Improving the photostability of bright monomeric oran

Nature Methods 5, 545-551

DOI: 10.1038/nmeth.1209

Citation Report

#	Article	IF	CITATIONS
4	Bridging fluorescence microscopy and electron microscopy. Histochemistry and Cell Biology, 2008, 130, 211-7.	0.8	91
5	Diffraction-unlimited optical microscopy. Materials Today, 2008, 11, 12-21.	8.3	36
6	GFP: From humble beginnings to Nobel winningsâ€"The color that changed cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 1109-1110.	1.1	1
7	Conversion of Red Fluorescent Protein into a Bright Blue Probe. Chemistry and Biology, 2008, 15, 1116-1124.	6.2	269
8	A noncytotoxic DsRed variant for whole-cell labeling. Nature Methods, 2008, 5, 955-957.	9.0	171
9	Turning fluorescent proteins into energy-saving light bulbs. Nature Methods, 2008, 5, 472-473.	9.0	4
10	Calibrating excitation light fluxes for quantitative light microscopy in cell biology. Nature Protocols, 2008, 3, 1809-1814.	5.5	24
11	Doubleâ€membrane gap junction internalization requires the clathrinâ€mediated endocytic machinery. FEBS Letters, 2008, 582, 2887-2892.	1.3	69
12	Multiplexed FRET to Image Multiple Signaling Events in Live Cells. Biophysical Journal, 2008, 95, L69-L71.	0.2	100
13	Genetically encoded fluorescent sensors for studying healthy and diseased nervous systems. Drug Discovery Today: Disease Models, 2008, 5, 27-35.	1.2	10
14	Literature Search and Review. Assay and Drug Development Technologies, 2008, 6, 307-326.	0.6	1
15	Bacterial Biosensors for Measuring Availability of Environmental Pollutants. Sensors, 2008, 8, 4062-4080.	2.1	91
16	A Green Fluorescent Protein with Photoswitchable Emission from the Deep Sea. PLoS ONE, 2008, 3, e3766.	1.1	32
17	Red Fluorescent Protein pH Biosensor to Detect Concentrative Nucleoside Transport. Journal of Biological Chemistry, 2009, 284, 20499-20511.	1.6	61
18	Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser. Journal of Biomedical Optics, 2009, 14, 054009.	1.4	54
19	Localization of protein-protein interactions among three fluorescent proteins in a single living cell: three-color FRET microscopy. Proceedings of SPIE, 2009, , .	0.8	O
20	The characterization of optimized fluorescent proteins for FÃ \P rster resonance energy transfer microscopy. , 2009, , .		0
21	A noncytotoxic DsRed variant for whole-cell labeling. Proceedings of SPIE, 2009, , .	0.8	1

#	Article	IF	CITATIONS
22	Evaluating and improving the photostability of fluorescent proteins. Proceedings of SPIE, 2009, , .	0.8	5
23	Fluorescent proteins: a cell biologist's user guide. Trends in Cell Biology, 2009, 19, 649-655.	3.6	142
24	High-content screening of primary neurons: ready for prime time. Current Opinion in Neurobiology, 2009, 19, 537-543.	2.0	47
25	Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges. IUBMB Life, 2009, 61, 1029-1042.	1.5	216
26	Structure, Dynamics and Optical Properties of Fluorescent Proteins: Perspectives for Marker Development. ChemPhysChem, 2009, 10, 1369-1379.	1.0	75
27	Flow and image cytometry side by side for the new frontiers in quantitative singleâ€cell analysis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 169-171.	1.1	8
28	New hemocyteâ€specific enhancerâ€reporter transgenes for the analysis of hematopoiesis in <i>Drosophila</i> . Genesis, 2009, 47, 771-774.	0.8	67
29	QM/MM study of the absorption spectra of DsRed.M1 chromophores. Journal of Computational Chemistry, 2010, 31, 1603-1612.	1.5	30
30	Single-molecule spectroscopy of fluorescent proteins. Analytical and Bioanalytical Chemistry, 2009, 393, 527-541.	1.9	32
31	Additional cassettes for epitope and fluorescent fusion proteins in <i>Candida albicans</i> . Yeast, 2009, 26, 399-406.	0.8	65
32	Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnology, 2009, 9, 24.	1.7	93
33	Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling. BMC Biotechnology, 2009, 9, 32.	1.7	28
34	Transient expression in <i>Nicotiana benthamiana</i> fluorescent marker lines provides enhanced definition of protein localization, movement and interactions <i>in planta</i> . Plant Journal, 2009, 59, 150-162.	2.8	391
35	Highâ€aperture cryogenic light microscopy. Journal of Microscopy, 2009, 235, 1-8.	0.8	121
36	A bright and photostable photoconvertible fluorescent protein. Nature Methods, 2009, 6, 131-133.	9.0	496
37	Photoconversion in orange and red fluorescent proteins. Nature Methods, 2009, 6, 355-358.	9.0	133
38	Imaging intracellular RNA distribution and dynamics in living cells. Nature Methods, 2009, 6, 331-338.	9.0	365
39	Engineered fluorescent proteins: innovations and applications. Nature Methods, 2009, 6, 713-717.	9.0	108

#	Article	IF	CITATIONS
40	Comparative analysis to guide quality improvements in proteomics. Nature Methods, 2009, 6, 717-719.	9.0	58
41	Excited state dynamics in the green fluorescent protein. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 1-11.	2.0	59
42	Fluorescent Revelations. Chemistry and Biology, 2009, 16, 107-111.	6.2	5
43	Autofluorescent Proteins with Excitation in the Optical Window for Intravital Imaging in Mammals. Chemistry and Biology, 2009, 16, 1169-1179.	6.2	244
44	Red-Shifted Voltage-Sensitive Fluorescent Proteins. Chemistry and Biology, 2009, 16, 1268-1277.	6.2	81
45	Biosensing and imaging based on bioluminescence resonance energy transfer. Current Opinion in Biotechnology, 2009, 20, 37-44.	3.3	130
46	Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. Current Opinion in Biotechnology, 2009, 20, 19-27.	3.3	146
47	Far-red fluorescent tags for protein imaging in living tissues. Biochemical Journal, 2009, 418, 567-574.	1.7	497
48	Fluorescent Protein Tracking and Detection: Fluorescent Protein Structure and Color Variants. Cold Spring Harbor Protocols, 2009, 2009, pdb.top63.	0.2	63
49	Chapter 5 Visible fluorescent proteins for FRET. Laboratory Techniques in Biochemistry and Molecular Biology / Edited By T S Work [and] E Work, 2009, 33, 171-223.	0.2	13
50	QM/MM Study of the Monomeric Red Fluorescent Protein DsRed.M1. Journal of Physical Chemistry B, 2009, 113, 16622-16631.	1.2	21
51	Semisynthetic Fluorescent Sensor Proteins Based on Self-Labeling Protein Tags. Journal of the American Chemical Society, 2009, 131, 5873-5884.	6.6	115
52	Absolute Two-Photon Absorption Spectra and Two-Photon Brightness of Orange and Red Fluorescent Proteins. Journal of Physical Chemistry B, 2009, 113, 855-859.	1,2	163
53	Genetically encoded biosensors based on engineered fluorescent proteins. Chemical Society Reviews, 2009, 38, 2833.	18.7	291
54	The fluorescent protein palette: tools for cellular imaging. Chemical Society Reviews, 2009, 38, 2887.	18.7	711
55	Excited state reactions in fluorescent proteins. Chemical Society Reviews, 2009, 38, 2922.	18.7	285
56	GFP: from jellyfish to the Nobel prize and beyond. Chemical Society Reviews, 2009, 38, 2823.	18.7	150
57	Chapter 10 FRET and FLIM applications in plants. Laboratory Techniques in Biochemistry and Molecular Biology / Edited By T S Work [and] E Work, 2009, , 413-445.	0.2	3

#	Article	IF	CITATIONS
58	Handbook of Single-Molecule Biophysics. , 2009, , .		70
59	Microwave-Assisted Synthesis of Thiophene Fluorophores, Labeling and Multilabeling of Monoclonal Antibodies, and Long Lasting Staining of Fixed Cells. Journal of the American Chemical Society, 2009, 131, 10892-10900.	6.6	64
60	A fluorescent heteroditopic ligand responding to free zinc ion over six orders of magnitude concentration range. Chemical Communications, 2009, , 7408.	2.2	22
61	Structural Basis of X-ray-Induced Transient Photobleaching in a Photoactivatable Green Fluorescent Protein. Journal of the American Chemical Society, 2009, 131, 18063-18065.	6.6	66
62	FRET and mechanobiology. Integrative Biology (United Kingdom), 2009, 1, 565-573.	0.6	36
63	Searching for the two-photon brightest red fluorescent protein and its optimum excitation wavelength., 2009,,.		0
64	In Vivo Cellular Imaging for Translational Medical Research. Current Medical Imaging, 2009, 5, 19-38.	0.4	72
67	Literature Search and Review. Assay and Drug Development Technologies, 2010, 8, 526-541.	0.6	0
68	Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport. PLoS Biology, 2010, 8, e1000516.	2.6	392
69	Zygotic Resetting of the HISTONE 3 Variant Repertoire Participates in Epigenetic Reprogramming in Arabidopsis. Current Biology, 2010, 20, 2137-2143.	1.8	214
70	Fluorescent Probes and Delivery Methods for Singleâ€Molecule Experiments. ChemPhysChem, 2010, 11, 43-53.	1.0	16
71	Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Current Opinion in Chemical Biology, 2010, 14, 23-29.	2.8	56
72	Red Fluorescent Protein with Reversibly Photoswitchable Absorbance for Photochromic FRET. Chemistry and Biology, 2010, 17, 745-755.	6.2	123
73	Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biology, 2010, 11, 40.	3.0	39
74	Structural Determinants Allowing Endolysosomal Sorting and Degradation of Endosomal GTPases. Traffic, 2010, 11, 1221-1233.	1.3	16
75	Rapid FlAsH labelling in the budding yeast <i>Saccharomyces cerevisiae</i> . Journal of Microscopy, 2010, 240, 6-13.	0.8	8
76	Where microbiology meets microengineering: design and applications of reporter bacteria. Nature Reviews Microbiology, 2010, 8, 511-522.	13.6	466
77	The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cellular Microbiology, 2010, 12, 1292-1307.	1.1	74

#	Article	IF	CITATIONS
78	Fluorescent Reporter Proteins., 2010,, 3-40.		4
79	Viral Mutagenesis as a Means for Generating Novel Proteins. Journal of Virology, 2010, 84, 1625-1630.	1.5	9
80	Single-Cell Techniques Using Chromosomally Tagged Fluorescent Bacteria To Study <i>Listeria monocytogenes</i> Infection Processes. Applied and Environmental Microbiology, 2010, 76, 3625-3636.	1.4	67
81	Simultaneous Visualization of Protumorigenic Src and MT1-MMP Activities with Fluorescence Resonance Energy Transfer. Cancer Research, 2010, 70, 2204-2212.	0.4	102
82	The scaffolding protein EBP50 regulates microvillar assembly in a phosphorylation-dependent manner. Journal of Cell Biology, 2010, 191, 397-413.	2.3	63
83	COMPARATIVE ANALYSIS OF DIRECT FLUORESCENCE, ZENON LABELING, AND QUANTUM DOT NANOCRYSTAL TECHNOLOGY IN IMMUNOFLUORESCENCE STAINING. Journal of Immunoassay and Immunochemistry, 2010, 31, 250-257.	0.5	9
84	Lighting up developmental mechanisms: how fluorescence imaging heralded a new era. Development (Cambridge), 2010, 137, 373-387.	1.2	47
85	Two closely related endocytic proteins that share a common OCRL-binding motif with APPL1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3511-3516.	3.3	66
86	In Vivo Imaging in Cancer. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003848-a003848.	2.3	198
87	Neurogenesis. Methods in Cell Biology, 2010, 100, 72-126.	0.5	25
88	Recording Single Motor Proteins in the Cytoplasm of Mammalian Cells. Methods in Enzymology, 2010, 475, 81-107.	0.4	7
89	Translocation of <i>Magnaporthe oryzae </i> Effectors into Rice Cells and Their Subsequent Cell-to-Cell Movement A. Plant Cell, 2010, 22, 1388-1403.	3.1	426
90	Red fluorescent proteins and their properties. Russian Chemical Reviews, 2010, 79, 243-258.	2.5	23
91	Toward the Second Generation of Optogenetic Tools. Journal of Neuroscience, 2010, 30, 14998-15004.	1.7	95
92	New and Old Reagents for Fluorescent Protein Tagging of Microtubules in Fission Yeast. Methods in Cell Biology, 2010, 97, 147-172.	0.5	44
93	Molecular Imaging of Inflammation/Infection: Nuclear Medicine and Optical Imaging Agents and Methods. Chemical Reviews, 2010, 110, 3112-3145.	23.0	116
94	Higher resolution in localizationmicroscopy by slower switching of a photochromic protein. Photochemical and Photobiological Sciences, 2010, 9, 239-248.	1.6	45
95	Gadolinium-containing inorganic nanostructures for biomedical applications: Cytotoxic aspects. , 2010, , .		3

