High-capacity hydrogen storage in lithium and sodium

Nature Materials 7, 138-141 DOI: 10.1038/nmat2081

Citation Report

#	Article	IF	CITATIONS
1	Recent progress in hydrogen storage. Materials Today, 2008, 11, 36-43.	8.3	471
2	Calcium Amidoborane Hydrogen Storage Materials: Crystal Structures of Decomposition Products. Angewandte Chemie - International Edition, 2008, 47, 6290-6295.	7.2	134
4	Hydrogen detection and quantification at polymer surfaces investigated by elastic peak electron spectroscopy (EPES). Polymer, 2008, 49, 4127-4132.	1.8	15
5	Light metal borohydrides: crystal structures and beyond. Zeitschrift Für Kristallographie, 2008, 223, .	1.1	100
6	Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy and Environmental Science, 2008, , .	15.6	45
7	Hydrogen-rich boron-containing materials for hydrogen storage. Dalton Transactions, 2008, , 5400.	1.6	170
8	The Effects of Chemical Additives on the Induction Phase in Solid-State Thermal Decomposition of Ammonia Borane. Chemistry of Materials, 2008, 20, 5332-5336.	3.2	188
9	Computational study of methyl derivatives of ammonia borane for hydrogen storage. Physical Chemistry Chemical Physics, 2008, 10, 6104.	1.3	12
10	Synthesis of sodium amidoborane (NaNH2BH3) for hydrogen production. Energy and Environmental Science, 2008, 1, 360.	15.6	99
11	Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles. Chemical Communications, 2008, , 5740.	2.2	31
12	Hydrogen storage in liquid organic heterocycles. Energy and Environmental Science, 2008, 1, 134.	15.6	348
13	Interaction of lithium hydride and ammonia borane in THF. Chemical Communications, 2008, , 5595.	2.2	70
14	Millimeter-Scale Fuel Cell With Onboard Fuel and Passive Control System. Journal of Microelectromechanical Systems, 2008, 17, 1388-1395.	1.7	21
15	Alkali and Alkaline-Earth Metal Amidoboranes: Structure, Crystal Chemistry, and Hydrogen Storage Properties. Journal of the American Chemical Society, 2008, 130, 14834-14839.	6.6	246
16	Band structures and native defects of ammonia borane. Physical Review B, 2009, 80, .	1.1	20
17	<i>Ab initio</i> molecular dynamics study of the hydrogen diffusion in sodium and lithium hydrides. Journal of Applied Physics, 2009, 106,	1.1	11
18	<i>Ab initio</i> study on the electronic structure and vibration modes of alkali and alkaline-earth amides and alanates. Journal of Physics Condensed Matter, 2009, 21, 185501.	0.7	7
19	New B,N-hydrides: Characterization and Chemistry. Materials Research Society Symposia Proceedings, 2009, 1216, 1.	0.1	1

ATION RED

#	Article	IF	CITATIONS
20	Mechanical Processing in Hydrogen Storage Research and Development. Materials Research Society Symposia Proceedings, 2009, 1209, 1.	0.1	2
21	Lithiumâ€Catalyzed Dehydrogenation of Ammonia Borane within Mesoporous Carbon Framework for Chemical Hydrogen Storage. Advanced Functional Materials, 2009, 19, 265-271.	7.8	156
22	Improving the Hydrogen Reaction Kinetics of Complex Hydrides. Advanced Materials, 2009, 21, 3023-3028.	11.1	57
23	Hydrogenâ€Release Mechanisms in Lithium Amidoboranes. Chemistry - A European Journal, 2009, 15, 5598-5604.	1.7	107
24	Tiâ€Substituted Boranes as Hydrogen Storage Materials: A Computational Quest for the Ideal Combination of Stable Electronic Structure and Optimal Hydrogen Uptake. Chemistry - A European Journal, 2009, 15, 5910-5919.	1.7	45
25	A Comparative Study of the Structural, Electronic, and Vibrational Properties of NH ₃ BH ₃ and LiNH ₂ BH ₃ : Theory and Experiment. ChemPhysChem, 2009, 10, 1825-1833.	1.0	38
26	Boron- and nitrogen-based chemical hydrogen storage materials. International Journal of Hydrogen Energy, 2009, 34, 2303-2311.	3.8	337
27	The Monoammoniate of Lithium Borohydride, Li(NH ₃)BH ₄ : An Effective Ammonia Storage Compound. Chemistry - an Asian Journal, 2009, 4, 849-854.	1.7	99
28	Enhanced Hydrogen Storage on Li-Dispersed Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 2028-2033.	1.5	196
29	First-Principles Prediction of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H System. Journal of the American Chemical Society, 2009, 131, 230-237.	6.6	256
30	Excess Electrons in LiAlH4 Clusters: Implication for Hydrogen Storage. Journal of Physical Chemistry C, 2009, 113, 1104-1108.	1.5	7
31	Characterization of β-B-Agostic Isomers in Zirconocene Amidoborane Complexes. Journal of the American Chemical Society, 2009, 131, 6689-6691.	6.6	98
32	Nanosized Co- and Ni-Catalyzed Ammonia Borane for Hydrogen Storage. Chemistry of Materials, 2009, 21, 2315-2318.	3.2	156
33	Mechanistic Study of LiNH ₂ BH ₃ Formation from (LiH) ₄ + NH ₃ BH ₃ and Subsequent Dehydrogenation. Inorganic Chemistry, 2009, 48, 7564-7575.	1.9	78
34	The long-term hydriding and dehydriding stability of the nanoscale LiNH ₂ +LiH hydrogen storage system. Nanotechnology, 2009, 20, 204028.	1.3	18
35	Hydrazine Borane: A Promising Hydrogen Storage Material. Journal of the American Chemical Society, 2009, 131, 7444-7446.	6.6	185
36	Hydrogen Elimination in Bulky Calcium Amidoborane Complexes: Isolation of a Calcium Borylamide Complex. Journal of the American Chemical Society, 2009, 131, 5064-5065.	6.6	99
37	THE FUTURE OF MAIN GROUP CHEMISTRY. Comments on Inorganic Chemistry, 2009, 30, 131-176.	3.0	47

#	Article	IF	Citations
38	Calcium Amidoborane Ammoniate—Synthesis, Structure, and Hydrogen Storage Properties. Chemistry of Materials, 2009, 21, 4899-4904.	3.2	84
39	Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffraction. Chemical Communications, 2009, , 2973.	2.2	46
40	structural and energetic analysis of the hydrogen storage materials< mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:mrow> < mml:mrow> < mml:mtext>LiNH < / mml:mtext> < / mml:mrow> < mml:mr xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> umathered analysis of the hydrogen storage materials< mml:mtan xmlns:mml="http://www.w3.org/1998/Math/MathML"	1>21.1	mn>69
41	Physical Review B, 2009, 79, . Base-Promoted Ammonia Borane Hydrogen-Release. Journal of the American Chemical Society, 2009, 131, 14101-14110.	6.6	178
42	First-principles computational discovery of materials for hydrogen storage. Journal of Physics: Conference Series, 2009, 180, 012076.	0.3	11
43	Complete Conversion of Hydrous Hydrazine to Hydrogen at Room Temperature for Chemical Hydrogen Storage. Journal of the American Chemical Society, 2009, 131, 18032-18033.	6.6	240
44	Hydrogen storage materials: present scenarios and future directions. Annual Reports on the Progress of Chemistry Section A, 2009, 105, 21.	0.8	87
45	B–N compounds for chemical hydrogenstorage. Chemical Society Reviews, 2009, 38, 279-293.	18.7	1,001
46	Promotion of Hydrogen Release from Ammonia Borane with Mechanically Activated Hexagonal Boron Nitride. Journal of Physical Chemistry C, 2009, 113, 1098-1103.	1.5	89
47	High capacity hydrogen storage in a hybrid ammonia borane–lithium amide material. Energy and Environmental Science, 2009, 2, 706.	15.6	49
48	Synthesis and structure of a magnesium–amidoborane complex and its role in catalytic formation of a new bis-aminoborane ligand. Chemical Communications, 2009, , 6934.	2.2	97
49	Cu2+-induced room temperature hydrogen release from ammonia borane. Energy and Environmental Science, 2009, 2, 1274.	15.6	77
50	Low temperature hydrogen generation from ammonia combined with lithium borohydride. Journal of Materials Chemistry, 2009, 19, 7826.	6.7	22
51	Ambient temperature hydrogen desorption from LiAlH4–LiNH2 mediated by HMPA. Journal of Materials Chemistry, 2009, 19, 8426.	6.7	17
52	Substantial emission of NH3 during thermal decomposition of sodium amidoborane, NaNH2BH3. Journal of Materials Chemistry, 2009, 19, 2043.	6.7	92
53	Promoted hydrogen release from ammonia borane by mechanically milling with magnesium hydride: a new destabilizing approach. Physical Chemistry Chemical Physics, 2009, 11, 2507.	1.3	65
54	Enhanced catalytic dehydrogenation of LiBH4 by carbon-supported Pd nanoparticles. Dalton Transactions, 2009, , 8386.	1.6	21
55	In situ high-pressure study of ammonia borane by Raman and IR spectroscopy. Canadian Journal of Chemistry, 2009, 87, 1235-1247.	0.6	59

#	Article	IF	CITATIONS
56	Hydrogen Storage Properties of Ca(BH ₄) ₂ –LiNH ₂ System. Chemistry - an Asian Journal, 2010, 5, 1594-1599.	1.7	34
57	A new family of metal borohydride ammonia borane complexes: Synthesis, structures, and hydrogen storage properties. Journal of Materials Chemistry, 2010, 20, 6550.	6.7	65
58	Renewed Insight into the Promoting Mechanism of Magnesium Hydride on Ammonia Borane. ChemPhysChem, 2010, 11, 2152-2157.	1.0	19
59	Functional Materials for Sustainable Energy Technologies: Four Case Studies. ChemSusChem, 2010, 3, 44-58.	3.6	34
60	Liquidâ€Phase Chemical Hydrogen Storage: Catalytic Hydrogen Generation under Ambient Conditions. ChemSusChem, 2010, 3, 541-549.	3.6	396
61	A Soft Hydrogen Storage Material: Poly(Methyl Acrylate)â€Confined Ammonia Borane with Controllable Dehydrogenation. Advanced Materials, 2010, 22, 394-397.	11.1	111
62	Advanced Materials for Energy Storage. Advanced Materials, 2010, 22, E28-62.	11.1	4,168
65	Solidâ€state Materials and Methods for Hydrogen Storage: A Critical Review. Chemical Engineering and Technology, 2010, 33, 213-226.	0.9	278
66	Bimetallic Au–Ni Nanoparticles Embedded in SiO ₂ Nanospheres: Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane. Chemistry - A European Journal, 2010, 16, 3132-3137.	1.7	196
67	Amminelithium Amidoborane Li(NH ₃)NH ₂ BH ₃ : A New Coordination Compound with Favorable Dehydrogenation Characteristics. Chemistry - A European Journal, 2010, 16, 3763-3769.	1.7	59
68	Thermal Decomposition of Mono―and Bimetallic Magnesium Amidoborane Complexes. Chemistry - A European Journal, 2010, 16, 8307-8318.	1.7	96
69	Promoted H ₂ Generation from NH ₃ BH ₃ Thermal Dehydrogenation Catalyzed by Metal–Organic Framework Based Catalysts. Chemistry - A European Journal, 2010, 16, 10887-10892.	1.7	47
70	Promoted hydrogen generation from ammonia borane aqueous solution using cobalt–molybdenum–boron/nickel foam catalyst. Journal of Power Sources, 2010, 195, 307-312.	4.0	92
71	Hydrogen storage in the iron series of porous Prussian blue analogues. International Journal of Hydrogen Energy, 2010, 35, 10381-10386.	3.8	35
72	Thermal decomposition of alkaline-earth metal hydride and ammonia borane composites. International Journal of Hydrogen Energy, 2010, 35, 12405-12409.	3.8	45
73	High density hydrogen storage in nanocavities: Role of the electrostatic interaction. International Journal of Hydrogen Energy, 2010, 35, 12864-12869.	3.8	15
74	Spectroscopy and bonding in ternary metal hydride complexes—Potential hydrogen storage media. Coordination Chemistry Reviews, 2010, 254, 215-234.	9.5	84
75	Potential hydrogen storage of lithium amidoboranes and derivatives. Chemical Physics Letters, 2010, 489, 148-153.	1.2	32

