targeting Effect of Anticancer Drugs Formulated by Ligand-Conjugated Nanoparticles of Biodegradable Copolymer Blend. , 2014, , 436-459.		0
2127	Nanotoxicology. Methods in Pharmacology and Toxicology, 2014, , 481-499.	0.1	0
2128	Understanding Molecular Recognition on Metallic and Oxidic Nanostructures from a Perspective of Computer Simulation and Theory., 2014,, 141-171.		0
2130	Targeted Nanotechnology: Delivering Small but Deadly Punches. MOJ Proteomics $\&$ Bioinformatics, 2014, 1, .	0.1	0
2132	Extinction properties of gold nanorod complexes. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 207301.	0.2	3
2133	Applications of Nanotechnology in Cancer. Advances in Environmental Engineering and Green Technologies Book Series, 2015, , 184-217.	0.3	0
2134	Gold Nanoparticles: A Novel and Promising Avenue for Drug Delivery. , 2015, , 39-52.		O

#	Article	IF	CITATIONS
2135	Supramolecular Polymeric Nanoparticles. , 0, , 7750-7762.		0
2136	Emission of CdTe Nanocrystals Coupled to Microcavities. , 2016, , 133-184.		O
2137	Toxicological Concerns Related to Nanoscale Drug Delivery Systems. , 2016, , 541-561.		0
2138	Designing of Natural Anticancerous Drugs and Their Delivery System. , 2017, , 153-180.		О
2139	Applications of Gold Nanoparticles in Cancer. Advances in Medical Technologies and Clinical Practice Book Series, 2017, , 194-229.	0.3	2
2140	Electrospinning of biodegradable polyester urethane: effect of polymer-solution conductivity. Materiali in Tehnologije, 2017, 51, 195-197.	0.3	0
2141	Acute Neural Stimulation. Springer Theses, 2018, , 31-53.	0.0	0
2143	Intracellular Behavior of Nanoparticles Based on their Physicochemical Properties., 2018,, 1101-1127.		0
2144	Anti-microbial peptide facilitated cytosolic delivery of metallic gold nanomaterials., 2018,,.		0
2145	Environmental Toxicity of Nanomaterials. , 0, , .		3
2147	Improvement of dose distribution in ocular brachytherapy with 125I seeds 20-mm COMS plaque followed to loading of choroidal tumor by gold nanoparticles. Journal of Cancer Research and Therapeutics, 2019, 15, 504-511.	0.3	3
2148	Opportunities and Challenges in Targeted Carrier-Based Intracellular Drug Delivery: Increased Efficacy and Reduced Toxicity., 2019, , 403-431.		1
2149	THE ROLE OF EPITHELIAL-TO-MESENCHYMAL TRANSITION AND AUTOPHAGY IN ANTITUMORAL RESPONSE OF MELANOMA CELL LINES TO TARGET INHIBITION OF MEK AND mTOR KINASES. Siberian Journal of Oncology, 2019, 18, 64-70.	0.1	1
2150	Use of Engineered Nanoparticles (ENPs) for the Study of High-Affinity IgE FcεRI Receptor Engagement and Rat Basophilic Leukemia (RBL) Cell Degranulation. Methods in Molecular Biology, 2020, 2163, 171-180.	0.4	0
2151	Size effect of human epidermal growth factor-conjugated polystyrene particles on cell proliferation. Biomaterials Science, 2020, 8, 4832-4840.	2.6	4
2152	Liquid Systems with Fullerenes in Organic Solvents and Aqueous Media. Ukrainian Journal of Physics, 2020, 65, 761.	0.1	3
2155	Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydrate Polymers, 2022, 277, 118822.	5.1	59
2156	Formation and biological effects of protein corona for foodâ€related nanoparticles. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2002-2031.	5.9	14

#	Article	IF	CITATIONS
2157	Current understandings and clinical translation of nanomedicines for breast cancer therapy. Advanced Drug Delivery Reviews, 2022, 180, 114034.	6.6	32
2158	Toxicity of Nanomaterials to the Host and the Environment. AAPS Advances in the Pharmaceutical Sciences Series, 2020, , 233-245.	0.2	0
2159	Biological prospectives of hybrid nanostructures. , 2020, , 33-55.		0
2160	Immune Toxicity of and Allergic Responses to Nanomaterials. Current Topics in Environmental Health and Preventive Medicine, 2020, , 37-46.	0.1	0
2161	Microbial Cell Factories in Nanotechnology. , 2020, , 99-108.		2
2162	Surface Modification Strategies in Enhancing Systemic Delivery Performance. Healthy Ageing and Longevity, 2020, , 365-392.	0.2	1
2163	Progress of Nanomaterials Regulating Tumor-Associated Macrophages for Tumor Immunotherapy. Material Sciences, 2020, 10, 75-83.	0.0	0
