Identification of loci associated with schizophrenia by g follow-up

Nature Genetics 40, 1053-1055

DOI: 10.1038/ng.201

Citation Report

#	Article	IF	CITATIONS
1	From genes to psychoses and back: the role of the 5HT2α-receptor and prepulse inhibition in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2008, 258, 40-43.	1.8	21
2	A glimmer of light for neuropsychiatric disorders. Nature, 2008, 455, 890-893.	13.7	97
3	Psychiatric genetics gets a boost. Nature Genetics, 2008, 40, 1042-1044.	9.4	35
4	Chipping away at psychiatric disorders. Nature Reviews Genetics, 2008, 9, 654-654.	7.7	2
5	A comparison of four clustering methods for brain expression microarray data. BMC Bioinformatics, 2008, 9, 490.	1.2	28
6	Disruptive insights in psychiatry: transforming a clinical discipline. Journal of Clinical Investigation, 2009, 119, 700-705.	3.9	131
7	Apoptotic Engulfment Pathway and Schizophrenia. PLoS ONE, 2009, 4, e6875.	1.1	35
8	New findings from genetic association studies of schizophrenia. Journal of Human Genetics, 2009, 54, 9-14.	1.1	29
9	Down syndromerecent progress and future prospects. Human Molecular Genetics, 2009, 18, R75-R83.	1.4	199
10	Epigenetic Profiling in Schizophrenia and Major Mental Disorders. Neuropsychobiology, 2009, 60, 5-11.	0.9	22
11	Alcohol Sensitivity in Drosophila: Translational Potential of Systems Genetics. Genetics, 2009, 183, 733-745.	1.2	45
12	Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept. British Journal of Psychiatry, 2009, 195, 23-29.	1.7	83
13	Influence of NOS1 on Verbal Intelligence and Working Memory in Both Patients With Schizophrenia and Healthy Control Subjects. Archives of General Psychiatry, 2009, 66, 1045.	13.8	45
14	A Genome-Wide Investigation of SNPs and CNVs in Schizophrenia. PLoS Genetics, 2009, 5, e1000373.	1.5	383
15	Thalamic transcriptome screening in three psychiatric states. Journal of Human Genetics, 2009, 54, 665-675.	1.1	49
16	A Genome-Wide Association Study of Schizophrenia Using Brain Activation as a Quantitative Phenotype. Schizophrenia Bulletin, 2009, 35, 96-108.	2.3	201
17	Genome-wide Association Study of Alcohol Dependence. Archives of General Psychiatry, 2009, 66, 773.	13.8	354
18	Genomewide Association Studies: History, Rationale, and Prospects for Psychiatric Disorders. American Journal of Psychiatry, 2009, 166, 540-556.	4.0	391

#	Article	IF	Citations
19	Schizophrenia genetics: new insights from new approaches. British Medical Bulletin, 2009, 91, 61-74.	2.7	62
20	Dissecting the many genetic faces of schizophrenia. Epidemiologia E Psichiatria Sociale, 2009, 18, 91-95.	1.0	20
21	Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends in Genetics, 2009, 25, 528-535.	2.9	235
22	Commentary: Genome-based CNS drug discovery: d-Amino acid oxidase (DAAO) as a novel target for antipsychotic medications: Progress and challenges. Biochemical Pharmacology, 2009, 78, 1360-1365.	2.0	25
23	Evidence that putative ADHD low risk alleles at <i>SNAP25</i> may increase the risk of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 893-899.	1.1	31
24	A systematic association mapping on chromosome 6q in bipolar affective disorder—evidence for the ⟨i⟩melaninâ€concentratingâ€hormoneâ€receptorâ€2⟨li⟩ gene as a risk factor for bipolar affective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 878-884.	1.1	5
25	Searching genetic risk factors for schizophrenia and bipolar disorder: learn from the past and back to the future. Human Mutation, 2009, 30, 1139-1152.	1.1	49
26	Genetics of anxiety disorders: the complex road from DSM to DNA. Depression and Anxiety, 2009, 26, 965-975.	2.0	78
27	More than the sum of its parts: new mouse models for dissecting the genetic complexities of Williams–Beuren syndrome. EMBO Molecular Medicine, 2009, 1, 6-9.	3.3	2
28	Genome-wide association studies in ADHD. Human Genetics, 2009, 126, 13-50.	1.8	374
29	Genetics of psychosis; insights from views across the genome. Human Genetics, 2009, 126, 3-12.	1.8	197
30	Possible Association of Prokineticin 2 Receptor Gene (PROKR2) with Mood Disorders in the Japanese Population. NeuroMolecular Medicine, 2009, 11, 114-122.	1.8	42
31	No Association Between Polymorphisms of Neuronal Oxide Synthase 1 Gene (NOS1) and Schizophrenia in a Japanese Population. NeuroMolecular Medicine, 2009, 11, 123-127.	1.8	20
33	The importance of a genetic component in longitudinal birth cohorts. Paediatric and Perinatal Epidemiology, 2009, 23, 174-184.	0.8	8
34	Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Molecular Psychiatry, 2009, 14, 359-375.	4.1	354
35	Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Molecular Psychiatry, 2009, 14, 252-260.	4.1	330
36	Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Molecular Psychiatry, 2009, 14, 774-785.	4.1	235
37	Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms. Molecular Psychiatry, 2009, 14, 786-795.	4.1	61

#	ARTICLE	IF	CITATIONS
38	The role of genetic variation in the causation of mental illness: an evolution-informed framework. Molecular Psychiatry, 2009, 14, 1072-1082.	4.1	192
39	Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 2009, 459, 528-533.	13.7	912
40	Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009, 460, 748-752.	13.7	4,345
41	Human genetics: Hit or miss?. Nature, 2009, 461, 712-714.	13.7	13
42	A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nature Medicine, 2009, 15, 509-518.	15.2	232
43	Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Molecular Psychiatry, 2009, 14, 30-36.	4.1	66
44	A Cytogenetic Abnormality and Rare Coding Variants Identify ABCA13 as a Candidate Gene in Schizophrenia, Bipolar Disorder, and Depression. American Journal of Human Genetics, 2009, 85, 833-846.	2.6	102
45	Modeling schizophrenia in flies. Progress in Brain Research, 2009, 179, 107-115.	0.9	8
46	Epigenetic mechanisms in schizophrenia. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 869-877.	1.1	137
47	Schizophrenia genetics: advancing on two fronts. Current Opinion in Genetics and Development, 2009, 19, 266-270.	1.5	67
48	Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1–ErbB4 and DISC1. Trends in Neurosciences, 2009, 32, 485-495.	4.2	293
49	Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience, 2009, 164, 30-42.	1.1	205
50	The genetics of bipolar disorder. Neuroscience, 2009, 164, 331-343.	1.1	326
51	The genetics of schizophrenia. Neuroscience, 2009, 164, 288-299.	1.1	55
52	Analysis of mitochondrial DNA variants in Japanese patients with schizophrenia. Mitochondrion, 2009, 9, 385-393.	1.6	60
53	Evidence for transmission disequilibrium at the DAOA gene locus in a schizophrenia family sample. Neuroscience Letters, 2009, 462, 105-108.	1.0	11
54	Association analysis between schizophrenia and the AP-3 complex genes. Neuroscience Research, 2009, 65, 113-115.	1.0	9
55	The Dopamine Hypothesis of Schizophrenia: Version III-The Final Common Pathway. Schizophrenia Bulletin, 2009, 35, 549-562.	2.3	2,149

#	Article	IF	CITATIONS
56	The Role of DNA Copy Number Variation in Schizophrenia. Biological Psychiatry, 2009, 66, 1005-1012.	0.7	91
57	The trace amine associated receptor (TAAR6) gene is not associated with schizophrenia in the Irish Case-Control Study of Schizophrenia (ICCSS) sample. Schizophrenia Research, 2009, 107, 249-254.	1.1	11
58	Association study of the G72 gene with schizophrenia in a Japanese population: A multicenter study. Schizophrenia Research, 2009, 109, 80-85.	1.1	34
59	A MicroRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophrenia Research, 2009, 109, 86-89.	1.1	102
60	Linkage analysis of schizophrenia in African-American families. Schizophrenia Research, 2009, 109, 70-79.	1.1	12
61	Evidence for the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia. Behavioral and Brain Functions, 2009, 5, 28.	1.4	40
62	Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice. Molecular Brain, 2009, 2, 19.	1.3	116
63	Prefrontal cognitive systems in schizophrenia : Towards human genetic brain mechanisms. Cognitive Neuropsychiatry, 2009, 14, 277-298.	0.7	80
64	Schizophrenia: From the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World Journal of Biological Psychiatry, 2009, 10, 127-155.	1.3	64
65	Neural Mechanisms of a Genome-Wide Supported Psychosis Variant. Science, 2009, 324, 605-605.	6.0	375
66	Common variants in polygenic schizophrenia. Genome Biology, 2009, 10, 236.	13.9	35
67	Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Medicine, 2009, 1, 102.	3. 6	259
68	DNA variations in human and medical genetics: 25 years of my experience. Journal of Human Genetics, 2009, 54, 1-8.	1.1	73
69	A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Human Molecular Genetics, 2009, 18, 4650-4661.	1.4	131
70	Involvement of SMARCA2/BRM in the SWI/SNF chromatin-remodeling complex in schizophrenia. Human Molecular Genetics, 2009, 18, 2483-2494.	1.4	103
71	Cognitive ontologies for neuropsychiatric phenomics research. Cognitive Neuropsychiatry, 2009, 14, 419-450.	0.7	120
72	Support for NRG1 as a Susceptibility Factor for Schizophrenia in a Northern Swedish Isolated Population. Archives of General Psychiatry, 2009, 66, 828.	13.8	32
73	Schizophrenia. Lancet, The, 2009, 374, 635-645.	6.3	1,820

#	Article	IF	Citations
74	Neuroimaging in psychiatry: from bench to bedside. Frontiers in Human Neuroscience, 2009, 3, 49.	1.0	30
75	Psychosis Genetics: Modeling the Relationship Between Schizophrenia, Bipolar Disorder, and Mixed (or "Schizoaffective") Psychoses. Schizophrenia Bulletin, 2009, 35, 482-490.	2.3	191
76	Genotype Imputation. Annual Review of Genomics and Human Genetics, 2009, 10, 387-406.	2.5	920
77	Genotyping Technologies for Genetic Research. Annual Review of Genomics and Human Genetics, 2009, 10, 117-133.	2.5	194
79	Letter to the Editor: Strong evidence for multiple psychosis susceptibility genes – a rejoinder to Crow. Psychological Medicine, 2009, 39, 170-171.	2.7	1
80	Dissecting the phenotype in genome-wide association studies of psychiatric illness. British Journal of Psychiatry, 2009, 195, 97-99.	1.7	64
81	Rare Copy Number Variants <subtitle>A Point of Rarity in Genetic Risk for Bipolar Disorder and Schizophrenia</subtitle> <alt-title>Rare Copy Number Variants</alt-title> . Archives of General Psychiatry, 2010, 67, 318.	13.8	173
82	Molecular Biomarkers in Schizophrenia – Implications for Clinical Practice. Current Psychiatry Reviews, 2010, 6, 114-121.	0.9	0
83	Genetic Studies of Schizophrenia and Bipolar Disorder. Focus (American Psychiatric Publishing), 2010, 8, 323-338.	0.4	2
85	Law &	1.1	23
86	Translating Genetics Research into a National Health Service Clinical Diagnostic Environment. Monographs in Human Genetics, 2010, , 151-161.	0.5	0
87	The Continuum of Psychosis — 1986–2010. Psychiatric Annals, 2010, 40, 115-119.	0.1	5
88	A Genome-Wide Association Study of Amygdala Activation in Youths With and Without Bipolar Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 33-41.	0.3	10
89	\hat{l}^2 -Catenin Promoter ChIP-Chip Reveals Potential Schizophrenia and Bipolar Disorder Gene Network. Journal of Neurogenetics, 2010, 24, 182-193.	0.6	29
90	Child and adolescent psychiatric genetics. European Child and Adolescent Psychiatry, 2010, 19, 259-279.	2.8	19
91	Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort. Journal of Psychiatric Research, 2010, 44, 748-753.	1.5	183
92	The neurobiology of schizophrenia: new leads and avenues for treatment. Current Opinion in Neurobiology, 2010, 20, 810-815.	2.0	24
93	A powerful approach to subâ€phenotype analysis in populationâ€based genetic association studies. Genetic Epidemiology, 2010, 34, 335-343.	0.6	52

#	Article	IF	CITATIONS
95	Association analyses between brainâ€expressed fattyâ€ecid binding protein (⟨i⟩FABP⟨/i⟩) genes and schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 484-493.	1.1	32
96	Methylation at <i>SLC6A4</i> is linked to family history of child abuse: An examination of the lowa Adoptee sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 710-713.	1.1	209
97	Functional variants of <i>TSPAN8</i> are associated with bipolar disorder and schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 967-972.	1.1	18
98	The DRD4 receptor Exon 3 VNTR and 5′ SNP variants and mRNA expression in human postâ€mortem brain tissue. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1228-1233.	1.1	29
99	Further investigation of the association between rs7341475 and rs17746501 and schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1244-1247.	1.1	14
100	The refinement of the critical region for the 2q31.2q32.3 deletion syndrome indicates candidate genes for mental retardation and speech impairment. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1342-1346.	1.1	19
101	No evidence that rare coding variants in <i>ZNF804A</i> confer risk of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1411-1416.	1.1	18
102	The impact of a genomeâ€wide supported psychosis variant in the <i>ZNF804A</i> gene on memory function in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1459-1464.	1.1	57
103	Genetics in psychiatry: common variant association studies. Molecular Autism, 2010, 1, 6.	2.6	22
104	<i>APOE</i> is not Associated with Alzheimer Disease: a Cautionary tale of Genotype Imputation. Annals of Human Genetics, 2010, 74, 189-194.	0.3	13
105	Common genetic variation and performance on standardized cognitive tests. European Journal of Human Genetics, 2010, 18, 815-820.	1.4	90
106	Linkage and candidate gene studies of autism spectrum disorders in European populations. European Journal of Human Genetics, 2010, 18, 1013-1019.	1.4	80
107	Response to Mitchell and Porteus. Molecular Psychiatry, 2010, 15, 450-452.	4.1	3
108	Advances in molecular genetics of panic disorder. Molecular Psychiatry, 2010, 15, 681-701.	4.1	96
109	High-density SNP association study and copy number variation analysis of the AUTS1 and AUTS5 loci implicate the IMMP2L–DOCK4 gene region in autism susceptibility. Molecular Psychiatry, 2010, 15, 954-968.	4.1	126
110	The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry, 2010, 15, 1016-1022.	4.1	458
111	Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Molecular Psychiatry, 2010, 15, 1101-1111.	4.1	32
112	From maps to mechanisms through neuroimaging of schizophrenia. Nature, 2010, 468, 194-202.	13.7	286

#	Article	IF	CITATIONS
113	Animal models of neuropsychiatric disorders. Nature Neuroscience, 2010, 13, 1161-1169.	7.1	1,762
114	Cytokine hypothesis of schizophrenia pathogenesis: Evidence from human studies and animal models. Psychiatry and Clinical Neurosciences, 2010, 64, 217-230.	1.0	177
116	New genetic findings in schizophrenia: is there still room for the dopamine hypothesis of schizophrenia?. Frontiers in Behavioral Neuroscience, 2010, 4, 23.	1.0	23
117	SMARCA2 and other genome-wide supported schizophrenia-associated genes: regulation by REST/NRSF, network organization and primate-specific evolution. Human Molecular Genetics, 2010, 19, 2841-2857.	1.4	78
118	TCF4, Schizophrenia, and Pitt-Hopkins Syndrome. Schizophrenia Bulletin, 2010, 36, 443-447.	2.3	64
119	Fine mapping of <i>AHI1 </i> as a schizophrenia susceptibility gene: from association to evolutionary evidence. FASEB Journal, 2010, 24, 3066-3082.	0.2	39
120	Effects of cis-regulatory variation differ across regions of the adult human brain. Human Molecular Genetics, 2010, 19, 4490-4496.	1.4	38
121	A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Human Molecular Genetics, 2010, 19, 1379-1386.	1.4	51
122	Genetic Association Analysis of Functional Polymorphisms in Neuronal Nitric Oxide Synthase 1 Gene & lt;i>(NOS1) and Mood Disorders and Fluvoxamine Response in Major Depressive Disorder in the Japanese Population. Neuropsychobiology, 2010, 61, 57-63.	0.9	24
123	Opposite relationships between cannabis use and neurocognitive functioning in bipolar disorder and schizophrenia. Psychological Medicine, 2010, 40, 1337-1347.	2.7	60
124	Penetrance for copy number variants associated with schizophrenia. Human Molecular Genetics, 2010, 19, 3477-3481.	1.4	132
125	Computational Modeling of Synaptic Neurotransmission as a Tool for Assessing Dopamine Hypotheses of Schizophrenia. Pharmacopsychiatry, 2010, 43, S50-S60.	1.7	23
126	What have the genomics ever done for the psychoses? Psychological Medicine, 2010, 40, 529-540.	2.7	46
127	Genomic Analysis of Mental Illness. JAMA - Journal of the American Medical Association, 2010, 303, 2523.	3.8	58
128	Psychosis Susceptibility Gene ZNF804A and Cognitive Performance in Schizophrenia. Archives of General Psychiatry, 2010, 67, 692.	13.8	129
129	Allelic Heterogeneity in Genetic Association Meta-Analysis: An Application to <i>DTNBP1</i> and Schizophrenia. Human Heredity, 2010, 69, 71-79.	0.4	26
130	A Schizophrenia Risk Gene, ZNF804A, Influences Neuroanatomical and Neurocognitive Phenotypes. Neuropsychopharmacology, 2010, 35, 2284-2291.	2.8	87
131	Strong synaptic transmission impact by copy number variations in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10584-10589.	3.3	212

