Building better batteries

Nature 451, 652-657 DOI: 10.1038/451652a

Citation Report

#	Article	IF	CITATIONS
1	Efficacy of new microprocessed phototherapy system with five high intensity light emitting diodes (Super LED). Jornal De Pediatria, 2007, 83, 253-258.	0.9	22
2	Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic. Journal of Power Sources, 2008, 185, 480-485.	4.0	89
3	From cell level to system level: efficient design for optimised energy storage systems. Elektrotechnik Und Informationstechnik, 2008, 125, 372-376.	0.7	0
4	Towards Sustainable and Renewable Systems for Electrochemical Energy Storage. ChemSusChem, 2008, 1, 777-779.	3.6	73
5	Novel technique to form electrode–electrolyte nanointerface in all-solid-state rechargeable lithium batteries. Electrochemistry Communications, 2008, 10, 1860-1863.	2.3	62
6	Lithium Battery Materials Li <i>M</i> PO ₄ (<i>M</i> = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior. Chemistry of Materials, 2008, 20, 5907-5915.	3.2	483
7	Materials for electrochemical capacitors. Nature Materials, 2008, 7, 845-854.	13.3	14,090
8	Editorial for Biointerphases in focus: research on biointerfaces with neutrons and synchrotron radiation. Biointerphases, 2008, 3, FB1-FB2.	0.6	1
9	Liâ^•Polymer Electrolyteâ^•Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte. Journal of the Electrochemical Society, 2008, 155, A965.	1.3	195
10	Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass–Ceramic. Journal of the Electrochemical Society, 2008, 155, A915.	1.3	133
11	High-Rate Lithium-Ion Battery Cathodes Using Nanostructured Polyaniline/Carbon Nanotube Array Composites. Electrochemical and Solid-State Letters, 2008, 11, A223.	2.2	17
12	Deposition of TiN and TaN by Remote Plasma ALD for Cu and Li Diffusion Barrier Applications. Journal of the Electrochemical Society, 2008, 155, G287.	1.3	86
13	Enhanced Rate Capabilities of Nanobrookite with Electronically Conducting MWCNT Networks. Crystal Growth and Design, 2008, 8, 4506-4510.	1.4	32
14	Solubility of Hydrogen in the Cyclic Alkylene Ester 1,2-Butylene Carbonate. Journal of Chemical & Engineering Data, 2008, 53, 2844-2850.	1.0	9
15	Carbon-Coated Macroporous Sn ₂ P ₂ O ₇ as Anode Materials for Li-Ion Battery. Journal of Physical Chemistry C, 2008, 112, 14216-14219.	1.5	62
16	Evidence of Transition-Metal Accumulation on Aged Graphite Anodes by SIMS. Electrochemical and Solid-State Letters, 2008, 11, A226.	2.2	79
17	Colorimetric Determination of Lithium Content in Electrodes of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2008, 155, A862.	1.3	91
18	Fundamentals of Underwater Vehicle Hardware and Their Applications. , 0, , .		6

	CITATION RE	PORT	
#	Article	IF	Citations
19	Nano structure carbons for energy storage in lithium oxygen batteries. , 2009, , .		0
20	Li diffusion properties of mixed conductingTiO2-Bnanowires. Physical Review B, 2009, 80, .	1.1	31
21	Interfacial Polarization and Field-Induced Orientation in Nanostructured Soft-Ion Conductors. Physical Review Letters, 2009, 102, 216101.	2.9	15
22	Location Based Sleep Scheduling for Target Tracking Applications in Smart Space Environments. , 2009, , .		3
23	Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors. Journal of the Electrochemical Society, 2009, 156, A7.	1.3	231
24	Solid-State Materials for Clean Energy: Insights from Atomic-Scale Modeling. MRS Bulletin, 2009, 34, 935-941.	1.7	27
25	Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study. Journal of the Electrochemical Society, 2009, 156, A169.	1.3	159
26	The State-of-Energy: A New Criterion for the Energetic Performances Evaluation of Electrochemical Storage Devices. ECS Transactions, 2010, 25, 105-112.	0.3	34
27	In situobservation of the melting and sintering of submicron-sized bismuth particles. Nanotechnology, 2009, 20, 125704.	1.3	1
28	Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene) Tj ETQq1 1 0.78	84314 rgB 1.2	T /Overlock 1 173
29	Blockâ€Copolymerâ€Templated Synthesis of Electroactive RuO ₂ â€Based Mesoporous Thin Films. Advanced Functional Materials, 2009, 19, 1922-1929.	7.8	76
30	Combined Firstâ€Principle Calculations and Experimental Study on Multiâ€Component Olivine Cathode for Lithium Rechargeable Batteries. Advanced Functional Materials, 2009, 19, 3285-3292.	7.8	121
31	LiFePO ₄ Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energyâ€6torage Devices. Advanced Materials, 2009, 21, 2710-2714.	11.1	647
33	Clewlike ZnV ₂ O ₄ Hollow Spheres: Nonaqueous Sol–Gel Synthesis, Formation Mechanism, and Lithium Storage Properties. Chemistry - A European Journal, 2009, 15, 9442-9450.	1.7	124
34	A Multiple Working Electrode for Electrochemical Cells: A Tool for Current Density Distribution Studies. Angewandte Chemie - International Edition, 2009, 48, 528-532.	7.2	42
35	Suppression of Jahn–Teller distortion by chromium and magnesium doping in spinel LiMn2O4: A first-principles study using GGA and GGA+U. Journal of Physics and Chemistry of Solids, 2009, 70, 1200-1206.	1.9	35
36	Lithium-storage and cycleability of nano-CdSnO3 as an anode material for lithium-ion batteries. Journal of Power Sources, 2009, 192, 627-635.	4.0	64
37	Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. Journal of Power Sources, 2009, 194, 1089-1093.	4.0	183

#	Article	IF	CITATIONS
38	Li-storage and cycling properties of spinel, CdFe2O4, as an anode for lithium ion batteries. Bulletin of Materials Science, 2009, 32, 295-304.	0.8	25
40	Conjugated dicarboxylate anodes for Li-ion batteries. Nature Materials, 2009, 8, 120-125.	13.3	898
41	Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 2009, 8, 621-629.	13.3	4,067
42	Polymer wiring of insulating electrode materials: An approach to improve energy density of lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1350-1352.	2.3	18
43	Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1468-1471.	2.3	61
44	Thermodynamics in the formation of the solid electrolyte interface on the graphite electrode for lithium-ion batteries. Electrochimica Acta, 2009, 54, 3538-3542.	2.6	9
45	XPS, time-of-flight-SIMS and polarization modulation IRRAS study of Cr2O3 thin film materials as anode for lithium ion battery. Electrochimica Acta, 2009, 54, 3700-3707.	2.6	81
46	Ternary blends of poly(ethylene oxide) and acrylate-based copolymers: Crystallinity, miscibility, interactions and proton conductivity. European Polymer Journal, 2009, 45, 3127-3137.	2.6	12
47	On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries. Journal of Power Sources, 2009, 189, 402-410.	4.0	92
48	New electrolytes based on glutaronitrile for high energy/power Li-ion batteries. Journal of Power Sources, 2009, 189, 576-579.	4.0	131
49	Development of membranes and a study of their interfaces for rechargeable lithium–air battery. Journal of Power Sources, 2009, 194, 1113-1119.	4.0	54
50	Coethite nanorods as anode electrode materials for rechargeable Li-ion batteries. Electrochemistry Communications, 2009, 11, 1696-1699.	2.3	48
51	A new type rechargeable lithium battery based on a Cu-cathode. Electrochemistry Communications, 2009, 11, 1834-1837.	2.3	35
52	Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochimica Acta, 2009, 54, 5656-5659.	2.6	80
53	Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochimica Acta, 2009, 54, 7444-7451.	2.6	193
54	Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries. Carbon, 2009, 47, 705-712.	5.4	94
55	Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon, 2009, 47, 2976-2983.	5.4	306
56	A sweet out-of-the-box solution to the hydrogen economy: is the sugar-powered car science fiction?. Energy and Environmental Science, 2009, 2, 272.	15.6	109

#	Article	IF	CITATIONS
57	Li ₂ MnSiO ₄ Lithium Battery Material: Atomic-Scale Study of Defects, Lithium Mobility, and Trivalent Dopants. Chemistry of Materials, 2009, 21, 5196-5202.	3.2	160
58	Quantum Chemistry and Molecular Dynamics Simulation Study of Dimethyl Carbonate: Ethylene Carbonate Electrolytes Doped with LiPF ₆ . Journal of Physical Chemistry B, 2009, 113, 1763-1776.	1.2	264
59	Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews, 2009, 38, 2565.	18.7	1,228
60	Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 2009, 324, 1051-1055.	6.0	688
61	Lithium Insertion and Transport in the TiO ₂ â^'B Anode Material: A Computational Study. Chemistry of Materials, 2009, 21, 4778-4783.	3.2	169
62	Complex Superstructures of Mo2P4O15. Inorganic Chemistry, 2009, 48, 9271-9281.	1.9	22
63	NASICON-Structured LiGe ₂ (PO ₄) ₃ with Improved Cyclability for High-Performance Lithium Batteries. Journal of Physical Chemistry C, 2009, 113, 20514-20520.	1.5	42
64	Enhancement of Adsorption Inside Single-Walled Carbon Nanotubes: Li Doping Effect on n-Heptane van der Waals Bonding. Journal of Physical Chemistry C, 2009, 113, 4829-4838.	1.5	13
65	Greater Transportation Energy and GHG Offsets from Bioelectricity Than Ethanol. Science, 2009, 324, 1055-1057.	6.0	190
66	Remote Plasma ALD of Platinum and Platinum Oxide Films. Electrochemical and Solid-State Letters, 2009, 12, G34.	2.2	107
67	Topotactic Transformation of the Cationic Conductor Li ₄ Mo ₅ O ₁₇ into a Rock Salt Type Oxide Li ₁₂ Mo ₅ O ₁₇ . Chemistry of Materials, 2009, 21, 3242-3250.	3.2	22
68	Detailed In Situ Investigation of the Electrochemical Processes in Li[sub 2]FeTiO[sub 4] Cathodes. Journal of the Electrochemical Society, 2009, 156, A809.	1.3	31
69	First Principles Study of the Li–Bi–F Phase Diagram and Bismuth Fluoride Conversion Reactions with Lithium. Electrochemical and Solid-State Letters, 2009, 12, A125.	2.2	20
70	Lithium Ion Electro-Insertion and Spectroelectrochemical Properties of Films from Hexaniobate. Journal of Physical Chemistry C, 2009, 113, 10868-10876.	1.5	9
71	Structure and Dynamics for LiBH ₄ â^'LiCl Solid Solutions. Chemistry of Materials, 2009, 21, 5772-5782.	3.2	135
72	Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries. Electrochemical and Solid-State Letters, 2009, 12, A132.	2.2	103
73	Lithium intercalation into transition metal oxides: A route to generate new ordered rock salt type structure. Progress in Solid State Chemistry, 2009, 37, 262-277.	3.9	28
74	Lithium lanthanum titanium oxide solid-state electrolyte by spark plasma sintering. Journal of Alloys and Compounds, 2009, 486, 871-875.	2.8	54

#	Article	IF	CITATIONS
76	Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chemical Communications, 2009, , 448-450.	2.2	437
77	First principles computational materials design for energy storage materials in lithium ion batteries. Energy and Environmental Science, 2009, 2, 589.	15.6	456
78	Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy and Environmental Science, 2009, 2, 932.	15.6	239
79	Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19, 1859.	6.7	273
80	High-Voltage Electrolytes Based on Adiponitrile for Li-Ion Batteries. Journal of the Electrochemical Society, 2009, 156, A60.	1.3	188
81	The effects of moderate thermal treatments under air on LiFePO4-based nano powders. Journal of Materials Chemistry, 2009, 19, 3979.	6.7	106
82	Enhanced cycling performance of an Fe0/Fe3O4nanocomposite electrode for lithium-ion batteries. Nanotechnology, 2009, 20, 295205.	1.3	58
83	Rechargeable Ni-Li Battery Integrated Aqueous/Nonaqueous System. Journal of the American Chemical Society, 2009, 131, 15098-15099.	6.6	105
84	Microcapsules containing suspensions of carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 6093.	6.7	98
85	Nanoscale design to enable the revolution in renewable energy. Energy and Environmental Science, 2009, 2, 559.	15.6	348
85 86	Nanoscale design to enable the revolution in renewable energy. Energy and Environmental Science, 2009, 2, 559. <i>In-Situ</i> Formation of Sandwiched Structures of Nanotube/Cu _{<i>x</i>} O _{<i>y</i>} /Cu Composites for Lithium Battery Applications. ACS Nano, 2009, 3, 2177-2184.	15.6 7.3	348 84
	2009, 2, 559. <i>In-Situ</i> Formation of Sandwiched Structures of Nanotube/Cu _{<i>x</i>} O _{<i>y</i>} /Cu Composites for Lithium Battery		
86	2009, 2, 559. <i>In-Situ</i> Formation of Sandwiched Structures of Nanotube/Cu _{<i>x</i>} O _{<i>y</i>} /Cu Composites for Lithium Battery Applications. ACS Nano, 2009, 3, 2177-2184.		84
86 87	<pre>2009, 2, 559. </pre> <pre></pre> <pre< td=""><td>7.3</td><td>84 72</td></pre<>	7.3	84 72
86 87 88	 2009, 2, 559. <i>In-Situ</i> Formation of Sandwiched Structures of Nanotube/Cu_{<i>x</i>}O_{<i>y</i>}/Cu Composites for Lithium Battery Applications. ACS Nano, 2009, 3, 2177-2184. Control Strategy for Battery-Ultracapacitor Hybrid Energy Storage System., 2009, , . <i>Ab initio</i> <i>Ab initio</i> Self-supported SnO₂nanowire electrodes for high-power lithium-ion batteries. 	7.3	84 72 73
86 87 88 89	 2009, 2, 559. <i><i><i>>In-Situ</i>> Formation of Sandwiched Structures of Nanotube/Cu_{<i>>x</i>}O_{<i>>y</i>}/Cu Composites for Lithium Battery Applications. ACS Nano, 2009, 3, 2177-2184.</i></i> Control Strategy for Battery-Ultracapacitor Hybrid Energy Storage System. , 2009, , . <i>>Ab initio</i> <i>>Ab initio</i> <i>>Ab initio</i> Self-supported SnO₂nanowire electrodes for high-power lithium-ion batteries. Nanotechnology, 2009, 20, 445703. Self-supported SnO₂nanowire electrodes for high-power lithium-ion batteries. Nanotechnology, 2009, 20, 455701. Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced	7.3 1.3 1.3	84 72 73 129
86 87 88 89 90	 2009, 2, 559. <i>>i>I-Situ </i> Formation of Sandwiched Structures of Nanotube/Cu <sub <i="">>x</sub> <!--</td--><td>7.3 1.3 1.3</td><td> 84 72 73 129 130 </td>	7.3 1.3 1.3	 84 72 73 129 130

#	Article	IF	CITATIONS
94	Nano-(Cd1/3Co1/3Zn1/3)CO3: a new and high capacity anode material for Li-ion batteries. Journal of Materials Chemistry, 2009, 19, 5047.	6.7	52
95	Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. Journal of Materials Chemistry, 2009, 19, 6789.	6.7	248
96	Atomic layer deposition of lithium containing thin films. Journal of Materials Chemistry, 2009, 19, 8767.	6.7	81
97	Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. Journal of Materials Chemistry, 2009, 19, 7885.	6.7	136
98	Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. Journal of Materials Chemistry, 2009, 19, 5125.	6.7	80
99	Lithium Salt of Tetrahydroxybenzoquinone: Toward the Development of a Sustainable Li-Ion Battery. Journal of the American Chemical Society, 2009, 131, 8984-8988.	6.6	438
100	Materials for electrochemical capacitors. , 2009, , 320-329.		205
101	Spiro-ammonium Imide Salts as Electrolytes for Lithium Batteries. Chemistry Letters, 2009, 38, 782-783.	0.7	11
102	Water-Stable Lithium Electrode and Its Application in Aqueous Lithium/Air Secondary Batteries. Electrochemistry, 2010, 78, 360-362.	0.6	11
103	Materials for electrochemical capacitors. , 2010, , 138-147.		25
103 105	Materials for electrochemical capacitors. , 2010, , 138-147. Ionic-liquid materials for the electrochemical challenges of the future. , 2010, , 129-137.		25 38
		1.4	
105	Ionic-liquid materials for the electrochemical challenges of the future. , 2010, , 129-137. Local Li Cation Coordination and Dynamics in Novel Solid Electrolytes. Zeitschrift Fur Physikalische	1.4	38
105 106	Ionic-liquid materials for the electrochemical challenges of the future. , 2010, , 129-137. Local Li Cation Coordination and Dynamics in Novel Solid Electrolytes. Zeitschrift Fur Physikalische Chemie, 2010, 224, 1735-1769. Indigo Dye as a Positive-electrode Material for Rechargeable Lithium Batteries. Chemistry Letters, 2010,		38 10
105 106 107	Ionic-liquid materials for the electrochemical challenges of the future. , 2010, , 129-137. Local Li Cation Coordination and Dynamics in Novel Solid Electrolytes. Zeitschrift Fur Physikalische Chemie, 2010, 224, 1735-1769. Indigo Dye as a Positive-electrode Material for Rechargeable Lithium Batteries. Chemistry Letters, 2010, 39, 950-952. Differentiating Contributions to "lon Transfer―Barrier from Interphasial Resistance and	0.7	38 10 81
105 106 107 108	Ionic-liquid materials for the electrochemical challenges of the future. , 2010, , 129-137. Local Li Cation Coordination and Dynamics in Novel Solid Electrolytes. Zeitschrift Fur Physikalische Chemie, 2010, 224, 1735-1769. Indigo Dye as a Positive-electrode Material for Rechargeable Lithium Batteries. Chemistry Letters, 2010, 39, 950-952. Differentiating Contributions to "lon Transferâ€-Barrier from Interphasial Resistance and Li ⁺ Desolvation at Electrolyte/Graphite Interface. Langmuir, 2010, 26, 11538-11543. Cobalt Oxide Nanomaterials by Vapor-Phase Synthesis for Fast and Reversible Lithium Storage. Journal	0.7 1.6	38 10 81 438
105 106 107 108 109	Ionic-liquid materials for the electrochemical challenges of the future. , 2010, , 129-137. Local Li Cation Coordination and Dynamics in Novel Solid Electrolytes. Zeitschrift Fur Physikalische Chemie, 2010, 224, 1735-1769. Indigo Dye as a Positive-electrode Material for Rechargeable Lithium Batteries. Chemistry Letters, 2010, 39, 950-952. Differentiating Contributions to â€cœlon Transfer―Barrier from Interphasial Resistance and Li ⁺ Desolvation at Electrolyte/Graphite Interface. Langmuir, 2010, 26, 11538-11543. Cobalt Oxide Nanomaterials by Vapor-Phase Synthesis for Fast and Reversible Lithium Storage. Journal of Physical Chemistry C, 2010, 114, 10054-10060. Biomimetic Synthesis of Metal Ionâ€Doped Hierarchical Crystals Using a Gel Matrix: Formation of Cobaltâ€Doped LiMn ₂	0.7 1.6 1.5	38 10 81 438 61

#	Article	IF	CITATIONS
113	Electrochemical Performance of the LiNi[sub 1/3]Co[sub 1/3]Mn[sub 1/3]O[sub 2] in Aqueous Electrolyte. Journal of the Electrochemical Society, 2010, 157, A702.	1.3	27
114	Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis. Chemistry of Materials, 2010, 22, 724-739.	3.2	224
115	Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors. Science, 2010, 328, 480-483.	6.0	1,206
116	Template-Free Hydrothermal Synthesis of Nanoembossed Mesoporous LiFePO ₄ Microspheres for High-Performance Lithium-Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 3477-3482.	1.5	208
117	The preparation of conductive nano-LiFePO4/PAS and its electrochemical performance. Electrochimica Acta, 2010, 55, 1067-1071.	2.6	19
118	Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for Sustainable Development, 2010, 14, 302-314.	2.0	790
119	Chemically modified Ba6Mn24O48 tunnel manganite as a lithium insertion host. Solid State Ionics, 2010, 181, 1002-1008.	1.3	5
120	A study on lithium/air secondary batteries—Stability of NASICON-type glass ceramics in acid solutions. Journal of Power Sources, 2010, 195, 6187-6191.	4.0	81
121	Lithium batteries: Status, prospects and future. Journal of Power Sources, 2010, 195, 2419-2430.	4.0	4,343
122	Improvement of the high rate capability of hierarchical structured Li4Ti5O12 induced by the pseudocapacitive effect. Journal of Power Sources, 2010, 195, 3676-3679.	4.0	138
123	Enhanced lithium-ion intercalation properties of coherent hydrous vanadium pentoxide–carbon cryogel nanocomposites. Journal of Power Sources, 2010, 195, 3893-3899.	4.0	32
124	Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene) Tj ETQq1 1 0.784314	4 rgBT /Ον ≇.0	erlock 10 Tfl
125	High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries. Journal of Power Sources, 2010, 195, 8336-8340.	4.0	220
126	A polymer electrolyte containing ionic liquid for possible applications in photoelectrochemical solar cells. Journal of Solid State Electrochemistry, 2010, 14, 1221-1226.	1.2	23
127	LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Research, 2010, 3, 733-737.	5.8	99
128	A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Research, 2010, 3, 895-901.	5.8	165
129	Climate Change and Peak Oil: The Urgent Need for a Transition to a Non-Carbon-Emitting Society. Ambio, 2010, 39, 85-90.	2.8	16
130	Lithium ion transport in PVC/PEG 2000 blend polymer electrolytes complexed with LiX (X=ClO 4 â~', BF 4) Tj ETQ	q110.78	4314 rgBT /C

#	Article	IF	CITATIONS
131	Synthesis and characterization of oxide cathode materials of the system (1-x-y)LiNiO2·xLi2MnO3·yLiCoO2. lonics, 2010, 16, 591-602.	1.2	10
132	LiVOPO4 as an anode material for lithium ion batteries. Journal of Applied Electrochemistry, 2010, 40, 209-213.	1.5	31
133	Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. Journal of Materials Science, 2010, 45, 6283-6312.	1.7	213
134	Circuit Design Advances for Wireless Sensing Applications. Proceedings of the IEEE, 2010, 98, 1808-1827.	16.4	62
135	Application of electrochemical impedance spectroscopy to the study of ionic transport in polymer-based electrolytes. Progress in Organic Coatings, 2010, 69, 207-214.	1.9	26
136	Performance of high-power lithium-ion cells under pulse discharge and charge conditions. International Journal of Energy Research, 2010, 34, 190-203.	2.2	38
137	Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 2010, 3, 136-168.	3.6	611
138	Highly Stable Lithium Storage Performance in a Porous Carbon/Silicon Nanocomposite. ChemSusChem, 2010, 3, 231-235.	3.6	31
139	Preparation and Li Storage Properties of Hierarchical Porous Carbon Fibers Derived from Alginic Acid. ChemSusChem, 2010, 3, 703-707.	3.6	95
140	The Development of a New Type of Rechargeable Batteries Based on Hybrid Electrolytes. ChemSusChem, 2010, 3, 1009-1019.	3.6	88
141	A Crossâ€Linked Soft Matter Polymer Electrolyte for Rechargeable Lithiumâ€Ion Batteries. ChemSusChem, 2010, 3, 1371-1374.	3.6	10
142	A Single-Source Co/Li/O Organometallic Precursor for Nanocrystalline LiCoO2 - Synthesis, Formation Pathway, and Electrochemical Performance. European Journal of Inorganic Chemistry, 2010, 2010, 4591-4594.	1.0	8
143	Advanced Materials for Energy Storage. Advanced Materials, 2010, 22, E28-62.	11.1	4,168
144	Local Structure of Layered Oxide Electrode Materials for Lithiumâ€ion Batteries. Advanced Materials, 2010, 22, 1122-1127.	11.1	152
145	Mineralization of Selfâ€assembled Peptide Nanofibers for Rechargeable Lithium Ion Batteries. Advanced Materials, 2010, 22, 5537-5541.	11.1	127
146	Beyond Intercalationâ€Based Liâ€Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions. Advanced Materials, 2010, 22, E170-92.	11.1	2,063
147	Lithium Iron Borates as High apacity Battery Electrodes. Advanced Materials, 2010, 22, 3583-3587.	11.1	218
148	Selfâ€Wound Composite Nanomembranes as Electrode Materials for Lithium Ion Batteries. Advanced Materials, 2010, 22, 4591-4595.	11.1	96

#	Article	IF	CITATIONS
149	Crystal Habitâ€Tuned Nanoplate Material of Li[Li _{1/3–2<i>x</i>/3} Ni _x Mn _{2/3<i>–x</i>/3}]O ₂ for Highâ€Rate Performance Lithiumâ€Ion Batteries. Advanced Materials, 2010, 22, 4364-4367.	11.1	351
150	Mesoporous LiFePO ₄ /C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance. Advanced Materials, 2010, 22, 4944-4948.	11.1	380
151	Fabrication of FeF ₃ Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries. Advanced Materials, 2010, 22, 5260-5264.	11.1	270
152	Nickel Nanoconeâ€Array Supported Silicon Anode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2010, 22, 5378-5382.	11.1	161
154	Highly Ordered Mesoporous Cobalt Oxide Nanostructures: Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices. Chemistry - A European Journal, 2010, 16, 11020-11027.	1.7	136
161	Dynamic Visualization of the Electric Potential in an Allâ€Solidâ€State Rechargeable Lithium Battery. Angewandte Chemie - International Edition, 2010, 49, 4414-4417.	7.2	242
162	A Highâ€Performance Polymer Tin Sulfur Lithium Ion Battery. Angewandte Chemie - International Edition, 2010, 49, 2371-2374.	7.2	405
163	From Nanostructured Liquid Crystals to Polymerâ€Based Electrolytes. Angewandte Chemie - International Edition, 2010, 49, 7847-7848.	7.2	131
164	Electroactive Organic Molecules Immobilized onto Solid Nanoparticles as a Cathode Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2010, 49, 7222-7224.	7.2	163
165	Polyimides: Promising Energyâ€Storage Materials. Angewandte Chemie - International Edition, 2010, 49, 8444-8448.	7.2	607
166	Ionicâ€Liquidâ€Tethered Nanoparticles: Hybrid Electrolytes. Angewandte Chemie - International Edition, 2010, 49, 9158-9161.	7.2	126
167	Fabrication and properties of crosslinked poly(propylene carbonate maleate) gel polymer electrolyte for lithiumâ€ion battery. Journal of Applied Polymer Science, 2010, 118, 2078-2083.	1.3	14
168	Integrated solid-state film lithium battery. Procedia Engineering, 2010, 5, 778-781.	1.2	5
169	Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. Journal of Power Sources, 2010, 195, 559-566.	4.0	225
170	Nano-sponge ionic liquid–polymer composite electrolytes for solid-state lithium power sources. Journal of Power Sources, 2010, 195, 867-871.	4.0	31
171	Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries. Journal of Power Sources, 2010, 195, 1216-1220.	4.0	83
172	Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010, 195, 939-954.	4.0	1,338
173	Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. Journal of Power Sources, 2010, 195, 1370-1374.	4.0	230

ARTICLE IF CITATIONS Low hydrogen containing amorphous carbon filmsâ€"Growth and electrochemical properties as 174 4.0 25 lithium battery anodes. Journal of Power Sources, 2010, 195, 2044-2049. An enhanced microfluidic control system for improving power density of a hydride-based micro fuel cell. Journal of Power Sources, 2010, 195, 1866-1871. Mixture of LiBF4 and lithium difluoro(oxalato)borate for application as a new electrolyte for 176 4.0 33 lithium-ion batteries. Journal of Power Sources, 2010, 195, 6202-6206. The superior lithium storage capabilities of ultra-fine rutile TiO2 nanoparticles. Journal of Power 4.0 110 Source's, 2010, 195, 2905-2908. Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for 178 4.0 108 Li-ion batteries. Journal of Power Sources, 2010, 195, 4290-4296. A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process. Journal of Power Sources, 2010, 195, 8267-8274. 179 4.0 79 Polymer electrolytes based on a ternary miscible blend of poly(ethylene oxide), poly(bisphenol) Tj ETQq0 0 0 rgBT /Qyerlock 1,Q Tf 50 50 180 Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance. International Journal of Heat and Mass Transfer, 2010, 53, 3552-3561. Renewable carbohydrates are a potential high-density hydrogen carrier. International Journal of 182 3.8 63 Hydrogen Energy, 2010, 35, 10334-10342. Synthesis and properties of a lithium-organic coordination compound as lithium-inserted material for 2.3 lithium ion batteries. Electrochemistry Communications, 2010, 12, 1253-1256. The effect of length and cis/trans relationship of conjugated pathway on secondary battery 184 2.362 performance in organolithium electrodes. Electrochemistry Communications, 2010, 12, 1348-1351. Nano-silicon/polyaniline composite for lithium storage. Electrochemistry Communications, 2010, 12, 2.3 1572-1575. A study of tiron in aqueous solutions for redox flow battery application. Electrochimica Acta, 2010, 186 2.6 101 55, 715-720. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte. Electrochimica Acta, 2010, 55, 1848-1854. 2.6 Hematite nanoflakes as anode electrode materials for rechargeable lithium-ion batteries. 188 2.6 55 Electrochimica Acta, 2010, 55, 3089-3092. Crystal structure and electrochemical performance of Li3V2(PO4)3 synthesized by optimized microwave solid-state synthesis route. Electrochimica Acta, 2010, 55, 3669-3680. Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for 190 2.6 97 lithium-ion batteries. Electrochimica Acta, 2010, 55, 4567-4572. High capacity three-dimensional ordered macroporous CoFe2O4 as anode material for lithium ion 191 batteries. Electrochimica Acta, 2010, 55, 4594-4598.

#	Article	IF	Citations
192	Solvent-assisted molten salt process: A new route to synthesise α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2010, 55, 5006-5013.	2.6	107
193	Electrochemical properties of heat-treated polymer-derived SiCN anode for lithium ion batteries. Electrochimica Acta, 2010, 55, 5860-5866.	2.6	27
194	Probing ion coordination in polymer electrolytes with multinuclear NMR correlation spectroscopy. Solid State Ionics, 2010, 181, 672-677.	1.3	6
195	The study on methyl methacrylate graft-copolymerized composite separator prepared by pre-irradiation method for Li-ion batteries. Surface and Coatings Technology, 2010, 204, 2822-2828.	2.2	19
196	Novel low temperature approaches for the eco-efficient synthesis of electrode materials for secondary Li-ion batteries. Comptes Rendus Chimie, 2010, 13, 106-116.	0.2	21
197	In situ soft X-ray absorption spectroscopy investigation of electrochemical corrosion of copper in aqueous NaHCO3 solution. Electrochemistry Communications, 2010, 12, 820-822.	2.3	95
198	A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochemistry Communications, 2010, 12, 1686-1689.	2.3	106
199	Nano-scale uniform distribution of Ge/Cu3Ge phase and its electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2010, 55, 2894-2900.	2.6	33
200	Experimental setup for <i>in situ</i> X-ray SAXS/WAXS/PDF studies of the formation and growth of nanoparticles in near- and supercritical fluids. Journal of Applied Crystallography, 2010, 43, 729-736.	1.9	132
201	Role of the surface in Li insertion into nanowires of TiO2-B. Surface and Interface Analysis, 2010, 42, 1330-1332.	0.8	27
202	Morphology ontrolled Synthesis of SnO ₂ Nanotubes by Using 1D Silica Mesostructures as Sacrificial Templates and Their Applications in Lithiumâ€ion Batteries. Small, 2010, 6, 296-306.	5.2	350
203	Is lithium the new gold?. Nature Chemistry, 2010, 2, 510-510.	6.6	945
204	High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials, 2010, 9, 353-358.	13.3	1,844
205	In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nature Materials, 2010, 9, 504-510.	13.3	650
206	High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology, 2010, 5, 531-537.	15.6	1,026
207	Hierarchical Bottom-Up Approach for High-Performance Si-Based Li-Ion Battery Anodes. ECS Meeting Abstracts, 2010, , .	0.0	0
208	Competing Pathways for the Decarbonisation of Road Transport: A Comparative Analysis of Electric and Hydrogen Vehicles. SSRN Electronic Journal, 0, , .	0.4	0
209	Direct-write dispenser-printed energy storage devices. , 2010, , .		0

#	Article	IF	CITATIONS
210	Nanocomposite Cr[sub 2]O[sub 3]–InP as a Storage Lithium Material. Journal of the Electrochemical Society, 2010, 157, A957.	1.3	4
211	Structural complexity of layered-spinel composite electrodes for Li-ion batteries. Journal of Materials Research, 2010, 25, 1601-1616.	1.2	34
212	Ultra-low power circuit techniques for a new class of sub-mm ³ sensor nodes. , 2010, , .		8
213	Enhanced Li-Transport on the Nanoscale: TiO ₂ -B Nanowires. Journal of Nano Research, 0, 11, 159-164.	0.8	7
214	Evolutions of Crystal Structure, Stoichiometry and Electrochemical Behavior with Co Substitution in LiNi _{1_y} Co _y O ₂ Positive Electrodes. Chinese Physics Letters, 2010, 27, 076102.	1.3	3
215	Organic Positive-Electrode Materials Based on Dialkoxybenzoquinone Derivatives for Use in Rechargeable Lithium Batteries. ECS Transactions, 2010, 28, 3-10.	0.3	40
216	Electrochemical behaviour of Al-doped Li(Ni <inf>0.5-x</inf> Al <inf>2x</inf> Mn <inf>0.5-x</inf>)O <inf>2</inf> with large Al content by the sol-gel method. , 2010, , .		0
217	Thermoelectric generator and solid-state battery for stand-alone microsystems. Journal of Micromechanics and Microengineering, 2010, 20, 085033.	1.5	24
218	Key challenges in future Li-battery research. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3227-3241.	1.6	677
219	Anti-Site Defects and Ion Migration in the LiFe _{0.5} Mn _{0.5} PO ₄ Mixed-Metal Cathode Material. Chemistry of Materials, 2010, 22, 1242-1248.	3.2	140
220	Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions. Journal of the Electrochemical Society, 2010, 157, A214.	1.3	90
221	Fabrication of Ordered NiO Coated Si Nanowire Array Films as Electrodes for a High Performance Lithium Ion Battery. ACS Applied Materials & Interfaces, 2010, 2, 3614-3618.	4.0	60
222	Synthesis of Multicomponent Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization. Chemistry of Materials, 2010, 22, 2573-2581.	3.2	66
223	Visualization of Charge Distribution in a Lithium Battery Electrode. Journal of Physical Chemistry Letters, 2010, 1, 2120-2123.	2.1	155
224	Structural, Transport, and Electrochemical Investigation of Novel AMSO ₄ F (A = Na, Li; M =) Tj ETQqQ Chemistry, 2010, 49, 7401-7413.) 0 0 rgBT 1.9	/Overlock 10 166
225	Reversible Three-Electron Redox Behaviors of FeF ₃ Nanocrystals as High-Capacity Cathode-Active Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 3190-3195.	1.5	127
226	Platinumâ^'Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithiumâ^'Air Batteries. Journal of the American Chemical Society, 2010, 132, 12170-12171.	6.6	1,171
227	Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem. Chemistry of Materials, 2010, 22, 1908-1914.	3.2	193

#	Article	IF	CITATIONS
228	Fast Li-Ion Insertion into Nanosized LiMn ₂ O ₄ without Domain Boundaries. ACS Nano, 2010, 4, 741-752.	7.3	194
229	Preparation of SnO ₂ -Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability. Journal of Physical Chemistry C, 2010, 114, 21770-21774.	1.5	377
230	Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes. Journal of Physical Chemistry C, 2010, 114, 929-932.	1.5	168
231	Biologically Activated Noble Metal Alloys at the Nanoscale: For Lithium Ion Battery Anodes. Nano Letters, 2010, 10, 2433-2440.	4.5	121
232	Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes. ACS Nano, 2010, 4, 2233-2241.	7.3	509
233	A porous LiFePO4 and carbon nanotube composite. Chemical Communications, 2010, 46, 7151.	2.2	195
234	General Synthesis of Large-Scale Arrays of One-Dimensional Nanostructured Co ₃ O ₄ Directly on Heterogeneous Substrates. Crystal Growth and Design, 2010, 10, 70-75.	1.4	216
235	Lanthanum titanate and lithium lanthanum titanate thin films grown by atomic layer deposition. Journal of Materials Chemistry, 2010, 20, 2877.	6.7	87
236	Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy and Environmental Science, 2010, 3, 1218.	15.6	244
237	Facile scalable synthesis of magnetitenanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries. Chemical Communications, 2010, 46, 118-120.	2.2	192
238	Large-Scale Porous Hematite Nanorod Arrays: Direct Growth on Titanium Foil and Reversible Lithium Storage. Journal of Physical Chemistry C, 2010, 114, 21158-21164.	1.5	99
239	Switching Redox-Active Sites by Valence Tautomerism in Prussian Blue Analogues A _{<i>x</i>} Mn _{<i>y</i>} [Fe(CN) ₆]Â <i>n</i> H ₂ O (A: K, Rb): Robust Frameworks for Reversible Li Storage. Journal of Physical Chemistry Letters, 2010, 1, 2063-2071.	2.1	179
240	MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO ₄ /FePO ₄ System. Chemistry of Materials, 2010, 22, 1249-1262.	3.2	57
241	Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires. ACS Applied Materials & Interfaces, 2010, 2, 3709-3713.	4.0	109
242	Batteries for Electric and Hybrid-Electric Vehicles. Annual Review of Chemical and Biomolecular Engineering, 2010, 1, 299-320.	3.3	229
243	Structure and electrochemical properties of novel mixed Li(Fe1â^'xMx)SO4F (M = Co, Ni, Mn) phases fabricated by low temperature ionothermal synthesis. Journal of Materials Chemistry, 2010, 20, 1659.	6.7	123
244	Dense core–shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chemical Communications, 2010, 46, 1437.	2.2	169
245	PAN-Encapsulated Nanocrystalline CoSn[sub 2] Particles as Negative Electrode Active Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A666.	1.3	15

#	Article	IF	CITATIONS
246	A Solid-State, Rechargeable, Long Cycle Life Lithium–Air Battery. Journal of the Electrochemical Society, 2010, 157, A50.	1.3	239
247	Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study. Chemistry of Materials, 2010, 22, 518-523.	3.2	91
248	Porous Spheres Assembled from Polythiophene (PTh)-Coated Ultrathin MnO ₂ Nanosheets with Enhanced Lithium Storage Capabilities. Journal of Physical Chemistry C, 2010, 114, 12048-12051.	1.5	90
249	Tandem Structure of Porous Silicon Film on Single-Walled Carbon Nanotube Macrofilms for Lithium-Ion Battery Applications. ACS Nano, 2010, 4, 4683-4690.	7.3	68
250	Designed Functional Systems from Peapod-like Co@Carbon to Co ₃ O ₄ @Carbon Nanocomposites. ACS Nano, 2010, 4, 4753-4761.	7.3	242
251	Structure and Transport Properties of the LiPF ₆ Doped 1-Ethyl-2,3-dimethyl-imidazolium Hexafluorophosphate Ionic Liquids: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114, 877-881.	1.2	35
252	Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes. Chemistry of Materials, 2010, 22, 1038-1045.	3.2	38
253	Thickness-Induced Proton-Conductivity Transition in Amorphous Zirconium Phosphate Thin Films. Chemistry of Materials, 2010, 22, 5528-5536.	3.2	15
254	Multi-Length Scale Morphology of Poly(ethylene oxide)-Based Sulfonate Ionomers with Alkali Cations at Room Temperature. Macromolecules, 2010, 43, 4223-4229.	2.2	76
255	Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. Journal of Materials Chemistry, 2010, 20, 10179.	6.7	211
256	Recent atomistic modelling studies of energy materials: batteries included. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3255-3267.	1.6	35
257	Facile synthesis and stable lithium storage performances of Sn- sandwiched nanoparticles as a high capacity anode material for rechargeable Li batteries. Journal of Materials Chemistry, 2010, 20, 7266.	6.7	60
258	Generating structural distributions of atomistic models of Li2O nanoparticles using simulated crystallisation. Journal of Materials Chemistry, 2010, 20, 10452.	6.7	8
259	Multi-electron reaction materials for high energy density batteries. Energy and Environmental Science, 2010, 3, 174-189.	15.6	566
260	Algorithms for Advanced Battery-Management Systems. IEEE Control Systems, 2010, 30, 49-68.	1.0	471
261	A novel high energy density rechargeable lithium/air battery. Chemical Communications, 2010, 46, 1661.	2.2	263
262	In search of energy-efficient mobile networking. , 2010, 48, 95-103.		114
263	Facile Synthesis of Mesoporous TiO2â^'C Nanosphere as an Improved Anode Material for Superior High Rate 1.5 V Rechargeable Li Ion Batteries Containing LiFePO4â^'C Cathode. Journal of Physical Chemistry C, 2010, 114, 10308-10313.	1.5	113

