Pressure-dependent structures of amorphous red phos sharp diffraction peaks

Nature Materials 7, 890-899

DOI: 10.1038/nmat2290

Citation Report

#	Article	IF	CITATIONS
1	Supercooled molecular liquids and the glassy phases of chemically bonded N, P, As, Si and Ge. Physics and Chemistry of Liquids, 2009, 47, 607-613.	1.2	2
2	Density measurement of samples under high pressure using synchrotron microtomography and diamond anvil cell techniques. Journal of Synchrotron Radiation, 2010, 17, 360-366.	2.4	10
3	High-pressure <i>in situ</i> structure measurement of low-Z noncrystalline materials with a diamond-anvil cell by an x-ray diffraction method. Review of Scientific Instruments, 2010, 81, 043906.	1.3	14
4	Crystal-liquid interfaces and phase relations in stable and metastable silicon at positive and negative pressure. Physical Review B, 2010, 82, .	3.2	13
5	Network structure and concentration fluctuations in a series of elemental, binary, and tertiary liquids and glasses. Journal of Physics Condensed Matter, 2010, 22, 404210.	1.8	17
6	Equation of state and refractive index of argon at high pressure by confocal microscopy. Physical Review B, 2010, 81, .	3.2	9
7	Intermediate- and short-range order in phosphorus-selenium glasses. Physical Review B, 2011, 83, .	3.2	14
8	Polyamorphic Amorphous Silicon at High Pressure: Raman and Spatially Resolved X-ray Scattering and Molecular Dynamics Studies. Journal of Physical Chemistry B, 2011, 115, 14246-14255.	2.6	33
9	Determining the equation of state of amorphous solids at high pressure using optical microscopy. Review of Scientific Instruments, 2012, 83, 033702.	1.3	12
	Order from Disorder. Science, 2012, 337, 812-813.		
10	Older Holli Disolder. Science, 2012, 337, 812-813.	12.6	19
10	Solid-State and Materials-Chemistry at High Pressure. Scottish Graduate Series, 2012, , 245-263.	12.6 0.1	0
11	Solid-State and Materials-Chemistry at High Pressure. Scottish Graduate Series, 2012, , 245-263. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes	0.1	0
11 12	Solid-State and Materials-Chemistry at High Pressure. Scottish Graduate Series, 2012, , 245-263. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chemical Communications, 2012, 48, 8931. Structural, vibrational, and thermal properties of densified silicates: Insights from molecular	0.1	0 197
11 12 13	Solid-State and Materials-Chemistry at High Pressure. Scottish Graduate Series, 2012, , 245-263. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chemical Communications, 2012, 48, 8931. Structural, vibrational, and thermal properties of densified silicates: Insights from molecular dynamics. Journal of Chemical Physics, 2012, 137, 044510. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chemical	0.1 4.1 3.0	0 197 63
11 12 13 14	Solid-State and Materials-Chemistry at High Pressure. Scottish Graduate Series, 2012, , 245-263. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chemical Communications, 2012, 48, 8931. Structural, vibrational, and thermal properties of densified silicates: Insights from molecular dynamics. Journal of Chemical Physics, 2012, 137, 044510. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chemical Communications, 2012, 48, 7805. Pressure-induced crystallization of amorphous red phosphorus. Solid State Communications, 2012,	0.1 4.1 3.0 4.1	0 197 63 137
11 12 13 14 15	Solid-State and Materials-Chemistry at High Pressure. Scottish Graduate Series, 2012, , 245-263. Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. Chemical Communications, 2012, 48, 8931. Structural, vibrational, and thermal properties of densified silicates: Insights from molecular dynamics. Journal of Chemical Physics, 2012, 137, 044510. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chemical Communications, 2012, 48, 7805. Pressure-induced crystallization of amorphous red phosphorus. Solid State Communications, 2012, 152, 390-394.	0.1 4.1 3.0 4.1	0 197 63 137 58