		Report	
#	Article	IF	CITATIONS
76	Pressure induced structural changes in the potential hydrogen storage compound ammonia borane: A combined X-ray, neutron and theoretical investigation. Chemical Physics Letters, 2010, 495, 203-207.	1.2	28
78	Hydrogen: A future energy vector for sustainable development. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224, 539-558.	1.1	54
79	Advances in Structural Studies of Materials Using Scattering Probes. MRS Bulletin, 2010, 35, 520-530.	1.7	2
80	Synthesis, structure and dehydrogenation of magnesium amidoborane monoammoniate. Chemical Communications, 2010, 46, 5752.	2.2	65
81	Effects of carbon on hydrogen storage performances of hydrides. Journal of Materials Chemistry, 2010, 20, 5390.	6.7	116
82	Ammonia Borane Confined by a Metalâ^'Organic Framework for Chemical Hydrogen Storage: Enhancing Kinetics and Eliminating Ammonia. Journal of the American Chemical Society, 2010, 132, 1490-1491.	6.6	246
83	Amineâ^' and Phosphineâ^'Borane Adducts: New Interest in Old Molecules. Chemical Reviews, 2010, 110, 4023-4078.	23.0	602
84	Electronic structure and metalization of a silane-hydrogen system under high pressure investigated using density functional and GW calculations. Physical Review B, 2010, 81, .	1.1	13
85	Dehydrogenation Promotion of LiBH ₄ ·NH ₃ Through Heating in Ammonia or Mixing with Metal Hydrides. Journal of Physical Chemistry C, 2010, 114, 12823-12827.	1.5	21
86	Synthesis of the Long-Sought Unsubstituted Aminodiboranate Na(H ₃ Bâ^'NH ₂ â^'BH ₃) and Its <i>N</i> Alkyl Analogs. Journal of the American Chemical Society, 2010, 132, 7254-7255.	6.6	47
87	Hydrogen Release Studies of Alkali Metal Amidoboranes. Inorganic Chemistry, 2010, 49, 3905-3910.	1.9	108
88	Mechanically Milling with Off-the-Shelf Magnesium Powder to Promote Hydrogen Release from Ammonia Borane. Journal of Physical Chemistry C, 2010, 114, 10606-10611.	1.5	21
89	Platinum Nanoparticle Functionalized CNTs as Nanoscaffolds and Catalysts To Enhance the Dehydrogenation of Ammonia-Borane. Journal of Physical Chemistry C, 2010, 114, 21885-21890.	1.5	50
90	Potassium(I) Amidotrihydroborate: Structure and Hydrogen Release. Journal of the American Chemical Society, 2010, 132, 11836-11837.	6.6	112
91	Hydrogen Desorption Reaction between Hydrogen-Containing Functional Groups and Lithium Hydride. Journal of Physical Chemistry C, 2010, 114, 8668-8674.	1.5	7
92	The Comparison in Dehydrogenation Properties and Mechanism between MgCl ₂ (NH ₃)/LiBH ₄ and MgCl ₂ (NH ₃)/NaBH ₄ Systems. Journal of Physical Chemistry C, 2010, 114, 9534-9540.	1.5	12
93	Stepwise Phase Transition in the Formation of Lithium Amidoborane. Inorganic Chemistry, 2010, 49, 4319-4323.	1.9	51
94	Bimetallic Niâ~'Pt Nanocatalysts for Selective Decomposition of Hydrazine in Aqueous Solution to Hydrogen at Room Temperature for Chemical Hydrogen Storage. Inorganic Chemistry, 2010, 49, 6148-6152.	1.9	155

#	Article	IF	CITATIONS
95	Enhanced catalytic hydrogen release of LiBH4 by carbon-supported Pt nanoparticles. Journal of Alloys and Compounds, 2010, 490, 88-92.	2.8	19
96	Improved dehydrogenation performance of LiBH4/MgH2 composite with Pd nanoparticles addition. Journal of Alloys and Compounds, 2010, 503, 345-349.	2.8	41
97	Towards Y(NH2BH3)3: Probing hydrogen storage properties of YX3/MNH2BH3 (X=F, Cl; M=Li, Na) and YHxâ^¼3/NH3BH3 composites. Journal of Alloys and Compounds, 2010, 499, 144-148.	2.8	40
98	Destabilisation of complex hydrides through size effects. Nanoscale, 2010, 2, 2587.	2.8	51
99	Ammonia-Borane and Related Compounds as Dihydrogen Sources. Chemical Reviews, 2010, 110, 4079-4124.	23.0	1,106
100	Hydrogen release from amminelithium borohydride, LiBH4·NH3. Chemical Communications, 2010, 46, 2599.	2.2	107
101	Structures and Stability of Metal Amidoboranes (MAB): Density Functional Calculations. Communications in Theoretical Physics, 2010, 53, 1167-1171.	1.1	2
102	Understanding from First-Principles Why LiNH2BH3·NH3BH3 Shows Improved Dehydrogenation over LiNH2BH3 and NH3BH3. Journal of Physical Chemistry C, 2010, 114, 19089-19095.	1.5	27
103	Synthesis, Crystal Structure, and Thermal Decomposition of Strontium Amidoborane. Journal of Physical Chemistry C, 2010, 114, 1709-1714.	1.5	97
104	Activation of Ammonia Borane Hybridized with Alkalineâ^'Metal Hydrides: A Low-Temperature and High-Purity Hydrogen Generation Material. Journal of Physical Chemistry C, 2010, 114, 14662-14664.	1.5	33
105	LiNH2BH3·NH3BH3: Structure and Hydrogen Storage Properties. Chemistry of Materials, 2010, 22, 3-5.	3.2	76
106	Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes. Physical Chemistry Chemical Physics, 2010, 12, 5446.	1.3	67
107	Bimetallic catalysts selectively grown via N-doped carbon nanotubes for hydrogen generation. Journal of Materials Chemistry, 2010, 20, 6544.	6.7	12
108	Improved dehydrogenation properties of Ca(BH4)2-LiNH2 combined system. Dalton Transactions, 2010, 39, 10585.	1.6	32
109	Structural isotope effects in metal hydrides and deuterides. Physical Chemistry Chemical Physics, 2010, 12, 2083.	1.3	42
110	Decomposition Pathway of Ammonia Borane on the Surface of Nano-BN. Journal of Physical Chemistry C, 2010, 114, 13935-13941.	1.5	39
111	Interaction of ammonia borane with Li2NH and Li3N. Dalton Transactions, 2010, 39, 720-722.	1.6	18
112	Unprecedented reactivity of an aluminium hydride complex with ArNH2BH3: nucleophilic substitution versus deprotonation. Chemical Communications, 2011, 47, 11945.	2.2	31

#	Article	IF	CITATIONS
113	Solid state NMR study on the thermal decomposition pathway of sodium amidoborane NaNH2BH3. Journal of Materials Chemistry, 2011, 21, 2609.	6.7	48
114	A combined experimental inelastic neutron scattering, Raman and ab initio lattice dynamics study of α-lithium amidoborane. Physical Chemistry Chemical Physics, 2011, 13, 12249.	1.3	11
115	A liquid-based eutectic system: LiBH4·NH3–nNH3BH3 with high dehydrogenation capacity at moderate temperature. Journal of Materials Chemistry, 2011, 21, 14509.	6.7	29
116	Facile solid-phase synthesis of the diammoniate of diborane and its thermal decomposition behavior. Physical Chemistry Chemical Physics, 2011, 13, 7508.	1.3	22
117	A one-pot protocol for synthesis of non-noble metal-based core–shell nanoparticles under ambient conditions: toward highly active and cost-effective catalysts for hydrolytic dehydrogenation of NH3BH3. Chemical Communications, 2011, 47, 10999.	2.2	107
118	Silica hollow nanospheres as new nanoscaffold materials to enhance hydrogen releasing from ammonia borane. Physical Chemistry Chemical Physics, 2011, 13, 18592.	1.3	37
119	Low-Temperature Hydrogen Generation and Ammonia Suppression from Calcium Borohydride Combined with Guanidinium Borohydride. Journal of Physical Chemistry C, 2011, 115, 3188-3193.	1.5	11
120	Catalytic dehydrocoupling of Me2NHBH3 with Al(NMe2)3. Chemical Communications, 2011, 47, 2682.	2.2	63
121	Promoted dehydrogenation in ammine lithium borohydride supported by carbon nanotubes. Dalton Transactions, 2011, 40, 9679.	1.6	10
122	Na[Li(NH2BH3)2] – the first mixed-cation amidoborane with unusual crystal structure. Dalton Transactions, 2011, 40, 4407.	1.6	70
123	A GBH/LiBH4 coordination system with favorable dehydrogenation. Journal of Materials Chemistry, 2011, 21, 7138.	6.7	27
124	Promotion of hydrogen release from ammonia borane with magnesium nitride. Dalton Transactions, 2011, 40, 6469.	1.6	33
125	Hydrazine bisalane is a potential compound for chemical hydrogen storage. A theoretical study. Dalton Transactions, 2011, 40, 8540.	1.6	3
126	Binuclear magnesium amidoborane complexes: characterization of a trinuclear thermal decomposition product. Dalton Transactions, 2011, 40, 8314.	1.6	23
127	Sodium magnesium amidoborane: the first mixed-metal amidoborane. Chemical Communications, 2011, 47, 4102.	2.2	71
128	Electronic Structure from First-Principles of LiBH ₄ ·NH ₃ , Sr(NH ₂ BH ₃) ₂ , and Li ₂ Al(BH ₄) ₅ Å·6NH ₃ for Hydrogen Storage Applications. Journal of Physical Chemistry C. 2011, 115, 20036-20042.	1.5	10
129	Energy Resources and Systems. , 2011, , .		46
130	Synthesis and Characterization of Methylammonium Borohydride. Inorganic Chemistry, 2011, 50, 932-936.	1.9	9

ARTICLE IF CITATIONS # Site Substitution of Ti in NaAlH₄ and Na₃AlH₆. Journal of Physical 131 1.5 19 Chemistry C, 2011, 115, 21454-21464. Development of amidoboranes for hydrogen storage. Chemical Communications, 2011, 47, 5116. 2.2 142 Magnesium nanocrystal-polymer composites: A new platform for designer hydrogen storage 133 15.6 105 materials. Energy and Environmental Science, 2011, 4, 4882. Hydrogen Energy., 2011, , 495-629. 134 1,2-BN Cyclohexane: Synthesis, Structure, Dynamics, and Reactivity. Journal of the American Chemical 135 6.6 95 Society, 2011, 133, 13006-13009. Chemical hydrogen storage: †material' gravimetric capacity versus†system' gravimetric capacity. Energy and Environmental Science, 2011, 4, 3334. Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in 137 Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. Journal of the American Chemical 6.6 725 Society, 2011, 133, 11822-11825. H₂-Binding by Neutral and Multiply Charged Titaniums: Hydrogen Storage Capacity of 2.3 Titanium Mono- and Dications. Journal of Chemical Theory and Computation, 2011, 7, 969-978. Solid-state hydrogen storage for mobile applications: Quo Vadis?. Energy and Environmental Science, 139 15.6 112 2011, 4, 2495. 140 Global Climate Change - The Technology Challenge. Advances in Global Change Research, 2011, , . 1.6 In Situ High-Pressure Study of Sodium Amide by Raman and Infrared Spectroscopies. Journal of Physical 141 1.2 33 Chemistry B, 2011, 115, 7-13. Noble-Metal-Free Bimetallic Nanoparticle-Catalyzed Selective Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage. Journal of the American Chemical Society, 2011, 133, 6.6 303 19638-19641 Effective hydrogen storage: a strategic chemistry challenge. Faraday Discussions, 2011, 151, 399. 143 1.6 103 Homopolar Dihydrogen Bonding in Alkali-Metal Amidoboranes and Its Implications for Hydrogen 144 6.6 Storage. Journal of the American Chemical Society, 2011, 133, 16598-16604. Adsorption and Dissociation of Ammonia Borane Outside and Inside Single-Walled Carbon Nanotubes: 145 1.5 7 A Density Functional Theory Study. Journal of Physical Chemistry C, 2011, 115, 12580-12585. Releasing 17.8 wt% H2 from lithium borohydride ammoniate. Energy and Environmental Science, 2011, 4, 146 74 3593. Combined formation and decomposition of dual-metal amidoborane NaMg(NH2BH3)3for 147 1.6 52 high-performance hydrogen storage. Dalton Transactions, 2011, 40, 3799-3801. 148 Pyrolytic Decomposition of Ammonia Borane to Boron Nitride. Inorganic Chemistry, 2011, 50, 783-792. 199