#	Article	IF	CITATIONS
132	Fitting the pieces together: current research on the genetic basis of attention-deficit/hyperactivity disorder (ADHD). Neuropsychiatric Disease and Treatment, 2010, 6, 551.	1.0	53
133	Mouse Homologue of the Schizophrenia Susceptibility Gene <i>ZNF804A</i> as a Target of Hoxc8. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	19
134	Experimental Approaches for Identifying Schizophrenia Risk Genes. Current Topics in Behavioral Neurosciences, 2010, 4, 587-610.	0.8	4
135	Executive Function, Neural Circuitry, and Genetic Mechanisms in Schizophrenia. Neuropsychopharmacology, 2010, 35, 258-277.	2.8	198
136	Suggestion of Roles for Both Common and Rare Risk Variants in Genome-wide Studies of Schizophrenia. Archives of General Psychiatry, 2010, 67, 667.	13.8	115
137	Pilot Study on Schizophrenia in Sardinia. Human Heredity, 2010, 70, 92-96.	0.4	6
138	Redox Dysregulation and Oxidative Stress in Schizophrenia: Nutrigenetics as a Challenge in Psychiatric Disease Prevention. World Review of Nutrition and Dietetics, 2010, 101, 131-153.	0.1	11
139	Neuronal cell adhesion genes. Cell Adhesion and Migration, 2010, 4, 511-514.	1.1	29
140	Genome-wide association studies: a powerful tool for neurogenomics. Neurosurgical Focus, 2010, 28, E2.	1.0	6
142	Prenatal Infection and Schizophrenia: A Review of Epidemiologic and Translational Studies. American Journal of Psychiatry, 2010, 167, 261-280.	4.0	1,068
143	Cross-Disorder Genomewide Analysis of Schizophrenia, Bipolar Disorder, and Depression. American Journal of Psychiatry, 2010, 167, 1254-1263.	4.0	190
145	Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 884-897.	0.3	423
146	The Role of Genetics in the Etiology of Schizophrenia. Psychiatric Clinics of North America, 2010, 33, 35-66.	0.7	212
147	Failure to find an association between myosin heavy chain 9, non-muscle (MYH9) and schizophrenia: A three-stage case–control association study. Schizophrenia Research, 2010, 118, 106-112.	1.1	5
148	Methods: Genetic Epidemiology. Clinics in Laboratory Medicine, 2010, 30, 795-814.	0.7	0
149	Genetics of Bipolar Disorder. Current Topics in Behavioral Neurosciences, 2010, 5, 19-30.	0.8	2
150	The Psychosis Susceptibility Gene ZNF804A: Associations, Functions, and Phenotypes. Schizophrenia Bulletin, 2010, 36, 904-909.	2.3	51
151	Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 906-920.	0.3	150

#	ARTICLE	IF	CITATIONS
152	Chromosome 11q13.5 variant associated with childhood eczema: An effect supplementary to filaggrin mutations. Journal of Allergy and Clinical Immunology, 2010, 125, 170-174.e2.	1.5	58
153	Identification of Novel Candidate Genes for Treatment Response to Risperidone and Susceptibility for Schizophrenia: Integrated Analysis Among Pharmacogenomics, Mouse Expression, and Genetic Case-Control Association Approaches. Biological Psychiatry, 2010, 67, 263-269.	0.7	97
154	Correspondence to Sand et al. "Critical Reappraisal of a Catechol-O-Methyltransferase Transversion Variant in Schizophrenia― Biological Psychiatry, 2010, 67, e45-e48.	0.7	2
155	De Novo Truncating Mutation in Kinesin 17 Associated with Schizophrenia. Biological Psychiatry, 2010, 68, 649-656.	0.7	43
157	The chitinase 3-like 1 gene and schizophrenia: Evidence from a multi-center case–control study and meta-analysis. Schizophrenia Research, 2010, 116, 126-132.	1.1	21
158	Lymphoblast and brain expression of AHI1 and the novel primate-specific gene, C6orf217, in schizophrenia and bipolar disorder. Schizophrenia Research, 2010, 120, 159-166.	1.1	16
159	Clinical symptomatology and the psychosis risk gene ZNF804A. Schizophrenia Research, 2010, 122, 273-275.	1.1	16
160	Gene-wide association study between the methylenetetrahydrofolate reductase gene (MTHFR) and schizophrenia in the Japanese population, with an updated meta-analysis on currently available data. Schizophrenia Research, 2010, 124, 216-222.	1.1	28
161	A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophrenia Research, 2010, 124, 192-199.	1.1	199
163	Common promoter variants of the NDUFV2 gene do not confer susceptibility to schizophrenia in Han Chinese. Behavioral and Brain Functions, 2010, 6, 75.	1.4	6
165	A Genome-Wide Association Study of Amygdala Activation in Youths With and Without Bipolar Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 33-41.	0.3	30
166	The Kraepelinian dichotomy – going, going … but still not gone. British Journal of Psychiatry, 2010, 196, 92-95.	1.7	498
167	Geneties of Schizophrenia and Bipolar Affective Disorder. , 2010, , 759-776.		0
168	No association between AKT1 polymorphism and schizophrenia: A case–control study in a Korean population and a meta-analysis. Neuroscience Research, 2010, 66, 238-245.	1.0	16
169	Serotonin 6 receptor gene and mood disorders: Case–control study and meta-analysis. Neuroscience Research, 2010, 67, 250-255.	1.0	15
170	Disturbed synaptic connectivity in schizophrenia: Convergence of genetic risk factors during neurodevelopment. Brain Research Bulletin, 2010, 83, 140-146.	1.4	46
171	Genome-wide approaches to schizophrenia. Brain Research Bulletin, 2010, 83, 93-102.	1.4	47
172	Human behavioral informatics in genetic studies of neuropsychiatric disease: Multivariate profile-based analysis. Brain Research Bulletin, 2010, 83, 177-188.	1.4	19

#	Article	IF	Citations
173	Association analysis of GRM2 and HTR2A with methamphetamine-induced psychosis and schizophrenia in the Japanese population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 639-644.	2.5	25
174	Genetic findings in schizophrenia patients related to alterations in the intracellular Ca-homeostasis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 1375-1380.	2.5	21
175	Is the EFNB2 locus associated with schizophrenia? Single nucleotide polymorphisms and haplotypes analysis. Psychiatry Research, 2010, 180, 5-9.	1.7	16
176	Redox Dysregulation and Oxidative Stress in Schizophrenia: Nutrigenetics as a Challenge in Psychiatric Disease Prevention. Journal of Nutrigenetics and Nutrigenomics, 2010, 3, 267-289.	1.8	8
177	REVIEW: Genomeâ€Wide Findings in Schizophrenia and the Role of Gene–Environment Interplay. CNS Neuroscience and Therapeutics, 2010, 16, e185-92.	1.9	61
178	Replication of association between schizophrenia and ZNF804A in the Irish Case–Control Study of Schizophrenia sample. Molecular Psychiatry, 2010, 15, 29-37.	4.1	191
179	MicroRNA dysregulation in psychiatric disease. Brain Research, 2010, 1338, 89-99.	1.1	184
180	Genome-wide association studies: a primer. Psychological Medicine, 2010, 40, 1063-1077.	2.7	95
181	Narrowing the Boundaries of the Genetic Architecture of Schizophrenia. Schizophrenia Bulletin, 2010, 36, 14-23.	2.3	100
182	A New Role for Endophenotypes in the GWAS Era. Harvard Review of Psychiatry, 2010, 18, 67-74.	0.9	58
183	Methods: Genetic Epidemiology. Psychiatric Clinics of North America, 2010, 33, 15-34.	0.7	0
184	The Diagnosis of Mental Disorders: The Problem of Reification. Annual Review of Clinical Psychology, 2010, 6, 155-179.	6.3	790
185	Substance Use Disorders: Realizing the Promise of Pharmacogenomics and Personalized Medicine. Annual Review of Clinical Psychology, 2010, 6, 577-589.	6.3	63
186	Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Human Molecular Genetics, 2011, 20, 387-391.	1.4	233
187	Schizophrenia Genetics: Where Next?. Schizophrenia Bulletin, 2011, 37, 456-463.	2.3	96
188	Genome-Wide Association Study of Schizophrenia in a Japanese Population. Biological Psychiatry, 2011, 69, 472-478.	0.7	152
189	Evidence of Sex-Modulated Association of ZNF804A with Schizophrenia. Biological Psychiatry, 2011, 69, 914-917.	0.7	57
190	An Examination of Single Nucleotide Polymorphism Selection Prioritization Strategies for Tests of Gene–Gene Interaction. Biological Psychiatry, 2011, 70, 198-203.	0.7	10

#	Article	IF	CITATIONS
191	Genome-Wide Analysis Shows Increased Frequency of Copy Number Variation Deletions in Dutch Schizophrenia Patients. Biological Psychiatry, 2011, 70, 655-662.	0.7	61
192	<i>ANK3, CACNA1C</i> and <i>ZNF804A</i> gene variants in bipolar disorders and psychosis subphenotype. World Journal of Biological Psychiatry, 2011, 12, 392-397.	1.3	41
193	Genome-wide association study identifies a susceptibility locus for schizophrenia in Han Chinese at 11p11.2. Nature Genetics, 2011, 43, 1228-1231.	9.4	264
194	Common variants on 8p12 and 1q24.2 confer risk of schizophrenia. Nature Genetics, 2011, 43, 1224-1227.	9.4	224
195	Toward Personalized Medicine in the Neuropsychiatric Field. International Review of Neurobiology, 2011, 101, 329-349.	0.9	19
196	Development of Patient-Specific Neurons in Schizophrenia Using Induced Pluripotent Stem Cells. Journal of Neurogenetics, 2011, 25, 88-103.	0.6	121
197	Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nature Reviews Neuroscience, 2011, 12, 707-722.	4.9	384
198	NOS1 ex1f-VNTR polymorphism influences prefrontal brain oxygenation during a working memory task. Neurolmage, 2011, 57, 1617-1623.	2.1	19
199	Interaction between COMT haplotypes and cannabis in schizophrenia: A case-only study in two samples from Spain. Schizophrenia Research, 2011, 127, 22-27.	1.1	57
200	No association between the PCM1 gene and schizophrenia: A multi-center case-control study and a meta-analysis. Schizophrenia Research, 2011, 129, 80-84.	1.1	13
201	Two non-synonymous markers in PTPN21, identified by genome-wide association study data-mining and replication, are associated with schizophrenia. Schizophrenia Research, 2011, 131, 43-51.	1.1	22
202	Is the conserved mammalian region of ZNF804A locus associated with schizophrenia? A population-based genetics analysis. Schizophrenia Research, 2011, 133, 159-164.	1.1	13
203	ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. Neurolmage, 2011, 54, 2132-2137.	2.1	78
204	Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neurolmage, 2011, 54, 2514-2523.	2.1	108
205	Genome-wide investigation of rare structural variants identifies <i>VIPR2</i> as a new candidate gene for schizophrenia. Expert Review of Neurotherapeutics, 2011, 11, 937-941.	1.4	8
206	Translational Neuroscience of Schizophrenia: Seeking a Meeting of Minds Between Mouse and Man. Science Translational Medicine, 2011, 3, 102mr3.	5.8	18
208	Psychiatric Genetics and the Generation of Mutant Animal Models. Neuromethods, 2011, , 189-209.	0.2	0
209	From genes to therapeutic targets for psychiatric disorders – what to expect?. Current Opinion in Pharmacology, 2011, 11, 563-571.	1.7	22

#	Article	IF	Citations
210	Where are the missing pieces of the schizophrenia genetics puzzle?. Current Opinion in Genetics and Development, 2011, 21, 310-316.	1.5	22
211	Effects of antipsychotics on the behavioral deficits in human dominant-negative DISC1 transgenic mice with neonatal polyl:C treatment. Behavioural Brain Research, 2011, 225, 305-310.	1.2	42
212	A novel replicated association between FXYD6 gene and schizophrenia. Biochemical and Biophysical Research Communications, 2011, 405, 118-121.	1.0	10
213	What is a functional locus? Understanding the genetic basis of complex phenotypic traits. Medical Hypotheses, 2011, 76, 638-642.	0.8	9
214	Impact on schizotypal personality trait of a genome-wide supported psychosis variant of the ZNF804A gene. Neuroscience Letters, 2011, 495, 216-220.	1.0	34
215	Genome-wide Association: From Confounded to Confident. Neuroscientist, 2011, 17, 174-184.	2.6	4
216	Discovery and development of integrative biological markers for schizophrenia. Progress in Neurobiology, 2011, 95, 686-702.	2.8	28
217	Association study of RELN polymorphisms with schizophrenia in Han Chinese population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1505-1511.	2.5	27
218	The SIGMAR1 gene is associated with a risk of schizophrenia and activation of the prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1309-1315.	2.5	30
219	Lack of association between translin-associated factor X gene (TSNAX) and methamphetamine dependence in the Japanese population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1618-1622.	2.5	3
220	Association of calcineurin A gamma subunit (PPP3CC) and early growth response 3 (EGR3) gene polymorphisms with susceptibility to schizophrenia in a Japanese population. Psychiatry Research, 2011, 185, 16-19.	1.7	19
221	Serotonin 1A receptor gene, schizophrenia and bipolar disorder: An association study and meta-analysis. Psychiatry Research, 2011, 185, 20-26.	1.7	42
222	To the Editor: Association of ZNF804A polymorphisms with schizophrenia and antipsychotic drug efficacy in a Chinese Han population. Psychiatry Research, 2011, 190, 379-381.	1.7	28
223	Concise Review: The Promise of Human Induced Pluripotent Stem Cell-Based Studies of Schizophrenia. Stem Cells, 2011, 29, 1915-1922.	1.4	73
225	Functional Themes from Psychiatric Genome-Wide Screens. Frontiers in Genetics, 2011, 2, 89.	1.1	1
226	Genome-Wide Association Study of Schizophrenia in Japanese Population. PLoS ONE, 2011, 6, e20468.	1.1	73
227	RNA-Seq of Human Neurons Derived from iPS Cells Reveals Candidate Long Non-Coding RNAs Involved in Neurogenesis and Neuropsychiatric Disorders. PLoS ONE, 2011, 6, e23356.	1.1	227
228	Strategies to identify genes for complex disorders. Psychiatric Genetics, 2011, 21, 173-182.	0.6	8

#	Article	IF	Citations
229	Dual association of a TRKA polymorphism with schizophrenia. Psychiatric Genetics, 2011, 21, 125-131.	0.6	8
230	Database of genetic studies of bipolar disorder. Psychiatric Genetics, 2011, 21, 57-68.	0.6	12
231	Alpha7 Neuronal Nicotinic Receptors as Targets for Novel Therapies to Treat Multiple Domains of Schizophrenia. Current Pharmaceutical Biotechnology, 2011, 12, 437-448.	0.9	20
232	Screening Low-Frequency SNPS From Genome-Wide Association Study Reveals a New Risk Allele for Progression to AIDS. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, 279-284.	0.9	32
234	Comparative Linkage Meta-Analysis Reveals Regionally-Distinct, Disparate Genetic Architectures: Application to Bipolar Disorder and Schizophrenia. PLoS ONE, 2011, 6, e19073.	1.1	12
235	De novo paradigm: the ultimate answer to the paradox in mental retardation?. Clinical Genetics, 2011, 79, 427-428.	1.0	4
236	ZNF804A may be associated with executive control of attention. Genes, Brain and Behavior, 2011, 10, 223-227.	1.1	38
237	SIRT1 gene, schizophrenia and bipolar disorder in the Japanese population: an association study. Genes, Brain and Behavior, 2011, 10, 257-263.	1.1	51
238	Bipolar disorder risk alleles in adult ADHD patients. Genes, Brain and Behavior, 2011, 10, 418-423.	1.1	17
239	Comparative immunogenetics of autism and schizophrenia. Genes, Brain and Behavior, 2011, 10, 689-701.	1.1	39
240	The ZNF804A Gene: Characterization of a Novel Neural Risk Mechanism for the Major Psychoses. Neuropsychopharmacology, 2011, 36, 1871-1878.	2.8	58
241	Genetic contributions to behavioural diversity at the gene–environment interface. Nature Reviews Genetics, 2011, 12, 809-820.	7.7	90
242	Expanding the range of ZNF804A variants conferring risk of psychosis. Molecular Psychiatry, 2011, 16, 59-66.	4.1	140
243	A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Molecular Psychiatry, 2011, 16, 949-959.	4.1	186
244	Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Molecular Psychiatry, 2011, 16, 462-470.	4.1	133
245	Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Molecular Psychiatry, 2011, 16, 429-441.	4.1	250
246	Population-based and family-based association studies of ZNF804A locus and schizophrenia. Molecular Psychiatry, 2011, 16, 360-361.	4.1	58
247	Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Molecular Psychiatry, 2011, 16, 286-292.	4.1	195