#	Article	IF	CITATIONS
19	Pressureâ€Induced Polyamorphism and Formation of â€~Aragonitic' Amorphous Calcium Carbonate. Angewandte Chemie - International Edition, 2013, 52, 8354-8357.	13.8	53
20	Anomalies of the first sharp diffraction peak in network glasses: Evidence for correlations with dynamic and rigidity properties. Physica Status Solidi (B): Basic Research, 2013, 250, 976-982.	1.5	56
21	Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage. Nano Letters, 2013, 13, 5480-5484.	9.1	390
22	Applying Tools from Glass Science to Study Calcium-Silicate- Hydrates. , 2013, , .		7
23	Synthesis and Phase Relations of Singleâ€Phase Fibrous Phosphorus. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 2741-2743.	1.2	63
24	Probing the different spatial scales of Kel F-800 polymeric glass under pressure. Scientific Reports, 2013, 3, 1290.	3.3	11
27	Crystalline phosphorus fibers: controllable synthesis and visible-light-driven photocatalytic activity. Nanoscale, 2014, 6, 14163-14167.	5.6	91
28	Polyamorphism and Pressure-Induced Metallization at the Rigidity Percolation Threshold in Densified GeSe ₄ Glass. Journal of Physical Chemistry C, 2014, 118, 5110-5121.	3.1	17
29	Structural and elastic properties of a hypothetical high density <i>sp</i> 2-rich amorphous carbon phase. Journal of Chemical Physics, 2014, 140, .	3.0	5
30	Confocal microscopy of fluids under static pressure. Journal of Physics: Conference Series, 2014, 500, 142020.	0.4	0
31	X-Ray Diffraction at Extreme Conditions: Today and Tomorrow. , 2015, , 255-313.		1
32	Red Phosphorus–Single-Walled Carbon Nanotube Composite as a Superior Anode for Sodium Ion Batteries. ACS Nano, 2015, 9, 3254-3264.	14.6	359
33	Dopants induced structural and optical anomalies of anisotropic edges of black phosphorous thin films and crystals. Ceramics International, 2016, 42, 13113-13127.	4.8	17
34	Integrated Carbon/Red Phosphorus/Graphene Aerogel 3D Architecture via Advanced Vaporâ€Redistribution for Highâ€Energy Sodiumâ€Ion Batteries. Advanced Energy Materials, 2016, 6, 1601037.	19.5	198
35	Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 211, 499-506.	5.2	72
36	Structural evolution mechanisms of amorphous and liquid <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>As</mml:mi><mml:m high pressures. Physical Review B, 2016, 93, .</mml:m </mml:msub></mml:mrow></mml:math 	n 82x/mml	:m12>
37	Effect of Pore Size Distribution of Carbon Matrix on the Performance of Phosphorus@Carbon Material as Anode for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 4217-4223.	6.7	34
38	Amorphous red phosphorous embedded in carbon nanotubes scaffold as promising anode materials for lithium-ion batteries. Journal of Power Sources, 2016, 301, 131-137.	7.8	86