#	Article		CITATIONS
264	Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries. Chemistry of Materials, 2010, 22, 1229-1241.	3.2	432
265	Energy sources and their development for application in medical devices. Expert Review of Medical Devices, 2010, 7, 693-709.	1.4	99
266	Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries. Journal of the Electrochemical Society, 2010, 157, A1016.	1.3	260
267	Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells. Journal of the Electrochemical Society, 2010, 157, A1092.	1.3	141
268	Ion Transport in a Polymerâ^'Plastic Solid Soft Matter Electrolyte in the Light of Solvent Dynamics and Ion Association. Journal of Physical Chemistry B, 2010, 114, 5233-5240.	1.2	24
269	Synthesis, Structural, and Transport Properties of Novel Bihydrated Fluorosulphates NaMSO ₄ F·2H ₂ O (M = Fe, Co, and Ni). Chemistry of Materials, 2010, 22, 4062-4068.	3.2	49
270	A Nanostructured SiAl _{0.2} O Anode Material for Lithium Batteries. Chemistry of Materials, 2010, 22, 5570-5579.	3.2	36
271	Direct write dispenser printing of a zinc microbattery with an ionic liquid gel electrolyte. Journal of Micromechanics and Microengineering, 2010, 20, 104009.	1.5	119
272	A new battery-charging method suggested by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2010, 12, 2740.	1.3	19
273	Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Applied Physics Letters, 2010, 96, .	1.5	147
274	Aggregation, ageing and transport properties of surface modified fumed silica dispersions. Soft Matter, 2010, 6, 2293.	1.2	41
275	Stability of Lithium Superoxide LiO ₂ in the Gas Phase: Computational Study of Dimerization and Disproportionation Reactions. Journal of Physical Chemistry A, 2010, 114, 8165-8169.	1.1	76
276	Nanosheet-Based NiO Microspheres: Controlled Solvothermal Synthesis and Lithium Storage Performances. Journal of Physical Chemistry C, 2010, 114, 251-255.	1.5	229
277	Lithium Coordination Sites in Li _{<i>x</i>} TiO ₂ (B): A Structural and Computational Study. Chemistry of Materials, 2010, 22, 6426-6432.	3.2	104
278	Electro-thermally induced structural failure actuator (ETISFA) for implantable controlled drug delivery devices based on Micro-Electro-Mechanical-Systems. Lab on A Chip, 2010, 10, 2796.	3.1	18
279	Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environmental Science & Technology, 2010, 44, 6550-6556.	4.6	605
280	An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation. Journal of the Electrochemical Society, 2010, 157, A606.	1.3	284
281	A novel rechargeable Li–AgO battery with hybrid electrolytes. Chemical Communications, 2010, 46, 2055.	2.2	22

#	Article		CITATIONS
282	3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries. Journal of Materials Chemistry, 2010, 20, 3703.	6.7	62
283	High performance LiFePO4 electrode materials: influence of colloidal particle morphology and porosity on lithium-ion battery power capability. Energy and Environmental Science, 2010, 3, 813.	15.6	66
284	Aqueous TiO2/Ni(OH)2 rechargeable battery with a high voltage based on proton and lithium insertion/extraction reactions. Energy and Environmental Science, 2010, 3, 1732.	15.6	60
285	A new one-pot hydrothermal synthesis and electrochemical characterization of Li1+xMn2â^'yO4 spinel structured compounds. Energy and Environmental Science, 2010, 3, 1339.	15.6	56
286	Mechanosynthesized nanocrystalline BaLiF3: The impact of grain boundaries and structural disorder on ionic transport. Physical Chemistry Chemical Physics, 2010, 12, 11251.	1.3	54
287	Carbon nanotube-amorphous FePO4 core–shell nanowires as cathode material for Li ion batteries. Chemical Communications, 2010, 46, 7409.	2.2	107
288	Structures and Phase Transitions in (MoO ₂) ₂ P ₂ O ₇ . Inorganic Chemistry, 2010, 49, 2290-2301.	1.9	27
289	Modeling, estimation, and control challenges for lithium-ion batteries. , 2010, , .		46
290	Periodic mesoporous Lix(Mn1/3Ni1/3Co1/3)O2 spinel. Dalton Transactions, 2010, 39, 5306.	1.6	6
291	Synthesis of micro-nano hierarchical structured LiFePO4/C composite with both superior high-rate performance and high tap density. Nanoscale, 2011, 3, 4434.	2.8	58
292	Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) (PDBS) as a cathode material for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 4125.	6.7	136
293	Spherical nanoporous LiCoPO4/C composites as high performance cathode materials for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9984.	6.7	95
294	A lithium–air capacitor–battery based on a hybrid electrolyte. Energy and Environmental Science, 2011, 4, 4994.	15.6	88
295	Hierarchical Cu ₄ V _{2.15} O _{9.38} micro-/nanostructures: a lithium intercalating electrode material. Nanoscale, 2011, 3, 999-1003.	2.8	24
296	One-step synthesis of Fe3O4@C nanotubes for the immobilization of adriamycin. Journal of Materials Chemistry, 2011, 21, 12224.	6.7	25
297	First investigation on charge-discharge reaction mechanism of aqueous lithium ion batteries: a new anode material of Ag2V4O11 nanobelts. Dalton Transactions, 2011, 40, 10751.	1.6	30
298	Synthesis of nanoarchitectured LiNi0.5Mn0.5O2 spheres for high-performance rechargeable lithium-ion batteries via an in situ conversion route. Journal of Materials Chemistry, 2011, 21, 10437.	6.7	34
299	Single-crystal H ₂ V ₃ O ₈ nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 1780-1787.	6.7	100

#	ARTICLE Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient	IF	CITATIONS
300	electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2011, 4, 4148.	15.6	191
301	Density Functional Investigation of the Thermodynamic Stability of Lithium Oxide Bulk Crystalline Structures as a Function of Oxygen Pressure. Journal of Physical Chemistry C, 2011, 115, 23625-23633.	1.5	89
302	Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity. Nanoscale, 2011, 3, 4389.	2.8	83
303	Three-dimensional porous silicon–MWNT heterostructure with superior lithium storage performance. Physical Chemistry Chemical Physics, 2011, 13, 20108.	1.3	42
304	Transition metal vanadium oxides and vanadate materials for lithium batteries. Journal of Materials Chemistry, 2011, 21, 9841.	6.7	205
305	In situ synthesis of high-loading Li ₄ Ti ₅ O ₁₂ –graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale, 2011, 3, 572-574.	2.8	181
306	Stereoscopic image sensor with low-cost RGB filters tunned for the visible range. , 2011, , .		0
307	Prospects of on-chip fuelcell performance: improvement based on numerical simulation. Energy and Environmental Science, 2011, 4, 162-171.	15.6	17
308	Synthesis of mixed-conducting carbon coated porous γ-Fe2O3 microparticles and their properties for reversible lithium ion storage. Journal of Materials Chemistry, 2011, 21, 13009.	6.7	67
309	Hollow α-LiVOPO4 sphere cathodes for high energy Li-ion battery application. Journal of Materials Chemistry, 2011, 21, 10042.	6.7	53
310	Template free synthesis of LiV ₃ O ₈ nanorods as a cathode material for high-rate secondary lithium batteries. Journal of Materials Chemistry, 2011, 21, 1153-1161.	6.7	105
311	One-pot synthesis of three-dimensional silver-embedded porous silicon micronparticles for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 17083.	6.7	58
312	Ab initio study of lithium transition metal fluorophosphate cathodes for rechargeable batteries. Journal of Materials Chemistry, 2011, 21, 12054.	6.7	18
313	Electrodes for Nonaqueous Oxygen Reduction Based upon Conductive Polymer-Silver Composites. Journal of the Electrochemical Society, 2011, 158, A223.	1.3	16
314	Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9969.	6.7	37
315	Energy storage studies of bare and doped vanadium pentoxide, (V1.95M0.05)O5, M = Nb, Ta, for lithium ion batteries. Energy and Environmental Science, 2011, 4, 1712.	15.6	120
316	Synthesis of cuprous oxide nanocomposite electrodes by room-temperature chemical partial reduction. Dalton Transactions, 2011, 40, 9498.	1.6	15
317	A straightforward synthesis of carbon nanotube–perovskite composites for solid oxide fuel cells. Journal of Materials Chemistry, 2011, 21, 10273.	6.7	11

#	Article		CITATIONS
318	Communications, 2011, 47, 5238. Transition metal hydrogenophosphates: a potential source of new protonic and lithium conductors. Journal of Materials Chemistry, 2011, 21, 12188.		95
319			24
320			203
321	Charge Localization and Transport in Lithiated Olivine Phosphate Materials. Journal of Physical Chemistry C, 2011, 115, 25001-25006.		23
322	XPS and ToF-SIMS Study of Electrode Processes on Snâ^'Ni Alloy Anodes for Li-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 7012-7018.	1.5	89
323	Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials. Chemistry of Materials, 2011, 23, 1954-1963.		106
324	Structural evolution from mesoporous α-Fe2O3 to Fe3O4@C and γ-Fe2O3 nanospheres and their lithium storage performances. CrystEngComm, 2011, 13, 4709.	1.3	107
325	Structure, Size, and Morphology Control of Nanocrystalline Lithium Cobalt Oxide. Crystal Growth and Design, 2011, 11, 753-758.		24
326	Spongelike Nanosized Mn ₃ O ₄ as a High-Capacity Anode Material for Rechargeable Lithium Batteries. Chemistry of Materials, 2011, 23, 3223-3227.		352
327	Nanoporous spherical LiFePO4 for high performance cathodes. Energy and Environmental Science, 2011, 4, 885.	15.6	151
328	Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 5687.	6.7	171
329	Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for Lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 10777.	6.7	190
330	Thermally Driven Ionic Aggregation in Poly(ethylene oxide)-Based Sulfonate Ionomers. Journal of the American Chemical Society, 2011, 133, 10826-10831.	6.6	102
331	Lithium-Assisted Plastic Deformation of Silicon Electrodes in Lithium-Ion Batteries: A First-Principles Theoretical Study. Nano Letters, 2011, 11, 2962-2967.	4.5	301
332	Cyclic Stability of Electrochemically Embedded Nanobeam V[sub 2]O[sub 5] in Polypyrrole Films for Li Battery Cathodes. Journal of the Electrochemical Society, 2011, 158, A133.	1.3	18
333	Brillouin Scattering Investigation of Solvation Dynamics in Succinonitrile-Lithium Salt Plastic Crystalline Electrolytes. Journal of Physical Chemistry B, 2011, 115, 12356-12361.	1.2	8
334	Reversible Electrochemical Conversion Reaction of Li ₂ O/CuO Nanocomposites and Their Application as High-Capacity Cathode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 6167-6174.	1.5	43
335	The self-assembly of porous microspheres of tin dioxide octahedral nanoparticles for high performance lithium ion battery anode materials. Journal of Materials Chemistry, 2011, 21, 10189.	6.7	85

#	Article		CITATIONS
336	Counterion Dynamics in Polyesterâ^'Sulfonate Ionomers with Ionic Liquid Counterions. Macromolecules, 2011, 44, 3572-3582.	2.2	86
337	Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 10143.	6.7	67
338	Ammonia Assisted Hydrothermal Synthesis of Monodisperse LiFePO4â^•C Microspheres as Cathode Material for Lithium Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A1448.	1.3	38
339	Structural Diversity and Energetics in Anhydrous Lithium Tartrates: Experimental and Computational Studies of Novel Chiral Polymorphs and Their Racemic and Meso Analogues. Crystal Growth and Design, 2011, 11, 221-230.	1.4	39
340	Electrochemical Behavior and Magnetic Properties of Vanadium Oxide Nanotubes. Journal of Physical Chemistry C, 2011, 115, 5265-5270.	1.5	19
341	Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes. Nano Letters, 2011, 11, 4018-4025.	4.5	284
342	High-Performance Oxygen Reduction Catalyst Using Carbon-Supported La-Mn-Based Perovskite-Type Oxide. Electrochemical and Solid-State Letters, 2011, 14, A67.	2.2	30
343	Lithiation and Delithiation of Silicon Oxycarbide Single Particles with a Unique Microstructure. ACS Applied Materials & amp; Interfaces, 2011, 3, 2318-2322.	4.0	36
344	Lithium fiber growth on the anode in a nanowire lithium ion battery during charging. Applied Physics Letters, 2011, 98, .	1.5	80
345	Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries. Journal of the Electrochemical Society, 2011, 158, A605.	1.3	56
346	Co–Fe layered double hydroxide nanowall array grown from an alloy substrate and its calcined product as a composite anode for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 15969.	6.7	75
347	Finite Size Effect of Proton-Conductivity of Amorphous Silicate Thin Films Based on Mesoscopic Fluctuation of Glass Network. Journal of the American Chemical Society, 2011, 133, 3471-3479.	6.6	22
348	Enhanced Electrochemical Performance of Sn–Co Nanoarchitectured Electrode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 23603-23609.	1.5	49
349	Current Collectors for Rechargeable Li-Air Batteries. Journal of the Electrochemical Society, 2011, 158, A658-A663.	1.3	56
350	Template-free solvothermal synthesis of yolk–shell V2O5 microspheres as cathode materials for Li-ion batteries. Chemical Communications, 2011, 47, 10380.	2.2	141
351	Dual Lithium Insertion and Conversion Mechanisms in a Titanium-Based Mixed-Anion Nanocomposite. Journal of the American Chemical Society, 2011, 133, 13240-13243.	6.6	34
352	The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods. Energy and Environmental Science, 2011, 4, 4938.	15.6	41
353	Life Cycle Environmental Assessment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Electric Vehicles. Environmental Science & Technology, 2011, 45, 4548-4554.	4.6	501

#	Article		CITATIONS
354	Liquid Metal Alloys as Self-Healing Negative Electrodes for Lithium Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A845.	1.3	144
355	Plastic crystalline lithium salt with solid-state ionic conductivity and high lithium transport number. Chemical Communications, 2011, 47, 6311.	2.2	25
356	Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes. Journal of the American Chemical Society, 2011, 133, 13121-13129.	6.6	663
357	Supercapacitors Based on 3D Nanostructured Electrodes. , 2011, , 477-521.		0
358	Simpler Is Better: High-Yield and Potential Low-Cost Biofuels Production through Cell-Free Synthetic Pathway Biotransformation (SyPaB). ACS Catalysis, 2011, 1, 998-1009.	5.5	74
359	Co ₃ O ₄ @graphene Composites as Anode Materials for High-Performance Lithium Ion Batteries. Inorganic Chemistry, 2011, 50, 1628-1632.	1.9	354
360	Synthesis of monodispersed SnO2@C composite hollow spheres for lithium ion battery anode applications. Journal of Materials Chemistry, 2011, 21, 17448.	6.7	64
361	Facile fabrication of a nanoporous silicon electrode with superior stability for lithium ion batteries. Energy and Environmental Science, 2011, 4, 1037.	15.6	80
362	Better lithium-ion batteries with nanocable-like electrode materials. Energy and Environmental Science, 2011, 4, 1634.	15.6	119
363	Improved performances of β-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chemical Communications, 2011, 47, 3159.	2.2	126
364	Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material. Journal of the American Chemical Society, 2011, 133, 20914-20921.	6.6	251
365	Thermodynamic analysis on energy densities of batteries. Energy and Environmental Science, 2011, 4, 2614.	15.6	749
366	Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy and Environmental Science, 2011, 4, 3668.	15.6	264
367	Suppression of Phase Separation in LiFePO ₄ Nanoparticles During Battery Discharge. Nano Letters, 2011, 11, 4890-4896.	4.5	404
368	Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life. Nano Letters, 2011, 11, 2949-2954.	4.5	1,278
369	A novel bath lily-like graphene sheet-wrapped nano-Si composite as a high performance anode material for Li-ion batteries. RSC Advances, 2011, 1, 958.	1.7	85
370	Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chemical Communications, 2011, 47, 9438.	2.2	293
371	Flexible Zn ₂ SnO ₄ /MnO ₂ Core/Shell Nanocableâ^'Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. Nano Letters, 2011, 11, 1215-1220.	4.5	807

#	Article	IF	CITATIONS
372	Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes. Journal of Physical Chemistry C, 2011, 115, 14325-14333.	1.5	114
373	Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation. Nano Letters, 2011, 11, 3034-3039.	4.5	364
374	Polymer-derived carbon nanofiber network supported SnO2 nanocrystals: a superior lithium secondary battery material. Journal of Materials Chemistry, 2011, 21, 19302.	6.7	30
375	SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9912.	6.7	327
376	Nanoparticle-coated separators for lithium-ion batteries with advanced electrochemical performance. Physical Chemistry Chemical Physics, 2011, 13, 14457.	1.3	65
377	Change from Glyme Solutions to Quasi-ionic Liquids for Binary Mixtures Consisting of Lithium Bis(trifluoromethanesulfonyl)amide and Glymes. Journal of Physical Chemistry C, 2011, 115, 18384-18394.	1.5	174
378	Towards an electricity-powered world. Energy and Environmental Science, 2011, 4, 3193.	15.6	397
379	In situ growth of Li ₄ Ti ₅ O ₁₂ on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 761-767.	6.7	182
380	Wet chemical synthesis of Cu/TiO2 nanocomposites with integrated nano-current-collectors as high-rate anode materials in lithium-ion batteries. Physical Chemistry Chemical Physics, 2011, 13, 2014.	1.3	70
381	Cycling behaviour of Li/Li4Ti5O12 cells studied by electrochemical impedance spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 6234.	1.3	70
382	Preparation and Lithium Storage Performances of Mesoporous Fe ₃ O ₄ @C Microcapsules. ACS Applied Materials & Interfaces, 2011, 3, 705-709.	4.0	199
383	Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries. Dalton Transactions, 2011, 40, 12801.	1.6	62
384	Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries. Energy and Environmental Science, 2011, 4, 4038.	15.6	133
385	A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia. Green Chemistry, 2011, 13, 3230.	4.6	35
386	NiO nanocone array electrode with high capacity and rate capability for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 9988.	6.7	194
387	Facile Synthesis of Zero-, One-, and Two-Dimensional Vanadyl Pyrophosphates. Inorganic Chemistry, 2011, 50, 9980-9984.	1.9	10
388	Olivine LiFePO ₄ : development and future. Energy and Environmental Science, 2011, 4, 805-817.	15.6	314
389	High Power Nanocomposite TiS2 Cathodes for All-Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2011, 158, A1282.	1.3	109

#	Article	IF	CITATIONS
390	Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide. Electrochemical and Solid-State Letters, 2011, 14, A171.		186
391	Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. Journal of Materials Chemistry, 2011, 21, 5881.	6.7	76
392	Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 9891.	6.7	320
393	Rechargeable Aqueous Lithium-Ion Battery of TiO2â^•LiMn2O4 with a High Voltage. Journal of the Electrochemical Society, 2011, 158, A1490.	1.3	66
394	Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces. Journal of the American Chemical Society, 2011, 133, 14396-14403.	6.6	541
395	Eruption Combustion Synthesis of NiO/Ni Nanocomposites with Enhanced Properties for Dye-Absorption and Lithium Storage. ACS Applied Materials & Interfaces, 2011, 3, 4112-4119.	4.0	115
396	Capacitive Energy Storage from â^'50 to 100 °C Using an Ionic Liquid Electrolyte. Journal of Physical Chemistry Letters, 2011, 2, 2396-2401.	2.1	361
397	Effects of Self-Assembled Materials Prepared from V ₂ O ₅ for Lithium Ion Electroinsertion. Langmuir, 2011, 27, 12209-12217.	1.6	14
398	<i>In Situ</i> Electrochemical Lithiation/Delithiation Observation of Individual Amorphous Si Nanorods. ACS Nano, 2011, 5, 7805-7811.	7.3	152
399	Polyoctahedral Silsesquioxane-Nanoparticle Electrolytes for Lithium Batteries: POSS-Lithium Salts and POSS-PEGs. Chemistry of Materials, 2011, 23, 5111-5121.	3.2	82
400	Hydrothermal Synthesis and Electrochemical Properties of Li ₃ V ₂ (PO ₄) ₃ /C-Based Composites for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 3772-3776.	4.0	128
401	Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte. Energy and Environmental Science, 2011, 4, 3509.	15.6	64
402	Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires. Journal of Materials Chemistry, 2011, 21, 14466.	6.7	101
403	Electrospray Synthesis of Silicon/Carbon Nanoporous Microspheres as Improved Anode Materials for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 14148-14154.	1.5	177
404	NANOSTRUCTURED ELECTRODE MATERIALS FOR LITHIUM BATTERIES. , 2011, , 85-126.		0
405	Amorphous Hierarchical Porous GeO _{<i>x</i>} as High-Capacity Anodes for Li Ion Batteries with Very Long Cycling Life. Journal of the American Chemical Society, 2011, 133, 20692-20695.	6.6	288
406	Atomistic investigation of Li+ diffusion pathways in the olivine LiFePO4 cathode material. Journal of Materials Chemistry, 2011, 21, 16365.	6.7	42
407	Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Physical Chemistry Chemical Physics, 2011, 13, 7170.	1.3	238

#	Article		CITATIONS
408	Neutron and X-ray Diffraction Study of Pyrophosphate-Based Li _{2–<i>x</i>} MP ₂ O ₇ (M = Fe, Co) for Lithium Rechargeable Battery Electrodes. Chemistry of Materials, 2011, 23, 3930-3937.	3.2	106
409	Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31P NMR Study. Energy and Environmental Science, 2011, 4, 4298.	15.6	187
410	Quasiemulsion-Templated Formation of α-Fe ₂ O ₃ Hollow Spheres with Enhanced Lithium Storage Properties. Journal of the American Chemical Society, 2011, 133, 17146-17148.	6.6	750
411	Cathode Composites for Li–S Batteries via the Use of Oxygenated Porous Architectures. Journal of the American Chemical Society, 2011, 133, 16154-16160.	6.6	568
412	Designed strategy to fabricate a patterned V2O5nanobelt array as a superior electrode for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 2362-2368.	6.7	92
413	Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications. Nano Letters, 2011, 11, 101-106.	4.5	98
414	Sb2Te3 and Bi2Te3 based thermopower wave sources. Energy and Environmental Science, 2011, 4, 3558.	15.6	71
415	Thermal stability of spinel Li1.1Mn1.9â^'yMyO4â^'zFz (M = Ni, Al, and Li, 0 â‰ອຸລິ‰¤0.3, and 0 â‰ze≤0.2) catho for lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 10165.	odes 6.7	26
416	Density Functional Theory Study of the Role of Anions on the Oxidative Decomposition Reaction of Propylene Carbonate. Journal of Physical Chemistry A, 2011, 115, 13896-13905.	1.1	184
417	Dielectric Relaxation Spectroscopy for Evaluation of the Influence of Solvent Dynamics on Ion Transport in Succinonitrileâ 'Salt Plastic Crystalline Electrolytes. Journal of Physical Chemistry B, 2011, 115, 2148-2154.	1.2	18
418	A novel three-dimensional micro supercapacitor using self-support nano composite materials. , 2011, , .		2
419	Temperature-sensitive cathode materials for safer lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2845.	15.6	77
420	Transport energy futures: Exploring the geopolitical dimension. Futures, 2011, 43, 1142-1153.	1.4	11
421	The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 2011, 3, 839.	2.8	778
422	Measuring oxygen reduction/evolution reactions on the nanoscale. Nature Chemistry, 2011, 3, 707-713.	6.6	233
423	Li mobility in Nasicon-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy. Dalton Transactions, 2011, 40, 10195.	1.6	31
424	A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science, 2011, 334, 1383-1385.	6.0	4,230
425	Building Energy Storage Device on a Single Nanowire. Nano Letters, 2011, 11, 3329-3333.	4.5	87

ARTICLE IF CITATIONS # Designed synthesis of SnO2-polyaniline-reduced graphene oxide nanocomposites as an anode material 426 6.7 117 for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 17654. Design considerations for energy storage power electronics interfaces for high penetration of 427 renewable energy sources., 2011,,. Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with 428 4.5 1,973 High Capacity and Cycling Stability. Nano Letters, 2011, 11, 2644-2647. Electrical battery model for dynamic simulations of hybrid electric vehicles., 2011,,. 429 Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material. Energy 430 15.6 62 and Environmental Science, 2011, 4, 3442. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. 18.7 1,358 Chemical Society Reviews, 2011, 40, 2525. Hierarchically porous and conductive LiFePO4 bulk electrode: binder-free and ultrahigh volumetric 432 6.7 47 capacity Li-ion cathode. Journal of Materials Chemistry, 2011, 21, 12444. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium 15.6 433 batteries. Energy and Environmental Science, 2011, 4, 1345. Semiconductor-septum solar rechargeable storage cells. Journal of Alloys and Compounds, 2011, 509, 434 2.8 5 1305-1309. Hierarchical CuO hollow microspheres: Controlled synthesis for enhanced lithium storage 2.8 performance. Journal of Alloys and Compounds, 2011, 509, 3367-3374. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion 436 328 2.8 battery anodes. Nanoscale, 2011, 3, 45-58. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nature 5.8 546 Communications, 2011, 2, 427. Synthesis of a polymeric 2,5-di-t-butyl-1,4-dialkoxybenzene and its evaluation as a novel cathode 438 2.1 21 material. Synthetic Metals, 2011, 161, 259-262. Collaborative routing and camera selection for visual wireless sensor networks. IET Communications, 2011, 5, 2443-2450. 1.5 Na₂Ti₃O₇: Lowest Voltage Ever Reported Oxide Insertion 440 3.2 742 Electrode for Sodium Ion Batteries. Chemistry of Materials, 2011, 23, 4109-4111. From battery modeling to Battery Management., 2011,,. 441 Electrodeposition experiments in microgravity conditions. Journal of Physics: Conference Series, 2011, 442 0.3 5 327, 012045. Utilizing an ionic liquid for synthesizing a soft matter polymer "gel―electrolyte for high rate 443 54 capability lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 17419.

#	Article	IF	CITATIONS
444	Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy and Environmental Science, 2011, 4, 1972.	15.6	346
445	Glucose-Assisted One-Pot Synthesis of FeOOH Nanorods and Their Transformation to Fe ₃ O ₄ @Carbon Nanorods for Application in Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 9814-9820.	1.5	295
446	Effect of ball-milling and lithium insertion on the lithium mobility and structure of Li3Fe2(PO4)3. Journal of Materials Chemistry, 2011, 21, 10012.	6.7	21
447	Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chemistry, 2011, 3, 546-550.	6.6	2,331
448	A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nature Materials, 2011, 10, 772-779.	13.3	301
449	Rechargeable Lithium/TEGDME-LiPF[sub 6]â^•O[sub 2] Battery. Journal of the Electrochemical Society, 2011, 158, A302.	1.3	403
450	Polymorphism in Li2(Fe,Mn)SiO4: A combined diffraction and NMR study. Journal of Materials Chemistry, 2011, 21, 17823.	6.7	55
451	LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ –Graphene Composite as a Promising Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 2966-2972.	4.0	244
452	Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage. ACS Nano, 2011, 5, 3831-3838.	7.3	382
453	Composite Cathode Material for Li-Ion Batteries Based on LiFePO4 System , 0, , .		6
454	An Analysis of Trends in Vehicle Technologies Based on Alternative Fuels: Battery Electric Vehicles and Fuel Cell Electric Vehicles. , 0, , .		1
455	å^†åā,¯āƒ©ã,¹ã,¿ãƒ¹¼ã,'å^©ç"¨ã⊷ã¥2次電æ±. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan,	2011 1,62	, 4 86-490.
458	High-performance Lithium Secondary Batteries Using Cathode Active Materials of Triquinoxalinylenes Exhibiting Six Electron Migration. Chemistry Letters, 2011, 40, 750-752.	0.7	102
459	The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1â^'xO2. Nature Materials, 2011, 10, 223-229.	13.3	267
460	Improved performance of polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer membranes containing lithium bis(oxalato)borate by phase inversion for lithium batteries. Solid State Sciences, 2011, 13, 1047-1051.	1.5	20
461	Characterization of thermoelectric generators by measuring the load-dependence behavior. Measurement: Journal of the International Measurement Confederation, 2011, 44, 2194-2199.	2.5	45
462	Completely functional composite cathode material based on an aerogel of vanadium oxides. Mendeleev Communications, 2011, 21, 315-317.	0.6	4
463	Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering Reports, 2011, 72, 203-252.	14.8	467

ARTICLE IF CITATIONS # Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion 4.0 306 464 batteries. Journal of Power Sources, 2011, 196, 8610-8617. Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams. Journal of Power Sources, 2011, 196, 8714-8718. Multi-parameter battery state estimator based on the adaptive and direct solution of the governing 466 4.0 58 differential equations. Journal of Power Sources, 2011, 196, 8735-8741. Comparison of discretization methods applied to the single-particle model of lithium-ion batteries. Journal of Power Sources, 2011, 196, 10267-10279. A novel structure of ceramics electrolyte for future lithium battery. Journal of Power Sources, 2011, 468 4.0 50 196, 9815-9819. xLi2MnO3·(1 \hat{a}^{*x})LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability. Journal of Power Sources, 2011, 196, 9702-9707. 469 4.0 A high-performance three-dimensional micro supercapacitor based on self-supporting composite 470 4.0 139 materials. Journal of Power Sources, 2011, 196, 10465-10471. Nanocone-arrays supported tin-based anode materials for lithium-ion battery. Journal of Power Sources, 2011, 196, 9780-9785. 471 4.0 LiCr0.2Ni0.4Mn1.4O4 spinels exhibiting huge rate capability at 25 and 55ŰC: Analysis of the effect of the particle size. Journal of Power Sources, 2011, 196, 10222-10227. 472 4.0 40 TiO2 nanorods branched on fast-synthesized large clearance TiO2 nanotube arrays for dye-sensitized 1.4 solar cells. Journal of Solid State Chemistry, 2011, 184, 2936-2940. What is vital (and not vital) to advance economically-competitive biofuels production. Process 474 1.8 99 Biochemistry, 2011, 46, 2091-2110. The effects of functional ionic liquid on properties of solid polymer electrolyte. Materials Chemistry 2.0 and Physics, 2011, 128, 250-255. Preparation and characterization of macroporous LiNi1/3Co1/3Mn1/3O2 using carbon sphere as 476 2.0 29 template. Materials Chemistry and Physics, 2011, 129, 296-300. Di-ureasil hybrids doped with LiBF4: Spectroscopic study of the ionic interactions and hydrogen bonding. Materials Chemistry and Physics, 2011, 129, 385-393. Suppressing Li3PO4 impurity formation in LiFePO4/Fe2P by a nonstoichiometry synthesis and its effect 478 1.3 35 on electrochemical properties. Materials Letters, 2011, 65, 1323-1326. Improved performance for lithium-ion batteries with nickel nanocone-arrays supported germanium 479 anode. Materials Letters, 2011, 65, 1542-1544. A novel synthesis of spherical LiFePO4 nanoparticles. Materials Letters, 2011, 65, 2096-2099. 480 1.314 Quinary icosahedral quasicrystalline Ti–V–Ni–Mn–Cr alloy: A novel anode material for Ni-MH 1.3

CITATION REPORT

rechargeable batteries. Materials Letters, 2011, 65, 2868-2871.

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
482	Performance of Si–Ni nanorod as anode for Li-ion batteries. Materials Letters, 2011, 65	, 3227-3229.	1.3	22
483	Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells. IEEE Transactions Devices, 2011, 58, 2014-2021.	on Electron	1.6	16
484	NaxVO2 as possible electrode for Na-ion batteries. Electrochemistry Communications, 20	11, 13, 938-941.	2.3	221
485	LiNb3O8 as a novel anode material for lithium-ion batteries. Electrochemistry Communica 13, 1127-1130.	itions, 2011,	2.3	60
486	MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nanostructure for superior reversible magnesic storage. Electrochemistry Communications, 2011, 13, 1143-1146.	um ion	2.3	56
487	High capacity Sb2O4 thin film electrodes for rechargeable sodium battery. Electrochemist Communications, 2011, 13, 1462-1464.	try	2.3	181
488	Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochimica Acta, 2011, 57, 14-19.		2.6	318
489	Low-temperature growth of well-crystalline Co3O4 hexagonal nanodisks as anode material lithium-ion batteries. Electrochimica Acta, 2011, 56, 8534-8538.	al for	2.6	28
490	High rate capability and long-term cyclability of Li4Ti4.9V0.1O12 as anode material in lith battery. Electrochimica Acta, 2011, 56, 8611-8617.	ium ion	2.6	104
491	Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nan prepared by hydrothermal route. Electrochimica Acta, 2011, 56, 8833-8838.	oparticles	2.6	89
492	Enhanced high rate capability of dual-phase Li4Ti5O12–TiO2 induced by pseudocapacit Electrochimica Acta, 2011, 56, 9152-9158.	ive effect.	2.6	95
493	Lithium-rich Li2.6BMg0.05 alloy as an alternative anode to metallic lithium for rechargeab batteries. Electrochimica Acta, 2011, 56, 8900-8905.	le lithium	2.6	22
494	Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon r ternary composite film. Electrochimica Acta, 2011, 56, 9224-9232.	ıanotube	2.6	164
495	Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—Metal Applied Catalysis B: Environmental, 2011, 108-109, 140-151.	or oxide?.	10.8	87
496	Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved pe lithium ion batteries. Carbon, 2012, 50, 1355-1362.	rformance of	5.4	58
497	Monodisperse Porous LiFePO ₄ Microspheres for a High Power Li-Ion Battery Journal of the American Chemical Society, 2011, 133, 2132-2135.	Cathode.	6.6	628
498	True Performance Metrics in Electrochemical Energy Storage. Science, 2011, 334, 917-91	8.	6.0	2,057
499	Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011, 334, 928-935.		6.0	11,724

#	Article	IF	Citations
500	A Main Group Metal Sandwich: Five Lithium Cations Jammed Between Two Corannulene Tetraanion Decks. Science, 2011, 333, 1008-1011.	6.0	210
501	Development and challenges of LiFePO ₄ cathode material for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 269-284.	15.6	1,058
502	Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 3353.	6.7	469
503	Inâ€situ XAFS Studies of Mn12 Molecularâ€Cluster Batteries: Superâ€Reduced Mn12 Clusters in Solidâ€State Electrochemistry. Chemistry - an Asian Journal, 2011, 6, 1074-1079.	1.7	25
504	Lithium ions on the fast track. Nature Materials, 2011, 10, 649-650.	13.3	89
505	A lithium superionic conductor. Nature Materials, 2011, 10, 682-686.	13.3	3,659
506	Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries. Russian Journal of Applied Chemistry, 2011, 84, 1179-1187.	0.1	11
507	Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. Nature Materials, 2011, 10, 947-951.	13.3	482
508	ULTRATHIN Li ₄ Ti ₅ O ₁₂ NANOSHEETS AS A HIGH PERFORMANCE ANODE FOR Li -ION BATTERY. Functional Materials Letters, 2011, 04, 389-393.	0.7	28
509	Not a clear cut. Nature Materials, 2011, 10, 723-723.	13.3	2
510	Silicate cathodes for lithium batteries: alternatives to phosphates?. Journal of Materials Chemistry, 2011, 21, 9811.	6.7	310
511	To draw an air electrode of a Li–air battery by pencil. Energy and Environmental Science, 2011, 4, 1704.	15.6	143
512	Continuous supercritical hydrothermal synthesis: lithium secondary ion battery applications. Research on Chemical Intermediates, 2011, 37, 429-440.	1.3	16
513	Derivation of Micro/Macro Lithium Battery Models from Homogenization. Transport in Porous Media, 2011, 88, 249-270.	1.2	54
514	Antisite defects and Mg doping in LiFePO4: aÂfirst-principles investigation. Applied Physics A: Materials Science and Processing, 2011, 104, 529-537.	1.1	47
515	Hysteresis and phase transition in many-particle storage systems. Continuum Mechanics and Thermodynamics, 2011, 23, 211-231.	1.4	39
516	Influence of polystyrene/phenyl substituents in precursors on microstructures of Si–O–C composite anodes for lithium-ion batteries. Journal of Power Sources, 2011, 196, 371-378.	4.0	47
517	Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries. Journal of Power Sources, 2011, 196, 814-819.	4.0	135

#	Article	IF	CITATIONS
518	Iron oxide porous nanorods with different textural properties and surface composition: Preparation, characterization and electrochemical lithium storage capabilities. Journal of Power Sources, 2011, 196, 2164-2170.	4.0	41
519	Temperature dependent phosphorous oxynitride growth for all-solid-state batteries. Journal of Power Sources, 2011, 196, 6911-6914.	4.0	49
520	Lithium–oxygen batteries—Limiting factors that affect performance. Journal of Power Sources, 2011, 196, 4436-4444.	4.0	299
521	A study on lithium/air secondary batteries—Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. Journal of Power Sources, 2011, 196, 5128-5132.	4.0	163
522	Two new frameworks of potassium saccharate obtained from acidic and alkaline solution. Journal of Solid State Chemistry, 2011, 184, 1339-1345.	1.4	8
523	Invited paper: Preparation and electrochemical characterization of doped spinel LiMn1.88Ge0.1Li0.02O4 cathode material. Electronic Materials Letters, 2011, 7, 105-108.	1.0	9
524	Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries. Nano Research, 2011, 4, 290-296.	5.8	63
525	LiCoO2 thin film cathode fabricated by pulsed laser deposition. Rare Metals, 2011, 30, 106-110.	3.6	4
526	Dielectric relaxation studies in soft — matter like nanocomposite polymer electrolyte PPG4 — AgCF3SO3: MgO. Transactions of the Indian Institute of Metals, 2011, 64, 155-158.	0.7	2
527	Mesoporous carbon-coated Li4Ti5O12 spheres for fast Li+ ion insertion/deinsertion in lithium battery anodes. Applied Nanoscience (Switzerland), 2011, 1, 7-11.	1.6	11
528	Supercapacitor-battery hybrid energy storage devices from an aqueous nitroxide radical active material. Science Bulletin, 2011, 56, 2433-2436.	1.7	5
529	Recent progress of computational investigation on anode materials in Li ion batteries. Frontiers of Physics, 2011, 6, 197-203.	2.4	16
530	Thermal reactivity of three lithiated carbonaceous materials. Ionics, 2011, 17, 183-188.	1.2	3
531	Design and comparison of ex situ and in situ devices for Raman characterization of lithium titanate anode material. Ionics, 2011, 17, 503-509.	1.2	49
532	Lithium ion battery recycling—A CR3 communication. Jom, 2011, 63, 10-10.	0.9	3
533	Flexible Carbon Nanotube–Cu ₂ O Hybrid Electrodes for Liâ€Ion Batteries. Small, 2011, 7, 1709-1713.	5.2	75
534	A novel combinative Raman and SEM mapping method for the detection of exfoliation of graphite in electrodes at very positive potentials. Journal of Raman Spectroscopy, 2011, 42, 1754-1760.	1.2	6
535	Synthesis and Properties of Novel Sulfideâ€Containing Aniline Copolymers as a Cathode Material for Liâ€Ion Batteries. Macromolecular Chemistry and Physics, 2011, 212, 2487-2492.	1.1	0

#	Article	IF	CITATIONS
536	Strain Anisotropies and Selfâ€Limiting Capacities in Singleâ€Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithiumâ€Ion Battery Anodes. Advanced Functional Materials, 2011, 21, 2412-2422.	7.8	176
537	Local Stateâ€ofâ€Charge Mapping of Lithiumâ€ion Battery Electrodes. Advanced Functional Materials, 2011, 21, 3282-3290.	7.8	102
538	Highly Improved Rate Capability for a Lithium-Ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-Assembly Method. Advanced Functional Materials, 2011, 21, 4349-4357.	7.8	263
539	Porous Li ₄ Ti ₅ O ₁₂ Coated with Nâ€Doped Carbon from Ionic Liquids for Liâ€Ion Batteries. Advanced Materials, 2011, 23, 1385-1388.	11.1	742
540	Hierarchical Carbonâ€Coated LiFePO ₄ Nanoplate Microspheres with High Electrochemical Performance for Liâ€ion Batteries. Advanced Materials, 2011, 23, 1126-1129.	11.1	168
541	The Iron Oxides Strike Back: From Biomedical Applications to Energy Storage Devices and Photoelectrochemical Water Splitting. Advanced Materials, 2011, 23, 5243-5249.	11.1	211
542	In Situ Neutron Depth Profiling: A Powerful Method to Probe Lithium Transport in Microâ€Batteries. Advanced Materials, 2011, 23, 4103-4106.	11.1	89
543	Cuâ€Si Nanocable Arrays as Highâ€Rate Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2011, 23, 4415-4420.	11.1	283
544	Redoxâ€Active Fe(CN) ₆ ^{4â^'} â€Doped Conducting Polymers with Greatly Enhanced Capacity as Cathode Materials for Liâ€Ion Batteries. Advanced Materials, 2011, 23, 4913-4917.	11.1	128
545	Multifunctional Response of Anatase Nanostructures Based on 25 nm Mesocrystalâ€Like Porous Assemblies. Advanced Materials, 2011, 23, 4904-4907.	11.1	59
546	Allâ€Solidâ€State Lithiumâ€Ion Microbatteries: A Review of Various Threeâ€Dimensional Concepts. Advanced Energy Materials, 2011, 1, 10-33.	10.2	645
547	Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air. Advanced Energy Materials, 2011, 1, 34-50.	10.2	1,906
548	V ₂ O ₅ Nanoâ€Electrodes with High Power and Energy Densities for Thin Film Liâ€Ion Batteries. Advanced Energy Materials, 2011, 1, 194-202.	10.2	197
549	Nanosilicon oated Graphene Granules as Anodes for Liâ€lon Batteries. Advanced Energy Materials, 2011, 1, 495-498.	10.2	241
550	Inâ€Plane Vacancyâ€Enabled Highâ€Power Si–Graphene Composite Electrode for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2011, 1, 1079-1084.	10.2	405
551	Novel Threeâ€Ðimensional Mesoporous Silicon for High Power Lithiumâ€Ion Battery Anode Material. Advanced Energy Materials, 2011, 1, 1036-1039.	10.2	374
552	An Allâ€Solidâ€State Flexible Microâ€supercapacitor on a Chip. Advanced Energy Materials, 2011, 1, 1068-1072.	10.2	344
554	Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene. Canadian Journal of Chemical Engineering, 2011, 89, 1342-1357.	0.9	154