2164	Current challenges and coming opportunities in nanoparticle risk assessment. Frontiers of Nanoscience, 2020, 16, 353-371.	0.3	0
2165	Advanced Nanomaterials in the Clinical Scenario: Virtues and Consequences. Nanotechnology in the Life Sciences, 2020, , 427-449.	0.4	0
2166	Nanotoxicity and regulatory aspects in musculoskeletal regeneration. , 2020, , 197-235.		0
2167	The Importance of Nano-materials Characterization Techniques. Engineering Materials, 2020, , 19-37.	0.3	0
2168	Medical imaging of the complexity of nanoparticles and ROS dynamics in vivo for clinical diagnosis application., 2020,, 489-534.		0
2169	Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics, 2021, 13, 1890.	2.0	13
2170	Comparative Study on Inhibition of Pancreatic Cancer Cells by Resveratrol Gold Nanoparticles and a Resveratrol Nanoemulsion Prepared from Grape Skin. Pharmaceutics, 2021, 13, 1871.	2.0	13
2171	Innovatory role of nanomaterials as bio-tools for treatment of cancer. Reviews in Inorganic Chemistry, 2021, 41, 61-75.	1.8	0
2172	Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae, 2011, 3, 34-55.	1.7	102
2173	Design, synthesis and in vitro characterization of fluorescent and paramagnetic CXCR4-targeted imaging agents. American Journal of Nuclear Medicine and Molecular Imaging, 2013, 3, 372-83.	1.0	1
2174	The role of nanomedicine in cell based therapeutics in cancer and inflammation. International Journal of Molecular and Cellular Medicine, $2012, 1, 133-44$.	1.1	13

#	Article	IF	CITATIONS
2179	Nanoparticle Systems for Cancer Phototherapy: An Overview. Nanomaterials, 2021, 11, 3132.	1.9	31
2180	Quantifying and controlling bond multivalency for advanced nanoparticle targeting to cells. Nano Convergence, 2021, 8, 38.	6.3	16
2182	Breathability performance of antiviral cloth masks treated with silver nanoparticles for protection against COVID-19. Journal of Industrial Textiles, 2022, 51, 1494-1523.	1.1	17
2183	Potential of Curcumin Nanoparticles in Tuberculosis Management. , 2022, , 225-249.		1
2184	Toxicity of manufactured nanomaterials. Particuology, 2022, 69, 31-48.	2.0	63
2185	Ginsenoside as a new stabilizer enhances the transfection efficiency and biocompatibility of cationic liposome. Biomaterials Science, 2021, 9, 8373-8385.	2.6	12
2187	Synthesis and characterization of PCU@C-Ag/AgCl nanoparticles as an antimicrobial material for respiratory tract infection. Nanofabrication, 2021, 6, 68-78.	1.1	1
2188	Gold nanoparticles: Phospholipid membrane interactions. Advances in Biomembranes and Lipid Self-Assembly, 2021, 34, 173-206.	0.3	0
2189	Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. International Journal of Pharmaceutics, 2022, 612, 121368.	2.6	15
2190	Aggregative Growth of Oligopeptideâ€Protected Gold Nanoclusters into Plasmonic Particles. ChemNanoMat, 0, , e202100449.	1.5	1
2191	The other side to the use of active targeting ligands; the case of folic acid in the targeting of breast cancer. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112289.	2.5	8
2192	The Role of Nanoparticles in the Diagnosis and Treatment of Diseases. Scientific Inquiry and Review, 2021, 4, 14-26.	0.1	2
2193	Aspect Ratio of PEGylated Upconversion Nanocrystals Affects the Cellular Uptake. SSRN Electronic Journal, 0, , .	0.4	0
2194	Noninvasive Manipulation of Ion Channels for Neuromodulation and Theranostics. Accounts of Materials Research, 2022, 3, 247-258.	5.9	11
2195	Glycosylated MoS ₂ Sheets for Capturing and Deactivating <i>E. coli</i> Bacteria: Combined Effects of Multivalent Binding and Sheet Size. Advanced Materials Interfaces, 2022, 9, .	1.9	2
2196	Conjugation with gold nanoparticles improves the stability of the KT2 peptide and maintains its anticancer properties. RSC Advances, 2021, 12, 319-325.	1.7	8
2197	Curcumin-Alginate Mixed Nanocomposite: An Evolving Therapy for Wound Healing. , 0, , .		0
2198	Syntheses of metal oxide-gold nanocomposites for biological applications. Results in Chemistry, 2022, 4, 100288.	0.9	5

#	Article	IF	CITATIONS
2199	Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio, 2022, 13, 100208.	2.6	47