#	Article	IF	CITATIONS
248	GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Molecular Psychiatry, 2011, 16, 1117-1129.	4.1	67
249	Investigation of rare non-synonymous variants at ABCA13 in schizophrenia and bipolar disorder. Molecular Psychiatry, 2011, 16, 790-791.	4.1	17
250	Allelic differences in nuclear protein binding at a genome-wide significant risk variant for schizophrenia in ZNF804A. Molecular Psychiatry, 2011, 16, 787-789.	4.1	38
251	Schizophrenia risk genes: Implications for future drug development and discovery. Biochemical Pharmacology, 2011, 81, 1367-1373.	2.0	22
252	Genetics of Schizophrenia: New Findings and Challenges. Annual Review of Genomics and Human Genetics, 2011, 12, 121-144.	2.5	160
253	Assessment of 2q23.1 Microdeletion Syndrome Implicates MBD5 as a Single Causal Locus of Intellectual Disability, Epilepsy, and Autism Spectrum Disorder. American Journal of Human Genetics, 2011, 89, 551-563.	2.6	195
254	Pathway-based analysis for genome-wide association studies of schizophrenia to provide new insight in schizophrenia study. Science Bulletin, 2011, 56, 3398-3402.	1.7	2
255	Is Ankyrin a genetic risk factor for psychiatric phenotypes?. BMC Psychiatry, 2011, 11, 103.	1.1	23
256	Following the genes: a framework for animal modeling of psychiatric disorders. BMC Biology, 2011, 9, 76.	1.7	27
257	Two patients walk into a clinica genomics perspective on the future of schizophrenia. BMC Biology, 2011, 9, 77.	1.7	11
258	Linkage and association on 8p21.2-p21.1 in schizophrenia., 2011, 156, 188-197.		26
259	Evaluation of risk loci for schizophrenia derived from genome-wide association studies in a German population., 2011, 156, 198-203.		26
260	DISC1 exon 11 rare variants found more commonly in schizoaffective spectrum cases than controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 490-492.	1.1	19
261	Analysis of neurogranin (<i>NRGN</i>) in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 532-535.	1.1	13
262	Genomeâ€wide association analysis of age at onset in schizophrenia in a Europeanâ€American sample. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 671-680.	1.1	28
263	Association of <i>GRIN1</i> and <i>GRIN2Aâ€D</i> With schizophrenia and genetic interaction with maternal herpes simplex virusâ€⊋ infection affecting disease risk. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 913-922.	1.1	44
264	Similarities and differences in peripheral blood geneâ€expression signatures of individuals with schizophrenia and their firstâ€degree biological relatives. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 869-887.	1.1	53
265	Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 929-940.	1.1	14

#	Article	IF	CITATIONS
266	Propensity scoreâ€based nonparametric test revealing genetic variants underlying bipolar disorder. Genetic Epidemiology, 2011, 35, 125-132.	0.6	37
267	Evaluation of an approximation method for assessment of overall significance of multipleâ€dependent tests in a genomewide association study. Genetic Epidemiology, 2011, 35, 861-866.	0.6	42
268	Polygenic dissection of the bipolar phenotype. British Journal of Psychiatry, 2011, 198, 284-288.	1.7	67
269	Schizophrenia Genes: On the Matter of Their Convergence. Current Topics in Behavioral Neurosciences, 2011, 12, 429-440.	0.8	5
270	Altered Cortical Network Dynamics. Archives of General Psychiatry, 2011, 68, 1207.	13.8	161
271	Genetic Association Studies of Antioxidant Pathway Genes and Schizophrenia. Antioxidants and Redox Signaling, 2011, 15, 2037-2045.	2.5	45
272	Developments in schizophrenia genetics: From linkage to microchips, deletions and duplications. Nordic Journal of Psychiatry, 2011, 65, 82-88.	0.7	6
273	Do we have any solid evidence of clinical utility about the pathophysiology of schizophrenia?. World Psychiatry, 2011, 10, 19-31.	4.8	53
274	Genome-Wide Pharmacogenomic Study of Neurocognition As an Indicator of Antipsychotic Treatment Response in Schizophrenia. Neuropsychopharmacology, 2011, 36, 616-626.	2.8	103
275	Association of Genetic Variants on 15q12 With Cortical Thickness and Cognition in Schizophrenia. Archives of General Psychiatry, 2011, 68, 781.	13.8	22
276	A functional promoter polymorphism of neuronal nitric oxide synthase moderates prefrontal functioning in schizophrenia. International Journal of Neuropsychopharmacology, 2011, 14, 887-897.	1.0	38
277	Pharmacogenetic Approaches to Cognitive Enhancement in Schizophrenia. Harvard Review of Psychiatry, 2011, 19, 102-108.	0.9	11
278	Hippocampal Neuronal Nitric Oxide Synthase Mediates the Stress-Related Depressive Behaviors of Glucocorticoids by Downregulating Glucocorticoid Receptor. Journal of Neuroscience, 2011, 31, 7579-7590.	1.7	118
279	Strategies for genetic model specification in the screening of genome-wide meta-analysis signals for further replication. International Journal of Epidemiology, 2011, 40, 457-469.	0.9	20
280	Progress in defining the biological causes of schizophrenia. Expert Reviews in Molecular Medicine, 2011, 13, e25.	1.6	29
282	Rethinking the genetic architecture of schizophrenia. Psychological Medicine, 2011, 41, 19-32.	2.7	66
283	Genetic overlap between episodic memory deficits and schizophrenia: results from The Maudsley Twin Study. Psychological Medicine, 2011, 41, 521-532.	2.7	37
284	The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Human Molecular Genetics, 2011, 20, 141-154.	1.4	129

#	Article	IF	CITATIONS
286	Quantification of Inbreeding Due to Distant Ancestors and Its Detection Using Dense Single Nucleotide Polymorphism Data. Genetics, 2011, 189, 237-249.	1.2	367
287	Genetic Association Analysis of NOS1 and Methamphetamine-Induced Psychosis Among Japanese. Current Neuropharmacology, 2011, 9, 155-159.	1.4	2
288	Identification of new schizophrenia susceptibility loci in an ethnically homogeneous, familyâ€based, Arabâ€Israeli sample. FASEB Journal, 2011, 25, 4011-4023.	0.2	25
289	Dissociation of accumulated genetic risk and disease severity in patients with schizophrenia. Translational Psychiatry, $2011, 1, e45-e45$.	2.4	13
290	Behavioral Genetics of Affective and Anxiety Disorders. Current Topics in Behavioral Neurosciences, 2011, 12, 463-502.	0.8	26
291	Trans-eQTLs Reveal That Independent Genetic Variants Associated with a Complex Phenotype Converge on Intermediate Genes, with a Major Role for the HLA. PLoS Genetics, 2011, 7, e1002197.	1.5	324
292	The Prevention of Schizophrenia-What Can We Learn From Eco-Epidemiology?. Schizophrenia Bulletin, 2011, 37, 262-271.	2.3	56
293	The Effects of CACNA1C Gene Polymorphism on Spatial Working Memory in Both Healthy Controls and Patients with Schizophrenia or Bipolar Disorder. Neuropsychopharmacology, 2012, 37, 677-684.	2.8	84
294	Resequencing and Association Analysis of the KALRN and EPHB1 Genes And Their Contribution to Schizophrenia Susceptibility. Schizophrenia Bulletin, 2012, 38, 552-560.	2.3	74
295	Involvement of PTPN5, the gene encoding the striatal-enriched protein tyrosine phosphatase, in schizophrenia and cognition. Psychiatric Genetics, 2012, 22, 168-176.	0.6	14
296	Functional and Structural MR Imaging in Neuropsychiatric Disorders, Part 2: Application in Schizophrenia and Autism. American Journal of Neuroradiology, 2012, 33, 2033-2037.	1.2	45
297	Oxytocin and vasopressin genes are significantly associated with schizophrenia in a large Arab-Israeli pedigree. International Journal of Neuropsychopharmacology, 2012, 15, 309-319.	1.0	46
298	Evidence of IQ-Modulated Association Between ZNF804A Gene Polymorphism and Cognitive Function in Schizophrenia Patients. Neuropsychopharmacology, 2012, 37, 1572-1578.	2.8	40
299	<i>ZNF804A</i> rs1344706 Variant and Schizophrenia in a Romanian Population from Cluj Napoca. Genetic Testing and Molecular Biomarkers, 2012, 16, 1135-1137.	0.3	8
300	Schizophrenia risk gene ZNF804A does not influence macroscopic brain structure: an MRI study in 892 volunteers. Molecular Psychiatry, 2012, 17, 1155-1157.	4.1	33
301	Evidence for the involvement of ZNF804A in cognitive processes of relevance to reading and spelling. Translational Psychiatry, 2012, 2, e136-e136.	2.4	17
302	Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Human Molecular Genetics, 2012, 21, 1018-1024.	1.4	87
303	DISC1 as a therapeutic target for mental illnesses. Expert Opinion on Therapeutic Targets, 2012, 16, 1151-1160.	1.5	34

#	Article	IF	CITATIONS
304	A Polymerase Chain Reaction–Restriction Fragment Length Polymorphism Method for ScreeningZNF804AGene Polymorphism (rs1344706) in Patients with Schizophrenia: A Significant Association. Genetic Testing and Molecular Biomarkers, 2012, 16, 157-161.	0.3	6
305	Less Cognitive and Neurological Deficits in Schizophrenia Patients Carrying Risk Variant in <i>ZNF804A</i> . Neuropsychobiology, 2012, 66, 158-166.	0.9	15
306	Modeling psychiatric disorders through reprogramming. DMM Disease Models and Mechanisms, 2012, 5, 26-32.	1.2	58
307	The gene encoding the melanin-concentrating hormone receptor 1 is associated with schizophrenia in a Danish case–control sample. Psychiatric Genetics, 2012, 22, 62-69.	0.6	11
308	Genetic Data Supporting the NMDA Glutamate Receptor Hypothesis for Schizophrenia. Current Pharmaceutical Design, 2012, 18, 1580-1592.	0.9	39
309	Current Progress in the Genetic Research of Schizophrenia: Relevance for Drug Discovery?. Current Pharmaceutical Biotechnology, 2012, 13, 1614-1621.	0.9	4
310	DOCK4 and CEACAM21 as novel schizophrenia candidate genes in the Jewish population. International Journal of Neuropsychopharmacology, 2012, 15, 459-469.	1.0	51
311	Influence of ZNF804a on Brain Structure Volumes and Symptom Severity in Individuals With Schizophrenia. Archives of General Psychiatry, 2012, 69, 885.	13.8	46
312	An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Molecular Psychiatry, 2012, 17, 1194-1205.	4.1	95
313	Exome Sequencing Followed by Large-Scale Genotyping Suggests a Limited Role for Moderately Rare Risk Factors of Strong Effect in Schizophrenia. American Journal of Human Genetics, 2012, 91, 303-312.	2.6	81
314	Using human induced pluripotent stem cells for modeling schizophrenia, a psychiatric disorder. Drug Discovery Today: Disease Models, 2012, 9, e179-e184.	1.2	1
315	Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nature Neuroscience, 2012, 15, 1723-1728.	7.1	193
316	Evidence That Schizophrenia Risk Variation in the <i>ZNF804A < /i>Brain Development. American Journal of Psychiatry, 2012, 169, 1301-1308.</i>	4.0	74
317	Intragenic Copy Number Variation within Filaggrin Contributes to the Risk of Atopic Dermatitis with a Dose-Dependent Effect. Journal of Investigative Dermatology, 2012, 132, 98-104.	0.3	185
318	Association Study of Nonsynonymous Single Nucleotide Polymorphisms in Schizophrenia. Biological Psychiatry, 2012, 71, 169-177.	0.7	78
319	Evidence for association of bipolar disorder to haplotypes in the 22q12.3 region near the genes stargazin, ift27 and parvalbumin. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 941-950.	1.1	10
320	Evaluating the links between schizophrenia and sleep and circadian rhythm disruption. Journal of Neural Transmission, 2012, 119, 1061-1075.	1.4	92
321	DNA methylation in schizophrenia: progress and challenges of epigenetic studies. Genome Medicine, 2012, 4, 96.	3.6	78

#	Article	IF	CITATIONS
322	Social Cognitive Neuroscience of Empathy: Concepts, Circuits, and Genes. Emotion Review, 2012, 4, 9-17.	2.1	294
323	The Challenges and Promise of Neuroimaging in Psychiatry. Neuron, 2012, 73, 8-22.	3.8	178
324	Psychopathology and the Human Connectome: Toward a Transdiagnostic Model of Risk For Mental Illness. Neuron, 2012, 74, 990-1004.	3.8	343
325	Contributions of the d-serine pathway to schizophrenia. Neuropharmacology, 2012, 62, 1484-1503.	2.0	99
326	Avoiding mouse traps in schizophrenia genetics: lessons and promises from current and emerging mouse models. Neuroscience, 2012, 211, 136-164.	1.1	37
327	Association of the ZNF804A gene polymorphism rs1344706 with white matter density changes in Chinese schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 36, 122-127.	2.5	28
328	Analysis of association between common SNPs in ErbB4 and bipolar affective disorder, major depressive disorder and schizophrenia in the Han Chinese population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 36, 17-21.	2.5	13
329	Hippocampal nitric oxide contributes to sex difference in affective behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14224-14229.	3.3	76
330	Translocations Disrupting PHF21A in the Potocki-Shaffer-Syndrome Region Are Associated with Intellectual Disability and Craniofacial Anomalies. American Journal of Human Genetics, 2012, 91, 56-72.	2.6	59
331	Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries. Cell, 2012, 149, 525-537.	13.5	534
332	Schizophrenia genetics: progress, at last. Current Opinion in Genetics and Development, 2012, 22, 238-244.	1.5	46
333	<i>ZNF804A</i> and schizophrenia susceptibility in Asian populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 794-802.	1.1	30
334	Immune system gene dysregulation in autism and schizophrenia. Developmental Neurobiology, 2012, 72, 1277-1287.	1.5	96
335	Association of CTXN3-SLC12A2 polymorphisms and schizophrenia in a Thai population. Behavioral and Brain Functions, 2012, 8, 27.	1.4	7
336	Schizophrenia shows a unique metabolomics signature in plasma. Translational Psychiatry, 2012, 2, e149-e149.	2.4	138
337	<scp>HLA</scp> â€ <scp>DQ</scp> strikes again: Genomeâ€wide association study further confirms <i><scp>HLA</scp>â€<scp>DQ</scp></i> in the diagnosis of asthma among adults. Clinical and Experimental Allergy, 2012, 42, 1724-1733.	1.4	62
338	Evidence-based psychiatric genetics, AKA the false dichotomy between common and rare variant hypotheses. Molecular Psychiatry, 2012, 17, 474-485.	4.1	124
339	Genome-wide association studies of schizophrenia. Current Opinion in Psychiatry, 2012, 25, 76-82.	3.1	72

#	Article	IF	CITATIONS
340	The dappled nature of causes of psychiatric illness: replacing the organic–functional/hardware–software dichotomy with empirically based pluralism. Molecular Psychiatry, 2012, 17, 377-388.	4.1	288
341	Common Genetic Variants and Gene-Expression Changes Associated with Bipolar Disorder Are Over-Represented in Brain Signaling Pathway Genes. Biological Psychiatry, 2012, 72, 311-317.	0.7	56
342	Genome-Wide Association Study Implicates HLA-C*01:02 as a Risk Factor at the Major Histocompatibility Complex Locus in Schizophrenia. Biological Psychiatry, 2012, 72, 620-628.	0.7	156
343	Association analysis of ZNF804A (zinc finger protein 804A) rs1344706 with therapeutic response to atypical antipsychotics in first-episode Chinese patients with schizophrenia. Comprehensive Psychiatry, 2012, 53, 1044-1048.	1.5	16
344	The future of fMRI and genetics research. NeuroImage, 2012, 62, 1286-1292.	2.1	59
345	Brain connectivity in psychiatric imaging genetics. Neurolmage, 2012, 62, 2250-2260.	2.1	62
346	The NOS1 variant rs6490121 is associated with variation in prefrontal function and grey matter density in healthy individuals. NeuroImage, 2012, 60, 614-622.	2.1	26
347	Independent estimation of the frequency of rare CNVs in the UK population confirms their role in schizophrenia. Schizophrenia Research, 2012, 135, 1-7.	1.1	73
348	Comparative gene expression study of the chronic exposure to clozapine and haloperidol in rat frontal cortex. Schizophrenia Research, 2012, 134, 211-218.	1.1	26
349	Association between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder. Schizophrenia Research, 2012, 138, 69-73.	1.1	70
350	Association study of a new schizophrenia susceptibility locus of 10q24.32–33 in a Han Chinese population. Schizophrenia Research, 2012, 138, 63-68.	1.1	47
351	Experimental validation of candidate schizophrenia gene ZNF804A as target for hsa-miR-137. Schizophrenia Research, 2012, 141, 60-64.	1.1	83
352	Further evidence for the association of genetic variants of ZNF804A with schizophrenia and a meta-analysis for genome-wide significance variant rs1344706. Schizophrenia Research, 2012, 141, 40-47.	1.1	28
353	Expression analysis of a novel mRNA variant of the schizophrenia risk gene ZNF804A. Schizophrenia Research, 2012, 141, 277-278.	1.1	11
354	An investigation of a genomewide supported psychosis variant in ZNF804A and white matter integrity in the human brain. Magnetic Resonance Imaging, 2012, 30, 1373-1380.	1.0	27
356	Statistical epistasis and progressive brain change in schizophrenia: an approach for examining the relationships between multiple genes. Molecular Psychiatry, 2012, 17, 1093-1102.	4.1	23
357	Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. Psychological Medicine, 2012, 42, 607-616.	2.7	83
358	Genome-wide association study of Alzheimer's disease with psychotic symptoms. Molecular Psychiatry, 2012, 17, 1316-1327.	4.1	110