#	Article	IF	CITATIONS
149	Characterization and mechanistic studies of the dehydrogenation of NHxBHx materials. Current Opinion in Solid State and Materials Science, 2011, 15, 73-79.	5.6	33
150	Stable dimeric magnesium(i) compounds: from chemical landmarks to versatile reagents. Dalton Transactions, 2011, 40, 5659.	1.6	197
151	Correlation between composition and hydrogen storage behaviors of the Li2NH-MgNH combination system. Dalton Transactions, 2011, 40, 8179.	1.6	19
152	A multifaceted approach to hydrogen storage. Physical Chemistry Chemical Physics, 2011, 13, 16955.	1.3	64
153	Microwave-assisted synthesis and characterization of Nd1.5Mg17Ni0.5–Fe3O4 hydrogen storage composite. Journal of Alloys and Compounds, 2011, 509, 99-104.	2.8	17
154	Thermal decomposition performance of Ca(BH4)2/LiNH2 mixtures. Journal of Alloys and Compounds, 2011, 509, S724-S727.	2.8	12
155	Native Defect Concentrations in NaAlH ₄ and Na ₃ AlH ₆ . Journal of Physical Chemistry C, 2011, 115, 21443-21453.	1.5	27
156	Nanoconfinement effects on the reversibility of hydrogen storage in ammonia borane: A first-principles study. Journal of Chemical Physics, 2011, 134, 214501.	1.2	15
157	Hydrogen Releasing of Lithium Amidoborane-LiNH ₂ BH ₃ . Materials Transactions, 2011, 52, 651-653.	0.4	8
158	Hydrogen Storage Properties of the Mg(NH ₃) ₆ Cl ₂ -LiH Combined System. Materials Transactions, 2011, 52, 627-634.	0.4	5
159	Dehydrogenation performance of NH3BH3 with Mg2NiH4 addition. Thermochimica Acta, 2011, 524, 23-28.	1.2	7
160	Theoretical study of the hydrogen release mechanism from a lithium derivative of ammonia borane, LiNH2BH3–NH3BH3. Chemical Physics Letters, 2011, 517, 22-28.	1.2	8
161	The reactions in LiBH4–NaNH2 hydrogen storage system. International Journal of Hydrogen Energy, 2011, 36, 9733-9742.	3.8	36
162	Nickel-palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. International Journal of Hydrogen Energy, 2011, 36, 11794-11801.	3.8	143
163	Ammonia borane decomposition in the presence of cobalt halides. International Journal of Hydrogen Energy, 2011, 36, 12955-12964.	3.8	33
164	Hydrazine bisborane as a promising material for chemical hydrogen storage. International Journal of Hydrogen Energy, 2011, 36, 13640-13644.	3.8	23
165	Dehydrogenation Tuning of Ammine Borohydrides Using Double-Metal Cations. Journal of the American Chemical Society, 2011, 133, 4690-4693.	6.6	103
166	Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M = Li, Na) metal amidoboranes as predicted from first principles. Physical Chemistry Chemical Physics, 2011, 13, 7649.	1.3	41

	CITATION RE	PORT	
#	Article	IF	Citations
167	A prospect for LiBH4 as on-board hydrogen storage. Open Chemistry, 2011, 9, 761-775.	1.0	8
168	A simple preparation method of sodium amidoborane, highly efficient derivative of ammonia borane dehydrogenating at low temperature. International Journal of Hydrogen Energy, 2011, 36, 7423-7430.	3.8	20
169	One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core-shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Research, 2011, 4, 1233-1241.	5.8	77
170	Improved hydrogen desorption properties of Co-doped Li2BNH6. Science Bulletin, 2011, 56, 2481-2485.	1.7	7
171	Progress in improving thermodynamics and kinetics of new hydrogen storage materials. Frontiers of Physics, 2011, 6, 151-161.	2.4	6
174	Temperatureâ€Induced Enhancement of Catalytic Performance in Selective Hydrogen Generation from Hydrous Hydrazine with Niâ€Based Nanocatalysts for Chemical Hydrogen Storage. European Journal of Inorganic Chemistry, 2011, 2011, 2232-2237.	1.0	87
175	The Hydrogen Issue. ChemSusChem, 2011, 4, 21-36.	3.6	772
176	Hydrolysis of Ammonia Borane as a Hydrogen Source: Fundamental Issues and Potential Solutions Towards Implementation. ChemSusChem, 2011, 4, 1731-1739.	3.6	158
178	The Hydrogenâ€Enriched Al–B–N System as an Advanced Solid Hydrogenâ€Storage Candidate. Angewandte Chemie - International Edition, 2011, 50, 1087-1091.	7.2	92
179	Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catalysis Today, 2011, 170, 56-63.	2.2	295
180	Quasi in situ Mössbauer and XAS studies on FeB nanoalloy for heterogeneous catalytic dehydrogenation of ammonia borane. Catalysis Today, 2011, 170, 69-75.	2.2	18
181	De-/re-hydrogenation features of NaAlH4 confined exclusively in nanopores. Acta Materialia, 2011, 59, 1829-1838.	3.8	95
182	Rapid microwave hydrogen release from MgH2 and other hydrides. International Journal of Hydrogen Energy, 2011, 36, 7580-7586.	3.8	19
183	First-principles prediction of high-capacity, thermodynamically reversible hydrogen storage reactions based on (NH4)2B12H12. Physical Review B, 2011, 83, .	1.1	13
184	Perspective on the Storage of Hydrogen: Past and Future. Structure and Bonding, 2011, , 169-201.	1.0	16
185	Ammonia borane nanofibers supported by poly(vinyl pyrrolidone) for dehydrogenation. Journal of Materials Chemistry, 2011, 21, 14616. Phase coexistence and nysteresis effects in the pressure-temperature phase diagram of NH <mml:math< td=""><td>6.7</td><td>40</td></mml:math<>	6.7	40
186	annins.mm= http://www.ws.org/1996/Math/MathML display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow> BH <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 	1.1	19
187	(M = Li, Na, K) hydrogen storage systems. Journal of Chemical Physics, 2011, 134, 124515.	1.2	2

#	Article	IF	CITATIONS
188	Functional materials for hydrogen storage. , 2012, , 217-246e.		1
189	RECENT PROGRESS IN BORON- AND NITROGEN-BASED CHEMICAL HYDROGEN STORAGE. Functional Materials Letters, 2012, 05, 1230001.	0.7	73
190	High-pressure study of lithium amidoborane using Raman spectroscopy and insight into dihydrogen bonding absence. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19140-19144.	3.3	13
191	Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping. Catalysts, 2012, 2, 434-446.	1.6	4
192	Moderate Temperature Dense Phase Hydrogen Storage Materials within the US Department of Energy (DOE) H2 Storage Program: Trends toward Future Development. Crystals, 2012, 2, 413-445.	1.0	13
194	Liquid-phase chemical hydrogen storage materials. Energy and Environmental Science, 2012, 5, 9698.	15.6	737
195	Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release. Energy and Environmental Science, 2012, 5, 7590.	15.6	82
196	Progress on first-principles-based materials design for hydrogen storage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19893-19899.	3.3	73
197	Synergistic catalysis of Au-Co@SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Journal of Materials Chemistry, 2012, 22, 5065.	6.7	82
198	Electronic Structure and Initial Dehydrogenation Mechanism of M(BH ₄) ₂ ·2NH ₃ (M = Mg, Ca, and Zn): A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 11900-11906.	1.5	43
199	Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage. Journal of Materials Chemistry, 2012, 22, 19146.	6.7	85
200	Enhanced hydrogen storage properties of NaAlH4co-catalysed with niobium fluoride and single-walled carbon nanotubes. RSC Advances, 2012, 2, 1569-1576.	1.7	25
201	Calcium amidoborane, a new reagent for chemoselective reduction of α,β-unsaturated aldehydes and ketones to allylic alcohols. RSC Advances, 2012, 2, 6005.	1.7	14
202	Thermal desorption of hydrogen from ammonia borane: unexpected role of homopolar B–Hâ‹⁻H–B interactions. Chemical Communications, 2012, 48, 2597.	2.2	57
203	A simple and efficient approach to synthesize amidoborane ammoniates: case study for Mg(NH2BH3)2(NH3)3 with unusual coordination structure. Journal of Materials Chemistry, 2012, 22, 13174.	6.7	19
204	Comparative study on reducing aromatic aldehydes by using ammonia borane and lithium amidoborane as reducing reagents. New Journal of Chemistry, 2012, 36, 1496.	1.4	39
205	In situ hybridization of LiNH2–LiH–Mg(BH4)2 nano-composites: intermediate and optimized hydrogenation properties. Physical Chemistry Chemical Physics, 2012, 14, 2857.	1.3	26
206	Strong metal–molecular support interaction (SMMSI): Amine-functionalized gold nanoparticles encapsulated in silica nanospheres highly active for catalytic decomposition of formic acid. Journal of Materials Chemistry, 2012, 22, 12582.	6.7	137

#	Article	IF	CITATIONS
207	ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane. Chemical Communications, 2012, 48, 3173.	2.2	232
208	Dehydrogenation Mechanism of Monoammoniated Lithium Amidoborane [Li(NH3)NH2BH3]. Journal of Physical Chemistry C, 2012, 116, 8859-8864.	1.5	11
209	Polyacrylamide Blending with Ammonia Borane: A Polymer Supported Hydrogen Storage Composite. Journal of Physical Chemistry C, 2012, 116, 1544-1549.	1.5	42
210	W.R. Grove and the fuel cell. Philosophical Magazine, 2012, 92, 3757-3765.	0.7	7
211	Crystal Structures, Phase Stabilities, and Hydrogen Storage Properties of Metal Amidoboranes. Journal of Physical Chemistry C, 2012, 116, 14224-14231.	1.5	18
212	Lithium amidoborane, a highly chemoselective reagent for the reduction of α,β-unsaturated ketones to allylic alcohols. Organic and Biomolecular Chemistry, 2012, 10, 367-371.	1.5	20
213	Monoammoniate of Calcium Amidoborane: Synthesis, Structure, and Hydrogen-Storage Properties. Inorganic Chemistry, 2012, 51, 1599-1603.	1.9	33
214	Dehydrogenation of Ammonia Borane Confined by Low-Density Porous Aromatic Framework. Journal of Physical Chemistry C, 2012, 116, 25694-25700.	1.5	30
215	Hydrogen Desorption Behavior of Calcium Amidoborane Obtained by Reactive Milling of Calcium Hydride and Ammonia Borane. Journal of Physical Chemistry C, 2012, 116, 24430-24435.	1.5	13
216	Solid-State NMR Study of Li-Assisted Dehydrogenation of Ammonia Borane. Inorganic Chemistry, 2012, 51, 4108-4115.	1.9	14
217	Improved Hydrogen Release from Ammonia–Borane with ZIF-8. Inorganic Chemistry, 2012, 51, 2728-2730.	1.9	61
218	Role of NH ₃ in the Dehydrogenation of Calcium Amidoborane Ammoniate and Magnesium Amidoborane Ammoniate: A First-Principles Study. Inorganic Chemistry, 2012, 51, 76-87.	1.9	14
219	New Syntheses and Structural Characterization of NH ₃ BH ₂ Cl and (BH ₂ NH ₂) ₃ and Thermal Decomposition Behavior of NH ₃ BH ₂ Cl. Inorganic Chemistry, 2012, 51, 13430-13436.	1.9	38
220	Hybrid Density Functional and Molecular Dynamics Study of Promising Hydrogen Storage Materials: Double Metal Amidoboranes and Metal Amidoborane Ammoniates. Journal of Physical Chemistry C, 2012, 116, 17351-17359.	1.5	8
221	First-Principles Prediction of Intermediate Products in the Decomposition of Metal Amidoboranes. Journal of Physical Chemistry C, 2012, 116, 26728-26734.	1.5	8
222	Core–Shell Strategy Leading to High Reversible Hydrogen Storage Capacity for NaBH ₄ . ACS Nano, 2012, 6, 7739-7751.	7.3	147
223	Hydrogen adsorption on Na–SWCNT systems. Journal of Materials Chemistry, 2012, 22, 22013.	6.7	8
224	High pressure phase determination and electronic properties of lithiumamidoborane. Applied Physics Letters, 2012, 101, 111902.	1.5	4

#	Article	IF	CITATIONS
225	In situ synthesis of magnetically recyclable graphene-supported Pd@Co core–shell nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Journal of Materials Chemistry, 2012, 22, 12468.	6.7	147
226	Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage. Dalton Transactions, 2012, 41, 4296.	1.6	68
227	Porous MnO2 hollow cubes as new nanoscaffold materials for the dehydrogenation promotion of ammonia-borane (AB). Microporous and Mesoporous Materials, 2012, 161, 40-47.	2.2	15
228	LiBH4·NH3BH3: A new lithium borohydride ammonia borane compound with a novel structure and favorable hydrogen storage properties. International Journal of Hydrogen Energy, 2012, 37, 10750-10757.	3.8	34
229	Structural and electronic properties of the hydrogen storage compound Ca(BH4)2·2NH3 from first-principles. Computational Materials Science, 2012, 54, 345-349.	1.4	3
230	Li–Na ternary amidoborane for hydrogen storage: experimental and first-principles study. Dalton Transactions, 2012, 41, 4754.	1.6	18
231	Hydrogen Storage. , 2012, , 157-177.		3
232	Metal Amidoboranes: Superior Doubleâ€Hydrogenâ€Transfer Agents in the Reduction of Ketones and Imines. Chemistry - A European Journal, 2012, 18, 13885-13892.	1.7	22
233	Catalytic Thermal Decomposition of Ammonia–Borane by Wellâ€Ðispersed Metal Nanoparticles on Mesoporous Substrates Prepared by Magnetron Sputtering. European Journal of Inorganic Chemistry, 2012, 2012, 5722-5728.	1.0	9
234	Metalâ€Nanoparticle Catalyzed Hydrogen Generation from Liquidâ€Phase Chemical Hydrogen Storage Materials. Journal of the Chinese Chemical Society, 2012, 59, 1181-1189.	0.8	12
235	Molecular early main group metal hydrides: synthetic challenge, structures and applications. Chemical Communications, 2012, 48, 11165.	2.2	143
236	Metathesis of alkali-metal amidoborane and FeCl3 in THF. Journal of Materials Chemistry, 2012, 22, 7478.	6.7	11
237	Insights from impedance spectroscopy into the mechanism of thermal decomposition of M(NH2BH3), M = H, Li, Na, Li0.5Na0.5, hydrogen stores. Physical Chemistry Chemical Physics, 2012, 14, 5778.	1.3	27
238	In Situ High-Pressure and Low-Temperature Study of Ammonia Borane by Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 2123-2131.	1.5	27
239	Room-temperature hydrogen release from activated carbon-confined ammonia borane. International Journal of Hydrogen Energy, 2012, 37, 13437-13445.	3.8	57
240	Enhanced dehydrogenation properties of LiBH4 compositing with hydrogenated magnesium-rare earth compounds. International Journal of Hydrogen Energy, 2012, 37, 13446-13451.	3.8	10
241	NH3BH3/LiBH4·NH3 modified by metal hydrides for advanced dehydrogenation. International Journal of Hydrogen Energy, 2012, 37, 18101-18107.	3.8	12
242	Temperature-induced selectivity enhancement in hydrogen generation from Rh–Ni nanoparticle-catalyzed decomposition of hydrous hydrazine. International Journal of Hydrogen Energy, 2012, 37, 18915-18919.	3.8	58