2200	RNAi-based therapeutics and tumor targeted delivery in cancer. Advanced Drug Delivery Reviews, 2022, 182, 114113.	6.6	123
2201	Engineering surface patterns on nanoparticles: new insights into nano-bio interactions. Journal of Materials Chemistry B, 2022, 10, 2357-2383.	2.9	11
2202	Selective strategies for antibacterial regulation of nanomaterials. RSC Advances, 2022, 12, 4852-4864.	1.7	13
2203	Synthesis of Novel Virus-Like Mesoporous Silica-ZnO-Ag Nanoparticles and Quercetin Synergize with NIR Laser for Omicron Mutated Covid-19 Virus Infectious Diseases Treatment. Advances in Nanoparticles, 2022, 11, 13-22.	0.3	3
2204	How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. Nanomaterials, 2022, 12, 552.	1.9	33
2205	Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Research Letters, 2021, 16, 173.	3.1	266
2206	Nanoparticles and nanofluids: Characteristics and behavior aspects. , 2022, , 41-71.		2
2207	Development of poly($\langle i \rangle p \langle j \rangle$ -coumaric acid) as a self-anticancer nanocarrier for efficient and biosafe cancer therapy. Biomaterials Science, 2022, 10, 2263-2274.	2.6	11
2208	Surface functionalization of magnetic nanoparticles: potentials for biomedical applications. , 2022, , 237-253.		O
2209	Biosynthesis of Silver Nanoparticles and their Antimicrobial Properties: A Review on Recent Advances. Asian Journal of Chemistry, 2022, 34, 757-766.	0.1	0
2210	Iron Oxide Nanoparticles as Primary Carrier to Increase Drug Loading in Macrophage. SSRN Electronic Journal, 0, , .	0.4	0
2211	The morphological role of ligand inhibitors in blocking receptor- and clathrin-mediated endocytosis. Soft Matter, 2022, 18, 3531-3545.	1.2	2
2212	Azeotropic Distillation-Induced Self-Assembly of Mesostructured Spherical Nanoparticles as Drug Cargos for Controlled Release of Curcumin. Pharmaceuticals, 2022, 15, 275.	1.7	1
2213	Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance. Langmuir, 2022, 38, 2550-2560.	1.6	7
2214	Cellular Uptake of Silica and Gold Nanoparticles Induces Early Activation of Nuclear Receptor NR4A1. Nanomaterials, 2022, 12, 690.	1.9	10
2215	Melanin-gelatin nanoparticles with both EPR effect and renal clearance for PA/MRI dual-modal imaging of tumors. Materials Science and Engineering C, 2022, 134, 112718.	3.8	8
2216	Drug delivery strategy in hepatocellular carcinoma therapy. Cell Communication and Signaling, 2022, 20, 26.	2.7	21

#	Article	IF	Citations
2218	Bone mineral: A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin. Materials Today Bio, 2022, 14, 100227.	2.6	9
2219	Bi-Functional Gold Nanorod–Protein Conjugates with Biomimetic BSA@Folic Acid Corona for Improved Tumor Targeting and Intracellular Delivery of Therapeutic Proteins in Colon Cancer 3D Spheroids. ACS Applied Bio Materials, 2022, 5, 1476-1488.	2.3	10
2220	Synergistic Entry of Individual Nanoparticles into Mammalian Cells Driven by Free Energy Decline and Regulated by Their Sizes. ACS Nano, 2022, 16, 5885-5897.	7.3	10
2221	All-in-one biofabrication and loading of recombinant vaults in human cells. Biofabrication, 2022, 14, 025018.	3.7	6
2222	Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech, 2022, 12, 92.	1.1	4
2223	Size and Charge Characterization of Lipid Nanoparticles for mRNA Vaccines. Analytical Chemistry, 2022, 94, 4677-4685.	3.2	17
2224	Shrimp and microplastics: A case study with the Atlantic ditch shrimp Palaemon varians. Ecotoxicology and Environmental Safety, 2022, 234, 113394.	2.9	23
2225	Template-Assisted Antibody Assembly: A Versatile Approach for Engineering Functional Antibody Nanoparticles. Chemistry of Materials, 2022, 34, 3694-3704.	3.2	4
2226	An analysis of prenatal exposure factors and offspring health outcomes in rodents from synthesized nanoparticles. Reproductive Toxicology, 2022, 110, 60-67.	1.3	2
2227	Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coordination Chemistry Reviews, 2022, 462, 214523.	9.5	85
2228	Encapsulation of ultrasmall nanophosphors into liposomes by thin-film hydration. European Physical Journal: Special Topics, 0 , 1 .	1.2	2
2229	Enhancing Immune Responses to a DNA Vaccine Encoding Toxoplasma gondii GRA7 Using Calcium Phosphate Nanoparticles as an Adjuvant. Frontiers in Cellular and Infection Microbiology, 2021, 11, 787635.	1.8	7