#	Article	IF	CITATIONS
359	Predicting Risk and the Emergence of Schizophrenia. Psychiatric Clinics of North America, 2012, 35, 585-612.	0.7	19
360	Human genetics of schizophrenia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 106, 37-52.	1.0	4
361	Incidence of Schizophrenia and Other Psychoses in England, 1950–2009: A Systematic Review and Meta-Analyses. PLoS ONE, 2012, 7, e31660.	1.1	385
362	Gene-Based Analysis of Regionally Enriched Cortical Genes in GWAS Data Sets of Cognitive Traits and Psychiatric Disorders. PLoS ONE, 2012, 7, e31687.	1.1	40
363	Genome-Wide Association Study of Treatment Refractory Schizophrenia in Han Chinese. PLoS ONE, 2012, 7, e33598.	1.1	55
364	Genetic Polymorphisms in CYP2E1: Association with Schizophrenia Susceptibility and Risperidone Response in the Chinese Han Population. PLoS ONE, 2012, 7, e34809.	1.1	15
365	A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes. PLoS ONE, 2012, 7, e39498.	1.1	125
366	The Effects of Psychosis Risk Variants on Brain Connectivity: A Review. Frontiers in Psychiatry, 2012, 3, 18.	1.3	12
367	Connectomic Intermediate Phenotypes for Psychiatric Disorders. Frontiers in Psychiatry, 2012, 3, 32.	1.3	90
368	Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era. The Application of Clinical Genetics, 2012, 5, 1.	1.4	35
369	Old Obstacles on New Horizons: The Challenge of Implementing Gene X Environment Discoveries in Schizophrenia Research. , 2012, , .		1
370	The genetics of schizophrenia. , 0, , 230-261.		1
371	Isochromosome 13 in a patient with childhood-onset schizophrenia, ADHD, and motor tic disorder. Molecular Cytogenetics, 2012, 5, 2.	0.4	4
372	The Relationship Between Acoustic Startle Response Measures and Cognitive Functions in Japanese Patients with Schizophrenia. NeuroMolecular Medicine, 2012, 14, 131-138.	1.8	9
373	Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Molecular Psychiatry, 2012, 17, 906-917.	4.1	105
374	Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nature Reviews Genetics, 2012, 13, 537-551.	7.7	1,025
375	A myelin gene causative of a catatoniaâ€depression syndrome upon aging. EMBO Molecular Medicine, 2012, 4, 528-539.	3.3	108
376	A <i>NOS1</i> variant implicated in cognitive performance influences evoked neural responses during a high density EEG study of early visual perception. Human Brain Mapping, 2012, 33, 1202-1211.	1.9	19

#	Article	IF	Citations
377	Genomeâ€wide supported psychosis risk variant in ZNF804A gene and impact on cortico–limbic WM integrity in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 255-262.	1.1	32
378	A study of the combined effects of the EHD3 and FREM3 genes in patients with major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 336-342.	1.1	11
379	The Genetic Architecture of Schizophrenia: New Mutations and Emerging Paradigms. Annual Review of Medicine, 2012, 63, 63-80.	5.0	98
380	Copy Number Variation and Psychiatric Disease Risk. Methods in Molecular Biology, 2012, 838, 97-113.	0.4	17
381	Neural stem cells: mechanisms and modeling. Protein and Cell, 2012, 3, 251-261.	4.8	44
382	Schizophrenia Genetics: Putting All the Pieces Together. Current Neurology and Neuroscience Reports, 2012, 12, 261-266.	2.0	37
383	The schizophrenia risk gene ZNF804A influences the antipsychotic response of positive schizophrenia symptoms. European Archives of Psychiatry and Clinical Neuroscience, 2012, 262, 193-197.	1.8	33
384	Annual Research Review: Impact of advances in genetics in understanding developmental psychopathology. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2012, 53, 510-518.	3.1	32
385	Recent genomic advances in schizophrenia. Clinical Genetics, 2012, 81, 103-109.	1.0	86
386	Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. Molecular Psychiatry, 2012, 17, 634-641.	4.1	69
387	Association study of myelin transcription factor 1â€like polymorphisms with schizophrenia in Han Chinese population. Genes, Brain and Behavior, 2012, 11, 87-93.	1.1	26
388	Hippocampal volume and the AKT signaling system in first-episode schizophrenia. Journal of Psychiatric Research, 2012, 46, 279-284.	1.5	25
389	Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: What have we learnt?. Neuroscience and Biobehavioral Reviews, 2012, 36, 556-571.	2.9	102
390	Genetic approaches to a better understanding of bipolar disorder. , 2012, 133, 133-141.		12
391	A novel method to identify high order gene-gene interactions in genome-wide association studies: Gene-based MDR. BMC Bioinformatics, 2012, 13, S5.	1.2	66
392	Serotonin 6 receptor gene and schizophrenia: caseâ€control study and metaâ€analysis. Human Psychopharmacology, 2012, 27, 63-69.	0.7	6
393	OPCML Gene as a Schizophrenia Susceptibility Locus in Thai Population. Journal of Molecular Neuroscience, 2012, 46, 373-377.	1.1	13
394	Partial support for <i>ZNF804A</i> genotypeâ€dependent alterations in prefrontal connectivity. Human Brain Mapping, 2013, 34, 304-313.	1.9	65

#	Article	IF	CITATIONS
395	Genome-wide expression profiling of schizophrenia using a large combined cohort. Molecular Psychiatry, 2013, 18, 215-225.	4.1	88
396	Investigation of the ZNF804A gene polymorphism with genetic risk for bipolar disorder in attention deficit hyperactivity disorder. BMC Research Notes, 2013, 6, 29.	0.6	6
397	Sleep and Circadian Rhythm Disruption in Social Jetlag and Mental Illness. Progress in Molecular Biology and Translational Science, 2013, 119, 325-346.	0.9	168
398	Genetics of ageing-related changes in brain white matter integrity – A review. Ageing Research Reviews, 2013, 12, 391-401.	5.0	24
399	Evaluating Rare Variants in Complex Disorders Using Next-Generation Sequencing. Current Psychiatry Reports, 2013, 15, 349.	2.1	14
400	Association study of OPRM1 polymorphisms with Schizophrenia in Han Chinese population. BMC Psychiatry, 2013, 13, 107.	1.1	22
401	Personalized medicine in psychiatry: problems and promises. BMC Medicine, 2013, 11, 132.	2.3	192
402	Genetic Association Analysis of ITGB3 Polymorphisms with Age at Onset of Schizophrenia. Journal of Molecular Neuroscience, 2013, 51, 446-453.	1.1	15
403	Haploinsufficiency of KDM6A is associated with severe psychomotor retardation, global growth restriction, seizures and cleft palate. Human Genetics, 2013, 132, 537-552.	1.8	60
404	An unbalanced translocation involving loss of $10q26.2$ and gain of $11q25$ in a pedigree with autism spectrum disorder and cerebellar juvenile pilocytic astrocytoma. American Journal of Medical Genetics, Part A, 2013 , 161 , 787 - 791 .	0.7	25
405	Molecular genetic gene–environment studies using candidate genes in schizophrenia: A systematic review. Schizophrenia Research, 2013, 150, 356-365.	1.1	80
406	Genetics of psychiatric disorders in the GWAS era: an update on schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2013, 263, 147-154.	1.8	49
407	The <i>KCNH2</i> gene is associated with neurocognition and the risk of schizophrenia. World Journal of Biological Psychiatry, 2013, 14, 114-120.	1.3	36
408	Pathway analysis of a genome-wide association study in schizophrenia. Gene, 2013, 525, 107-115.	1.0	46
409	The emerging spectrum of allelic variation in schizophrenia: current evidence and strategies for the identification and functional characterization of common and rare variants. Molecular Psychiatry, 2013, 18, 38-52.	4.1	75
410	Brainnetome-wide association studies in schizophrenia: The advances and future. Neuroscience and Biobehavioral Reviews, 2013, 37, 2818-2835.	2.9	25
411	Genes and environments in schizophrenia: The different pieces of a manifold puzzle. Neuroscience and Biobehavioral Reviews, 2013, 37, 2424-2437.	2.9	44
412	Disorders and borders: Psychiatric genetics and nosology. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 559-578.	1.1	47

#	Article	IF	Citations
413	Gene-environment interaction effects on lung function- a genome-wide association study within the Framingham heart study. Environmental Health, 2013, 12, 101.	1.7	28
414	The impact of the genome-wide supported variant in the cyclin M2 gene on gray matter morphology in schizophrenia. Behavioral and Brain Functions, 2013, 9, 40.	1.4	42
415	Recurrent deletions of <i>ULK4</i> in schizophrenia: a novel gene crucial for neuritogenesis and neuronal motility. Journal of Cell Science, 2014, 127, 630-40.	1.2	78
416	Neuroimaging as a potential biomarker to optimize psychiatric research and treatment. International Review of Psychiatry, 2013, 25, 619-631.	1.4	13
417	No association of ZNF804A rs1344706 with white matter integrity in schizophrenia: A tract-based spatial statistics study. Neuroscience Letters, 2013, 532, 64-69.	1.0	19
418	Neuropsychological effects of the <i><scp>CSMD1</scp></i> genomeâ€wide associated schizophrenia risk variant rs10503253. Genes, Brain and Behavior, 2013, 12, 203-209.	1.1	48
420	Association of rs1344706 in the ZNF804A gene with schizophrenia in a case/control sample from Indonesia. Schizophrenia Research, 2013, 147, 46-52.	1.1	30
421	Drosophila strategies to study psychiatric disorders. Brain Research Bulletin, 2013, 92, 1-11.	1.4	67
422	Genetic analysis of common variants in the CMYA5 (cardiomyopathy-associated 5) gene with schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 46, 64-69.	2.5	13
423	Calorimetric monitoring of the serum proteome in schizophrenia patients. Thermochimica Acta, 2013, 572, 59-64.	1.2	21
424	The regulation of gene expression involved in TGF- \hat{l}^2 signaling by ZNF804A, a risk gene for schizophrenia. Schizophrenia Research, 2013, 146, 273-278.	1.1	30
425	Meta-analysis supports association of a non-synonymous SNP in ZNF804A with schizophrenia. Schizophrenia Research, 2013, 149, 188-189.	1.1	8
426	Lack of association between MPC2 variants and schizophrenia in a replication study of Han Chinese. Neuroscience Letters, 2013, 552, 120-123.	1.0	12
427	Polymorphisms in seizure 6-like gene are associated with bipolar disorder I: Evidence of gene×gender interaction. Journal of Affective Disorders, 2013, 145, 95-99.	2.0	17
428	Gene expression analysis reveals schizophrenia-associated dysregulation ofÂimmune pathways in peripheral blood mononuclear cells. Journal of Psychiatric Research, 2013, 47, 425-437.	1.5	83
429	Structural, phylogenetic and docking studies of D-amino acid oxidase activator (DAOA), a candidate schizophrenia gene. Theoretical Biology and Medical Modelling, 2013, 10, 3.	2.1	44
430	Comprehensive DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia. Journal of Human Genetics, 2013, 58, 91-97.	1.1	91
431	Neuroimaging as a Translational Tool in Animal and Human Models of Schizophrenia., 2013,, 195-220.		1

#	Article	IF	CITATIONS
432	A Population-Specific Uncommon Variant in GRIN3A Associated with Schizophrenia. Biological Psychiatry, 2013, 73, 532-539.	0.7	41
433	Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Molecular Psychiatry, 2013, 18, 774-780.	4.1	129
434	Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet, The, 2013, 381, 1371-1379.	6.3	2,643
435	Progress in imaging the effects of psychosis susceptibility gene variants. Expert Review of Neurotherapeutics, 2013, 13, 37-47.	1.4	7
436	Potential roles of zinc in the pathophysiology and treatment of major depressive disorder. Neuroscience and Biobehavioral Reviews, 2013, 37, 911-929.	2.9	91
437	<i>HTR2A</i> àâ^1438A/G polymorphism influences the risk of schizophrenia but not bipolar disorder or major depressive disorder: A metaâ€analysis. Journal of Neuroscience Research, 2013, 91, 623-633.	1.3	43
438	Analysis of common genetic variants identifies <i>RELN</i> as a risk gene for schizophrenia in Chinese population. World Journal of Biological Psychiatry, 2013, 14, 91-99.	1.3	33
439	Schizophrenia is primed for an increased expression of depression through activation of immuno-inflammatory, oxidative and nitrosative stress, and tryptophan catabolite pathways. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 42, 101-114.	2.5	66
441	Association of serotonin transporter gene (SLC6A4) polymorphisms with schizophrenia susceptibility and symptoms in a Chinese-Han population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 44, 290-295.	2.5	24
442	Genetics of bipolar disorder. Lancet, The, 2013, 381, 1654-1662.	6.3	499
443	Association study of NRXN3 polymorphisms with schizophrenia and risperidone-induced bodyweight gain in Chinese Han population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 43, 197-202.	2.5	38
444	Genetic and neurocognitive foundations of emotion abnormalities in bipolar disorder. Cognitive Neuropsychiatry, 2013, 18, 168-207.	0.7	20
445	The genomically mosaic brain: Aneuploidy and more in neural diversity and disease. Seminars in Cell and Developmental Biology, 2013, 24, 357-369.	2.3	82
446	Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Molecular Psychiatry, 2013, 18, 195-205.	4.1	180
447	Association at SYNE1 in both bipolar disorder and recurrent major depression. Molecular Psychiatry, 2013, 18, 614-617.	4.1	80
448	Editors' Pick: mad and genius in the same gene?. Investigative Genetics, 2013, 4, 14.	3.3	1
449	Real Progress in Molecular Psychiatric Genetics. Journal of the American Academy of Child and Adolescent Psychiatry, 2013, 52, 1006-1008.	0.3	3
450	Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Molecular Psychiatry, 2013, 18, 708-712.	4.1	216

#	Article	IF	CITATIONS
452	Variation in Psychosis Gene ZNF804A Is Associated With a Refined Schizotypy Phenotype but Not Neurocognitive Performance in a Large Young Male Population. Schizophrenia Bulletin, 2013, 39, 1252-1260.	2.3	26
453	Brain vs Behavior: An Effect Size Comparison of Neuroimaging and Cognitive Studies of Genetic Risk for Schizophrenia. Schizophrenia Bulletin, 2013, 39, 518-526.	2.3	83
454	Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate. PLoS Genetics, 2013, 9, e1003455.	1.5	298
455	Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification. PLoS Genetics, 2013, 9, e1003609.	1.5	36
456	Genome-wide association study of schizophrenia using microsatellite markers in the Japanese population. Psychiatric Genetics, 2013, 23, 117-123.	0.6	7
457	A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Human Molecular Genetics, 2013, 22, 4841-4856.	1.4	202
458	Schizophrenia at a Genetics Crossroads: Where to Now?. Schizophrenia Bulletin, 2013, 39, 490-495.	2.3	12
459	Genome-Wide Linkage Analyses of 12 Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia. American Journal of Psychiatry, 2013, 170, 521-532.	4.0	114
460	Using genetic, cognitive and multi-modal neuroimaging data to identify ultra-high-risk and first-episode psychosis at the individual level. Psychological Medicine, 2013, 43, 2547-2562.	2.7	97
461	ZNF804AGenotype Modulates Neural Activity during Working Memory for Faces. Neuropsychobiology, 2013, 67, 84-92.	0.9	19
462	Sex differences in the genetic risk for schizophrenia: History of the evidence for sexâ€specific and sexâ€dependent effects. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 698-710.	1.1	83
463	Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. British Journal of Psychiatry, 2013, 203, 107-111.	1.7	93
464	From gene to brain to behavior: schizophreniaâ€associated variation in <i><scp>AMBRA</scp>1</i> alters impulsivityâ€related traits. European Journal of Neuroscience, 2013, 38, 2941-2945.	1.2	21
466	Effects of ZNF804A on neurophysiologic measures of cognitive control. Molecular Psychiatry, 2013, 18, 852-854.	4.1	20
467	Evaluation of the Relationship between the Znf804A Single Nucleotide Polymorphism Rs1344706 a/c Variant and Schizophrenia Subtype in Han Chinese Patients. International Journal of Psychiatry in Medicine, 2013, 45, 269-278.	0.8	13
468	Genetics of Schizophrenia. International Journal of Mental Health, 2013, 42, 5-22.	0.5	4
469	Genome-wide association studies: what a psychiatrist needs to know. Advances in Psychiatric Treatment, 2013, 19, 82-88.	0.6	3
470	Estudios de asociación del genoma completo: lo que necesita saber un psiquiatra [translation of "Genome-wide association studies: what a psychiatrist needs to know―by Rodolfo Zaratiegui]. Advances in Psychiatric Treatment, 2013, 19, .	0.6	0

#	Article	IF	Citations
471	BCL9 and C9orf5 Are Associated with Negative Symptoms in Schizophrenia: Meta-Analysis of Two Genome-Wide Association Studies. PLoS ONE, 2013, 8, e51674.	1.1	56
472	A Genetic Deconstruction of Neurocognitive Traits in Schizophrenia and Bipolar Disorder. PLoS ONE, 2013, 8, e81052.	1.1	20
473	Potential Impact of miR-137 and Its Targets in Schizophrenia. Frontiers in Genetics, 2013, 4, 58.	1.1	104
474	NMDA hypofunction as a convergence point for progression and symptoms of schizophrenia. Frontiers in Cellular Neuroscience, 2013, 7, 31.	1.8	198
475	MicroRNAs as the cause of schizophrenia in 22q11.2 deletion carriers, and possible implications for idiopathic disease: a mini-review. Frontiers in Molecular Neuroscience, 2013, 6, 47.	1.4	49
477	Recent Updates in Schizophrenia Genetics. Korean Journal of Schizophrenia Research, 2013, 16, 5.	0.3	0
478	Sequencing of a Patient with Balanced Chromosome Abnormalities and Neurodevelopmental Disease Identifies Disruption of Multiple High Risk Loci by Structural Variation. PLoS ONE, 2014, 9, e90894.	1.1	20
479	Magnetic Resonance Imaging in Studying Schizophrenia, Negative Symptoms, and the Glutamate System. Frontiers in Psychiatry, 2014, 5, 32.	1.3	37
480	Phenotype-Based Genetic Association Studies (PGAS)â€"Towards Understanding the Contribution of Common Genetic Variants to Schizophrenia Subphenotypes. Genes, 2014, 5, 97-105.	1.0	16
481	Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Frontiers in Synaptic Neuroscience, 2014, 6, 28.	1.3	85
482	The evolutionary genetics of the creativity–psychosis connection. , 0, , 102-132.		3
483	Association Between rs1344706 of ZNF804A and Schizophrenia: A Meta-analysis. Genomics, Proteomics and Bioinformatics, 2014, 12, 292-296.	3.0	10
484	No effect of schizophrenia risk genes MIR137, TCF4, and ZNF804A on macroscopic brain structure. Schizophrenia Research, 2014, 159, 329-332.	1.1	22
485	Genetics and psychosis. Advances in Psychiatric Treatment, 2014, 20, 69-70.	0.6	0
486	Identifying Gene-Environment Interactions in Schizophrenia: Contemporary Challenges for Integrated, Large-scale Investigations. Schizophrenia Bulletin, 2014, 40, 729-736.	2.3	229
487	Replicative association analysis of genetic markers of cognitive traits with Alzheimer's disease in the Russian population. Molecular Biology, 2014, 48, 835-844.	0.4	13
488	Analysis of schizophrenia-related genes and electrophysiological measures reveals ZNF804A association with amplitude of P300b elicited by novel sounds. Translational Psychiatry, 2014, 4, e346-e346.	2.4	29
489	Comparison of the Heritability of Schizophrenia and Endophenotypes in the COGS-1 Family Study. Schizophrenia Bulletin, 2014, 40, 1404-1411.	2.3	34