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
39	Distinctive slit-shaped porous carbon encapsulating phosphorus as a promising anode material for lithium batteries. Ionics, 2016, 22, 167-172.	2.4	14
40	Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries. Journal of Power Sources, 2017, 356, 18-26.	7.8	65
41	Encapsulation and Polymerization of White Phosphorus Inside Singleâ€Wall Carbon Nanotubes. Angewandte Chemie, 2017, 129, 8256-8260.	2.0	26
42	Encapsulation and Polymerization of White Phosphorus Inside Singleâ€Wall Carbon Nanotubes. Angewandte Chemie - International Edition, 2017, 56, 8144-8148.	13.8	70
43	A Hierarchical Phosphorus Nanobarbed Nanowire Hybrid: Its Structure and Electrochemical Properties. Nano Letters, 2017, 17, 3376-3382.	9.1	39
44	Phosphorus containing materials for photocatalytic hydrogen evolution. Green Chemistry, 2017, 19, 588-613.	9.0	148
45	Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale, 2017, 9, 18552-18560.	5.6	41
46	Superior sodium storage in phosphorus@porous multichannel flexible freestanding carbon nanofibers. Energy Storage Materials, 2017, 9, 112-118.	18.0	44
47	Structural simplicity as a restraint on the structure of amorphous silicon. Physical Review B, 2017, 95, .	3.2	18
48	Recent Advances in the Study of Phosphorene and its Nanostructures. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 1-82.	12.3	130
49	Element allotropes and polyanion compounds of pnicogenes and chalcogenes: stability, mechanisms of formation, controlled synthesis and characterization. Zeitschrift Fur Kristallographie - Crystalline Materials, 2017, 232, 91-105.	0.8	6
51	Red phosphorus encapsulated in porous carbon derived from cigarette filter solid waste as a promising anode material for lithium-ion batteries. Ionics, 2018, 24, 3393-3403.	2.4	11
52	Self-Standing Hierarchical P/CNTs@rGO with Unprecedented Capacity and Stability for Lithium and Sodium Storage. CheM, 2018, 4, 372-385.	11.7	128
53	Mechanical synthesis of chemically bonded phosphorus–graphene hybrid as high-temperature lubricating oil additive. RSC Advances, 2018, 8, 4595-4603.	3.6	61
54	Rational Assembly of Hollow Microporous Carbon Spheres as P Hosts for Longâ€Life Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702267.	19.5	85
55	Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Research, 2018, 11, 2733-2745.	10.4	46
56	Facile Solution Synthesis of Red Phosphorus Nanoparticles for Lithium Ion Battery Anodes. Nanoscale Research Letters, 2018, 13, 356.	5.7	13
57	Cytotoxicity of phosphorus allotropes (black, violet, red). Applied Materials Today, 2018, 13, 310-319.	4.3	23

CITATI	ON D	REPORT
CHAH		LEPUKI

#	Article	IF	CITATIONS
59	Phosphorus Particles Embedded in Reduced Graphene Oxide Matrix to Enhance Capacity and Rate Capability for Capacitive Potassiumâ€lon Storage. Chemistry - A European Journal, 2018, 24, 13897-13902.	3.3	47
60	Nitrogen-Doped Carbon for Red Phosphorous Based Anode Materials for Lithium Ion Batteries. Materials, 2018, 11, 134.	2.9	20
61	Amorphous red phosphorus incorporated with pyrolyzed bacterial cellulose as a free-standing anode for high-performance lithium ion batteries. RSC Advances, 2018, 8, 17325-17333.	3.6	10
62	Hierarchically porous carbon/red phosphorus composite for high-capacity sodium-ion battery anode. Science Bulletin, 2018, 63, 982-989.	9.0	31
63	Evidence of polyamorphic transitions during densified SiO2 glass annealing. Journal of Chemical Physics, 2019, 151, 164502.	3.0	14
64	Ultra fast metal-free reduction catalyst of partial oxidized violet phosphorus synthesized via controlled mechanical energy. 2D Materials, 2019, 6, 045039.	4.4	8
65	One-Dimensional Pnictogen Allotropes inside Single-Wall Carbon Nanotubes. Inorganic Chemistry, 2019, 58, 15216-15224.	4.0	18
66	Local structure and orientational ordering in liquid bromoform. Molecular Physics, 2019, 117, 3337-3344.	1.7	2
67	The mechanism of structural changes and crystallization kinetics of amorphous red phosphorus to black phosphorus under high pressure. Chemical Communications, 2019, 55, 8094-8097.	4.1	9
68	Superconductivity in the van der Waals layered compound PS2. Physical Review B, 2019, 99, .	3.2	11
69	3D phosphorus-carbon electrode with aligned nanochannels promise high-areal-capacity and cyclability in lithium-ion battery. Applied Surface Science, 2019, 489, 734-740.	6.1	20
70	Amine-induced phase transition from white phosphorus to red/black phosphorus for Li/K-ion storage. Chemical Communications, 2019, 55, 6751-6754.	4.1	22
71	Distinct signature of local tetrahedral ordering in the scattering function of covalent liquids and glasses. Science Advances, 2019, 5, eaav3194.	10.3	40
72	High Electron Mobility of Amorphous Red Phosphorus Thin Films. Angewandte Chemie - International Edition, 2019, 58, 6766-6771.	13.8	29
73	A comparative study of the atomic structures of Ge-doped As4S3 and P4Se3 molecular glasses. Journal of Non-Crystalline Solids, 2019, 514, 83-89.	3.1	5
74	Improvement of Cycling Phosphorus-Based Anode with LiF-Rich Solid Electrolyte Interphase for Reversible Lithium Storage. ACS Applied Energy Materials, 2019, 2, 2699-2707.	5.1	24
75	High Electron Mobility of Amorphous Red Phosphorus Thin Films. Angewandte Chemie, 2019, 131, 6838-6843.	2.0	4
76	Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage. Nano Energy, 2019, 59, 464-471.	16.0	70