2230	Nanoparticle/Nanocarrier Formulation as an Antigen: The Immunogenicity and Antigenicity of Itself. Molecular Pharmaceutics, 2022, 19, 148-159.	2.3	9
2231	Aggregation Reduces Subcellular Localization and Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Applied Materials & Diterfaces, 2022, 14, 19168-19177.	4.0	9
2232	Copper II oxide nanoparticles (CuONPs) alter metabolic markers and swimming activity in zebra-fish (Danio rerio). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 257, 109343.	1.3	3
2240	Improving the functionality of a nanomaterial by biological probes. , 2022, , 379-418.		4
2241	Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjugate Chemistry, 2022, 33, 2018-2034.	1.8	28
2242	Daylight-Driven Rechargeable TiO2 Nanocatalysts Suppress Wheat Blast Caused by <i>Magnaporthe oryzae Triticum</i> . Bulletin of the Chemical Society of Japan, 2022, 95, 1263-1271.	2.0	4

#	Article	IF	CITATIONS
2243	Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy. Acta Pharmaceutica Sinica B, 2023, 13, 327-343.	5.7	14
2244	Polymerâ€Regulated SnO ₂ Composites Electron Transport Layer for Highâ€Efficiency n–i–p Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	16
2245	Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 2022, 19, 586-593.	9.0	45
2246	The effect of 100–200Ânm ZnO and TiO2 nanoparticles on the in vitro-grown soybean plants. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112536.	2.5	15
2247	Terbium-doped Mesoporous Silica Nanoparticles for Bioimaging Purposes., 2021,,.		0
2248	Recent developments in computational and experimental studies of physicochemical properties of Au and Ag nanostructures on cellular uptake and nanostructure toxicity. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130170.	1.1	5
2249	Surfaceâ€enhanced Raman scattering: An emerging tool for sensing cellular function. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1802.	3.3	12
2250	Peptide-decorated nanocarriers penetrating the blood-brain barrier for imaging and therapy of brain diseases. Advanced Drug Delivery Reviews, 2022, 187, 114362.	6.6	17
2251	Aspect Ratio of PEGylated Upconversion Nanocrystals Affects the Cellular Uptake In Vitro and In Vivo. Acta Biomaterialia, 2022, 147, 403-413.	4.1	11
2252	Impact of Metal Oxide Nanoparticles (NiO, CoO and Fe3O4) on the Anaerobic Digestion of Sewage Sludge. Waste and Biomass Valorization, 2022, 13, 4549-4563.	1.8	4
2253	Emerging concepts in designing next-generation multifunctional nanomedicine for cancer treatment. Bioscience Reports, 2022, 42, .	1.1	13
2254	Size Optimization of Organic Nanoparticles with Aggregationâ€Induced Emission Characteristics for Improved ROS Generation and Photodynamic Cancer Cell Ablation. Small, 2022, 18, .	5.2	21
2256	Cellular uptake and cytotoxicity of PEGylated gold nanoparticles in C33A cervical cancer cells. Nano Express, 2022, 3, 025006.	1.2	3
2257	Solvents drive self-assembly mechanisms and inherent properties of Kraft lignin nanoparticles (<50Ânm). Journal of Colloid and Interface Science, 2022, 626, 178-192.	5.0	21
2258	Promising Colloidal Rhenium Disulfide Nanosheets: Preparation and Applications for In Vivo Breast Cancer Therapy. Nanomaterials, 2022, 12, 1937.	1.9	2
2259	Anticancer Activity of Reconstituted Ribonuclease Sâ€Decorated Artificial Viral Capsid. ChemBioChem, 2022, 23, .	1.3	6
2260	Novel Iron Oxide Nanoparticles Induce Ferroptosis in a Panel of Cancer Cell Lines. Molecules, 2022, 27, 3970.	1.7	19
2261	Effects of folate-conjugated Fe2O3@Au core–shell nanoparticles on oxidative stress markers, DNA damage, and histopathological characteristics: evidence from in vitro and in vivo studies. , 2022, 39, .		5

#	Article	IF	CITATIONS
2262	Nanomaterials in Animal Husbandry: Research and Prospects. Frontiers in Genetics, 0, 13, .	1.1	2
2263	Metal oxide nanostructures and their biological applications (nonlinear photonics, plasmonic) Tj ETQq1 1 0.7843	14 rgBT /C	verlock 10
2264	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews, 2022, 122, 12495-12543.	23.0	82