#	Article	IF	CITATIONS
96	F-Actin Dynamics in Neurospora crassa. Eukaryotic Cell, 2010, 9, 547-557.	3.4	139
97	Probing Cytotoxicity of Gadolinium Hydroxide Nanostructures. Journal of Physical Chemistry B, 2010, 114, 4358-4365.	1.2	22
98	A Monomeric Photoconvertible Fluorescent Protein for Imaging of Dynamic Protein Localization. Journal of Molecular Biology, 2010, 401, 776-791.	2.0	73
99	Generation of a fast maturating red fluorescent protein by a combined approach of elongation mutagenesis and functional salvage screening. Biochemical and Biophysical Research Communications, 2010, 391, 598-603.	1.0	5
100	Aurora Kinases and Protein Phosphatase 1 Mediate Chromosome Congression through Regulation of CENP-E. Cell, 2010, 142, 444-455.	13.5	207
101	Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Developmental Biology, 2010, 344, 377-389.	0.9	81
102	The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase. Methods, 2010, 51, 220-232.	1.9	27
103	Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiological Reviews, 2010, 90, 1103-1163.	13.1	1,175
104	Super-Accuracy and Super-Resolution. Methods in Enzymology, 2010, 475, 1-26.	0.4	18
105	Monomeric red fluorescent proteins with a large Stokes shift. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5369-5374.	3.3	149
106	The ALG-2 Binding Site in Sec31A Influences the Retention Kinetics of Sec31A at the Endoplasmic Reticulum Exit Sites as Revealed by Live-Cell Time-Lapse Imaging. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1819-1826.	0.6	38
107	Bacterial Sensors: Synthetic Design and Application Principles. Synthesis Lectures on Synthetic Biology, 2010, 2, 1-167.	0.0	10
108	Facile tuning from blue to white emission in silica nanoparticles doped with oligothiophene fluorophores. Journal of Materials Chemistry, 2010, 20, 9903.	6.7	21
109	Rational design of boron dipyrromethene (BODIPY)-based photobleaching-resistant fluorophores applicable to a protein dynamics study. Chemical Communications, 2011, 47, 10055.	2.2	54
110	A mathematical analysis of nuclear intensity dynamics for Mig1-GFP under consideration of bleaching effects and background noise in Saccharomyces cerevisiae. Molecular BioSystems, 2011, 7, 215-223.	2.9	8
111	High-throughput tracking of single yeast cells in a microfluidic imaging matrix. Lab on A Chip, 2011, 11, 466-473.	3.1	54
112	Structure–Function Relationships in Fluorescent Marker Proteins of the Green Fluorescent Protein Family. Springer Series on Fluorescence, 2011, , 241-263.	0.8	2
113	Excited State Relaxation Dynamics of Model Green Fluorescent Protein Chromophore Analogs: Evidence for ⟨i⟩Cis–Trans⟨ i⟩ Isomerism. Journal of Physical Chemistry A, 2011, 115, 13733-13742.	1.1	58

#	Article	IF	CITATIONS
114	Intron retention in the Drosophila melanogaster Rieske iron sulphur protein gene generated a new protein. Nature Communications, 2011, 2, 323.	5.8	29
115	Analysis of Red-Fluorescent Proteins Provides Insight into Dark-State Conversion and Photodegradation. Biophysical Journal, 2011, 101, 961-969.	0.2	73
116	Quantification of Fluorophore Copy Number from Intrinsic Fluctuations during Fluorescence Photobleaching. Biophysical Journal, 2011, 101, 2284-2293.	0.2	24
117	Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry. Methods in Cell Biology, 2011, 102, 431-461.	0.5	68
118	MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods, 2011, 8, 737-743.	9.0	620
119	Fluorescent proteins at a glance. Journal of Cell Science, 2011, 124, 2676-2676.	1.2	18
120	Fluorescent proteins at a glance. Journal of Cell Science, 2011, 124, 157-160.	1.2	227
121	A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nature Methods, 2011, 8, 771-777.	9.0	137
122	Form follows function – The versatile fungal cytoskeleton. Fungal Biology, 2011, 115, 518-540.	1.1	38
123	When multiphoton microscopy sees near infrared. Current Opinion in Genetics and Development, 2011, 21, 549-557.	1.5	23
124	Spotting the right locationâ€" imaging approaches to resolve the intracellular localization of invasive pathogens. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 297-307.	1.1	13
125	A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nature Biotechnology, 2011, 29, 942-947.	9.4	254
126	Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein. Journal of Structural Biology, 2011, 174, 385-390.	1.3	113
127	Molecular Sensors for Transcriptional and Post-Transcriptional Assays., 0,, 173-197.		0
128	Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Frontiers in Molecular Neuroscience, 2011, 4, 34.	1.4	64
129	Wide-Field Multi-Parameter FLIM: Long-Term Minimal Invasive Observation of Proteins in Living Cells. PLoS ONE, 2011, 6, e15820.	1.1	30
130	An Improved Cerulean Fluorescent Protein with Enhanced Brightness and Reduced Reversible Photoswitching. PLoS ONE, 2011, 6, e17896.	1.1	228
131	An Enhanced Monomeric Blue Fluorescent Protein with the High Chemical Stability of the Chromophore. PLoS ONE, 2011, 6, e28674.	1.1	277

#	Article	IF	Citations
132	Quantification of factors influencing fluorescent protein expression using RMCE to generate an allelic series in the <i>ROSA26</i> locus in mice. DMM Disease Models and Mechanisms, 2011, 4, 537-547.	1.2	43
133	The New Era of Bioluminescence Resonance Energy Transfer Technology. Current Pharmaceutical Biotechnology, 2011, 12, 558-568.	0.9	20
134	Stem Cells Therapies in Basic Science and Translational Medicine: Current Status and Treatment Monitoring Strategies. Current Pharmaceutical Biotechnology, 2011, 12, 469-487.	0.9	9
135	Investigating the Life Cycle of HIV with Fluorescent Proteins. Springer Series on Fluorescence, 2011, , 249-277.	0.8	0
136	Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiology Reviews, 2011, 35, 360-394.	3.9	131
137	Reducing background fluorescence reveals adhesions in 3D matrices. Nature Cell Biology, 2011, 13, 3-5.	4.6	141
138	Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nature Cell Biology, 2011, 13, 331-337.	4.6	233
139	Proteins on the move: insights gained from fluorescent protein technologies. Nature Reviews Molecular Cell Biology, 2011, 12, 656-668.	16.1	122
140	Imaging the coordination of multiple signalling activities in living cells. Nature Reviews Molecular Cell Biology, 2011, 12, 749-756.	16.1	124
141	Capturing ER calcium dynamics. European Journal of Cell Biology, 2011, 90, 613-619.	1.6	12
142	Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Current Opinion in Cell Biology, 2011, 23, 310-317.	2.6	124
143	An Expanded Palette of Genetically Encoded Ca ²⁺ Indicators. Science, 2011, 333, 1888-1891.	6.0	1,178
144	The Nature of Transient Dark States in a Photoactivatable Fluorescent Protein. Journal of the American Chemical Society, 2011, 133, 18586-18589.	6.6	40
145	Genetically Encodable Fluorescent Biosensors for Tracking Signaling Dynamics in Living Cells. Chemical Reviews, 2011, 111, 3614-3666.	23.0	309
146	Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nature Protocols, 2011, 6, 991-1009.	5.5	935
147	Phase Differential Enhancement of FLIM to Distinguish FRET Components of a Biosensor for Monitoring Molecular Activity of Membrane Type 1 Matrix Metalloproteinase in Live Cells. Journal of Fluorescence, 2011 , 21 , 1763 - 1777 .	1.3	7
148	Biosensors of DsRed as FRET Partner with CFP or GFP for Quantitatively Imaging Induced Activation of Rac, Cdc42 in Living Cells. Molecular Imaging and Biology, 2011, 13, 424-431.	1.3	7
149	Fluorescence correlation spectroscopy in vivo. Laser and Photonics Reviews, 2011, 5, 52-67.	4.4	59

#	Article	IF	Citations
150	FRET Microscopy in 2010: The Legacy of Theodor FÃ \P rster on the 100th Anniversary of his Birth. ChemPhysChem, 2011, 12, 462-474.	1.0	131
151	Quantification of Photosensitized Singlet Oxygen Production by a Fluorescent Protein. ChemPhysChem, 2011, 12, 161-165.	1.0	50
152	Structure and single crystal spectroscopy of Green Fluorescent Proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 824-833.	1.1	12
153	Fluorescent protein barrel fluctuations and oxygen diffusion pathways in mCherry. Journal of Chemical Physics, 2011, 135, 235101.	1.2	35
154	Generating and Imaging Multicolor Brainbow Mice. Cold Spring Harbor Protocols, 2011, 2011, pdb.top114-pdb.top114.	0.2	30
155	Probes for Nanoscopy: Fluorescent Proteins. Springer Series on Fluorescence, 2011, , 111-158.	0.8	3
156	The microtubule lattice and plus-end association of (i) Drosophila (i) Mini spindles is spatially regulated to fine-tune microtubule dynamics. Molecular Biology of the Cell, 2011, 22, 4343-4361.	0.9	34
157	Tetrameric farâ€red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake <i>in vivo</i> . FASEB Journal, 2011, 25, 1865-1873.	0.2	32
158	Noncytotoxic DsRed Derivatives for Whole-Cell Labeling. Methods in Molecular Biology, 2011, 699, 355-370.	0.4	15
159	Membrane tension regulates motility by controlling lamellipodium organization. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11429-11434.	3.3	126
160	Long-Term Imaging Reveals Dynamic Changes in the Neuronal Composition of the Glomerular Layer. Journal of Neuroscience, 2011, 31, 7967-7973.	1.7	64
161	A Fail-Safe Mechanism in the Septal Ring Assembly Pathway Generated by the Sequential Recruitment of Cell Separation Amidases and Their Activators. Journal of Bacteriology, 2011, 193, 4973-4983.	1.0	105
162	Imaging molecular dynamics in vivo – from cell biology to animal models. Journal of Cell Science, 2011, 124, 2877-2890.	1.2	73
163	Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40. Scientific Reports, 2011, 1, 195.	1.6	31
164	A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis. PLoS Biology, 2011, 9, e1000604.	2.6	671
165	Trafficking of Hepatitis C Virus Core Protein during Virus Particle Assembly. PLoS Pathogens, 2011, 7, e1002302.	2.1	103
167	A zebrafish model of lethal congenital contracture syndrome 1 reveals Gle1 function in spinal neural precursor survival and motor axon arborization. Development (Cambridge), 2012, 139, 1316-1326.	1,2	47
168	TetR-Based Gene Regulation Systems for Francisella tularensis. Applied and Environmental Microbiology, 2012, 78, 6883-6889.	1.4	26

#	Article	IF	CITATIONS
169	Rapid Redistribution of Phosphatidylinositol-(4,5)-Bisphosphate and Septins during the Candida albicans Response to Caspofungin. Antimicrobial Agents and Chemotherapy, 2012, 56, 4614-4624.	1.4	30
170	PDZ interactions regulate rapid turnover of the scaffolding protein EBP50 in microvilli. Journal of Cell Biology, 2012, 198, 195-203.	2.3	47
171	Computational Analysis of Live Cell Images of the Arabidopsis thaliana Plant. Methods in Cell Biology, 2012, 110, 285-323.	0.5	13
172	Cell-based and <i>in vivo </i> spectral analysis of fluorescent proteins for multiphoton microscopy. Journal of Biomedical Optics, 2012, 17, 0960011.	1.4	13
173	Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers. Nature Communications, 2012, 3, 1310.	5.8	127
174	Regulator of G-protein Signaling-21 (RGS21) Is an Inhibitor of Bitter Gustatory Signaling Found in Lingual and Airway Epithelia. Journal of Biological Chemistry, 2012, 287, 41706-41719.	1.6	28
175	Functional Characterization and Localization of a Bacillus subtilis Sortase and Its Substrate and Use of This Sortase System To Covalently Anchor a Heterologous Protein to the B. subtilis Cell Wall for Surface Display. Journal of Bacteriology, 2012, 194, 161-175.	1.0	15
176	Rabenosyn-5 defines the fate of the transferrin receptor following clathrin-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E471-80.	3.3	76
177	The renaissance of mitochondrial pH. Journal of General Physiology, 2012, 139, 415-423.	0.9	172
178	rsEGFP2 enables fast RESOLFT nanoscopy of living cells. ELife, 2012, 1, e00248.	2.8	188
179	Dynamic nuclear protein interactions investigated using fluorescence lifetime and fluorescence fluctuation spectroscopy. Proceedings of SPIE, 2012, , .	0.8	3
181	Presynaptically Released Cbln1 Induces Dynamic Axonal Structural Changes by Interacting with GluD2 during Cerebellar Synapse Formation. Neuron, 2012, 76, 549-564.	3.8	66
182	Molecular live cell bioimaging in stem cell research. Annals of the New York Academy of Sciences, 2012, 1266, 18-27.	1.8	13
183	A monomeric red fluorescent protein with low cytotoxicity. Nature Communications, 2012, 3, 1204.	5.8	177
184	Redâ€shifted fluorescent proteins monitor enzymatic activity in live HTâ€1080 cells with fluorescence lifetime imaging microscopy (FLIM). Journal of Microscopy, 2012, 248, 77-89.	0.8	6
185	Quantum Dot–Fluorescent Protein FRET Probes for Sensing Intracellular pH. ACS Nano, 2012, 6, 2917-2924.	7.3	308
186	In vitro and in vivo investigations of upconversion and NIR emitting Gd2O3:Er3+,Yb3+ nanostructures for biomedical applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 2399-2412.	1.7	34
187	Signal Discrimination Between Fluorescent Proteins in Live Cells by Long-Wavelength Optical Modulation. Journal of Physical Chemistry Letters, 2012, 3, 3585-3591.	2.1	25

#	Article	IF	CITATIONS
188	High throughput single molecule tracking for analysis of rare populations and events. Analyst, The, 2012, 137, 2987.	1.7	49
189	A Practical Guide to dSTORM: Super-Resolution Imaging with Standard Fluorescent Probes. Springer Series on Fluorescence, 2012, , 65-84.	0.8	1
190	Pressure-Induced Changes in the Fluorescence Behavior of Red Fluorescent Proteins. Journal of Physical Chemistry B, 2012, 116, 10311-10316.	1.2	17
191	Microfluidic Flow Cytometer for Quantifying Photobleaching of Fluorescent Proteins in Cells. Analytical Chemistry, 2012, 84, 3929-3937.	3.2	25
192	Fluorescent Proteins from the Oceans: Marine Macromolecules as Advanced Imaging Tools for Biomedical Research., 2012, , 1231-1257.		1
193	A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4455-4460.	3.3	120
194	Imaging Translation in Single Cells Using Fluorescent Microscopy. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012310-a012310.	2.3	33
195	Tissue microbiology provides a coherent picture of infection. Current Opinion in Microbiology, 2012, 15, 15-22.	2.3	25
196	Membrane Fission Is Promoted by Insertion of Amphipathic Helices and Is Restricted by Crescent BAR Domains. Cell, 2012, 149, 124-136.	13.5	318
197	Primary Role of the Chromophore Bond Length Alternation in Reversible Photoconversion of Red Fluorescence Proteins. Scientific Reports, 2012, 2, 688.	1.6	30
199	An Orange Fluorescent Protein with a Large Stokes Shift for Single-Excitation Multicolor FCCS and FRET Imaging. Journal of the American Chemical Society, 2012, 134, 7913-7923.	6.6	215
200	Improving FRET dynamic range with bright green and red fluorescent proteins. Nature Methods, 2012, 9, 1005-1012.	9.0	694
201	The Dorsal Raphe Modulates Sensory Responsiveness during Arousal in Zebrafish. Journal of Neuroscience, 2012, 32, 15205-15215.	1.7	124
202	Persistence of HCV in Quiescent Hepatic Cells Under Conditions of an Interferon-Induced Antiviral Response. Gastroenterology, 2012, 143, 429-438.e8.	0.6	41
203	Chromophore Transformations in Red Fluorescent Proteins. Chemical Reviews, 2012, 112, 4308-4327.	23.0	173
204	Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy. Annual Review of Physical Chemistry, 2012, 63, 225-239.	4.8	81
205	<i>In vivo</i> and <i>in situ</i> imaging of experimental invasive pulmonary aspergillosis using fibered confocal fluorescence microscopy. Medical Mycology, 2012, 50, 386-395.	0.3	23
206	Directed evolution of bright mutants of an oxygen-independent flavin-binding fluorescent protein from Pseudomonas putida. Journal of Biological Engineering, 2012, 6, 20.	2.0	45