#	Article	IF	Citations
490	Effects of ZNF804A on auditory P300 response in schizophrenia. Translational Psychiatry, 2014, 4, e345-e345.	2.4	19
491	Common variants at $1p36$ are associated with superior frontal gyrus volume. Translational Psychiatry, 2014, 4, e472-e472.	2.4	18
492	Zinc finger protein 804A (<i>ZNF804A</i>) and verbal deficits in individuals with autism. Journal of Psychiatry and Neuroscience, 2014, 39, 294-303.	1.4	30
493	Association Study Identifying a New Susceptibility Gene (AUTS2) for Schizophrenia. International Journal of Molecular Sciences, 2014, 15, 19406-19416.	1.8	35
495	A Population-Based Study of Genetic Variation and Psychotic Experiences in Adolescents. Schizophrenia Bulletin, 2014, 40, 1254-1262.	2.3	74
496	Stress, Schizophrenia and Bipolar Disorder. Current Topics in Behavioral Neurosciences, 2014, 18, 217-235.	0.8	16
498	A genome-wide association study demonstrates significant genetic variation for fracture risk in Thoroughbred racehorses. BMC Genomics, 2014, 15, 147.	1.2	22
499	Protein-Protein Interaction and Pathway Analyses of Top Schizophrenia Genes Reveal Schizophrenia Susceptibility Genes Converge on Common Molecular Networks and Enrichment of Nucleosome (Chromatin) Assembly Genes in Schizophrenia Susceptibility Loci. Schizophrenia Bulletin, 2014, 40, 39-49.	2.3	39
500	A <scp>N</scp> euregulinâ€1 schizophrenia susceptibility variant causes perihippocampal fiber tract anomalies in healthy young subjects. Brain and Behavior, 2014, 4, 215-226.	1.0	13
502	Further Evidence for the Impact of a Genome-Wide-Supported Psychosis Risk Variant in ZNF804A on the Theory of Mind Network. Neuropsychopharmacology, 2014, 39, 1196-1205.	2.8	42
503	Expression of <i>ZNF804A </i> in Human Brain and Alterations in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. JAMA Psychiatry, 2014, 71, 1112.	6.0	102
504	Differential Effects of Common Variants in <i>SCN2A</i> on General Cognitive Ability, Brain Physiology, and messenger RNA Expression in Schizophrenia Cases and Control Individuals. JAMA Psychiatry, 2014, 71, 647.	6.0	33
505	Association Analysis for Neuronal Nitric Oxide Synthase Gene Polymorphism with Plasma Nitrite/Nitrate Concentration in Schizophrenia. Journal of Medical Biochemistry, 2014, 33, 364-370.	0.7	2
506	Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry, 2014, 19, 108-114.	4.1	85
507	Evidence of allelic imbalance in the schizophrenia susceptibility gene ZNF804A in human dorsolateral prefrontal cortex. Schizophrenia Research, 2014, 152, 111-116.	1.1	29
508	Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Molecular Psychiatry, 2014, 19, 774-783.	4.1	56
509	Expression analysis of the genes identified in GWAS of the postmortem brain tissues from patients with schizophrenia. Neuroscience Letters, 2014, 568, 12-16.	1.0	11
510	A schizophrenia risk gene, ZNF804A, is associated with brain white matter microstructure. Schizophrenia Research, 2014, 155, 15-20.	1.1	22

#	Article	IF	Citations
511	Lack of association of the $rs1344706$ ZNF804A variant with cognitive functions and DTI indices of white matter microstructure in two independent healthy populations. Psychiatry Research - Neuroimaging, 2014, 222, 60-66.	0.9	9
512	Allelic imbalance associated with the schizophrenia risk SNP rs1344706 indicates a cis-acting variant in ZNF804A. Schizophrenia Research, 2014, 153, 243-245.	1.1	6
513	No evidence that runs of homozygosity are associated with schizophrenia in an Irish genome-wide association dataset. Schizophrenia Research, 2014, 154, 79-82.	1.1	18
514	Design, Analysis, and Interpretation of Genome-Wide Association Scans. Statistics in the Health Sciences, 2014, , .	0.2	16
515	Genetics of Psychosis in Alzheimer Disease. Current Genetic Medicine Reports, 2014, 2, 30-38.	1.9	11
516	Genome-wide association study of bipolar disorder in Canadian and UK populations corroborates disease loci including SYNE1 and CSMD1. BMC Medical Genetics, 2014, 15, 2.	2.1	106
517	The emerging molecular architecture of schizophrenia, polygenic risk scores and the clinical implications for GxE research. Social Psychiatry and Psychiatric Epidemiology, 2014, 49, 169-182.	1.6	68
518	Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder. Schizophrenia Bulletin, 2014, 40, 504-515.	2.3	204
519	Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the <i>ZNF804A </i> Pathway. JAMA Psychiatry, 2014, 71, 778.	6.0	28
520	The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: Further evidence and meta-analysis. European Neuropsychopharmacology, 2014, 24, 65-85.	0.3	38
521	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	1.1	696
522	How might <i>ZNF804A</i> variants influence risk for schizophrenia and bipolar disorder? A literature review, synthesis, and bioinformatic analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 28-40.	1.1	28
523	Association of SLC18A1, TPH1, and RELN gene polymorphisms with risk of paranoid schizophrenia. Molecular Biology, 2014, 48, 546-555.	0.4	16
524	Replication and crossâ€phenotype study based upon schizophrenia GWASs data in the Japanese population: Support for association of MHC region with psychosis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 421-427.	1.1	26
525	Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Medicine, 2014, 6, 29.	3.6	189
526	ZNF804A and Cortical Structure in Schizophrenia: In Vivo and Postmortem Studies. Schizophrenia Bulletin, 2014, 40, 532-541.	2.3	28
527	Neuregulin-ERBB Signaling in the Nervous System and Neuropsychiatric Diseases. Neuron, 2014, 83, 27-49.	3.8	465
528	Biological insights from 108 schizophrenia-associated genetic loci. Nature, 2014, 511, 421-427.	13.7	6,934

#	Article	IF	CITATIONS
529	Imaging Genetics: Unraveling the Neurogenetic Risk Architecture of Mental Illness., 2014, , 117-135.		1
530	Molecular evolution in the CREB1 signal pathway and a rare haplotype in CREB1 with genetic predisposition to schizophrenia. Journal of Psychiatric Research, 2014, 57, 84-89.	1.5	18
531	Effects of a novel schizophrenia risk variant rs7914558 at <i>CNNM2</i> on brain structure and attributional style. British Journal of Psychiatry, 2014, 204, 115-121.	1.7	30
532	Systematic Prioritization and Integrative Analysis of Copy Number Variations in Schizophrenia Reveal Key Schizophrenia Susceptibility Genes. Schizophrenia Bulletin, 2014, 40, 1285-1299.	2.3	41
533	Scoring the collective effects of SNPs: association of minor alleles with complex traits in model organisms. Science China Life Sciences, 2014, 57, 876-888.	2.3	33
534	Excess of rare novel loss-of-function variants in synaptic genes in schizophrenia and autism spectrum disorders. Molecular Psychiatry, 2014, 19, 872-879.	4.1	160
535	Arguments for the sake of endophenotypes: Examining common misconceptions about the use of endophenotypes in psychiatric genetics. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 122-130.	1.1	135
536	Schizophrenia: Blood-Serum-Plasma Metabolomics. Advances in Biological Psychiatry, 2014, , 27-27.	0.2	0
537	Replication of previous genome-wide association studies of psychiatric diseases in a large schizophrenia case–control sample from Spain. Schizophrenia Research, 2014, 159, 107-113.	1.1	36
538	The cognitive and neural time course of empathy and sympathy: An electrical neuroimaging study on self–other interaction. Neuroscience, 2014, 267, 286-306.	1.1	56
539	Category fluency, latent semantic analysis and schizophrenia: a candidate gene approach. Cortex, 2014, 55, 182-191.	1.1	67
540	Protein-interaction-network-based analysis for genome-wide association analysis of schizophrenia in Han Chinese population. Journal of Psychiatric Research, 2014, 50, 73-78.	1.5	22
541	A competitive PCR assay confirms the association of a copy number variation in the VIPR2 gene with schizophrenia in Han Chinese. Schizophrenia Research, 2014, 156, 66-70.	1.1	17
542	A Genome-wide Association Analysis of a Broad Psychosis Phenotype Identifies Three Loci for Further Investigation. Biological Psychiatry, 2014, 75, 386-397.	0.7	44
543	Fine Mapping on Chromosome 13q32–34 and Brain Expression Analysis Implicates MYO16 in Schizophrenia. Neuropsychopharmacology, 2014, 39, 934-943.	2.8	40
544	Risk genes for schizophrenia: Translational opportunities for drug discovery., 2014, 143, 34-50.		26
545	Genetics of antipsychotic drug outcome and implications for the clinician: into the limelight. Translational Developmental Psychiatry, 2014, 2, 24663.	0.3	7
547	Human genomic regions with exceptionally high levels of population differentiation identified from 911 whole-genome sequences. Genome Biology, 2014, 15, R88.	13.9	72

#	Article	IF	CITATIONS
548	Associations between the schizophrenia susceptibility gene ZNF804A and clinical outcomes in psychosis. Translational Psychiatry, 2015, 5, e698-e698.	2.4	16
549	Evaluation of genetic susceptibility of common variants in CACNA1D with schizophrenia in Han Chinese. Scientific Reports, 2015, 5, 12935.	1.6	39
551	Identification and Functional Studies of Regulatory Variants Responsible for the Association of <i>NRG3</i> with a Delusion Phenotype in Schizophrenia. Molecular Neuropsychiatry, 2015, 1, 36-46.	3.0	14
552	Genetics, sleep and memory: a recall-by-genotype study of ZNF804A variants and sleep neurophysiology. BMC Medical Genetics, 2015, 16, 96.	2.1	10
553	Machine learning derived risk prediction of anorexia nervosa. BMC Medical Genomics, 2015, 9, 4.	0.7	18
554	Bioinformatic analyses and conceptual synthesis of evidence linking <i>ZNF804A</i> to risk for schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 14-35.	1.1	19
555	Replication of <i><scp>ZNF804A</scp></i> gene variant associations with risk of heroin addiction. Genes, Brain and Behavior, 2015, 14, 635-640.	1.1	9
556	ZNF804A rs1344706 is associated with cortical thickness, surface area, and cortical volume of the unmedicated first episode schizophrenia and healthy controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 265-273.	1.1	24
557	Evaluating the association between <i>CACNA1C </i> rs1006737 and schizophrenia risk: A meta-analysis. Asia-Pacific Psychiatry, 2015, 7, 260-267.	1.2	18
558	Alterations in neural Theory of Mind processing in euthymic patients with bipolar disorder and unaffected relatives. Bipolar Disorders, 2015, 17, 880-891.	1.1	20
559	Sex differences in TGFB-& post-amp; beta; signaling with respect to age of onset and cognitive functioning in schizophrenia. Neuropsychiatric Disease and Treatment, 2015, 11, 575.	1.0	24
560	Expression and function of Neuregulin 1 and its signaling system ERBB2/3 in the enteric nervous system. Frontiers in Cellular Neuroscience, 2015, 9, 360.	1.8	18
561	Imaging Genetics and Psychiatric Disorders. Current Molecular Medicine, 2015, 15, 168-175.	0.6	36
562	Association between <i> ANKK1 < /i > (rs1800497) and <i> LTA < /i > (rs909253) Genetic Variants and Risk of Schizophrenia. BioMed Research International, 2015, 2015, 1-8.</i></i>	0.9	18
563	GWA meta-analysis of personality in Korean cohorts. Journal of Human Genetics, 2015, 60, 455-460.	1.1	55
564	Recent Positive Selection Drives the Expansion of a Schizophrenia Risk Nonsynonymous Variant at <i>SLC39A8</i> i>in Europeans. Schizophrenia Bulletin, 2016, 42, sbv070.	2.3	35
565	Integration of gene expression and GWAS results supports involvement of calcium signaling in Schizophrenia. Schizophrenia Research, 2015, 164, 92-99.	1.1	31
566	Genes, Brains, and Behavior: Imaging Genetics for Neuropsychiatric Disorders. Journal of Neuropsychiatry and Clinical Neurosciences, 2015, 27, 81-92.	0.9	19

#	Article	IF	CITATIONS
567	What have we learned from the Psychiatric Genomics Consortium. World Psychiatry, 2015, 14, 291-293.	4.8	29
568	The genetic and epigenetic landscape for CNS drug discovery targeting cross-diagnostic behavioral domains. European Journal of Pharmacology, 2015, 753, 135-139.	1.7	5
569	Innate immune response is differentially dysregulated between bipolar disease and schizophrenia. Schizophrenia Research, 2015, 161, 215-221.	1.1	58
570	A systematic review of the effect of genes mediating neurodevelopment and neurotransmission on brain morphology: Focus on schizophrenia. Neurology Psychiatry and Brain Research, 2015, 21, 1-26.	2.0	3
571	Genome-wide Comparative Analysis of Atopic Dermatitis and Psoriasis Gives Insight into Opposing Genetic Mechanisms. American Journal of Human Genetics, 2015, 96, 104-120.	2.6	163
572	The impact of clinical heterogeneity in schizophrenia on genomic analyses. Schizophrenia Research, 2015, 161, 490-495.	1.1	32
573	Neuronal nitric oxide synthase (<i><scp>NOS1</scp></i>) and its adaptor, <i><scp>NOS1AP</scp></i> , as a genetic risk factors for psychiatric disorders. Genes, Brain and Behavior, 2015, 14, 46-63.	1.1	90
574	Genetic analysis of schizophrenia and bipolar disorder reveals polygenicity but also suggests new directions for molecular interrogation. Current Opinion in Neurobiology, 2015, 30, 131-138.	2.0	61
575	Glutamate Networks Implicate Cognitive Impairments in Schizophrenia: Genome-Wide Association Studies of 52 Cognitive Phenotypes. Schizophrenia Bulletin, 2015, 41, 909-918.	2.3	65
576	Mood, anxiety and psychotic phenomena measure a common psychopathological factor. Psychological Medicine, 2015, 45, 1483-1493.	2.7	128
577	Genetic analysis of common variants in the HDAC2 gene with schizophrenia susceptibility in Han Chinese. Journal of Human Genetics, 2015, 60, 479-484.	1.1	40
578	Resequencing and association analysis of coding regions at twenty candidate genes suggest a role for rare risk variation at AKAP9 and protective variation at NRXN1 in schizophrenia susceptibility. Journal of Psychiatric Research, 2015, 66-67, 38-44.	1.5	18
579	MIR137HG risk variant rs1625579 genotype is related to corpus callosum volume in schizophrenia. Neuroscience Letters, 2015, 602, 44-49.	1.0	18
580	Elevated P3b latency variability in carriers of ZNF804A risk allele for psychosis. NeuroImage, 2015, 116, 207-213.	2.1	10
581	<i>ZNF804A</i> genetic variation (rs1344706) affects brain grey but not white matter in schizophrenia and healthy subjects. Psychological Medicine, 2015, 45, 143-152.	2.7	20
582	No evidence for rare recessive and compound heterozygous disruptive variants in schizophrenia. European Journal of Human Genetics, 2015, 23, 555-557.	1.4	21
583	Genomics and epigenomics in novel schizophrenia drug discovery: translating animal models to clinical research and back. Expert Opinion on Drug Discovery, 2015, 10, 125-139.	2.5	15
584	Experimental validation of candidate schizophrenia gene CALN1 as a target for microRNA-137. Neuroscience Letters, 2015, 602, 110-114.	1.0	12