#	Article	IF	CITATIONS
555	Limitations of Disordered Carbons Obtained from Biomass as Anodes for Real Lithiumâ€lon Batteries. ChemSusChem, 2011, 4, 658-663.	3.6	87
559	LiZnSO ₄ F Made in an Ionic Liquid: A Ceramic Electrolyte Composite for Solid‣tate Lithium Batteries. Angewandte Chemie - International Edition, 2011, 50, 2526-2531.	7.2	79
560	Simultaneous Electronic and Ionic Conduction in a Block Copolymer: Application in Lithium Battery Electrodes. Angewandte Chemie - International Edition, 2011, 50, 9848-9851.	7.2	144
561	Structural and Electrochemical Diversity in LiFe _{1â^²<i>Î</i>} Zn _{<i>Ĩ`</i>} SO ₄ F Solid Solution: A Feâ€Based 3.9â€V Positiveâ€Electrode Material. Angewandte Chemie - International Edition, 2011, 50, 10574-10577.	7.2	39
562	Segmental Dynamics of PEO/LiClO ₄ Complex Crystals and Their Influence on the Li ⁺ â€Ion Transportation in Crystal Lattices: A ¹³ C Solidâ€State NMR Approach. Chemistry - A European Journal, 2011, 17, 8941-8946.	1.7	25
563	Lithiumâ€lon Conducting Electrolyte Salts for Lithium Batteries. Chemistry - A European Journal, 2011, 17, 14326-14346.	1.7	341
564	Review on Portable Energy Systems: From Electrochemical Systems to Energy Harvesting. Chemie-Ingenieur-Technik, 2011, 83, 1974-1983.	0.4	7
565	The role of transition metal interfaces on the electronic transport in lithium–air batteries. Catalysis Today, 2011, 165, 2-9.	2.2	87
566	A film of porous carbon nanofibers that contain Sn/SnO nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries. Carbon, 2011, 49, 89-95.	5.4	99
567	Effect of graphene nanosheet addition on the electrochemical performance of anode materials for lithium-ion batteries. Analytica Chimica Acta, 2011, 688, 146-155.	2.6	37
568	Effective enhancement of lithium-ion battery performance using SLMP. Electrochemistry Communications, 2011, 13, 664-667.	2.3	99
569	Aluminothermal synthesis and characterization of Li3V2â°'xAlx(PO4)3 cathode materials for lithium ion batteries. Electrochimica Acta, 2011, 56, 2823-2827.	2.6	89
570	Differential scanning calorimetry analysis of an enhanced LiNi0.8Co0.2O2 cathode with single wall carbon nanotube conductive additives. Electrochimica Acta, 2011, 56, 7272-7277.	2.6	18
571	Activated-phosphorus as new electrode material for Li-ion batteries. Electrochemistry Communications, 2011, 13, 346-349.	2.3	164
572	Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery. Electrochemistry Communications, 2011, 13, 429-432.	2.3	94
573	Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst. Electrochemistry Communications, 2011, 13, 646-649.	2.3	13
574	Hollow lithiated metal oxide particles as lithium-ion battery cathode materials. Electrochimica Acta, 2011, 56, 1426-1431.	2.6	24
575	Investigation on capacity fading of LiFePO4 in aqueous electrolyte. Electrochimica Acta, 2011, 56, 2351-2357.	2.6	111

#	Article	IF	CITATIONS
576	Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochimica Acta, 2011, 56, 2648-2655.	2.6	80
577	The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium. Electrochimica Acta, 2011, 56, 2328-2335.	2.6	37
578	Preparation and electrochemical properties of Cr-doped Li9V3(P2O7)3(PO4)2 as cathode materials for lithium-ion batteries. Electrochimica Acta, 2011, 56, 6562-6567.	2.6	18
579	In situ concentration measurements around the transition between two dendritic growth regimes. Electrochimica Acta, 2011, 56, 5464-5471.	2.6	9
580	Surfactant carbonization to synthesize pseudocubic α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2011, 56, 5593-5598.	2.6	43
581	Lithium storage performance and interfacial processes of three dimensional porous Sn–Co alloy electrodes for lithium-ion batteries. Electrochimica Acta, 2011, 56, 5979-5987.	2.6	62
582	Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators. Electrochimica Acta, 2011, 56, 6474-6480.	2.6	86
583	Influence of Al2O3 additions on crystallization mechanism and conductivity of Li2O–Ge2O–P2O5 glass–ceramics. Physica B: Condensed Matter, 2011, 406, 3947-3950.	1.3	31
584	Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. Journal of Power Sources, 2011, 196, 436-441.	4.0	137
585	Vertically aligned carbon nanotube electrodes for lithium-ion batteries. Journal of Power Sources, 2011, 196, 1455-1460.	4.0	128
586	Resource constraints on the battery energy storage potential for grid and transportation applications. Journal of Power Sources, 2011, 196, 1593-1598.	4.0	206
587	Synthesis of Co3O4/Carbon composite nanowires and their electrochemical properties. Journal of Power Sources, 2011, 196, 6987-6991.	4.0	118
588	Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries. Journal of Power Sources, 2011, 196, 2826-2834.	4.0	98
589	Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. Journal of Power Sources, 2011, 196, 3310-3316.	4.0	166
590	Study on electrochemically deposited Mg metal. Journal of Power Sources, 2011, 196, 7048-7055.	4.0	426
591	High stability and superior rate capability of three-dimensional hierarchical SnS2 microspheres as anode material in lithium ion batteries. Journal of Power Sources, 2011, 196, 3650-3654.	4.0	175
592	Mesoporous polyaniline/TiO2 microspheres with core–shell structure as anode materials for lithium ion battery. Journal of Power Sources, 2011, 196, 4735-4740.	4.0	86
593	Active lithium replenishment to extend the life of a cell employing carbon and iron phosphate electrodes. Journal of Power Sources, 2011, 196, 5966-5969.	4.0	21

#	Article	IF	CITATIONS
594	Li/LiFePO4 batteries with gel polymer electrolytes incorporating a guanidinium-based ionic liquid cycled at room temperature and 50°C. Journal of Power Sources, 2011, 196, 6502-6506.	4.0	31
595	Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li. Journal of Power Sources, 2011, 196, 7681-7686.	4.0	83
596	Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries. Journal of Power Sources, 2011, 196, 7763-7766.	4.0	118
597	Synthesis and evaluation of polythiocyanogen (SCN) as a rechargeable lithium-ion battery electrode material. Journal of Power Sources, 2011, 196, 7755-7759.	4.0	25
598	HRTEM and neutron diffraction study of LixMo5O17: From the ribbon (x=5) structure to the rock salt (x=12) structure. Journal of Solid State Chemistry, 2011, 184, 790-796.	1.4	3
599	Multi-level energy analysis of emerging technologies: a case study in new materials for lithium ion batteries. Journal of Cleaner Production, 2011, 19, 1405-1416.	4.6	56
600	One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Progress in Polymer Science, 2011, 36, 671-712.	11.8	568
601	Ion conduction and dynamics in mechanosynthesized nanocrystalline BaLiF3. Solid State Ionics, 2011, 184, 65-69.	1.3	14
602	Nanosized silver-coated and doped manganese dioxide for rechargeable lithium batteries. Solid State Ionics, 2011, 182, 108-115.	1.3	36
603	Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics, 2011, 186, 1-6.	1.3	96
604	Cation Extraction Process in Bilayer Cyanide Film as Investigated by Depth-Resolved X-ray Absorption Spectroscopy. Japanese Journal of Applied Physics, 2011, 50, 125802.	0.8	1
605	On the Thermal Stability of Olivine Cathode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A1115.	1.3	97
606	Electrospun metal oxides nanostructures for energy related devices. , 2011, , .		1
607	The electrochemical performance of carbon-aerogel-based nanocomposite anodes compound with graphites for lithium-ion cells. Journal of Reinforced Plastics and Composites, 2011, 30, 827-832.	1.6	7
608	PDE model for thermal dynamics of a large Li-ion battery pack. , 2011, , .		20
609	Mesoporous β-MnO2 Air Electrode Modified with Pd for Rechargeability in Lithium-Air Battery. Journal of the Electrochemical Society, 2011, 158, A1483.	1.3	87
610	Effects of Atomic Layer Deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 Cathode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A1298.	1.3	119
611	Characterization of polymer structures based on Burnside's lemma. Physical Review E, 2011, 84, 011805.	0.8	2

#	Article	IF	CITATIONS
612	Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers. Physical Review Letters, 2011, 107, 198301.	2.9	129
613	Interactions of Copper and Iron in Conversion Reactions of Nanosized Oxides with Large Variations in Iron-Copper Ratio. Journal of the Electrochemical Society, 2011, 158, A1383.	1.3	10
614	Improved Electrode Performance of LiFePO ₄ by Using Li ₃ V ₂ (PO ₄) ₃ as an Additive. Advanced Materials Research, 0, 347-353, 3501-3505.	0.3	0
615	A MC/AQ Parasitic Composite as Cathode Material for Lithium Battery. Journal of the Electrochemical Society, 2011, 158, A991.	1.3	98
616	Preparation and Characterization of Three Dimensional Sn-Co Alloy Based on Porous Ni for Lithium-Ion Batteries. Advanced Materials Research, 0, 399-401, 1457-1460.	0.3	0
617	Rational Design of TiO ₂ -Based Anode Materials Using Computer Modelling. Defect and Diffusion Forum, 0, 312-315, 1085-1090.	0.4	0
618	Electrochemical and Spectroscopic Investigations of the Overcharge Behavior of StabiLife Electrolyte Salts in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A146.	1.3	19
619	The search for high cycle life, high capacity, self healing negative electrodes for lithium ion batteries and a potential solution based on lithiated gallium. Materials Research Society Symposia Proceedings, 2011, 1333, 50401.	0.1	5
620	SPINEL Li₂MTi₃O₈ (M = Mg,) Tj ETQq0 0 0 rgBT /Ove STORAGE. Functional Materials Letters, 2011, 04, 65-69.	erlock 101 0.7	f 50 427 Td 46
621	Significant effect of electron transfer between current collector and active material on high rate performance of Li 4 Ti 5 O 12. Chinese Physics B, 2011, 20, 118202.	0.7	25
622	A Review of the Implications of Silica in Solid Oxide Fuel Cells. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	12
623	Preparation and Properties of Polytriphenylamine/Multi-Walled Carbon Nanotube Composite as a Cathode Material for Li-Ion Batteries. Advanced Materials Research, 0, 335-336, 1512-1515.	0.3	5
624	Ion motion and electrochemistry in nanostructures. MRS Bulletin, 2011, 36, 914-920.	1.7	7
625	Materials Characterization of CIGS solar cells on Top of CMOS chips. Materials Research Society Symposia Proceedings, 2011, 1325, 149.	0.1	2
626	CARBON ELECTRODE COMPOSITES FOR Li -ION BATTERIES PREPARED FROM POLYMER PRECURSORS. Functional Materials Letters, 2011, 04, 129-134.	0.7	9
627	Novel Computational Approaches to Li Diffusion and Electron Transport for High Capacity Battery Materials. Materials Research Society Symposia Proceedings, 2011, 1313, 70101.	0.1	0
628	IMPACT OF ZrO ₂ NANOPARTICLES ON IONIC TRANSPORT AND ELECTROCHEMICAL PROPERTIES OF NANOCOMPOSITE GEL POLYMER ELECTROLYTE: PPG (4000)– AgCF₃SO₃:ZrO₂ . International Journal of Nanoscience, 2011, 10, 241-246.	0.4	6
629	Thin Film Electrode of Prussian Blue Analogue for Li-ion Battery. Applied Physics Express, 2011, 4, 047101.	1.1	77

#	Article	IF	CITATIONS
630	Critical Issues in the Supply Chain of Lithium for Electric Vehicle Batteries. EMJ - Engineering Management Journal, 2012, 24, 52-62.	1.4	50
631	Binder-free Ge nanoparticles–carbon hybrids for anode materials of advanced lithium batteries with high capacity and rate capability. Chemical Communications, 2012, 48, 3987.	2.2	85
632	Global Utilization of Solar Energy and Development of Solar Cell Materials. Advanced Materials Research, 2012, 608-609, 151-154.	0.3	3
633	Influence of nanosize and thermodynamics on lithium storage in insertion and conversion reactions. Proceedings of SPIE, 2012, , .	0.8	1
634	Thin Film Electrodes of Prussian Blue Analogues with Rapid Li\$^{+}\$ Intercalation. Applied Physics Express, 2012, 5, 041801.	1.1	38
635	ELECTROCHEMICAL PROPERTY OF LiMn₂O₄ IN OVER-DISCHARGED CONDITIONS. Functional Materials Letters, 2012, 05, 1250028.	0.7	17
636	Electrochemical Stability of Carbon Fibers Compared to Aluminum as Current Collectors for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A1652-A1658.	1.3	48
637	Fast Discharge Process of Thin Film Electrode of Prussian Blue Analogue. Japanese Journal of Applied Physics, 2012, 51, 107301.	0.8	7
638	Temperature dependent magnetic structure of lithium delithiated LixFeSO4F (x = 0, 1) by Mössbauer spectroscopy. Journal of Applied Physics, 2012, 111, 07E138.	1.1	1
639	Realizing the electric-vehicle revolution. Nature Climate Change, 2012, 2, 328-333.	8.1	235
639 640	Implications of the formation of small polarons in Li <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td>8.1 1.1</td><td>235 74</td></mml:mrow<></mml:msub></mml:math </mml:math 	8.1 1.1	235 74
	Implications of the formation of small polarons in Li <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math< td=""><td></td><td></td></mml:math<></mml:math 		
640	Implications of the formation of small polarons in Li <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>for Li-air batteries. Physical Review B, 2012, 85, . A survey of long-term health modeling, estimation, and control of Lithium-ion batteries: Challenges</mml:math </mml:math 		74
640 641	Implications of the formation of small polarons in Li <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>for Li-air batteries. Physical Review B, 2012, 85, . A survey of long-term health modeling, estimation, and control of Lithium-ion batteries: Challenges and opportunities. , 2012, , .</mml:math </mml:math 	1.1	74 46
640 641 642	Implications of the formation of small polarons in Li <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>for Li-air batteries. Physical Review B, 2012, 85, . A survey of long-term health modeling, estimation, and control of Lithium-ion batteries: Challenges and opportunities. , 2012, , . The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology, 2012, 23, 325402. 3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries. Journal of</mml:math </mml:math 	1.1	74 46 30
640 641 642 643	Implications of the formation of small polarons in Li <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>for Li-air batteries. Physical Review B, 2012, 85, . A survey of long-term health modeling, estimation, and control of Lithium-ion batteries: Challenges and opportunities. , 2012, , . The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology, 2012, 23, 325402. 3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries. Journal of Nanomaterials, 2012, 2012, 1-19. Spinel lithium titanate (Li₄Ti₅O₁₂) as novel anode material for</mml:math </mml:math 	1.1 1.3 1.5	74 46 30 48
640 641 642 643 644	Implications of the formation of small polarons in L1 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>for Li-air batteries. Physical Review B, 2012, 85, . A survey of long-term health modeling, estimation, and control of Lithium-ion batteries: Challenges and opportunities., 2012, , . The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. Nanotechnology, 2012, 23, 325402. 3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries. Journal of Nanomaterials, 2012, 2012, 1-19. Spinel lithium titanate (Li₄Ti₅O₁₂) as novel anode material for room-temperature sodium-ion battery. Chinese Physics B, 2012, 21, 028201. Electroactive Poly(Vinylidene Fluoride-Trifluorethylene) (PVDF-TrFE) Microporous Membranes for</mml:math </mml:math 	1.1 1.3 1.5 0.7	74 46 30 48 116

#	ARTICLE Cross-Linked Poly(acrylic acid) with Polycarbodiimide as Advanced Binder for Si/Graphite Composite	IF 1.9	CITATIONS
649	Negative Electrodes in Li-Ion Batteries. ÉCS Electrochemistry Letters, 2012, 2, A17-A20. AN EXFOLIATED VANADIUM PENTOXIDE NANOPLATELET AND ITS ELECTROCHEMICAL PROPERTIES FOR	0.7	
049	LITHIUM-ION BATTERIES. Functional Materials Letters, 2012, 05, 1250019.	0.7	9
650	Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries. Scientific Reports, 2012, 2, 704.	1.6	90
651	Performance Optimization for Lithium–Oxygen Batteries. Key Engineering Materials, 0, 519, 160-163.	0.4	1
652	Sonochemical Synthesis of Pt Ion Substituted TiO ₂ (Ti _{0.9} Pt _{0.1} O ₂): A High Capacity Anode Material for Lithium Battery. Journal of the Electrochemical Society, 2012, 159, A1189-A1197.	1.3	5
653	A novel two-step preparation of spinel LiMn2O4 nanowires and its electrochemical performance charaterization. Journal of Materials Research, 2012, 27, 1750-1754.	1.2	5
654	Bi-functional oxygen electrocatalysts based on Palladium oxide-Ruthenium oxide composites. Materials Research Society Symposia Proceedings, 2012, 1491, 13.	0.1	1
655	Binary Ion Batteries Operating on the Model of Newton's Cradle. Journal of the Electrochemical Society, 2012, 159, A2001-A2004.	1.3	13
656	Effect of Iron Source and Temperature on Charge/Discharge Performance of LiFePO ₄ . Advanced Materials Research, 0, 509, 46-50.	0.3	1
657	Solid-State Thin-Film Lithium Batteries for Integration in Microsystems. Nanoscience and Technology, 2012, , 575-619.	1.5	2
658	Reversible Deposition and Dissolution of Magnesium from Imidazolium-Based Ionic Liquids. International Journal of Electrochemistry, 2012, 2012, 1-8.	2.4	16
659	Ionic Liquids: Potential Electrolytes for Electrochemical Applications. International Journal of Electrochemistry, 2012, 2012, 1-2.	2.4	4
660	Preparation and study as positive electrode of Li _{0·33} La _{0·56} TiO ₃ –PANI nanocomposite. Advances in Applied Ceramics, 2012, 111, 480-489.	0.6	1
661	Effect of Li Source on Charge/Discharge Performance of LiFePO ₄ . Advanced Materials Research, 2012, 509, 51-55.	0.3	0
662	Syntheses and Properties of Pyrrole Derivative as a Cathode Material for Li-Ion Batteries. Applied Mechanics and Materials, 0, 236-237, 731-735.	0.2	1
663	Robust Nonlinear Observer for State of Charge Estimation of Li-Ion Batteries. , 2012, , .		5
664	Studying Li Dynamics in a Gas-Phase Synthesized Amorphous Oxide by NMR and Impedance Spectroscopy. Zeitschrift Fur Physikalische Chemie, 2012, 226, 513-524.	1.4	3
665	Aqueous Lithium-Air Rechargeable Batteries. Electrochemistry, 2012, 80, 706-715.	0.6	27

ARTICLE IF CITATIONS # Materials for Lithium Ion Batteries: Challenges for Numerical Simulations. Zeitschrift Fur 1.4 4 666 Physikalische Chemie, 2012, 226, 95-106. Solvate Ionic Liquids and Their Application to Lithium Batteries: Glyme-Lithium Bis(fluorosulfonyl)amide Equimolar Complexes. Materials Research Society Symposia Proceedings, 0.1 2012, 1473, 20. 1D hollow α-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion 668 6.7 227 batteries. Journal of Materials Chemistry, 2012, 22, 23049. Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Accounts of Chemical Research, 533 2012, 45, 1759-1769. Anisotropic Volume Expansion of Crystalline Silicon during Electrochemical Lithium Insertion: An 670 4.5 116 Atomic Level Rationale. Nano Letters, 2012, 12, 5342-5347. Review on Conducting Polymers and Their Applications. Polymer-Plastics Technology and Engineering, 671 2012, 51, 1487-1500 Synthesis of Hierarchical Three-Dimensional Vanadium Oxide Microstructures as High-Capacity 672 4.0 157 Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2012, 4, 3874-3879. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries. 6.7 Journal of Materials Chemistry, 2012, 22, 24439. Insights into the Role of Interphasial Morphology on the Electrochemical Performance of Lithium 674 1.3 36 Electrodes. Journal of the Electrochemical Society, 2012, 159, A873-A886. Fast ion conducting phosphate glasses and glass ceramic composites: Promising materials for solid 1.5 state batteries. Journal of Non-Crystalline Solids, 2012, 358, 2841-2846. Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High 676 6.6 434 Capacity. Journal of the American Chemical Society, 2012, 134, 19694-19700. A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium–Sulfur as 6.6 534 a Positive Electrode. Journal of the American Chemical Society, 2012, 134, 4505-4508. Synthesis of MnO@C coreâ€"shell nanoplates with controllable shell thickness and their 678 6.7 114 electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 17864. Synthesis and characteristics of aminated vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate anion-exchange membrane for redox flow battery applications. Journal of Membrane Science, 2012, 423-424, 429-437. 679 4.1 Enhanced performance of a MnO2–graphene sheet cathode for lithium ion batteries using sodium 680 6.7 71 alginate as a binder. Journal of Materials Chemistry, 2012, 22, 13002. Three-Dimensionally Engineered Porous Silicon Electrodes for Li Ion Batteries. Nano Letters, 2012, 12, 143 6060-6065. Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries. Physical 682 1.3116 Chemistry Chemical Physics, 2012, 14, 5945. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials 2.2 for lithium-ion batteries. Chemical Communications, 2012, 48, 2198.

#	Article	IF	CITATIONS
684	Nanostructured Li ₂ S–C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries. Nano Letters, 2012, 12, 6474-6479.	4.5	286
685	Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy and Environmental Science, 2012, 5, 9100.	15.6	187
686	Biosynthesis of Co3O4 electrode materials by peptide and phage engineering: comprehension and future. Energy and Environmental Science, 2012, 5, 9936.	15.6	45
687	Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Research, 2012, 5, 845-853.	5.8	117
688	Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2â''y(PO4)3 solid electrolyte and carbon nanotube air electrode. Energy and Environmental Science, 2012, 5, 9077.	15.6	145
689	Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy and Environmental Science, 2012, 5, 5701-5707.	15.6	273
690	Hierarchical LiFePO ₄ /C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries. Nanotechnology, 2012, 23, 475401.	1.3	26
691	Excellent stability of spinel LiMn2O4-based composites for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 24563.	6.7	48
692	Cooperative Mechanism for the Diffusion of Li ⁺ Ions in LiMgSO ₄ F. Journal of Physical Chemistry C, 2012, 116, 18618-18625.	1.5	42
693	α-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance. Energy and Environmental Science, 2012, 5, 9765.	15.6	226
694	Substrate-Assisted Self-Organization of Radial β-AgVO ₃ Nanowire Clusters for High Rate Rechargeable Lithium Batteries. Nano Letters, 2012, 12, 4668-4673.	4.5	60
695	Rechargeable quasi-solid state lithium battery with organic crystalline cathode. Scientific Reports, 2012, 2, 453.	1.6	155
696	Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nature Communications, 2012, 3, 856.	5.8	795
697	Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale, 2012, 4, 2526.	2.8	1,012
698	Preparation and Electrochemical Properties of Li _{1+x} Al _x Ge _{2-x} (PO ₄) ₃ Synthesized by a Sol-Gel Method. Journal of the Electrochemical Society, 2012, 159, A1114-A1119.	1.3	89
699	Synthesis and electrochemical properties of highly dispersed Li4Ti5O12 nanocrystalline for lithium secondary batteries. Transactions of Nonferrous Metals Society of China, 2012, 22, 613-620.	1.7	10
700	The Effect of Water on the Discharge Capacity of a Non-Catalyzed Carbon Cathode for Li-O2 Batteries. Electrochemical and Solid-State Letters, 2012, 15, A45.	2.2	190
701	Phase Transformation and Lithiation Effect on Electronic Structure of Li _{<i>x</i>} FePO ₄ : An In-Depth Study by Soft X-ray and Simulations. Journal of the American Chemical Society, 2012, 134, 13708-13715.	6.6	136

#	Article	IF	CITATIONS
702	Smaller Sulfur Molecules Promise Better Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2012, 134, 18510-18513.	6.6	1,499
705	First Inâ€Situ Observation of the LiCoO ₂ Electrode/Electrolyte Interface by Totalâ€Reflection Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 11597-11601.	7.2	167
706	Highâ€Voltage Pyrophosphate Cathode: Insights into Local Structure and Lithiumâ€Diffusion Pathways. Angewandte Chemie - International Edition, 2012, 51, 13149-13153.	7.2	74
707	Construction of Rechargeable Batteries Using Multifused Tetrathiafulvalene Systems as Cathode Materials. ChemPlusChem, 2012, 77, 973-976.	1.3	65
708	Cropâ€Derived Polysaccharides as Binders for Highâ€Capacity Silicon/Graphiteâ€Based Electrodes in Lithiumâ€lon Batteries. ChemSusChem, 2012, 5, 2307-2311.	3.6	92
709	Electrochemical characteristics of nano-sized MoO2/C composite anode materials for lithium-ion batteries. Journal of Applied Electrochemistry, 2012, 42, 909-915.	1.5	25
710	SnO2/ZnO composite structure for the lithium-ion battery electrode. Journal of Solid State Chemistry, 2012, 196, 326-331.	1.4	51
711	Enhanced solidâ€state electrolytes made of lithium phosphorous oxynitride films. Thin Solid Films, 2012, 522, 85-89.	0.8	19
712	Properties of Sodium Tetrafluoroborate Solutions in 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Journal of Chemical & Engineering Data, 2012, 57, 3019-3025.	1.0	20
713	Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH)·0.11H2O nanowires with improved supercapacitive properties. Nanoscale, 2012, 4, 2145.	2.8	251
714	Synthesis of Hierarchical Hollow-Structured Single-Crystalline Magnetite (Fe ₃ O ₄) Microspheres: The Highly Powerful Storage versus Lithium as an Anode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 6495-6502.	1.5	220
715	Electrospinning Synthesis of Wire-Structured LiCoO ₂ for Electrode Materials of High-Power Li-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 10774-10780.	1.5	51
716	In Operando X-ray Absorption Fine Structure Studies of Polyoxometalate Molecular Cluster Batteries: Polyoxometalates as Electron Sponges. Journal of the American Chemical Society, 2012, 134, 4918-4924.	6.6	385
717	Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering. Journal of Physical Chemistry B, 2012, 116, 7291-7295.	1.2	11
718	Synthesis and electrochemical performance of Li and Ni 1,4,5,8-naphthalenetetracarboxylates as anodes for Li-ion batteries. Electrochemistry Communications, 2012, 25, 136-139.	2.3	95
719	Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries. Chemical Physics Letters, 2012, 546, 115-119.	1.2	40
720	Rechargeable Lithium Film Batteries – Encapsulation and Protection. Procedia Engineering, 2012, 47, 676-679.	1.2	7
721	A Non-Aqueous Asymmetric Cell with a Ti ₂ C-Based Two-Dimensional Negative Electrode. Journal of the Electrochemical Society, 2012, 159, A1368-A1373.	1.3	332

#	Article	IF	CITATIONS
722	Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A238-A243.	1.3	256
723	Self-assembled mesoporous CoO nanodisks as a long-life anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 13826.	6.7	119
724	High Rate Capability Lithium Iron Phosphate Wired by Carbon Nanotubes and Galvanostatic Transformed to Graphitic Carbon. Journal of the Electrochemical Society, 2012, 159, A336-A341.	1.3	12
725	Large-scale stereoscopic structured heazlewoodite microrod arrays and scale-like microsheets for lithium-ion battery applications. RSC Advances, 2012, 2, 6817.	1.7	29
726	Combination of organic cation and cyclic sulfonylamide anion exhibiting plastic crystalline behavior in a wide temperature range. RSC Advances, 2012, 2, 8502.	1.7	22
727	Highly stable Si-based multicomponent anodes for practical use in lithium-ion batteries. Energy and Environmental Science, 2012, 5, 7878.	15.6	103
728	A Surfactant-Free Strategy for Synthesizing and Processing Intermetallic Platinum-Based Nanoparticle Catalysts. Journal of the American Chemical Society, 2012, 134, 18453-18459.	6.6	116
729	Amorphous Si/SiOx/SiO2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life. RSC Advances, 2012, 2, 12710.	1.7	47
730	A facile room-temperature route to flower-like CuO microspheres with greatly enhanced lithium storage capability. RSC Advances, 2012, 2, 8602.	1.7	40
731	Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chemical Communications, 2012, 48, 10663.	2.2	278
732	Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. Journal of Materials Chemistry, 2012, 22, 3420.	6.7	88
733	Facile fabrication of CuO 1D pine-needle-like arrays for super-rate lithium storage. Journal of Materials Chemistry, 2012, 22, 15080.	6.7	55
734	Three-dimensional hierarchical self-supported multi-walled carbon nanotubes/tin(iv) disulfide nanosheets heterostructure electrodes for high power Li ion batteries. Journal of Materials Chemistry, 2012, 22, 9330.	6.7	44
735	Three-dimensional porous nano-Ni/Fe3O4 composite film: enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 18639.	6.7	56
736	K0.25Mn2O4nanofiber microclusters as high power cathode materials for rechargeable lithium batteries. RSC Advances, 2012, 2, 1643-1649.	1.7	44
737	ZnV2O4–CMK nanocomposite as an anode material for rechargeable lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 14284.	6.7	67
738	Tuning glycolide as an SEI-forming additive for thermally robust Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21003.	6.7	40
739	CoO/NiSix core–shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale, 2012, 4, 991-996.	2.8	49

CITATION REPORT IF CITATIONS Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance 6.7 112 optimization. Journal of Materials Chemistry, 2012, 22, 17773. Enhanced Li storage performance of ordered mesoporous MoO2via tungsten doping. Nanoscale, 2012, 2.8 The low-temperature (400 ŰC) coating of few-layer graphene on porous Li4Ti5O12via C28H16Br2 1.7 40 pyrolysis for lithium-ion batteries. RSC Advances, 2012, 2, 1751. Excellent cycle performance of Co-doped FeF3/C nanocomposite cathode material for lithium-ion 103 batteries. Journal of Materials Chemistry, 2012, 22, 17539. Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and 1.7 111 high rate capability. RSC Advances, 2012, 2, 5669. VO2 (A) nanostructures with controllable feature sizes and giant aspect ratios: one-step hydrothermal synthesis and lithium-ion battery performance. RSC Advances, 2012, 2, 5265. 1.7 44 Self-assembled large-area Co(OH)2 nanosheets/ionic liquid modified graphene heterostructures 6.7 88 toward enhanced energy storage. Journal of Materials Chemistry, 2012, 22, 3404. Magnetite modified graphene nanosheets with improved rate performance and cyclic stability for Li 1.7 ion battery anodes. RSC Advances, 2012, 2, 4397. Electrochemical and Thermal Properties of NASICON Structured Na₃V₂(PO₄)₃as a Sodium Rechargeable Battery 1.3 316 Cathode: A Combined Experimental and Theoretical Study. Journal of the Electrochemical Society, 2012, 159, A1393-A1397 Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks. 6.0 446 Science, 2012, 335, 1468-1471.

750	Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective. Journal of the Electrochemical Society, 2012, 159, R31-R45.	1.3	540
751	Carbon Nanohorns As a High-Performance Carrier for MnO ₂ Anode in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 2325-2328.	4.0	143
752	Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction. Scientific Reports, 2012, 2, 747.	1.6	134
753	Nanoscale Interface Modification of LiCoO ₂ by Al ₂ O ₃ Atomic Layer Deposition for Solid-State Li Batteries. Journal of the Electrochemical Society, 2012, 159, A1120-A1124.	1.3	173
754	Reactivity of Electrolytes for Lithium-Oxygen Batteries with Li2O2. ECS Electrochemistry Letters, 2012, 1, A38-A42.	1.9	38
755	Thermodynamic and Structural Changes in Ion-Containing Symmetric Diblock Copolymers: A Small-Angle X-ray Scattering Study. Macromolecules, 2012, 45, 283-291.	2.2	71
756	Rutile-TiO ₂ Nanocoating for a High-Rate Li ₄ Ti ₅ O ₁₂ Anode of a Lithium-Ion Battery. Journal of the American Chemical Society, 2012, 134, 7874-7879.	6.6	602

757	Layered Titanium Disilicide Stabilized by Oxide Coating for Highly Reversible Lithium Insertion and Extraction. ACS Nano, 2012, 6, 8114-8119.	7.3	9
-----	---	-----	---

ARTICLE

4, 1541.

740

741

742

743

744

745

746

748

#	Article	IF	CITATIONS
758	<i>In Situ</i> X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes. ACS Nano, 2012, 6, 5465-5473.	7.3	156
759	Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Letters, 2012, 12, 802-807.	4.5	587
760	Self-Assembled LiFePO ₄ /C Nano/Microspheres by Using Phytic Acid as Phosphorus Source. Journal of Physical Chemistry C, 2012, 116, 5019-5024.	1.5	99
761	Effect of N-substitution in naphthalenediimides on the electrochemical performance of organic rechargeable batteries. RSC Advances, 2012, 2, 7968.	1.7	76
762	Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries. Nano Letters, 2012, 12, 5039-5047.	4.5	206
763	Hydrothermal Synthesis and Characterization of LiZr ₂ (PO ₄) ₃ . Key Engineering Materials, 0, 512-515, 195-198.	0.4	0
764	Multicomponent Effects on the Crystal Structures and Electrochemical Properties of Spinel-Structured M ₃ O ₄ (M = Fe, Mn, Co) Anodes in Lithium Rechargeable Batteries. Chemistry of Materials, 2012, 24, 720-725.	3.2	138
765	Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 4658-4664.	4.0	181
766	Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes. Scientific Reports, 2012, 2, 960.	1.6	160
767	High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. Journal of Materials Chemistry, 2012, 22, 20857.	6.7	182
768	Crystal Engineering of Nanomaterials To Widen the Lithium Ion Rocking "Express Way― A Case in LiCoO2. Crystal Growth and Design, 2012, 12, 5629-5634.	1.4	19
769	Nucleation and Growth of Platinum Films on High-k/Metal Gate Materials by Remote Plasma and Thermal ALD. Physics Procedia, 2012, 32, 551-560.	1.2	12
770	Synthesis and characterisation of side chain liquid crystal copolymers containing sulfonic acid groups. Polymer, 2012, 53, 2604-2612.	1.8	51
771	First principles study on electronic properties and occupancy sites of molybdenum doped into LiFePO4. Solid State Communications, 2012, 152, 1577-1580.	0.9	23
772	First-principles studies on the structural and electronic properties of Li-ion battery cathode material CuF2. Solid State Communications, 2012, 152, 1703-1706.	0.9	20
773	Mechanochemical synthesis and electrochemical behavior of Na3FeF6 in sodium and lithium batteries. Solid State Ionics, 2012, 218, 35-40.	1.3	30
774	Cation disordered rock salt phase Li2CoTiO4 as a potential cathode material for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 6200.	6.7	39
775	Structural Modulation in the High Capacity Battery Cathode Material LiFeBO3. Journal of the American Chemical Society, 2012, 134, 12516-12527.	6.6	63

#	Article	IF	CITATIONS
776	Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries. Chemistry of Materials, 2012, 24, 2692-2697.	3.2	255
777	Solution-Based Synthesis and Characterization of Lithium-Ion Conducting Phosphate Ceramics for Lithium Metal Batteries. Chemistry of Materials, 2012, 24, 287-293.	3.2	103
778	Tuning Ion Conducting Pathways Using Holographic Polymerization. Nano Letters, 2012, 12, 310-314.	4.5	46
779	Stability investigations of electrocatalysts on the nanoscale. Energy and Environmental Science, 2012, 5, 9319.	15.6	230
780	Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21144.	6.7	90
781	Controllable Synthesis of Highly Conductive Polyaniline Coated Silica Nanoparticles Using Self-Stabilized Dispersion Polymerization. ACS Applied Materials & Interfaces, 2012, 4, 4603-4609.	4.0	44
782	Exploiting nanoparticles as precursors for novel nanostructure designs and properties. CrystEngComm, 2012, 14, 7535.	1.3	28
783	Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale, 2012, 4, 5868.	2.8	240
784	Green synthesis of Fe3O4 nanoparticles embedded in a porous carbon matrix and its use as anode material in Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21373.	6.7	74
785	Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium. Journal of Physical Chemistry Letters, 2012, 3, 891-895.	2.1	75
786	LiFePO ₄ Nanocrystals: Liquid-Phase Reduction Synthesis and Their Electrochemical Performance. ACS Applied Materials & Interfaces, 2012, 4, 3062-3068.	4.0	32
787	Composition-Structure Relationships in the Li-Ion Battery Electrode Material LiNi _{0.5} Mn _{1.5} O ₄ . Chemistry of Materials, 2012, 24, 2952-2964.	3.2	211
788	Synthesis of nano-sized lithium cobalt oxide via a sol–gel method. Applied Surface Science, 2012, 258, 7612-7616.	3.1	15
789	Electrodeposition of amorphous silicon anode for lithium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 1157-1162.	1.7	50
790	Nanostructured carbon for energy storage and conversion. Nano Energy, 2012, 1, 195-220.	8.2	895
791	Energy storage in composites of a redox couple host and a lithium ion host. Nano Today, 2012, 7, 168-173.	6.2	44
792	A novel solution combustion synthesis of cobalt oxide nanoparticles as negative-electrode materials for lithium ion batteries. Journal of Alloys and Compounds, 2012, 513, 592-596.	2.8	55
793	Functional properties of electrospun NiO/RuO2 composite carbon nanofibers. Journal of Alloys and Compounds, 2012, 517, 69-74.	2.8	97

#	Article	IF	CITATIONS
794	Co3O4 nanowires as high capacity anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2012, 521, 95-100.	2.8	101
795	Synthesis and electrochemical properties of carbon nano-tubes modified spherical Li2FeSiO4 cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 525, 110-113.	2.8	33
796	Improved electrochemical performance of porous Fe3O4/carbon core/shell nanorods as an anode for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 536, 219-225.	2.8	70
797	Two-step carbon coating of lithium vanadium phosphate as high-rate cathode for lithium-ion batteries. Journal of Power Sources, 2012, 216, 33-35.	4.0	29
798	Mesoporous titania rods as an anode material for high performance lithium-ion batteries. Journal of Power Sources, 2012, 214, 298-302.	4.0	50
799	Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance. Journal of Power Sources, 2012, 214, 107-112.	4.0	80
800	Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries. Journal of Power Sources, 2012, 219, 36-44.	4.0	98
801	A3V2(PO4)3 (AÂ=ÂNa or Li) probed by in situ X-ray absorption spectroscopy. Journal of Power Sources, 2012, 216, 145-151.	4.0	60
802	Study of a graphene-like anode material in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid for Li-ion batteries. Journal of Power Sources, 2012, 216, 5-10.	4.0	6
803	Enhanced nanoscale conduction capability of a MoO2/Graphene composite for high performance anodes in lithium ion batteries. Journal of Power Sources, 2012, 216, 169-178.	4.0	107
804	Synthesis of mesoporous copper oxide microspheres with different surface areas and their lithium storage properties. Journal of Power Sources, 2012, 217, 336-344.	4.0	42
805	High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. Journal of Power Sources, 2012, 217, 43-46.	4.0	158
806	LiF/Fe nanocomposite as a lithium-rich and high capacity conversion cathode material for Li-ion batteries. Journal of Power Sources, 2012, 217, 54-58.	4.0	23
807	Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(IV) versus with a trivalent species such as Ga(III). Electrochemical, magnetic and ESR study. Journal of Power Sources, 2012, 216, 482-488.	4.0	45
808	Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures. Journal of Power Sources, 2012, 218, 6-14.	4.0	142
809	Effects of amorphous AlPO4 coating on the electrochemical performance of BiF3 cathode materials for lithium-ion batteries. Journal of Power Sources, 2012, 218, 204-211.	4.0	27
810	Electrochemical properties of the polyethylene oxide–Li(CF3SO2)2N and ionic liquid composite electrolyte. Journal of Power Sources, 2012, 219, 22-28.	4.0	33
811	The importance of "going nano―for high power battery materials. Journal of Power Sources, 2012, 219, 217-222.	4.0	65