#	Article	IF	Citations
207	An Improved Genetically Encoded Red Fluorescent Ca2+ Indicator for Detecting Optically Evoked Action Potentials. PLoS ONE, 2012, 7, e39933.	1.1	127
208	A Modular Toolset for Recombination Transgenesis and Neurogenetic Analysis of Drosophila. PLoS ONE, 2012, 7, e42102.	1.1	98
209	R26R-GR: A Cre-Activable Dual Fluorescent Protein Reporter Mouse. PLoS ONE, 2012, 7, e46171.	1.1	12
210	The Single T65S Mutation Generates Brighter Cyan Fluorescent Proteins with Increased Photostability and pH Insensitivity. PLoS ONE, 2012, 7, e49149.	1.1	20
211	New Alternately Colored FRET Sensors for Simultaneous Monitoring of Zn2+ in Multiple Cellular Locations. PLoS ONE, 2012, 7, e49371.	1.1	77
212	N-cadherin induces partial differentiation of cholinergic presynaptic terminals in heterologous cultures of brainstem neurons and CHO cells. Frontiers in Synaptic Neuroscience, 2012, 4, 6.	1.3	12
213	Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nature Methods, 2012, 9, 727-729.	9.0	436
214	Internalized gap junctions are degraded by autophagy. Autophagy, 2012, 8, 794-811.	4.3	106
215	Photoactivated structural dynamics of fluorescent proteins. Biochemical Society Transactions, 2012, 40, 531-538.	1.6	21
216	Impaired Autophagosome Clearance Contributes to Cardiomyocyte Death in Ischemia/Reperfusion Injury. Circulation, 2012, 125, 3170-3181.	1.6	413
217	Reversible photoswitching in fluorescent proteins: A mechanistic view. IUBMB Life, 2012, 64, 482-491.	1.5	130
218	Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nature Reviews Neuroscience, 2012, 13, 351-358.	4.9	179
219	$\hat{l}\pm2\hat{l}$ expression sets presynaptic calcium channel abundance and release probability. Nature, 2012, 486, 122-125.	13.7	320
220	Red Fluorescent Proteins: Advanced Imaging Applications and Future Design. Angewandte Chemie - International Edition, 2012, 51, 10724-10738.	7.2	145
221	Fluorescent proteins for FRET microscopy: Monitoring protein interactions in living cells. BioEssays, 2012, 34, 341-350.	1.2	99
222	Cellâ€Penetrating Peptides as Delivery Vehicles for a Proteinâ€Targeted Terbium Complex. Chemistry - A European Journal, 2012, 18, 10825-10829.	1.7	32
223	The Outgrowth of Micrometastases Is Enabled by the Formation of Filopodium-like Protrusions. Cancer Discovery, 2012, 2, 706-721.	7.7	195
224	pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nature Neuroscience, 2012, 15, 1047-1053.	7.1	150

#	ARTICLE	IF	CITATIONS
225	Structural Tuning of the Fluorescent Protein iLOV for Improved Photostability. Journal of Biological Chemistry, 2012, 287, 22295-22304.	1.6	130
226	Advances in directed molecular evolution of reporter genes. Critical Reviews in Biotechnology, 2012, 32, 133-142.	5.1	18
227	Transient and multivariate system for transformation of a fungal plant pathogen, Rosellinia necatrix, using autonomously replicating vectors. Current Genetics, 2012, 58, 129-138.	0.8	19
228	Simple and tunable Förster resonance energy transfer-based bioprobes for high-throughput monitoring of caspase-3 activation in living cells by using flow cytometry. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 215-226.	1.9	11
229	Extending the tools of singleâ€molecule fluorescence imaging to problems in microbiology. Molecular Microbiology, 2012, 85, 1-4.	1.2	2
230	Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale, 2013, 5, 11339.	2.8	290
231	Genetic tools for multicolor imaging in zebrafish larvae. Methods, 2013, 62, 279-291.	1.9	64
232	Robust Red FRET Sensors Using Self-Associating Fluorescent Domains. ACS Chemical Biology, 2013, 8, 2133-2139.	1.6	54
233	Axonal and subcellular labelling using modified rabies viral vectors. Nature Communications, 2013, 4, 2332.	5.8	44
234	Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development (Cambridge), 2013, 140, 4008-4019.	1.2	146
235	Fluorescent Proteins in Cellular Organelles: Serious Pitfalls and Some Solutions. DNA and Cell Biology, 2013, 32, 622-627.	0.9	48
236	The mFruit Collection of Monomeric Fluorescent Proteins. Clinical Chemistry, 2013, 59, 440-441.	1.5	2
237	Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. Molecular BioSystems, 2013, 9, 258-267.	2.9	56
238	An Engineered Monomeric Zoanthus sp. Yellow Fluorescent Protein. Chemistry and Biology, 2013, 20, 1296-1304.	6.2	31
239	Fluorescent Protein Applications in Microscopy. Methods in Cell Biology, 2013, 114, 99-123.	0.5	8
241	Structural Evidence for a Two-Regime Photobleaching Mechanism in a Reversibly Switchable Fluorescent Protein. Journal of the American Chemical Society, 2013, 135, 15841-15850.	6.6	61
242	Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology. Journal of Genetics and Genomics, 2013, 40, 583-595.	1.7	51
243	Circumventing Photodamage in Live-Cell Microscopy. Methods in Cell Biology, 2013, 114, 545-560.	0.5	167

#	Article	IF	CITATIONS
244	Paxillin phosphorylation counteracts proteoglycan-mediated inhibition of axon regeneration. Experimental Neurology, 2013, 248, 157-169.	2.0	12
247	Transgenically Targeted Rabies Virus Demonstrates a Major Monosynaptic Projection from Hippocampal Area CA2 to Medial Entorhinal Layer II Neurons. Journal of Neuroscience, 2013, 33, 14889-14898.	1.7	89
248	Mutational Analysis of a Red Fluorescent Protein-Based Calcium Ion Indicator. Sensors, 2013, 13, 11507-11521.	2.1	9
249	Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Current Opinion in Chemical Biology, 2013, 17, 682-690.	2.8	144
250	Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communications, 2013, 4, 1996.	5.8	321
251	Dual-color HIV reporters trace a population of latently infected cells and enable their purification. Virology, 2013, 446, 283-292.	1.1	74
252	Fusion of mApple and Venus fluorescent proteins to the Sindbis virus E2 protein leads to different cell-binding properties. Virus Research, 2013, 177, 138-146.	1.1	6
253	Malachite Green Mediates Homodimerization of Antibody VL Domains to Form a Fluorescent Ternary Complex with Singular Symmetric Interfaces. Journal of Molecular Biology, 2013, 425, 4595-4613.	2.0	75
254	Fluorescent Proteins: Shine on, You Crazy Diamond. Journal of the American Chemical Society, 2013, 135, 2387-2402.	6.6	163
255	Optogenetic reporters. Biology of the Cell, 2013, 105, 14-29.	0.7	39
256	Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Frontiers in Molecular Neuroscience, 2013, 6, 2.	1.4	629
258	Exploring the Diffusion of Molecular Oxygen in the Red Fluorescent Protein mCherry Using Explicit Oxygen Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2013, 117, 2247-2253.	1.2	31
259	Improving the Second-Order Nonlinear Optical Response of Fluorescent Proteins: The Symmetry Argument. Journal of the American Chemical Society, 2013, 135, 4061-4069.	6.6	54
260	A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature Methods, 2013, 10, 407-409.	9.0	1,087
261	Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nature Methods, 2013, 10, 421-426.	9.0	459
262	Expanding the spectral palette of fluorescent proteins for the green microalga <i><scp>C</scp>hlamydomonas reinhardtii</i> . Plant Journal, 2013, 74, 545-556.	2.8	120
263	Cytotoxic aspects of gadolinium oxide nanostructures for up-conversion and NIR bioimaging. Acta Biomaterialia, 2013, 9, 4734-4743.	4.1	69
264	Microfluidic cell sorter for use in developing red fluorescent proteins with improved photostability. Lab on A Chip, 2013, 13, 2320.	3.1	22

#	Article	IF	CITATIONS
265	Perspectives on Kiss-and-Run: Role in Exocytosis, Endocytosis, and Neurotransmission. Annual Review of Physiology, 2013, 75, 393-422.	5.6	205
266	Improved tools for the Brainbow toolbox. Nature Methods, 2013, 10, 540-547.	9.0	368
267	Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development (Cambridge), 2013, 140, 2835-2846.	1.2	265
268	Super-resolution microscopy of live cells using single molecule localization. Science Bulletin, 2013, 58, 4519-4527.	1.7	1
269	Revealing the Excited-State Dynamics of the Fluorescent Protein Dendra2. Journal of Physical Chemistry B, 2013, 117, 2300-2313.	1.2	21
270	Unraveling transcription factor interactions with heterochromatin protein 1 using fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Journal of Biomedical Optics, 2013, 18, 025002.	1.4	14
271	Evaluation of genetically expressed absorbing proteins using photoacoustic spectroscopy. Proceedings of SPIE, 2013 , , .	0.8	1
272	In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy. Biomedical Optics Express, 2013, 4, 2477.	1.5	68
273	Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser. Optics Express, 2013, 21, 17256.	1.7	15
274	Illumination of the Spatial Order of Intracellular pH by Genetically Encoded pH-Sensitive Sensors. Sensors, 2013, 13, 16736-16758.	2.1	118
275	Strengths and Weaknesses of Recently Engineered Red Fluorescent Proteins Evaluated in Live Cells Using Fluorescence Correlation Spectroscopy. International Journal of Molecular Sciences, 2013, 14, 20340-20358.	1.8	25
276	What makes a model system great?. Intravital, 2013, 2, e26287.	2.0	3
277	Novel Thioredoxin-Like Proteins Are Components of a Protein Complex Coating the Cortical Microtubules of Toxoplasma gondii. Eukaryotic Cell, 2013, 12, 1588-1599.	3.4	48
278	The tails of apical scaffolding proteins EBP50 and E3KARP regulate their localization and dynamics. Molecular Biology of the Cell, 2013, 24, 3381-3392.	0.9	20
279	Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2812-20.	3.3	97
280	Tumor suppressor gene <i>Rb</i> is required for self-renewal of spermatogonial stem cells in mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12685-12690.	3.3	66
281	Combination of fluorescence microscopy and nanomotion detection to characterize bacteria. Journal of Molecular Recognition, 2013, 26, 590-595.	1.1	34
282	Imaging A frican trypanosomes. Parasite Immunology, 2013, 35, 283-294.	0.7	19

#	Article	IF	CITATIONS
283	Probing Endoplasmic Reticulum Dynamics using Fluorescence Imaging and Photobleaching Techniques. Current Protocols in Cell Biology, 2013, 60, Unit 21.7	2.3	15
284	Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 881-886.	3.3	239
285	Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED). Journal of Visualized Experiments, 2013, , e50317.	0.2	36
286	Non-Invasive Imaging of Phosphoinositide-3-Kinase-Catalytic-Subunit-Alpha (PIK3CA) Promoter Modulation in Small Animal Models. PLoS ONE, 2013, 8, e55971.	1.1	21
287	Cell Surface Localization of $\hat{l}\pm3\hat{l}^24$ Nicotinic Acetylcholine Receptors Is Regulated by N-Cadherin Homotypic Binding and Actomyosin Contractility. PLoS ONE, 2013, 8, e62435.	1,1	7
288	A Quantitative Comparison of Single-Dye Tracking Analysis Tools Using Monte Carlo Simulations. PLoS ONE, 2013, 8, e64287.	1.1	61
289	Functional imaging in the zebrafish retinotectal system using RGECO. Frontiers in Neural Circuits, 2013, 7, 34.	1.4	37
290	Fluorescent protein marker lines in maize: generation and applications. International Journal of Developmental Biology, 2013, 57, 535-543.	0.3	39
291	Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis. PLoS ONE, 2014, 9, e90736.	1,1	10
292	In cellulo Evaluation of Phototransformation Quantum Yields in Fluorescent Proteins Used As Markers for Single-Molecule Localization Microscopy. PLoS ONE, 2014, 9, e98362.	1.1	30
293	A Genetically-Encoded YFP Sensor with Enhanced Chloride Sensitivity, Photostability and Reduced pH Interference Demonstrates Augmented Transmembrane Chloride Movement by Gerbil Prestin (SLC26a5). PLoS ONE, 2014, 9, e99095.	1.1	46
294	Orange Fluorescent Proteins: Structural Studies of LSSmOrange, PSmOrange and PSmOrange2. PLoS ONE, 2014, 9, e99136.	1.1	24
295	Twenty years of fluorescence imaging of intracellular chloride. Frontiers in Cellular Neuroscience, 2014, 8, 258.	1.8	83
296	Imaging Live Cells at the Nanometer-Scale with Single-Molecule Microscopy: Obstacles and Achievements in Experiment Optimization for Microbiology. Molecules, 2014, 19, 12116-12149.	1.7	43
298	Single point mutation in Rabenosyn-5 in a female with intractable seizures and evidence of defective endocytotic trafficking. Orphanet Journal of Rare Diseases, 2014, 9, 141.	1.2	26
299	Trans-activation Response (TAR) RNA-binding Protein 2 Is a Novel Modulator of Transient Receptor Potential Canonical 4 (TRPC4) Protein. Journal of Biological Chemistry, 2014, 289, 9766-9780.	1.6	7
300	Lineage-tracing methods and the kidney. Kidney International, 2014, 86, 481-488.	2.6	35
301	Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. Development (Cambridge), 2014, 141, 3255-3265.	1.2	107