#	Article	IF	CITATIONS
243	Fabrication of Multi-Phases Composite Mg-Ni Alloys by High Current Pulsed Electron Beam. Procedia Engineering, 2012, 27, 1694-1699.	1.2	0
244	Metal hydrazinoborane LiN2H3BH3 and LiN2H3BH3·2N2H4BH3: crystal structures and high-extent dehydrogenation. Energy and Environmental Science, 2012, 5, 7531.	15.6	56
245	Promoted hydrogen release from ammonia borane with mannitolvia a solid-state reaction route. Dalton Transactions, 2012, 41, 871-875.	1.6	16
246	First-Principles Calculations of Potassium Amidoborane KNH ₂ BH ₃ : Structure and ³⁹ K NMR Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 20666-20672.	1.5	9
247	Boron–nitrogen–hydrogen (BNH) compounds: recent developments in hydrogen storage, applications in hydrogenation and catalysis, and new syntheses. Energy and Environmental Science, 2012, 5, 9257.	15.6	233
248	Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or) Tj ETQq1	1,0,78431 1.5	.4.gBT /Ove
249	Magnesium amidoborane monoammoniate: Plane-wave DFT calculations. Chemical Physics Letters, 2012, 545, 26-28.	1.2	1
250	Complex Ammine Titanium(III) Borohydrides as Advanced Solid Hydrogen-Storage Materials with Favorable Dehydrogenation Properties. Chemistry of Materials, 2012, 24, 3370-3379.	3.2	61
251	Comparative Study of Structural Changes in NH ₃ BH ₃ , LiNH ₂ BH ₃ , and KNH ₂ BH ₃ During Dehydrogenation Process. Journal of Physical Chemistry C, 2012, 116, 5957-5964.	1.5	57
252	Regenerable hydrogen storage in lithium amidoborane. Chemical Communications, 2012, 48, 9296.	2.2	30
253	First-principles investigation of ammonia borane for hydrogen storage. Physica Scripta, 2012, 86, 015606.	1.2	9
254	Borohydride hydrazinates: high hydrogen content materials for hydrogenstorage. Energy and Environmental Science, 2012, 5, 5686-5689.	15.6	68
255	From Exothermic to Endothermic Dehydrogenation – Interaction of Monoammoniate of Magnesium Amidoborane and Metal Hydrides. Chemistry of Materials, 2012, 24, 3574-3581.	3.2	33
256	First-Principles Study on the Mechanisms for H ₂ Formation in Ammonia Borane at Ambient and High Pressure. Journal of Physical Chemistry C, 2012, 116, 2146-2152.	1.5	19
257	Hydrogen Generation from Hydrolysis and Methanolysis of Guanidinium Borohydride. Journal of Physical Chemistry C, 2012, 116, 14218-14223.	1.5	23
258	Rapid and energy-efficient synthesis of a graphene–CuCo hybrid as a high performance catalyst. Journal of Materials Chemistry, 2012, 22, 10990.	6.7	136
259	Ammine aluminium borohydrides: an appealing system releasing over 12 wt% pure H2 under moderate temperature. Chemical Communications, 2012, 48, 4408.	2.2	54
260	New Routes to Soluble Magnesium Amidoborane Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 2596-2601.	1.0	33

#	Article	IF	CITATIONS
262	Highly Dispersed Surfactantâ€Free Nickel Nanoparticles and Their Remarkable Catalytic Activity in the Hydrolysis of Ammonia Borane for Hydrogen Generation. Angewandte Chemie - International Edition, 2012, 51, 6753-6756.	7.2	159
263	Synthesis of Ni–Ru Alloy Nanoparticles and Their High Catalytic Activity in Dehydrogenation of Ammonia Borane. Chemistry - A European Journal, 2012, 18, 7925-7930.	1.7	185
264	Reductive Amination of Aldehydes and Ketones with Primary Amines by Using Lithium Amidoborane as Reducing Reagent. Chinese Journal of Chemistry, 2012, 30, 1775-1780.	2.6	3
265	Mechanistic Investigation on the Formation and Dehydrogenation of Calcium Amidoborane Ammoniate. ChemSusChem, 2012, 5, 927-931.	3.6	10
266	Nano-confined ammonia borane for chemical hydrogen storage. Frontiers of Chemical Science and Engineering, 2012, 6, 27-33.	2.3	37
267	Sorption of hydrogen onto titanate nanotubes decorated with a nanostructured Cd3[Fe(CN)6]2 Prussian Blue analogue. International Journal of Hydrogen Energy, 2012, 37, 318-326.	3.8	17
268	Nanoconfinement of LiBH4·NH3 towards enhanced hydrogen generation. International Journal of Hydrogen Energy, 2012, 37, 3328-3337.	3.8	20
269	Efficient and highly rapid hydrogen release from ball-milled 3NH3BH3/MMgH3 (MÂ=ÂNa, K, Rb) mixtures at low temperatures. International Journal of Hydrogen Energy, 2012, 37, 4259-4266.	3.8	24
270	The structural characterization of (NH4)2B10H10 and thermal decomposition studies of (NH4)2B10H10 and (NH4)2B12H12. International Journal of Hydrogen Energy, 2012, 37, 4267-4273.	3.8	12
271	The catalyst-free hydrolysis behaviors of NaBH4–NH3BH3 composites. International Journal of Hydrogen Energy, 2012, 37, 5137-5142.	3.8	11
272	Hydrogen generation from hydrolysis of NH3BH3/MH (M=Li, Na) binary hydrides. International Journal of Hydrogen Energy, 2012, 37, 5152-5160.	3.8	17
273	Enhancement of hydrogen storage capacity in hydrate lattices. Chemical Physics Letters, 2012, 525-526, 13-18.	1.2	46
274	Synthesis and dehydrogenation of LiCa(NH2)3(BH3)2. International Journal of Hydrogen Energy, 2012, 37, 9076-9081.	3.8	7
275	Hydrogen generation from hydrolysis of MNH2BH3 and NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application. Energy, 2012, 38, 205-211.	4.5	13
276	Thermodynamics study of hydrogen storage materials. Journal of Chemical Thermodynamics, 2012, 46, 86-93.	1.0	24
277	Calcium–Amidoborane–Ammine Complexes: Thermal Decomposition of Model Systems. Chemistry - A European Journal, 2012, 18, 1984-1991.	1.7	26
278	Novel theoretical studies of the dehydrogenation of LiBH ₂ NH ₃ . International Journal of Quantum Chemistry, 2013, 113, 1358-1364.	1.0	6
279	Homopolar Dihydrogen Bonding in Alkali Metal Amidoboranes: Crystal Engineering of Low-Dimensional Molecular Materials. Journal of the American Chemical Society, 2013, 135, 2439-2442.	6.6	44

		CITATION RE	PORT	
#	Article		IF	CITATIONS
280	Hydrogen storage: beyond conventional methods. Chemical Communications, 2013, 49, 8	735.	2.2	417
281	Hydrogen Storage Materials. , 2013, , 99-136.			5
282	Hydrogen Storage Materials. , 2013, , 377-405.			6
283	Graphene-Supported Ag-Based Core–Shell Nanoparticles for Hydrogen Generation in Hydrogen	Irolysis of 5, 8231-8240.	4.0	174
284	Systematic kinetic study of H2 release from the dimer of lithium amidoborane (LiNH2BH3) Chemistry, 2013, 24, 1527-1536.	2. Structural	1.0	7
285	Mixed-metal (Li, Al) amidoborane: synthesis and enhanced hydrogen storage properties. Jo Materials Chemistry A, 2013, 1, 1810-1820.	urnal of	5.2	37
286	A synergistic strategy established by the combination of two H-enriched B–N based hydr superior dehydrogenation. Journal of Materials Chemistry A, 2013, 1, 10155.	ides towards	5.2	26
287	In situ synthesis of graphene supported Ag@CoNi core–shell nanoparticles as highly effic catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine bo Journal of Materials Chemistry A, 2013, 1, 10016.	cient rane.	5.2	118
288	Graphene oxide and lithium amidoborane: a new way to bridge chemical and physical appro hydrogen storage. Journal of Materials Chemistry A, 2013, 1, 8016.	paches for	5.2	27
289	Fabrication of hollow nickel-silica composite spheres using l(+)-arginine and their catalytic performance for hydrolytic dehydrogenation of ammonia borane. Journal of Molecular Cata 2013, 371, 1-7.	ilysis A,	4.8	23
290	Dehydrogenation mechanisms of Ca(NH2BH3)2: TheÂless the charge transfer, the lower th International Journal of Hydrogen Energy, 2013, 38, 11313-11320.	ie barrier.	3.8	8
291	Superior low-temperature hydrogen release from the ball-milled NH3BH3–LiNH2–LiBH International Journal of Hydrogen Energy, 2013, 38, 4648-4653.	4 composite.	3.8	7
292	Theoretical study on the structure and dehydrogenation mechanism of mixed metal amido Na[Li(NH2BH3)]2. Journal of Alloys and Compounds, 2013, 581, 59-65.	borane,	2.8	9
293	Two novel derivatives of ammonia borane for hydrogen storage: synthesis, structure, and h desorption investigation. Journal of Materials Chemistry A, 2013, 1, 12263.	ydrogen	5.2	18
294	Chemical regeneration of hydrogen storage materials. RSC Advances, 2013, 3, 23879.		1.7	42
295	New perspectives on potential hydrogen storage materials using high pressure. Physical Ch Chemical Physics, 2013, 15, 14524.	emistry	1.3	80
296	Adsorption of CH4 on nitrogen- and boron-containing carbon models of coal predicted by density-functional theory. Applied Surface Science, 2013, 285, 190-197.		3.1	62
297	Facile synthesis of Pd–Ir bimetallic octapods and nanocages through galvanic replaceme co-reduction, and their use for hydrazine decomposition. Physical Chemistry Chemical Phys 15, 11822.	nt and sics, 2013,	1.3	42

#	Article	IF	CITATIONS
298	The Roles of Dihydrogen Bonds in Amine Borane Chemistry. Accounts of Chemical Research, 2013, 46, 2666-2675.	7.6	122
299	Metal–Organic Framework Supported Bimetallic NiPt Nanoparticles as Highâ€performance Catalysts for Hydrogen Generation from Hydrazine in Aqueous Solution. ChemCatChem, 2013, 5, 3000-3004.	1.8	73
300	Kinetic Analysis and Modeling of Thermal Decomposition of Ammonia Borane. International Journal of Chemical Kinetics, 2013, 45, 452-461.	1.0	16
301	First-principles study of the formation and migration of native defects in LiNH ₂ BH ₃ . Physical Chemistry Chemical Physics, 2013, 15, 893-900.	1.3	7
302	Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale, 2013, 5, 910-912.	2.8	211
303	Effect of MWCNTs Additive on Desorption Properties of Zn(BH4)2 Composite Prepared by Mechanical Alloying. Journal of Materials Science and Technology, 2013, 29, 715-719.	5.6	5
304	Investigations of the thermal decomposition of MBH4–2NH3BH3, M=Na, K. Journal of Alloys and Compounds, 2013, 580, S287-S291.	2.8	18
305	Remarkable decrease in dehydrogenation temperature of Li–B–N–H hydrogen storage system with CoO additive. International Journal of Hydrogen Energy, 2013, 38, 13318-13327.	3.8	19
306	Improved dehydrogenation properties of the combined Mg(BH4)2·6NH3–nNH3BH3 system. International Journal of Hydrogen Energy, 2013, 38, 16199-16207.	3.8	16
307	Synthesis and hydrogen storage properties of lithium borohydride amidoborane complex. International Journal of Hydrogen Energy, 2013, 38, 10944-10949.	3.8	11
308	Releasing 9.6Âwt% of H2 from Mg(NH2)2–3LiH–NH3BH3 through mechanochemical reaction. International Journal of Hydrogen Energy, 2013, 38, 10446-10452.	3.8	8
309	Synthesis and Thermal Decomposition Behaviors of Magnesium Borohydride Ammoniates with Controllable Composition as Hydrogen Storage Materials. Chemistry - an Asian Journal, 2013, 8, 476-481.	1.7	47
310	Enhanced dehydrogenation and rehydrogenation properties of LiBH4 catalyzed by graphene. International Journal of Hydrogen Energy, 2013, 38, 2796-2803.	3.8	39
311	Boron-based hydrides for chemical hydrogen storage. International Journal of Energy Research, 2013, 37, 825-842.	2.2	129
312	Sodium Hydrazinidoborane: A Chemical Hydrogen‣torage Material. ChemSusChem, 2013, 6, 667-673.	3.6	37
313	Synthesis of ammine dual-metal (V, Mg) borohydrides with enhanced dehydrogenation properties. International Journal of Hydrogen Energy, 2013, 38, 5322-5329.	3.8	12
314	Recent Process and Development of Metal Aminoborane. Chemistry - an Asian Journal, 2013, 8, 1076-1089.	1.7	34
315	Synthesis, formation mechanism, and dehydrogenation properties of the long-sought Mg(NH2BH3)2 compound. Energy and Environmental Science, 2013, 6, 1018.	15.6	44