#	Article	IF	CITATIONS
812	Simple synthesis of metallic Sn nanocrystals embedded in graphitic ordered mesoporous carbon walls as superior anode materials for lithium ion batteries. Journal of Power Sources, 2012, 219, 89-93.	4.0	35
813	Synthesis of cage-like LiFePO4/C microspheres for high performance lithium ion batteries. Journal of Power Sources, 2012, 220, 342-347.	4.0	25
814	Facile synthesis of nanocrystalline Li4Ti5O12 by microemulsion and its application as anode material for Li-ion batteries. Journal of Power Sources, 2012, 220, 84-88.	4.0	48
815	Recent advances in the development of Li–air batteries. Journal of Power Sources, 2012, 220, 253-263.	4.0	128
816	A single-ion polymer electrolyte based on boronate for lithium ion batteries. Electrochemistry Communications, 2012, 22, 29-32.	2.3	79
817	Inhibition of electrokinetic ion transport in porous materials due to potential drops induced by electrolysis. Electrochimica Acta, 2012, 78, 229-235.	2.6	33
818	AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochimica Acta, 2012, 78, 308-315.	2.6	180
819	Characterization of spherical-shaped Li4Ti5O12 prepared by spray drying. Electrochimica Acta, 2012, 78, 331-339.	2.6	38
820	Nanoarchitectured Fe3O4 array electrode and its excellent lithium storage performance. Electrochimica Acta, 2012, 78, 585-591.	2.6	32
821	Nest-like LiFePO4/C architectures for high performance lithium ion batteries. Electrochimica Acta, 2012, 78, 633-637.	2.6	17
822	Direct Synthesis of Self-Assembled Ferrite/Carbon Hybrid Nanosheets for High Performance Lithium-Ion Battery Anodes. Journal of the American Chemical Society, 2012, 134, 15010-15015.	6.6	231
823	Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nature Nanotechnology, 2012, 7, 310-315.	15.6	2,144
824	Nanoscale engineered electrochemically active silicon–CNT heterostructures-novel anodes for Li-ion application. Electrochimica Acta, 2012, 85, 680-684.	2.6	33
825	Recent Advances in Metal Oxideâ€based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials, 2012, 24, 5166-5180.	11.1	2,251
826	Cableâ€Type Flexible Lithium Ion Battery Based on Hollow Multiâ€Helix Electrodes. Advanced Materials, 2012, 24, 5192-5197.	11.1	331
827	Facile Shape Control of Co ₃ O ₄ and the Effect of the Crystal Plane on Electrochemical Performance. Advanced Materials, 2012, 24, 5762-5766.	11.1	378
829	Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery. Angewandte Chemie - International Edition, 2012, 51, 9780-9783.	7.2	381
830	Enhanced Highâ€Rate Performance of Doubleâ€Walled TiO ₂ â€B Nanotubes as Anodes in Lithiumâ€Ion Batteries. Chemistry - an Asian Journal, 2012, 7, 2516-2518.	1.7	22

#	ARTICLE	IF	CITATIONS
832	Rechargeable Batteries for Transport and Grid Applications: Current Status and Challenges. , 2012, , 253-271.		0
833	Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification. Analytical Chemistry, 2012, 84, 3973-3980.	3.2	832
834	Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material:	2.9	497
034	NaNi _¹ 334/sub>4/sub>4/sub>4/sub>4/sub>4/sub>4/sub>34/sub>	/sup>/ <sul< td=""><td>o>3*{/sub></td></sul<>	o>3*{/sub>
835	Energy storage in in vivo synthesizable biominerals. RSC Advances, 2012, 2, 5499.	1.7	6
836	First-principles study of transition metal doped Li2S as cathode materials in lithium batteries. Journal of Renewable and Sustainable Energy, 2012, 4, .	0.8	32
837	Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries. Nanotechnology, 2012, 23, 495401.	1.3	36
838	High Ion Conducting Polymer Nanocomposite Electrolytes Using Hybrid Nanofillers. Nano Letters, 2012, 12, 1152-1156.	4.5	273
839	Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 3680.	6.7	409
840	Time–Temperature Scaling of Conductivity Spectra of Organic Plastic Crystalline Conductors. Journal of Physical Chemistry Letters, 2012, 3, 3550-3554.	2.1	19
841	Microstructural design considerations for Li-ion battery systems. Current Opinion in Solid State and Materials Science, 2012, 16, 153-162.	5.6	71
842	High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy and Environmental Science, 2012, 5, 9014.	15.6	156
843	Factors affecting the battery performance of anthraquinone-based organic cathode materials. Journal of Materials Chemistry, 2012, 22, 4032.	6.7	126
844	7Li MRI of Li batteries reveals location of microstructural lithium. Nature Materials, 2012, 11, 311-315.	13.3	390
845	First Principles Study of the Li ₁₀ GeP ₂ S ₁₂ Lithium Super Ionic Conductor Material. Chemistry of Materials, 2012, 24, 15-17.	3.2	600
847	Extremely stable cycling of ultra-thin V2O5 nanowire–graphene electrodes for lithium rechargeable battery cathodes. Energy and Environmental Science, 2012, 5, 9889.	15.6	159
848	Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 20794-20799.	1.5	154
849	One-step vapor–solid reaction growth of Sn@C core–shell nanowires as an anode material for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21533.	6.7	48
850	Phthalocyanines in batteries and supercapacitors. Journal of Porphyrins and Phthalocyanines, 2012, 16, 754-760.	0.4	17

#	Article	IF	CITATIONS
851	A Vapor-Phase Corrosion Strategy to Hierarchically Mesoporous Nanosheet-Assembled Gearlike Pillar Arrays for Super-Performance Lithium Storage. Journal of Physical Chemistry C, 2012, 116, 21224-21231.	1.5	21
852	Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 7537.	6.7	135
853	Facile Ultrasonic Synthesis of CoO Quantum Dot/Graphene Nanosheet Composites with High Lithium Storage Capacity. ACS Nano, 2012, 6, 1074-1081.	7.3	475
854	Meeting 2050 CO2 Emissions Reduction Targets: The Potential for Electric Vehicles. , 2012, , 181-222.		1
856	High-Capacity Lithium-Ion Battery Conversion Cathodes Based on Iron Fluoride Nanowires and Insights into the Conversion Mechanism. Nano Letters, 2012, 12, 6030-6037.	4.5	225
857	Thermodynamics and Kinetics of the Li/FeF ₃ Reaction by Electrochemical Analysis. Journal of Physical Chemistry C, 2012, 116, 6467-6473.	1.5	79
858	High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium–oxygen batteries. Chemical Communications, 2012, 48, 7598.	2.2	109
859	Enhanced Anode Performances of Polyaniline–TiO ₂ –Reduced Graphene Oxide Nanocomposites for Lithium Ion Batteries. Inorganic Chemistry, 2012, 51, 9544-9551.	1.9	84
860	Extremely slow Li ion dynamics in monoclinic Li2TiO3—probing macroscopic jump diffusion via7Li NMR stimulated echoes. Physical Chemistry Chemical Physics, 2012, 14, 11974.	1.3	43
861	Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chemical Communications, 2012, 48, 8502.	2.2	140
862	Umwelttechnik im Unternehmen. , 2012, , 65-118.		0
864	SnO2 and TiO2 nanosheets for lithium-ion batteries. Materials Today, 2012, 15, 246-254.	8.3	162
865	Synthesis of mesoporous NiO nanospheres as anode materials for lithium ion batteries. Electrochimica Acta, 2012, 80, 140-147.	2.6	95
866	Influence of the exchange-correlation potential on the electrochemical properties of multicomponent silicate cathode materials. Electrochimica Acta, 2012, 80, 84-89.	2.6	10
867	Facile synthesis of Li2FeSiO4/C composites with triblock copolymer P123 and their application as cathode materials for lithium ion batteries. Electrochimica Acta, 2012, 80, 50-55.	2.6	67
868	Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochimica Acta, 2012, 83, 78-86.	2.6	312
869	Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer. Electrochimica Acta, 2012, 83, 259-263.	2.6	68
870	Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation. Electrochimica Acta, 2012, 86, 323-329.	2.6	29

#	Article	IF	CITATIONS
871	Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics, 2012, 225, 560-563.	1.3	31
872	Electrochemical properties of the amorphous solid electrolytes in the system Li2S–Al2S3–P2S5. Solid State Ionics, 2012, 225, 350-353.	1.3	28
873	Characterization of lithium borophosphate glass thin film electrolytes deposited by RF-magnetron sputtering for micro-batteries. Solid State Ionics, 2012, 225, 636-640.	1.3	16
874	Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight and end groups. Solid State Ionics, 2012, 227, 119-127.	1.3	215
875	Fabrication of porous platelike LiFePO4/C cathode materials via hydrothermal process. Powder Technology, 2012, 230, 219-224.	2.1	16
876	Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7, 414-429.	6.2	1,874
877	Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy and Environmental Science, 2012, 5, 9595.	15.6	323
878	The dimensionality of Sn anodes in Li-ion batteries. Materials Today, 2012, 15, 544-552.	8.3	222
879	Facile and controllable one-pot synthesis of an ordered nanostructure of Co(OH)2 nanosheets and their modification by oxidation for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 3764.	6.7	94
880	Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy and Environmental Science, 2012, 5, 6559.	15.6	421
881	A novel grain restraint strategy to synthesize highly crystallized Li4Ti5O12 (â^1⁄420 nm) for lithium ion batteries with superior high-rate performance. Journal of Materials Chemistry, 2012, 22, 11688.	6.7	47
882	Nitrogen-doped carbon-encapsulation of Fe3O4 for increased reversibility in Li+ storage by the conversion reaction. Journal of Materials Chemistry, 2012, 22, 7845.	6.7	139
883	Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. Journal of Materials Chemistry, 2012, 22, 2844.	6.7	248
884	Synthesis of pure nano-sized Li4Ti5O12 powder via solid-state reaction using very fine grinding media. Ceramics International, 2012, 38, 6963-6968.	2.3	17
885	Discharge product morphology and increased charge performance of lithium–oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. Journal of Materials Chemistry, 2012, 22, 20170.	6.7	136
886	Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?. Journal of Materials Chemistry, 2012, 22, 1489-1497.	6.7	92
887	A Metal-Free, Lithium-Ion Oxygen Battery: A Step Forward to Safety in Lithium-Air Batteries. Nano Letters, 2012, 12, 5775-5779.	4.5	148
888	Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012, 41, 2172.	18.7	2,322

#	Article	IF	CITATIONS
889	Direct Calculation of Li-Ion Transport in the Solid Electrolyte Interphase. Journal of the American Chemical Society, 2012, 134, 15476-15487.	6.6	524
890	Eco-efficient splash combustion synthesis of nanoscale pyrophosphate (Li2FeP2O7) positive-electrode using Fe(iii) precursors. Journal of Materials Chemistry, 2012, 22, 13455.	6.7	54
891	Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 5006.	6.7	224
892	Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy and Environmental Science, 2012, 5, 9743.	15.6	365
893	Highly porous chemically modified carbon cryogels and their coherent nanocomposites for energy applications. Energy and Environmental Science, 2012, 5, 5619-5637.	15.6	61
894	SnO2 and TiO2-supported-SnO2 lithium battery anodes with improved electrochemical performance. Journal of Materials Chemistry, 2012, 22, 11134.	6.7	70
895	α-Fe ₂ O ₃ -mediated growth and carbon nanocoating of ultrafine SnO ₂ nanorods as anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 2526-2531.	6.7	46
896	Synthesis of phase-pure SnO2 nanosheets with different organized structures and their lithium storage properties. CrystEngComm, 2012, 14, 5133.	1.3	50
897	Facile synthesis of laminate-structured graphene sheet–Fe3O4 nanocomposites with superior high reversible specific capacity and cyclic stability for lithium-ion batteries. RSC Advances, 2012, 2, 10680.	1.7	50
898	The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid. Journal of Materials Chemistry, 2012, 22, 9466.	6.7	46
899	High-Performing Mesoporous Iron Oxalate Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 7011-7019.	4.0	89
900	A novel assembly of LiFePO4 microspheres from nanoplates. CrystEngComm, 2012, 14, 4344.	1.3	24
901	Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy and Environmental Science, 2012, 5, 6966.	15.6	455
902	Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO ₄ (M = Mn, Fe, Co, and Ni): a comparative first-principles study. Journal of Materials Chemistry, 2012, 22, 1142-1149.	6.7	87
903	Superior high rate performance of core–shell Li4Ti5O12/carbon nanocomposite synthesized by a supercritical alcohol approach. RSC Advances, 2012, 2, 10805.	1.7	46
904	Facile preparation of ZnMn ₂ O ₄ hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 827-829.	6.7	236
905	In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 11316.	6.7	73
906	Oxidation process of polysulfides in charge process for lithium–sulfur batteries. Ionics, 2012, 18, 867-872.	1.2	26

#	Article	IF	CITATIONS
907	Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research, 2012, 5, 718-725.	5.8	104
908	Spinel ZnMn2O4 nanoplate assemblies fabricated via "escape-by-crafty-scheme―strategy. Journal of Materials Chemistry, 2012, 22, 13328.	6.7	151
909	Atomic layer deposition for nanostructured Li-ion batteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	111
910	Computational Electrochemistry Study of 16 Isoindole-4,7-diones as Candidates for Organic Cathode Materials. Journal of Physical Chemistry C, 2012, 116, 3793-3801.	1.5	43
911	Improving the Electrode Performance of Ge through Ge@C Core–Shell Nanoparticles and Graphene Networks. Journal of the American Chemical Society, 2012, 134, 2512-2515.	6.6	436
912	High-energy â€~composite' layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Physical Chemistry Chemical Physics, 2012, 14, 6584.	1.3	260
913	Rational Development of Ternary Alloy Electrocatalysts. Journal of Physical Chemistry Letters, 2012, 3, 1668-1673.	2.1	130
914	One-pot synthesis of mesoporous interconnected carbon-encapsulated Fe3O4 nanospheres as superior anodes for Li-ion batteries. RSC Advances, 2012, 2, 2262.	1.7	103
915	Synthesis and characterization of in situ Fe2O3-coated FeF3 cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry, 2012, 22, 24769.	6.7	40
916	Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 9759.	6.7	136
917	A lithium-ion anode with micro-scale mixed hierarchical carbon coated single crystal TiO2 nanorod spheres. Journal of Materials Chemistry, 2012, 22, 24552.	6.7	32
918	Ultrathin Nanosheets of Li ₂ MSiO ₄ (M = Fe, Mn) as High-Capacity Li-Ion Battery Electrode. Nano Letters, 2012, 12, 1146-1151.	4.5	323
919	Progress in research on the performance and service life of batteries membrane of new energy automotive. Science Bulletin, 2012, 57, 4153-4159.	1.7	15
920	A positive-temperature-coefficient electrode with thermal protection mechanism for rechargeable lithium batteries. Science Bulletin, 2012, 57, 4205-4209.	1.7	31
921	α-MnO2 hollow clews for rechargeable Li-air batteries with improved cyclability. Science Bulletin, 2012, 57, 4210-4214.	1.7	19
922	Superior long-term cycling stability of SnO ₂ nanoparticle/multiwalled carbon nanotube heterostructured electrodes for Li-ion rechargeable batteries. Nanotechnology, 2012, 23, 465402.	1.3	22
923	Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes. RSC Advances, 2012, 2, 4311.	1.7	73
924	Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes. Energy and Environmental Science, 2012, 5, 9528.	15.6	111

ARTICLE IF CITATIONS Kinetically Controlled Lithium-Staging in Delithiated LiFePO₄ Driven by the Fe Center 925 3.2 59 Mediated Interlayer Li–Li Interactions. Chemistry of Materials, 2012, 24, 4693-4703. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode 1.7 material for Li-ion batteries. RSC Advances, 2012, 2, 3423. Structure, Electrode Voltage and Activation Energy of LiMn_xCo_yNi_{1-x-y}O₂Solid Solutions as Cathode 927 29 1.3 Materials for Li Batteries from First-Principles. Journal of the Electrochemical Society, 2012, 159, A1203-A1208 Bonding, Ion Mobility, and Rate-Limiting Steps in Deintercalation Reactions with ThCr₂Si₂-type KNi₂Se₂. Journal of the American Chemical Society, 2012, 134, 7750-7757. Ion Transport in Liquid Salt Solutions with Oxide Dispersions: "Soggy Sand―Electrolytes. Journal of 929 2.1 34 Physical Chemistry Letters, 2012, 3, 744-750. Synthesis and Lithium Ion Conduction of Polysiloxane Single-Ion Conductors Containing Novel Weak-Binding Borates. Chemistry of Materials, 2012, 24, 2316-2323. 3.2 129 SnS2 nanoparticle loaded graphene nanocomposites for superior energy storage. Physical Chemistry 931 1.3 79 Chemical Physics, 2012, 14, 6981. Degradation and (de)lithiation processes in the high capacity battery material LiFeBO3. Journal of 6.7 Materials Chemistry, 2012, 22, 8799. Effects of VC-LiBOB binary additives on SEI formation in ionic liquid–organic composite electrolyte. 933 1.7 13 RSC Advances, 2012, 2, 4097. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. 934 Journal of Materials Chemistry, 2012, 22, 20535. Energy, Transport, & amp; the Environment., 2012, , . 935 12 High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for 2.2 269 Li-ion batteries. Chemical Communications, 2012, 48, 7268. Synthesis and charge–discharge properties of a ferrocene-containing polytriphenylamine derivative as 937 6.7 59 the cathode of a lithium ion battery. Journal of Materials Chemistry, 2012, 22, 22658. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy and Environmental Science, 2012, 5, 5221-5225. 15.6 241 Decoration of Graphitic Surfaces with Sn Nanoparticles through Surface Functionalization Using 939 1.6 35 Diazonium Chemistry. Langmuir, 2012, 28, 13042-13050. Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries. Chemistry 940 144 of Materials, 2012, 24, 1306-1315. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy and 941 15.6 354 Environmental Science, 2012, 5, 5271-5280. Li2MnSiO4 obtained by microwave assisted solvothermal method: electrochemical and surface 942 6.7 studies. Journal of Materials Chemistry, 2012, 22, 21279.

#	Article	IF	CITATIONS
943	Two-Electron Reaction without Structural Phase Transition in Nanoporous Cathode Material. Journal of Nanotechnology, 2012, 2012, 1-8.	1.5	19
945	A Quantitative Model for Human Olfactory Receptors. Nature Precedings, 2012, , .	0.1	1
946	New Developments in Solid Electrolytes for Thin-Film Lithium Batteries. , 0, , .		8
947	Effect of Both Mn and Zn Partial Substitution on the Electrochemical Performance of LiFeSO4F. ECS Meeting Abstracts, 2012, , .	0.0	0
948	Layered Materials for Solid-state Rechargeable Lithium Batteries. ECS Meeting Abstracts, 2012, , .	0.0	0
949	Multiscale Multiparadigm in Silico Design of New Materials for Li-ion Batteries. ECS Meeting Abstracts, 2012, , .	0.0	0
950	The Role of Nanotechnology in Automotive Industries. , 0, , .		17
951	Polymerized ionic liquids with guanidinium cations as host for gel polymer electrolytes in lithium metal batteries. Polymer International, 2012, 61, 259-264.	1.6	59
952	Hollow Porous LiMn ₂ O ₄ Microcubes as Rechargeable Lithium Battery Cathode with High Electrochemical Performance. Small, 2012, 8, 858-862.	5.2	69
953	Formation Mechanism of LiFePO ₄ Sticks Grown by a Microwaveâ€Assisted Liquidâ€Phase Process. Small, 2012, 8, 2231-2238.	5.2	20
954	Performance of batteries for electric vehicles on short and longer term. Journal of Power Sources, 2012, 212, 111-129.	4.0	280
955	Green Synthesis of NiO Nanobelts with Exceptional Pseudo apacitive Properties. Advanced Energy Materials, 2012, 2, 1188-1192.	10.2	297
956	Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2012, 134, 3517-3523.	6.6	1,266
957	Advanced Platinum Alloy Electrocatalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 891-898.	5.5	403
958	Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries. Nano Letters, 2012, 12, 505-511.	4.5	121
959	Efficient 3D Conducting Networks Built by Graphene Sheets and Carbon Nanoparticles for High-Performance Silicon Anode. ACS Applied Materials & Interfaces, 2012, 4, 2824-2828.	4.0	135
960	Facile fabrication of reticular polypyrrole–silicon core–shell nanofibers for high performance lithium storage. Journal of Materials Chemistry, 2012, 22, 11636.	6.7	55
961	Facile Synthesis and Evaluation of Nanofibrous Iron–Carbon Based Non-Precious Oxygen Reduction Reaction Catalysts for Li–O ₂ Battery Applications. Journal of Physical Chemistry C, 2012, 116, 9427-9432.	1.5	67

#	Article	IF	CITATIONS
962	Carbon-coated SnO ₂ @C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. Journal of Materials Chemistry, 2012, 22, 2766-2773.	6.7	129
963	Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes. Nano Letters, 2012, 12, 2446-2451.	4.5	382
964	Site-Specific Transition Metal Occupation in Multicomponent Pyrophosphate for Improved Electrochemical and Thermal Properties in Lithium Battery Cathodes: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2012, 134, 11740-11748.	6.6	37
965	Lithium-Rich Rock-Salt-Type Vanadate as Energy Storage Cathode: Li _{2–<i>x</i>} VO ₃ . Chemistry of Materials, 2012, 24, 12-14.	3.2	79
966	One-step synthesis of hollow porous Fe3O4 beads–reduced graphene oxide composites with superior battery performance. Journal of Materials Chemistry, 2012, 22, 17656.	6.7	104
967	Low-cost and large-scale synthesis of alkaline earth metal germanate nanowires as a new class of lithium ion battery anode material. Energy and Environmental Science, 2012, 5, 8007.	15.6	111
968	Green Synthesis and Stable Li-Storage Performance of FeSi ₂ /Si@C Nanocomposite for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3753-3758.	4.0	102
969	Small quantities of cobalt deposited on tin oxide as anode material to improve performance of lithium-ion batteries. Nanoscale, 2012, 4, 5731.	2.8	14
970	Salt-doped block copolymers: ion distribution, domain spacing and effective χ parameter. Soft Matter, 2012, 8, 9356.	1.2	113
971	Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy and Environmental Science, 2012, 5, 7931.	15.6	393
972	Electrolyte roadblocks to a magnesium rechargeable battery. Energy and Environmental Science, 2012, 5, 5941.	15.6	601
973	Characterization of poly(vinyl alcohol)/potassium chloride polymer electrolytes for electrochemical cell applications. Polymer Engineering and Science, 2012, 52, 1685-1692.	1.5	47
974	First Principles Design of Ionomers for Facile Ion Transport. ACS Symposium Series, 2012, , 19-44.	0.5	6
975	In Situ Neutron Techniques for Studying Lithium Ion Batteries. ACS Symposium Series, 2012, , 91-106.	0.5	31
976	Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 11014.	6.7	280
977	Hollow carbon cage with nanocapsules of graphitic shell/nickel core as an anode material for high rate lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 11252.	6.7	69
978	Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy and Environmental Science, 2012, 5, 7854.	15.6	2,086
979	High-Density Chemical Intercalation of Zero-Valent Copper into Bi ₂ Se ₃ Nanoribbons. Journal of the American Chemical Society, 2012, 134, 7584-7587.	6.6	152

#	Article	IF	CITATIONS
980	Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries. Journal of Physical Chemistry C, 2012, 116, 11917-11923.	1.5	87
981	Li14Ln5[Si11N19O5]O2F2 with Ln = Ce, Nd—Representatives of a Family of Potential Lithium Ion Conductors. Journal of the American Chemical Society, 2012, 134, 10132-10137.	6.6	18
982	Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. ACS Catalysis, 2012, 2, 844-857.	5.5	443
983	Materials for Rechargeable Lithium-Ion Batteries. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 445-471.	3.3	225
984	Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research. Chemical Reviews, 2012, 112, 3356-3426.	23.0	580
985	Smart Polymeric Cathode Material with Intrinsic Overcharge Protection Based on a 2,5â€Diâ€ <i>tert</i> â€butyl―1,4â€dimethoxybenzene Core Structure. Advanced Functional Materials, 2012, 22 4485-4492.	2,7.8	7
986	Twoâ€Ðimensional Nanoarchitectures for Lithium Storage. Advanced Materials, 2012, 24, 4097-4111.	11.1	501
987	Emerging Applications of Atomic Layer Deposition for Lithiumâ€lon Battery Studies. Advanced Materials, 2012, 24, 3589-3615.	11.1	493
988	Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries. Advanced Materials, 2012, 24, 3562-3567.	11.1	448
989	Nanosized Na ₄ Fe(CN) ₆ /C Composite as a Low ost and Highâ€Rate Cathode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2012, 2, 410-414.	10.2	257
990	Autonomic Shutdown of Lithiumâ€lon Batteries Using Thermoresponsive Microspheres. Advanced Energy Materials, 2012, 2, 583-590.	10.2	158
991	Excellent Cycle Life of Lithiumâ€Metal Anodes in Lithiumâ€Ion Batteries with Musselâ€Inspired Polydopamineâ€Coated Separators. Advanced Energy Materials, 2012, 2, 645-650.	10.2	410
992	Li ₄ Ti ₅ O ₁₂ Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries. Advanced Energy Materials, 2012, 2, 691-698.	10.2	321
993	Improved Functionality of Lithiumâ€lon Batteries Enabled by Atomic Layer Deposition on the Porous Microstructure of Polymer Separators and Coating Electrodes. Advanced Energy Materials, 2012, 2, 1022-1027.	10.2	213
994	The Electrochemical Flow Capacitor: A New Concept for Rapid Energy Storage and Recovery. Advanced Energy Materials, 2012, 2, 895-902.	10.2	214
995	Highâ€Voltage Pyrophosphate Cathodes. Advanced Energy Materials, 2012, 2, 841-859.	10.2	208
996	Electrochemical Performance of Solidâ€&tate Lithium–Air Batteries Using Carbon Nanotube Catalyst in the Air Electrode. Advanced Energy Materials, 2012, 2, 889-894.	10.2	115
997	Organic Electrode Materials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2012, 2, 742-769.	10.2	1,125

#	Article	IF	CITATIONS
998	In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures. Advanced Energy Materials, 2012, 2, 722-741.	10.2	341
999	Electrode Materials for Rechargeable Sodiumâ€ion Batteries: Potential Alternatives to Current Lithiumâ€ion Batteries. Advanced Energy Materials, 2012, 2, 710-721.	10.2	2,944
1000	Recent Progress in Aqueous Lithiumâ€ion Batteries. Advanced Energy Materials, 2012, 2, 830-840.	10.2	486
1001	Liâ€Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Liâ€ion and Redox Flow Batteries. Advanced Energy Materials, 2012, 2, 770-779.	10.2	138
1002	Selfâ€Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithiumâ€ion Batteries. Advanced Energy Materials, 2012, 2, 1086-1090.	10.2	447
1003	Disodium Terephthalate (Na ₂ C ₈ H ₄ O ₄) as High Performance Anode Material for Lowâ€Cost Roomâ€Temperature Sodiumâ€Ion Battery. Advanced Energy Materials, 2012, 2, 962-965.	10.2	498
1006	An Energy Storage Principle using Bipolar Porous Polymeric Frameworks. Angewandte Chemie - International Edition, 2012, 51, 7850-7854.	7.2	177
1007	A New Piece in the Puzzle of Lithium/Air Batteries: Computational Study on the Chemical Stability of Propylene Carbonate in the Presence of Lithium Peroxide. Chemistry - A European Journal, 2012, 18, 3510-3520.	1.7	51
1008	Poly(2,5â€dimercaptoâ€1,3,4â€thiadiazole) as a Cathode for Rechargeable Lithium Batteries with Dramatically Improved Performance. Chemistry - A European Journal, 2012, 18, 8521-8526.	1.7	34
1009	Mesoporous Nickel Oxide Nanowires: Hydrothermal Synthesis, Characterisation and Applications for Lithiumâ€ion Batteries and Supercapacitors with Superior Performance. Chemistry - A European Journal, 2012, 18, 8224-8229.	1.7	133
1010	Improved Li‧torage Performance of Li ₄ Ti ₅ O ₁₂ Coated with CN Compounds Derived from Pyrolysis of Urea through a Lowâ€Temperature Approach. ChemSusChem, 2012, 5, 526-529.	3.6	52
1011	An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature Communications, 2012, 3, 917.	5.8	347
1012	Molecular cluster batteries of nano-hybrid materials between Keggin POMs and SWNTs. Dalton Transactions, 2012, 41, 9863.	1.6	44
1013	Facile synthesis of graphene–molybdenum dioxide and its lithium storage properties. Journal of Materials Chemistry, 2012, 22, 16072.	6.7	53
1014	Towards systems materials engineering. Nature Materials, 2012, 11, 560-563.	13.3	255
1015	Synthesis of MoS ₂ –C One-Dimensional Nanostructures with Improved Lithium Storage Properties. ACS Applied Materials & Interfaces, 2012, 4, 3765-3768.	4.0	183
1016	A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Letters, 2012, 12, 3315-3321.	4.5	1,587
1017	Searching for a Better Thermal Battery. Science, 2012, 335, 1454-1455.	6.0	246

ARTICLE IF CITATIONS Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage 1018 1.5 85 lithium-ion batteries. Journal of Applied Electrochemistry, 2012, 42, 291-296. Investigation of immiscible Sn–Zn coatings with two-layer microstructure as anode material for 1.5 Li-ion battery. Journal of Applied Electrochemistry, 2012, 42, 477-482. lonic conductivity of bis(2-cyanoethyl) ether-lithium salt and poly(propylether imine)-lithium salt 1020 1.2 4 liquid electrolytes. Journal of Polymer Research, 2012, 19, 1. Effect of LiBOB as additive on electrochemical properties of lithium–sulfur batteries. Ionics, 2012, 18, 1.2 249-254. Solvothermal synthesis of LiColâ[^] x Mn x PO4/C cathode materials for lithium-ion batteries. Ionics, 1022 1.2 14 2012, 18, 507-512. Crystallization kinetics of lithium aluminum germanium phosphate glass by DSC technique. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 63-66. 0.4 Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries. 1024 1.2 54 Journal of Solid State Electrochemistry, 2012, 16, 1889-1892. Synthesis, characterization, and electrochemical performance of LiFePO4/C cathode materials for lithium ion batteries using various carbon sources: best results by using polystyrene nano-spheres. 1.2 Journal of Solid State Electrochemistry, 2012, 16, 1675-1681. Synthesis and electrochemical performance of nanoporous Li4Ti5O12 anode material for lithium-ion 1026 1.2 21 batteries. Journal of Solid State Electrochemistry, 2012, 16, 2047-2053. Si/C nanocomposite anode materials by freeze-drying with enhanced electrochemical performance in 1.2 14 lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 2733-2738. Carbon nanowalls decorated with silicon for lithium-ion batteries. Carbon, 2012, 50, 1438-1442. 1028 5.456 Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon, 2012, 50, 1897-1903. 1029 5.4 276 Production of large-area lithium-ion cells $\hat{a} \in \mathcal{C}$ Preconditioning, cell stacking and quality assurance. 1030 1.7 84 CIRP Annals - Manufacturing Technology, 2012, 61, 1-4. High resolution morphology and electrical characterization of aged Li-ion battery cathode. Journal of Colloid and Interface Science, 2012, 380, 187-191. 5.0 14 Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochemistry 1032 2.3693 Communications, 2012, 14, 86-89. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 2012, 16, 61-64. 2.3 1,252 Electrochemical performance of novel electrolyte solutions based on organoboron magnesium salts. 1034 2.336 Electrochemistry Communications, 2012, 18, 24-27. Facile ammonia-induced fabrication of nanoporous NiO films with enhanced lithium-storage 2.3 properties. Electrochemistry Communications, 2012, 20, 137-140.

#	Article	IF	CITATIONS
1036	On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochimica Acta, 2012, 61, 13-18.	2.6	214
1037	Coaxial NiO/Ni nanowire arrays for high performance pseudocapacitor applications. Electrochimica Acta, 2012, 60, 193-200.	2.6	81
1038	Influence of grain size on lithium storage performance of germanium oxide films. Electrochimica Acta, 2012, 62, 103-108.	2.6	52
1039	Impedance spectroscopic study on interfacial ion transfers in cyanide-bridged coordination polymer electrode with organic electrolyte. Electrochimica Acta, 2012, 63, 139-145.	2.6	64
1040	Microwave-assisted hydrothermal synthesis of nanostructured spinel Li4Ti5O12 as anode materials for lithium ion batteries. Electrochimica Acta, 2012, 63, 100-104.	2.6	59
1041	Significant improvement of electrochemical properties of AlF3-coated LiNi0.5Co0.2Mn0.3O2 cathode materials. Electrochimica Acta, 2012, 63, 363-368.	2.6	217
1042	Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochimica Acta, 2012, 65, 228-233.	2.6	117
1043	Iron oxide/carbon microsphere lithium-ion battery electrode with high capacity and good cycling stability. Electrochimica Acta, 2012, 67, 187-193.	2.6	31
1044	Fabrication of promising LiFePO4/C composite with a core–shell structure by a moderate in situ carbothermal reduction method. Electrochimica Acta, 2012, 70, 19-24.	2.6	30
1045	Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation. Electrochimica Acta, 2012, 70, 62-68.	2.6	25
1046	Three-dimensional sponge-like architectured cupric oxides as high-power and long-life anode material for lithium rechargeable batteries. Electrochimica Acta, 2012, 70, 98-104.	2.6	25
1047	Investigation of S/C composite synthesized by solvent exchange method. Electrochimica Acta, 2012, 70, 241-247.	2.6	15
1048	Pb3O4 type antimony oxides MSb2O4 (M=Co, Ni) as anode for Li-ion batteries. Electrochimica Acta, 2012, 71, 227-232.	2.6	34
1049	In situ growth of Si nanowires on graphene sheets for Li-ion storage. Electrochimica Acta, 2012, 74, 176-181.	2.6	34
1050	Improved electrochemical performance of nanostructured Si-based films modified by chemical etching. Electrochimica Acta, 2012, 74, 222-226.	2.6	10
1051	Fabrication of binder-free SnO2 nanoparticle electrode for lithium secondary batteries by electrophoretic deposition method. Electrochimica Acta, 2012, 76, 383-388.	2.6	41
1052	Synthesis of Li2CoTi3O8 fibers and their application to lithium-ion batteries. Electrochimica Acta, 2012, 77, 77-82.	2.6	39
1053	Flocculant-assisted synthesis of Fe2O3/carbon composites for superior lithium rechargeable batteries. Materials Research Bulletin, 2012, 47, 152-155.	2.7	11

#	Article	IF	CITATIONS
1054	Synthesis and electrochemical performance of LiFePO4/graphene composites by solid-state reaction. Materials Letters, 2012, 71, 54-56.	1.3	81
1055	Direct growth Fe2O3 nanorods on carbon fibers as anode materials for lithium ion batteries. Materials Letters, 2012, 72, 74-77.	1.3	50
1056	Synthesis and electrochemical properties of LiFePO4 single-crystalline nanoplates dominated with bc-planes. Materials Letters, 2012, 74, 22-25.	1.3	23
1057	New insights into the limiting parameters of the Li/S rechargeable cell. Journal of Power Sources, 2012, 199, 322-330.	4.0	356
1058	Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. Journal of Power Sources, 2012, 198, 229-235.	4.0	173
1059	Electrochemically stabilised quinone based electrode composites for Li-ion batteries. Journal of Power Sources, 2012, 199, 308-314.	4.0	67
1060	Novel Pr0.6Sr0.4Fe0.8Co0.2O3:Ce0.8Sm0.2O2 composite nanotubes for energy conversion and storage. Journal of Power Sources, 2012, 201, 332-339.	4.0	15
1061	Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. Journal of Power Sources, 2012, 206, 325-333.	4.0	192
1062	Redox active poly(N-vinylcarbazole) for use in rechargeable lithium batteries. Journal of Power Sources, 2012, 202, 364-368.	4.0	82
1063	Manganese oxide with a card-house-like structure reassembled from nanosheets for rechargeable Li-air battery. Journal of Power Sources, 2012, 203, 159-164.	4.0	66
1064	A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon–sulfur battery. Journal of Power Sources, 2012, 202, 308-313.	4.0	155
1065	Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. Journal of Power Sources, 2012, 206, 301-309.	4.0	81
1066	A non-precious metal bifunctional oxygen electrode for alkaline anion exchange membrane cells. Journal of Power Sources, 2012, 206, 14-19.	4.0	101
1067	Highly ordered LiFePO4 cathode material for Li-ion batteries templated by surfactant-modified polystyrene colloidal crystals. Journal of Power Sources, 2012, 205, 414-419.	4.0	33
1068	Performance of lithium tetrafluorooxalatophosphate (LiFOP) electrolyte with propylene carbonate (PC). Journal of Power Sources, 2012, 205, 439-448.	4.0	15
1069	Highly dispersed Ag nanoparticles (<10nm) deposited on nanocrystalline Li4Ti5O12 demonstrating high-rate charge/discharge capability for lithium-ion battery. Journal of Power Sources, 2012, 205, 479-482.	4.0	80
1070	High performance of LiNi0.5Mn0.5O2 positive electrode boosted by ordered three-dimensional nanostructures. Journal of Power Sources, 2012, 206, 230-235.	4.0	14
1071	Film-shaped sol–gel Li4Ti5O12 electrode for lithium-ion microbatteries. Journal of Power Sources, 2012, 205, 491-494.	4.0	41

ARTICLE IF CITATIONS Electrochemical performance of the nanostructured biotemplated V2O5 cathode for lithium-ion 1072 4.0 70 batteries. Journal of Power Sources, 2012, 206, 282-287. A combined first-principles computational/experimental study on LiNi0.66Co0.17Mn0.17O2 as a potential 4.0 layered cathode material. Journal of Power Sources, 2012, 211, 12-18. Surface layer formation of LiCoO2 thin film electrodes in non-aqueous electrolyte containing 1074 4.0 30 lithium bis(oxalate)borate. Journal of Power Sources, 2012, 210, 60-66. Novel positive electrode architecture for rechargeable lithium/sulfur batteries. Journal of Power 4.0 113 Sources, 2012, 211, 19-26. Applying functionalized carbon nanotubes to enhance electrochemical performances of tin oxide 1076 4.0 67 composite electrodes for Li-ion battery. Journal of Power Sources, 2012, 212, 66-72. Fabrication and characterization of Li–Mn–Ni–O sputtered thin film high voltage cathodes for Li-ion batteries. Journal of Power Sources, 2012, 211, 108-118. 4.0 Structural study of LiFePO4–LiNiPO4 solid solutions. Journal of Power Sources, 2012, 213, 287-295. 1078 4.0 17 Lithium storage performance in ordered mesoporous MoS2 electrode material. Microporous and 1079 Mesoporous Materials, 2012, 151, 418-423. Crystalline polycyclic quinone derivatives as organic positive-electrode materials for use in 1080 rechargeable lithium batteries. Materials Science and Engineering B: Solid-State Materials for 1.7 99 Advanced Technology, 2012, 177, 483-487. Study on the incorporation of photovoltaic systems as an auxiliary power source for hybrid and electric vehicles. Solar Energy, 2012, 86, 441-451. Synthesis and crystal chemistry of the NaMSO4F family (M=Mg, Fe, Co, Cu, Zn). Solid State Sciences, 1082 1.5 60 2012, 14, 15-20. The mechanism of ionic transport in PAN-based solid polymer electrolytes. Solid State Ionics, 2012, 1.3 208, 8-16. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials 1084 16.0 892 for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57, 724-803. Facile preparation of Co3O4 nanoparticles via thermal decomposition of Co(NO3)2 loading on C3N4. 1085 2.1 Powder Technology, 2012, 221, 199-202. Magnetic Properties of Phospho-Olivine $Li(Fe_{1-x}Mn_{x})PO_{4}} Investigated With MA estimates a statement of the second st$ 1086 1.2 5 Spectroscopy. IEEE Transactions on Magnetics, 2012, 48, 1553-1555. Titania Nanosheets Hierarchically Assembled on Carbon Nanotubes as Highâ€Rate Anodes for Lithiumâ€Ion 1088 43 Batteries. Chemistry - A European Journal, 2012, 18, 3132-3135. Highâ€Capacity Siliconâ€"Air Battery in Alkaline Solution. ChemSusChem, 2012, 5, 177-180. 1089 3.6 50 A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‧ulfur Batteries with Long 1090 11.1 Cycle Life. Advanced Materials, 2012, 24, 1176-1181.