#	Article	IF	CITATIONS
585	Imaging Genetics of Neuropsychiatric Disease. , 2015, , 1037-1047.		1
586	Mentalizing and Psychopathology in Schizophrenia, Depression, and Social Anxiety., 2015, , 183-189.		2
587	What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review. Psychological Medicine, 2015, 45, 2461-2480.	2.7	82
588	Examining the Psychosis Continuum. Current Behavioral Neuroscience Reports, 2015, 2, 80-89.	0.6	92
589	Replicative study of susceptibility to childhood-onset schizophrenia in Kazakhs. Russian Journal of Genetics, 2015, 51, 185-192.	0.2	11
590	Association between variants of zinc finger genes and psychiatric disorders: Systematic review and meta-analysis. Schizophrenia Research, 2015, 162, 124-137.	1.1	42
591	Collective effects of SNPs on transgenerational inheritance in Caenorhabditis elegans and budding yeast. Genomics, 2015, 106, 23-29.	1.3	18
592	Polygenic risk scores in imaging genetics: Usefulness and applications. Journal of Psychopharmacology, 2015, 29, 867-871.	2.0	79
593	Systematic Integration of Brain eQTL and GWAS Identifies < i>ZNF323 < /i> as a Novel Schizophrenia Risk Gene and Suggests Recent Positive Selection Based on Compensatory Advantage on Pulmonary Function. Schizophrenia Bulletin, 2015, 41, 1294-1308.	2.3	48
594	Correlation of single nucleotide polymorphisms in the pregnancy-associated plasma protein-A gene with carotid plaques. BMC Cardiovascular Disorders, 2015, 15, 60.	0.7	6
595	Neurodegenerative Disorders as Systemic Diseases. , 2015, , .		2
596	New discoveries in schizophrenia genetics reveal neurobiological pathways: A review of recent findings. European Journal of Medical Genetics, 2015, 58, 704-714.	0.7	39
597	Metabolomics Study of Urine in Autism Spectrum Disorders Using a Multiplatform Analytical Methodology. Journal of Proteome Research, 2015, 14, 5273-5282.	1.8	98
598	Postnatal neurodevelopmental expression and glutamate-dependent regulation of the ZNF804A rodent homologue. Schizophrenia Research, 2015, 168, 402-410.	1.1	12
599	Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case–control sample of schizophrenia. Translational Psychiatry, 2015, 5, e656-e656.	2.4	36
600	Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder. Translational Psychiatry, 2015, 5, e616-e616.	2.4	38
601	Common or distinct pathways to psychosis? A systematic review of evidence from prospective studies for developmental risk factors and antecedents of the schizophrenia spectrum disorders and affective psychoses. BMC Psychiatry, 2015, 15, 205.	1,1	99
602	Epilepsy and bipolar disorder. Epilepsy and Behavior, 2015, 52, 267-274.	0.9	31

#	Article	IF	Citations
603	Meta-analysis of data from the Psychiatric Genomics Consortium and additional samples supports association of CACNA1C with risk for schizophrenia. Schizophrenia Research, 2015, 168, 429-433.	1.1	19
604	Loci with genome-wide associations with schizophrenia in the Han Chinese population. British Journal of Psychiatry, 2015, 207, 490-494.	1.7	29
605	Evidence for the Contribution of NOS1 Gene Polymorphism (rs3782206) to Prefrontal Function in Schizophrenia Patients and Healthy Controls. Neuropsychopharmacology, 2015, 40, 1383-1394.	2.8	39
606	Discovering Schizophrenia Endophenotypes in Randomly Ascertained Pedigrees. Biological Psychiatry, 2015, 77, 75-83.	0.7	30
607	The current and potential impact of genetics and genomics on neuropsychopharmacology. European Neuropsychopharmacology, 2015, 25, 671-681.	0.3	11
608	Genetic underpinnings of white matter â€~connectivity': Heritability, risk, and heterogeneity in schizophrenia. Schizophrenia Research, 2015, 161, 50-60.	1.1	39
609	Schizophrenia genetics: emerging themes for a complex disorder. Molecular Psychiatry, 2015, 20, 72-76.	4.1	81
610	Common Variants in the MKL1 Gene Confer Risk of Schizophrenia. Schizophrenia Bulletin, 2015, 41, 715-727.	2.3	15
611	Schizophrenia Genetics: Building the Foundations of the Future. Schizophrenia Bulletin, 2015, 41, 15-19.	2.3	8
614	Recent genetic findings in schizophrenia and their therapeutic relevance. Journal of Psychopharmacology, 2015, 29, 85-96.	2.0	157
615	Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS. Molecular Psychiatry, 2015, 20, 337-344.	4.1	246
616	Genetics of schizophrenia. Current Opinion in Behavioral Sciences, 2015, 2, 8-14.	2.0	44
617	Genetic Risk for Schizophrenia: Convergence on Synaptic Pathways Involved in Plasticity. Biological Psychiatry, 2015, 77, 52-58.	0.7	256
618	Insights From Genome-Wide Association Studies (GWAS). , 2016, , 39-50.		2
619	From Linkage Studies to Epigenetics: What We Know and What We Need to Know in the Neurobiology of Schizophrenia. Frontiers in Neuroscience, 2016, 10, 202.	1.4	34
620	Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease. Frontiers in Systems Neuroscience, 2015, 9, 190.	1.2	187
621	Genetic Evaluation of Schizophrenia Using the Illumina HumanExome Chip. PLoS ONE, 2016, 11, e0150464.	1.1	12
622	Further evidence of <i>VRK2 </i> rs2312147 associated with schizophrenia. World Journal of Biological Psychiatry, 2016, 17, 457-466.	1.3	15

#	Article	IF	Citations
623	GWASâ€identified schizophrenia risk SNPs at <i>TSPAN18</i> are highly diverged between Europeans and East Asians. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1032-1040.	1.1	9
624	No evidence of an association between MIR137 rs1625579 and schizophrenia in Asians. Psychiatric Genetics, 2016, 26, 203-210.	0.6	12
625	A comprehensive metaâ€analysis of <i>ZNF804A</i> SNPs in the risk of schizophrenia among Asian populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 437-446.	1.1	18
626	No association between the rs10503253 polymorphism in the CSMD1 gene and schizophrenia in a Han Chinese population. BMC Psychiatry, 2016, 16, 206.	1.1	8
627	Developmental Alcohol Exposure Impairs Activity-Dependent <i>S-</i> Nitrosylation of NDEL1 for Neuronal Maturation. Cerebral Cortex, 2017, 27, 3918-3929.	1.6	9
628	Effect of rs1063843 in the <i>CAMKK2</i> gene on the dorsolateral prefrontal cortex. Human Brain Mapping, 2016, 37, 2398-2406.	1.9	16
629	Evaluation of association of common variants in HTR1A and HTR5A with schizophrenia and executive function. Scientific Reports, 2016, 6, 38048.	1.6	47
630	Genetics of Schizophrenia. Advances in Genetics, 2016, 96, 99-141.	0.8	46
631	Evaluation of voltage-dependent calcium channel \hat{l}^3 gene families identified several novel potential susceptible genes to schizophrenia. Scientific Reports, 2016, 6, 24914.	1.6	46
632	The neurological basis of empathy and mimicry. , 2016, , 192-221.		7
633	Targeted resequencing of regulatory regions at schizophrenia risk loci: Role of rare functional variants at chromatin repressive states. Schizophrenia Research, 2016, 174, 10-16.	1.1	6
634	A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nature Medicine, 2016, 22, 649-656.	15.2	142
635	Analysis of the association of VIPR2 polymorphisms with susceptibility to schizophrenia. Psychiatry Research, 2016, 241, 104-107.	1.7	4
636	Twoâ€stage additional evidence support association of common variants in the <i>HDAC3</i> with the increasing risk of schizophrenia susceptibility. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1105-1111.	1.1	39
637	The dysconnection hypothesis (2016). Schizophrenia Research, 2016, 176, 83-94.	1.1	426
638	A cis -eQTL in AHI1 confers risk to schizophrenia in European populations. Neuroscience Letters, 2016, 632, 130-135.	1.0	4
639	SZDB: A Database for Schizophrenia Genetic Research. Schizophrenia Bulletin, 2017, 43, sbw102.	2.3	91
641	Clinical application of DEX/CRH test and multi-channel NIRS in patients with depression. Behavioral and Brain Functions, 2016, 12, 25.	1.4	12

#	Article	IF	Citations
642	Schizophrenic Syndromes: Schizophrenia., 2016,, 4005-4026.		0
643	Rare variants are common in schizophrenia. Nature Neuroscience, 2016, 19, 1426-1428.	7.1	11
644	Replication of genomeâ€wide association study (<scp>GWAS</scp>) susceptibility loci in a Latino bipolar disorder cohort. Bipolar Disorders, 2016, 18, 520-527.	1.1	25
645	Genetic factors in the etiology of bipolar disorder. , 0, , 144-168.		0
647	Genomeâ€wide association study with the risk of schizophrenia in a Korean population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 257-265.	1.1	2
648	Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia part II: Cognition, neuroimaging and genetics. World Journal of Biological Psychiatry, 2016, 17, 406-428.	1.3	30
649	The <i>CHRM3</i> gene is implicated in abnormal thalamo-orbital frontal cortex functional connectivity in first-episode treatment-naive patients with schizophrenia. Psychological Medicine, 2016, 46, 1523-1534.	2.7	16
650	Comprehensive behavioral phenotyping of a new Semaphorin 3ÂF mutant mouse. Molecular Brain, 2016, 9, 15.	1.3	28
651	Genomeâ€wide Association Study of Autism Spectrum Disorder in the East Asian Populations. Autism Research, 2016, 9, 340-349.	2.1	89
652	Mutation screening of SCN2A in schizophrenia and identification of a novel loss-of-function mutation. Psychiatric Genetics, 2016, 26, 60-65.	0.6	45
653	Is there a role for immune-to-brain communication in schizophrenia? Psychopharmacology, 2016, 233, 1559-1573.	1.5	134
654	Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Structure and Function, 2016, 221, 2493-2510.	1.2	56
655	A new risk locus in the ZEB2 gene for schizophrenia in the Han Chinese population. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 66, 97-103.	2.5	10
656	Genome-wide Analysis of the Role of Copy Number Variation in Schizophrenia Risk in Chinese. Biological Psychiatry, 2016, 80, 331-337.	0.7	55
657	Meta-analysis indicates that SNP rs9939609 within FTO is not associated with major depressive disorder (MDD) in Asian population. Journal of Affective Disorders, 2016, 193, 27-30.	2.0	18
658	Cognitive endophenotypes, gene–environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biological Psychology, 2016, 116, 82-89.	1.1	34
659	Genetic association of GWAS-supported MAD1L1 gene polymorphism rs12666575 with schizophrenia susceptibility in a Chinese population. Neuroscience Letters, 2016, 610, 98-103.	1.0	17
660	Exploring Transcription Factors-microRNAs Co-regulation Networks in Schizophrenia. Schizophrenia Bulletin, 2016, 42, 1037-1045.	2.3	49

#	Article	IF	Citations
661	Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. Schizophrenia Research, 2016, 170, 30-40.	1.1	65
662	Effect of rs1344706 in the ZNF804A gene on the connectivity between the hippocampal formation and posterior cingulate cortex. Schizophrenia Research, 2016, 170, 48-54.	1.1	17
663	ALDH2Glu504Lys Confers Susceptibility to Schizophrenia and Impacts Hippocampal-Prefrontal Functional Connectivity. Cerebral Cortex, 2016, 27, bhw056.	1.6	9
664	Decoding the nonâ€coding genome: elucidating genetic risk outside the coding genome. Genes, Brain and Behavior, 2016, 15, 187-204.	1.1	32
665	Transcriptomics analysis of iPSC-derived neurons and modeling of neuropsychiatric disorders. Molecular and Cellular Neurosciences, 2016, 73, 32-42.	1.0	33
666	No association between ZNF804A rs1344706 and schizophrenia in a case-control study of Han Chinese. Neuroscience Letters, 2016, 618, 14-18.	1.0	12
667	Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health. Metallomics, 2016, 8, 579-588.	1.0	62
668	Common variants on 17q25 and gene–gene interactions conferring risk of schizophrenia in Han Chinese population and regulating gene expressions in human brain. Molecular Psychiatry, 2016, 21, 1244-1250.	4.1	16
669	Theory of mind network activity is altered in subjects with familial liability for schizophrenia. Social Cognitive and Affective Neuroscience, 2016, 11, 299-307.	1.5	18
670	<i>ZNF804A</i> variants confer risk for heroin addiction and affect decision making and gray matter volume in heroin abusers. Addiction Biology, 2016, 21, 657-666.	1.4	21
671	ZNF804A Genetic Variation Confers Risk to Bipolar Disorder. Molecular Neurobiology, 2016, 53, 2936-2943.	1.9	21
672	Evaluation of European Schizophrenia GWAS Loci in Asian Populations via Comprehensive Meta-Analyses. Molecular Neurobiology, 2017, 54, 4071-4080.	1.9	19
673	Transmembrane protein 108 is required for glutamatergic transmission in dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1177-1182.	3.3	27
674	Genetics of schizophrenia: A consensus paper of the WFSBP Task Force on Genetics. World Journal of Biological Psychiatry, 2017, 18, 492-505.	1.3	48
675	Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies. Molecular Psychiatry, 2017, 22, 497-511.	4.1	43
676	Variability of 128 schizophrenia-associated gene variants across distinct ethnic populations. Translational Psychiatry, 2017, 7, e988-e988.	2.4	22
677	Mitochondrial roles of the psychiatric disease risk factor DISC1. Schizophrenia Research, 2017, 187, 47-54.	1.1	26
678	Genetic association of rs1344706 in ZNF804A with bipolar disorder and schizophrenia susceptibility in Chinese populations. Scientific Reports, 2017, 7, 41140.	1.6	11

#	Article	IF	CITATIONS
679	Association study of genetic markers of schizophrenia and its cognitive endophenotypes. Russian Journal of Genetics, 2017, 53, 139-146.	0.2	15
682	ldentification of Two Additional Susceptibility Loci for Inflammatory Bowel Disease in a Chinese Populationy. Cellular Physiology and Biochemistry, 2017, 41, 2077-2090.	1.1	12
683	The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nature Reviews Endocrinology, 2017, 13, 521-535.	4.3	87
684	Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C's Role in Working Memory. Neuropsychopharmacology, 2017, 42, 2612-2622.	2.8	28
685	Association between the zinc finger protein 804A (<i><scp>ZNF</scp>804A</i>) gene and the risk of schizophrenia and bipolar I disorder across diagnostic boundaries. Bipolar Disorders, 2017, 19, 305-313.	1.1	8
686	ZNF804A: Insights From the First Genome-wide Significant Schizophrenia Gene. Biological Psychiatry, 2017, 82, 6-7.	0.7	6
687	Can IncRNAs be indicators for the diagnosis of early onset or acute schizophrenia and distinguish major depressive disorder and generalized anxiety disorder?—A cross validation analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 335-341.	1.1	17
688	The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Molecular Psychiatry, 2017, 22, 944-953.	4.1	59
689	Cognitive clustering in schizophrenia patients, their first-degree relatives and healthy subjects is associated with anterior cingulate cortex volume. NeuroImage: Clinical, 2017, 16, 248-256.	1.4	44
690	Phencyclidine-induced dysregulation of primary cilia in the rodent brain. Brain Research, 2017, 1674, 62-69.	1.1	11
691	Accumulation of minor alleles and risk prediction in schizophrenia. Scientific Reports, 2017, 7, 11661.	1.6	16
692	The common variants implicated in microstructural abnormality of first episode and drug-na \tilde{A} -ve patients with schizophrenia. Scientific Reports, 2017, 7, 11750.	1.6	7
693	Progress in genome-wide association studies of schizophrenia in Han Chinese populations. NPJ Schizophrenia, 2017, 3, 24.	2.0	16
694	Effect of social interactions on hippocampal protein expression in animal dominant and submissive model of behavioral disorders. Proteomics - Clinical Applications, 2017, 11, 1700089.	0.8	4
695	Association Between NOS1 Gene Polymorphisms and Schizophrenia in Asian and Caucasian Populations: A Meta-Analysis. NeuroMolecular Medicine, 2017, 19, 452-461.	1.8	13
696	Ethical Application of Precision Medicine to Schizophrenia Management. New Bioethics, 2017, 23, 147-153.	0.5	3
697	Schizotypy-Independent and Schizotypy-Modulated Cognitive Impairments in Unaffected First-Degree Relatives of Schizophrenia-spectrum Patients. Archives of Clinical Neuropsychology, 2017, 32, 1010-1025.	0.3	7
698	Effects of intranasal oxytocin on symptoms of schizophrenia: A multivariate Bayesian meta-analysis. Psychoneuroendocrinology, 2017, 75, 141-151.	1.3	49

#	Article	IF	Citations
699	The schizophrenia susceptibility gene ZNF804A confers risk of major mood disorders. World Journal of Biological Psychiatry, 2017, 18, 557-562.	1.3	13
700	Validity of remission and recovery criteria for schizophrenia and major depression: comparison of the results of two one-year follow-up naturalistic studies. European Archives of Psychiatry and Clinical Neuroscience, 2017, 267, 303-313.	1.8	8
701	Genome-wide association study of working memory brain activation. International Journal of Psychophysiology, 2017, 115, 98-111.	0.5	17
702	Association between the variability of the <i> ABCA13 < /i > gene and the risk of major depressive disorder and schizophrenia in the Han Chinese population. World Journal of Biological Psychiatry, 2017, 18, 550-556.</i>	1.3	9
703	Psychosis Risk Candidate ZNF804A Localizes to Synapses and Regulates Neurite Formation and Dendritic Spine Structure. Biological Psychiatry, 2017, 82, 49-61.	0.7	76
704	A Brief Assessment of Intelligence Decline in Schizophrenia As Represented by the Difference between Current and Premorbid Intellectual Quotient. Frontiers in Psychiatry, 2017, 8, 293.	1.3	34
705	Genome Wide Association Study (GWAS) between Attention Deficit Hyperactivity Disorder (ADHD) and Obsessive Compulsive Disorder (OCD). Frontiers in Molecular Neuroscience, 2017, 10, 83.	1.4	13
706	Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Frontiers in Molecular Neuroscience, 2017, 10, 378.	1.4	28
707	The Correlation-Base-Selection Algorithm for Diagnostic Schizophrenia Based on Blood-Based Gene Expression Signatures. BioMed Research International, 2017, 2017, 1-7.	0.9	4
708	The genome-wide associated candidate gene ZNF804A and psychosis-proneness: Evidence of sex-modulated association. PLoS ONE, 2017, 12, e0185072.	1.1	14
709	Schizophrenia genetics in the genome-wide era: a review of Japanese studies. NPJ Schizophrenia, 2017, 3, 27.	2.0	13
710	Analyzing a single nucleotide polymorphism in schizophrenia: a meta-analysis approach. Neuropsychiatric Disease and Treatment, 2017, Volume 13, 2243-2250.	1.0	4
711	Human Genetics of Addiction: New Insights and Future Directions. Current Psychiatry Reports, 2018, 20, 8.	2.1	90
712	Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nature Communications, 2018, 9, 838.	5.8	80
713	ZNF804A Variation May Affect Hippocampal-Prefrontal Resting-State Functional Connectivity in Schizophrenic and Healthy Individuals. Neuroscience Bulletin, 2018, 34, 507-516.	1.5	11
714	Network Neuroscience: A Framework for Developing Biomarkers in Psychiatry. Current Topics in Behavioral Neurosciences, 2018, 40, 79-109.	0.8	16
715	Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment. Molecular Psychiatry, 2018, 23, 952-962.	4.1	40
716	Common variation in ZNF804A (rs1344706) is not associated with brain morphometry in schizophrenia or healthy participants. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 82, 12-20.	2.5	4