		CITATION REPORT		
#	Article		IF	CITATIONS
77	Introduction and Characterization of Phosphorus Nanomaterials. ACS Symposium Series, 2019, ,	27-45.	0.5	2
78	Photocatalytic reduction of Cr (VI) on nano-sized red phosphorus under visible light irradiation. Journal of Colloid and Interface Science, 2019, 537, 256-261.		9.4	46
79	Capacity fading induced by phase conversion hysteresis within alloying phosphorus anode. Nano Energy, 2019, 58, 560-567.		16.0	43
80	Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Singleâ€Mol Studies. Angewandte Chemie, 2019, 131, 1673-1677.	ecule	2.0	6
81	Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Singleâ€Mol Studies. Angewandte Chemie - International Edition, 2019, 58, 1659-1663.	ecule	13.8	63
82	Accurate Control of VS ₂ Nanosheets for Coexisting High Photoluminescence and Photothermal Conversion Efficiency. Angewandte Chemie, 2020, 132, 3348-3354.		2.0	11
83	Accurate Control of VS ₂ Nanosheets for Coexisting High Photoluminescence and Photothermal Conversion Efficiency. Angewandte Chemie - International Edition, 2020, 59, 3322	-3328.	13.8	40
84	Electrochemo-Mechanical Properties of Red Phosphorus Anodes in Lithium, Sodium, and Potassiu Batteries. Matter, 2020, 3, 2012-2028.	ım lon	10.0	25
85	Anomalous conductivity behavior induced by in situ metastable amorphous phase in BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite. Ceramics International, 2020, 46, 28659-28667.		4.8	2
86	A general-purpose machine-learning force field for bulk and nanostructured phosphorus. Nature Communications, 2020, 11, 5461.		12.8	72
87	Mechanochemical conversion kinetics of red to black phosphorus and scaling parameters for hig volume synthesis. Npj 2D Materials and Applications, 2020, 4, .	ı	7.9	7
88	Revealing hidden medium-range order in amorphous materials using topological data analysis. Sc Advances, 2020, 6, .	ience	10.3	41
89	Nanometric Fluctuations of Sound Velocity in Alkali Borate Glasses and Fragility of Respective Me Physica Status Solidi (B): Basic Research, 2020, 257, 2000073.	elts.	1.5	4
90	High-Pressure Synthesis of Cyclic Phosphazenes by Near-UV Photoinduced Reactivity of NH3 and Elemental Phosphorus. Journal of Physical Chemistry C, 2020, 124, 4308-4319.		3.1	1
91	Structural rearrangement at medium-range and its effects on the magnetic properties and crystallization behaviors of a Fe-based amorphous alloy. Journal of Alloys and Compounds, 2020, 153911.	823,	5.5	10
92	Unravelling the mechanism of pressure induced polyamorphic transition in an inorganic molecula glass. Scientific Reports, 2020, 10, 5208.	r	3.3	0
93	Interface Amorphization of Twoâ€Dimensional Black Phosphorus upon Treatment with Diazoniu Chemistry - A European Journal, 2021, 27, 3361-3366.	n Salts.	3.3	15
95	Ultra-Thin Red Phosphor Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution Under Visible Light. Topics in Catalysis, 2021, 64, 559-566.		2.8	3