#	Article	IF	CITATIONS
316	Alkali and alkaline-earth metal borohydride hydrazinates: synthesis, structures and dehydrogenation. Physical Chemistry Chemical Physics, 2013, 15, 10487.	1.3	26
317	Mechanochemical synthesis of hydrogen storage materials. Progress in Materials Science, 2013, 58, 30-75.	16.0	345
318	Thermolysis and solid state NMR studies of NaB ₃ H ₈ , NH ₃ B ₃ H ₇ , and NH ₄ B ₃ H ₈ . Dalton Transactions, 2013, 42, 701-708.	1.6	30
319	Li2(NH2BH3)(BH4)/LiNH2BH3: The first metal amidoborane borohydride complex with inseparable amidoborane precursor for hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 197-204.	3.8	11
320	Heating Rate-Dependent Dehydrogenation in the Thermal Decomposition Process of Mg(BH ₄) ₂ ·6NH ₃ . Journal of Physical Chemistry C, 2013, 117, 16326-16335.	1.5	29
321	Catalytic hydrolysis of ammonia borane via magnetically recyclable copper iron nanoparticles for chemical hydrogen storage. International Journal of Hydrogen Energy, 2013, 38, 5330-5337.	3.8	148
322	Structural study and dehydrogenation mechanisms of a novel mixed metal amidoborane: Sodium magnesium amidoborane. Chemical Physics Letters, 2013, 590, 27-34.	1.2	7
323	In-Situ Diffraction Studies of Gas Storage Materials on a Laboratory X-Ray System. Materials Research Society Symposia Proceedings, 2013, 1544, 1.	0.1	Ο
324	In Situ Facile Synthesis of Ruâ€Based Core–Shell Nanoparticles Supported on Carbon Black and Their High Catalytic Activity in the Dehydrogenation of Amineâ€Boranes. Chemistry - an Asian Journal, 2014, 9, 562-571.	1.7	50
325	Ammonia borane at high pressures. Science Bulletin, 2014, 59, 5227-5234.	1.7	4
325 326	Ammonia borane at high pressures. Science Bulletin, 2014, 59, 5227-5234. Hydrogen-mediated affinity of ions found in compressed potassium amidoborane, K[NH ₂ BH ₃]. CrystEngComm, 2014, 16, 10367-10370.	1.7 1.3	4 5
325 326 327	Ammonia borane at high pressures. Science Bulletin, 2014, 59, 5227-5234. Hydrogen-mediated affinity of ions found in compressed potassium amidoborane, K[NH ₂ BH ₃]. CrystEngComm, 2014, 16, 10367-10370. Nanocatalysts for Hydrogen Generation from Ammonia Borane and Hydrazine Borane. Journal of Nanomaterials, 2014, 2014, 1-11.	1.7 1.3 1.5	4 5 57
325326327328	Ammonia borane at high pressures. Science Bulletin, 2014, 59, 5227-5234. Hydrogen-mediated affinity of ions found in compressed potassium amidoborane, K[NH ₂ BH ₃]. CrystEngComm, 2014, 16, 10367-10370. Nanocatalysts for Hydrogen Generation from Ammonia Borane and Hydrazine Borane. Journal of Nanomaterials, 2014, 2014, 1-11. Structure and properties of complex hydride perovskite materials. Nature Communications, 2014, 5, 5706.	1.7 1.3 1.5 5.8	4 5 57 168
 325 326 327 328 329 	Ammonia borane at high pressures. Science Bulletin, 2014, 59, 5227-5234.Hydrogen-mediated affinity of ions found in compressed potassium amidoborane, K[NH ₂ BH ₃]. CrystEngComm, 2014, 16, 10367-10370.Nanocatalysts for Hydrogen Generation from Ammonia Borane and Hydrazine Borane. Journal of Nanomaterials, 2014, 2014, 1-11.Structure and properties of complex hydride perovskite materials. Nature Communications, 2014, 5, 5706.Crystal and electronic structures of solid M(NH 2 BH 3) n (MÂ=ÂLi, Na, K) and the decomposition mechanisms. International Journal of Hydrogen Energy, 2014, 39, 21372-21379.	1.7 1.3 1.5 5.8 3.8	4 5 57 168 7
 325 326 327 328 329 330 	Ammonia borane at high pressures. Science Bulletin, 2014, 59, 5227-5234.Hydrogen-mediated affinity of ions found in compressed potassium amidoborane, K[NH ₂ BH ₃]. CrystEngComm, 2014, 16, 10367-10370.Nanocatalysts for Hydrogen Ceneration from Ammonia Borane and Hydrazine Borane. Journal of Nanomaterials, 2014, 2014, 1-11.Structure and properties of complex hydride perovskite materials. Nature Communications, 2014, 5, 5706.Crystal and electronic structures of solid M(NH 2 BH 3) n (MÂ=ÂLi, Na, K) and the decomposition mechanisms. International Journal of Hydrogen Energy, 2014, 39, 21372-21379.A First-Principles Study: Structure and Decomposition of Mono-/Bimetallic Ammine Borohydrides. Journal of Physical Chemistry C, 2014, 118, 8271-8279.	1.7 1.3 1.5 5.8 3.8 1.5	4 5 57 168 7 15
 325 326 327 328 329 330 331 	Ammonia borane at high pressures. Science Bulletin, 2014, 59, 5227-5234. Hydrogen-mediated affinity of ions found in compressed potassium amidoborane, K[NH ₂ BH _{3. Nanocatalysts for Hydrogen Generation from Ammonia Borane and Hydrazine Borane. Journal of Nanomaterials, 2014, 2014, 1-11. Structure and properties of complex hydride perovskite materials. Nature Communications, 2014, 5, 5706. Crystal and electronic structures of solid M(NH 2 BH 3) n (MÂ=ÂLi, Na, K) and the decomposition mechanisms. International Journal of Hydrogen Energy, 2014, 39, 21372-21379. A First-Principles Study: Structure and Decomposition of Mono-/Bimetallic Ammine Borohydrides. Journal of Physical Chemistry C, 2014, 118, 8271-8279. Synthesis, Crystal Structure, Thermal Decomposition, and ¹¹B MAS NMR Characterization of Mg(BH₄3} 3BH ₃ 33333	1.7 1.3 1.5 5.8 3.8 1.5 1.5	4 5 57 168 7 15
 325 326 327 328 329 330 331 332 	Ammonia borane at high pressures. Science Bulletin, 2014, 59, 5227-5234. Hydrogen-mediated affinity of ions found in compressed potassium amidoborane, K[NH ₂ BH ₃]. CrystEngComm, 2014, 16, 10367-10370. Nanocatalysts for Hydrogen Generation from Ammonia Borane and Hydrazine Borane. Journal of Nanomaterials, 2014, 2014, 1-11. Structure and properties of complex hydride perovskite materials. Nature Communications, 2014, 5, 5706. Crystal and electronic structures of solid M(NH 2 BH 3) n (MÂ=ÂLi, Na, K) and the decomposition mechanisms. International Journal of Hydrogen Energy, 2014, 39, 21372-21379. A First-Principles Study: Structure and Decomposition of Mono-/Bimetallic Ammine Borohydrides. Journal of Physical Chemistry C, 2014, 118, 8271-8279. Synthesis, Crystal Structure, Thermal Decomposition, and ¹¹ B MAS NMR Characterization of Mg(BH ₄ Sizeã€Controlled Synthesis of Tetrametallic Ag@CoNiFe Coreã€"Shell Nanoparticles Supported on Graphene: A Highly Efficient Catalyst for the Hydrolytic Dehydrogenation of Amine Boranes. ChemCatChem, 2014, 6, 1617-1625.	1.7 1.3 1.5 5.8 3.8 1.5 1.5 1.8	 4 5 57 168 7 15 41 36

	CITATION	n Report	
#	Article	IF	CITATIONS
334	Ammonia borane, past as prolog. Journal of Organometallic Chemistry, 2014, 751, 60-66.	0.8	86
335	Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane. Dalton Transactions, 2014, 43, 1797-1805.	1.6	63
336	Room temperature hydrogen generation from hydrolysis of ammonia–borane over an efficient NiAgPd/C catalyst. International Journal of Hydrogen Energy, 2014, 39, 20031-20037.	3.8	26
337	Experimental verification of the high pressure crystal structures in NH3BH3. Journal of Chemical Physics, 2014, 140, 244507.	1.2	11
338	Theory of mass transport in sodium alanate. Journal of Materials Chemistry A, 2014, 2, 4438-4448.	5.2	10
339	Advanced H ₂ -storage system fabricated through chemical layer deposition in a well-designed porous carbon scaffold. Journal of Materials Chemistry A, 2014, 2, 15168-15174.	5.2	6
340	A metal–organic framework as a chemical guide to control hydrogen desorption pathways of ammonia borane. Nanoscale, 2014, 6, 6526-6530.	2.8	25
341	Positional disorder in ammonia borane at ambient conditions. Physical Review B, 2014, 89, .	1.1	5
342	Magnetic Ni and Ni/Pt hollow nanospheres and their catalytic activities for hydrolysis of ammonia borane. Journal of Materials Chemistry A, 2014, 2, 18171-18176.	5.2	35
343	AB–MH (Ammonia Borane–Metal Hydride) composites: systematic understanding of dehydrogenation properties. Journal of Materials Chemistry A, 2014, 2, 3926-3931.	5.2	18
344	Physical, structural, and dehydrogenation properties of ammonia borane in ionic liquids. RSC Advances, 2014, 4, 21681-21687.	1.7	19
345	Enhanced hydrogen desorption of an ammonia borane and lithium hydride system through synthesised intermediate compounds. Journal of Materials Chemistry A, 2014, 2, 6801-6813.	5.2	6
346	Significantly enhanced dehydrogenation properties of calcium borohydride combined with urea. Dalton Transactions, 2014, 43, 15291-15294.	1.6	7
347	Role of Charge Transfer in Dehydrogenation of M(NH ₂ BH ₃) ₂ (M =) Tj	ETQq110.78	84314 rgBT
348	Structural, bonding and elastic properties of Mg(NH2BH3)2, Ca(NH2BH3)2 and Sr(NH2BH3)2. Materials Chemistry and Physics, 2014, 148, 364-370.	2.0	4
349	Mechanism of Solid-State Thermolysis of Ammonia Borane: A ¹⁵ N NMR Study Using Fast Magic-Angle Spinning and Dynamic Nuclear Polarization. Journal of Physical Chemistry C, 2014, 118, 19548-19555.	1.5	56
350	Preparation and Dehydrogenation Properties of Lithium Hydrazidobis(borane) (LiNH(BH ₃)NH ₂ BH ₃). Inorganic Chemistry, 2014, 53, 7334-7339.	1.9	7
351	Combination of two H-enriched B–N based hydrides towards improved dehydrogenation properties. International Journal of Hydrogen Energy, 2014, 39, 11668-11674.	3.8	2

#	Article	IF	CITATIONS
352	Alkali Metal Hydride Modification on Hydrazine Borane for Improved Dehydrogenation. Journal of Physical Chemistry C, 2014, 118, 11244-11251.	1.5	28
353	Enthalpy–Entropy Compensation Effect in Hydrogen Storage Materials: Striking Example of Alkali Silanides MSiH3(M = K, Rb, Cs). Journal of Physical Chemistry C, 2014, 118, 3409-3419.	1.5	29

Structural prediction, analysis and decomposition mechanism of solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 0 $\underset{1.7}{\text{pgBT}}$ /Overlock 10 The solid M(NH2BH3)n (M = Mg, Ca and) Tj ETQq0 0 0 0 $\underset{1.7}{\text{pgBT}}$