#	Article	IF	Citations
717	Hot Genes in Schizophrenia: How Clinical Datasets Could Help to Refine their Role. Journal of Molecular Neuroscience, 2018, 64, 273-286.	1.1	5
718	From Maps to Multi-dimensional Network Mechanisms of Mental Disorders. Neuron, 2018, 97, 14-31.	3.8	146
719	Control of CNS Functions by RNA-Binding Proteins in Neurological Diseases. Current Pharmacology Reports, 2018, 4, 301-313.	1.5	10
720	Genomic and Imaging Biomarkers in Schizophrenia. Current Topics in Behavioral Neurosciences, 2018, 40, 325-352.	0.8	9
721	Replication of GWAS identified miR-137 and its target gene polymorphisms in Schizophrenia of South Indian population and meta-analysis with Psychiatric Genomics Consortium. Schizophrenia Research, 2018, 199, 189-194.	1.1	12
722	The integrated landscape of causal genes and pathways in schizophrenia. Translational Psychiatry, 2018, 8, 67.	2.4	7 5
723	Decreased white matter FA values in the left inferior frontal gyrus is a possible intermediate phenotype of schizophrenia: evidences from a novel group strategy. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 89-98.	1.8	10
724	ZNF804A rs1344706 interacts with COMT rs4680 to affect prefrontal volume in healthy adults. Brain Imaging and Behavior, 2018, 12, 13-19.	1.1	9
725	Imaging genetics of schizophrenia in the post-GWAS era. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 155-165.	2.5	28
726	The contribution of alternative splicing to genetic risk for psychiatric disorders. Genes, Brain and Behavior, 2018, 17, e12430.	1.1	31
727	Integrated analysis supports ATXN1 as a schizophrenia risk gene. Schizophrenia Research, 2018, 195, 298-305.	1.1	5
728	Gene polymorphisms of DISC1 is associated with schizophrenia: Evidence from a meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 64-73.	2.5	28
729	Genetic architecture: the shape of the genetic contribution to human traits and disease. Nature Reviews Genetics, 2018, 19, 110-124.	7.7	335
730	Effect of rs1344706 in the ZNF804A gene on the brain network. NeuroImage: Clinical, 2018, 17, 1000-1005.	1.4	15
731	Genetic analysis of common variants in the ZNF804A gene with schizophrenia and major depressive disorder. Psychiatric Genetics, 2018, 28, 1-7.	0.6	8
732	The cAMP responsive element-binding (CREB)-1 gene increases risk of major psychiatric disorders. Molecular Psychiatry, 2018, 23, 1957-1967.	4.1	38
733	Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes with patient-specific cell systems. NPJ Schizophrenia, 2018, 4, 23.	2.0	31
734	Methods and Tools in Genome-wide Association Studies. Methods in Molecular Biology, 2018, 1819, 93-136.	0.4	11

#	Article	IF	CITATIONS
735	Dopamine perturbation of gene co-expression networks reveals differential response in schizophrenia for translational machinery. Translational Psychiatry, 2018, 8, 278.	2.4	8
737	Voltage-gated calcium channel activity and complex related genes and schizophrenia: A systematic investigation based on Han Chinese population. Journal of Psychiatric Research, 2018, 106, 99-105.	1.5	49
738	Dissecting genetic cross-talk between ADHD and other neurodevelopmental disorders: Evidence from behavioural, pharmacological and brain imaging investigations. Psychiatry Research, 2018, 269, 652-657.	1.7	5
739	Association of schizophrenia polygenic risk score with manic and depressive psychosis in bipolar disorder. Translational Psychiatry, 2018, 8, 188.	2.4	44
741	Immunoglobulin-Like Receptors and Their Impact on Wiring of Brain Synapses. Annual Review of Genetics, 2018, 52, 567-590.	3.2	17
742	Systems-level analysis of risk genes reveals the modular nature of schizophrenia. Schizophrenia Research, 2018, 201, 261-269.	1.1	20
743	Recent Advances in the Genetics of Schizophrenia. Molecular Neuropsychiatry, 2018, 4, 35-51.	3.0	81
744	Schizophrenia Genetics. Russian Journal of Genetics, 2018, 54, 593-603.	0.2	2
745	Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients. Frontiers in Molecular Neuroscience, 2018, 11, 8.	1.4	43
746	Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges. International Journal of Molecular Sciences, 2018, 19, 219.	1.8	10
747	From the Psychiatrist's Couch to Induced Pluripotent Stem Cells: Bipolar Disease in a Dish. International Journal of Molecular Sciences, 2018, 19, 770.	1.8	16
748	Further evidence for the genetic association between CACNA11 and schizophrenia. Hereditas, 2018, 155, 16.	0.5	14
749	Association between genetic variability of neuronal nitric oxide synthase and sensorimotor gating in humans. Nitric Oxide - Biology and Chemistry, 2018, 80, 32-36.	1.2	8
750	eQTLs Weighted Genetic Correlation Analysis Detected Brain Region Differences in Genetic Correlations for Complex Psychiatric Disorders. Schizophrenia Bulletin, 2019, 45, 709-715.	2.3	6
751	The interaction between the ZNF804A gene and cannabis use on the risk of psychosis in a non-clinical sample. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 89, 174-180.	2.5	11
752	GWAS of Behavioral Traits. Current Topics in Behavioral Neurosciences, 2019, 42, 1-34.	0.8	0
753	SCINA: Semi-Supervised Analysis of Single Cells in Silico. Genes, 2019, 10, 531.	1.0	150
7 54	Imaging Genetics Towards a Refined Diagnosis of Schizophrenia. Frontiers in Psychiatry, 2019, 10, 494.	1.3	17

#	ARTICLE	IF	CITATIONS
755	Endophenotypes in Schizophrenia: Digging Deeper to Identify Genetic Mechanisms. Journal of Psychiatry and Brain Science, 2019, 4, .	0.3	14
7 56	Effect of the ZNF804A Gene and Obstetrical Complications on Clinical Characteristics of Schizophrenia. Russian Journal of Genetics, 2019, 55, 744-748.	0.2	0
757	Socio-demography and psychosis symptom severity among male schizophrenia – Diagnosed patients of MOH Mental Health Facilities, Kingdom of Saudi Arabia; a correlational study. Archives of Psychiatric Nursing, 2019, 33, 110-115.	0.7	2
758	The schizophrenia genetics knowledgebase: a comprehensive update of findings from candidate gene studies. Translational Psychiatry, 2019, 9, 205.	2.4	19
759	Genetic analysis of rs11038167, rs11038172 and rs835784 polymorphisms of the TSPAN18 gene in Iranian schizophrenia patients. Meta Gene, 2019, 22, 100609.	0.3	2
760	SLC39A8 is a risk factor for schizophrenia in Uygur Chinese: a case-control study. BMC Psychiatry, 2019, 19, 293.	1.1	7
761	The Schizophrenia Susceptibility Gene OPCML Regulates Spine Maturation and Cognitive Behaviors through Eph-Cofilin Signaling. Cell Reports, 2019, 29, 49-61.e7.	2.9	20
762	DNA Variant in the RPGRIP1L Gene Influences Alternative Splicing. Molecular Neuropsychiatry, 2019, 5, 97-106.	3.0	3
763	A promoter variant in ZNF804A decreasing its expression increases the risk of autism spectrum disorder in the Han Chinese population. Translational Psychiatry, 2019, 9, 31.	2.4	14
764	Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. EBioMedicine, 2019, 44, 530-541.	2.7	24
765	Commonality in dysregulated expression of gene sets in cortical brains of individuals with autism, schizophrenia, and bipolar disorder. Translational Psychiatry, 2019, 9, 152.	2.4	61
766	Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population. BMC Psychiatry, 2019, 19, 159.	1.1	2
767	Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects. Schizophrenia Research, 2019, 208, 67-75.	1.1	20
768	Influence of two functional polymorphisms in NOS1 on baseline cortisol and working memory in healthy subjects. Nitric Oxide - Biology and Chemistry, 2019, 88, 45-49.	1.2	3
769	Spontaneous Regional Brain Activity in Healthy Individuals is Nonlinearly Modulated by the Interaction of ZNF804A rs1344706 and COMT rs4680 Polymorphisms. Neuroscience Bulletin, 2019, 35, 735-742.	1.5	6
770	Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. Journal of Psychiatric Research, 2019, 114, 178-207.	1.5	81
771	Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nature Communications, 2019, 10, 670.	5 . 8	94
772	Association between RELN polymorphisms and schizophrenia in a Han population from Northeast China. Psychiatric Genetics, 2019, 29, 232-236.	0.6	4

#	ARTICLE	IF	CITATIONS
773	Zinc finger proteins in psychiatric disorders and response to psychotropic medications. Psychiatric Genetics, 2019, 29, 132-141.	0.6	13
774	Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression. Schizophrenia Bulletin, 2019, 45, 1267-1278.	2.3	22
775	Dysmorphic contribution of neurotransmitter and neuroendocrine system polymorphisms to subtherapeutic mood states. Brain and Behavior, 2019, 9, e01140.	1.0	7
776	Multi-scale analysis of schizophrenia risk genes, brain structure, and clinical symptoms reveals integrative clues for subtyping schizophrenia patients. Journal of Molecular Cell Biology, 2019, 11, 678-687.	1.5	9
777	Genome-wide association study identifies locus at chromosome 2q32.1 associated with syncope and collapse. Cardiovascular Research, 2020, 116, 138-148.	1.8	13
778	Understanding the genetics of neuropsychiatric disorders: the potential role of genomic regulatory blocks. Molecular Psychiatry, 2020, 25, 6-18.	4.1	26
779	Protein Translation and Psychiatric Disorders. Neuroscientist, 2020, 26, 21-42.	2.6	28
780	Genome-Wide Meta-Analyses of FTND and TTFC Phenotypes. Nicotine and Tobacco Research, 2020, 22, 900-909.	1.4	17
781	Nitric oxide signalling in the brain and its control of bodily functions. British Journal of Pharmacology, 2020, 177, 5437-5458.	2.7	48
782	The genetic architecture of bipolar disorder: Entering the road of discoveries. , 2020, , 215-225.		0
783	30-year journey from the start of the Human Genome Project to clinical application of genomics in psychiatry: are we there yet?. Lancet Psychiatry, the, 2020, 7, 7-9.	3.7	7
784	Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective. Schizophrenia Research, 2020, 217, 4-12.	1.1	49
785	The Biomarker and Therapeutic Potential of Circular Rnas in Schizophrenia. Cells, 2020, 9, 2238.	1.8	11
786	Polygenic risk for autism spectrum disorder affects left amygdala activity and negative emotion in schizophrenia. Translational Psychiatry, 2020, 10, 322.	2.4	8
787	Genome-wide copy number variation-, validation- and screening study implicates a new copy number polymorphism associated with suicide attempts in major depressive disorder. Gene, 2020, 755, 144901.	1.0	8
788	Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon, 2020, 6, e03990.	1.4	15
789	ZFP804A mutant mice display sex-dependent schizophrenia-like behaviors. Molecular Psychiatry, 2021, 26, 2514-2532.	4.1	21
790	SZDB2.0: an updated comprehensive resource for schizophrenia research. Human Genetics, 2020, 139, 1285-1297.	1.8	35

#	Article	IF	CITATIONS
791	The polygenic architecture of schizophrenia $\hat{a}\in$ " rethinking pathogenesis and nosology. Nature Reviews Neurology, 2020, 16, 366-379.	4.9	122
792	A functional missense variant in ITIH3 affects protein expression and neurodevelopment and confers schizophrenia risk in the Han Chinese population. Journal of Genetics and Genomics, 2020, 47, 233-248.	1.7	10
794	Polymorphism in the 3′-UTR of LIF but Not in the ATF6B Gene Associates with Schizophrenia Susceptibility: a Case-Control Study and In Silico Analyses. Journal of Molecular Neuroscience, 2020, 70, 2093-2101.	1.1	13
795	Effect of ZNF804A gene polymorphism (rs1344706) on the plasticity of the functional coupling between the right dorsolateral prefrontal cortex and the contralateral hippocampal formation. NeuroImage: Clinical, 2020, 27, 102279.	1.4	7
796	A critical narrative analysis of psychiatrists' engagement with psychosis as a contentious area. International Journal of Social Psychiatry, 2020, 66, 724-730.	1.6	2
797	Manifold Learning Analysis for Allele-Skewed DNA Modification SNPs for Psychiatric Disorders. IEEE Access, 2020, 8, 33023-33038.	2.6	9
798	Novel genetic susceptibility loci identified by family based whole exome sequencing in Han Chinese schizophrenia patients. Translational Psychiatry, 2020, 10, 5.	2.4	16
799	Hyperfunctioning of the right posterior superior temporal sulcus in response to neutral facial expressions presents an endophenotype of schizophrenia. Neuropsychopharmacology, 2020, 45, 1346-1352.	2.8	12
800	Genetic studies of psychosis. , 2020, , 183-209.		0
801	The impact on estimations of genetic correlations by the use of superâ€normal, unscreened, and familyâ€history screened controls in genome wide case–control studies. Genetic Epidemiology, 2020, 44, 283-289.	0.6	21
802	The schizophrenia risk isoform ZNF804AE3E4 affects dendritic spine. Schizophrenia Research, 2020, 218, 324-325.	1.1	11
803	Leveraging mouse chromatin data for heritability enrichment informs common disease architecture and reveals cortical layer contributions to schizophrenia. Genome Research, 2020, 30, 528-539.	2.4	19
804	Translational genomics and beyond in bipolar disorder. Molecular Psychiatry, 2021, 26, 186-202.	4.1	30
805	Genetic variants associated with rotator cuff tearing utilizing multiple population-based genetic resources. Journal of Shoulder and Elbow Surgery, 2021, 30, 520-531.	1.2	13
806	Methylome-wide association study of first-episode schizophrenia reveals a hypermethylated CpG site in the promoter region of the TNIK susceptibility gene. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110081.	2.5	5
807	Convergent genomic and pharmacological evidence of PI3K/GSK3 signaling alterations in neurons from schizophrenia patients. Neuropsychopharmacology, 2021, 46, 673-682.	2.8	24
808	A polygenic resilience score moderates the genetic risk for schizophrenia. Molecular Psychiatry, 2021, 26, 800-815.	4.1	36
809	Schizophrenia risk ZNF804A interacts with its associated proteins to modulate dendritic morphology and synaptic development. Molecular Brain, 2021, 14, 12.	1.3	14

#	Article	IF	CITATIONS
810	Genetic factors in the etiology of bipolar disorder. , 2021, , 129-134.		0
811	Genetic Imaging: Promises and Pitfalls. , 2021, , 413-431.		0
812	Integrative Analyses Followed by Functional Characterization Reveal TMEM180 as a Schizophrenia Risk Gene. Schizophrenia Bulletin, 2021, 47, 1364-1374.	2.3	7
813	Ciliary neuropeptidergic signaling dynamically regulates excitatory synapses in postnatal neocortical pyramidal neurons. ELife, 2021, 10 , .	2.8	24
815	Psychosis susceptibility Zinc Finger Protein 804A (ZNF804A) gene polymorphism in Schizophrenia patients treated with Olanzapine in North Indian population. International Journal of Neuroscience, 2021, , 1-9.	0.8	0
816	Genome wide association study identifies four loci for early onset schizophrenia. Translational Psychiatry, 2021, 11, 248.	2.4	15
817	An independent, replicable, functional and significant risk variant block at intron 3 of <i>CACNA1C</i> for schizophrenia. Australian and New Zealand Journal of Psychiatry, 2022, 56, 385-397.	1.3	9
818	Application of animal experimental models in the research of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 209-227.	1.1	6
819	Interactions between maternal fluoxetine exposure, the maternal gut microbiome and fetal neurodevelopment in mice. Behavioural Brain Research, 2021, 410, 113353.	1.2	7
820	Schizophrenia-associated variation at <i>ZNF804A</i> correlates with altered experience-dependent dynamics of sleep slow waves and spindles in healthy young adults. Sleep, 2021, 44, .	0.6	1
821	Mood Stabilizers in Psychiatric Disorders and Mechanisms Learnt from In Vitro Model Systems. International Journal of Molecular Sciences, 2021, 22, 9315.	1.8	17
822	Genome-wide association study followed by trans-ancestry meta-analysis identify 17 new risk loci for schizophrenia. BMC Medicine, 2021, 19, 177.	2.3	12
823	Association between rs1344706 Polymorphism in the ZNF804A Gene and the Risk for Schizophrenia. Iranian Journal of Psychiatry, 2021, 16, 383-388.	0.4	2
824	Impact on the Risk and Severity of Childhood Onset Schizophrenia of Schizophrenia Risk Genetic Variants at the DRD2 and ZNF804A Loci. Child Psychiatry and Human Development, 2023, 54, 241-247.	1.1	4
825	Towards Understanding the Genetic Nature of Vasovagal Syncope. International Journal of Molecular Sciences, 2021, 22, 10316.	1.8	10
826	Association Between ZNF804A Gene rs1344706 Polymorphism and Brain Functions in Healthy Individuals: A Systematic Review and Voxel-Based Meta-Analysis. Neuropsychiatric Disease and Treatment, 2021, Volume 17, 2925-2935.	1.0	2
827	Genetic Diversity of North Eurasia Populations by Genetic Markers Associated with Diseases Impairing Human Cognitive Functions. Russian Journal of Genetics, 2021, 57, 1082-1091.	0.2	2
828	Schizophrenia risk candidate protein ZNF804A interacts with STAT2 and influences interferon-mediated gene transcription in mammalian cells. Journal of Molecular Biology, 2021, 433, 167184.	2.0	6