#	Article	IF	CITATIONS
96	Silica-encapsulated red phosphorus for flame retardant treatment on textile. Surfaces and Interfaces, 2021, 25, 101252.	3.0	13
97	Two-Dimensional (2D) Materials for Next-Generation Nanoelectronics and Optoelectronics: Advances and Trends. Advances in Material Research and Technology, 2021, , 65-96.	0.6	1
99	The First Sharp Diffraction Peak in the Total Structure Function of Amorphous Chalcogenide Glasses: Anomalous Characteristics and Controversial Views. New Journal of Glass and Ceramics, 2016, 06, 37-46.	1.4	13
100	Emerging Yttrium Phosphides with Tetrahedron Phosphorus and Superconductivity under High Pressures. Chemistry - A European Journal, 2021, 27, 17420-17427.	3.3	5
101	Robust Solid Electrolyte Interphases in Localized High Concentration Electrolytes Boosting Black Phosphorus Anode for Potassium-Ion Batteries. ACS Nano, 2021, 15, 16851-16860.	14.6	41
102	Materials From Extreme High Pressure Conditions. , 2019, , .		1
103	Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure. Advanced Materials, 2022, 34, e2107515.	21.0	13
104	Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews, 2022, 122, 1208-1272.	47.7	105
105	Preparation, Characterization, and Performance of Lignin-based Microencapsulated Red Phosphorus Flame Retardant for ABS. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 292-299.	1.0	3
106	Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chemical Reviews, 2022, 122, 3879-3965.	47.7	58
107	CO ₂ â€Assisted Fabrication of 2D Amorphous CeO ₂ and Its Application in Photoluminescence Enhancement. ChemNanoMat, 2022, 8, .	2.8	2
108	Low Energy Excitations in Borate Glass. , 0, , .		2
109	Persistent homology: A tool to understand medium-range order glass structure. Journal of Non-Crystalline Solids: X, 2022, 16, 100123.	1.2	4
110	Role of S/Se replacement on the structure of Ge20Se80-xSx glasses. Indian Journal of Physics, 2023, 97, 1739-1747.	1.8	1
111	Phosphorus nanoclusters and insight into the formation of phosphorus allotropes. Nanoscale, 2023, 15, 1338-1346.	5.6	4
112	Amorphous 2Dâ€Nanoplatelets of Red Phosphorus Obtained by Liquidâ€Phase Exfoliation Yield High Areal Capacity Naâ€Ion Battery Anodes. Advanced Energy Materials, 2023, 13, .	19.5	5
113	Pressure-Induced Structural Transformations and Electronic Transitions in TeO ₂ Glass by Raman Spectroscopy. Journal of Physical Chemistry Letters, 2023, 14, 387-394.	4.6	2
114	Spatially resolved structural order in low-temperature liquid electrolyte. Science Advances, 2023, 9, .	10.3	12

CITATION REPORT

#	Article	IF	CITATIONS
115	Towards an accurate description of one-dimensional pnictogen allotropes in nano-confinements. Physical Chemistry Chemical Physics, 2023, 25, 9256-9263.	2.8	0
116	Structure and Bonding in Amorphous Red Phosphorus**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
117	Struktur und Bindung im amorphen roten Phosphor**. Angewandte Chemie, 2023, 135, .	2.0	0
118	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	38.1	9
119	Typeâ€II Red Phosphorus: Wavy Packing of Twisted Pentagonal Tubes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
120	Typeâ€II Red Phosphorus: Wavy Packing of Twisted Pentagonal Tubes. Angewandte Chemie, 2023, 135, .	2.0	0
122	Size-Dependent Confining Effect of Phosphorus inside Carbon Nanotubes for Highly Stable Lithium-Ion Storage. ACS Applied Nano Materials, 2024, 7, 1853-1862.	5.0	0
123	Facile processing of red phosphorous-carbon composites as high-performance anode materials for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2024, 955, 118070.	3.8	0
124	Mid-Infrared, Optically Active Black Phosphorus Thin Films on Centimeter Scale. Nano Letters, 2024, 24, 3104-3111.	9.1	0