2265	Ultrasonic emulsification: basic characteristics, cavitation, mechanism, devices and application. Frontiers of Chemical Science and Engineering, 2022, 16, 1560-1583.	2.3	16
2266	Green synthesis of novel stable biogenic gold nanoparticles for breast cancer therapeutics via the induction of extrinsic and intrinsic pathways. Scientific Reports, 2022, 12 , .	1.6	16
2267	Three laws of design for biomedical micro/nanorobots. Nano Today, 2022, 45, 101560.	6.2	12
2268	Recent progress in upconversion nanomaterials for emerging optical biological applications. Advanced Drug Delivery Reviews, 2022, 188, 114414.	6.6	29
2269	The evaluation of anticancer activity by synthesizing 5FU loaded albumin nanoparticles by exposure to UV light. Toxicology in Vitro, 2022, 84, 105435.	1.1	5
2270	Ultrasmall-in-Nano: Why Size Matters. Nanomaterials, 2022, 12, 2476.	1.9	18
2271	From Bench to Cell: A Roadmap for Assessing the Bioorthogonal "Click―Reactivity of Magnetic Nanoparticles for Cell Surface Engineering. Bioconjugate Chemistry, 2022, 33, 1620-1633.	1.8	1
2272	Think like a Virus: Toward Improving Nanovaccine Development against SARS-CoV-2. Viruses, 2022, 14, 1553.	1.5	9
2273	A Small-Molecule Based Organic Nanoparticle for Photothermal Therapy and Near-Infrared-IIb Imaging. ACS Applied Materials & Samp; Interfaces, 2022, 14, 35454-35465.	4.0	21
2274	Research progress in membrane fusion-based hybrid exosomes for drug delivery systems. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	14
2275	Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. Nanotechnology for Environmental Engineering, 2023, 8, 377-397.	2.0	73
2276	Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform. PLoS ONE, 2022, 17, e0271050.	1.1	5
2277	Size-dependent acute toxicity and oxidative damage caused by cobalt-based framework (ZIF-67) to Photobacterium phosphoreum. Science of the Total Environment, 2022, 851, 158317.	3.9	8
2278	The Influence of Nanoparticle on Vaccine Responses against Bacterial Infection. Journal of Nanotechnology, 2022, 2022, 1-15.	1.5	3
2279	Selective Targeting and Eradication of Various Human Non-Small Cell Lung Cancer Cell Lines Using Self-Assembled Aptamer-Decorated Nanoparticles. Pharmaceutics, 2022, 14, 1650.	2.0	1

#	Article	IF	CITATIONS
2280	Evaluation of the Growth-Inhibitory Spectrum of Three Types of Cyanoacrylate Nanoparticles on Gram-Positive and Gram-Negative Bacteria. Membranes, 2022, 12, 782.	1.4	3
2281	Progress in the synthesis, characterisation, property enhancement techniques and application of gold nanoparticles: A review. MRS Communications, 2022, 12, 700-715.	0.8	5
2282	A Supramolecular Selfâ€Assembling Nanoagent by Inducing Intracellular Aggregation of PSMA for Prostate Cancer Molecularly Targeted Theranostics. Small, 0, , 2203325.	5.2	2
2283	Coassembled Nitric Oxide-Releasing Nanoparticles with Potent Antimicrobial Efficacy against Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA) Strains. ACS Applied Materials & Staphylococcus aureus (Interfaces, 2022, 14, 37369-37379.	4.0	1
2284	In vivo toxicity and antibacterial assessment of Bi2Se3/GO/PVA nanocomposite synthesized via hydrothermal route. Materials Chemistry and Physics, 2022, 290, 126535.	2.0	1
2285	Time-Resolved Thickness and Shape-Change Quantification using a Dual-Band Nanoplasmonic Ruler with Sub-Nanometer Resolution. ACS Nano, 0 , , .	7.3	2
2286	Facile nanoplastics formation from macro and microplastics in aqueous media. Environmental Pollution, 2022, 313, 120171.	3.7	14
2287	Solution properties of spherical gold nanoparticles with grafted DNA chains from simulation and theory. Nanoscale Advances, 2022, 4, 4144-4161.	2.2	3
2288	PEGylation of Goldbody: PEG-aided conformational engineering of peptides on gold nanoparticles. RSC Advances, 2022, 12, 26123-26133.	1.7	1
2289	A targeted hydrodynamic gold nanorod delivery system based on gigahertz acoustic streaming. Nanoscale, 2022, 14, 15281-15290.	2.8	2
2290	Biomechanics Approaches for Cancer Detection: Cell Adhesion and Cell Mechanics. , 2022, , .		0
2291	Antiviral potential of nanomaterials: The fight against viruses. , 2023, , 101-132.		0