355	Well-dispersed lithium amidoborane nanoparticles through nanoreactor engineering for improved hydrogen release. Nanoscale, 2014, 6, 12333-12339.	2.8	15
356	Hydrogen storage over alkali metal hydride and alkali metal hydroxide composites. Journal of Energy Chemistry, 2014, 23, 414-419.	7.1	8
357	Ruthenium(0) nanoparticles supported on magnetic silica coated cobalt ferrite: Reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane. Journal of Molecular Catalysis A, 2014, 394, 253-261.	4.8	46
358	Hydrogen storage in Li dispersed graphene with Stone–Wales defects: A first-principles study. International Journal of Hydrogen Energy, 2014, 39, 13189-13194.	3.8	50
359	M(BH ₃ NH ₂ BH ₂ NH ₂ BH ₃) – the missing link in the mechanism of the thermal decomposition of light alkali metal amidoboranes. Physical Chemistry Chemical Physics, 2014, 16, 23340-23346.	1.3	21
361	Structure and Deuterium Desorption from Ca ₃ Mg ₂ Ni ₁₃ Deuteride: A Neutron Diffraction Study. Journal of Physical Chemistry C, 2014, 118, 4626-4633.	1.5	16
362	First principles calculations of LiNH2BH3, LiNH3BH4, and NaNH2BH3. Physica Status Solidi (B): Basic Research, 2014, 251, 898-906.	0.7	5
363	Ammonia borane–metal alanate composites: hydrogen desorption properties and decomposition processes. RSC Advances, 2014, 4, 20626-20631.	1.7	16
364	Accelerating the Understanding and Development of Hydrogen Storage Materials: A Review of the Five-Year Efforts of the Three DOE Hydrogen Storage Materials Centers of Excellence. Metallurgical and Materials Transactions E, 2014, 1, 81-117.	0.5	8
365	Synthesis and hydrogen release properties of alkyl-substituted amine-boranes. Journal of Materials Chemistry A, 2014, 2, 10682-10687.	5.2	10
366	A Metalâ€Free Strategy to Release Chemisorbed H ₂ from Hydrogenated Boron Nitride Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 12430-12435.	7.2	9
367	Thermolytic Decomposition of Ethane 1,2-Diamineborane Investigated by Thermoanalytical Methods and in Situ Vibrational Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 17221-17230.	1.5	43
368	Nitrogen-containing carbon nanostructures: A promising carrier for catalysis of ammonia borane dehydrogenation. Carbon, 2014, 68, 462-472.	5.4	27
369	Hydrolytic dehydrogenation of ammonia borane and methylamine borane catalyzed by graphene supported Ru@Ni core–shell nanoparticles. International Journal of Hydrogen Energy, 2014, 39, 426-435.	3.8	120
370	Fabrication of Pt-loaded NiCo nanochains with superior catalytic dehydrogenation activity. Journal of Colloid and Interface Science, 2014, 416, 220-226.	5.0	17

#	Article	IF	CITATIONS
371	Highly-dispersed surfactant-free bimetallic Ni–Pt nanoparticles as high-performance catalyst for hydrogen generation from hydrous hydrazine. International Journal of Hydrogen Energy, 2014, 39, 9128-9134.	3.8	59
372	Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane. Journal of Alloys and Compounds, 2014, 608, 261-265.	2.8	12
373	Phase boundary of pressure-induced I4mm to Cmc21 transition in ammonia borane at elevated temperature determined using Raman spectroscopy. International Journal of Hydrogen Energy, 2014, 39, 8293-8302.	3.8	5
374	Pd nanoparticles supported on MIL-101 as high-performance catalysts for catalytic hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2014, 39, 4947-4953.	3.8	87
375	Boron–nitrogen based hydrides and reactive composites for hydrogen storage. Materials Today, 2014, 17, 129-135.	8.3	165
376	Synergistic catalysis of MCM-41 immobilized Cu–Ni nanoparticles in hydrolytic dehydrogeneration of ammonia borane. International Journal of Hydrogen Energy, 2014, 39, 13389-13395.	3.8	102
377	Catalytic Effect of Multi-Wall Carbon Nanotubes Supported Nickel on Hydrogen Storage Properties of Mg ₉₉ Ni Prepared by Hydriding Combustion Synthesis. Materials Transactions, 2014, 55, 1149-1155.	0.4	5
380	Hydrolysis of ammonia borane and metal amidoboranes: A comparative study. Journal of Chemical Physics, 2015, 143, 194305.	1.2	13
381	A Composite of Complex and Chemical Hydrides Yields the First Alâ€Based Amidoborane with Improved Hydrogen Storage Properties. Chemistry - A European Journal, 2015, 21, 14562-14570.	1.7	31
382	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 2015, 8, 2789-2825.	3.6	302
383	Metalâ€Borohydrideâ€Modified Zr(BH ₄) ₄ â‹8 NH ₃ : Lowâ€Temperati Dehydrogenation Yielding Highly Pure Hydrogen. Chemistry - A European Journal, 2015, 21, 14931-14936.	ure 1.7	13
384	Increasing Hydrogen Density with the Cation-Anion Pair BH4â^'-NH4+ in Perovskite-Type NH4Ca(BH4)3. Energies, 2015, 8, 8286-8299.	1.6	16
385	Metal Amidoboranes and Their Derivatives for Hydrogen Storage. , 0, , .		0
386	Computational design of an Iridium based catalyst for releasing H ₂ from hydrogenated BN nanotubes. Chemical Communications, 2015, 51, 10532-10535.	2.2	11
387	The Catalytic Dehydrocoupling of Amine–Boranes and Phosphine–Boranes. Topics in Organometallic Chemistry, 2015, , 153-220.	0.7	122
388	Homopolar dihydrogen bonding in main group hydrides: discovery, consequences, and applications. Dalton Transactions, 2015, 44, 9718-9731.	1.6	48
389	Aluminum borohydride–ethylenediamine as a hydrogen storage candidate. RSC Advances, 2015, 5, 105618-105621.	1.7	7
390	New synthetic procedure for NaNH2(BH3)2 and evaluation of its hydrogen storage properties. Science China Chemistry, 2015, 58, 169-173.	4.2	8

ORT

#	Article	IF	CITATIONS
391	Behavior of decomposed ammonia borane at high pressure. Journal of Physics and Chemistry of Solids, 2015, 84, 75-79.	1.9	8
392	Electronic structures and dehydrogenation properties of bimetallic amidoboranes. International Journal of Hydrogen Energy, 2015, 40, 2500-2508.	3.8	7
393	Evaluation of the enthalpy change due to hydrogen desorption for M–N–H (MÂ=ÂLi, Mg, Ca) systems by differential scanning calorimetry. International Journal of Hydrogen Energy, 2015, 40, 1516-1522.	3.8	10
394	A step forward to the dehydrogenation reversibility of amine-borane adducts by coupling sodium and hydrocarbon groups. International Journal of Hydrogen Energy, 2015, 40, 2763-2767.	3.8	9
395	Improved thermal dehydrogenation of ammonia borane by MOF-5. RSC Advances, 2015, 5, 10746-10750.	1.7	28
396	Cyclic Dehydrogenation–(Re)Hydrogenation with Hydrogenâ€Storage Materials: An Overview. Energy Technology, 2015, 3, 100-117.	1.8	39
397	Clean Hydrogen Release from Ammonia Borane in a Metal–Organic Framework with Unsaturated Coordinated Tm ³⁺ . Journal of Physical Chemistry C, 2015, 119, 2260-2265.	1.5	15
398	Mild Dehydrogenation of Ammonia Borane Complexed with Aluminum Borohydride. Chemistry of Materials, 2015, 27, 768-777.	3.2	40
399	Si 20 H 20 cluster modified by small organic molecules andÂlithiumÂatoms for high-capacity hydrogen storage. International Journal of Hydrogen Energy, 2015, 40, 8093-8105.	3.8	11
400	Mechanistic understanding of CoO-catalyzed hydrogen desorption from a LiBH ₄ ·NH ₃ –3LiH system. Dalton Transactions, 2015, 44, 14514-14522.	1.6	8
401	Singleâ€ended transition state finding with the growing string method. Journal of Computational Chemistry, 2015, 36, 601-611.	1.5	160
402	The effect of NH3 content on hydrogen release from LiBH4–NH3 system. International Journal of Hydrogen Energy, 2015, 40, 4573-4578.	3.8	8
403	Lithium amidoborane hydrazinates: synthesis, structure and hydrogen storage properties. Journal of Materials Chemistry A, 2015, 3, 10100-10106.	5.2	10
404	Facile synthesis of monodisperse ruthenium nanoparticles supported on graphene for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2015, 40, 6180-6187.	3.8	105
405	Pure hydrogen-generating "doped―sodium hydrazinidoborane. International Journal of Hydrogen Energy, 2015, 40, 7475-7482.	3.8	11
406	Guanidinium octahydrotriborate: an ionic liquid with high hydrogen storage capacity. Journal of Materials Chemistry A, 2015, 3, 11411-11416.	5.2	25
407	Fluorine-substituted Mg(BH ₄) ₂ ·2NH ₃ with improved dehydrogenation properties for hydrogen storage. Journal of Materials Chemistry A, 2015, 3, 570-578.	5.2	25
408	Efficient catalytic hydrolytic dehydrogenation of ammonia borane over surfactant-free bimetallic nanoparticles immobilized on amine-functionalized carbon nanotubes. International Journal of Hydrogen Energy, 2015, 40, 12315-12324.	3.8	36

#	Article	IF	CITATIONS
409	Lowering the hydrogen desorption temperature of NH3BH3 through B-group substitutions. Journal of Materials Chemistry A, 2015, 3, 18528-18534.	5.2	6
410	Synthesis of a Nanosized Carbon-Supported Ni Composite and Its Remarkable Catalysis for Hydrogen Desorption from the LiBH ₄ –2LiNH ₂ System. Journal of Physical Chemistry C, 2015, 119, 24760-24768.	1.5	16
411	Porous nitrogen-doped carbon-immobilized bimetallic nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Journal of Materials Chemistry A, 2015, 3, 22807-22815.	5.2	58
412	Alkali metal-mediated dehydrocoupling of Me ₂ NH·BH ₃ . Dalton Transactions, 2015, 44, 12078-12081.	1.6	29
413	Reaction of a bulky amine borane with lanthanide trialkyls. Formation of alkyl lanthanide imide complexes. New Journal of Chemistry, 2015, 39, 7567-7570.	1.4	10
414	Synthesis and hydrogen storage properties of lithium borohydride urea complex. International Journal of Hydrogen Energy, 2015, 40, 429-434.	3.8	15
415	Efficient chemical regeneration of LiBH4NH3 spent fuel for hydrogen storage. International Journal of Hydrogen Energy, 2015, 40, 146-150.	3.8	6
416	Ammonia borane destabilized by aluminium hydride: A mutual enhancement for hydrogen release. International Journal of Hydrogen Energy, 2015, 40, 1047-1053.	3.8	15
417	Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy and Environmental Science, 2015, 8, 478-512.	15.6	673
418	Stepwise combination of NH ₃ with BH ₄ ^{â^'} in metal borohydride ammoniate. Chemical Communications, 2015, 51, 1104-1107.	2.2	11
419	Mono- and Bimetalic Amidoboranes. Crystals, 2016, 6, 88.	1.0	33
420	Comparative Computational Studies of Gaseous Alkali Metal Amidoboranes <i>M</i> NH ₂ BH ₃ and their Carbon Analogs <i>M</i> C ₂ H ₅ (<i>M</i> = Li – Cs): Formation and Unimolecular Hydrogen Evolution. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2016. 642. 163-168.	0.6	2
421	Trimeric cluster of lithium amidoborane-the smallest unit for the modeling of hydrogen release mechanism. Journal of Computational Chemistry, 2016, 37, 1259-1264.	1.5	6
423	High Catalytic Performance of MILâ€101â€Immobilized NiRu Alloy Nanoparticles towards the Hydrolytic Dehydrogenation of Ammonia Borane. European Journal of Inorganic Chemistry, 2016, 2016, 4353-4357.	1.0	51
424	Hydrogen generation from reactions of hydrides with hydrated solids in the solid state. RSC Advances, 2016, 6, 36863-36869.	1.7	5
425	A novel dehydrogenation style of NH3BH3 by catalyst of transition metal clusters. International Journal of Hydrogen Energy, 2016, 41, 11746-11760.	3.8	13
426	Solid Hydrogen Storage Materials: Non-interstitial Hydrides. Green Energy and Technology, 2016, , 207-239.	0.4	0
427	Dehydrogenation of Ammonia Borane by Metal Nanoparticle Catalysts. ACS Catalysis, 2016, 6, 6892-6905.	5.5	406