#	Article	IF	CITATIONS
829	Associations between brain abnormalities and common genetic variants for schizophrenia: a narrative review of structural and functional neuroimaging findings. Annals of Palliative Medicine, 2021, 10, 10031-10052.	0.5	6
832	Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. Advances in Neurobiology, 2020, 25, 155-206.	1.3	11
833	Genetik und Gen-Umwelt-Interaktionen bei psychischen Erkrankungen., 2017,, 147-191.		2
834	Genetics of Cerebral Cavernous Malformations. , 2011, , 4127-4133.		1
835	Ethnicity-dependent effects of Zinc finger 804A variant on schizophrenia: a systematic review and meta-analysis. Psychiatric Genetics, 2021, 31, 21-28.	0.6	3
840	Persistence Criteria for Susceptibility Genes for Schizophrenia: a Discussion from an Evolutionary Viewpoint. PLoS ONE, 2009, 4, e7799.	1.1	22
841	Comprehensive Gene-Based Association Study of a Chromosome 20 Linked Region Implicates Novel Risk Loci for Depressive Symptoms in Psychotic Illness. PLoS ONE, 2011, 6, e21440.	1.1	6
842	Genetic Evidence for the Association between the Early Growth Response 3 (EGR3) Gene and Schizophrenia. PLoS ONE, 2012, 7, e30237.	1.1	24
843	ZNF804a Regulates Expression of the Schizophrenia-Associated Genes PRSS16, COMT, PDE4B, and DRD2. PLoS ONE, 2012, 7, e32404.	1.1	94
844	Convergent Evidence from Mouse and Human Studies Suggests the Involvement of Zinc Finger Protein 326 Gene in Antidepressant Treatment Response. PLoS ONE, 2012, 7, e32984.	1.1	14
845	DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder. PLoS ONE, 2012, 7, e35424.	1.1	30
846	Improved Minimum Cost and Maximum Power Two Stage Genome-Wide Association Study Designs. PLoS ONE, 2012, 7, e42367.	1.1	5
847	The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors. PLoS ONE, 2012, 7, e50375.	1.1	33
848	Replication Study Confirms Link between TSPAN18 Mutation and Schizophrenia in Han Chinese. PLoS ONE, 2013, 8, e58785.	1.1	22
849	Meta-Analysis Indicates That the European GWAS-Identified Risk SNP rs1344706 within ZNF804A Is Not Associated with Schizophrenia in Han Chinese Population. PLoS ONE, 2013, 8, e65780.	1.1	26
850	Altered Metabolites in the Plasma of Autism Spectrum Disorder: A Capillary Electrophoresis Time-of-Flight Mass Spectroscopy Study. PLoS ONE, 2013, 8, e73814.	1.1	66
851	Heat Shock Alters the Expression of Schizophrenia and Autism Candidate Genes in an Induced Pluripotent Stem Cell Model of the Human Telencephalon. PLoS ONE, 2014, 9, e94968.	1.1	39
852	Whole Brain Expression of Bipolar Disorder Associated Genes: Structural and Genetic Analyses. PLoS ONE, 2014, 9, e100204.	1.1	24

#	Article	IF	CITATIONS
853	ZNF804A Transcriptional Networks in Differentiating Neurons Derived from Induced Pluripotent Stem Cells of Human Origin. PLoS ONE, 2015, 10, e0124597.	1.1	32
854	Association Study of N-Methyl-D-Aspartate Receptor Subunit 2B (GRIN2B) Polymorphisms and Schizophrenia Symptoms in the Han Chinese Population. PLoS ONE, 2015, 10, e0125925.	1.1	23
855	The Rat Homolog of the Schizophrenia Susceptibility Gene ZNF804A Is Highly Expressed during Brain Development, Particularly in Growth Cones. PLoS ONE, 2015, 10, e0132456.	1.1	13
856	Evidence for Association of Cell Adhesion Molecules Pathway and NLGN1 Polymorphisms with Schizophrenia in Chinese Han Population. PLoS ONE, 2015, 10, e0144719.	1.1	35
857	Genomeâ€'Wide Association Studies in Schizophrenia, and Potential Etiological and Functional Implications of Their Results. Acta Medica (Hradec Kralove), 2012, 55, 3-11.	0.2	13
860	The Shock of the New: Progress in Schizophrenia Genomics. Current Genomics, 2011, 12, 516-524.	0.7	16
861	Schizophrenia: from Epidemiology to Rehabilitation. Clinical Practice and Epidemiology in Mental Health, 2012, 8, 52-66.	0.6	34
862	Nature and nurture in neuropsychiatric genetics: where do we stand?. Dialogues in Clinical Neuroscience, 2010, 12, 7-23.	1.8	38
863	New findings in the genetics of major psychoses. Dialogues in Clinical Neuroscience, 2010, 12, 85-93.	1.8	62
864	Imaging genetics of schizophrenia. Dialogues in Clinical Neuroscience, 2010, 12, 449-456.	1.8	48
865	Advances in the genetics of schizophrenia: will high-risk copy number variants be useful in clinical genetics or diagnostics?. F1000 Medicine Reports, 2009, 1, .	2.9	3
867	Genetic variation in the $3\hat{a}\in^2$ -untranslated region of PAK1 influences schizophrenia susceptibility. Experimental and Therapeutic Medicine, 2017, 13, 1101-1108.	0.8	4
868	Genetics of schizophrenia (Review). Experimental and Therapeutic Medicine, 2020, 20, 3462-3468.	0.8	16
869	Schizophrenia‑associated microRNA‑148b‑3p regulates COMT and PRSS16 expression by targeting the ZNF804A gene in human neuroblastoma cells. Molecular Medicine Reports, 2020, 22, 1429-1439.	1.1	8
870	Molecular Genetics and the Kraepelinian Dichotomy: One Disorder, Two Disorders, or Do We Need to Start Thinking Afresh?. Psychiatric Annals, 2010, 40, 88-91.	0.1	8
872	<i>ZNF804A</i> Gene Variants Have a Cross-diagnostic Influence on Psychosis and Treatment Improvement in Mood Disorders. Clinical Psychopharmacology and Neuroscience, 2020, 18, 231-240.	0.9	5
873	The Candidate Schizophrenia Risk Gene Tmem108 Regulates Glucose Metabolism Homeostasis. Frontiers in Endocrinology, 2021, 12, 770145.	1.5	6
874	Systematic discovery of signaling pathways linking immune activation to schizophrenia. IScience, 2021, 24, 103209.	1.9	2

#	Article	IF	CITATIONS
875	National IQ Means, Calibrated and Transformed from Educational Attainment, and Their Underlying Gene Frequencies. Mankind Quarterly, 2008, 49, 130-164.	0.1	3
876	Gene surveys identify schizophrenia triggers. Nature, 0, , .	13.7	0
877	Neurogenetic Risk Mechanisms of Schizophrenia: An Imaging Genetics Approach. , 2010, , 219-232.		0
878	Progress in Genetic Studies of Schizophrenia. , 2010, , 233-248.		0
879	Schizophrenia: Historical roots and brief review of recent research developments. Medical Psychiatry, 2009, , 1-15.	0.2	0
880	Genetic Dissection of Dopamine-Mediated Prefrontal-Striatal Mechanisms and Its Relationship to Schizophrenia., 2009, , 187-200.		0
881	Genetische Aspekte der Neuropsychologie psychischer StĶrungen. , 2010, , 145-164.		0
882	Gemeinsame Risikogene von affektiven und schizophrenen Erkrankungen. , 2010, , 93-103.		0
884	Genetics in schizophrenia: where are we and what next?. Dialogues in Clinical Neuroscience, 2010, 12, 289-303.	1.8	44
885	Association of G72 gene locus with schizophrenia in Chinese females of <i>Han</i> ethnicity. Academic Journal of Second Military Medical University, 2010, 30, 826-829.	0.0	0
886	Genetic Studies of Schizophrenia. Advances in Neurobiology, 2011, , 333-380.	1.3	0
887	Title is missing!. Journal of the Nihon University Medical Association, 2011, 70, 125-127.	0.0	0
888	Genetik bei psychischen Erkrankungen. , 2011, , 127-165.		0
889	Psychiatric genetics., 2012,, 35-53.		1
891	Schizophrene Störungen., 2012,, 297-313.		0
893	MCQanswers., 2012,, 479-484.		0
894	Rethinking the Contribution of Neuroimaging to Translation in Schizophrenia., 2013,, 175-194.		1
895	Schizophrenia and Bipolar Disorder. , 2013, , 1051-1058.		0

#	Article	IF	CITATIONS
896	Correcting for Hidden Population Structure in Single Marker Association Testing and Estimation. Statistics in the Health Sciences, 2014, , 135-181.	0.2	1
898	Schizophrenia and Bipolar Disorder. , 2014, , 153-183.		4
899	Casual Genes of Schizophrenia Detected by Genome-Wide Association Study (GWAS). Journal of the Nihon University Medical Association, 2014, 73, 106-108.	0.0	0
901	Intermediate Phenotype Approach for Neuropsychiatric Disorders. , 2015, , 135-155.		0
902	Genetik und Gen-Umwelt-Interaktionen bei psychischen Erkrankungen., 2016,, 1-45.		0
903	Structure Modeling and Molecular Docking Studies of Schizophrenia Candidate Genes, Synapsins 2 (SYN2) and Trace Amino Acid Receptor (TAAR6). Lecture Notes in Computer Science, 2017, , 291-301.	1.0	1
904	Are There Schizophrenia Genetic Markers and Mutations? A Systematic Review and Meta-Analyses. Health, 2017, 09, 811-838.	0.1	0
905	Gesamtliteraturverzeichnis., 2017, , 1-153.		0
907	Genetik und Gen-Umwelt-Interaktionen bei psychischen Erkrankungen. , 2017, , 1-45.		0
909	Rethinking schizophrenia through the lens of evolution: shedding light on the enigma. Research Ideas and Outcomes, 0, 4, .	1.0	2
914	An Overview of the Primary Cilium and RPGRIP1L: The Signalling Hub's Anchor for Organ Development and Homeostasis. Malaysian Journal of Fundamental and Applied Sciences, 2021, 17, 582-592.	0.4	0
915	Identification of genetic variants influencing methylation in brain with pleiotropic effects on psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 113, 110454.	2.5	8
918	Heritability of Alcohol Use Disorder: Evidence from Twin Studies and Genome-Wide Association Studies., 2021,, 21-33.		3
920	Genetics of schizophrenia: What do we know?. Current Psychiatry, 2013, 12, 24-33.	1.7	9
921	Prostate Cancer Related JAZF1 Gene is Associated with Schizophrenia. Journal of Schizophrenia Research, 2014, 1, .	1.0	2
922	The Interaction Between Genetic Variant ZNF804A rs1344706 and Alcohol Withdrawal on Impulsivity: Evidence for the Diathesis-Stress Model. Frontiers in Psychiatry, 2021, 12, 761237.	1.3	2
923	Epigenetics and first-episode psychosis: A systematic review. Psychiatry Research, 2022, 307, 114325.	1.7	4
924	Glial changes in schizophrenia: Genetic and epigenetic approach. Indian Journal of Psychiatry, 2022, 64, 3.	0.4	2

#	Article	IF	CITATIONS
925	Functional variant rs2270363 on 16p13.3 confers schizophrenia risk by regulating <i>NMRAL1</i> . Brain, 2022, 145, 2569-2585.	3.7	4
926	ANK3 and ZNF804A intronic variants increase risk of schizophrenia in Iranian population: An association study. Gene Reports, 2022, 26, 101511.	0.4	1
927	Genetics of bipolar disorder. , 2022, , 43-61.		0
928	Consensus on potential biomarkers developed for use in clinical tests for schizophrenia. Annals of General Psychiatry, 2022, 35, e100685.	1.1	10
929	Bioinformatics and network-based approaches for determining pathways, signature molecules, and drug substances connected to genetic basis of schizophrenia etiology. Brain Research, 2022, 1785, 147889.	1.1	5
930	Transmembrane protein 108 inhibits the proliferation and myelination of oligodendrocyte lineage cells in the corpus callosum. Molecular Brain, 2022, 15, 33.	1.3	1
933	Association of RELN promoter SNPs with schizophrenia in the Chinese population. Zoological Research, 2011, 32, 504-8.	0.6	1
934	Childhood Trauma, the HPA Axis and Psychiatric Illnesses: A Targeted Literature Synthesis. Frontiers in Psychiatry, 2022, 13, .	1.3	25
936	Functional characterization of the schizophrenia associated gene <code><scp> <i>AS3MT</i> </scp> identifies a role in neuronal development. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 0, , .</code>	1.1	2
937	The Long Non-Coding RNA GOMAFU in Schizophrenia: Function, Disease Risk, and Beyond. Cells, 2022, 11, 1949.	1.8	9
938	Study of a functional SNP rs13423388 in a novel enhancer element of schizophrenia-associated ZNF804A. Asian Journal of Psychiatry, 2022, 74, 103191.	0.9	0
939	A functional neuroimaging association study on the interplay between two schizophrenia genome-wide associated genes (CACNA1C and ZNF804A). European Archives of Psychiatry and Clinical Neuroscience, 2022, 272, 1229-1239.	1.8	3
940	New drug targets in psychiatry: Neurobiological considerations in the genomics era. Neuroscience and Biobehavioral Reviews, 2022, 139, 104763.	2.9	1
941	ZNF804A variants relation to schizophrenia: a systematic review. International Journal of Community Medicine and Public Health, 2022, 9, 3297.	0.0	0
942	Working memory deficits in children with schizophrenia and its mechanism, susceptibility genes, and improvement: A literature review. Frontiers in Psychiatry, $0,13,.$	1.3	3
943	Genetic Influences on Cognitive Dysfunction in Schizophrenia. Current Topics in Behavioral Neurosciences, 2022, , 291-314.	0.8	1
944	Gene set enrichment analysis of pathophysiological pathways highlights oxidative stress in psychosis. Molecular Psychiatry, 2022, 27, 5135-5143.	4.1	5
945	Indonesian Longitudinal Survey on Mental Health and Social Factors (INDOLUMEN): Early Findings and Protocol. INSAN Jurnal Psikologi Dan Kesehatan Mental, 2022, 7, 1-35.	0.3	0

#	Article	IF	CITATIONS
946	Genetic regulatory and biological implications of the $10q24.32$ schizophrenia risk locus. Brain, 0 , , .	3.7	3
947	The schizophrenia-associated missense variant rs13107325 regulates dendritic spine density. Translational Psychiatry, 2022, 12, .	2.4	4
948	Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychological Medicine, 0, , 1-16.	2.7	1
949	Schizophrenic Syndromes: Schizophrenia. , 2022, , 4437-4458.		O
950	Genetics of Schizophrenia Spectrum Disorders: Looking Back and Peering Ahead. Annals of the Academy of Medicine, Singapore, 2009, 38, 436-439.	0.2	2
951	Con Brioso E Rigore! – Understanding the Neurobiology of Schizophrenia Spectrum Disorders. Annals of the Academy of Medicine, Singapore, 2009, 38, 381-382.	0.2	1
954	Current progress in understanding schizophrenia using genomics and pluripotent stem cells: A meta-analytical overview. Schizophrenia Research, 2022, , .	1.1	8
955	Nitric Oxide and Type 2 Diabetes: Lessons from Genetic Studies. , 2022, , 107-127.		0
956	Overlap between genetic variants associated with schizophrenia spectrum disorders and intelligence quotient: a systematic review. Journal of Psychiatry and Neuroscience, 2022, 47, E393-E408.	1.4	3
957	Genetic studies in multifactorial diseases. , 2022, , 36-40.		0
958	Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathologica Communications, 2022, 10, .	2.4	5
959	ZNF804A intronic variant rs1344706 and NGRN rs12807809 genetic polymorphisms and risk of schizophrenia in Bangladesh., 2023, 36, 201175.		0
960	Statistical Methods for Disease Risk Prediction with Genotype Data. Methods in Molecular Biology, 2023, , 331-347.	0.4	0
961	Co-Expression Network Analysis Identifies Molecular Determinants of Loneliness Associated with Neuropsychiatric and Neurodegenerative Diseases. International Journal of Molecular Sciences, 2023, 24, 5909.	1.8	4
962	A significant, functional and replicable risk KTN1 variant block for schizophrenia. Scientific Reports, 2023, 13, .	1.6	0
965	Neurobiology of Schizophrenia. , 2023, , 1-22.		0
969	Genomic findings in schizophrenia and their implications. Molecular Psychiatry, 2023, 28, 3638-3647.	4.1	5