#	Article	IF	CITATIONS
1091	Nitrogenâ€Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Advanced Materials, 2012, 24, 2047-2050.	11.1	1,541
1092	In Situ Generation of Few‣ayer Graphene Coatings on SnO ₂ â€6iC Coreâ€6hell Nanoparticles for Highâ€Performance Lithiumâ€lon Storage. Advanced Energy Materials, 2012, 2, 95-102.	10.2	233
1093	Carbon Nanotubeâ€Enhanced Growth of Silicon Nanowires as an Anode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2012, 2, 87-93.	10.2	90
1095	LiNi _{0.5} Mn _{1.5} O ₄ Hollow Structures as Highâ€Performance Cathodes for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2012, 51, 239-241.	7.2	340
1096	Reversible Lithiumâ€lon Storage in Silverâ€Treated Nanoscale Hollow Porous Silicon Particles. Angewandte Chemie - International Edition, 2012, 51, 2409-2413.	7.2	299
1097	A new high-energy density hydrogen carrier-carbohydrate-might be better than methanol. International Journal of Energy Research, 2013, 37, 769-779.	2.2	16
1098	Making Liâ€Air Batteries Rechargeable: Material Challenges. Advanced Functional Materials, 2013, 23, 987-1004.	7.8	477
1099	Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9954.	5.2	163
1100	Co3O4–carbon nanotube heterostructures with bead-on-string architecture for enhanced lithium storage performance. Nanoscale, 2013, 5, 8067.	2.8	78
1101	Enhanced high-rate capability and cycling stability of Na-stabilized layered Li1.2[Co0.13Ni0.13Mn0.54]O2 cathode material. Journal of Materials Chemistry A, 2013, 1, 11397.	5.2	219
1102	Ge nanoparticles by direct oxidation of Zintl alloys and their electrochemical behavior as anodes of Li-ion batteries. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	19
1103	Self-assembly to monolayer graphene film with high electrical conductivity. Journal of Energy Chemistry, 2013, 22, 52-57.	7.1	18
1104	Polymer electrolytes integrated with ionic liquids for future electrochemical devices. Journal of Applied Polymer Science, 2013, 129, 2363-2376.	1.3	126
1105	Microwaveâ€Induced Inâ€Situ Synthesis of Zn ₂ GeO ₄ /Nâ€Doped Graphene Nanocomposites and Their Lithiumâ€Storage Properties. Chemistry - A European Journal, 2013, 19, 6027-6033.	1.7	83
1106	Facile synthesis of flower-like and yarn-like α-Fe2O3 spherical clusters as anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 93, 131-136.	2.6	49
1107	Preparation of hollow Zn2SnO4 boxes for advanced lithium-ion batteries. RSC Advances, 2013, 3, 14480.	1.7	62
1108	Nano-Li 4 Ti 5 O 12 with high rate performance synthesized by a glycerol assisted hydrothermal method. Journal of Power Sources, 2013, 243, 661-667.	4.0	54
1109	Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Materials, 2013, 12, 827-835.	13.3	1,192

#	Article	IF	CITATIONS
1110	Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy and Environmental Science, 2013, 6, 2280.	15.6	1,213
1111	Conformal Coatings of Cyclizedâ€PAN for Mechanically Resilient Si nanoâ€Composite Anodes. Advanced Energy Materials, 2013, 3, 697-702.	10.2	134
1112	Cellulose-based Li-ion batteries: a review. Cellulose, 2013, 20, 1523-1545.	2.4	262
1113	Silicon nanowires for Li-based battery anodes: a review. Journal of Materials Chemistry A, 2013, 1, 9566.	5.2	311
1114	Hollow Porous SiO2 Nanocubes Towards High-performance Anodes for Lithium-ion Batteries. Scientific Reports, 2013, 3, 1568.	1.6	344
1115	Morphological Evolution of Si Nanowires upon Lithiation: A First-Principles Multiscale Model. Nano Letters, 2013, 13, 2011-2015.	4.5	43
1116	Tuning the surface chemistry of natural graphite anode by H3PO4 and H3BO3 treatments for improving electrochemical and thermal properties. Carbon, 2013, 62, 278-287.	5.4	29
1117	Managing voids of Si anodes in lithium ion batteries. Nanoscale, 2013, 5, 8864.	2.8	52
1118	3D porous micro/nanostructured interconnected metal/metal oxide electrodes for high-rate lithium storage. RSC Advances, 2013, 3, 432-437.	1.7	37
1119	Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 11163.	5.2	121
1120	LiFePO4 with an alluaudite crystal structure for lithium ion batteries. Energy and Environmental Science, 2013, 6, 830.	15.6	61
1121	Metal–Organic-Frameworks-Derived General Formation of Hollow Structures with High Complexity. Journal of the American Chemical Society, 2013, 135, 10664-10672.	6.6	520
1122	Capacitance Effects Superimposed on Redox Processes in Molecularâ€Cluster Batteries: A Synergic Route to High apacity Energy Storage. Chemistry - A European Journal, 2013, 19, 11235-11240.	1.7	12
1123	A high performance separator with improved thermal stability for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 8538.	5.2	33
1124	In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties. Journal of Materials Chemistry A, 2013, 1, 8897.	5.2	59
1125	Optimizing the electrochemical performance of water-soluble organic Li–ion battery electrodes. Electrochemistry Communications, 2013, 34, 174-176.	2.3	29
1126	Designing high-capacity cathode materials for sodium-ion batteries. Electrochemistry Communications, 2013, 34, 215-218.	2.3	50
1127	ZnO/graphene nanocomposite fabricated by high energy ball milling with greatly enhanced lithium storage capability. Electrochemistry Communications, 2013, 34, 312-315.	2.3	76

#	Article	IF	CITATIONS
1128	Electrochemical stability of lithium salicylato-borates as electrolyte additives in Li-ion batteries. Journal of Power Sources, 2013, 239, 659-669.	4.0	21
1129	FeF ₃ /Ordered Mesoporous Carbon (OMC) Nanocomposites for Lithium Ion Batteries with Enhanced Electrochemical Performance. Journal of Physical Chemistry C, 2013, 117, 14939-14946.	1.5	45
1130	A new structured aluminium–air secondary battery with a ceramic aluminium ion conductor. RSC Advances, 2013, 3, 11547.	1.7	30
1131	Transition Metal (Mn, Fe, Co, Ni)â€Doped Graphene Hybrids for Electrocatalysis. Chemistry - an Asian Journal, 2013, 8, 1295-1300.	1.7	78
1132	Performance of lithium tetrafluorooxalatophosphate in methyl butyrate electrolytes. Journal of Applied Electrochemistry, 2013, 43, 497-505.	1.5	10
1133	High-temperature thin-film calorimetry: a newly developed method applied to lithium ion battery materials. Journal of Materials Science, 2013, 48, 6585-6596.	1.7	9
1134	Li3V2(PO4)3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale, 2013, 5, 6485.	2.8	130
1135	Sandwich-Stacked SnO ₂ /Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries. ACS Nano, 2013, 7, 6948-6954.	7.3	99
1136	Large scale synthesized sulphonated reduced graphene oxide: a high performance material for electrochemical capacitors. RSC Advances, 2013, 3, 14954.	1.7	16
1137	Grapheneâ€Encapsulated Si on Ultrathinâ€Graphite Foam as Anode for High Capacity Lithiumâ€Ion Batteries.		
1107	Advanced Materials, 2013, 25, 4673-4677.	11.1	320
1138		11.1 5.2	320 58
	Advanced Materials, 2013, 25, 4673-4677. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A,		
1138	Advanced Materials, 2013, 25, 4673-4677. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954.		58
1138 1139	Advanced Materials, 2013, 25, 4673-4677. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954. Basics of PEMFC Including the Use of Carbon-Supported Nanoparticles. , 2013, , 401-423. High capacity Li2MnSiO4/C nanocomposite prepared by sol–gel method for lithium-ion batteries.	5.2	58 2
1138 1139 1140	Advanced Materials, 2013, 25, 4673-4677. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954. Basics of PEMFC Including the Use of Carbon-Supported Nanoparticles. , 2013, , 401-423. High capacity Li2MnSiO4/C nanocomposite prepared by sol–gel method for lithium-ion batteries. Journal of Power Sources, 2013, 232, 258-263. Tetraethoxysilane as a new facilitative film-forming additive for the lithium-ion battery with LiMn2O4	5.2	58 2 93
1138 1139 1140 1141	Advanced Materials, 2013, 25, 4673-4677. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954. Basics of PEMFC Including the Use of Carbon-Supported Nanoparticles. , 2013, , 401-423. High capacity Li2MnSiO4/C nanocomposite prepared by sol–gel method for lithium-ion batteries. Journal of Power Sources, 2013, 232, 258-263. Tetraethoxysilane as a new facilitative film-forming additive for the lithium-ion battery with LiMn2O4 cathode. Solid State Ionics, 2013, 232, 19-23. Oligo(ethylene oxide)-functionalized trialkoxysilanes as novel electrolytes for high-voltage	5.2 4.0 1.3	58 2 93 15
1138 1139 1140 1141 1142	Advanced Materials, 2013, 25, 4673-4677. CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954. Basics of PEMFC Including the Use of Carbon-Supported Nanoparticles. , 2013, , 401-423. High capacity Li2MnSiO4/C nanocomposite prepared by sol–gel method for lithium-ion batteries. Journal of Power Sources, 2013, 232, 258-263. Tetraethoxysilane as a new facilitative film-forming additive for the lithium-ion battery with LiMn2O4 cathode. Solid State Ionics, 2013, 232, 19-23. Oligo(ethylene oxide)-functionalized trialkoxysilanes as novel electrolytes for high-voltage lithium-ion batteries. Ionics, 2013, 19, 1567-1572. Multi-Thousand-Atom DFT Simulation of Li-Ion Transfer through the Boundary between the Solid〓Electrolyte Interface and Liquid Electrolyte in a Li-Ion Battery. Journal of Physical Chemistry C,	5.2 4.0 1.3 1.2	 58 2 93 15 11

#	Article	IF	CITATIONS
1146	NiO/Ni powders with effective architectures as anode materials in Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3881.	5.2	60
1147	Rapid one-step synthesis and electrochemical performance of NiO/Ni with tunable macroporous architectures. Nano Energy, 2013, 2, 1383-1390.	8.2	72
1148	A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications, 2013, 4, 2365.	5.8	515
1149	A High-Capacity Anode for Lithium Batteries Consisting of Mesoporous NiO Nanoplatelets. Energy & Fuels, 2013, 27, 5545-5551.	2.5	49
1150	A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Nanoscale, 2013, 5, 7906.	2.8	140
1151	Toward the Microscopic Identification of Anions and Cations at the Ionic Liquid Ag(111) Interface: A Combined Experimental and Theoretical Investigation. ACS Nano, 2013, 7, 7773-7784.	7.3	100
1152	Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Research, 2013, 6, 243-252.	5.8	93
1153	Improved electrochemical performance of nano-crystalline Li2FeSiO4/C cathode material prepared by the optimization of sintering temperature. Journal of Solid State Electrochemistry, 2013, 17, 1955-1959.	1.2	14
1154	A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomedical Microdevices, 2013, 15, 973-983.	1.4	59
1155	A high performance pseudocapacitive suspension electrode for the electrochemical flow capacitor. Electrochimica Acta, 2013, 111, 888-897.	2.6	141
1156	Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate. Journal of Materials Chemistry A, 2013, 1, 11975.	5.2	76
1157	Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 13484.	5.2	103
1158	In Situ TEM Observation of the Electrochemical Process of Individual CeO ₂ /Graphene Anode for Lithium Ion Battery. Journal of Physical Chemistry C, 2013, 117, 4292-4298.	1.5	89
1159	Transparent and ultra-bendable all-solid-state supercapacitors without percolation problems. Chemical Science, 2013, 4, 1663.	3.7	64
1160	Enhanced capability and cyclability of SnO2–graphene oxide hybrid anode by firmly anchored SnO2 quantum dots. Journal of Materials Chemistry A, 2013, 1, 7558.	5.2	82
1161	Graphene/Fe ₂ O ₃ /SnO ₂ Ternary Nanocomposites as a High-Performance Anode for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8607-8614.	4.0	129
1162	Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes. Journal of the American Chemical Society, 2013, 135, 12048-12056.	6.6	332
1163	A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 10092.	5.2	88

#	Article	IF	CITATIONS
1164	The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9760.	5.2	116
1165	Electrochemical synthesis of SnCo alloy shells on orderly rod-shaped Cu current collectors as anode materials for lithium-ion batteries with enhanced performance. Journal of Alloys and Compounds, 2013, 570, 119-124.	2.8	19
1166	First-Principles Study on the Synergistic Mechanism of SnO ₂ and Graphene As a Lithium Ion Battery Anode. Journal of Physical Chemistry C, 2013, 117, 23-27.	1.5	53
1167	Facile synthesis of a Co ₃ O ₄ –carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1141-1147.	5.2	169
1168	Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. Journal of Materials Chemistry A, 2013, 1, 11121.	5.2	50
1169	Quasiâ€5olidâ€5tate Rechargeable Lithiumâ€ion Batteries with a Calix[4]quinone Cathode and Gel Polymer Electrolyte. Angewandte Chemie - International Edition, 2013, 52, 9162-9166.	7.2	271
1170	High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet–nanowire cluster arrays as self-supported electrodes. Nanoscale, 2013, 5, 9812.	2.8	242
1171	Preparation of C/Ni–NiO composite nanofibers for anode materials in lithium-ion batteries. Applied Physics A: Materials Science and Processing, 2013, 113, 683-692.	1.1	22
1172	Bifunctional Composite Catalysts Using Co ₃ O ₄ Nanofibers Immobilized on Nonoxidized Graphene Nanoflakes for High-Capacity and Long-Cycle Li–O ₂ Batteries. Nano Letters, 2013, 13, 4190-4197.	4.5	329
1173	Investigation of interfacial processes in graphite thin film anodes of lithium-ion batteries by both in situ and ex situ infrared spectroscopy. Science China Chemistry, 2013, 56, 992-996.	4.2	16
1174	Electrochemical reversibility of magnesium deposition-dissolution on aluminum substrates in Grignard reagent/THF solutions. Science Bulletin, 2013, 58, 3385-3389.	1.7	5
1175	Preparation and electrochemical properties of x Li2MnO3·(1-x)LiMn2O4 composites. Chemical Research in Chinese Universities, 2013, 29, 307-310.	1.3	2
1176	Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery. Scientific Reports, 2013, 3, 2261.	1.6	702
1177	Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries. RSC Advances, 2013, 3, 16330.	1.7	164
1178	Synthesis and electrocatalytic properties of various metals supported on carbon for lithium–air battery. Journal of Molecular Catalysis A, 2013, 379, 9-14.	4.8	20
1179	Ti- and Zr-based metal-air batteries. Journal of Power Sources, 2013, 242, 400-404.	4.0	12
1180	Nanosized MnO2 spines on Au stems for high-performance flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2013, 1, 13301.	5.2	36
1181	Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 9889.	5.2	223

#	Article	IF	CITATIONS
1182	Organic Li ₄ C ₈ H ₂ O ₆ Nanosheets for Lithium-Ion Batteries. Nano Letters, 2013, 13, 4404-4409.	4.5	352
1183	Superior Microâ€Supercapacitors Based on Graphene Quantum Dots. Advanced Functional Materials, 2013, 23, 4111-4122.	7.8	595
1184	Solvothermal Synthesis of Monodisperse LiFePO ₄ Micro Hollow Spheres as High Performance Cathode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8961-8967.	4.0	62
1185	MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. Journal of Materials Chemistry A, 2013, 1, 11126.	5.2	361
1186	Mixtures of unsaturated imidazolium based ionic liquid and organic carbonate as electrolyte for Li-ion batteries. Electrochimica Acta, 2013, 95, 301-307.	2.6	51
1187	Understanding the Electrochemical Mechanism of the New Iron-Based Mixed-Phosphate Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇) in a Na Rechargeable Battery. Chemistry of Materials, 2013, 25, 3614-3622.	3.2	237
1188	Low-Cost Synthesis of Hierarchical V ₂ O ₅ Microspheres as High-Performance Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 7671-7675.	4.0	86
1189	Copper germanate nanowire/reduced graphene oxide anode materials for high energy lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 11404.	5.2	73
1190	Direct Atomicâ€Resolution Observation of Two Phases in the Li _{1.2} Mn _{0.567} Ni _{0.166} Co _{0.067} O ₂ Cathode Material for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2013, 52, 5969-5973.	7.2	242
1191	High capacity lithium ion battery anodes of silicon and germanium. Current Opinion in Chemical Engineering, 2013, 2, 286-293.	3.8	72
1192	Theoretical Understanding and Prediction of Lithiated Sodium Hexatitanates. ACS Applied Materials & Interfaces, 2013, 5, 1108-1112.	4.0	10
1193	First Evidence of Manganese–Nickel Segregation and Densification upon Cycling in Li-Rich Layered Oxides for Lithium Batteries. Nano Letters, 2013, 13, 3857-3863.	4.5	411
1194	Electrochemical performance of graphene and copper oxide composites synthesized from a metal–organic framework (Cu-MOF). RSC Advances, 2013, 3, 19051.	1.7	46
1195	Polyaniline(PANI) coated Zn2SnO4 cube as anode materials for lithium batteries. Polymer Testing, 2013, 32, 1582-1587.	2.3	20
1196	Versatile electronic behavior of the LixMn3â^'xâ^'yFeyO4 spinels. Journal of Alloys and Compounds, 2013, 577, 269-277.	2.8	4
1197	Li4Ti5O12 thin-film electrodes by sol–gel for lithium-ion microbatteries. Journal of Power Sources, 2013, 244, 482-487.	4.0	38
1198	<i>Tobacco mosaic virus</i> : A biological building block for micro/nano/bio systems. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	0.9	62
1199	High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Scientific Reports, 2013, 3, 3094.	1.6	192

#	Article	IF	CITATIONS
1200	Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged Li _{<i>x</i>} Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Materials. Chemistry of Materials, 2013, 25, 337-351.	3.2	317
1201	High Performance Composite Lithium-Rich Nickel Manganese Oxide Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1856-A1862.	1.3	35
1202	Co3O4-coated TiO2 nanotube composites synthesized through photo-deposition strategy with enhanced performance for lithium-ion batteries. Electrochimica Acta, 2013, 94, 285-293.	2.6	47
1205	Nanocrystalline CoP thin film as a new anode material for lithium ion battery. Journal of Alloys and Compounds, 2013, 555, 283-290.	2.8	51
1206	Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 3295.	5.2	205
1207	Self-supported multi-walled carbon nanotube-embedded silicon nanoparticle films for anodes of Li-ion batteries. Materials Research Bulletin, 2013, 48, 1732-1736.	2.7	21
1208	Hollow mesoporous frameworks without the annealing process for high-performance lithium–ion batteries: A case for anatase TiO2. Chemical Engineering Journal, 2013, 228, 724-730.	6.6	15
1209	A facile strategy to prepare nano-crystalline Li4Ti5O12/C anode material via polyvinyl alcohol as carbon source for high-rate rechargeable Li-ion batteries. Electrochimica Acta, 2013, 93, 173-178.	2.6	53
1210	In situ Fourier transform infrared spectroscopy and on-line differential electrochemical mass spectrometry study of the NH3BH3 oxidation reaction on gold electrodes. Electrochimica Acta, 2013, 89, 607-615.	2.6	46
1211	Facile synthesis of ZrO2 coated Li2CoPO4F cathode materials for lithium secondary batteries with improved electrochemical properties. Journal of Power Sources, 2013, 244, 395-402.	4.0	31
1212	Synthesis and electrochemical performance characterization of Ce-doped Li 3 V 2 (PO 4) 3 /C as cathode materials for lithium-ion batteries. Journal of Power Sources, 2013, 243, 33-39.	4.0	74
1213	Synthesis and performance of Li1.5V3O8 nanosheets as a cathode material for high-rate lithium-ion batteries. Journal of Power Sources, 2013, 242, 230-235.	4.0	23
1214	Facile synthesis of ultrafine carbon-coated SnO 2 nanoparticles forÂhigh-performance reversible lithium storage. Journal of Power Sources, 2013, 243, 54-59.	4.0	22
1215	Confinement of poly(ethylene oxide) in the nanometer-scale pores of resins and carbon nanoparticles. Soft Matter, 2013, 9, 10960.	1.2	13
1216	In Situ Formed Si Nanoparticle Network with Micron-Sized Si Particles for Lithium-Ion Battery Anodes. Nano Letters, 2013, 13, 5397-5402.	4.5	83
1217	Composites of V2O3–ordered mesoporous carbon as anode materials for lithium-ion batteries. Carbon, 2013, 62, 382-388.	5.4	89
1218	A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4194.	5.2	175
1219	Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes. Journal of Power Sources, 2013, 244, 189-195.	4.0	59

#	Article	IF	CITATIONS
1220	High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites. Chemistry of Materials, 2013, 25, 834-839.	3.2	180
1221	Carbon nanotube and graphene nanosheet co-modified LiFePO4 nanoplate composite cathode material by a facile polyol process. Applied Surface Science, 2013, 283, 999-1005.	3.1	47
1222	Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries. Scientific Reports, 2013, 3, 2878.	1.6	53
1223	Hoop-Strong Nanotubes for Battery Electrodes. ACS Nano, 2013, 7, 8295-8302.	7.3	52
1224	A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery. Journal of Materials Chemistry A, 2013, 1, 12954.	5.2	135
1225	Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Liâ€5 Batteries with Long Lifespan. Particle and Particle Systems Characterization, 2013, 30, 321-325.	1.2	90
1226	Mesoporous Mn _{0.5} Co _{0.5} Fe ₂ O ₄ Nanospheres Grown on Graphene for Enhanced Lithium Storage Properties. Industrial & Engineering Chemistry Research, 2013, 52, 14906-14912.	1.8	25
1227	Spinel CuCo ₂ O ₄ Nanoparticles Supported on N-Doped Reduced Graphene Oxide: A Highly Active and Stable Hybrid Electrocatalyst for the Oxygen Reduction Reaction. Langmuir, 2013, 29, 13146-13151.	1.6	192
1228	Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 2013, 13, 5534-5540.	4.5	601
1229	Copper Doped Hollow Structured Manganese Oxide Mesocrystals with Controlled Phase Structure and Morphology as Anode Materials for Lithium Ion Battery with Improved Electrochemical Performance. ACS Applied Materials & amp; Interfaces, 2013, 5, 10975-10984.	4.0	163
1230	Electrochemical performance of lithium ion capacitors using aqueous electrolyte at high temperature. Journal of Renewable and Sustainable Energy, 2013, 5, 021404.	0.8	9
1231	Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries. Scientific Reports, 2013, 3, 2788.	1.6	57
1232	Emulsion-templated bicontinuous carbon network electrodes for use in 3D microstructured batteries. Journal of Materials Chemistry A, 2013, 1, 13750.	5.2	41
1233	Fe phthalocyanine supported by graphene nanosheet as catalyst in Li–air battery with the hybrid electrolyte. Journal of Power Sources, 2013, 244, 429-434.	4.0	28
1234	Analysis of Molecular Clusters in Simulations of Lithium-Ion Battery Electrolytes. Journal of Physical Chemistry C, 2013, 117, 24673-24684.	1.5	59
1235	Highlighting a Solid-Like Behavior in RTILs: Tri-octylmethylammonium Bis(trifluoromethanesulfonyl)imide TOMA-TFSI. Journal of Physical Chemistry Letters, 2013, 4, 3775-3778.	2.1	9
1236	Neutron Diffraction and Magnetic Susceptibility Studies on a High-Voltage Li _{1.2} Mn _{0.55} Ni _{0.15} Co _{0.10} O ₂ Lithium Ion Battery Cathode: Insight into the Crystal Structure. Chemistry of Materials, 2013, 25, 4064-4070.	3.2	89
1237	H2O–EG-Assisted Synthesis of Uniform Urchinlike Rutile TiO2 with Superior Lithium Storage Properties. ACS Applied Materials & Interfaces, 2013, 5, 9998-10003.	4.0	32

#	Article	IF	CITATIONS
1238	First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius. Journal of Physical Chemistry C, 2013, 117, 21158-21165.	1.5	177
1239	Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochimica Acta, 2013, 108, 506-511.	2.6	51
1240	Electrochemical Sodium Ion Intercalation Properties of Na _{2.7} Ru ₄ O ₉ in Nonaqueous and Aqueous Electrolytes. Journal of the Electrochemical Society, 2013, 160, A897-A900.	1.3	15
1241	Synthesis of 3D nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14658.	5.2	108
1242	Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14586.	5.2	40
1243	Long-range Li+ dynamics in the lithium argyrodite Li7PSe6 as probed by rotating-frame spin–lattice relaxation NMR. Physical Chemistry Chemical Physics, 2013, 15, 7123.	1.3	70
1244	Polymer–Pendant Interactions in Poly(pyrrol-3-ylhydroquinone): A Solution for the Use of Conducting Polymers at Stable Conditions. Journal of Physical Chemistry C, 2013, 117, 23558-23567.	1.5	38
1245	Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 15068.	5.2	149
1246	Sn-Doped V ₂ O ₅ Film with Enhanced Lithium-Ion Storage Performance. Journal of Physical Chemistry C, 2013, 117, 23507-23514.	1.5	170
1247	Carbon-Encapsulated F-Doped Li ₄ Ti ₅ O ₁₂ as a High Rate Anode Material for Li ⁺ Batteries. ACS Nano, 2013, 7, 10870-10878.	7.3	212
1248	Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries. Journal of Colloid and Interface Science, 2013, 398, 185-192.	5.0	145
1249	Li-ion Conduction in the LiBH ₄ :Lil System from Density Functional Theory Calculations and Quasi-Elastic Neutron Scattering. Journal of Physical Chemistry C, 2013, 117, 9084-9091.	1.5	43
1250	Aqueous Synthesized Nanostructured Li ₄ Ti ₅ O ₁₂ for High-Performance Lithium Ion Battery Anodes. Journal of the Electrochemical Society, 2013, 160, A3041-A3047.	1.3	19
1251	A new, high performance CuO/LiNi0.5Mn1.5O4 lithium-ion battery. Journal of Materials Chemistry A, 2013, 1, 15329.	5.2	45
1252	A Metal–Organic Framework with Open Metal Sites for Enhanced Confinement of Sulfur and Lithium–Sulfur Battery of Long Cycling Life. Crystal Growth and Design, 2013, 13, 5116-5120.	1.4	124
1253	Twoâ€Dimensional Mesoporous Carbon Nanosheets as a Highâ€Performance Anode Material for Lithiumâ€Ion Batteries. ChemPlusChem, 2013, 78, 797-800.	1.3	30
1254	Electrospun Three-Dimensional Mesoporous Silicon Nanofibers as an Anode Material for High-Performance Lithium Secondary Batteries. ACS Applied Materials & Interfaces, 2013, 5, 12005-12010.	4.0	82
1255	Deposition SnO ₂ /Nitrogen-Doped Graphene Nanocomposites on the Separator: A New Type of Flexible Electrode for Energy Storage Devices. ACS Applied Materials & Interfaces, 2013, 5, 12148-12155.	4.0	66

#	Article	IF	CITATIONS
1256	Solventless synthesis of an iron-oxide/graphene nanocomposite and its application as an anode in high-rate Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 15442.	5.2	48
1257	Multiwalled carbon nanotubes–V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 15459.	5.2	67
1258	Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries. Electrochimica Acta, 2013, 108, 104-111.	2.6	66
1259	Built-in Electric Field-Assisted Surface-Amorphized Nanocrystals for High-Rate Lithium-Ion Battery. Nano Letters, 2013, 13, 5289-5296.	4.5	143
1260	A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode. Scientific Reports, 2013, 3, 2671.	1.6	235
1261	Solid State Ionics: from Michael Faraday to green energy—the European dimension. Science and Technology of Advanced Materials, 2013, 14, 043502.	2.8	126
1262	A Long-Life, High-Rate Lithium/Sulfur Cell: A Multifaceted Approach to Enhancing Cell Performance. Nano Letters, 2013, 13, 5891-5899.	4.5	404
1263	A New Null Matrix Electrochemical Cell for Rietveld Refinements of In-Situ or Operando Neutron Powder Diffraction Data. Journal of the Electrochemical Society, 2013, 160, A2176-A2183.	1.3	53
1264	On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries. Journal of Power Sources, 2013, 236, 181-187.	4.0	146
1265	Understanding the effect of synthesis temperature on the structural and electrochemical characteristics of layered-spinel composite cathodes for lithium-ion batteries. Journal of Power Sources, 2013, 240, 193-203.	4.0	46
1266	Waste minimization and recovery of valuable metals from spent lithium-ion batteries – a review. Environmental Technology Reviews, 2013, 2, 101-115.	2.1	51
1267	Nanoporous anatase TiO2/single-wall carbon nanohorns composite as superior anode for lithium ion batteries. Journal of Power Sources, 2013, 232, 193-198.	4.0	46
1268	Oxygen Reduction Electrocatalysis Using N-Doped Graphene Quantum-Dots. Journal of Physical Chemistry Letters, 2013, 4, 4160-4165.	2.1	132
1269	Effect of nanosized Mg0.6Ni0.4O prepared by self-propagating high temperature synthesis on sulfur cathode performance in Li/S batteries. Powder Technology, 2013, 235, 248-255.	2.1	72
1270	Covalent Bond Glued Sulfur Nanosheet-Based Cathode Integration for Long-Cycle-Life Li–S Batteries. Nano Letters, 2013, 13, 6244-6250.	4.5	99
1271	Three-Dimensional Graphene Foam Supported Fe ₃ O ₄ Lithium Battery Anodes with Long Cycle Life and High Rate Capability. Nano Letters, 2013, 13, 6136-6143.	4.5	738
1272	Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: a joint magnetic susceptibility and TEM study. Physical Chemistry Chemical Physics, 2013, 15, 19496.	1.3	108
1273	Key electronic states in lithium battery materials probed by soft X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 64-74.	0.8	89

#	Article	IF	CITATIONS
1274	Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries. Journal of the American Chemical Society, 2013, 135, 16280-16283.	6.6	426
1275	Transition-Metal-Doped Zinc Oxide Nanoparticles as a New Lithium-Ion Anode Material. Chemistry of Materials, 2013, 25, 4977-4985.	3.2	165
1276	Comparison of LiVPO ₄ F to Li ₄ Ti ₅ O ₁₂ as Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 8615-8627.	4.0	57
1277	<i>In Situ</i> Transmission Electron Microscopy Investigation of the Electrochemical Lithiation–Delithiation of Individual Co ₉ S ₈ /Co-Filled Carbon Nanotubes. ACS Nano, 2013, 7, 11379-11387.	7.3	70
1278	Synthesis and electrochemical performance of hierarchically porous carbon-supported PDMcT–PANI composite for lithium-ion batteries. Electrochimica Acta, 2013, 96, 206-213.	2.6	10
1279	Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries. Materials Chemistry and Physics, 2013, 138, 313-318.	2.0	15
1280	Facile synthesis of hollow Co3O4 boxes for high capacity supercapacitor. Journal of Power Sources, 2013, 227, 101-105.	4.0	250
1281	Effects of Li-ion vacancies on the ionic conduction mechanism of LiMgSO ₄ F. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074003.	0.8	4
1282	A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings. Journal of Alloys and Compounds, 2013, 579, 377-383.	2.8	53
1283	Nano-sized spinel LiMn2O4 powder fabricated via modified dynamic hydrothermal synthesis. Ceramics International, 2013, 39, 3359-3364.	2.3	21
1284	N-doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2013, 36, 57-61.	2.3	65
1285	Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries. Macromolecules, 2013, 46, 8988-8994.	2.2	142
1286	Hollow NiO nanotubes synthesized by bio-templates as the high performance anode materials of lithium-ion batteries. Electrochimica Acta, 2013, 114, 42-47.	2.6	93
1287	Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries. Electrochimica Acta, 2013, 113, 433-438.	2.6	76
1288	Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries. Nano Letters, 2013, 13, 5570-5577.	4.5	151
1289	High Energy Density Metal-Air Batteries: A Review. Journal of the Electrochemical Society, 2013, 160, A1759-A1771.	1.3	569
1290	Going electric: Expert survey on the future of battery technologies for electric vehicles. Energy Policy, 2013, 61, 403-413.	4.2	113
1291	Threeâ€Dimensional Nâ€Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution. Angewandte Chemie - International Edition, 2013, 52, 13567-13570.	7.2	547

#	Article	IF	CITATIONS
1292	Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie - International Edition, 2013, 52, 13186-13200.	7.2	2,329
1293	One-pot approach to synthesize PPy@S core–shell nanocomposite cathode for Li/S batteries. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	44
1294	Enhanced high rate and low temperature electrochemical properties of LiFePO4/C composites by doping samarium ion. Journal of Solid State Electrochemistry, 2013, 17, 2409-2416.	1.2	8
1295	Cyclic Voltammetry of Metallic Acetylacetonate Salts in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents. Journal of Solution Chemistry, 2013, 42, 2329-2341.	0.6	22
1296	Perylene-polyimide-Based Organic Electrode Materials for Rechargeable Lithium Batteries. Journal of Physical Chemistry Letters, 2013, 4, 3192-3197.	2.1	186
1297	Interface Chemistry Guided Long-Cycle-Life Li–S Battery. Nano Letters, 2013, 13, 4206-4211.	4.5	125
1298	Graphene-Based Three-Dimensional Hierarchical Sandwich-type Architecture for High-Performance Li/S Batteries. Nano Letters, 2013, 13, 4642-4649.	4.5	385
1299	Very high energy density silicide–air primary batteries. Energy and Environmental Science, 2013, 6, 2621.	15.6	21
1300	Investigation of the Redox Chemistry of Isoindole-4,7-diones. Journal of Physical Chemistry C, 2013, 117, 894-901.	1.5	26
1301	Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries. Journal of Power Sources, 2013, 244, 196-206.	4.0	44
1302	Facile low-temperature polyol process for LiFePO4 nanoplate andÂcarbon nanotube composite. Solid State Sciences, 2013, 24, 15-20.	1.5	15
1303	Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions. Electrochimica Acta, 2013, 89, 229-238.	2.6	28
1304	Wrinkled-graphene enriched MoO3 nanobelts with increased conductivity and reduced stress for enhanced electrochemical performance. Physical Chemistry Chemical Physics, 2013, 15, 17165.	1.3	69
1305	High electrochemical performance based on ultrathin porous CuO nanobelts grown on Cu substrate as integrated electrode. Physical Chemistry Chemical Physics, 2013, 15, 521-525.	1.3	52
1306	Direct prototyping of 3D micro supercapacitors based on in-situ fabricated nanoporous carbon electrodes. , 2013, , .		2
1307	Fe3O4–carbon nanocomposites via a simple synthesis as anode materials for rechargeable lithium ion batteries. CrystEngComm, 2013, 15, 9849.	1.3	28
1308	Self-assembly of Si entrapped graphene architecture for high-performance Li-ion batteries. Electrochemistry Communications, 2013, 34, 117-120.	2.3	48
1309	Sulfurâ€Infiltrated Micro―and Mesoporous Silicon Carbideâ€Derived Carbon Cathode for Highâ€Performance Lithium Sulfur Batteries. Advanced Materials, 2013, 25, 4573-4579.	11.1	296

#	Article	IF	CITATIONS
1310	A perspective: carbon nanotube macro-films for energy storage. Energy and Environmental Science, 2013, 6, 3183-3201.	15.6	168
1311	Structural Factors That Enhance Lithium Mobility in Fast-Ion Li _{1+<i>x</i>} Ti _{2–<i>x</i>} Al _{<i>x</i>} (PO ₄) ₃ (0 ≤i>x ≤0.4) Conductors Investigated by Neutron Diffraction in the Temperature Range 100–500 K. Inorganic Chemistry, 2013, 52, 9290-9296.	1.9	106
1312	Binder-free three-dimensional silicon/carbon nanowire networks for high performance lithium-ion battery anodes. Nano Energy, 2013, 2, 943-950.	8.2	47
1313	Outstanding mechanical properties of monolayer MoS2 and its application in elastic energy storage. Physical Chemistry Chemical Physics, 2013, 15, 19427.	1.3	235
1314	Porous TiO2(B)/anatase microspheres with hierarchical nano and microstructures for high-performance lithium-ion batteries. Electrochimica Acta, 2013, 97, 386-392.	2.6	73
1315	Recent progress and remaining challenges in sulfur-based lithium secondary batteries – a review. Chemical Communications, 2013, 49, 10545.	2.2	467
1316	Polyimide/carbon black composite nanocoating layers as a facile surface modification strategy for high-voltage lithium ion cathode materials. Journal of Materials Chemistry A, 2013, 1, 12441.	5.2	20
1317	Ordered mesoporous TiO2–C nanocomposite as an anode material for long-term performance lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4293.	5.2	111
1318	Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 21112-21119.	1.5	135
1319	Preparation and electrochemical properties of urchin-like La0.8Sr0.2MnO3 perovskite oxide as a bifunctional catalyst for oxygen reduction and oxygen evolution reaction. Journal of Power Sources, 2013, 241, 225-230.	4.0	188
1320	Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium-ion batteries. Electrochemistry Communications, 2013, 36, 107-110.	2.3	43
1321	Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries. Electrochimica Acta, 2013, 108, 727-735.	2.6	45
1322	Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4. Journal of Materials Chemistry A, 2013, 1, 4207.	5.2	113
1323	A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. Journal of Materials Chemistry A, 2013, 1, 12310.	5.2	75
1324	Hydrothermal synthesis of copper sulfide with novel hierarchical structures and its application in lithium-ion batteries. Applied Surface Science, 2013, 277, 268-271.	3.1	35
1325	α-Fe2O3/single-walled carbon nanotube hybrid films as high-performance anodes for rechargeable lithium-ion batteries. Journal of Power Sources, 2013, 241, 330-340.	4.0	62
1326	Toward Silicon Anodes for Next-Generation Lithium Ion Batteries: A Comparative Performance Study of Various Polymer Binders and Silicon Nanopowders. ACS Applied Materials & Interfaces, 2013, 5, 7299-7307.	4.0	192
1327	Designed synthesis of graphene–TiO2–SnO2 ternary nanocomposites as lithium-ion anode materials. New Journal of Chemistry, 2013, 37, 3671.	1.4	44

#	Article	IF	CITATIONS
1328	Doped Lanthanum Nickelates with a Layered Perovskite Structure as Bifunctional Cathode Catalysts for Rechargeable Metal–Air Batteries. ACS Applied Materials & Interfaces, 2013, 5, 9902-9907.	4.0	146
1329	Lithium Tetrafluoroborate as an Electrolyte Additive to Improve the High Voltage Performance of Lithium-Ion Battery. Journal of the Electrochemical Society, 2013, 160, A1199-A1204.	1.3	62
1330	Correlation Between Segmental Dynamics, Glass Transition, and Lithium Ion Conduction in Poly(Methyl Methacrylate)/Ionic Liquid Mixture. Journal of Macromolecular Science - Physics, 2013, 52, 590-603.	0.4	3
1331	Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Research, 2013, 6, 182-190.	5.8	27
1332	A new "zero-strain―material for electrochemical lithium insertion. Journal of Materials Chemistry A, 2013, 1, 6550.	5.2	19
1333	Differences between polymer/salt and single ion conductor solid polymer electrolytes. RSC Advances, 2013, 3, 1564-1571.	1.7	44
1334	Recent advances in LiFePO4 nanoparticles with different morphology for high-performance lithium-ion batteries. RSC Advances, 2013, 3, 19744.	1.7	59
1335	Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. Journal of Materials Chemistry A, 2013, 1, 12850.	5.2	114
1336	Fabrication of porous Sn–C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 9462.	5.2	62
1337	Shape-controlled synthesis of Ag@TiO2 cage-bell hybrid structure with enhanced photocatalytic activity and superior lithium storage. Green Chemistry, 2013, 15, 2810.	4.6	39
1338	Anode properties of magnesium hydride catalyzed with niobium oxide for an all solid-state lithium-ion battery. Chemical Communications, 2013, 49, 7174.	2.2	47
1339	Improvement in LiFePO4–Li battery performance via poly(perfluoroalkylsulfonyl)imide (PFSI) based ionene composite binder. Journal of Materials Chemistry A, 2013, 1, 15016.	5.2	37
1340	High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7148-7153.	3.3	359
1341	Distinct effect of hierarchical structure on performance of anatase as an anode material for lithium-ion batteries. RSC Advances, 2013, 3, 26052.	1.7	8
1342	Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using ÎCu6Sn5 thin films as a model system. Physical Chemistry Chemical Physics, 2013, 15, 10885.	1.3	38
1343	ALD TiO2 coated silicon nanowires for lithium ion battery anodes with enhanced cycling stability and coulombic efficiency. Physical Chemistry Chemical Physics, 2013, 15, 13646.	1.3	156
1344	Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. Journal of Materials Chemistry A, 2013, 1, 11130.	5.2	84
1345	Botryoidalis hollow Zn2SnO4 boxes@graphene as anode materials for advanced lithium-ion batteries. RSC Advances, 2013, 3, 23489.	1.7	30