	Сітатіо	CITATION REPORT	
# 428	ARTICLE Pressure-Induced Phase Transition of Hydrogen Storage Material Hydrazine Bisborane: Evolution of Dihydrogen Bonds. Journal of Physical Chemistry C, 2016, 120, 21293-21298.	lF 1.5	CITATIONS 8
429	A theoretical investigation of the Frustrated Lewis Pairs of C/P and B/N in the metal-free hydrogen-storage compounds. International Journal of Hydrogen Energy, 2016, 41, 18963-18970.	3.8	4
430	Hydrogen Storage. , 2016, , 567-638.		0
431	"Chemical Blowing―of Sausageâ€Like Carbon Nanotubes with Oriented Grapheneâ€Layer Walls. ChemNanoMat, 2016, 2, 856-860.	1.5	2
432	Inhibition of Molten Aluminum Oxidation with Boron. , 2016, , 473-482.		2
433	Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications. Chemical Record, 2016, 16, 189-204.	2.9	58
434	Rapidly Releasing over 9 wt % of H ₂ from NH ₃ BH ₃ –Mg or NH ₃ BH ₃ –MgH ₂ Composites around 85 °C. Journal of Physical Chemistry C, 2016, 120, 18386-18393.	1.5	10
435	The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes. Dalton Transactions, 2016, 45, 13969-13978.	1.6	28
436	Prediction of the dopant activity of chemical compounds against ammonia borane with key descriptors: electronegativity and crystal structures. New Journal of Chemistry, 2016, 40, 7303-7306.	1.4	1
437	Hydrogen Storage in Interstitial Metal Hydrides. , 2016, , 142-165.		6
438	Dehydrogenation of lithium hydrazinidoborane: Insight from computational analysis. International Journal of Hydrogen Energy, 2016, 41, 18953-18962.	3.8	7
439	Hydrogen carriers. Nature Reviews Materials, 2016, 1, .	23.3	602
440	Initial steps for the thermal decomposition of alkaline-earth metal amidoboranes: a cluster approximation. Physical Chemistry Chemical Physics, 2016, 18, 31072-31077.	1.3	2
441	The release of hydrogen from ammonia borane over copper/hexagonal boron nitride composites. RSC Advances, 2016, 6, 106211-106217.	1.7	31
442	Chemically driven negative linear compressibility in sodium amidoborane, Na(NH2BH3). Scientific Reports, 2016, 6, 28745.	1.6	13
443	High Pressure Behavior of Hydrogen Storage Material Guanidinium Borohydride. Journal of Physical Chemistry C, 2016, 120, 13414-13420.	1.5	8
444	A Systematic Study of the Effects of Metal Chloride Additives on H ₂ Desorption Properties of Ammonia Borane. Journal of Chemical & Engineering Data, 2016, 61, 1924-1929.	1.0	17
445	Dynamics of Pyramidal SiH ₃ [–] lons in ASiH ₃ (A = K and Rb) Investigated with Quasielastic Neutron Scattering. Journal of Physical Chemistry C, 2016, 120, 6369-6376.	1.5	17

#	Article	IF	CITATIONS
446	Combustion Mechanism of a Novel Energetic Fuel Candidate Based on Amine Metal Borohydrides. Energy & Fuels, 2016, , .	2.5	3
447	Exceptional size-dependent catalytic activity enhancement in the room-temperature hydrogen generation from formic acid over bimetallic nanoparticles supported by porous carbon. Journal of Materials Chemistry A, 2016, 4, 1887-1894.	5.2	64
448	Synthesis, structure and the dehydrogenation mechanism of calcium amidoborane hydrazinates. Physical Chemistry Chemical Physics, 2016, 18, 244-251.	1.3	7
449	Complex and liquid hydrides for energy storage. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	81
450	Mechanisms of Hydrogen Generation from Tetrameric Clusters of Lithium Amidoborane. Journal of Physical Chemistry A, 2016, 120, 145-152.	1.1	8
451	Complete Series of Alkali-Metal M(BH ₃ NH ₂ BH ₂ NH ₂ BH ₃) Hydrogen-Storage Salts Accessed via Metathesis in Organic Solvents. Inorganic Chemistry, 2016, 55, 37-45	1.9	24
452	s-Block amidoboranes: syntheses, structures, reactivity and applications. Chemical Society Reviews, 2016, 45, 1112-1128.	18.7	59
453	Ammonia borane, a material with exceptional properties for chemical hydrogen storage. International Journal of Hydrogen Energy, 2017, 42, 9978-10013.	3.8	226
454	Highly Efficient Catalytic Hydrogen Evolution from Ammonia Borane Using the Synergistic Effect of Crystallinity and Size of Noble-Metal-Free Nanoparticles Supported by Porous Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 10759-10767.	4.0	77
455	Boric acid-destabilized lithium borohydride with a 5.6 wt% dehydrogenation capacity at moderate temperatures. Dalton Transactions, 2017, 46, 4499-4503.	1.6	10
456	Reversible structural transformations of rubidium and cesium amidoboranes. Polyhedron, 2017, 127, 186-190.	1.0	10
457	Theoretical study of the structure and dehydrogenation mechanism of sodium hydrazinidoborane. Journal of Theoretical and Computational Chemistry, 2017, 16, 1750020.	1.8	3
458	Oxygenâ€free Layerâ€byâ€Layer Assembly of Lithiated Composites on Graphene for Advanced Hydrogen Storage. Advanced Science, 2017, 4, 1600257.	5.6	30
459	First-principles study of decomposition mechanisms of Mg(BH ₄) ₂ ·2NH ₃ and LiMg(BH ₄) ₃ ·2NH ₃ . RSC Advances, 2017, 7, 31027-31032.	1.7	9
460	Dissociation of H 2 on Mg-coated B 12 C 6 N 6. Chinese Physics B, 2017, 26, 068801.	0.7	1
461	Visible-light-driven catalytic activity enhancement of Pd in AuPd nanoparticles for hydrogen evolution from formic acid at room temperature. Applied Catalysis B: Environmental, 2017, 204, 497-504.	10.8	63
462	Formation and Unimolecular Dehydrogenation of Gaseous Alkalineâ€earth Metal Amidoboranes <i>M</i> (NH ₂ BH ₃) ₂ (<i>M</i> = Be – Ba): Comparative Computational Study. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 209-213.	0.6	2
463	Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. Journal of Materials Chemistry A, 2017, 5, 2288-2296.	5.2	66

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
464	The renaissance of hydrides as energy materials. Nature Reviews Materials, 2017, 2, .	23.3	349
465	Dissociative Adsorption of Molecular Hydrogen on BN-Doped Graphene-Supported Aluminum Clusters. Journal of Physical Chemistry C, 2017, 121, 26493-26498.	1.5	9
466	BrÃ,nsted and Lewis Base Behavior of Sodium Amidotrihydridoborate (NaNH ₂ BH ₃). European Journal of Inorganic Chemistry, 2017, 2017, 4541-4545.	1.0	20
467	In‣itu and Realâ€ŧime Monitoring of Mechanochemical Preparation of Li ₂ Mg(NH ₂ BH ₃) ₄ and Na ₂ Mg(NH ₂ BH ₃) ₄ and Their Thermal Dehvdrogenation. Chemistry - A European Journal. 2017. 23. 16274-16282.	1.7	21
468	Impact of H.I. Schlesinger's discoveries upon the course of modern chemistry on Bâ^'(Nâ^')H hydrogen carriers. International Journal of Hydrogen Energy, 2017, 42, 21048-21062.	3.8	22
469	Amidoboranes of rubidium and caesium: the last missing members of the alkali metal amidoborane family. Dalton Transactions, 2017, 46, 16315-16320.	1.6	10
470	Light metal borohydrides/amides combined hydrogen storage systems: composition, structure and properties. Journal of Materials Chemistry A, 2017, 5, 25112-25130.	5.2	55
471	Improved hydrogen release from ammonia borane confined in microporous carbon with narrow pore size distribution. Journal of Materials Chemistry A, 2017, 5, 15395-15400.	5.2	31
472	Grand Challenges for Nanoscience and Nanotechnology in Energy and Health. Frontiers in Chemistry, 2017, 5, 80.	1.8	26
473	R&D on Hydrides as Energy Materials. Materia Japan, 2017, 56, 130-134.	0.1	0
474	Rational Design of Nanosized Light Elements for Hydrogen Storage: Classes, Synthesis, Characterization, and Properties. Advanced Materials Technologies, 2018, 3, 1700298.	3.0	34
475	DFT Insights into the Interactive Effect of Ni + N Cosubstitution on Enhanced Dehydrogenation Properties of Mg(BH ₄)(NH ₂)-like Complex Hydride for Hydrogen Energy Storage. Journal of Physical Chemistry C, 2018, 122, 5956-5966.	1.5	8
476	Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N–C for Hydrogen Storage in NaAlH ₄ . ACS Applied Materials & Interfaces, 2018, 10, 15767-15777.	4.0	40
477	Highly Dispersed Surfactant-Free Amorphous NiCoB Nanoparticles and Their Remarkable Catalytic Activity for Hydrogen Generation from Ammonia Borane Dehydrogenation. Catalysis Letters, 2018, 148, 1739-1749.	1.4	9
478	The mechanism of the chain-growth of ammoniaborane: A classic Lewis pairs catalysed by a Frustrated Lewis Pairs. International Journal of Hydrogen Energy, 2018, 43, 4177-4185.	3.8	7
479	First principles study on elastic and electronic properties of bialkali alanates M2M′AlH6. International Journal of Hydrogen Energy, 2018, 43, 3862-3870.	3.8	15
480	Decomposition Mechanism of Zinc Ammine Borohydride: A First-Principles Calculation. Journal of Physical Chemistry C, 2018, 122, 4241-4249.	1.5	6
481	Theoretical Study of the Metal-Controlled Dehydrogenation Mechanism of MN ₂ H ₃ BH ₃ (M = Li, Na, K): A New Family of Hydrogen Storage Material. Journal of Physical Chemistry A, 2018, 122, 1344-1349.	1.1	4

#	Article	IF	CITATIONS
482	Mechanistic insight into the promoting effect of magnesium nickel hydride on the dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 1681-1690.	3.8	4
483	Heat Effects of the Thermal Decomposition of Amidoboranes of Potassium, Calcium, and Strontium. Russian Journal of Physical Chemistry A, 2018, 92, 640-645.	0.1	3
484	Chitosan supported palladium nanoparticles: The novel catalysts for hydrogen generation from hydrolysis of ammonia borane. Materials Research Bulletin, 2018, 103, 89-95.	2.7	40
485	High pressure, a protocol to identify the weak dihydrogen bonds: experimental evidence of C–H··Ĥ–B interaction. Science China Chemistry, 2018, 61, 276-280.	4.2	15
486	Superior Reversible Hydrogen Storage Properties and Mechanism of LiBH ₄ –MgH ₂ –Al Doped with NbF ₅ Additive. Journal of Physical Chemistry C, 2018, 122, 7613-7620.	1.5	18
487	Hydrogen production for photocatalytic decomposition of water with urea as a reducing agent. Catalysis Today, 2018, 307, 231-236.	2.2	7
488	Ammonia Borane Based Nanocomposites as Solidâ€State Hydrogen Stores for Portable Power Applications. Energy Technology, 2018, 6, 583-594.	1.8	16
489	Remarkably boosting catalytic H2 evolution from ammonia borane through the visible-light-driven synergistic electron effect of non-plasmonic noble-metal-free nanoparticles and photoactive metal-organic frameworks. Applied Catalysis B: Environmental, 2018, 225, 424-432.	10.8	43
490	Synthesis and thermal decomposition of potassium tetraamidoboranealuminate, K[Al(NH2BH3)4]. International Journal of Hydrogen Energy, 2018, 43, 311-321.	3.8	13
491	Preparation of Spherical Molybdosilicic Acid-silica Composite Particles for Acid Promoted Hydrolytic Dehydrogenation of Ammonia Borane. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2018, 97, 240-244.	0.2	0
492	Disorder induced polymorphic transitions in the high hydrogen density compound Sr(BH ₄) ₂ (NH ₃ BH ₃) ₂ . Dalton Transactions, 2018, 47, 16737-16746.	1.6	5
493	Dehydrogenation properties of the LiNH2BH3/MgH2 and LiNH2BH3/LiBH4 bi-component hydride systems for hydrogen storage applications. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	5
494	How hydrogen-storage material affects the decomposition of nitramine explosive: CPMD investigations of LAB-doped CL20. International Journal of Hydrogen Energy, 2018, 43, 19825-19840.	3.8	4
495	Liquid Phase Chemical Hydrogen Storage. , 2018, , 363-392.		1
496	Study on the hydrogen storage property of (TiZr0.1)xCr1.7-yFeyMn0.3 (1.05 <x < 1.2, 0.2="" <yâ€<br="">alloys. Progress in Natural Science: Materials International, 2018, 28, 470-477.</x < 1.2,>	⁻ &l‡;ậ€ ⁻ 0.6) ₂₃
497	Mechanochemical dehydrocoupling of dimethylamine borane and hydrogenation reactions using Wilkinson's catalyst. Chemical Communications, 2018, 54, 8355-8358.	2.2	27
498	Elucidation of the Formation Mechanisms of the Octahydrotriborate Anion (B ₃ H ₈ [–]) through the Nucleophilicity of the B–H Bond. Journal of the American Chemical Society, 2018, 140, 6718-6726.	6.6	68
499	Solid-state hydrogen desorption of 2 MgH2Â+ LiBH4 nano-mixture: A kinetics mechanism study. Journal of Alloys and Compounds, 2019, 806, 350-360.	2.8	49