#	Article	IF	CITATIONS
302	<i>Saccharomyces cerevisiae</i> Sen1 as a Model for the Study of Mutations in Human Senataxin That Elicit Cerebellar Ataxia. Genetics, 2014, 198, 577-590.	1.2	30
303	Intravital correlated microscopy reveals differential macrophage and microglial dynamics during resolution of neuroinflammation. DMM Disease Models and Mechanisms, 2014, 7, 857-869.	1.2	52
304	RGS21, a regulator of taste and mucociliary clearance?. Laryngoscope, 2014, 124, E56-63.	1.1	7
305	Fluorescent genetic barcoding in mammalian cells for enhanced multiplexing capabilities in flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 105-113.	1.1	16
306	Single-Cell Imaging of Mechanotransduction in Endothelial Cells. Progress in Molecular Biology and Translational Science, 2014, 126, 25-51.	0.9	9
307	A liquid chromatographyâ€tandem mass spectrometryâ€based targeted proteomics approach for the assessment of transferrin receptor levels in breast cancer. Proteomics - Clinical Applications, 2014, 8, 773-782.	0.8	13
308	Targeted Activation of Conventional and Novel Protein Kinases C through Differential Translocation Patterns. Molecular and Cellular Biology, 2014, 34, 2370-2381.	1.1	31
309	High-resolution imaging of cardiomyocyte behavior reveals two distinct steps in ventricular trabeculation. Development (Cambridge), 2014, 141, 585-593.	1.2	116
310	Fluorescent proteins for live-cell imaging with super-resolution. Chemical Society Reviews, 2014, 43, 1088-1106.	18.7	296
311	Putting Molecules in Their Place. Journal of Cellular Biochemistry, 2014, 115, 209-216.	1.2	33
312	Inorganic fluorescent nanoprobes for cellular and subcellular imaging. TrAC - Trends in Analytical Chemistry, 2014, 58, 120-129.	5.8	31
313	New red-fluorescent calcium indicators for optogenetics, photoactivation and multi-color imaging. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2284-2306.	1.9	73
314	Super-Resolution Microscopy Techniques in the Neurosciences. Neuromethods, 2014, , .	0.2	5
315	Single-molecule detection and tracking in plants. Protoplasma, 2014, 251, 277-291.	1.0	18
316	Phototransformable fluorescent proteins: which one for which application?. Histochemistry and Cell Biology, 2014, 142, 19-41.	0.8	21
317	TetR repressor-based bioreporters for the detection of doxycycline using Escherichia coli and Acinetobacter oleivorans. Applied Microbiology and Biotechnology, 2014, 98, 5039-5050.	1.7	11
318	Engineering and characterizing monomeric fluorescent proteins for live-cell imaging applications. Nature Protocols, 2014, 9, 910-928.	5.5	51
319	Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging. Biotechnology Journal, 2014, 9, 180-191.	1.8	26

#	Article	IF	CITATIONS
320	Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging. Colloids and Surfaces B: Biointerfaces, 2014, 116, 739-744.	2.5	30
321	Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nature Medicine, 2014, 20, 555-560.	15.2	143
322	Mouse Molecular Embryology. Methods in Molecular Biology, 2014, , .	0.4	2
323	Visualizing presynaptic function. Nature Neuroscience, 2014, 17, 10-16.	7.1	112
324	Photophysical processes in single molecule organic fluorescent probes. Chemical Society Reviews, 2014, 43, 1057-1075.	18.7	253
325	Optimization of Fluorescent Proteins. Methods in Molecular Biology, 2014, 1076, 371-417.	0.4	11
326	Lanthanide-Based Imaging of Protein–Protein Interactions in Live Cells. Inorganic Chemistry, 2014, 53, 1839-1853.	1.9	65
327	CD40 ligand and tdTomato-armed vaccinia virus for induction of antitumor immune response and tumor imaging. Gene Therapy, 2014, 21, 195-204.	2.3	32
328	A photochromic and thermochromic fluorescent protein. RSC Advances, 2014, 4, 56762-56765.	1.7	8
329	Signal Transduction: From the Atomic Age to the Post-Genomic Era. Cold Spring Harbor Perspectives in Biology, 2014, 6, a022913-a022913.	2.3	21
330	pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. Journal of Cell Biology, 2014, 207, 419-432.	2.3	207
331	Novel biocompatible cross-linked fluorescent polymeric nanoparticles based on an AIE monomer. Journal of Materials Chemistry C, 2014, 2, 816-820.	2.7	56
332	Dual single-scission event analysis of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered $\hat{1}^2$ 2-adrenergic receptor ($\hat{1}^2$ 2AR) or Mu-opioid receptor (MOR) endocytosis. Molecular Biology of the Cell, 2014, 25, 3070-3080.	0.9	29
333	Aggregation induced emission-based fluorescent nanoparticles: fabrication methodologies and biomedical applications. Journal of Materials Chemistry B, 2014, 2, 4398.	2.9	309
334	Quantifying Stickiness: Thermodynamic Characterization of Intramolecular Domain Interactions To Guide the Design of Förster Resonance Energy Transfer Sensors. Biochemistry, 2014, 53, 6370-6381.	1.2	15
335	Bright and fast multicoloured voltage reporters via electrochromic FRET. Nature Communications, 2014, 5, 4625.	5.8	175
336	Rapid fluorescent reporter quantification by leaf disc analysis and its application in plant-virus studies. Plant Methods, 2014, 10, 22.	1.9	33
337	The changing point-spread function: single-molecule-based super-resolution imaging. Histochemistry and Cell Biology, 2014, 141, 577-585.	0.8	19

#	Article	IF	CITATIONS
338	Advances in fluorescence labeling strategies for dynamic cellular imaging. Nature Chemical Biology, 2014, 10, 512-523.	3.9	412
339	Twinkle, twinkle little star: Photoswitchable fluorophores for superâ€resolution imaging. FEBS Letters, 2014, 588, 3603-3612.	1.3	117
340	Fluorescent proteins for quantitative microscopy. Methods in Cell Biology, 2014, 123, 95-111.	0.5	28
341	A novel method for preparing AIE dye based cross-linked fluorescent polymeric nanoparticles for cell imaging. Polymer Chemistry, 2014, 5, 683-688.	1.9	90
342	Direct observation of \hat{l} ±-actinin tension and recruitment at focal adhesions during contact growth. Experimental Cell Research, 2014, 327, 57-67.	1.2	40
343	Adhesionâ€dependent modulation of actin dynamics in Jurkat T cells. Cytoskeleton, 2014, 71, 119-135.	1.0	21
344	Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model. Plant Physiology, 2014, 166, 455-469.	2.3	309
345	RFP tags for labeling secretory pathway proteins. Biochemical and Biophysical Research Communications, 2014, 447, 508-512.	1.0	11
346	The fatty acyl-CoA reductase Waterproof mediates airway clearance in Drosophila. Developmental Biology, 2014, 385, 23-31.	0.9	61
347	Nano/Micro and Spectroscopic Approaches to Food Pathogen Detection. Annual Review of Analytical Chemistry, 2014, 7, 65-88.	2.8	42
348	Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. Journal of Cell Biology, 2014, 205, 721-735.	2.3	189
349	Plant Cell Wall Proteins: A Large Body of Data, but What about Runaways?. Proteomes, 2014, 2, 224-242.	1.7	47
350	Optical instrumentation design for uorescence lifetime spectroscopy and imaging., 2014,, 134-181.		1
352	FtsZ1/FtsZ2 Turnover in Chloroplasts and the Role of ARC3. Microscopy and Microanalysis, 2015, 21, 313-323.	0.2	18
353	Versatile genetic paintbrushes: Brainbow technologies. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 161-180.	5.9	32
354	Surface Trafficking of <scp>APP</scp> and <scp>BACE</scp> in Live Cells. Traffic, 2015, 16, 655-675.	1.3	9
355	Engineering of Optimized Fluorescent Proteins: An Overview from a Cyan and FRET Perspective. Series in Cellular and Clinical Imaging, 2015, , 3-32.	0.2	0
356	New Technologies for Studying Biofilms. Microbiology Spectrum, 2015, 3, .	1.2	83

#	Article	IF	CITATIONS
357	Development of an Immunologically Tolerated Combination of Fluorescent Proteins for In vivo Two-photon Imaging. Scientific Reports, 2014, 4, 6664.	1.6	17
358	Imaging Mouse Models of Cancer. Cancer Journal (Sudbury, Mass), 2015, 21, 152-164.	1.0	16
359	New Technologies for Studying Biofilms. , 2015, , 1-32.		5
360	Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses, 2015, 7, 5933-5961.	1.5	33
361	Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells. International Journal of Molecular Sciences, 2015, 16, 14695-14716.	1.8	51
362	Multi-color imaging of the bacterial nucleoid and division proteins with blue, orange, and near-infrared fluorescent proteins. Frontiers in Microbiology, 2015, 6, 607.	1.5	32
363	High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15041.	1.8	27
364	Flow-Based Single Cell Deposition for High-Throughput Screening of Protein Libraries. PLoS ONE, 2015, 10, e0140730.	1.1	3
365	Transitory selection markers facilitate DNA mutagenesis with recombineering. Journal of Biomedical Engineering and Informatics, 2015, 2, 23.	0.2	0
367	Fluorescent Proteins for Neuronal Imaging. Biological and Medical Physics Series, 2015, , 57-96.	0.3	3
369	Recent advances in engineering microbial rhodopsins for optogenetics. Current Opinion in Structural Biology, 2015, 33, 8-15.	2.6	52
370	Monitoring of Vacuolar-Type H+ ATPase-Mediated Proton Influx into Synaptic Vesicles. Journal of Neuroscience, 2015, 35, 3701-3710.	1.7	55
371	Quantification of Protein Levels in Single Living Cells. Cell Reports, 2015, 13, 2634-2644.	2.9	82
372	A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy. American Journal of Physiology - Cell Physiology, 2015, 309, C724-C735.	2.1	28
373	Optogenetic control of organelle transport and positioning. Nature, 2015, 518, 111-114.	13.7	254
374	Zebrafish as a model to study live mucus physiology. Scientific Reports, 2014, 4, 6653.	1.6	57
375	Far-Field Optical Nanoscopy. Springer Series on Fluorescence, 2015, , .	0.8	9
376	Rational design of enhanced photoresistance in a photoswitchable fluorescent protein. Methods and Applications in Fluorescence, 2015, 3, 014004.	1.1	16

#	ARTICLE	IF	Citations
377	Constitutive expression of tdTomato protein as a cytotoxicity and proliferation marker for space radiation biology. Life Sciences in Space Research, 2015, 4, 35-45.	1.2	6
378	Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture. Acta Biomaterialia, 2015, 16, 126-135.	4.1	45
379	Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 112-117.	3.3	533
380	Synthesis and Characterization of Water-Soluble Polythiophene Derivatives for Cell Imaging. Scientific Reports, 2015, 5, 7617.	1.6	34
381	Exploring color tuning strategies in red fluorescent proteins. Photochemical and Photobiological Sciences, 2015, 14, 200-212.	1.6	15
382	Fluorescence-based tools for single-cell approaches in food microbiology. International Journal of Food Microbiology, 2015, 213, 2-16.	2.1	30
383	Probing Neuronal Activity Using Genetically Encoded Red Fluorescent Calcium Indicators. , 2015, , 149-158.		2
384	Short and long-term phototoxicity in cells expressing genetic reporters under nanosecond laser exposure. Biomaterials, 2015, 69, 38-44.	5.7	9
385	Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport. Molecular Biology of the Cell, 2015, 26, 3071-3084.	0.9	88
386	Imaging stress. Cell Stress and Chaperones, 2015, 20, 867-874.	1.2	5
387	Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish. Nucleic Acids Research, 2015, 43, e48-e48.	6.5	86
388	Superresolution live imaging of plant cells using structured illumination microscopy. Nature Protocols, 2015, 10, 1248-1263.	5.5	76
389	Optimizing fluorescent protein trios for 3-Way FRET imaging of protein interactions in living cells. Scientific Reports, 2015, 5, 10270.	1.6	21
390	Spatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling. Journal of Cell Biology, 2015, 209, 97-110.	2.3	64
391	Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 72, 17-24.	1.3	46
392	A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins. Journal of Physical Chemistry B, 2015, 119, 5444-5452.	1.2	28
393	FLIPPER, a combinatorial probe for correlated live imaging and electron microscopy, allows identification and quantitative analysis of various cells and organelles. Cell and Tissue Research, 2015, 360, 61-70.	1.5	39
394	Time and Frequency-Domain Measurement of Ground-State Recovery Times in Red Fluorescent Proteins. Journal of Physical Chemistry B, 2015, 119, 4944-4954.	1.2	18

#	Article	IF	CITATIONS
395	High-Speed Multiparameter Photophysical Analyses of Fluorophore Libraries. Analytical Chemistry, 2015, 87, 5026-5030.	3.2	30
396	Store-operated calcium entry compensates fast ER calcium loss in resting hippocampal neurons. Cell Calcium, 2015, 58, 147-159.	1.1	29
397	Influence of Fluorescent Tag on the Motility Properties of Kinesin-1 in Single-Molecule Assays. Biophysical Journal, 2015, 108, 1133-1143.	0.2	28
398	Femtosecond lasing from a fluorescent protein in a one dimensional random cavity. Biomedical Optics Express, 2015, 6, 1885.	1.5	9
399	Vesicular Glutamate Transporter 1 Orchestrates Recruitment of Other Synaptic Vesicle Cargo Proteins during Synaptic Vesicle Recycling. Journal of Biological Chemistry, 2015, 290, 22593-22601.	1.6	40
400	Red Fluorescent Proteins for Gene Expression and Protein Localization Studies in Streptococcus pneumoniae and Efficient Transformation with DNA Assembled via the Gibson Assembly Method. Applied and Environmental Microbiology, 2015, 81, 7244-7252.	1.4	23
401	Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy. Biophysical Journal, 2015, 108, 2807-2815.	0.2	184
402	Efficient Endocytic Uptake and Maturation in <i>Drosophila</i> Oocytes Requires Dynamitin/p50. Genetics, 2015, 201, 631-649.	1.2	17
403	Flow-induced focal adhesion remodeling mediated by local cytoskeletal stresses and reorganization. Cell Adhesion and Migration, 2015, 9, 432-440.	1.1	14
404	Live Cell Imaging with R-GECO1 Sheds Light on flg22- and Chitin-Induced Transient [Ca 2+] cyt Patterns in Arabidopsis. Molecular Plant, 2015, 8, 1188-1200.	3.9	150
405	Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications. Neurophotonics, 2015, 2, 031203.	1.7	29
406	F-actin forms mobile and unwinding ring-shaped structures in germinating Arabidopsis pollen expressing Lifeact. Plant Signaling and Behavior, 2015, 10, e1075684.	1.2	4
407	Multifunctional diagnostic, nanothermometer, and photothermal nano-devices. Proceedings of SPIE, 2015, , .	0.8	0
408	The Stationary-Phase Cells of <i>Saccharomyces cerevisiae</i> Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span. Molecular and Cellular Biology, 2015, 35, 3892-3908.	1.1	18
409	Applications of phototransformable fluorescent proteins for tracking the dynamics of cellular components. Photochemical and Photobiological Sciences, 2015, 14, 1787-1806.	1.6	27
410	GMCSFâ€armed vaccinia virus induces an antitumor immune response. International Journal of Cancer, 2015, 136, 1065-1072.	2.3	23
411	Endophilin marks and controls a clathrin-independent endocytic pathway. Nature, 2015, 517, 460-465.	13.7	428
412	Highly fluorescent and bioresorbable polymeric nanoparticles with enhanced photostability for cell imaging. Nanoscale, 2015, 7, 889-895.	2.8	46