2292	Effects of gold nanoparticles on normal hepatocytes in radiation therapy. Translational Cancer Research, 2022, 11, 2572-2581.	0.4	1
2293	Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. Journal of Nanobiotechnology, 2022, 20, .	4.2	45
2294	Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Delivery, 2022, 29, 2959-2970.	2.5	16
2295	A Biomolecular Toolbox for Precision Nanomotors. Advanced Materials, 0, , 2205746.	11.1	11
2296	Cytotoxicity survey of commercial graphene materials from worldwide. Npj 2D Materials and Applications, 2022, 6, .	3.9	12
2298	Efficient Synthesis of Macromolecular DO3A@Gn Derivatives for Potential Application in MRI Diagnostics: From Polymer Conjugates to Polymer Nanoparticles. Macromolecular Chemistry and Physics, 0, , 2200211.	1.1	0

#	Article	IF	CITATIONS
2299	Atropine-functionalized gold nanoparticles binding to muscarinic receptors after passage across the intestinal epithelium. Royal Society Open Science, 2022, 9, .	1.1	1
2300	Recent microfluidic advances in submicron to nanoparticle manipulation and separation. Lab on A Chip, $0, , .$	3.1	18
2301	The stiffness-dependent tumor cell internalization of liquid metal nanoparticles. Nanoscale, 2022, 14, 16902-16917.	2.8	5
2302	ROS-Based Cancer Radiotherapy. Nanomedicine and Nanotoxicology, 2022, , 265-309.	0.1	1
2303	Carbon-Based Nanomaterials for Targeted Drug and Gene Delivery Systems. Nanotechnology in the Life Sciences, 2022, , 455-488.	0.4	1
2304	Theranostic Nanomaterials for Brain Injury. , 2022, , 307-350.		0
2305	Membrane-Specific Binding of 4 nm Lipid Nanoparticles Mediated by an Entropy-Driven Interaction Mechanism. ACS Nano, 2022, 16, 18090-18100.	7.3	11
2306	Universal Mass Production of Biomass-Derived Nanosized Porous Carbon Spheres as a Superior Nonmetal Catalyst for Aerobic Oxidation of Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2022, 10, 14735-14745.	3.2	4
2307	Application of Electrochemically Reduced Water for New No-Rinse Shampoo: Design and Optimization Using Response Surface Methodology. Cosmetics, 2022, 9, 104.	1.5	1
2308	The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities. Microorganisms, 2022, 10, 2080.	1.6	6
2309	Taylor Dispersion Analysis to support lipid-nanoparticle formulations for mRNA vaccines. Gene Therapy, 2023, 30, 421-428.	2.3	1
2310	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	7.3	10
2311	Immune checkpoint blockade in melanoma: Advantages, shortcomings and emerging roles of the nanoparticles. International Immunopharmacology, 2022, 113, 109300.	1.7	4
2312	Cellular Internalization and Toxicity of Polymeric Nanoparticles. Environmental Chemistry for A Sustainable World, 2022, , 473-488.	0.3	3
2313	Biomimetic nanomedicines for precise atherosclerosis theranostics. Acta Pharmaceutica Sinica B, 2023, 13, 4442-4460.	5.7	6
2315	Responsive Accumulation of Nanohybrids to Boost NIRâ€Phototheranostics for Specific Tumor Imaging and Glutathione Depletionâ€Enhanced Synergistic Therapy. Advanced Science, 2023, 10, .	5.6	8
2316	Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113019.	2.5	3
2317	Targeting Ultrasmall Gold Nanoparticles with cRGD Peptide Increases the Uptake and Efficacy of Cytotoxic Payload. Nanomaterials, 2022, 12, 4013.	1.9	4

#	ARTICLE	IF	CITATIONS
2318	Nanoparticle-Based Delivery Systems for Vaccines. Vaccines, 2022, 10, 1946.	2.1	42
2319	Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Advances, 2022, 13, 80-114.	1.7	18
2320	How clathrin-coated pits control nanoparticle avidity for cells. Nanoscale Horizons, 2023, 8, 256-269.	4.1	4
2321	Bio-based stimuli-responsive materials for biomedical applications. Materials Advances, 2023, 4, 458-475.	2.6	5
2322	The effect of biomolecular corona on adsorption onto and desorption from a model lipid membrane. Nanoscale, 2022, 15, 248-258.	2.8	4
2323	Antiviral and antioxidant properties of green synthesized gold nanoparticles using Glaucium flavum leaf extract. Applied Nanoscience (Switzerland), 2023, 13, 4395-4405.	1.6	16
2324	Potential of Surface Functionalized Nanomaterials in Innovative Drug Development: A Mini-review. Letters in Drug Design and Discovery, 2024, 21, 381-396.	0.4	0