#	Article	IF	CITATIONS
1346	Two-Dimensional Î ² -MnO2 Nanowire Network with Enhanced Electrochemical Capacitance. Scientific Reports, 2013, 3, 2193.	1.6	83
1347	Ion transport in sulfonated polymers. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 481-493.	2.4	32
1348	Formation of Nanostructured MnO/Co/Solid–Electrolyte Interphase Ternary Composites as a Durable Anode Material for Lithiumâ€Ion Batteries. Chemistry - an Asian Journal, 2013, 8, 760-764.	1.7	12
1349	Polyacrylonitrile Block Copolymers for the Preparation of a Thin Carbon Coating Around TiO ₂ Nanorods for Advanced Lithiumâ€lon Batteries. Macromolecular Rapid Communications, 2013, 34, 1693-1700.	2.0	31
1350	A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14061.	5.2	206
1351	Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life. Journal of Materials Chemistry A, 2013, 1, 4083.	5.2	137
1352	Hierarchical graphite oxide fabricated from graphite via electrochemical cleavage as an anode material for lithium ion batteries. RSC Advances, 2013, 3, 12758.	1.7	5
1353	A Na4Fe(CN)6/NaCl solid solution cathode material with an enhanced electrochemical performance for sodium ion batteries. Journal of Materials Chemistry A, 2013, 1, 13417.	5.2	31
1354	Interweaving of multilevel carbon networks with mesoporous TiO2 for lithium-ion battery anodes. RSC Advances, 2013, 3, 24882.	1.7	1
1355	An elastic germanium–carbon nanotubes–copper foam monolith as an anode for rechargeable lithium batteries. RSC Advances, 2013, 3, 1336-1340.	1.7	38
1356	A high power density electrode with ultralow carbon via direct growth of particles on graphene sheets. Journal of Materials Chemistry A, 2013, 1, 6183.	5.2	20
1357	Fabrication of FeF3 nanocrystals dispersed into a porous carbon matrix as a high performance cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 15060.	5.2	72
1358	High-voltage aqueous battery approaching 3 V using an acidic–alkaline double electrolyte. Chemical Communications, 2013, 49, 2204.	2.2	67
1359	Facile synthesis of novel Si nanoparticles–graphene composites as high-performance anode materials for Li-ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 11394.	1.3	54
1360	Electrochemical insertion of Li into nanocrystalline MnFe2O4: a study of the reaction mechanism. RSC Advances, 2013, 3, 23001.	1.7	32
1361	Improved cycle lives of LiMn2O4 cathodes in lithium ion batteries by an alginate biopolymer from seaweed. Journal of Materials Chemistry A, 2013, 1, 15224.	5.2	67
1362	Hierarchical porous carbon spheres as an anode material for lithium ion batteries. RSC Advances, 2013, 3, 10823.	1.7	36
1363	Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its electrochemical performance. RSC Advances, 2013, 3, 19366.	1.7	41

#	Article	IF	CITATIONS
1364	The energetic implications of curtailing versus storing solar- and wind-generated electricity. Energy and Environmental Science, 2013, 6, 2804.	15.6	143
1365	On the limited performances of sulfone electrolytes towards the LiNi0.4Mn1.6O4 spinel. Physical Chemistry Chemical Physics, 2013, 15, 20900.	1.3	18
1366	Novel processing of lithium manganese silicate nanomaterials for Li-ion battery applications. RSC Advances, 2013, 3, 608-615.	1.7	41
1367	Morphology-controlled synthesis of SnO2/C hollow core–shell nanoparticle aggregates with improved lithium storage. Journal of Materials Chemistry A, 2013, 1, 3652.	5.2	65
1368	Significantly improved high-rate Li-ion batteries anode by encapsulating tin dioxide nanocrystals into mesotunnels. CrystEngComm, 2013, 15, 8537.	1.3	21
1369	N-doped carbon encapsulation of ultrafine silicon nanocrystallites for high performance lithium ion storage. Journal of Materials Chemistry A, 2013, 1, 13625.	5.2	30
1370	Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances, 2013, 3, 16359.	1.7	117
1371	Fabrication and Characterization of an Effective Polymer Nanocomposite Electrolyte Membrane for High Performance Lithium/Sulfur Batteries. Journal of the Electrochemical Society, 2013, 160, A1052-A1060.	1.3	37
1372	Highly improved rechargeable stability for lithium/silver vanadium oxide battery induced viaelectrospinning technique. Journal of Materials Chemistry A, 2013, 1, 852-859.	5.2	62
1373	Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes. Journal of Materials Chemistry A, 2013, 1, 10362.	5.2	135
1374	Lithium intercalation behaviors in Ge and Sn crystalline surfaces. Physical Chemistry Chemical Physics, 2013, 15, 13586.	1.3	13
1375	Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries. Chemical Communications, 2013, 49, 11370.	2.2	89
1376	VGCF-core@LiMn0.4Fe0.6PO4-sheath heterostructure nanowire for high rate Li-ion batteries. CrystEngComm, 2013, 15, 6638.	1.3	10
1377	Lithium and oxygen adsorption at the β-MnO2 (110) surface. Journal of Materials Chemistry A, 2013, 1, 14879.	5.2	58
1378	Li0.3V2O5 with high lithium diffusion rate: a promising anode material for aqueous lithium-ion batteries with superior rate performance. Journal of Materials Chemistry A, 2013, 1, 5423.	5.2	45
1379	A PEO-assisted electrospun silicon–graphene composite as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9019.	5.2	69
1380	Macroporous LiFePO4 as a cathode for an aqueous rechargeable lithium battery of high energy density. Journal of Materials Chemistry A, 2013, 1, 14713.	5.2	78
1381	Direct synthesis of carbon-coated Li4Ti5O12 mesoporous nanoparticles for high-rate lithium-ion batteries. RSC Advances, 2013, 3, 3088.	1.7	19

#	Article	IF	CITATIONS
1382	Self-assembled hairy ball-like Co3O4 nanostructures for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 13203.	5.2	51
1383	Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage. CrystEngComm, 2013, 15, 9332. Dynamics of polaron formation in Li <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.3</td><td>124</td></mml:math>	1.3	124
1384	display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>from density functional perturbation theory.</mml:math 	1.1	13
1385	Physical Review B, 2013, 88, . A study about Î ³ -MnOOH nanowires as anode materials for rechargeable Li-ion batteries. Journal of Alloys and Compounds, 2013, 550, 185-189.	2.8	23
1386	Lysine-assisted hydrothermal synthesis of hierarchically porous Fe2O3 microspheres as anode materials for lithium-ion batteries. Journal of Power Sources, 2013, 222, 59-65.	4.0	88
1387	Improving electrochemical performance of Li3V2(PO4)3 in a thiophene-containing electrolyte. Journal of Power Sources, 2013, 222, 373-378.	4.0	29
1388	In-situ synthesis of magnetite/expanded graphite composite material as high rate negative electrode for rechargeable lithium batteries. Journal of Power Sources, 2013, 223, 119-124.	4.0	26
1389	High capacity carbon anode for dry polymer lithium-ion batteries. Journal of Power Sources, 2013, 225, 187-191.	4.0	7
1390	Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries. Journal of Power Sources, 2013, 226, 140-148.	4.0	128
1391	Imprintable, Bendable, and Shape onformable Polymer Electrolytes for Versatileâ€ S haped Lithiumâ€ i on Batteries. Advanced Materials, 2013, 25, 1395-1400.	11.1	183
1392	Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy and Environmental Science, 2013, 6, 618-624.	15.6	326
1393	Reversible chemical delithiation/lithiation of LiFePO ₄ : towards a redox flow lithium-ion battery. Physical Chemistry Chemical Physics, 2013, 15, 1793-1797.	1.3	169
1394	Synthesis of MoS2 nanosheet–graphene nanosheet hybrid materials for stable lithium storage. Chemical Communications, 2013, 49, 1838.	2.2	293
1395	Improvement of the electrochemical performance of carbon-coated LiFePO ₄ modified with reduced graphene oxide. Journal of Materials Chemistry A, 2013, 1, 135-144.	5.2	104
1396	Ultra-rapid microwave synthesis of triplite LiFeSO4F. Journal of Materials Chemistry A, 2013, 1, 2990.	5.2	43
1397	An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode. Chemical Communications, 2013, 49, 567-569.	2.2	122
1398	Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. Journal of Power Sources, 2013, 231, 234-238.	4.0	208
1399	Microâ€sized Siâ€C Composite with Interconnected Nanoscale Building Blocks as Highâ€Performance Anodes for Practical Application in Lithiumâ€ion Batteries. Advanced Energy Materials, 2013, 3, 295-300.	10.2	412

#	Article	IF	CITATIONS
1400	Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy and Environmental Science, 2013, 6, 974.	15.6	217
1401	Nonisothermal Kinetics Study with Isoconversional Procedure and DAEM: LiCoPO ₄ Synthesized from Thermal Decomposition of the Precursor. Industrial & Engineering Chemistry Research, 2013, 52, 1870-1876.	1.8	25
1402	Directing Silicon–Graphene Self-Assembly as a Core/Shell Anode for High-Performance Lithium-Ion Batteries. Langmuir, 2013, 29, 744-749.	1.6	142
1403	Dual core–shell structured sulfur cathode composite synthesized by a one-pot route for lithium sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 1716-1723.	5.2	197
1404	Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries. Electrochimica Acta, 2013, 88, 287-293.	2.6	67
1405	Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries. Carbon, 2013, 54, 29-35.	5.4	53
1406	Ternary sulfur/polyacrylonitrile/Mg _{0.6} Ni _{0.4} O composite cathodes for high performance lithium/sulfur batteries. Journal of Materials Chemistry A, 2013, 1, 295-301.	5.2	213
1407	TiO ₂ nanotube arrays grafted with Fe ₂ O ₃ hollow nanorods as integrated electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 122-127.	5.2	130
1408	Power management for sub-mW energy harvester with adaptive hybrid energy storage. Journal of Intelligent Material Systems and Structures, 2013, 24, 1365-1379.	1.4	6
1409	The development and challenges of rechargeable non-aqueous lithium–air batteries. International Journal of Smart and Nano Materials, 2013, 4, 27-46.	2.0	30
1410	Enhanced electrochemical performance of FeS coated by Ag as anode for lithium-ion batteries. Applied Surface Science, 2013, 265, 114-119.	3.1	39
1411	Synthesis of Co3O4 nano-octahedra enclosed by {111} facets and their excellent lithium storage properties as anode material of lithium ion batteries. Nano Energy, 2013, 2, 394-402.	8.2	131
1412	Novel multiphase electrode/electrolyte composites for next generation of flexible polymeric Li-ion cells. Journal of Applied Electrochemistry, 2013, 43, 137-145.	1.5	16
1413	Different types of MnO2 recovered from spent LiMn2O4 batteries and their application in electrochemical capacitors. Journal of Materials Science, 2013, 48, 2512-2519.	1.7	16
1414	Porous nanocrystalline TiO2 with high lithium-ion insertion performance. Journal of Materials Science, 2013, 48, 2733-2742.	1.7	17
1416	A Novel On-Line Mass Spectrometer Design for the Study of Multiple Charging Cycles of a Li-O ₂ Battery. Journal of the Electrochemical Society, 2013, 160, A471-A477.	1.3	148
1417	The Influence of the Cation on the Oxygen Reduction and Evolution Activities of Oxide Surfaces in Alkaline Electrolyte. Electrocatalysis, 2013, 4, 49-55.	1.5	113
1418	Progress and prospective of solid-state lithium batteries. Acta Materialia, 2013, 61, 759-770.	3.8	895

ARTICLE IF CITATIONS Synthesis of Fe2O3â€"CNTâ€"graphene hybrid materials with an open three-dimensional nanostructure 1419 8.2 120 for high capacity lithium storage. Nano Energy, 2013, 2, 425-434. Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. 1420 5.2 Journal of Materials Chemistry A, 2013, 1, 2337. Li3V2(PO4)3@C/graphene composite with improved cycling performance as cathode material for 1421 49 2.6 lithium-ion batteries. Electrochimica Acta, 2013, 91, 108-113. Hierarchical MoS₂/Polyaniline Nanowires with Excellent Electrochemical Performance 1422 11.1 569 for Lithiumâ€Ion Batteries. Advanced Materials, 2013, 25, 1180-1184. Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries. Journal of 1423 4.0 73 Power Sources, 2013, 234, 8-15. LiMnPO4 $\hat{a} \in$ A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3518. 1424 5.2 TiO2(B) nanofiber bundles as a high performance anode for a Li-ion battery. RSC Advances, 2013, 3, 3352. 1425 1.7 40 Nanosize SnO2 confined in the porous shells of carbon cages for kinetically efficient and long-term 1426 2.8 70 lithium storage. Nanoscale, 2013, 5, 1576. One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium 1427 2.8 80 ion battery anodes. Nanoscale, 2013, 5, 1470. A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Nâ€Doped Ketjenblack 1429 Incorporated into Fe/Fe₃Câ€Functionalized Melamine Foam. Angewandte Chemie -324 International Edition, 2013, 52, 1026-1030. The Effect of Oxygen Crossover on the Anode of a Li–O₂ Battery using an Etherâ€Based 1430 231 3.6 Solvent: Insights from Experimental and Computational Studies. ChemSusChem, 2013, 6, 51-55. On the importance of reducing the energetic and material demands of electrical energy storage. 15.6 212 Energy and Environmental Science, 2013, 6, 1083. Charge/discharge performances of glyme–lithium salt equimolar complex electrolyte for lithium 1432 4.0 21 secondary batteries. Journal of Power Sources, 2013, 243, 323-327. Influence of hierarchical architecture of layered titanate on electrochemical properties and 1433 1.9 Li-insertion performance. Journal of Electroanalytical Chemistry, 2013, 711, 53-59. Non-graphitic PPy-based carbon nanotubes anode materials for lithium-ion batteries. Electrochimica 1434 2.6 36 Acta, 2013, 105, 462-467. Na2V6O16·0.14H2O nanowires as a novel anode material for aqueous rechargeable lithium battery with 1435 4.0 83 good cycling performance. Journal of Power Sources, 2013, 227, 111-117. Electrochemical behavior of aluminum in Grignard reagents/THF electrolytic solutions for 1436 2.6 9 rechargeable magnesium batteries. Electrochimica Acta, 2013, 88, 790-797. Facile synthesis of hierarchical mesoporous Li4Ti5O12 microspheres in supercritical methanol. 1437 Journal of Power Sources, 2013, 244, 164-169.

#	Article	IF	CITATIONS
1438	A stable silicon/graphene composite using solvent exchange method as anode material for lithium ion batteries. Carbon, 2013, 63, 397-403.	5.4	50
1439	Li4Ti5O12/Reduced Graphene Oxide composite as a high rate capability material for lithium ion batteries. Solid State Ionics, 2013, 236, 30-36.	1.3	37
1440	Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. Journal of Asian Ceramic Societies, 2013, 1, 17-25.	1.0	375
1441	Nano-sized Li4Ti5O12 anode material with excellent performance prepared by solid state reaction: The effect of precursor size and morphology. Electrochimica Acta, 2013, 112, 356-363.	2.6	41
1442	Electrochemical performances of a novel high-voltage electrolyte based upon sulfolane and γ-butyrolactone. Journal of Power Sources, 2013, 240, 476-485.	4.0	61
1443	Enhanced electrochemical performances of LiFePO4/C by co-doping with magnesium and fluorine. Electrochimica Acta, 2013, 113, 156-163.	2.6	41
1444	Sulfur in hierarchically pore-structured carbon pillars as cathode material for lithium–sulfur batteries. Electrochimica Acta, 2013, 97, 238-243.	2.6	59
1445	Water-stable lithium anode with Li1.4Al0.4Ge1.6(PO4)3–TiO2 sheet prepared by tape casting method for lithium-air batteries. Journal of Power Sources, 2013, 235, 117-121.	4.0	56
1446	Dialkoxybenzoquinone-type Active Materials for Rechargeable Lithium Batteries: The Effect of the Alkoxy Group Length on the Cycle-stability. Energy Procedia, 2013, 34, 880-887.	1.8	19
1447	Hydrothermal fabrication of lead hydroxide chloride as a novel anode material for lithium-ion batteries. Electrochimica Acta, 2013, 102, 381-387.	2.6	21
1448	Li-doped mixtures of alkoxy-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and organic carbonates as safe liquid electrolytes for lithium batteries. Journal of Power Sources, 2013, 237, 204-209.	4.0	48
1449	Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy, 2013, 2, 890-896.	8.2	133
1450	Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries. Journal of Alloys and Compounds, 2013, 577, 663-668.	2.8	86
1451	Enhanced cycling stability and thermal stability of YPO4-coated LiMn2O4 cathode materials for lithium ion batteries. Solid State Ionics, 2013, 247-248, 22-29.	1.3	37
1452	Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1â^'Mg]O2 prepared from spent lithium ion batteries. Journal of Hazardous Materials, 2013, 246-247, 163-172.	6.5	171
1453	Time resolved current spectra (TRCS) and dielectric properties of 50Li2O–50B2O3–xCu2O glass system. Journal of Non-Crystalline Solids, 2013, 379, 60-66.	1.5	2
1454	The electrochemical properties of high-capacity sulfur/reduced graphene oxide with different electrolyte systems. Journal of Power Sources, 2013, 244, 240-245.	4.0	32
1455	Structural changes of a Li/S rechargeable cell in Lithium Metal Polymer technology. Journal of Power Sources, 2013, 241, 249-254.	4.0	25

CITATION REPORT

#	Article	IF	CITATIONS
1456	Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries. Current Applied Physics, 2013, 13, 293-297.	1.1	21
1457	Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon, 2013, 51, 185-194.	5.4	88
1458	On the use of lithium vanadium phosphate in high power devices. Journal of Power Sources, 2013, 235, 265-273.	4.0	45
1459	Influence of morphologies and pseudocapacitive contributions for charge storage in V2O5 micro/nano-structures. Electrochimica Acta, 2013, 111, 762-770.	2.6	96
1460	The electrochemical performance of pitch coke anodes containing hollow carbon nanostructures and nickel nanoparticles for high-power lithium ion batteries. Electrochimica Acta, 2013, 112, 394-402.	2.6	13
1461	Facile synthesis of high surface area hedgehog-like CuO microspheres with improved lithium storage properties. Materials Chemistry and Physics, 2013, 138, 593-600.	2.0	30
1462	Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries. Scientific Reports, 2013, 3, 1506.	1.6	84
1463	Muon-spin relaxation study on Li- and Na-diffusion in solids. Physica Scripta, 2013, 88, 068509.	1.2	69
1464	Electrochemical properties of ultrasonically prepared Ni(OH)2 nanosheets inÂlithium cells. Journal of Power Sources, 2013, 238, 366-371.	4.0	21
1465	Reversible contrast in focus series of annular bright field images of a crystalline LiMn2O4 nanowire. Ultramicroscopy, 2013, 125, 43-48.	0.8	28
1466	Anode behavior of Sn/WC/graphene triple layered composite for lithium-ion batteries. Electrochimica Acta, 2013, 108, 674-679.	2.6	24
1467	On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression. Journal of Power Sources, 2013, 235, 36-44.	4.0	405
1468	In-situ observation of one silicon particle during the first charging. Journal of Power Sources, 2013, 243, 630-634.	4.0	36
1469	Facile preparation of Li4Ti5O12/AB/MWCNTs composite with high-rate performance for lithium ion battery. Electrochimica Acta, 2013, 94, 294-299.	2.6	25
1470	Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. Journal of Power Sources, 2013, 240, 644-652.	4.0	86
1471	Decorated carbon nanotubes by silicon deposition in fluidized bed for Li-ion battery anodes. Chemical Engineering Research and Design, 2013, 91, 2491-2496.	2.7	9
1472	Three-dimensional network current collectors supported Si nanowires for lithium-ion battery applications. Electrochimica Acta, 2013, 88, 766-771.	2.6	44
1473	Carbon meringues derived from flavonoid tannins. Carbon, 2013, 65, 214-227.	5.4	38

#	Article	IF	CITATIONS
1474	Synthesis of a novel ferrocene-contained polypyrrole derivative and its performance as a cathode material for Li-ion batteries. Electrochimica Acta, 2013, 104, 302-307.	2.6	48
1475	Diamond foam electrodes for electrochemical applications. Electrochemistry Communications, 2013, 33, 88-91.	2.3	57
1476	Mesoporous, Si/C composite anode for Li battery obtained by â€~magnesium-thermal' reduction process. Solid State Ionics, 2013, 232, 24-28.	1.3	34
1477	Fast screening of solid electrolytes: A high throughput solid state NMR probe. Solid State Nuclear Magnetic Resonance, 2013, 49-50, 23-25.	1.5	5
1478	Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material. Electrochimica Acta, 2013, 93, 195-201.	2.6	99
1479	Continuous synthesis of lithium iron phosphate (LiFePO4) nanoparticles in supercritical water: Effect of mixing tee. Journal of Supercritical Fluids, 2013, 73, 70-79.	1.6	43
1480	Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material. Electrochimica Acta, 2013, 102, 246-251.	2.6	60
1481	Tween40 surfactant effect on the formation of nano-sized LiFePO4/C powder via a solid state reaction and their cathode properties. Solid State Ionics, 2013, 249-250, 158-164.	1.3	13
1482	Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry. Journal of the European Ceramic Society, 2013, 33, 1145-1153.	2.8	135
1483	Effects of precursor treatment on the structure and electrochemical properties of spinel LiMn2O4 cathode. Journal of Alloys and Compounds, 2013, 566, 16-21.	2.8	20
1484	One step sol–gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium-ion storage properties. Electrochimica Acta, 2013, 88, 74-78.	2.6	87
1485	Effects of fluorine substitution on the electrochemical performance of layered Li-excess nickel manganese oxides cathode materials for lithium-ion batteries. Electrochimica Acta, 2013, 113, 407-411.	2.6	27
1486	Nanocomposites of silicon and carbon derived from coal tar pitch: Cheap anode materials for lithium-ion batteries with long cycle life and enhanced capacity. Electrochimica Acta, 2013, 93, 213-221.	2.6	93
1487	Synthesis and electrochemical performance of high-rate dual-phase Li4Ti5O12–TiO2 nanocrystallines for Li-ion batteries. Electrochimica Acta, 2013, 87, 218-223.	2.6	57
1488	Lithium-ion battery performance of layered 0.3Li2MnO3–0.7LiNi0.5Mn0.5O2 composite cathode prepared by co-precipitation and sol–gel methods. Materials Letters, 2013, 104, 57-60.	1.3	27
1489	Holographically patterned soft matter: light directed mesoscale phase separation. Current Opinion in Chemical Engineering, 2013, 2, 63-70.	3.8	6
1490	Synthesis and electrochemical performance of layered lithium–sodium manganese oxide as a cathode material for lithium ion batteries. Journal of Power Sources, 2013, 238, 372-375.	4.0	5
1491	Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry, 2013, 708, 116-123.	1.9	15

ARTICLE IF CITATIONS Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for 1492 2.7 20 lithium ion batteries. Materials Research Bulletin, 2013, 48, 3479-3484. \hat{l} ±-Fe2O3 and Fe3O4 hollow nanospheres as high-capacity anode materials for rechargeable Li-ion 1493 1.2 19 batteries. lonics, 2013, 19, 25-31. A carbothermal reduction method for enhancing the electrochemical performance of LiFePO4/C 1494 1.2 8 composite cathode materials. Ionics, 2013, 19, 235-243. Organic polymer material with a multi-electron process redox reaction: towards ultra-high 1495 reversible lithium storage capacity. RSC Advances, 2013, 3, 3227. Phase stability, electrochemical stability and ionic conductivity of the Li_{10±1}MP₂X₁₂(M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of 1496 15.6 545 superionic conductors. Energy and Environmental Science, 2013, 6, 148-156. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. 5.8 1,917 Nature Communications, 2013, 4, 1481. Coralline Glassy Lithium Phosphate-Coated LiFePO₄ Cathodes with Improved Power 1498 1.5 66 Capability for Lithium Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 6013-6021. Li4Ti5O12 prepared by a modified citric acid sol–gel method for lithium-ion battery. Journal of Power 1499 4.0 Sources, 2013, 236, 118-125. Self-assembly of hybrid Fe2Mo3O8â€"reduced graphene oxide nanosheets with enhanced lithium storage 1500 5.2 40 properties. Jóurnal of Materials Chemistry A, 2013, 1, 4468. Manganese-Based Layered Coordination Polymer: Synthesis, Structural Characterization, Magnetic Property, and Electrochemical Performance in Lithium-Ion Batteries. Inorganic Chemistry, 2013, 52, 188 2817-2822. Cycling profile of innovative nanochitin-incorporated poly (ethylene oxide) based electrolytes for 1502 49 4.0lithium batteries. Journal of Power Sources, 2013, 228, 294-299. Lactam derivatives as solid electrolyte interphase forming additives for a graphite anode of 4.0 lithium-ion batteries. Journal of Power Sources, 2013, 244, 711-715. Preparation of 3D flower-like NiO hierarchical architectures and their electrochemical properties in 1504 2.6 90 lithium-ion batteries. Electrochimica Acta, 2013, 90, 80-89. Electrochemical performance of carbide-derived carbon anodes for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2013, 74, 1045-1055. A Fe2O3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries. 1506 2.6 68 Electrochimica Acta, 2013, 97, 271-277. Binder-free α-MoO3 nanobelt electrode for lithium-ion batteries utilizing van der Waals forces for 5.2 film formation and connection with current collector. Journal of Materials Chemistry A, 2013, 1, 4736. A hybrid electrolyte energy storage device with high energy and long life using lithium anode and 1508 2.324 MnO2 nanoflake cathode. Electrochemistry Communications, 2013, 31, 35-38. Critical aspects in the development of lithium–air batteries. Journal of Solid State Electrochemistry, 1509 1.2 2013, 17, 1793-1807.

#	Article	IF	CITATIONS
1510	Improving the electrochemical performance of organic Li-ion battery electrodes. Chemical Communications, 2013, 49, 1945.	2.2	85
1511	The preparation of uniform SnO2 nanotubes with a mesoporous shell for lithium storage. Journal of Materials Chemistry A, 2013, 1, 2995.	5.2	67
1512	Defect effects on the physical and electrochemical properties of nanoscale LiFe0.92PO4 and LiFe0.92PO4/C/graphene composites. Nanoscale, 2013, 5, 3704.	2.8	22
1513	A sodium manganese ferrocyanide thin film for Na-ion batteries. Chemical Communications, 2013, 49, 2750.	2.2	162
1514	Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis. Journal of the American Chemical Society, 2013, 135, 2013-2036.	6.6	856
1515	Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. International Journal of Solids and Structures, 2013, 50, 1120-1129.	1.3	73
1516	1,3,5-Trihydroxybenzene as a film-forming additive for high-voltage positive electrode. Electrochemistry Communications, 2013, 27, 26-28.	2.3	39
1518	Conformal Fe ₃ O ₄ Sheath on Aligned Carbon Nanotube Scaffolds as High-Performance Anodes for Lithium Ion Batteries. Nano Letters, 2013, 13, 818-823.	4.5	289
1519	Synthesis and electrochemical properties of MoO3/C nanocomposite. Electrochimica Acta, 2013, 93, 101-106.	2.6	42
1520	Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale, 2013, 5, 3457.	2.8	154
1521	Synergistic Catalysis over Bimetallic Alloy Nanoparticles. ChemCatChem, 2013, 5, 652-676.	1.8	560
1522	In Situ Synthesis of Porous Fe ₃ O ₄ /C Microbelts and Their Enhanced Electrochemical Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 1698-1703.	4.0	72
1523	A facile PVP-assisted hydrothermal fabrication of Fe2O3/Graphene composite as high performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2013, 560, 208-214.	2.8	70
1524	Nanowormlike Li ₂ FeSiO ₄ –C Composites as Lithium-Ion Battery Cathodes with Superior High-Rate Capability. ACS Applied Materials & Interfaces, 2013, 5, 2510-2516.	4.0	34
1525	Solid solution studies of layered honeycomb-ordered phases O3–Na3M2SbO6 (M=Cu, Mg, Ni, Zn). Journal of Solid State Chemistry, 2013, 201, 178-185.	1.4	57
1526	Electrochemical investigation of carbonate-based electrolytes for high voltage lithium-ion cells. Journal of Power Sources, 2013, 236, 175-180.	4.0	68
1527	Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chemical Society Reviews, 2013, 42, 3088.	18.7	795
1528	LiFePO4–graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene. Energy and Environmental Science, 2013, 6, 1521.	15.6	199

#	Article	IF	CITATIONS
1529	Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes. ACS Nano, 2013, 7, 1437-1445.	7.3	392
1530	Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping. Electrochimica Acta, 2013, 89, 479-487.	2.6	90
1531	Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale, 2013, 5, 2186.	2.8	480
1532	SnO ₂ â€Based Nanomaterials: Synthesis and Application in Lithiumâ€ion Batteries. Small, 2013, 9, 1877-1893.	5.2	729
1533	Long cycling life of Li2MnSiO4 lithium battery cathodes under the double protection from carbon coating and graphene network. Journal of Materials Chemistry A, 2013, 1, 3856.	5.2	45
1534	A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chemistry, 2013, 15, 1183.	4.6	321
1535	Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO ₂ Composites. Journal of the Electrochemical Society, 2013, 160, H74-H79.	1.3	19
1536	A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale, 2013, 5, 2045.	2.8	445
1537	Carbon-coated LiFePO4–porous carbon composites as cathode materials for lithium ion batteries. Nanoscale, 2013, 5, 2164.	2.8	70
1538	Nanoporous silicon networks as anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 440-443.	1.3	65
1539	Electrical power generation by mechanically modulating electrical double layers. Nature Communications, 2013, 4, 1487.	5.8	176
1540	Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries. Electrochimica Acta, 2013, 92, 132-138.	2.6	81
1541	Pt–Al ₂ O ₃ dual layer atomic layer deposition coating in high aspect ratio nanopores. Nanotechnology, 2013, 24, 015602.	1.3	42
1542	Grapheneâ€Bonded and â€Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. Small, 2013, 9, 2810-2816.	5.2	183
1543	Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries. Nanoscale, 2013, 5, 4584.	2.8	114
1544	The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Postâ€Treatment, and Bulk Applications for Composites and Energy Storage. Small, 2013, 9, 1237-1265.	5.2	617
1545	Mesoporous LiFePO4 microspheres for rechargeable lithium-ion batteries. Electrochimica Acta, 2013, 98, 288-293.	2.6	32
1546	Corrosion of magnesium electrolytes: chlorides – the culprit. Energy and Environmental Science, 2013, 6, 482-487.	15.6	175

#	Article	IF	CITATIONS
1547	Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nature Materials, 2013, 12, 452-457.	13.3	1,194
1548	Microwave rapid preparation of LiNi0.5Mn1.5O4 and the improved high rate performance for lithium-ion batteries. Electrochimica Acta, 2013, 100, 125-132.	2.6	55
1549	Li ₃ V ₂ (PO ₄) ₃ /Conducting Polymer as a High Power 4 V lass Lithium Battery Electrode. Advanced Energy Materials, 2013, 3, 1004-1007.	10.2	75
1550	The use of elemental sulfur as an alternative feedstock for polymeric materials. Nature Chemistry, 2013, 5, 518-524.	6.6	1,046
1551	A new LiCoPO4 polymorph via low temperature synthesis. Journal of Materials Chemistry A, 2013, 1, 2856.	5.2	48
1552	Silicon nanowires for advanced energy conversion and storage. Nano Today, 2013, 8, 75-97.	6.2	266
1553	Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy, 2013, 2, 498-504.	8.2	120
1554	CFx Derived Carbon–FeF ₂ Nanocomposites for Reversible Lithium Storage. Advanced Energy Materials, 2013, 3, 308-313.	10.2	76
1555	Nanotechnology for More Sustainable Manufacturing: Opportunities and Risks. ACS Symposium Series, 2013, , 91-105.	0.5	2
1556	Monodisperse Li1.2Mn0.6Ni0.2O2 microspheres with enhanced lithium storage capability. Journal of Materials Chemistry A, 2013, 1, 5301.	5.2	66
1557	A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries. RSC Advances, 2013, 3, 3857.	1.7	104
1558	Using waste Li ion batteries as cathodes in rechargeable Li–liquid batteries. Physical Chemistry Chemical Physics, 2013, 15, 7036.	1.3	9
1559	High-Energy Cathode Materials (Li ₂ MnO ₃ –LiMO ₂) for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2013, 4, 1268-1280.	2.1	546
1560	Superâ€Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 846-853.	7.8	258
1561	Musselâ€Inspired Adhesive Binders for Highâ€Performance Silicon Nanoparticle Anodes in Lithiumâ€Ion Batteries. Advanced Materials, 2013, 25, 1571-1576.	11.1	532
1562	Nanostructured sulfur cathodes. Chemical Society Reviews, 2013, 42, 3018.	18.7	1,778
1563	Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices. ACS Sustainable Chemistry and Engineering, 2013, 1, 585-590.	3.2	90
1564	Facile synthesis of uniform mesoporous ZnCo2O4 microspheres as a high-performance anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 5596.	5.2	250

#	Article	IF	CITATIONS
1565	Enhanced performance of a novel gel polymer electrolyte by dual plasticizers. Journal of Power Sources, 2013, 239, 111-121.	4.0	28
1566	3D Graphene Foams Crossâ€linked with Preâ€encapsulated Fe ₃ O ₄ Nanospheres for Enhanced Lithium Storage. Advanced Materials, 2013, 25, 2909-2914.	11.1	727
1567	Fuel Cell Comparison to Alternate Technologies. , 2013, , 77-95.		1
1568	Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage. Nano Letters, 2013, 13, 2258-2263.	4.5	377
1569	Lithium Atom and A-Site Vacancy Distributions in Lanthanum Lithium Titanate. Chemistry of Materials, 2013, 25, 1607-1614.	3.2	97
1570	Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. Physical Chemistry Chemical Physics, 2013, 15, 7713.	1.3	53
1572	Carbon Coated ZnFe ₂ O ₄ Nanoparticles for Advanced Lithiumâ€ion Anodes. Advanced Energy Materials, 2013, 3, 513-523.	10.2	312
1573	In situ synthesis of lithium sulfide–carbon composites as cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry A, 2013, 1, 1433-1440.	5.2	138
1574	Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO ₂ Nanocomposites for Lithium Ion Battery. Nano Letters, 2013, 13, 1711-1716.	4.5	278
1575	Influence of Al3+ ions on the morphology and structure of layered LiMn1–xAlxO2 cathode materials for the lithium ion battery. Journal of Alloys and Compounds, 2013, 569, 67-75.	2.8	9
1576	Graphene/Carbon-Coated Si Nanoparticle Hybrids as High-Performance Anode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 3449-3455.	4.0	171
1577	Interface phenomena between Li anode and lithium phosphate electrolyte for Li-ion battery. Journal of Power Sources, 2013, 244, 136-142.	4.0	25
1578	Thermodynamics of Electrochemical Lithium Storage. Angewandte Chemie - International Edition, 2013, 52, 4998-5026.	7.2	181
1579	Mesoporous CoFe2O4 nanospheres cross-linked by carbon nanotubes as high-performance anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 7444.	5.2	118
1580	Synthesis of LiNi0.5Mn1.5O4 and 0.5Li2MnO3–0.5LiNi1/3Co1/3Mn1/3O2 hollow nanowires by electrospinning. CrystEngComm, 2013, 15, 2592.	1.3	39
1581	Structureâ€Properties Relationship in Iron Oxideâ€Reduced Graphene Oxide Nanostructures for Liâ€ion Batteries. Advanced Functional Materials, 2013, 23, 4293-4305.	7.8	96
1582	Octahedral Co3O4 particles threaded by carbon nanotube arrays as integrated structure anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 5582.	1.3	49
1583	Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale, 2013, 5, 6053.	2.8	271

#	Article	IF	CITATIONS
1584	Defect Thermodynamics and Diffusion Mechanisms in Li ₂ CO ₃ and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 8579-8593.	1.5	228
1585	Chelating ionic liquids for reversible zinc electrochemistry. Physical Chemistry Chemical Physics, 2013, 15, 7191.	1.3	76
1586	High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. Journal of Materials Chemistry A, 2013, 1, 7167.	5.2	203
1587	Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews, 2013, 113, 5364-5457.	23.0	2,670
1588	Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications, 2013, 4, 1805.	5.8	976
1589	Homogeneous CoO on Graphene for Binderâ€Free and Ultralongâ€Life Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 4345-4353.	7.8	333
1590	Mild and cost-effective synthesis of iron fluoride–graphene nanocomposites for high-rate Li-ion battery cathodes. Journal of Materials Chemistry A, 2013, 1, 1969-1975.	5.2	87
1591	Pyrolyzed Bacterial Cellulose: A Versatile Support for Lithium Ion Battery Anode Materials. Small, 2013, 9, 2399-2404.	5.2	158
1592	Silicon Nanofibrils on a Flexible Current Collector for Bendable Lithiumâ€lon Battery Anodes. Advanced Functional Materials, 2013, 23, 2108-2114.	7.8	85
1593	Screenâ€Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks. Advanced Energy Materials, 2013, 3, 1035-1040.	10.2	228
1594	Surface phase composition of nanosized LiFePO4 and their enhanced electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 6635.	5.2	15
1595	Synthesis of Monoclinic Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ Nanoparticles by a Layeredâ€Template Route for Highâ€Performance Liâ€Ion Batteries. European Journal of Inorganic Chemistry. 2013. 2013. 2887-2892.	1.0	19
1596	Facile Synthesis of Free-Standing Silicon Membranes with Three-Dimensional Nanoarchitecture for Anodes of Lithium Ion Batteries. Nano Letters, 2013, 13, 3340-3346.	4.5	69
1597	Aqueous Solution Process for the Synthesis and Assembly of Nanostructured One-Dimensional α-MoO ₃ Electrode Materials. Chemistry of Materials, 2013, 25, 2557-2563.	3.2	53
1598	Contactâ€Engineered and Voidâ€Involved Silicon/Carbon Nanohybrids as Lithiumâ€Ionâ€Battery Anodes. Advanced Materials, 2013, 25, 3560-3565.	11.1	227
1599	Grapheneâ€Like MoS ₂ /Graphene Composites: Cationic Surfactantâ€Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small, 2013, 9, 3693-3703.	5.2	322
1600	In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres. Nano Letters, 2013, 13, 758-764.	4.5	680
1601	Polyvinylpyrrolidone (PVP) assisted synthesized nano-LiFePO4/C composite with enhanced low temperature performance. Electrochimica Acta, 2013, 97, 92-98.	2.6	51

#	Article	IF	CITATIONS
1602	Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li ⁺ Hopping in Argyrodite-Type Li ₆ PS ₅ Br. Journal of Physical Chemistry Letters, 2013, 4, 2118-2123.	2.1	118
1603	Highly robust silicon nanowire/graphene core–shell electrodes without polymeric binders. Nanoscale, 2013, 5, 8986.	2.8	33
1604	Synthesis and characterization of highly conductive plasticized double core organic–inorganic hybrid electrolytes for lithium polymer batteries. Journal of Power Sources, 2013, 238, 265-273.	4.0	8
1605	Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries. Journal of Power Sources, 2013, 240, 344-350.	4.0	91
1606	Lithium Battery Electrolyte Stability and Performance from Molecular Modeling and Simulations. , 2013, , 195-237.		1
1607	Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes. Nano Letters, 2013, 13, 3385-3390.	4.5	208
1608	Structures and properties of ferrocene derivatives with different kinds of nitroxide radicals. New Journal of Chemistry, 2013, 37, 2468.	1.4	4
1609	Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2013, 15, 6080.	1.3	167
1610	In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 9145.	1.3	173
1611	Leafâ€Like V ₂ O ₅ Nanosheets Fabricated by a Facile Green Approach as High Energy Cathode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 1171-1175.	10.2	200
1612	A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochimica Acta, 2013, 87, 113-118.	2.6	194
1613	A Selfâ€Standing and Flexible Electrode of Li ₄ Ti ₅ O ₁₂ Nanosheets with a Nâ€Doped Carbon Coating for High Rate Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 5429-5435.	7.8	128
1614	Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 7270.	5.2	177
1615	Well-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Nanoscale, 2013, 5, 5312.	2.8	249
1616	A hierarchical porous electrode using a micron-sized honeycomb-like carbon material for high capacity lithium–oxygen batteries. Nanoscale, 2013, 5, 4647.	2.8	63
1617	Sucroseâ€Assisted Loading of LiFePO ₄ Nanoparticles on Graphene for Highâ€Performance Lithiumâ€Ion Battery Cathodes. Chemistry - A European Journal, 2013, 19, 5631-5636.	1.7	45
1618	Carbon Nanostructures in Lithium Ion Batteries: Past, Present, and Future. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 128-166.	6.8	66
1619	Facile synthesis of yolk–shell MoO2 microspheres with excellent electrochemical performance as a Li-ion battery anode, Journal of Materials Chemistry A, 2013, 1, 6858.	5.2	81