#	Article	IF	CITATIONS
500	Synthesis of sodium-magnesium amidoborane by sodium amide: An investigation of functional properties for hydrogen/ammonia storage. Journal of Alloys and Compounds, 2019, 801, 645-650.	2.8	6
501	Complex Hydrides for Energy Storage, Conversion, and Utilization. Advanced Materials, 2019, 31, e1902757.	11.1	130
502	Ultra-small Rh nanoparticles supported on WO _{3â^'x} nanowires as efficient catalysts for visible-light-enhanced hydrogen evolution from ammonia borane. Nanoscale Advances, 2019, 1, 3941-3947.	2.2	27
503	Solid-state hydrogen rich boron–nitrogen compounds for energy storage. Chemical Society Reviews, 2019, 48, 5350-5380.	18.7	82
504	Rubidium hydrazinidoborane: Synthesis, characterization and hydrogen release properties. International Journal of Hydrogen Energy, 2019, 44, 28252-28261.	3.8	5
505	How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks. Advanced Sustainable Systems, 2019, 3, 1900043.	2.7	90
506	Hydrogen storage materials for hydrogen and energy carriers. International Journal of Hydrogen Energy, 2019, 44, 18179-18192.	3.8	261
507	Metal B-N-H hydrogen-storage compound: Development and perspectives. Journal of Alloys and Compounds, 2019, 794, 303-324.	2.8	32
508	High reversible capacity hydrogen storage through Nano-LiBH4 + Nano-MgH2 system. Energy Storage Materials, 2019, 20, 24-35.	9.5	83
509	Reversible Hydrogen Uptake/Release over a Sodium Phenoxide–Cyclohexanolate Pair. Angewandte Chemie, 2019, 131, 3134-3139.	1.6	6
510	CPMD Investigations of the Improved Energetic Performance for Lithium Amidoborane doped RDX. ChemistrySelect, 2019, 4, 997-1006.	0.7	2
511	The interconversion between THF·B ₃ H ₇ and B ₃ H ₈ ^{â^`} : an efficient synthetic method for MB ₃ H ₈ (M = Li and Na). Dalton Transactions, 2019, 48, 5140-5143.	1.6	15
512	Molecular-salt hybrids; integration of ammonia borane into lithium halides. Inorganic Chemistry Frontiers, 2019, 6, 808-812.	3.0	1
513	Metal Hydrides for Energy Storage. , 2019, , 775-810.		4
514	Ammonia Borane Nanospheres for Hydrogen Storage. ACS Applied Nano Materials, 2019, 2, 1129-1138.	2.4	35
515	Controllable syntheses of B/N anionic aminoborane chain complexes by the reaction of NH ₃ BH ₃ with NaH and the mechanistic study. Dalton Transactions, 2019, 48, 14984-14988.	1.6	17
516	Ru nanoclusters confined in porous organic cages for catalytic hydrolysis of ammonia borane and tandem hydrogenation reaction. Nanoscale, 2019, 11, 21513-21521.	2.8	53
517	Hydrogen release mechanism and performance of ammonia borane catalyzed by transition metal catalysts Cu-Co/MgO(100). International Journal of Energy Research, 2019, 43, 921- <u>930.</u>	2.2	26

#	Article	IF	CITATIONS
518	Reversible Hydrogen Uptake/Release over a Sodium Phenoxide–Cyclohexanolate Pair. Angewandte Chemie - International Edition, 2019, 58, 3102-3107.	7.2	23
519	Boron: Its Role in Energyâ€Related Processes and Applications. Angewandte Chemie - International Edition, 2020, 59, 8800-8816.	7.2	186
520	Adsorption and dissociation of H 2 on Al 4 Si m (m = 2, 3, and 4) clusters. Environmental Progress and Sustainable Energy, 2020, 39, e13337.	1.3	3
521	The theoretical study of dehydrogenation mechanism from Sr(NH2BH3)2. Structural Chemistry, 2020, 31, 339-350.	1.0	4
522	Mechanochemical pretreatment of ammonia borane: A new procedure for sodium amidoborane synthesis. International Journal of Hydrogen Energy, 2020, 45, 7938-7946.	3.8	10
523	Current progress and research trends on lithium amidoborane for hydrogen storage. Journal of Materials Science, 2020, 55, 2645-2660.	1.7	11
524	Bor in energiebezogenen Prozessen und Anwendungen. Angewandte Chemie, 2020, 132, 8882-8900.	1.6	45
525	Predicting the hydrogen release ability of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>LiBH</mml:mtext></mml:mrow><mml:mr mixtures by ensemble machine learning. Energy Storage Materials. 2020. 27. 466-477.</mml:mr </mml:mrow></mml:mrow></mml:math 	row ⁵ <mm< td=""><td>l:mn>4</td></mm<>	l:mn>4
526	In Silico Investigation into H ₂ Uptake in MOFs: Combined Text/Data Mining and Structural Calculations. Langmuir, 2020, 36, 119-129.	1.6	6
527	Dehydrogenation properties of two phases of LiNH2BH3. International Journal of Hydrogen Energy, 2020, 45, 2127-2134.	3.8	8
528	New insights into the solid-state hydrogen storage of nanostructured LiBH4-MgH2 system. Chemical Engineering Journal, 2020, 385, 123856.	6.6	119
529	Reinforced combustion of the ZrH2-HMX-CMDB propellant: The critical role of hydrogen. Chemical Engineering Journal, 2020, 402, 126275.	6.6	24
530	Theoretical Investigation on Molecular Structure and Electronic Properties of BxLiy Cluster for Lithium-Ion Batteries with Quantum ESPRESSO Program. Molecules, 2020, 25, 3266.	1.7	2
531	Mechanism of hydrogen storage on Fe ₃ B. Chemical Communications, 2020, 56, 14235-14238.	2.2	13
532	Experimental and theoretical evidence of dihydrogen bonds in lithium amidoborane. Scientific Reports, 2020, 10, 17431.	1.6	5
533	Highly Phosphatized Magnetic Catalyst with Electron Transfer Induced by Quaternary Synergy for Efficient Dehydrogenation of Ammonia Borane. ACS Applied Materials & Interfaces, 2020, 12, 43854-43863.	4.0	26
534	Amidoboranes and hydrazinidoboranes: State of the art, potential for hydrogen storage, and other prospects. International Journal of Hydrogen Energy, 2020, 45, 30731-30755.	3.8	18
535	Building Artificial Solidâ€Electrolyte Interphase with Uniform Intermolecular Ionic Bonds toward Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2020, 30, 20 <u>02414</u> .	7.8	104

Сіт	ΔΤΙ	אר ק	}FD	OPT
	πm			U KT

#	Article	IF	CITATIONS
536	Insight into anomalous hydrogen adsorption on rare earth metal decorated on 2-dimensional hexagonal boron nitride: a density functional theory study. RSC Advances, 2020, 10, 12929-12940.	1.7	6
537	The double tuning effect of TiO2 on Pt catalyzed dehydrogenation of methylcyclohexane. Molecular Catalysis, 2020, 492, 110971.	1.0	24
538	Progress and Prospective of Nitrogen-Based Alternative Fuels. Chemical Reviews, 2020, 120, 5352-5436.	23.0	165
539	Ammonia Borane: An Extensively Studied, Though Not Yet Implemented, Hydrogen Carrier. Energies, 2020, 13, 3071.	1.6	56
540	Sodium anilinide–cyclohexylamide pair: synthesis, characterization, and hydrogen storage properties. Chemical Communications, 2020, 56, 1944-1947.	2.2	7
541	Liberating Active Metals from Reducible Oxide Encapsulation for Superior Hydrogenation Catalysis. ACS Applied Materials & Interfaces, 2020, 12, 7071-7080.	4.0	12
542	All-around coating of CoNi nanoalloy using a hierarchically porous carbon derived from bimetallic MOFs for highly efficient hydrolytic dehydrogenation of ammonia-borane. New Journal of Chemistry, 2020, 44, 3021-3027.	1.4	18
543	Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction. Applied Surface Science, 2021, 538, 148091.	3.1	25
544	Solid-state materials for hydrogen storage. , 2021, , 205-223.		0
545	Neutron scattering studies of materials for hydrogen storage. , 2021, , .		6
546	Mechanochemical Synthesis and Thermal Dehydrogenation of Novel Calcium-Containing Bimetallic Amidoboranes. ACS Sustainable Chemistry and Engineering, 2021, 9, 2089-2099.	3.2	5
547	A Review of High Density Solid Hydrogen Storage Materials by Pyrolysis for Promising Mobile Applications. Industrial & amp; Engineering Chemistry Research, 2021, 60, 2737-2771.	1.8	52
548	Facile Synthetic Method of Na[BH ₃ (NH ₂ BH ₂) ₂ H] Based on the Reactions of Sodium Amidoborane (NaNH ₂ BH ₃) with NiBr ₂ or CoCl ₂ . Inorganic Chemistry, 2021, 60, 7101-7107.	1.9	9
549	Molecular Main Group Metal Hydrides. Chemical Reviews, 2021, 121, 12784-12965.	23.0	147
550	The Roles of Alkali/Alkaline Earth Metals in the Materials Design and Development for Hydrogen Storage. Accounts of Materials Research, 2021, 2, 726-738.	5.9	10
551	Copper(II)â€Assisted Ammonia Borane Dehydrogenation: An Insight. European Journal of Inorganic Chemistry, 2021, 2021, 4000.	1.0	5
552	Magnesium hydrazinidoborane: Synthesis, characterization and features for solid-state hydrogen storage. International Journal of Hydrogen Energy, 2021, 46, 33164-33175.	3.8	4
553	An option for green and sustainable future: Electrochemical conversion of ammonia into nitrogen. Journal of Energy Chemistry, 2021, 60, 384-402.	7.1	27

#	Article	IF	Citations
554	Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives. Renewable and Sustainable Energy Reviews, 2021, 149, 111311.	8.2	322
555	Metal Hydrides for Energy Storage. , 2018, , 1-36.		3
556	Fuel Cells and Hydrogen Storage. Structure and Bonding, 2011, , .	1.0	11
557	Low temperature dehydrogenation properties of ammonia borane within carbon nanotube arrays: a synergistic effect of nanoconfinement and alane. RSC Advances, 2020, 10, 19027-19033.	1.7	7
558	Studies of the Electronic, Optical, and Thermodynamic Properties for Metal-Doped LiH Crystals by First Principle Calculations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2020, 75, 575-586.	0.7	2
559	THERMAL STABILITY AND DEUTERIUM ABSORPTION AT ROOM TEMPERATURE OF Ti ₃₆ Zr ₄₀ Ni ₂₀ Pd ₄ QUASICRYSTAL. Jinshu Xuebao/Acta Metallurgica Sinica, 2010, 46, 629-633.	0.3	4
560	Research, Development, Demonstration and Deployment Issues in the Power Sector. Advances in Global Change Research, 2011, , 301-343.	1.6	0
561	Future Perspectives for Hydrogen as Fuel in Transportation. , 2011, , 243-288.		0
562	Development of High Storage Capacity Complex Hydrides for Reversible Hydrogen Storage. Open Journal of Advanced Materials Research, 2013, 1, 42.	0.0	0
563	Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances. Energies, 2021, 14, 7003.	1.6	11
564	Capacity of Ammonia Borane to Store Hydrogen. , 2022, , 357-365.		1
565	Efficient Near-Infrared-Activated Photocatalytic Hydrogen Evolution from Ammonia Borane with Core-Shell Upconversion-Semiconductor Hybrid Nanostructures. Nanomaterials, 2021, 11, 3237.	1.9	3
566	Hydrogen Storage: Liquid and Chemical. , 2012, , 144-165.		2
567	Iodine Induced Cyclization of Sodium Aminodiboranate: Reactivity and Mechanisms Investigation. Journal of Organometallic Chemistry, 2022, , 122396.	0.8	0
568	Long-term stable Li metal anode enabled by strengthened and protected lithiophilic LiZn alloys. Journal of Power Sources, 2022, 543, 231839.	4.0	6
569	Synthesis, Formation Mechanism, and Structure of K[BH ₃ S(CH ₃)BH ₃] and Its Application in Preparation of KB ₃ H ₈ . Inorganic Chemistry, 2022, 61, 12828-12834.	1.9	1
570	Nâ€Heterocyclic Carbeneâ€Assisted Reversible Migratory Coupling of Aminoborane at Magnesium. Angewandte Chemie, 0, , .	1.6	0
571	Nâ€Heterocyclic Carbeneâ€Assisted Reversible Migratory Coupling of Aminoborane at Magnesium. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5

#	Article	IF	CITATIONS
572	Improvement of dehydrogenation performance of NH3BH3-KNH2BH3 composites. Journal of Alloys and Compounds, 2022, 928, 167113.	2.8	1
573	First-principles calculations to investigate structural, electronic, and thermodynamic properties of ammonia monochloroborane (NH3BH2Cl) as a promising hydrogen storage candidate. Physica B: Condensed Matter, 2023, 648, 414412.	1.3	1
574	Aluminum methylamidoborane complexes: mechanochemical synthesis, structure, stability, and reactive hydride composites. Sustainable Energy and Fuels, 2023, 7, 1119-1126.	2.5	1
575	Amorphous alloys for hydrogen storage. Journal of Alloys and Compounds, 2023, 941, 168945.	2.8	12
576	Recent developments in state-of-the-art hydrogen energy technologies – Review of hydrogen storage materials. Solar Compass, 2023, 5, 100033.	0.5	21
577	Boron Nitride from Ammonia Borane and Alkali Amidoboranes and Its Features for Carbon Dioxide Capture. Energy Technology, 2023, 11, .	1.8	3
579	Approach toward economical hydrogen storage. , 2023, , 435-462.		0
581	An improved method for the synthesis and formation mechanism of M ₂ B ₁₀ H ₁₄ based on the reactions of B ₁₀ H ₁₄ with MNH ₂ BH ₃ (M = Na, K). Dalton Transactions. 2023. 52. 17684-17688.	1.6	0