2325	Formulation of Nanomicelles Loaded with Cannabidiol as a Platform for Neuroprotective Therapy. Pharmaceutics, 2022, 14, 2625.	2.0	2
2326	Microfluidic SERS devices: brightening the future of bioanalysis. Discover Materials, 2022, 2, .	1.0	7
2327	Iron oxide nanoparticles served as the primary carrier to increase drug loading in macrophages. Biomedical Materials (Bristol), 2023, 18, 015018.	1.7	0
2328	A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angewandte Chemie, 2023, 135, .	1.6	2
2329	Harnessing Peptide-Functionalized Multivalent Gold Nanorods for Promoting Enhanced Gene Silencing and Managing Breast Cancer Metastasis. ACS Applied Bio Materials, 0, , .	2.3	5
2330	A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angewandte Chemie - International Edition, 2023, 62, .	7.2	68
2331	"Smart―drug delivery: A window to future of translational medicine. Frontiers in Chemistry, 0, 10, .	1.8	12
2332	Lipid nanoparticle-mediated mRNA delivery in lung fibrosis. European Journal of Pharmaceutical Sciences, 2023, 183, 106370.	1.9	9
2333	Gold nanoparticles inhibit tumor growth via targeting the Warburg effect in a c-Myc-dependent way. Acta Biomaterialia, 2023, 158, 583-598.	4.1	2
2334	Gold and silver nanoparticles: Properties and toxicity. , 2023, , 59-82.		0
2335	Nanotheranostics in CNS Malignancy. , 2023, , 307-321.		O

#	Article	IF	Citations
2336	Impact of Green Gold Nanoparticle Coating on Internalization, Trafficking, and Efficiency for Photothermal Therapy of Skin Cancer. ACS Omega, 2023, 8, 4092-4105.	1.6	6
2337	Surface modified iron-oxide based engineered nanomaterials for hyperthermia therapy of cancer cells. Biotechnology and Genetic Engineering Reviews, 0, , 1-47.	2.4	3
2338	Principles of Nanoparticle Delivery to Solid Tumors. BME Frontiers, 2023, 4, .	2.2	22
2339	Emerging ultrasmall luminescent nanoprobes for (i>in vivo (i>bioimaging. Chemical Society Reviews, 2023, 52, 1672-1696.	18.7	27
2340	Meta-analysis of material properties influencing nanoparticle plasma pharmacokinetics. International Journal of Pharmaceutics, 2023, 639, 122951.	2.6	1
2341	Multivalent dipeptidyl peptidase IV fragment-nanogold complex inhibits cancer metastasis by blocking pericellular fibronectin., 2023, 148, 213357.		O
2342	On the size-dependent internalization of sub-hundred polymeric nanoparticles. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113245.	2.5	7
2343	Tumor vasculature vs tumor cell targeting: Understanding the latest trends in using functional nanoparticles for cancer treatment. OpenNano, 2023, 11, 100136.	1.8	4
2344	From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Advanced Drug Delivery Reviews, 2023, 196, 114777.	6.6	8
2345	Comparison of dietary supplementation of sodium selenite and bio-nanostructured selenium on nutrient digestibility, blood metabolites, antioxidant status, milk production, and lamb performance of Barki ewes. Animal Feed Science and Technology, 2023, 297, 115592.	1.1	2
2346	Pharmacological ascorbate potentiates combination nanomedicines and reduces cancer cell stemness to prevent post-surgery recurrence and systemic metastasis. Biomaterials, 2023, 295, 122037.	5.7	5
2347	pH-sensitive gold nanoclusters labeling with radiometallic nuclides for diagnosis and treatment of tumor. Materials Today Bio, 2023, 19, 100578.	2.6	1
2348	Bone-Targeting Exosome Mimetics Engineered by Bioorthogonal Surface Functionalization for Bone Tissue Engineering. Nano Letters, 2023, 23, 1202-1210.	4.5	10
2349	Green synthesis of gold nanoparticles as an effective opportunity for cancer treatment. Results in Chemistry, 2023, 5, 100848.	0.9	11
2350	Self-assembled nanoparticles: A new platform for revolutionizing the rapeutic cancer vaccines. Frontiers in Immunology, 0, 14, .	2.2	1
2351	Nanotechnological advancements in the brain tumor therapy: a novel approach. Therapeutic Delivery, 2022, 13, 531-557.	1.2	2
2352	Introduction to nanoengineering and nanotechnology for biomedical applications., 2023,, 1-34.		0