#	Article	IF	CITATIONS
1620	One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochimica Acta, 2013, 99, 253-261.	2.6	222
1621	Superior Electrochemical Performance and Storage Mechanism of Na ₃ V ₂ (PO ₄) ₃ Cathode for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 156-160.	10.2	817
1622	Synthesis and electrochemical properties of high performance yolk-structured LiMn ₂ O ₄ microspheres for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 860-867.	5.2	32
1623	A novel nano-sulfur/polypyrrole/graphene nanocomposite cathode with a dual-layered structure for lithium rechargeable batteries. Journal of Power Sources, 2013, 241, 517-521.	4.0	105
1624	Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy, 2013, 2, 412-418.	8.2	145
1625	Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nature Communications, 2013, 4, 1870.	5.8	628
1626	Significantly Improved Long-Cycle Stability in High-Rate Li–S Batteries Enabled by Coaxial Graphene Wrapping over Sulfur-Coated Carbon Nanofibers. Nano Letters, 2013, 13, 2485-2489.	4.5	314
1627	A hierarchical hybrid design for high performance tin based Li-ion battery anodes. Nanotechnology, 2013, 24, 205401.	1.3	13
1628	Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries. Applied Surface Science, 2013, 266, 148-154.	3.1	78
1629	Organic Rechargeable Batteries with Tailored Voltage and Cycle Performance. ChemSusChem, 2013, 6, 794-797.	3.6	65
1630	Lithium Superionic Sulfide Cathode for All-Solid Lithium–Sulfur Batteries. ACS Nano, 2013, 7, 2829-2833.	7.3	333
1631	A novel polyquinone cathode material for rechargeable lithium batteries. Journal of Power Sources, 2013, 233, 23-27.	4.0	84
1632	Synthesis of Single rystalline LiMn ₂ O ₄ and LiMn _{1.5} Ni _{0.5} O ₄ Nanocrystals and Their Lithium Storage Properties. ChemPlusChem, 2013, 78, 218-221.	1.3	14
1633	Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy and Environmental Science, 2013, 6, 1806.	15.6	462
1634	In Situ Electrochemical XAFS Studies on an Iron Fluoride High-Capacity Cathode Material for Rechargeable Lithium Batteries. Journal of Physical Chemistry C, 2013, 117, 11498-11505.	1.5	51
1635	Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries. Electrochimica Acta, 2013, 105, 1-6.	2.6	95
1636	Carbon coated Fe3O4 hybrid material prepared by chemical vapor deposition for high performance lithium-ion batteries. Electrochimica Acta, 2013, 106, 235-243.	2.6	49
1637	Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors. Electrochimica Acta, 2013, 98, 123-130.	2.6	121

#	Article	IF	CITATIONS
1638	Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 2013, 17, 53-64.	2.8	1,071
1639	Enhanced Photocatalytic Oxygen Evolution by Crystal Cutting. Advanced Materials, 2013, 25, 2035-2039.	11.1	49
1640	Synthesis of α-Fe2O3 nanoparticles from Fe(OH)3 sol and their composite with reduced graphene oxide for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 7154.	5.2	55
1641	Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by <i>in situ</i> TEM: two reaction modes are revealed. Nanotechnology, 2013, 24, 255705.	1.3	65
1642	An In Situ Ionic-Liquid-Assisted Synthetic Approach to Iron Fluoride/Graphene Hybrid Nanostructures as Superior Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 5057-5063.	4.0	64
1643	Facile fabrication of graphene/Cu6Sn5 nanocomposite as the high performance anode material for lithium ion batteries. Electrochimica Acta, 2013, 105, 629-634.	2.6	40
1644	Template-free synthesis of hollow α-Fe ₂ O ₃ microcubes for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2307-2312.	5.2	66
1645	The ionic conductivity and dielectric properties of Ba1â^'xSnxF2 solid solutions prepared by mechanochemical milling. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 965-970.	1.7	13
1646	Direct observation of lithium-ion transport under an electrical field in LixCoO2 nanograins. Scientific Reports, 2013, 3, 1084.	1.6	77
1647	An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2. Chemical Communications, 2013, 49, 6179.	2.2	85
1648	Sodium Storage and Transport Properties in Layered Na ₂ Ti ₃ O ₇ for Roomâ€Temperature Sodiumâ€ion Batteries. Advanced Energy Materials, 2013, 3, 1186-1194.	10.2	456
1649	Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 2013, 4, 1943.	5.8	1,138
1650	Lithium Polysulfidophosphates: A Family of Lithiumâ€Conducting Sulfurâ€Rich Compounds for Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2013, 52, 7460-7463.	7.2	263
1651	Naturally Rolledâ€Up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithiumâ€Ion Batteries with Remarkable Cycling Performance. Angewandte Chemie - International Edition, 2013, 52, 2326-2330.	7.2	181
1652	3D Printing of Interdigitated Liâ€ion Microbattery Architectures. Advanced Materials, 2013, 25, 4539-4543.	11.1	1,074
1653	Defect and dopant properties of the α- and β-polymorphs of the Li3FeF6 lithium battery material. Journal of Materials Chemistry A, 2013, 1, 6588.	5.2	12
1654	Long-life and high-rate Li3V2(PO4)3/C nanosphere cathode materials with three-dimensional continuous electron pathways. Nanoscale, 2013, 5, 4864.	2.8	84
1655	Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. Journal of Materials Chemistry A, 2013, 1, 9484.	5.2	194

#	Article	IF	CITATIONS
1656	Solid-state synthesis of Li4Ti5O12 for high power lithium ion battery applications. Journal of Alloys and Compounds, 2013, 570, 144-149.	2.8	47
1657	Pressure-sensitive plasticity of lithiated silicon in Li-ion batteries. Acta Mechanica Sinica/Lixue Xuebao, 2013, 29, 379-387.	1.5	18
1658	High Capacity Microporous Molybdenum–Vanadium Oxide Electrodes for Rechargeable Lithium Batteries. Chemistry of Materials, 2013, 25, 2708-2715.	3.2	33
1659	Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 7666.	5.2	66
1660	Electrospun Silicon Nanoparticle/Porous Carbon Hybrid Nanofibers for Lithiumâ€lon Batteries. Small, 2013, 9, 2684-2688.	5.2	164
1661	Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability. Nanoscale, 2013, 5, 6797.	2.8	73
1662	Unique core–shell structured SiO ₂ (Li ⁺) nanoparticles for high-performance composite polymer electrolytes. Journal of Materials Chemistry A, 2013, 1, 395-401.	5.2	50
1663	Petal-like Li4Ti5O12–TiO2 nanosheets as high-performance anode materials for Li-ion batteries. Nanoscale, 2013, 5, 6936.	2.8	95
1664	A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 7790.	5.2	166
1665	Synthesis and Applications of Î ³ -Tungsten Oxide Hierarchical Nanostructures. Crystal Growth and Design, 2013, 13, 759-769.	1.4	75
1666	On-surface cross-coupling methods for the construction of modified electrode assemblies with tailored morphologies. Chemical Science, 2013, 4, 437-443.	3.7	24
1667	Carbonâ€Free TiO ₂ Battery Electrodes Enabled by Morphological Control at the Nanoscale. Advanced Energy Materials, 2013, 3, 1286-1291.	10.2	41
1668	Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges. RSC Advances, 2013, 3, 13027.	1.7	200
1669	Polymer–inorganic supramolecular nanohybrids for red, white, green, and blue applications. Progress in Polymer Science, 2013, 38, 1442-1486.	11.8	105
1670	Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochimica Acta, 2013, 89, 737-743.	2.6	123
1671	Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research, 2013, 6, 581-592.	5.8	204
1673	High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte. Electrochimica Acta, 2013, 91, 58-61.	2.6	127
1674	Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries. Journal of Materials Chemistry A, 2013, 1, 6602.	5.2	189

#	Article	IF	CITATIONS
1675	Na ₂ FeP ₂ O ₇ as a Promising Ironâ€Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study. Advanced Functional Materials, 2013, 23, 1147-1155.	7.8	316
1676	Electrodeposition of metals in microgravity conditions. Electrochimica Acta, 2013, 100, 342-349.	2.6	11
1677	Recent progress in high-voltage lithium ion batteries. Journal of Power Sources, 2013, 237, 229-242.	4.0	688
1678	Nanostructured 3D Electrode Architectures for Highâ€Rate Liâ€lon Batteries. Advanced Materials, 2013, 25, 3238-3243.	11.1	83
1679	Acetylene black incorporated three-dimensional porous SnS2 nanoflowers with high performance for lithium storage. RSC Advances, 2013, 3, 3374.	1.7	70
1680	Nanoengineering Titania for High Rate Lithium Storage: A Review. Journal of Materials Science and Technology, 2013, 29, 97-122.	5.6	103
1681	Rationally Designed Hierarchical TiO ₂ @Fe ₂ O ₃ Hollow Nanostructures for Improved Lithium Ion Storage. Advanced Energy Materials, 2013, 3, 737-743.	10.2	296
1682	Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 1257-1267.	1.5	419
1683	Nanoporous carbons from hydrothermally treated biomass as anode materials for lithium ion batteries. Microporous and Mesoporous Materials, 2013, 174, 25-33.	2.2	79
1684	Epoxy-silica hybrid organic–inorganic electrolytes with a high Li-ion conductivity. Electrochimica Acta, 2013, 110, 200-207.	2.6	18
1685	Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 2833.	5.2	109
1686	Cobalt nanomountain array supported silicon film anode for high-performance lithium ion batteries. Electrochimica Acta, 2013, 88, 664-670.	2.6	42
1688	Spinel/Layered Heterostructured Cathode Material for High apacity and Highâ€Rate Liâ€Ion Batteries. Advanced Materials, 2013, 25, 3722-3726.	11.1	249
1689	A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies. Journal of Power Sources, 2013, 234, 302-309.	4.0	124
1690	An organic cathode material based on a polyimide/CNT nanocomposite for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 6366.	5.2	197
1691	Fast lithium-ion insertion of TiO2 nanotube and graphene composites. Electrochimica Acta, 2013, 88, 847-857.	2.6	66
1692	Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium–ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 2954.	1.3	70
1693	Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries. Electrochimica	2.6	57

#	Article	IF	CITATIONS
1694	Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochimica Acta, 2013, 90, 179-185.	2.6	95
1695	Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications. Electrochimica Acta, 2013, 87, 889-894.	2.6	83
1696	Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy and Environmental Science, 2013, 6, 2067.	15.6	712
1697	Graphene Nanoribbon and Nanostructured SnO ₂ Composite Anodes for Lithium Ion Batteries. ACS Nano, 2013, 7, 6001-6006.	7.3	421
1698	Porous graphene frame supported silicon@graphitic carbon via in situ solid-state synthesis for high-performance lithium-ion anodes. Journal of Materials Chemistry A, 2013, 1, 7601.	5.2	52
1699	A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries. Journal of Membrane Science, 2013, 425-426, 105-112.	4.1	119
1700	Nanostructured Aqueous Lithium-Ion Conductors Formed by the Self-Assembly of Imidazolium-Type Zwitterions. ACS Applied Materials & Interfaces, 2013, 5, 13312-13317.	4.0	42
1701	Effects of Li and Cl Codoping on the Electrochemical Performance and Structural Stability of LiMn ₂ O ₄ Cathode Materials for Hybrid Electric Vehicle Applications. Journal of Physical Chemistry C, 2013, 117, 4913-4919.	1.5	42
1702	Structure and Dynamics of [PF ₆][P _{1,2,2,4}] from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2013, 117, 15176-15183.	1.2	13
1703	Solvate Ionic Liquid Electrolyte for Li–S Batteries. Journal of the Electrochemical Society, 2013, 160, A1304-A1310.	1.3	421
1704	MnO ₂ -Based Thermopower Wave Sources with Exceptionally Large Output Voltages. Journal of Physical Chemistry C, 2013, 117, 9137-9142.	1.5	71
1705	Enhancing Bi-functional Electrocatalytic Activity of Perovskite by Temperature Shock: A Case Study of LaNiO _{3â~δ} . Journal of Physical Chemistry Letters, 2013, 4, 2982-2988.	2.1	172
1706	Synthesis of Amorphous FeOOH/Reduced Graphene Oxide Composite by Infrared Irradiation and Its Superior Lithium Storage Performance. ACS Applied Materials & Interfaces, 2013, 5, 10145-10150.	4.0	52
1707	Atomic Layer Deposition of LiCoO ₂ Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries. Journal of the Electrochemical Society, 2013, 160, A3066-A3071.	1.3	99
1708	A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 14357.	1.3	115
1709	Synthesis of Na1.25V3O8 Nanobelts with Excellent Long-Term Stability for Rechargeable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 11913-11917.	4.0	25
1710	A Gumâ€Like Electrolyte: Safety of a Solid, Performance of a Liquid. Advanced Energy Materials, 2013, 3, 1557-1562.	10.2	51
1711	Study of carbon surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for high-capacity lithium ion battery cathode. Journal of Solid State Electrochemistry, 2013, 17, 1067-1075.	1.2	37

#	Article	IF	Citations
1712	Co ₃ O ₄ /Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties. ACS Applied Materials & Interfaces, 2013, 5, 8337-8344.	4.0	101
1713	Factors Influencing the Electrochemical Properties of High-Voltage Spinel Cathodes: Relative Impact of Morphology and Cation Ordering. Chemistry of Materials, 2013, 25, 2890-2897.	3.2	147
1714	A graphene-wrapped silver–porous silicon composite with enhanced electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13648.	5.2	74
1715	Long-Term Cycling Studies on Electrospun Carbon Nanofibers as Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 12175-12184.	4.0	99
1716	Critical silicon-anode size for averting lithiation-induced mechanical failure of lithium-ion batteries. RSC Advances, 2013, 3, 7398.	1.7	101
1717	High-Throughput Solution Combustion Synthesis of High-Capacity LiFeBO ₃ Cathode. Journal of the Electrochemical Society, 2013, 160, A3095-A3099.	1.3	32
1718	The synergy effect on Li storage of LiFePO4 with activated carbon modifications. RSC Advances, 2013, 3, 20024.	1.7	46
1719	Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Physical Review B, 2013, 87, .	1.1	100
1720	Structure and high rate performance of Ni2+ doped Li4Ti5O12 forÂlithium ion battery. Journal of Power Sources, 2013, 244, 272-279.	4.0	98
1721	Water-stable lithium ion conducting solid electrolyte of the Li1.4Al0.4Ti1.6â^'xGex(PO4)3 system (x=0–1.0) with NASICON-type structure. Solid State Ionics, 2013, 253, 175-180.	1.3	42
1722	Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2278-2292.	2.0	25
1723	Facile synthesis of a sulfur/multiwalled carbon nanotube nanocomposite cathode with core–shell structure for lithium rechargeable batteries. Ionics, 2013, 19, 1449-1453.	1.2	17
1724	Flexible thin-film rechargeable lithium battery. , 2013, , .		5
1725	Towards Highly Stable Storage of Sodium Ions: A Porous Na ₃ V ₂ (PO ₄) ₃ /C Cathode Material for Sodiumâ€lon Batteries. Chemistry - A European Journal, 2013, 19, 14712-14718.	1.7	102
1726	Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip Devices. ACS Nano, 2013, 7, 6498-6506.	7.3	90
1727	Synthesis of Mo2N nanolayer coated MoO2 hollow nanostructures as high-performance anode materials for lithium-ion batteries. Energy and Environmental Science, 2013, 6, 2691.	15.6	246
1728	Multiporous MnCo ₂ O ₄ Microspheres as an Efficient Bifunctional Catalyst for Nonaqueous Li–O ₂ Batteries. Journal of Physical Chemistry C, 2013, 117, 25890-25897.	1.5	169
1729	Multi-Scale Characterization Studies of Aged Li-Ion Large Format Cells for Improved Performance: An Overview. Journal of the Electrochemical Society, 2013, 160, A2111-A2154.	1.3	50

#	Article	IF	CITATIONS
1730	Evidence for oxygen reduction reaction activity of a Ni(OH)2/graphene oxide catalyst. Journal of Materials Chemistry A, 2013, 1, 15501.	5.2	40
1731	Intertwined Network of Si/C Nanocables and Carbon Nanotubes as Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2013, 5, 6467-6472.	4.0	50
1732	Reduction Mechanisms of Ethylene Carbonate on Si Anodes of Lithium-Ion Batteries: Effects of Degree of Lithiation and Nature of Exposed Surface. ACS Applied Materials & (1997), 100, 100, 100, 100, 100, 100, 100, 10	4.0	68
1733	Strategy for Lowering Li Source Dosage While Keeping High Reactivity in Solvothermal Synthesis of LiMnO ₂ Nanocrystals. ACS Sustainable Chemistry and Engineering, 2013, 1, 570-573.	3.2	11
1734	Self-assembly of hierarchical MoSx/CNT nanocomposites (2 <x<3): 2013,="" 2169.<="" 3,="" anode="" batteries.="" for="" high="" ion="" lithium="" materials="" performance="" reports,="" scientific="" td="" towards=""><td>1.6</td><td>290</td></x<3):>	1.6	290
1735	Recent Progress in Redox Flow Battery Research and Development. Advanced Functional Materials, 2013, 23, 970-986.	7.8	1,240
1736	Unexpected Improved Performance of ALD Coated LiCoO ₂ /Graphite Liâ€ l on Batteries. Advanced Energy Materials, 2013, 3, 213-219.	10.2	206
1737	"Nanoâ€Pearlâ€String―TiNb ₂ O ₇ as Anodes for Rechargeable Lithium Batteries. Advanced Energy Materials, 2013, 3, 49-53.	10.2	220
1738	Synthesis of sandwich-like TiO2@C composite hollow spheres with high rate capability and stability for lithium-ion batteries. Journal of Power Sources, 2013, 221, 141-148.	4.0	90
1739	Tris(trimethylsilyl) borate as an electrolyte additive to improve the cyclability of LiMn2O4 cathode for lithium-ion battery. Journal of Power Sources, 2013, 221, 90-96.	4.0	88
1740	Application of quinonic cathode compounds for quasi-solid lithium batteries. Journal of Power Sources, 2013, 221, 186-190.	4.0	91
1741	Advanced Gel Polymer Electrolyte for Lithium-Ion Polymer Batteries. , 2013, , .		8
1742	A Coupled Finite Volume Method for Particle Scale Electrochemical Modeling of Lithium-Ion Batteries. , 2013, , .		3
1743	An Open-Circuit-Voltage Model of Lithium-Ion Batteries for Effective Incremental Capacity Analysis. , 2013, , .		19
1744	Effective Thermal Conductivity of Lithium Ion Battery Electrodes Employing Fully Resolved Simulations for Use in Volume Averaged Models. , 2013, , .		1
1745	Synthesis of carbon coated Fe ₃ O ₄ /SnO ₂ composite beads and their application as anodes for lithium ion batteries. Materials Technology, 2013, 28, 254-259.	1.5	14
1746	Structural Properties of Manganese Hexacyanoferrates against Li Concentration. Japanese Journal of Applied Physics, 2013, 52, 017301.	0.8	21
1747	Local Li Coordination and Ionic Transport in Methacrylateâ€Based Gel Polymer Electrolytes. ChemPhysChem, 2013, 14, 3113-3120.	1.0	5

#	Article	IF	CITATIONS
1748	Cheap glass fiber mats as a matrix of gel polymer electrolytes for lithium ion batteries. Scientific Reports, 2013, 3, 3187.	1.6	100
1749	The Effect of Carbon Coating on the Electrochemical Performance of Nanosized Li2FeSiO4Cathode Materials. Acta Physica Polonica A, 2013, 123, 279-282.	0.2	5
1750	Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System. Energies, 2013, 6, 1669-1699.	1.6	28
1751	Electrochemical Performance of V ₂ O ₅ Nano-Porous Aerogel Film. Key Engineering Materials, 2013, 537, 165-168.	0.4	1
1752	Synchrotron-Radiation X-Ray Investigation of Li ⁺ /Na ⁺ Intercalation into Prussian Blue Analogues. Advances in Materials Science and Engineering, 2013, 2013, 1-17.	1.0	16
1753	A Review on the Synthesis of Manganese Oxide Nanomaterials and Their Applications on Lithium-Ion Batteries. Journal of Nanomaterials, 2013, 2013, 1-7.	1.5	47
1754	Synthesis of core–shell architectures of silicon coated on controllable grown Ni-silicide nanostructures and their lithium-ion battery application. CrystEngComm, 2013, 15, 7298.	1.3	24
1755	An Adaptive Estimation Scheme for Open-Circuit Voltage of Power Lithium-Ion Battery. Abstract and Applied Analysis, 2013, 2013, 1-6.	0.3	1
1756	Facile synthesis of CuO–NiO nanocomposites with high surface areas and their application for lithiumâ€ion batteries. Micro and Nano Letters, 2013, 8, 544-548.	0.6	14
1757	Hydrothermal Synthesis of LiMnO ₂ with Orthorhombic Structure as Cathode Materials. Advanced Materials Research, 0, 717, 33-36.	0.3	0
1758	Structural, Electronic, and Electrochemical Properties of Li _x Co[Fe(CN) ₆] _{0.90} 2.9H ₂ O. Japanese Journal of Applied Physics, 2013, 52, 044301.	0.8	29
1759	Mössbauer analysis of silicate Li2FeSiO4 and delithiated Li2â^'xFeSiO4 (x = 0.66) compounds. Journal of Applied Physics, 2013, 113, 17E306.	1.1	9
1760	Evaluate Sulfone-Based Reduction Sensitive Electrolytes with Lithium Li4Ti5O12/Li and Symmetric Li4+XTi5O12/Li4Ti5O12 Cells. ECS Transactions, 2013, 53, 5-21.	0.3	0
1761	Nanostructured Materials for Energy-Related Applications. , 2013, , 1013-1038.		1
1762	Metal Foam as Positive Electrode Current Collector for LiFePO ₄ -Based Li-Ion Battery. Japanese Journal of Applied Physics, 2013, 52, 10MB13.	0.8	7
1763	Adsorption of the ionic liquid [BMP][TFSA] on Au(111) and Ag(111): substrate effects on the structure formation investigated by STM. Beilstein Journal of Nanotechnology, 2013, 4, 903-918.	1.5	45
1764	Study of lithium defects in lithium phosphate and in the interface with metallic Li. Materials Research Society Symposia Proceedings, 2013, 1496, 1.	0.1	0
1765	Morphology Control of LiMnPO4 Cathodes by a Careful Choice of Additives. Materials Research Society Symposia Proceedings, 2013, 1541, 85301.	0.1	0

#	Article	IF	CITATIONS
1766	A Review of Nanostructured TiO ₂ Application in Li-Ion Batteries. Advanced Materials Research, 0, 750-752, 301-306.	0.3	20
1767	Flexible fiber batteries for applications in smart textiles. Materials Research Society Symposia Proceedings, 2013, 1489, 7.	0.1	3
1768	Synthesis and Electrochemical Properties of Novel Co2+/Co3+ Layered Ordered Rock-Salt Structure Type Li0.75Ca0.25CoOÂ2. ECS Transactions, 2013, 45, 3-10.	0.3	0
1769	Mechanochemical synthesis of sustainable energy materials. Nanomaterials and Energy, 2013, 2, 229-234.	0.1	0
1770	Cross-Linked Alternately Copolymerized Electrolyte Poly (styrene-a-maleic ester) Synthesized through Solvent-Free Strategy. Applied Mechanics and Materials, 2013, 477-478, 1196-1204.	0.2	0
1771	Multicomponent Silicate Cathode Materials for Rechargeable Li-Ion Batteries: An Ab Initio Study. Journal of the Electrochemical Society, 2013, 160, A60-A65.	1.3	10
1772	Morphology Control of Anatase TiO ₂ Spindly Octahedra with Exposed Highâ€Index {401} Facets and Application in Lithiumâ€Ion Batteries. Chemistry - an Asian Journal, 2013, 8, 1399-1403.	1.7	26
1773	Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy–food–water nexus. Energy Science and Engineering, 2013, 1, 27-41.	1.9	90
1774	Low temperature diffusion of Li atoms into Si nanoparticles and surfaces. Journal of Applied Physics, 2013, 114, 034310.	1.1	3
1775	Redox reactions with empirical potentials: Atomistic battery discharge simulations. Journal of Chemical Physics, 2013, 139, 064106.	1.2	20
1776	Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries. Applied Physics Letters, 2013, 103, .	1.5	28
1777	Structure, Stoichiometry, and Electrochemical Performance of Li ₂ CoTi ₃ O ₈ as an Anode Material for Lithiumâ€lon Batteries. ChemPlusChem, 2013, 78, 1530-1535.	1.3	15
1778	Encapsulated Monoclinic Sulfur for Stable Cycling of Li–S Rechargeable Batteries. Advanced Materials, 2013, 25, 6547-6553.	11.1	330
1779	Ideal design of textured LiCoO2 sintered electrode for Li-ion secondary battery. APL Materials, 2013, 1, .	2.2	20
1780	Enhanced Rate Capability by Employing Carbon Nanotube-Loaded Electrospun Si/C Composite Nanofibers As Binder-Free Anodes. Journal of the Electrochemical Society, 2013, 160, A528-A534.	1.3	31
1781	Numerical Investigation of Intercalationâ€Induced Stresses within Electrode Particles of Lithium Ion Batteries. Chemie-Ingenieur-Technik, 2013, 85, 1878-1887.	0.4	2
1782	Ion-Exchangeable Functional Binders and Separator for High Temperature Performance of Li _{1.1} Mn _{1.86} Mg _{0.04} O ₄ Spinel Electrodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A2234-A2243.	1.3	21
1783	Poly[tris(thienylphenyl)amine] Derivatives as a Performance-Improved Cathode Material for Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A2021-A2026.	1.3	16

#	Article	IF	Citations
1784	Solid Electrolyte Interphase on Lithium-Ion Carbon Nanofiber Electrodes by Atomic and Molecular Layer Deposition. Journal of the Electrochemical Society, 2013, 160, A1971-A1978.	1.3	20
1785	Mechanical and Electrical Properties of Ion-Containing Polymers. , 2013, , 1-7.		0
1786	Life Cycle Assessment of Diesel and Electric Public Transportation Buses. Journal of Industrial Ecology, 2013, 17, 689-699.	2.8	98
1787	Improvement in Cycle Performance and Clarification of Deterioration Mechanism of Lithium-Ion Full Cells Using SiO Anodes. Journal of the Electrochemical Society, 2013, 160, A1806-A1810.	1.3	21
1788	An Advanced Selenium–Carbon Cathode for Rechargeable Lithium–Selenium Batteries. Angewandte Chemie - International Edition, 2013, 52, 8363-8367.	7.2	391
1789	Enhanced performance of the sulfur cathode with L-cysteine-modified gelatin binder. Journal of Adhesion Science and Technology, 2013, 27, 1006-1011.	1.4	17
1790	Improving Li2O2 conductivity via polaron preemption: An <i>ab initio</i> study of Si doping. Applied Physics Letters, 2013, 103, .	1.5	31
1791	Data-based modeling of a lithium iron phosphate battery as an energy storage and delivery system. , 2013, , .		3
1792	A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 074007.	0.8	33
1793	IMPROVING THE BATTERY PERFORMANCE OF LiVPO ₄ F BY CHROMIUM DOPING. Functional Materials Letters, 2013, 06, 1350053.	0.7	10
1794	Mechanism of Phase Propagation During Lithiation in Carbonâ€Free Li ₄ Ti ₅ O ₁₂ Battery Electrodes. Advanced Functional Materials, 2013, 23, 1214-1222.	7.8	140
1796	SYNTHESIS OF SUB-MICROMETER CARBON SUPPORTED Fe3O4 HOLLOW SPHERES WITH ENHANCED LITHIUM STORAGE PROPERTIES. Journal of Molecular and Engineering Materials, 2013, 01, 1340018.	0.9	0
1798	Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nature Communications, 2013, 4, 2568.	5.8	211
1799	Evolution of the Morphology of Electrodeposited Copper at the Early Stage of Dendritic Growth. Journal of the Electrochemical Society, 2013, 160, D183-D187.	1.3	13
1800	Indirect Transformation of Coordinationâ€Polymer Particles into Magnetic Carbon oated Mn ₃ O ₄ (Mn ₃ O ₄ @C) Nanowires for Supercapacitor Electrodes with Good Cycling Performance. Chemistry - A European Journal, 2013, 19, 7084-7089.	1.7	47
1801	Synthesis and Electrochemistry of Nanocrystalline M-TiO ₂ (M = Mn, Fe, Co, Ni, Cu) Anatase. Journal of the Electrochemical Society, 2013, 160, A511-A515.	1.3	11
1802	Firstâ€Principles Calculations of Lithiumâ€Ion Migration at a Coherent Grain Boundary in a Cathode Material, LiCoO ₂ . Advanced Materials, 2013, 25, 618-622.	11.1	149
1803	SURFACE DECORATION OF COMMERCIAL GRAPHITE MICROSPHERES WITH SMALL SI/C MICROSPHERES AS IMPROVED ANODE MATERIALS FOR LI-ION BATTERIES. Journal of Molecular and Engineering Materials, 2013, 01, 1340017.	0.9	0

#	Article	IF	CITATIONS
1804	Fe2O3 Nanoparticles Wrapped in Multi-walled Carbon Nanotubes With Enhanced Lithium Storage Capability. Scientific Reports, 2013, 3, 3392.	1.6	96
1805	Determination of Li+ Diffusion Coefficients in the LixV2O5 (x = 0 â^' 1) Nanocrystals of Composite Film Cathodes. Analytical Sciences, 2013, 29, 1083-1088.	0.8	4
1806	A Tris-fused Tetrathiafulvalene Extended with Cyclohexene-1,4-diylidene: A New Positive Electrode Material for Organic Rechargeable Batteries. Chemistry Letters, 2013, 42, 1556-1558.	0.7	33
1807	Li ⁺ Intercalation of Manganese Ferrocyanide as Investigated by In situ Valence-Differential Absorption Spectroscopy. Journal of the Physical Society of Japan, 2013, 82, 094710.	0.7	13
1808	LOCAL PROBES IN THE NEXT DECADE OF ENERGY RESEARCH: BRIDGING MACROSCOPIC AND ATOMIC WORLDS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 3-35.	0.1	1
1810	Flexible Fast Lithium Ion Conducting Ceramic Electrolyte. Materials Research Society Symposia Proceedings, 2013, 1496, 1.	0.1	0
1811	Nanoparticles Engineering for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2013, 30, 737-753.	1.2	22
1812	Seamless Integration of an Elastomer with Electrode Matrix and its Inâ€Situ Conversion into a Solid State Electrolyte for Robust Liâ€Ion Batteries. Advanced Functional Materials, 2013, 23, 5941-5951.	7.8	11
1816	Influence of Silicon Nanoscale Building Blocks Size and Carbon Coating on the Performance of Microâ€ S ized Si–C Composite Liâ€Ion Anodes. Advanced Energy Materials, 2013, 3, 1507-1515.	10.2	169
1818	Nanowire modified carbon fibers for enhanced electrical energy storage. Journal of Applied Physics, 2013, 114, 104306.	1.1	14
1819	Thermal Behavior Analysis of Polymer Composites in Lithium-Ion Battery Cell. SAE International Journal of Materials and Manufacturing, 0, 6, 365-368.	0.3	0
1820	Designed Synthesis of Transition Metal/Oxide Hierarchical Peapods Array with the Superior Lithium Storage Performance. Scientific Reports, 2013, 3, 2717.	1.6	19
1821	Influence of particle size and fluorination ratio of CF <i>_x</i> precursor compounds on the electrochemical performance of C–FeF ₂ nanocomposites for reversible lithium storage. Beilstein Journal of Nanotechnology, 2013, 4, 705-713.	1.5	19
1822	ELECTROCHEMICAL STRAIN MICROSCOPY OF LI-ION AND LI-AIR BATTERY MATERIALS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 393-454.	0.1	3
1823	ELECTROCHEMICAL STRAIN MICROSCOPY OF OXYGEN-ION CONDUCTORS: FUEL CELLS AND OXIDE ELECTRONICS. World Scientific Series in Nanoscience and Nanotechnology, 2013, , 253-298.	0.1	2
1824	Polymer-Bound Pyrene-4,5,9,10-Tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity. ECS Meeting Abstracts, 2013, , .	0.0	0
1825	Inkjet-printed GSM900 band RF power harvester on paper-based substrates. , 2014, , .		0
1826	Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation. Journal of the Electrochemical Society, 2014, 161, E3149-E3157.	1.3	67

#	Article	IF	CITATIONS
1827	Li3V2(PO4)3-coated Li1.17Ni0.2Co0.05Mn0.58O2 as the cathode materials with high rate capability for Lithium ion batteries. Electrochimica Acta, 2014, 147, 696-703.	2.6	27
1828	Threeâ€Dimensional Porous Carbon–Silicon Frameworks as Highâ€Performance Anodes for Lithiumâ€lon Batteries. ChemElectroChem, 2014, 1, 2124-2130.	1.7	35
1829	Stabilization of selenium cathodes via in situ formation of protective solid electrolyte layer. Journal of Materials Chemistry A, 2014, 2, 18898-18905.	5.2	32
1830	Mechano-Electrochemical Model for Acoustic Emission Characterization in Intercalation Electrodes. Journal of the Electrochemical Society, 2014, 161, F3123-F3136.	1.3	23
1831	Facile synthesis of Li ₂ C ₈ H ₄ O ₄ –graphene composites as high-rate and sustainable anode materials for lithium ion batteries. RSC Advances, 2014, 4, 59498-59502.	1.7	27
1832	Gas-Phase Lithium Cation Basicity: Revisiting the High Basicity Range by Experiment and Theory. Journal of the American Society for Mass Spectrometry, 2014, 25, 1962-1973.	1.2	18
1833	Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries. Science China Chemistry, 2014, 57, 1564-1569.	4.2	51
1834	Lithium-Ion Cell Components and Their Effect on High-Power Battery Safety. , 2014, , 437-460.		8
1835	Lithiumâ€lon Battery Performance of (001)â€Faceted TiO ₂ Nanosheets vs. Spherical TiO ₂ Nanoparticles. Energy Technology, 2014, 2, 376-382.	1.8	27
1836	A distributed equalization control approach for series connected battery strings. , 2014, , .		7
1837	Mg2Si anode for Li-ion batteries: Linking structural change to fast capacity fading. Applied Physics Letters, 2014, 105, 213901.	1.5	21
1838	Improvement of cycle behavior of Si/Sn anode composite supported by stable Si–O–C skeleton. Rare Metals, 2022, 41, 1647-1651.	3.6	10
1839	Polyhierarchically structured TiP ₂ O ₇ /C microparticles with enhanced electrochemical performance for lithium-ion batteries. CrystEngComm, 2014, 16, 10681-10691.	1.3	25
1840	Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics. Solid State lonics, 2014, 266, 44-50.	1.3	43
1841	Crystallographic structure of LiFe1â^'xMnxPO4 solid solutions studied by neutron powder diffraction. Powder Diffraction, 2014, 29, 248-253.	0.4	6
1842	Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with <i>In Situ</i> Electrochemical Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 1029-1037.	0.2	83
1843	Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014, 6, e138-e138.	3.8	213
1844	Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries. Nanotechnology, 2014, 25, 504007.	1.3	87

#	Article	IF	CITATIONS
1845	Ambient Lithium–SO ₂ Batteries with Ionic Liquids as Electrolytes. Angewandte Chemie - International Edition, 2014, 53, 2099-2103.	7.2	62
1846	Monitoring Innovation in Electrochemical Energy Storage Technologies: A Patent-based Approach. Energy Procedia, 2014, 61, 2293-2296.	1.8	5
1847	General Approach for Highâ€Power Liâ€Ion Batteries: Multiscale Lithographic Patterning of Electrodes. ChemSusChem, 2014, 7, 3483-3490.	3.6	16
1848	Ternary Imidazolium-Pyrrolidinium-Based Ionic Liquid Electrolytes for Rechargeable Li-O ₂ Batteries. Journal of the Electrochemical Society, 2014, 161, A1969-A1975.	1.3	26
1849	2 D Manganese Vanadate Nanoflakes as Highâ€Performance Anode for Lithiumâ€Ion Batteries. Chemistry - ar Asian Journal, 2014, 9, 1265-1269.	¹ 1.7	16
1851	Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling. International Journal of Molecular Sciences, 2014, 15, 8122-8137.	1.8	64
1852	Lithium Iron Phosphate Intelligent SOC Prediction for Efficient Electric Vehicle. Advanced Materials Research, 0, 875-877, 1613-1618.	0.3	0
1853	Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSIâ^' and FSIâ^' Anions. International Journal of Molecular Sciences, 2014, 15, 14868-14890.	1.8	58
1854	Lithium Dendrite Growth Control Using Local Temperature Variation. Materials Research Society Symposia Proceedings, 2014, 1680, 13.	0.1	4
1855	Performance degradation of Li\$_{x}FePO\$_{4}\$ (x = 0, 1) induced by postannealing. Turkish Journal of Chemistry, 2014, 38, 837-849.	0.5	0
1856	Investigation on the electrochemical activation process of Li1.20Ni0.32Co0.004Mn0.476O2. Progress in Natural Science: Materials International, 2014, 24, 388-396.	1.8	6
1857	Morphology and Electrical Conductivity of Carbon Nanocoatings Prepared from Pyrolysed Polymers. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	7
1858	Self-discharge Reactions in Energy Storage Devices Based on Polypyrrole-cellulose Composite Electrodes. Green, 2014, 4, .	0.4	9
1859	Note: Sample chamber for <i>in situ</i> x-ray absorption spectroscopy studies of battery materials. Review of Scientific Instruments, 2014, 85, 126108.	0.6	8
1860	Boric Ester-Type Molten Salt via Dehydrocoupling Reaction. International Journal of Molecular Sciences, 2014, 15, 21080-21089.	1.8	1
1861	Facile Synthesis and Electrochemical Performance of Carbon-Coated V2O5 Cathode Materials Using Carboxylic Acids as Carbon Source. Electrochimica Acta, 2014, 139, 408-414.	2.6	16
1862	Al-doped Li2ZnTi3O8 as an effective anode material for lithium-ion batteries with good rate capabilities. Journal of Electroanalytical Chemistry, 2014, 731, 60-66.	1.9	52
1864	Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Physical Chemistry Chemical Physics, 2014, 16, 24965-24970.	1.3	73

#	Article	IF	CITATIONS
1865	Reduction phases of thin iron-oxide nanowires upon thermal treatment and Li exposure. Journal of Applied Physics, 2014, 115, .	1.1	0
1866	Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach. Nature Communications, 2014, 5, 5693.	5.8	255
1867	Thermodynamics of Lithium Storage at Abrupt Junctions: Modeling and Experimental Evidence. Physical Review Letters, 2014, 112, .	2.9	64
1868	Realizing a supercapacitor in an electrical circuit. Applied Physics Letters, 2014, 105, .	1.5	3
1869	Dielectric Modification of 5V lass Cathodes for Highâ€Voltage All‧olid‧tate Lithium Batteries. Advanced Energy Materials, 2014, 4, 1301416.	10.2	136
1870	Electrode-Electrolyte Interface for Solid State Li-Ion Batteries: Point Defects and Mechanical Strain. Journal of the Electrochemical Society, 2014, 161, F3104-F3110.	1.3	28
1871	Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Applied Physics Letters, 2014, 104, .	1.5	73
1872	Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries. Applied Physics Letters, 2014, 105, .	1.5	37
1873	Synthesis of hierarchical ZnV ₂ O ₄ microspheres and its electrochemical properties. CrystEngComm, 2014, 16, 10309-10313.	1.3	48
1875	On the nature of platinum oxides on carbon-supported catalysts. Journal of Electroanalytical Chemistry, 2014, 728, 112-117.	1.9	7
1876	One-Step Electrochemical Growth of a Three-Dimensional Sn–Ni@PEO Nanotube Array as a High Performance Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2014, 6, 22282-22288.	4.0	35
1877	Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9684-9690.	5.2	216
1878	Improving cyclic stability of lithium nickel manganese oxide cathode for high voltage lithium ion battery by modifying electrode/electrolyte interface with electrolyte additive. Electrochimica Acta, 2014, 147, 636-642.	2.6	51
1879	Multiple Ambient Hydrolysis Deposition of Tin Oxide into Nanoporous Carbon To Give a Stable Anode for Lithium-Ion Batteries. Chemistry - A European Journal, 2014, 20, 7686-7691.	1.7	22
1880	Phase stability of Li–Mn–O oxides as cathode materials for Li-ion batteries: insights from ab initio calculations. Physical Chemistry Chemical Physics, 2014, 16, 11233-11242.	1.3	56
1881	A quinone-based oligomeric lithium salt for superior Li–organic batteries. Energy and Environmental Science, 2014, 7, 4077-4086.	15.6	259
1882	A high-capacity dual-electrolyte aluminum/air electrochemical cell. RSC Advances, 2014, 4, 30857-30863.	1.7	44
1883	Carbon-coated rhombohedral Li ₃ V ₂ (PO ₄) ₃ as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. Journal of Materials Chemistry A, 2014, 2, 20231-20236.	5.2	44