#	Article	IF	CITATIONS
413	Neurons can be labeled with unique hues by helper virus-free HSV-1 vectors expressing Brainbow. Journal of Neuroscience Methods, 2015, 240, 77-88.	1.3	13
414	Microfluidics-based selection of red-fluorescent proteins with decreased rates of photobleaching. Integrative Biology (United Kingdom), 2015, 7, 263-273.	0.6	25
415	Live-cell imaging of cyanobacteria. Photosynthesis Research, 2015, 126, 33-46.	1.6	30
416	Fluorescence quantum yield measurements of fluorescent proteins: A laboratory experiment for a biochemistry or molecular biophysics laboratory course. Biochemistry and Molecular Biology Education, 2015, 43, 52-59.	0.5	34
417	Use of green fluorescent proteins for in vitro biosensing. Chemical Papers, 2015, 69, .	1.0	2
418	Live-cell imaging of neurofilament transport in cultured neurons. Methods in Cell Biology, 2016, 131, 21-90.	0.5	14
419	Fluorescent and Bioluminescent Reporter Myxoviruses. Viruses, 2016, 8, 214.	1.5	6
420	Sensitive red protein calcium indicators for imaging neural activity. ELife, 2016, 5, .	2.8	813
421	Advanced Fluorescence Protein-Based Synapse-Detectors. Frontiers in Synaptic Neuroscience, 2016, 8, 16.	1.3	16
422	A Guide to Fluorescent Protein FRET Pairs. Sensors, 2016, 16, 1488.	2.1	332
423	Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS ONE, 2016, 11, e0159292.	1.1	16
424	Intravital Fluorescence Excitation in Whole-Animal Optical Imaging. PLoS ONE, 2016, 11, e0149932.	1.1	18
425	Advances in Imaging Techniques and Genetically Encoded Probes for Photoacoustic Imaging. Theranostics, 2016, 6, 2414-2430.	4.6	38
426	COLORFUL-Circuit: A Platform for Rapid Multigene Assembly, Delivery, and Expression in Plants. Frontiers in Plant Science, 2016, 7, 246.	1.7	35
427	Correction of Mutant p63 in EEC Syndrome Using siRNA Mediated Allele-Specific Silencing Restores Defective Stem Cell Function. Stem Cells, 2016, 34, 1588-1600.	1.4	17
428	Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system. Molecular Biology of the Cell, 2016, 27, 3385-3394.	0.9	108
429	Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Scientific Reports, 2016, 6, 20889.	1.6	339
430	Expression mediated by three partial sequences of the human tyrosine hydroxylase promoter in vivo. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16062.	1.8	1

#	Article	IF	CITATIONS
431	Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration. Cell Systems, 2016, 3, 252-263.e8.	2.9	172
432	Defining Clonal Color in Fluorescent Multi-Clonal Tracking. Scientific Reports, 2016, 6, 24303.	1.6	10
433	Conformational changes in inhibitory PAS domain protein associated with binding of HIF-1 \hat{l} ± and Bcl-x _L in living cells. Journal of Biochemistry, 2017, 161, mvw068.	0.9	4
434	Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells. Biophysical Journal, 2016, 110, 1456-1465.	0.2	50
435	Energetics of ligand-receptor binding affinity on endothelial cells: An in vitro model. Colloids and Surfaces B: Biointerfaces, 2016, 144, 250-256.	2.5	12
436	Techniques for the analysis of protein-protein interactions in vivo. Plant Physiology, 2016, 171, pp.00470.2016.	2.3	177
437	Design and development of genetically encoded fluorescent sensors to monitor intracellular chemical and physical parameters. Biophysical Reviews, 2016, 8, 121-138.	1.5	81
438	Engineering of Optimized Fluorescent Proteins: An Overview from a Cyan and FRET Perspective. , 2016, , 26-55.		0
439	Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10583-10588.	3.3	26
440	Cysteine Sulfoxidation Increases the Photostability of Red Fluorescent Proteins. ACS Chemical Biology, 2016, 11, 2679-2684.	1.6	16
441	Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10702-10707.	3.3	52
442	A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy. Nature Protocols, 2016, 11, 2066-2080.	5.5	26
443	Live imaging of the genetically intractable obligate intracellular bacteria Orientia tsutsugamushi using a panel of fluorescent dyes. Journal of Microbiological Methods, 2016, 130, 169-176.	0.7	28
444	Design and Development of a Two-Color Emissive FRET Pair Based on a Photostable Fluorescent Deoxyuridine Donor Presenting a Mega-Stokes Shift. Journal of Organic Chemistry, 2016, 81, 10733-10741.	1.7	13
445	The preparation of organoboron-based stilbene nanoparticles for cell imaging. Journal of Materials Chemistry B, 2016, 4, 5515-5518.	2.9	7
446	Dopamine Receptor Signaling in MIN6 \hat{l}^2 -Cells Revealed by Fluorescence Fluctuation Spectroscopy. Biophysical Journal, 2016, 111, 609-618.	0.2	6
447	Perspectives on Fluorescence. Springer Series on Fluorescence, 2016, , .	0.8	2
448	Genetically encoded indicators of neuronal activity. Nature Neuroscience, 2016, 19, 1142-1153.	7.1	553

#	Article	IF	Citations
449	TRICK. Methods in Enzymology, 2016, 572, 123-157.	0.4	24
450	Imaging Lifetimes. Springer Series on Fluorescence, 2016, , 143-161.	0.8	0
451	The crystal structure of red fluorescent protein TagRFP-T reveals the mechanism of its superior photostability. Biochemical and Biophysical Research Communications, 2016, 477, 229-234.	1.0	6
452	The past, present and future of fluorescent protein tags in anaerobic protozoan parasites. Parasitology, 2016, 143, 260-275.	0.7	1
453	Expression of DAI by an oncolytic vaccinia virus boosts the immunogenicity of the virus and enhances antitumor immunity. Molecular Therapy - Oncolytics, 2016, 3, 16002.	2.0	32
454	Cellular GFP Toxicity and Immunogenicity: Potential Confounders in in Vivo Cell Tracking Experiments. Stem Cell Reviews and Reports, 2016, 12, 553-559.	5.6	210
455	Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons. Scientific Reports, 2016, 6, 25705.	1.6	43
456	Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12715-12720.	3.3	59
457	Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse. Journal of Neuroscience, 2016, 36, 11059-11073.	1.7	76
458	Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Scientific Reports, 2016, 5, 18405.	1.6	54
459	Identification of the endocytic sorting signal recognized by the Art1-Rsp5 ubiquitin ligase complex. Molecular Biology of the Cell, 2016, 27, 4043-4054.	0.9	61
460	Imaging Subcellular Structures in the Living Zebrafish Embryo. Journal of Visualized Experiments, 2016, , e53456.	0.2	4
461	Fluorescent reporter systems for tracking probiotic lactic acid bacteria and bifidobacteria. World Journal of Microbiology and Biotechnology, 2016, 32, 119.	1.7	22
462	Photoactivation of Luminescent Centers in Single SiO2 Nanoparticles. Nano Letters, 2016, 16, 4312-4316.	4.5	29
463	Quantitative assessment of fluorescent proteins. Nature Methods, 2016, 13, 557-562.	9.0	411
464	The Sperm TRP-3 Channel Mediates the Onset of a Ca 2+ Wave in the Fertilized C.Âelegans Oocyte. Cell Reports, 2016, 15, 625-637.	2.9	35
465	Live imaging of muscles in Drosophila metamorphosis: Towards high-throughput gene identification and function analysis. Methods, 2016, 96, 103-117.	1.9	8
466	Environmental Effects on Reactive Oxygen Species Detectionâ€"Learning from the Phagosome. Antioxidants and Redox Signaling, 2016, 25, 564-576.	2.5	14

#	Article	IF	Citations
467	TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nature Methods, 2016, 13, 147-150.	9.0	56
468	Quantification of microRNA by DNA–Peptide Probe and Liquid Chromatography–Tandem Mass Spectrometry-Based Quasi-Targeted Proteomics. Analytical Chemistry, 2016, 88, 754-763.	3.2	43
469	Turning On and Off Photoinduced Electron Transfer in Fluorescent Proteins by π-Stacking, Halide Binding, and Tyr145 Mutations. Journal of the American Chemical Society, 2016, 138, 4807-4817.	6.6	52
470	New integrative modules for multicolor-protein labeling and live-cell imaging in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2016, 16, fow027.	1.1	22
471	Brighter Red Fluorescent Proteins by Rational Design of Triple-Decker Motif. ACS Chemical Biology, 2016, 11, 508-517.	1.6	20
472	Neuronal profilins in health and disease: Relevance for spine plasticity and Fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3365-3370.	3.3	49
473	Arginine 66 Controls Dark-State Formation in Green-to-Red Photoconvertible Fluorescent Proteins. Journal of the American Chemical Society, 2016, 138, 558-565.	6.6	48
475	Optical Barcoding for Single-Clone Tracking to Study Tumor Heterogeneity. Molecular Therapy, 2017, 25, 621-633.	3.7	32
476	GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science, 2017, 355, 744-747.	6.0	410
477	Reliable CRISPR/Cas9 Genome Engineering in <i>Caenorhabditis elegans</i> Using a Single Efficient sgRNA and an Easily Recognizable Phenotype. G3: Genes, Genomes, Genetics, 2017, 7, 1429-1437.	0.8	95
478	The GCaMP-R Family of Genetically Encoded Ratiometric Calcium Indicators. ACS Chemical Biology, 2017, 12, 1066-1074.	1.6	56
479	Genetically Encoded Calcium Indicators as Probes to Assess the Role of Calcium Channels in Disease and for High-Throughput Drug Discovery. Advances in Pharmacology, 2017, 79, 141-171.	1.2	25
480	Novel Application of Red Fluorescent Protein (DsRed-Express) for the Study of Functional Dynamics of Nuclear Receptors. Journal of Fluorescence, 2017, 27, 1225-1231.	1.3	12
481	Detection and characterization of individual endocytosis of <scp>AMPA</scp> â€type glutamate receptor around postsynaptic membrane. Genes To Cells, 2017, 22, 583-590.	0.5	17
482	WASP and SCAR are evolutionarily conserved in actin-filled pseudopod-based motility. Journal of Cell Biology, 2017, 216, 1673-1688.	2.3	91
483	The Mitotic Exit Network Regulates Spindle Pole Body Selection During Sporulation of <i>Saccharomyces cerevisiae </i> . Genetics, 2017, 206, 919-937.	1.2	23
484	Visualizing RNA granule transport and translation in living neurons. Methods, 2017, 126, 177-185.	1.9	9
485	A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 2017, 4, 170095.	1.1	269

#	Article	IF	CITATIONS
486	A fully integrated, three-dimensional fluorescence to electron microscopy correlative workflow. Methods in Cell Biology, 2017, 140, 149-164.	0.5	18
487	An icosahedral virus as a fluorescent calibration standard: a method for counting protein molecules in cells by fluorescence microscopy. Journal of Microscopy, 2017, 267, 193-213.	0.8	10
488	Genetically encoded fluorescent tags. Molecular Biology of the Cell, 2017, 28, 848-857.	0.9	104
489	Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nature Methods, 2017, 14, 427-434.	9.0	138
490	Recent Advances in Development of Genetically Encoded Fluorescent Sensors. Methods in Enzymology, 2017, 589, 1-49.	0.4	79
491	Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores. Current Opinion in Structural Biology, 2017, 45, 91-99.	2.6	23
492	Intrinsic blinking of red fluorescent proteins for super-resolution microscopy. Chemical Communications, 2017, 53, 949-951.	2.2	17
493	Extending roGFP Emission via Förster-Type Resonance Energy Transfer Relay Enables Simultaneous Dual Compartment Ratiometric Redox Imaging in Live Cells. ACS Sensors, 2017, 2, 1721-1729.	4.0	13
494	High-throughput, image-based screening of pooled genetic-variant libraries. Nature Methods, 2017, 14, 1159-1162.	9.0	53
495	Novel Strategy toward AlE-Active Fluorescent Polymeric Nanoparticles from Polysaccharides: Preparation and Cell Imaging. ACS Sustainable Chemistry and Engineering, 2017, 5, 9955-9964.	3.2	42
496	Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron, 2017, 96, 572-603.	3.8	274
497	Altered synaptobrevin-II trafficking in neurons expressing a synaptophysin mutation associated with a severe neurodevelopmental disorder. Neurobiology of Disease, 2017, 108, 298-306.	2.1	25
498	Improved split fluorescent proteins for endogenous protein labeling. Nature Communications, 2017, 8, 370.	5.8	194
499	Measuring Synaptic Vesicle Endocytosis in Cultured Hippocampal Neurons. Journal of Visualized Experiments, 2017, , .	0.2	9
500	Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Scientific Reports, 2017, 7, 11999.	1.6	77
501	Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays, 2017, 39, 1700003.	1.2	320
502	Lipid droplet subset targeting of the Drosophila protein CG2254/dmLdsdh1. Journal of Cell Science, 2017, 130, 3141-3157.	1.2	21
503	Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Scientific Reports, 2017, 7, 7351.	1.6	117