2353	Preparation of the Protein/Polyphenylboronic Acid Nanospheres for Drug Loading and Unloading. Acta Chimica Sinica, 2023, 81, 116.	0.5	1

#	Article	IF	Citations
2354	Advances in self-assembled Au-DNA nanomachines. IScience, 2023, 26, 106327.	1.9	1
2355	Effect of Cell Membraneâ€cloaked Nanoparticle Elasticity on Nanoâ€Bio Interaction. Small Methods, 2023, 7, .	4.6	3
2356	High-sensitivity long-range surface plasmon resonance sensing assisted by gold nanoring cavity arrays and nanocavity coupling. Physical Chemistry Chemical Physics, 2023, 25, 9273-9281.	1.3	8
2357	Engineering nanomaterial physical characteristics for cancer immunotherapy., 2023, 1, 499-517.		11
2358	Bringing sex toys out of the dark: exploring unmitigated risks. Microplastics and Nanoplastics, 2023, 3,	4.1	0
2359	Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles' Physicochemical Properties on Responses in Biological Systems. Polymers, 2023, 15, 1596.	2.0	58
2360	Bioceramics: from bone substitutes to nanoparticles for bone drug delivery. , 2023, , 389-405.		0
2361	Critical parameters to translate gold nanoparticles as radiosensitizing agents into the clinic. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	3
2363	Single-Particle Hyperspectral Imaging for Monitoring of Gold Nanoparticle Aggregates in Macrophages. Journal of Physical Chemistry B, 2023, 127, 3231-3240.	1.2	1
2364	Oral feeding of nanoplastics affects brain function of mice by inducing macrophage IL-1 signal in the intestine. Cell Reports, 2023, 42, 112346.	2.9	12
2365	Vehicles for Delivery of Therapeutic Agent for Cancer Therapy. Biological and Medical Physics Series, 2023, , 719-753.	0.3	0
2366	Influence of structural dynamics on cell uptake investigated with single-chain polymeric nanoparticles. CheM, 2023, 9, 1562-1577.	5.8	2
2367	Tailor-made nanocargoes as promising tool for brain targeting: Modulated approaches with better therapeutic outcomes. Journal of Drug Delivery Science and Technology, 2023, 84, 104466.	1.4	0
2368	Highly Dispersed 3C Silicon Carbide Nanoparticles with a Polydopamine/Polyglycerol Shell for Versatile Functionalization. ACS Applied Materials & Interfaces, 0, , .	4.0	2
2377	Gold Nanoparticles: From Synthesis to Theranostic Applications and Clinical Scenario. , 2023, , 269-294.		0
2378	Translating Nanomaterials from Laboratory to Clinic: Barriers Ahead. , 2023, , 381-405.		1
2381	Hydrazone-Based Amphiphilic Brush Polymer for Fast Endocytosis and ROS-Active Drug Release. ACS Macro Letters, 2023, 12, 639-645.	2.3	3
2387	Bovine Mastitis: Examining Factors Contributing to Treatment Failure and Prospects of Nano-enabled Antibacterial Combination Therapy. ACS Agricultural Science and Technology, 2023, 3, 562-582.	1.0	2

#	Article	IF	CITATIONS
2388	Graphene-based polymer blend nanocomposites for energy storage applications., 2023,, 271-291.		0
2402	Methods for Structural Studies of CPPs. , 2023, , 313-336.		0
2405	Technik und Anwendung von geschlechtssortiertem Sperma bei landwirtschaftlichen Nutztieren. , 2023, , 77-124.		0
2409	Nanotoxicity Assessment of Engineering Nanoparticles. , 2023, , 289-321.		O
2414	Leveraging mesoporous silica nanomaterial for optimal immunotherapeutics against cancer. In Vitro Models, 2023, 2, 153-169.	1.0	0
2417	Nano chitosan anchored copper-ferrite: a smart magnetic nanocomposite agent for drug delivery. Emergent Materials, 2024, 7, 343-351.	3.2	0
2422	Harnessing the power of gold: advancements in anticancer gold complexes and their functionalized nanoparticles. Journal of Materials Chemistry B, 2024, 12, 552-576.	2.9	1
2425	Gold nanoparticles for treatment of cerebral diseases. , 2024, , 251-276.		0
2427	Targeting strategies using gold nanoparticles for efficient drug delivery., 2024,, 123-139.		0
2435	Role and importance of hydroxyapatite in the healthcare sector. , 2024, , 159-207.		0
2436	Synthesis and processing methods of magnetic nanosystems for diagnostic tools and devices: Design strategies and physicochemical aspects. , 2024, , 43-78.		0
2440	Internalization of scandium-46 labeled zirconium doped hydroxyapatite in lung cancer cell and in silico study of its mechanism. AIP Conference Proceedings, 2024, , .	0.3	O