#	Article	IF	CITATIONS
504	Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Developmental Biology, 2017, 430, 18-31.	0.9	13
505	Single-molecule imaging and tracking of molecular dynamics in living cells. National Science Review, 2017, 4, 739-760.	4.6	37
506	1. Fluorescent Protein Labeling Techniques. , 2017, , 1-92.		0
507	Microscopy as a statistical, $R\tilde{A}$ ©nyi-Ulam, half-lie game: a new heuristic search strategy to accelerate imaging. Scientific Reports, 2017, 7, 14652.	1.6	2
508	Anion-conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behavior. Scientific Reports, 2017, 7, 14957.	1.6	54
509	Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor. Nature Chemical Biology, 2017, 13, 1045-1052.	3.9	61
510	A pH-sensitive red fluorescent protein compatible with hydrophobic resin embedding. , 2017, , .		0
511	Improved Akt reporter reveals intra- and inter-cellular heterogeneity and oscillations in signal transduction. Journal of Cell Science, 2017, 130, 2757-2766.	1.2	15
512	Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?. Chemical Reviews, 2017, 117, 758-795.	23.0	203
513	Near-infrared emitting probes for biological imaging: Organic fluorophores, quantum dots, fluorescent proteins, lanthanide(III) complexes and nanomaterials. Journal of Luminescence, 2017, 189, 19-43.	1.5	130
514	mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature Methods, 2017, 14, 53-56.	9.0	838
515	Struggle for photostability: Bleaching mechanisms of fluorescent proteins. Russian Journal of Bioorganic Chemistry, 2017, 43, 625-633.	0.3	9
516	Photodynamic Physiologyâ€"Photonanomanipulations in Cellular Physiology with Protein Photosensitizers. Frontiers in Physiology, 2017, 8, 191.	1.3	29
517	Chemical reactivation of resin-embedded pHuji adds red for simultaneous two-color imaging with EGFP. Biomedical Optics Express, 2017, 8, 3281.	1.5	15
518	Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities. International Journal of Molecular Sciences, 2017, 18, 2078.	1.8	58
519	A Combination of DNA-peptide Probes and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS): A Quasi-Targeted Proteomics Approach for Multiplexed MicroRNA Quantification. Theranostics, 2017, 7, 2849-2862.	4.6	24
520	Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography. International Journal of Molecular Sciences, 2017, 18, 1187.	1.8	14
521	Nuclear-Encoded Plastidal Carbonic Anhydrase Is Involved in Replication of Bamboo mosaic virus RNA in Nicotiana benthamiana. Frontiers in Microbiology, 2017, 8, 2046.	1.5	11

#	Article	IF	CITATIONS
522	The Generation of Mouse and Human Huntington Disease iPS Cells Suitable for In vitro Studies on Huntingtin Function. Frontiers in Molecular Neuroscience, 2017, 10, 253.	1.4	30
523	Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. PLoS ONE, 2017, 12, e0171257.	1.1	70
524	Near Infrared Light Sensitive Ultraviolet–Blue Nanophotoswitch for Imaging-Guided "Off–On― Therapy. ACS Nano, 2018, 12, 3217-3225.	7.3	113
525	Methods for imaging mammalian mitochondrial morphology: AÂprospective on MitoGraph. Analytical Biochemistry, 2018, 552, 81-99.	1.1	60
526	Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nature Neuroscience, 2018, 21, 638-646.	7.1	171
527	A guide to choosing fluorescent protein combinations for flow cytometric analysis based on spectral overlap. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 556-562.	1.1	13
528	Directed Evolution to Engineer Monobody for FRET Biosensor Assembly and Imaging at Live-Cell Surface. Cell Chemical Biology, 2018, 25, 370-379.e4.	2.5	23
529	Light-induced oxidant production by fluorescent proteins. Free Radical Biology and Medicine, 2018, 128, 157-164.	1.3	51
530	<i>Csf1r</i> -mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System. Journal of Immunology, 2018, 200, 2209-2223.	0.4	75
531	Timeâ€Resolved Studies of Energy Transfer in Thin Films of Green and Red Fluorescent Proteins. Advanced Functional Materials, 2018, 28, 1706300.	7.8	12
532	Surveying the landscape of optogenetic methods for detection of protein-protein interactions. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1415.	6.6	11
533	Fluorescence Recovery Allows the Implementation of a Fluorescence Reporter Gene Platform Applicable for the Detection and Quantification of Horizontal Gene Transfer in Anoxic Environments. Applied and Environmental Microbiology, 2018, 84, .	1.4	13
534	Designing Flavoprotein-GFP Fusion Probes for Analyte-Specific Ratiometric Fluorescence Imaging. Biochemistry, 2018, 57, 1178-1189.	1.2	7
535	Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1813-1818.	3.3	37
536	Spatiotemporal organization of exocytosis emerges during neuronal shape change. Journal of Cell Biology, 2018, 217, 1113-1128.	2.3	44
537	Genetically Encoded Glutamate Indicators with Altered Color and Topology. ACS Chemical Biology, 2018, 13, 1832-1837.	1.6	67
538	Spectrally Resolved Fiber Photometry for Multi-component Analysis of Brain Circuits. Neuron, 2018, 98, 707-717.e4.	3.8	128
539	A unique signal sequence of the chemokine receptor CCR7 promotes package into COPII vesicles for efficient receptor trafficking. Journal of Leukocyte Biology, 2018, 104, 375-389.	1.5	8

#	Article	IF	CITATIONS
540	Photophysical Behavior of mNeonGreen, an Evolutionarily Distant Green Fluorescent Protein. Biophysical Journal, 2018, 114, 2419-2431.	0.2	25
541	Molecular cloning, expression, and characterization of UDP N-acetyl-α-d-galactosamine: Polypeptide N-acetylgalactosaminyltransferase 4 from Cryptosporidium parvum. Molecular and Biochemical Parasitology, 2018, 221, 56-65.	0.5	7
542	Transgenic Techniques for Investigating Cell Biology During Development. Advances in Experimental Medicine and Biology, 2018, 1029, 153-164.	0.8	3
543	Nanoscale gizmos – the novel fluorescent probes for monitoring protein activity. Biochemical Engineering Journal, 2018, 133, 83-95.	1.8	4
544	Combining gold nanoparticle antennas with single-molecule fluorescence resonance energy transfer (smFRET) to study DNA hairpin dynamics. Nanoscale, 2018, 10, 6611-6619.	2.8	13
545	Altered Connectivity and Synapse Maturation of the Hippocampal Mossy Fiber Pathway in a Mouse Model of the Fragile X Syndrome. Cerebral Cortex, 2018, 28, 852-867.	1.6	35
546	Liveâ€cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS Journal, 2018, 285, 203-219.	2.2	63
547	Development of triphenylamine-based fluorescent probe with a large Stokes' shift suitable for locating mitochondria. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 1-8.	2.0	10
548	Argonaute Proteins. Methods in Molecular Biology, 2018, , .	0.4	2
549	Assessing miR-451 Activity and Its Role in Erythropoiesis. Methods in Molecular Biology, 2018, 1680, 179-190.	0.4	5
550	Fluorescence detection, enumeration and characterization of single circulating cells <i>in vivo</i> technology, applications and future prospects. Physics in Medicine and Biology, 2018, 63, 01TR01.	1.6	31
551	A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening. Analytical Biochemistry, 2018, 540-541, 52-63.	1.1	10
552	Chloroplast division protein ARC3 acts on FtsZ2 by preventing filament bundling and enhancing GTPase activity. Biochemical Journal, 2018, 475, 99-115.	1.7	11
553	Transfection of choanoflagellates illuminates their cell biology and the ancestry of animal septins. Molecular Biology of the Cell, 2018, 29, 3026-3038.	0.9	56
554	Synaptic Convergence Patterns onto Retinal Ganglion Cells Are Preserved despite Topographic Variation in Pre- and Postsynaptic Territories. Cell Reports, 2018, 25, 2017-2026.e3.	2.9	31
555	Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chemical Reviews, 2018, 118, 11707-11794.	23.0	351
556	CLIP-170 is essential for MTOC repositioning during T cell activation by regulating dynein localisation on the cell surface. Scientific Reports, 2018, 8, 17447.	1.6	12
557	Peak emission wavelength and fluorescence lifetime are coupled in far-red, GFP-like fluorescent proteins. PLoS ONE, 2018, 13, e0208075.	1.1	20

#	Article	IF	CITATIONS
558	Optical Temperature Sensing With Infrared Excited Upconversion Nanoparticles. Frontiers in Chemistry, 2018, 6, 416.	1.8	27
559	Generation of mouse-zebrafish hematopoietic tissue chimeric embryos for hematopoiesis and host-pathogen interaction studies. DMM Disease Models and Mechanisms, 2018, 11 , .	1.2	19
560	Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone. BMC Biology, 2018, 16, 108.	1.7	62
561	ADAP is an upstream regulator that precedes SLP-76 at sites of TCR engagement and stabilizes signaling microclusters. Journal of Cell Science, 2018, 131, .	1.2	18
562	Fluorescence Multiplexing with Spectral Imaging and Combinatorics. ACS Combinatorial Science, 2018, 20, 653-659.	3.8	15
563	Cell Membranes Resist Flow. Cell, 2018, 175, 1769-1779.e13.	13.5	254
564	Genetically encoded fluorescent indicators for live cell pH imaging. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2924-2939.	1.1	47
565	Spectroscopic Analysis of the Cu2+-Induced Fluorescence Quenching of Fluorescent Proteins AmCyan and mOrange2. Molecular Biotechnology, 2018, 60, 485-491.	1.3	9
566	A universal vector concept for a direct genotyping of transgenic organisms and a systematic creation of homozygous lines. ELife, 2018, 7, .	2.8	13
567	Directed evolution of excited state lifetime and brightness in FusionRed using a microfluidic sorter. Integrative Biology (United Kingdom), 2018, 10, 516-526.	0.6	22
568	Achieving superresolution with illumination-enhanced sparsity. Optics Express, 2018, 26, 9850.	1.7	8
569	Nanomedicine. Experientia Supplementum (2012), 2018, , .	0.5	0
570	A New Suite of Plasmid Vectors for Fluorescence-Based Imaging of Root Colonizing Pseudomonads. Frontiers in Plant Science, 2017, 8, 2242.	1.7	33
571	Visualization of Synchronous or Asynchronous Release of Single Synaptic Vesicle in Active-Zone-Like Membrane Formed on Neuroligin-Coated Glass Surface. Frontiers in Cellular Neuroscience, 2018, 12, 140.	1.8	7
572	Fluorescent Proteins for Investigating Biological Events in Acidic Environments. International Journal of Molecular Sciences, 2018, 19, 1548.	1.8	88
573	Toward Lightâ€Regulated Living Biomaterials. Advanced Science, 2018, 5, 1800383.	5.6	35
574	Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells. Brain Structure and Function, 2018, 223, 3011-3043.	1.2	42
575	A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578. BMC Biology, 2018, 16, 9.	1.7	83

#	Article	IF	CITATIONS
576	Glucose Uptake via STP Transporters Inhibits in Vitro Pollen Tube Growth in a HEXOKINASE1-Dependent Manner in <i>Arabidopsis thaliana</i> Plant Cell, 2018, 30, 2057-2081.	3.1	49
577	Single Live Cell Monitoring of Protein Turnover Reveals Intercellular Variability and Cell-Cycle Dependence of Degradation Rates. Molecular Cell, 2018, 71, 1079-1091.e9.	4.5	50
578	A high-throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure. PLoS Biology, 2018, 16, e2004624.	2.6	47
579	Phase Engineering of Hydrophobic Meso-Environments in Silica Particles for Technical Performance Enrichment. Langmuir, 2018, 34, 7428-7435.	1.6	3
580	Peripheral infrastructure vectors and an extended set of plant parts for the Modular Cloning system. PLoS ONE, 2018, 13, e0197185.	1.1	48
581	Tracking the sarcoplasmic reticulum membrane voltage in muscle with a FRET biosensor. Journal of General Physiology, 2018, 150, 1163-1177.	0.9	20
582	Enhancing fluorescent protein photostability through robot-assisted photobleaching. Integrative Biology (United Kingdom), 2018, 10, 419-428.	0.6	12
583	Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science, 2019, 98, 101149.	11.8	179
584	Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature, 2019, 571, 349-354.	13.7	162
585	Using a Robust and Sensitive GFP-Based cGMP Sensor for Real-Time Imaging in Intact <i>Caenorhabditis elegans</i> . Genetics, 2019, 213, 59-77.	1.2	23
586	Imaging, Visualization, and Computation in Developmental Biology. Annual Review of Biomedical Data Science, 2019, 2, 223-251.	2.8	11
587	VEGAS as a Platform for Facile Directed Evolution in Mammalian Cells. Cell, 2019, 178, 748-761.e17.	13.5	68
588	Novel fluorescent probe with a bridged Si–O–Si bond for the reversible detection of hypochlorous acid and biothiol amino acids in live cells and zebrafish. Analyst, The, 2019, 144, 5075-5080.	1.7	20
589	Synthesis and Characterization of Oxygen-Embedded Quinoidal Pentacene and Nonacene. Journal of the American Chemical Society, 2019, 141, 2169-2176.	6.6	57
590	Flow cytometry-based FRET identifies binding intensities in PPAR \hat{I}^31 protein-protein interactions in living cells. Theranostics, 2019, 9, 5444-5463.	4.6	6
591	Label-free Single-Molecule Quantification of Rapamycin-induced FKBP–FRB Dimerization for Direct Control of Cellular Mechanotransduction. Nano Letters, 2019, 19, 7514-7525.	4.5	23
592	Perspective Tools for Optogenetics and Photopharmacology: From Design to Implementation. Springer Series in Chemical Physics, 2019, , 139-172.	0.2	4
593	Novel fluorene-based fluorescent probe with excellent stability for selective detection of SCN ^{â°} and its applications in paper-based sensing and bioimaging. Journal of Materials Chemistry B, 2019, 7, 4649-4654.	2.9	18

#	Article	IF	CITATIONS
594	The Birth and Death of Toxins with Distinct Functions: A Case Study in the Sea Anemone Nematostella. Molecular Biology and Evolution, 2019, 36, 2001-2012.	3.5	48
595	Patronin-mediated minus end growth is required for dendritic microtubule polarity. Journal of Cell Biology, 2019, 218, 2309-2328.	2.3	60
596	Dynamic assembly of ribbon synapses and circuit maintenance in a vertebrate sensory system. Nature Communications, 2019, 10, 2167.	5.8	24
597	Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature, 2019, 569, 413-417.	13.7	255
598	Rapid and efficient generation of <scp>GFP</scp> â€knockedâ€in <i>Drosophila</i> by the <scp>CRISPR</scp> â€Cas9â€mediated genome editing. Development Growth and Differentiation, 2019, 61, 265-275.	0.6	23
599	A modular toolset of phiC31-based fluorescent protein tagging vectors for Drosophila. Fly, 2019, 13, 29-41.	0.9	3
600	Membrane-Bound Protein Scaffolding in Diverse Hosts Using Thylakoid Protein CURT1A. ACS Synthetic Biology, 2019, 8, 611-620.	1.9	12
601	CemOrange2 fusions facilitate multifluorophore subcellular imaging in C. elegans. PLoS ONE, 2019, 14, e0214257.	1.1	11
602	Fluorophores and Fluorescent Proteins. , 2019, , 405-423.		0
603	Identification of regulatory elements recapitulating early expression of L-plastin in the zebrafish enveloping layer and embryonic periderm. Gene Expression Patterns, 2019, 32, 53-66.	0.3	7
604	Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation. Frontiers in Immunology, 2019, 10, 675.	2.2	57
605	In vivo characterisation of fluorescent proteins in budding yeast. Scientific Reports, 2019, 9, 2234.	1.6	71
606	Folding Latency of Fluorescent Proteins Affects the Mitochondrial Localization of Fusion Proteins. Cell Structure and Function, 2019, 44, 183-194.	0.5	8
607	Raman spectroscopy and its use for live cell and tissue analysis. Biomedical Spectroscopy and Imaging, 2019, 7, 97-104.	1.2	11
608	Polysiloxane-based hyperbranched fluorescent materials prepared by thiol-ene "click―chemistry as potential cellular imaging polymers. European Polymer Journal, 2019, 112, 515-523.	2.6	13
609	Assessment of Functionals for TDDFT Calculations of One- and Two-Photon Absorption Properties of Neutral and Anionic Fluorescent Proteins Chromophores. Journal of Chemical Theory and Computation, 2019, 15, 490-508.	2.3	27
610	Accelerated genome engineering of <i>Pseudomonas putida</i> by lâ€ <i>Sce</i> l―mediated recombination and <scp>CRISPR</scp> â€Cas9 counterselection. Microbial Biotechnology, 2020, 13, 233-249.	2.0	99
611	Analysis of the impact of CSF-1 administration in adult rats using a novel <i>Csf1r</i> -mApple reporter gene. Journal of Leukocyte Biology, 2020, 107, 221-235.	1.5	35

#	Article	IF	CITATIONS
612	Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. Advanced Science, 2020, 7, 1901923.	5.6	26
613	Neurochemical Organization of the Drosophila Brain Visualized by Endogenously Tagged Neurotransmitter Receptors. Cell Reports, 2020, 30, 284-297.e5.	2.9	93
614	Expression and Characterization of a Bright Far-red Fluorescent Protein from the Pink-Pigmented Tissues of Porites lobata. Marine Biotechnology, 2020, 22, 67-80.	1.1	2
615	Genetically encoded single circularly permuted fluorescent protein-based intensity indicators. Journal Physics D: Applied Physics, 2020, 53, 113001.	1.3	10
616	AlE-active fluorescent polymeric nanoparticles about dextran derivative: preparation and bioimaging application. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 504-518.	1.9	0
617	Overcoming presynaptic effects of VAMP2 mutations with 4â€aminopyridine treatment. Human Mutation, 2020, 41, 1999-2011.	1.1	11
618	Toxin-like neuropeptides in the sea anemone <i>Nematostella</i> unravel recruitment from the nervous system to venom. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27481-27492.	3.3	24
619	Visualization of cytoplasmic organelles via in-resin CLEM using an osmium-resistant far-red protein. Scientific Reports, 2020, 10, 11314.	1.6	19
620	mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30710-30721.	3.3	76
621	Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca ²⁺ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. Lab on A Chip, 2020, 20, 3011-3023.	3.1	19
622	Visible Light Electromagnetic Interaction of PM567 Chiral Dye for Asymmetric Photocatalysis, a First-Principles Investigation. Catalysts, 2020, 10, 882.	1.6	1
623	Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology. Cell Chemical Biology, 2020, 27, 904-920.	2.5	63
624	Versatile phenotype-activated cell sorting. Science Advances, 2020, 6, .	4.7	33
625	Developing a Functional Poly(dimethylsiloxane)-Based Microbial Nanoculture System Using Dimethylallylamine. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50581-50591.	4.0	8
626	The Rag GTPase Regulates the Dynamic Behavior of TSC Downstream of Both Amino Acid and Growth Factor Restriction. Developmental Cell, 2020, 55, 272-288.e5.	3.1	22
627	HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science, 2020, 369, .	6.0	218
628	Hybrid-architectured double-promoter expression systems enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media. Applied Microbiology and Biotechnology, 2020, 104, 8381-8397.	1.7	11
629	Visualization of Autophagy Progression by a Red–Green–Blue Autophagy Sensor. ACS Sensors, 2020, 5, 3850-3861.	4.0	10

#	Article	IF	CITATIONS
630	Live-cell FLIM-FRET using a commercially available system. Methods in Cell Biology, 2020, 158, 63-89.	0.5	2
631	Production of Recombinant African Swine Fever Viruses: Speeding Up the Process. Viruses, 2020, 12, 615.	1.5	13
632	Optical Control of Cellular ATP Levels with a Photocaged Adenylate Kinase. ChemBioChem, 2020, 21, 1832-1836.	1.3	14
633	Endosomal Wnt signaling proteins control microtubule nucleation in dendrites. PLoS Biology, 2020, 18, e3000647.	2.6	39
634	Novel Imaging Modalities Shedding Light on Plant Biology: Start Small and Grow Big. Annual Review of Plant Biology, 2020, 71, 789-816.	8.6	22
635	Vav2 lacks Ca2+ entry-promoting scaffolding functions unique to Vav1 and inhibits T cell activation via Cdc42. Journal of Cell Science, 2020, 133, .	1.2	5
636	Genetically Encodable Fluorescent and Bioluminescent Biosensors Light Up Signaling Networks. Trends in Biochemical Sciences, 2020, 45, 889-905.	3.7	42
637	Characterisation of endogenous Claudinâ€1 expression, motility and susceptibility to hepatitis C virus in CRISPR knockâ€in cells. Biology of the Cell, 2020, 112, 140-151.	0.7	4
638	A comprehensive dataset of image sequences covering 20 fluorescent protein labels and 12 imaging conditions for use in super-resolution imaging. Data in Brief, 2020, 29, 105273.	0.5	5
639	Fluorescent reporters for functional analysis in rice leaves. Plant Direct, 2020, 4, e00188.	0.8	8
640	BAFF Produced by Neutrophils and Dendritic Cells Is Regulated Differently and Has Distinct Roles in Antibody Responses and Protective Immunity against West Nile Virus. Journal of Immunology, 2020, 204, 1508-1520.	0.4	30
641	Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods and Applications in Fluorescence, 2020, 8, 022001.	1.1	183
642	Multiparameter screening method for developing optimized red-fluorescent proteins. Nature Protocols, 2020, 15, 450-478.	5.5	22
643	DNA binding fluorescent proteins as single-molecule probes. Analyst, The, 2020, 145, 4079-4095.	1.7	12
644	Red Photoactivatable Genetic Optical-Indicators. Frontiers in Cellular Neuroscience, 2020, 14, 113.	1.8	8
645	A rationally enhanced red fluorescent protein expands the utility of FRET biosensors. Nature Communications, 2020, $11,1848$.	5.8	51
646	Shedding light on ultrafast ring-twisting pathways of halogenated GFP chromophores from the excited to ground state. Physical Chemistry Chemical Physics, 2021, 23, 14636-14648.	1.3	15
647	Blue-conversion of organic dyes produces artifacts in multicolor fluorescence imaging. Chemical Science, 2021, 12, 8660-8667.	3.7	8

#	ARTICLE	IF	CITATIONS
648	NeuroPAL: A Multicolor Atlas for Whole-Brain Neuronal Identification in C.Âelegans. Cell, 2021, 184, 272-288.e11.	13.5	132
649	Fluorescent Labeling and Confocal Microcopy of Plastids and Stromules. Methods in Molecular Biology, 2021, 2317, 109-132.	0.4	0
650	Choosing Fluorescent Probes and Labeling Systems. Methods in Molecular Biology, 2021, 2304, 37-64.	0.4	2
651	Current and future challenges in polymeric nanomaterials for biomedical applications., 2021,, 327-359.		0
652	Molecular Imaging of Cellular Signaling Pathways. , 2021, , 929-941.		0
653	Innovative fluorescent probes for in vivo visualization of biomolecules in living <i>Caenorhabditis elegans</i> . Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 560-574.	1.1	5
654	Chemical sectioning fluorescence tomography: high-throughput, high-contrast, multicolor, whole-brain imaging at subcellular resolution. Cell Reports, 2021, 34, 108709.	2.9	34
655	Multiplexed labeling of cellular proteins with split fluorescent protein tags. Communications Biology, 2021, 4, 257.	2.0	13
656	Structure- and mechanism-guided design of single fluorescent protein-based biosensors. Nature Chemical Biology, 2021, 17, 509-518.	3.9	134
657	Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathogens, 2021, 17, e1009282.	2.1	42
658	Current molecular approaches to investigate preâ€synaptic dysfunction. Journal of Neurochemistry, 2021, 157, 107-129.	2.1	2
659	Turning up the Green Light. Trends in Cell Biology, 2021, 31, 143-145.	3.6	0
661	pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps. Nature Communications, 2021, 12, 1413.	5.8	34
663	High-pulse-energy multiphoton imaging of neurons and oligodendrocytes in deep murine brain with a fiber laser. Scientific Reports, 2021, 11, 7950.	1.6	10
665	Biochemical Activity Architectures Visualized–Using Genetically Encoded Fluorescent Biosensors to Map the Spatial Boundaries of Signaling Compartments. Accounts of Chemical Research, 2021, 54, 2409-2420.	7.6	16
666	N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses, 2021, 13, 815.	1.5	12
667	BAC transgenic mice to study the expression of P2X2 and P2Y1 receptors. Purinergic Signalling, 2021, 17, 449-465.	1.1	4
668	VASP-mediated actin dynamics activate and recruit a filopodia myosin. ELife, 2021, 10, .	2.8	11

#	ARTICLE	IF	CITATIONS
669	Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chemical Biology, 2022, 29, 98-108.e4.	2.5	14
670	A Primed Subpopulation of Bacteria Enables Rapid Expression of the Type 3 Secretion System in Pseudomonas aeruginosa. MBio, 2021, 12, e0083121.	1.8	4
671	Cell-type–specific, multicolor labeling of endogenous proteins with split fluorescent protein tags in ⟨i⟩Drosophila⟨/i⟩. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
672	Multiple pathways of toxicity induced by C9orf72 dipeptide repeat aggregates and G4C2 RNA in a cellular model. ELife, 2021, 10 , .	2.8	17
673	The fluorescent protein stability assay: an efficient method for monitoring intracellular protein stability. BioTechniques, 2021, 70, 336-344.	0.8	1
674	Fluorescent Protein-Based Autophagy Biosensors. Materials, 2021, 14, 3019.	1.3	6
675	Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chemical Research in Toxicology, 2021, 34, 1826-1845.	1.7	9
677	Photo-Switching of Protein Dynamical Collectivity. Photonics, 2021, 8, 302.	0.9	2
678	Deletion of the K145R and DP148R Genes from the Virulent ASFV Georgia 2007/1 Isolate Delays the Onset, but Does Not Reduce Severity, of Clinical Signs in Infected Pigs. Viruses, 2021, 13, 1473.	1.5	6
679	A deterministic genotyping workflow reduces waste of transgenic individuals by two-thirds. Scientific Reports, 2021, 11, 15325.	1.6	2
680	Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coordination Chemistry Reviews, 2021, 440, 213979.	9.5	18
681	Filopodia powered by class x myosin promote fusion of mammalian myoblasts. ELife, 2021, 10, .	2.8	9
682	DrFLINC Contextualizes Super-resolution Activity Imaging. Journal of the American Chemical Society, 2021, 143, 14951-14955.	6.6	5
684	In-vivo Single-Molecule Imaging in Yeast: Applications and Challenges. Journal of Molecular Biology, 2021, 433, 167250.	2.0	3
685	The nuclear lamina is a hub for the nuclear function of Jacob. Molecular Brain, 2021, 14, 9.	1.3	6
686	Protein Engineering for Molecular Imaging. , 2021, , 753-770.		0
687	Algorithms for the selection of fluorescent reporters. Communications Biology, 2021, 4, 118.	2.0	3
688	Longâ€Term Multilayer Adherent Network (MAN) Expansion, Maintenance, and Characterization, Chemical and Genetic Manipulation, and Transplantation of Human Fetal Forebrain Neural Stem Cells. Current Protocols in Stem Cell Biology, 2009, 9, Unit2D.3.	3.0	14

#	Article	IF	CITATIONS
689	Single-Molecule Imaging in Live Cells. , 2009, , 43-93.		7
690	Analysis of Actin Turnover and Spine Dynamics in Hippocampal Slice Cultures. Neuromethods, 2014, , 189-217.	0.2	3
691	Fluorescence Resonance Energy Transfer Microscopy (FRET). Methods in Molecular Biology, 2015, 1251, 67-82.	0.4	15
692	Fluorescence Correlation Spectroscopy. Methods in Molecular Biology, 2015, 1251, 135-150.	0.4	10
693	A Review of Fluorescent Proteins for Use in Yeast. Methods in Molecular Biology, 2016, 1369, 309-346.	0.4	11
694	Live Imaging Mouse Embryonic Development: Seeing Is Believing and Revealing. Methods in Molecular Biology, 2014, 1092, 405-420.	0.4	13
695	Low Magnification Confocal Microscopy of Tumor Angiogenesis. Methods in Molecular Biology, 2014, 1075, 149-175.	0.4	2
696	The Design and Application of Genetically Encodable Biosensors Based on Fluorescent Proteins. Methods in Molecular Biology, 2014, 1071, 1-16.	0.4	9
697	Fluorescent Labeling and Confocal Microscopic Imaging of Chloroplasts and Non-green Plastids. Methods in Molecular Biology, 2014, 1132, 125-143.	0.4	1
698	Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish. Journal of Cell Biology, 2020, 219, .	2.3	18
715	SOFlevaluator: a strategy for the quantitative quality assessment of SOFI data. Biomedical Optics Express, 2020, 11, 636.	1.5	22
716	Applications of Red Calcium Indicators for Imaging Neural Activity. , 2016, , .		3
717	Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO. PLoS Genetics, 2020, 16, e1008928.	1.5	14
718	mRuby, a Bright Monomeric Red Fluorescent Protein for Labeling of Subcellular Structures. PLoS ONE, 2009, 4, e4391.	1.1	197
719	Live Imaging of Mitosomes and Hydrogenosomes by HaloTag Technology. PLoS ONE, 2012, 7, e36314.	1.1	23
720	Mining the Sinorhizobium meliloti Transportome to Develop FRET Biosensors for Sugars, Dicarboxylates and Cyclic Polyols. PLoS ONE, 2012, 7, e43578.	1.1	14
721	Dissecting the Nanoscale Distributions and Functions of Microtubule-End-Binding Proteins EB1 and ch-TOG in Interphase HeLa Cells. PLoS ONE, 2012, 7, e51442.	1.1	57
722	Characterization of Flavin-Based Fluorescent Proteins: An Emerging Class of Fluorescent Reporters. PLoS ONE, 2013, 8, e64753.	1.1	103

#	Article	IF	CITATIONS
723	Dynamics of the Full Length and Mutated Heat Shock Factor 1 in Human Cells. PLoS ONE, 2013, 8, e67566.	1.1	13
724	Improved Blue, Green, and Red Fluorescent Protein Tagging Vectors for S. cerevisiae. PLoS ONE, 2013, 8, e67902.	1.1	187
725	Fitness Loss and Library Size Determination in Saturation Mutagenesis. PLoS ONE, 2013, 8, e68069.	1.1	14
726	LPS Structure and PhoQ Activity Are Important for Salmonella Typhimurium Virulence in the Gallleria mellonella Infection Model. PLoS ONE, 2013, 8, e73287.	1.1	45
727	A Novel Piggybac Transposon Inducible Expression System Identifies a Role for Akt Signalling in Primordial Germ Cell Migration. PLoS ONE, 2013, 8, e77222.	1.1	25
728	An Engineered Palette of Metal Ion Quenchable Fluorescent Proteins. PLoS ONE, 2014, 9, e95808.	1.1	23
729	An Isoprenylation and Palmitoylation Motif Promotes Intraluminal Vesicle Delivery of Proteins in Cells from Distant Species. PLoS ONE, 2014, 9, e107190.	1.1	14
730	Colorful Protein-Based Fluorescent Probes for Collagen Imaging. PLoS ONE, 2014, 9, e114983.	1.1	86
731	X-Ray Crystal Structure and Properties of Phanta, a Weakly Fluorescent Photochromic GFP-Like Protein. PLoS ONE, 2015, 10, e0123338.	1.1	2
732	Survey of Red Fluorescence Proteins as Markers for Secretory Granule Exocytosis. PLoS ONE, 2015, 10, e0127801.	1.1	43
733	Global Analysis of CPEBs Reveals Sequential and Non-Redundant Functions in Mitotic Cell Cycle. PLoS ONE, 2015, 10, e0138794.	1.1	22
734	In Vivo and In Vitro Detection of Luminescent and Fluorescent Lactobacillus reuteri and Application of Red Fluorescent mCherry for Assessing Plasmid Persistence. PLoS ONE, 2016, 11, e0151969.	1.1	32
735	Carboxypeptidase E, Identified As a Direct Interactor of Growth Hormone, Is Important for Efficient Secretion of the Hormone. Molecules and Cells, 2016, 39, 756-761.	1.0	5
736	Design of a New [PSI+]-No-More Mutation in SUP35 With Strong Inhibitory Effect on the [PSI+] Prion Propagation. Frontiers in Molecular Neuroscience, 2019, 12, 274.	1.4	10
737	A versatile set of Lifeact-RFP expression plasmids for live-cell imaging of F-actin in filamentous fungi. Fungal Genetics Reports, 2010, 57, 8-14.	0.6	22
738	A family of photoswitchable NMDA receptors. ELife, 2016, 5, .	2.8	73
739	Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. ELife, 2020, 9, .	2.8	115
740	An image-based data-driven analysis of cellular architecture in a developing tissue. ELife, 2020, 9, .	2.8	24

#	Article	IF	CITATIONS
741	Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics in mammalian cells. ELife, 2020, 9, .	2.8	37
742	Role of African Swine Fever Virus Proteins EP153R and EP402R in Reducing Viral Persistence in Blood and Virulence in Pigs Infected with Beninl "DP148R. Journal of Virology, 2022, 96, JVI0134021.	1.5	25
743	Characterization of Astrocyte Morphology and Function Using a Fast and Reliable Tissue Clearing Technique. Current Protocols, 2021, 1, e279.	1.3	1
745	Chapter 3 Visible Fluorescent Proteins for FRET-FLIM. , 2009, , 65-92.		0
746	Overview of Cancer Detection and Monitoring Strategies., 2010,, 81-100.		0
747	In Vivo Bacterial Morphogenetic Protein Interactions. , 0, , .		0
748	Fluorescence Microscopy Imaging in Biomedical Sciences. Biological and Medical Physics Series, 2013, , 79-110.	0.3	1
750	Data Analysis for Single-Molecule Localization Microscopy. Neuromethods, 2014, , 113-132.	0.2	0
751	Applications of Small-Animal Molecular Imaging of Gene Expression. , 2014, , 685-713.		0
753	Discovery and Development of Spectrally Diverse Channelrhodopsins (ChR) for Neurobiological Applications. Biological and Medical Physics Series, 2015, , 129-146.	0.3	0
754	A pH-sensitive red fluorescent protein enables chemical reactivation in hydrophobic resin. , 2016, , .		0
765	Specific Systems for Evaluation. Experientia Supplementum (2012), 2018, 110, 99-123.	0.5	0
774	Flybow to Dissect Circuit Assembly in the Drosophila Brain: An Update. Methods in Molecular Biology, 2020, 2047, 137-152.	0.4	1
778	Ultra-Sensitive Water Detection Based on NaErF4@NaYF4 High-Level-Doping Upconversion Nanoparticles. Applied Surface Science, 2021, 575, 151701.	3.1	7
779	FRCaMP, a Red Fluorescent Genetically Encoded Calcium Indicator Based on Calmodulin from Schizosaccharomyces Pombe Fungus. International Journal of Molecular Sciences, 2021, 22, 111.	1.8	7
780	Two-color in-resin CLEM of Epon-embedded cells using osmium resistant green and red fluorescent proteins. Scientific Reports, 2020, 10, 21871.	1.6	17
783	Increasing the Fluorescence Brightness of Superphotostable EGFP Mutant by Introducing Mutations That Block Chromophore Protonation. Russian Journal of Bioorganic Chemistry, 2020, 46, 1229-1241.	0.3	1
784	Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell, 2021, 184, 6193-6206.e14.	13.5	29

#	Article	IF	CITATIONS
785	Septin-microtubule association via a motif unique to the isoform 1 of septin 9 tunes stress fibers. Journal of Cell Science, $2021, \dots$	1.2	12
786	Controlling Microbial Dynamics through Selective Solute Transport across Functional Nanocultures. ACS Applied Polymer Materials, 2022, 4, 2999-3012.	2.0	1
787	$\langle i \rangle N \langle i \rangle$ -Glycolylneuraminic Acid Binding of Avian and Equine H7 Influenza A Viruses. Journal of Virology, 2022, 96, jvi0212021.	1.5	14
788	Quantitative Analysis of Presynaptic Vesicle Luminal pH in Cultured Neurons. Methods in Molecular Biology, 2022, 2417, 45-58.	0.4	0
789	Chemically induced protein cage assembly with programmable opening and cargo release. Science Advances, 2022, 8, eabj9424.	4.7	24
790	Differential Effect of Deleting Members of African Swine Fever Virus Multigene Families 360 and 505 from the Genotype II Georgia 2007/1 Isolate on Virus Replication, Virulence, and Induction of Protection. Journal of Virology, 2022, 96, jvi0189921.	1.5	25
791	Recent Advancements in Tracking Bacterial Effector Protein Translocation. Microorganisms, 2022, 10, 260.	1.6	8
793	zMADM (zebrafish mosaic analysis with double markers) for single-cell gene knockout and dual-lineage tracing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
795	A procedure for Dex-induced gene transactivation in Arabidopsis ovules. Plant Methods, 2022, 18, 41.	1.9	2
796	Subcellular localization of mutant P23H rhodopsin in an RFP fusion knock-in mouse model of retinitis pigmentosa. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	6
797	Functional characterization of a  plant-like' HYL1 homolog in the cnidarian Nematostella vectensis indicates a conserved involvement in microRNA biogenesis. ELife, 2022, 11, .	2.8	14
798	Live cell tracking of macrophage efferocytosis during <i>Drosophila</i> embryo development in vivo. Science, 2022, 375, 1182-1187.	6.0	30
799	Over the rainbow: structural characterization of the chromoproteins gfasPurple, amilCP, spisPink and eforRed. Acta Crystallographica Section D: Structural Biology, 2022, 78, 599-612.	1.1	2
800	A novel red fluorescence dopamine biosensor selectively detects dopamine in the presence of norepinephrine in vitro. Molecular Brain, 2021, 14, 173.	1.3	15
801	The function of chloroplast ferredoxinâ€NADP ⁺ oxidoreductase positively regulates the accumulation of bamboo mosaic virus in <i>Nicotiana benthamiana</i> . Molecular Plant Pathology, 2022, 23, 503-515.	2.0	5
823	A highly photostable and bright green fluorescent protein. Nature Biotechnology, 2022, 40, 1132-1142.	9.4	65
826	In Vivo Click Chemistry Enables Multiplexed Intravital Microscopy. Advanced Science, 2022, 9, .	5.6	14
827	Mitosis of hepatitis B virus-infected cells inÂvitro results in uninfected daughter cells. JHEP Reports, 2022, 4, 100514.	2.6	8

#	Article	IF	CITATIONS
828	Visualizing molecules of functional human profilin. ELife, 0, 11, .	2.8	11
830	21 Fluorescent Protein-Based DNA Staining Dyes. Molecules, 2022, 27, 5248.	1.7	3
831	Genetic Modification of Primary Human Myeloid Cells to Study Cell Migration, Activation, and Organelle Dynamics. Current Protocols, 2022, 2, .	1.3	1
832	Activation of mitochondrial TRAP1 stimulates mitochondria-lysosome crosstalk and correction of lysosomal dysfunction. IScience, 2022, 25, 104941.	1.9	3
834	DNA Visualization Using Fluorescent Proteins. Methods in Molecular Biology, 2023, , 223-246.	0.4	0
835	Using FPbase: The Fluorescent Protein Database. Methods in Molecular Biology, 2023, , 1-45.	0.4	1
838	Visualization of 3D Organoids Through the Latest Advancements in Microscopy. Neuromethods, 2023, , 43-66.	0.2	2
839	Engineered Materials for Probing and Perturbing Brain Chemistry. , 2022, , 89-168.		1
840	High-throughput high-dynamic range imaging by spatiotemporally structured illumination. APL Photonics, 2022, 7, .	3.0	1
841	Resolving subcellular pH with a quantitative fluorescent lifetime biosensor. Nature Communications, 2022, 13, .	5.8	13
842	Discrete GPCR-triggered endocytic modes enable \hat{l}^2 -arrestins to flexibly regulate cell signaling. ELife, 0, 11, .	2.8	6
843	Subcellular localization and interactions among TGB proteins of cowpea mild mottle virus. Archives of Virology, 2022, 167, 2555-2566.	0.9	0
845	Genetic Engineering Concepts. Synthesis Lectures on Synthetic Biology, 2011, , 9-69.	0.0	0
846	Nitric Oxide Sensing by a Blue Fluorescent Protein. Antioxidants, 2022, 11, 2229.	2.2	2
847	Spectrally Resolved Fiber Photometry for <i>In Vivo</i> Multiâ€Color Fluorescence Measurements. Current Protocols, 2022, 2, .	1.3	0
849	Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics. Cell, 2022, 185, 4560-4573.e19.	13.5	40
850	The dependence of EGFR oligomerization on environment and structure: A camera-based N&B study. Biophysical Journal, 2022, 121, 4452-4466.	0.2	8
851	Genetically encoded dual fluorophore reporters for graded oxygen-sensing in light microscopy. Biosensors and Bioelectronics, 2023, 221, 114917.	5.3	7

#	ARTICLE	IF	CITATIONS
852	Optimized fluorescent proteins for 4-color and photoconvertible live-cell imaging in Neurospora crassa. Fungal Genetics and Biology, 2023, 164, 103763.	0.9	2
853	Processing of Fluorescent Proteins May Prevent Detection of Prion Particles in [PSI+] Cells. Biology, 2022, 11, 1688.	1.3	1
854	Regulation of EGF-stimulated activation of the PI-3K/AKT pathway by exocyst-mediated exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	3
855	Development and Characterization of a Red Fluorescent Protein-Based Sensor RZnP1 for the Detection of Cytosolic Zn ²⁺ . ACS Sensors, 2022, 7, 3838-3845.	4.0	5
857	Choosing the Right Fluorescent Probe. Springer Series on Fluorescence, 2022, , .	0.8	0
858	Cilia function as calcium-mediated mechanosensors that instruct left-right asymmetry. Science, 2023, 379, 71-78.	6.0	34
859	Fluorescent proteins and genetically encoded biosensors. Chemical Society Reviews, 2023, 52, 1189-1214.	18.7	29
860	Planted Graphene Quantum Dots for Targeted, Enhanced Tumor Imaging and Longâ€Term Visualization of Local Pharmacokinetics. Advanced Materials, 2023, 35, .	11.1	15
861	Blue-to-Red TagFT, mTagFT, mTsFT, and Green-to-FarRed mNeptusFT2 Proteins, Genetically Encoded True and Tandem Fluorescent Timers. International Journal of Molecular Sciences, 2023, 24, 3279.	1.8	1
862	Target search by an imported conjugative DNA element for a unique integration site along a bacterial chromosome during horizontal gene transfer. Nucleic Acids Research, 0, , .	6.5	5
864	Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain. Neuron, 2023, 111, 1241-1263.e16.	3.8	7
865	Characterization of mApple as a Red Fluorescent Protein for Cryogenic Single-Molecule Imaging with Turn-Off and Turn-On Active Control Mechanisms. Journal of Physical Chemistry B, 2023, 127, 2690-2700.	1.2	6
866	mScarlet3: a brilliant and fast-maturing red fluorescent protein. Nature Methods, 2023, 20, 541-545.	9.0	13
867	Next-generation plasmids for transgenesis in zebrafish and beyond. Development (Cambridge), 2023, 150, .	1.2	6
868	Engineering fluorescent protein chromophores with an internal reference for high-fidelity ratiometric G4 imaging in living cells. Chemical Science, 2023, 14, 4538-4548.	3.7	3
869	Fluorescent Protein-Based Metal Biosensors. Chemosensors, 2023, 11, 216.	1.8	2