#	Article	IF	CITATIONS
1884	A Sodium Manganese Oxide Cathode by Facile Reduction for Sodium Batteries. Chemistry - an Asian Journal, 2014, 9, 1550-1556.	1.7	23
1885	Carbonized Nanoscale Metal–Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 12660-12668.	7.3	509
1886	Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a Highâ€Performance Lithiumâ€lon Battery Anode. Advanced Materials, 2014, 26, 758-764.	11.1	387
1887	History Effects in Lithium–Oxygen Batteries: How Initial Seeding Influences the Discharge Capacity. ChemSusChem, 2014, 7, 1283-1288.	3.6	19
1888	Nanowires for High-Performance Li-Ion Battery Electrodes. RSC Smart Materials, 2014, , 363-399.	0.1	0
1889	An <i>In Situ</i> SEM-FIB-Based Method for Contrast Enhancement and Tomographic Reconstruction for Structural Quantification of Porous Carbon Electrodes. Microscopy and Microanalysis, 2014, 20, 1576-1580.	0.2	13
1890	Activation Barriers Provide Insight into the Mechanism of Self-Discharge in Polypyrrole. Journal of Physical Chemistry C, 2014, 118, 29643-29649.	1.5	17
1891	Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chinese Physics B, 2014, 23, 118202.	0.7	105
1892	New Desolvated Gel Electrolyte for Rechargeable Lithium Metal Sulfurized Polyacrylonitrile (S-PAN) Battery. Journal of Physical Chemistry C, 2014, 118, 28369-28376.	1.5	31
1893	Improving battery safety by early detection of internal shorting with a bifunctional separator. Nature Communications, 2014, 5, 5193.	5.8	301
1894	Heat Capacities of LiCu2O2 and CuO in the Temperature Range 323-773ÂK and Cu2O in the Temperature Range 973-1273ÂK. Journal of Phase Equilibria and Diffusion, 2014, 35, 650-657.	0.5	3
1895	New Dimethyl(norbornadienyl)platinum(II) Precursors for Platinum MOCVD. Chemical Vapor Deposition, 2014, 20, 59-68.	1.4	5
1896	Ionic Liquid Based Electrolytes: Correlating Li Diffusion Coefficients and Battery Performance. Journal of the Electrochemical Society, 2014, 161, A2036-A2041.	1.3	21
1897	A review of research on hematite as anode material for lithium-ion batteries. Ionics, 2014, 20, 1651-1663.	1.2	37
1898	Synthesis of amorphous ZnSnO3-C hollow microcubes as advanced anode materials for lithium ion batteries. Electrochimica Acta, 2014, 141, 374-383.	2.6	76
1899	Insights into capacity loss mechanisms of all-solid-state Li-ion batteries with Al anodes. Journal of Materials Chemistry A, 2014, 2, 20552-20559.	5.2	39
1900	Hierarchical Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Nanoplates with Exposed {010} Planes as Highâ€Performance Cathode Material for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6756-6760.	11.1	220
1901	Templateâ€Free Fabrication of Hollow NiO–Carbon Hybrid Nanoparticle Aggregates with Improved Lithium Storage. Particle and Particle Systems Characterization, 2014, 31, 374-381.	1.2	26

		CITATION REPORT		
#	Article		IF	Citations
1902	Titanium doped LiVPO4F cathode for lithium ion batteries. Solid State Ionics, 2014, 268	3, 236-241.	1.3	27
1903	Lightâ€directed mesoscale phase separation via holographic polymerization. Journal of Part B: Polymer Physics, 2014, 52, 232-250.	Polymer Science,	2.4	36
1904	Electrodeposited porous metal oxide films with interconnected nanoparticles applied as lithium ion battery. Materials Research Bulletin, 2014, 60, 864-867.	anode of	2.7	2
1905	Systematic Molecular‣evel Design of Binders Incorporating Meldrum's Acid for Silico Lithium Rechargeable Batteries. Advanced Materials, 2014, 26, 7979-7985.	n Anodes in	11.1	155
1906	Synthesis and Crystal Structure of a New Salt of the Waterâ€6table Hexathiohypodipho [py ₂ Li] ₄ [P ₂ S ₆] ·2 py. Heteroator 95-99.	osphate Anion: n Chemistry, 2014, 25,	0.4	4
1907	Reduced Graphene Oxide Paper Electrode: Opposing Effect of Thermal Annealing on Li Cyclability. Journal of Physical Chemistry C, 2014, 118, 28401-28408.	and Na	1.5	161
1908	Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Adva Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 28502-28		1.5	92
1909	General Scalable Strategy toward Heterogeneously Doped Hierarchical Porous Graphitic Bubbles for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2014,	Carbon 6, 21661-21668.	4.0	48
1910	Influence of <i>N</i> -Alkylpyridinium Halide Based Ionic Liquids on Micellization of P12 Solutions: A SANS, DLS, and NMR Study. Langmuir, 2014, 30, 14406-14415.	3 in Aqueous	1.6	31
1911	Engraving Copper Foil to Give Largeâ€Scale Binderâ€Free Porous CuO Arrays for a High Sodiumâ€Ion Battery Anode. Advanced Materials, 2014, 26, 2273-2279.	â€Performance	11.1	427
1913	Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flo molds. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectro	exible nics, 2014, 32, .	0.6	15
1914	Combinatorial High-Throughput Optical Screening of High Performance Pd Alloy Cathoo Li–Air Battery. ACS Combinatorial Science, 2014, 16, 670-677.	le for Hybrid	3.8	14
1916	Mesoscale Elucidation of the Influence of Mixing Sequence in Electrode Processing. Lan 30, 15102-15113.	gmuir, 2014,	1.6	44
1917	Aqueous Sodiumâ€lon Battery using a Na ₃ V ₂ (PO _{4Electrode. ChemElectroChem, 2014, 1, 871-876.}	ıb>) ₃	1.7	101
1918	Supercritical Carbon Dioxide Anchored Fe ₃ O ₄ Nanoparticles Foam and Lithium Battery Performance. ACS Applied Materials & Interfaces, 2014,		4.0	86
1919	Zr ⁴⁺ Doping in Li ₄ Ti ₅ O ₁₂ Anode f Batteries: Open Li ⁺ Diffusion Paths through Structural Imperfection. Chen 7, 1451-1457.		3.6	92
1920	Comparison between SnSb–C and Sn–C composites as anode materials for lithium Advances, 2014, 4, 62301-62307.	ion batteries. RSC	1.7	23
1921	Theoretical investigation of molecular and electronic structure changes of the molecula Mn ₁₂ cluster upon superâ€reduction. Physica Status Solidi - Rapid Resear 517-521.	r magnet ch Letters, 2014, 8,	1.2	3

#	Article	IF	CITATIONS
1922	Highly Crystalline Lithium Titanium Oxide Sheets Coated with Nitrogenâ€Đoped Carbon enable Highâ€Rate Lithiumâ€Ion Batteries. ChemSusChem, 2014, 7, 2567-2574.	3.6	55
1923	Structural Changes and Thermal Stability of Charged LiNi _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>} O ₂ Cathode Materials Studied by Combined <i>In Situ</i> Time-Resolved XRD and Mass Spectroscopy. ACS Applied Materials & amp: Interfaces. 2014. 6. 22594-22601.	4.0	731
1924	Ultrahigh Rate Capabilities of Lithiumâ€ion Batteries from 3D Ordered Hierarchically Porous Electrodes with Entrapped Active Nanoparticles Configuration. Advanced Materials, 2014, 26, 1296-1303.	11.1	138
1925	Synchrotron Soft Xâ€ r ay Absorption Spectroscopy Study of Carbon and Silicon Nanostructures for Energy Applications. Advanced Materials, 2014, 26, 7786-7806.	11.1	84
1926	Nitrogen and Oxygen Dualâ€Doped Carbon Hydrogel Film as a Substrateâ€Free Electrode for Highly Efficient Oxygen Evolution Reaction. Advanced Materials, 2014, 26, 2925-2930.	11.1	594
1927	Electrochemically induced and orientation dependent crack propagation in single crystal silicon. Journal of Power Sources, 2014, 267, 739-743.	4.0	21
1928	Cereusâ€Shaped Mesoporous Rutile TiO ₂ Formed in Ionic Liquid: Synthesis and Liâ€Storage Properties. ChemElectroChem, 2014, 1, 549-553.	1.7	13
1929	Polycrystalline Vanadium Oxide Nanorods: Growth, Structure and Improved Electrochemical Response as a Li-Ion Battery Cathode Material. Journal of the Electrochemical Society, 2014, 161, A1321-A1329.	1.3	31
1930	Research of Properties on Li-Ion Batteries Based on a Polypyrrole Derivative Bearing TEMPO as a Cathode Material. Advanced Materials Research, 2014, 936, 447-451.	0.3	2
1931	Electrospun Conformal Li ₄ Ti ₅ O ₁₂ /C Fibers for Highâ€Rate Lithiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 611-616.	1.7	43
1932	Lithium and sodium diffusion in solid electrolyte materials of AM ₂ (PO ₄) ₃ (A = Li, Na,) Tj ETQ)q 0.0 0 rg8	3T1Øverlock
1933	Li -rich layer-structured cathode materials for high energy Li -ion batteries. Functional Materials Letters, 2014, 07, 1430002.	0.7	30
1934	Stretching Ion Conducting Polymer Electrolytes: In-Situ Correlation of Mechanical, Ionic Transport, and Optical Properties. Journal of the Electrochemical Society, 2014, 161, E112-E117.	1.3	22
1935	Synthesis of 3D-hierarchical NiO-G composites with enhanced electrochemical performances as anode for lithium secondary batteries. , 2014, , .		1
1936	Multifunctional composites for energy storage. , 2014, , .		1
1937	Electrochemical, structural, and electronic properties of Mn–Co hexacyanoferrates against Li concentration. Japanese Journal of Applied Physics, 2014, 53, 067101.	0.8	10
1938	Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation. Physical Chemistry Chemical Physics, 2014, 16, 25789-25798.	1.3	32
1939	1,3-Propanesultone as an effective functional additive to enhance the electrochemical performance of over-lithiated layered oxides. RSC Advances, 2014, 4, 19172.	1.7	15

#	Article	IF	CITATIONS
1940	Synthesis of hierarchical Co3O4@C composite and its lithium storage property as anode material for rechargeable lithium ion batteries. Materials Research Innovations, 2014, 18, 528-534.	1.0	8
1941	Electrochemical lithium storage performance of Si/C based anode materials prepared by mechanical alloying. Materials Research Innovations, 2014, 18, S4-10-S4-14.	1.0	2
1942	Integrated Product and Process Model for Production System Design and Quality Assurance for EV Battery Cells. Advanced Materials Research, 0, 907, 365-378.	0.3	7
1943	Preparation and Characterization of Al2O3/PVDF-HFP Based Polymer Electrolyte. Advanced Materials Research, 0, 950, 33-37.	0.3	2
1944	Synthesis of porous microspheres composed of graphitized carbon@amorphous silicon/carbon layers as high performance anode materials for Li-ion batteries. RSC Advances, 2014, 4, 55010-55015.	1.7	6
1945	Origin of Surface Coating Effect for MgO on LiCoO ₂ to Improve the Interfacial Reaction between Electrode and Electrolyte. Advanced Materials Interfaces, 2014, 1, 1400195.	1.9	56
1946	Electrochemical Double Layer Capacitors and Hybrid Devices for Green Energy Applications. Green, 2014, 4, .	0.4	5
1947	Model-Based SEI Layer Growth and Capacity Fade Analysis for EV and PHEV Batteries and Drive Cycles. Journal of the Electrochemical Society, 2014, 161, A2099-A2108.	1.3	57
1948	Progress of Research on Li-Rich Cathode Materials xLi ₂ MnO ₃ ·(1-x) LiMO ₂ (M=Ni, Co, Mn) for Li-Ion Battery. Advanced Materials Research, 2014, 1070-1072, 543-548.	0.3	0
1949	Li 3.9 Cu 0.1 Ti 5 O 12 /CNTs composite for the anode of high-power lithium-ion batteries: Intrinsic and extrinsic effects. Electrochimica Acta, 2014, 143, 29-35.	2.6	17
1950	Facile synthesis of scalable pore-containing silicon/nitrogen-rich carbon composites from waste contact mass of organosilane industry as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20213-20220.	5.2	38
1951	A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19036-19045.	5.2	139
1952	Electrical Conductivity Properties of Nd ₂ 0 ₃ Doped LiCl-PbO-ZnO Glass Ceramics. Advanced Materials Research, 0, 938, 108-113.	0.3	0
1953	Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes. Faraday Discussions, 2014, 176, 69-81.	1.6	68
1954	Li ₂ MnO ₃ based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries. Materials Technology, 2014, 29, A59-A69.	1.5	22
1955	Deterioration Analysis in Cycling Test at High Temperature of 60°C for Li-Ion Cells Using SiO Anode. Journal of the Electrochemical Society, 2014, 161, A708-A711.	1.3	6
1956	Novel lithium and sodium salts of sulfonamides and bis(sulfonyl)imides: synthesis and electrical conductivity. New Journal of Chemistry, 2014, 38, 6193-6197.	1.4	10
1957	Ultrathin Carbon Nanotubes for Efficient Energy Storage: A First-Principles Study. Chinese Physics Letters, 2014, 31, 026801.	1.3	1

#	Article	IF	CITATIONS
1958	Synthesis and electrochemical performance of surface-modified nano-sized core/shell tin particles for lithium ion batteries. Nanotechnology, 2014, 25, 355401.	1.3	15
1959	Realization of an Artificial Threeâ€Phase Reaction Zone in a Li–Air Battery. ChemElectroChem, 2014, 1, 90-94.	1.7	60
1960	Siliconâ€Based Nanomaterials for Lithiumâ€ion Batteries: A Review. Advanced Energy Materials, 2014, 4, 1300882.	10.2	1,250
1961	Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy and Environmental Science, 2014, 7, 347-353.	15.6	624
1962	Magnesium–air batteries: from principle to application. Materials Horizons, 2014, 1, 196-206.	6.4	371
1963	Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide. Journal of Power Sources, 2014, 245, 967-978.	4.0	168
1964	Scalable synthesis of Fe3O4/C composites with enhanced electrochemical performance as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2014, 582, 563-568.	2.8	31
1965	A comparative study of different binders and their effects on electrochemical properties of LiMn 2 O 4 cathode in lithium ion batteries. Journal of Power Sources, 2014, 247, 1-8.	4.0	178
1966	The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode. Journal of Power Sources, 2014, 249, 118-124.	4.0	110
1967	Composite protective layer for Li metal anode in high-performance lithium–oxygen batteries. Electrochemistry Communications, 2014, 40, 45-48.	2.3	120
1968	Simulation of lithium iron phosphate lithiation/delithiation: Limitations of the core–shell model. Electrochimica Acta, 2014, 115, 352-357.	2.6	14
1969	Cathodes with intrinsic redox overcharge protection: A new strategy towards safer Li-ion batteries. Journal of Power Sources, 2014, 264, 155-160.	4.0	12
1970	Characterizations and electrochemical behaviors of milled Si with a degree of amorphization and its composite for Li-ion batteries. Journal of Power Sources, 2014, 260, 174-179.	4.0	21
1971	Preparation and electrochemical performance of La3+ and Fâ^' co-doped Li4Ti5O12 anode material for lithium-ion batteries. Journal of Power Sources, 2014, 263, 296-303.	4.0	78
1972	Highly porous Fe3O4–Fe nanowires grown on C/TiC nanofiber arrays as the high performance anode of lithium-ion batteries. Journal of Power Sources, 2014, 258, 260-265.	4.0	31
1973	Electrochemical Performance of GeO2/C Core Shell based Electrodes for Li-ion Batteries. Electrochimica Acta, 2014, 116, 203-209.	2.6	26
1974	Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries. Journal of Power Sources, 2014, 258, 39-45.	4.0	47
1975	Hollow Zn2SnO4 boxes wrapped with flexible graphene as anode materials for lithium batteries. Electrochimica Acta, 2014, 120, 128-132.	2.6	38

#	Article	IF	CITATIONS
1976	Impact of storage on the LiNi0.4Mn1.6O4 high voltage spinel performances in alkylcarbonate-based electrolytes. Electrochimica Acta, 2014, 116, 271-277.	2.6	9
1977	Ni/amorphous CuO core–shell nanocapsules with enhanced electrochemical performances. Journal of Power Sources, 2014, 245, 256-261.	4.0	25
1978	Si Nano-crystallites embedded in Cu-Al-Fe matrix as an anode for Li secondary batteries. Electrochimica Acta, 2014, 130, 583-586.	2.6	23
1979	Encapsulated within graphene shell silicon nanoparticles anchored on vertically aligned graphene trees as lithium ion battery anodes. Nano Energy, 2014, 5, 105-115.	8.2	109
1980	Hydrothermal synthesis and potential applicability of rhombohedral siderite as a high-capacity anode material for lithium ion batteries. Journal of Power Sources, 2014, 253, 251-255.	4.0	49
1981	In-situ X-ray diffraction study on the structural evolutions of oxidized fluorophosphates as anode materials for lithium-ion batteries. Ceramics International, 2014, 40, 9107-9120.	2.3	5
1982	(α-Fe2O3)1â^'x(V2O5)x solid solutions: An excellent lithium ion anodes material. Nano Energy, 2014, 5, 9-19.	8.2	17
1983	Screening study of light-metal and transition-metal-doped NiTiH hydrides as Li-ion battery anode materials. Solid State Ionics, 2014, 258, 88-91.	1.3	9
1984	Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochimica Acta, 2014, 121, 428-433.	2.6	64
1985	Surface modification of LiV3O8 nanosheets via layer-by-layer self-assembly for high-performance rechargeable lithium batteries. Journal of Power Sources, 2014, 257, 319-324.	4.0	21
1986	Introduction of two lithiooxycarbonyl groups enhances cyclability of lithium batteries with organic cathode materials. Journal of Power Sources, 2014, 260, 211-217.	4.0	142
1987	Polythiophene Mesoporous Birnessite-MnO2/Pd Cathode Air Electrode for Rechargeable Li-Air Battery. Electrochimica Acta, 2014, 127, 410-415.	2.6	27
1988	Hierarchically porous micro-rod lithium-rich cathode material Li1.2Ni0.13Mn0.54Co0.13O2 for high performance lithium-ion batteries. Electrochimica Acta, 2014, 118, 67-74.	2.6	72
1989	Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy, 2014, 7, 104-113.	8.2	132
1990	Facile synthesis of graphene–silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes. Solid State Ionics, 2014, 254, 65-71.	1.3	89
1991	A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics, 2014, 262, 747-753.	1.3	60
1992	Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Composites Science and Technology, 2014, 98, 1-8.	3.8	346
1993	Spinel ZnCo2O4/N-doped carbon nanotube composite: A high active oxygen reduction reaction electrocatalyst. Journal of Power Sources, 2014, 257, 170-173.	4.0	69

#	Article	IF	CITATIONS
1994	A practical framework of electrical based online state-of-charge estimation of lithium ion batteries. Journal of Power Sources, 2014, 255, 423-430.	4.0	53
1995	SnO2 nanoparticles anchored on vertically aligned graphene with a high rate, high capacity, and long life for lithium storage. Electrochimica Acta, 2014, 130, 670-678.	2.6	37
1996	Facile Synthesis of Fe2O3 Nanobelts/CNTs Composites as High-performance Anode for Lithium-ion Battery. Electrochimica Acta, 2014, 132, 533-537.	2.6	29
1997	Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries. Journal of Power Sources, 2014, 257, 192-197.	4.0	76
1998	High rate Li4Ti5O12–Fe2O3 and Li4Ti5O12–CuO composite anodes for advanced lithium ion batteries. Journal of Alloys and Compounds, 2014, 603, 202-206.	2.8	30
1999	Effect of Ni doping on electrochemical performance of Li3V2(PO4)3/C cathode material prepared by polyol process. Ceramics International, 2014, 40, 11251-11259.	2.3	28
2000	A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 2014, 262, 255-262.	4.0	350
2001	Coaxial electrospun Si/C–C core–shell composite nanofibers as binder-free anodes for lithium-ion batteries. Solid State Ionics, 2014, 258, 67-73.	1.3	37
2002	Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon. Journal of Power Sources, 2014, 265, 160-165.	4.0	38
2003	Effects of Cl doping on the structural and electrochemical properties of high voltage LiMn1.5Ni0.5O4 cathode materials for Li-ion batteries. Journal of Alloys and Compounds, 2014, 592, 48-52.	2.8	62
2004	Modeling of steady-state convective cooling of cylindrical Li-ion cells. Journal of Power Sources, 2014, 258, 374-381.	4.0	60
2005	Binder-free, self-standing films of iron oxide nanoparticles deposited on ionic liquid functionalized carbon nanotubes for lithium-ion battery anodes. Materials Chemistry and Physics, 2014, 144, 396-401.	2.0	19
2006	Ordered LiNi0.5Mn1.5O4 hollow microspheres as high-rate 5V cathode materials for lithium ion batteries. Electrochimica Acta, 2014, 119, 206-213.	2.6	34
2007	A New Approach to Synthesis of Porous SiOx Anode for Li-ion Batteries via Chemical Etching of Si Crystallites. Electrochimica Acta, 2014, 117, 426-430.	2.6	112
2008	Fe ₃ O ₄ Nanoparticles Embedded in Uniform Mesoporous Carbon Spheres for Superior Highâ€Rate Battery Applications. Advanced Functional Materials, 2014, 24, 319-326.	7.8	165
2009	Three-dimensionally porous Fe3O4 as high-performance anode materials for lithium–ion batteries. Journal of Power Sources, 2014, 246, 198-203.	4.0	74
2010	Understanding the Degradation Mechanisms of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Material in Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300787.	10.2	893
2011	Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode. Journal of Membrane Science, 2014, 449, 169-175.	4.1	52

#	Article	IF	CITATIONS
2012	Novel cross-linked copolymer gel electrolyte supported by hydrophilic polytetrafluoroethylene for rechargeable lithium batteries. Journal of Membrane Science, 2014, 449, 176-183.	4.1	52
2013	A facile hydrothermal method to prepare LiFePO4/C submicron rod with core–shell structure. Ionics, 2014, 20, 15-21.	1.2	14
2014	Graphite Intercalation Compounds (GICs): A New Type of Promising Anode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1300600.	10.2	78
2015	Hierarchical nanowires for high-performance electrochemical energy storage. Frontiers of Physics, 2014, 9, 303-322.	2.4	20
2016	A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300647.	10.2	243
2017	Conducting Polymer Nanowire Arrays for High Performance Supercapacitors. Small, 2014, 10, 14-31.	5.2	685
2018	Lithium electrolytes based on modified imidazolium ionic liquids. International Journal of Hydrogen Energy, 2014, 39, 2943-2952.	3.8	28
2019	Graphene for advanced Li/S and Li/air batteries. Journal of Materials Chemistry A, 2014, 2, 33-47.	5.2	166
2020	A novel design approach for lithium-sulphur batteries. Russian Journal of Electrochemistry, 2014, 50, 317-326.	0.3	2
2021	Si/C hybrid nanostructures for Li-ion anodes: An overview. Journal of Power Sources, 2014, 246, 167-177.	4.0	218
2022	A scientometric study of global electric vehicle research. Scientometrics, 2014, 98, 1269-1282.	1.6	24
2023	Effects of high-energy milling on the solid-state synthesis of pure nano-sized Li4Ti5O12 for high power lithium battery applications. Applied Physics A: Materials Science and Processing, 2014, 114, 925-930.	1.1	14
2024	Properties of Li4Ti5O12 as an anode material in non-flammable electrolytes. Journal of Applied Electrochemistry, 2014, 44, 245-253.	1.5	7
2025	Stacked-cup-type MWCNTs as highly stable lithium-ion battery anodes. Journal of Applied Electrochemistry, 2014, 44, 179-187.	1.5	15
2026	A review of high energy density lithium–air battery technology. Journal of Applied Electrochemistry, 2014, 44, 5-22.	1.5	172
2027	Montmorillonite-based ceramic membranes as novel lithium-ion battery separators. Ionics, 2014, 20, 943-948.	1.2	25
2028	High performance three-dimensional Ge/cyclized-polyacrylonitrile thin film anodes prepared by RF magnetron sputtering for lithium ion batteries. Journal of Materials Science, 2014, 49, 2279-2285.	1.7	18
2029	Ethylene glycol stabilized NaBH4 reduction for preparation carbon-supported Pt–Co alloy nanoparticles used as oxygen reduction electrocatalysts for microbial fuel cells. Journal of Solid State Electrochemistry, 2014, 18, 1087-1097.	1.2	26

#	Article	IF	CITATIONS
2030	Determination of sodium ion diffusion coefficients in sodium vanadium phosphate. Journal of Solid State Electrochemistry, 2014, 18, 959-964.	1.2	68
2031	Nickel foam as interlayer to improve the performance of lithium–sulfur battery. Journal of Solid State Electrochemistry, 2014, 18, 1025-1029.	1.2	111
2032	Ethylene sulfate as film formation additive to improve the compatibility of graphite electrode for lithium-ion battery. Ionics, 2014, 20, 795-801.	1.2	47
2033	MnO nanorods on graphene as an anode material for high capacity lithium ion batteries. Journal of Materials Science, 2014, 49, 1861-1867.	1.7	38
2034	A comparison of sulfur loading method on the electrochemical performance of porous carbon/sulfur cathode material for lithium–sulfur battery. Journal of Solid State Electrochemistry, 2014, 18, 935-940.	1.2	15
2035	Novel mesoporous silicon nanorod as an anode material for lithium ion batteries. Electrochimica Acta, 2014, 127, 252-258.	2.6	95
2036	A Natural Carbonized Leaf as Polysulfide Diffusion Inhibitor for Highâ€Performance Lithium–Sulfur Battery Cells. ChemSusChem, 2014, 7, 1655-1661.	3.6	129
2037	Nanoflakesâ€Assembled Threeâ€Dimensional Hollowâ€Porous V ₂ O ₅ as Lithium Storage Cathodes with Highâ€Rate Capacity. Small, 2014, 10, 3032-3037.	5.2	90
2038	Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC. Applied Energy, 2014, 123, 66-74.	5.1	71
2039	A Sandwichâ€Like Hierarchically Porous Carbon/Graphene Composite as a Highâ€Performance Anode Material for Sodiumâ€lon Batteries. Advanced Energy Materials, 2014, 4, 1301584.	10.2	365
2040	Facile preparation of polymer electrolytes based on the polymerized ionic liquid poly((4-vinylbenzyl)trimethylammonium bis(trifluoromethanesulfonylimide)) for lithium secondary batteries. Electrochimica Acta, 2014, 123, 296-302.	2.6	55
2041	Multielectron Redox Compounds for Organic Cathode Quasi-Solid State Lithium Battery. Journal of the Electrochemical Society, 2014, 161, A6-A9.	1.3	66
2042	Influence of Li3V2(PO4)3 complexing on the performance of LiMnPO4 based materials utilized in lithium ion battery. Ceramics International, 2014, 40, 7637-7641.	2.3	16
2043	Progress in flexible lithium batteries and future prospects. Energy and Environmental Science, 2014, 7, 1307-1338.	15.6	1,312
2044	Atomistic Origins of High Rate Capability and Capacity of N-Doped Graphene for Lithium Storage. Nano Letters, 2014, 14, 1164-1171.	4.5	304
2045	Graphene-Wrapped Mesoporous Cobalt Oxide Hollow Spheres Anode for High-Rate and Long-Life Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 2263-2272.	1.5	119
2046	Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode. ACS Nano, 2014, 8, 1728-1738.	7.3	615
2047	Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. Journal of Power Sources, 2014, 246, 840-845.	4.0	343

ARTICLE IF CITATIONS Sulfur encapsulated ZIF-8 as cathode material for lithiumâ€"sulfur battery with improved cyclability. 2048 2.2 81 Microporous and Mesoporous Materials, 2014, 185, 92-96. Biomass derived activated carbon with 3D connected architecture for rechargeable lithiumâ[^] sulfur 2049 2.6 batteries. Electrochimica Acta, 2014, 116, 146-151. Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for 2050 4.0 109 lithium-sulfur batteries. Journal of Power Sources, 2014, 252, 150-155. A facile approach using MgCl2 to formulate high performance Mg2+ electrolytes for rechargeable Mg batteries. Journal of Materials Chemistry A, 2014, 2, 3430. Ultrasmall Sn Nanoparticles Embedded in Nitrogen-Doped Porous Carbon As High-Performance Anode 2052 4.5 538 for Lithium-Ion Batteries. Nano Letters, 2014, 14, 153-157. Defective Graphene as a High-Capacity Anode Material for Na- and Ca-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2014, 6, 1788-1795. 4.0 New Si–O–C composite film anode materials for LIB by electrodeposition. Journal of Materials 2054 5.2 34 Chemistry A, 2014, 2, 883-896. Top-down fabrication of three-dimensional porous V₂O₅ hierarchical microplates with tunable porosity for improved lithium battery performance. Journal of Materials 5.2 76 Chemistry A, 2014, 2, 3297-3302. Excellent cycling stability of spherical spinel LiMn2O4 by Y2O3 coating for lithium-ion batteries. 2056 1.2 20 Journal of Solid State Electrochemistry, 2014, 18, 115-123. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature 15.6 2,109 Nanotechnology, 2014, 9, 187-192. A three dimensional SiO_x/C@RGO nanocomposite as a high energy anode material for 2058 5.2 138 lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3521-3527. Electrodeposited 3D porous silicon/copper films with excellent stability and high rate performance 5.2 58 for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2478. 2060 Electrochemistry of Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 3558-3586. 7.2 333 In situ one-step synthesis of CoFe2O4/graphene nanocomposites as high-performance anode for 2061 2.6 lithium-ion batteries. Electrochimica Acta, 2014, 129, 33-39. Interface Chemistry Engineering of Proteinâ€Directed SnO₂ Nanocrystalâ€Based Anode for 2062 5.235 Lithiumâ€Ion Batteries with Improved Performance. Small, 2014, 10, 998-1007. Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors. 2063 Materials for Renewable and Sustainable Energy, 2014, 3, 1. Tuning electrochemical potential of LiCoO2 with cation substitution: first-principles predictions and 2064 1.2 9 electronic origin. lonics, 2014, 20, 315-321. The electrochemical performance of sodium-ion-modified spinel LiMn2O4 used for lithium-ion 1.2 batteries. Journal of Solid State Electrochemistry, 2014, 18, 713-719.

		CITATION REPORT		
#	Article		IF	CITATIONS
2066	Nanomaterials for electrochemical energy storage. Frontiers of Physics, 2014, 9, 323-35	50.	2.4	86
2067	Influence of the pore structure parameters of mesoporous anatase microspheres on the performance in lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18,	eir 1673-1681.	1.2	14
2068	A New Spinelâ€Layered Liâ€Rich Microsphere as a Highâ€Rate Cathode Material for Liâ Energy Materials, 2014, 4, 1400062.	€lon Batteries. Advanced	10.2	164
2069	Anatase TiO2 nanoparticles for high power sodium-ion anodes. Journal of Power Source 379-385.	es, 2014, 251,	4.0	297
2070	Synthesis of nanosized cadmium oxide (CdO) as a novel high capacity anode material for batteries: influence of carbon nanotubes decoration and binder choice. Electrochimica / 107-112.	or Lithium-ion Acta, 2014, 129,	2.6	34
2071	Cathode refunctionalization as a lithium ion battery recycling alternative. Journal of Pov 2014, 256, 274-280.	ver Sources,	4.0	83
2072	Mesoporous Prussian Blue Analogues: Templateâ€Free Synthesis and Sodiumâ€Ion Bat Angewandte Chemie - International Edition, 2014, 53, 3134-3137.	tery Applications.	7.2	253
2073	Tuning silicon nanowires doping level and morphology for highly efficient micro-superca Nano Energy, 2014, 5, 20-27.	apacitors.	8.2	41
2074	Nitrogen-doped carbon coated Li ₃ V ₂ (PO ₄) <sub from a facile in situ fabrication strategy with ultrahigh-rate stable performance for lithiu storage. New Journal of Chemistry, 2014, 38, 430-436.</sub 		1.4	45
2075	A novel composite with highly dispersed Fe3O4 nanocrystals on ordered mesoporous c anode for lithium ion batteries. Journal of Alloys and Compounds, 2014, 585, 783-789.	arbon as an	2.8	46
2076	Fabrication of MoS ₂ nanosheet@TiO ₂ nanotube hybrid nano lithium storage. Nanoscale, 2014, 6, 5245-5250.	ostructures for	2.8	158
2077	Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries. Journa Compounds, 2014, 601, 38-42.	al of Alloys and	2.8	30
2078	Review and recent advances in battery health monitoring and prognostics technologies vehicle (EV) safety and mobility. Journal of Power Sources, 2014, 256, 110-124.	for electric	4.0	496
2079	Super Longâ€Life Supercapacitors Based on the Construction of Nanohoneycombâ€Lik CoMoO ₄ –3D Graphene Hybrid Electrodes. Advanced Materials, 2014, 2		11.1	630
2080	Hollow LiMn ₂ O ₄ Nanocones as Superior Cathode Materials f Batteries with Enhanced Power and Cycle Performances. Small, 2014, 10, 1096-1100.	or Lithiumâ€ i on	5.2	63
2081	Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a ca for lithium ion batteries. Journal of Alloys and Compounds, 2014, 589, 322-329.	athode material	2.8	60
2082	Electrically Conductive Ultrananocrystalline Diamondâ€Coated Natural Graphiteâ€Copp Long Life Lithiumâ€lon Battery. Advanced Materials, 2014, 26, 3724-3729.	per Anode for New	11.1	51
2083	Synthesis of ordered mesoporous NiCo2O4 via hard template and its application as bifuelectrocatalyst for Li-O2 batteries. Electrochimica Acta, 2014, 129, 14-20.	unctional	2.6	78

#	Article	IF	Citations
2084	25th Anniversary Article: Organic Photovoltaic Modules and Biopolymer Supercapacitors for Supply of Renewable Electricity: A Perspective from Africa. Advanced Materials, 2014, 26, 830-848.	11.1	43
2085	Ultrasmall Fe ₃ O ₄ Nanoparticle/MoS ₂ Nanosheet Composites with Superior Performances for Lithium Ion Batteries. Small, 2014, 10, 1536-1543.	5.2	257
2086	Durable Carbon-Coated Li ₂ S Core–Shell Spheres for High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society, 2014, 136, 4659-4663.	6.6	248
2087	Understanding the Thermal and Mechanical Stabilities of Olivine-Type LiMPO ₄ (M = Fe, Mn) as Cathode Materials for Rechargeable Lithium Batteries from First Principles. ACS Applied Materials & Interfaces, 2014, 6, 4033-4042.	4.0	66
2088	A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. Journal of Power Sources, 2014, 250, 196-203.	4.0	312
2089	Fe2O3 nanorods/carbon nanofibers composite: Preparation and performance as anode of high rate lithium ion battery. Journal of Power Sources, 2014, 251, 85-91.	4.0	76
2090	Ironâ€Oxideâ€Based Advanced Anode Materials for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1300958.	10.2	498
2091	Fe3O4–CNTs nanocomposites: Inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries. Journal of Solid State Chemistry, 2014, 213, 104-109.	1.4	25
2092	Complex Hydrides for Electrochemical Energy Storage. Advanced Functional Materials, 2014, 24, 2267-2279.	7.8	184
2093	Enhanced electrochemical performance of carbon-coated Li2MnSiO4 nanoparticles synthesized by tartaric acid-assisted sol–gel process. Ceramics International, 2014, 40, 9413-9418.	2.3	4
2094	The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si–graphene composite anodes. Journal of Power Sources, 2014, 257, 163-169.	4.0	118
2095	On the origin of the significant difference in lithiation behavior between silicon and germanium. Journal of Power Sources, 2014, 263, 252-258.	4.0	44
2096	Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. Journal of Power Sources, 2014, 253, 98-103.	4.0	77
2097	Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014, 257, 421-443.	4.0	1,794
2098	Facile Synthesis of Anatase TiO ₂ Quantumâ€Dot/Grapheneâ€Nanosheet Composites with Enhanced Electrochemical Performance for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 2084-2088.	11.1	281
2099	Silicon Decorated Cone Shaped Carbon Nanotube Clusters for Lithium Ion Battery Anodes. Small, 2014, 10, 3389-3396.	5.2	65
2100	The Lithium Air Battery. , 2014, , .		111
2101	Nanoarchitectured LiMn2O4/Graphene/ZnO Composites as Electrodes for Lithium Ion Batteries. Journal of Materials Science and Technology, 2014, 30, 427-433.	5.6	42

#	Article	IF	CITATIONS
2102	Effects of oxidation on structure and performance of LiVPO4F as cathode material for lithium-ion batteries. Journal of Power Sources, 2014, 248, 874-885.	4.0	38
2103	Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature. Journal of Power Sources, 2014, 253, 48-54.	4.0	82
2104	The synthesis, characterization and electrochemical properties of V3O7·H2O/CNT Nanocomposite. Solid State Ionics, 2014, 262, 30-34.	1.3	21
2105	Porous hollow LiCoMnO 4 microspheres as cathode materials for 5ÂV lithium ion batteries. Journal of Power Sources, 2014, 247, 794-798.	4.0	31
2106	Stochastic Electronics: A Neuro-Inspired Design Paradigm for Integrated Circuits. Proceedings of the IEEE, 2014, 102, 843-859.	16.4	59
2107	Porous Li ₂ C ₈ H ₄ O ₄ coated with N-doped carbon by using CVD as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 5696-5702.	5.2	62
2108	Iron Oxide Nanoparticle and Graphene Nanoribbon Composite as an Anode Material for Highâ€Performance Liâ€Ion Batteries. Advanced Functional Materials, 2014, 24, 2044-2048.	7.8	156
2109	On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Materials Today, 2014, 17, 110-121.	8.3	501
2110	Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy, 2014, 6, 193-199.	8.2	154
2111	Titanium Oxide Nanosheets: Graphene Analogues with Versatile Functionalities. Chemical Reviews, 2014, 114, 9455-9486.	23.0	557
2112	Facile preparation of [Bi6O4](OH)4(NO3)6·4H2O, [Bi6O4](OH)4(NO3)6·H2O and [Bi6O4](OH)4(NO3)6·H2O/C as novel high capacity anode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2014, 254, 88-97.	4.0	18
2114	Electrospun Trilayer Polymeric Membranes as Separator for Lithium–ion Batteries. Electrochimica Acta, 2014, 127, 167-172.	2.6	79
2115	Hierarchical MoS ₂ nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale, 2014, 6, 5351-5358.	2.8	197
2116	The composite sphere of manganese oxide and carbon nanotubes as a prospective anode material for lithium-ion batteries. Journal of Power Sources, 2014, 255, 163-169.	4.0	44
2117	Morphology-controlled synthesis of Ti3+ self-doped yolk–shell structure titanium oxide with superior photocatalytic activity under visible light. Journal of Solid State Chemistry, 2014, 213, 98-103.	1.4	14
2118	PEDOT coated Li4Ti5O12 nanorods: Soft chemistry approach synthesis and their lithium storage properties. Electrochimica Acta, 2014, 129, 283-289.	2.6	57
2119	The future of lithium availability for electric vehicle batteries. Renewable and Sustainable Energy Reviews, 2014, 35, 183-193.	8.2	269
2120	A new route for synthesizing C/LiFePO4/multi-walled carbon nanotube secondary particles for lithium ion batteries. Solid State Ionics, 2014, 257, 60-66.	1.3	27

#	Article	IF	CITATIONS
2121	Ag-doped Li2ZnTi3O8 as a high rate anode material for rechargeable lithium-ion batteries. Electrochimica Acta, 2014, 120, 187-192.	2.6	85
2122	Chemically engineered graphene oxide as high performance cathode materials for Li-ion batteries. Carbon, 2014, 76, 148-154.	5.4	80
2123	Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy, 2014, 6, 109-118.	8.2	174
2124	Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries. Nano Research, 2014, 7, 502-510.	5.8	102
2125	Temperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. Journal of Power Sources, 2014, 262, 129-135.	4.0	772
2126	Facile synthesis of nanocrystalline LiFePO4/graphene composite as cathode material for high power lithium ion batteries. Electrochimica Acta, 2014, 130, 594-599.	2.6	31
2127	Density functional theory calculations for ethylene carbonate-based binary electrolyte mixtures in lithium ion batteries. Current Applied Physics, 2014, 14, 349-354.	1.1	36
2128	Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: A prospective material for energy storage. International Journal of Hydrogen Energy, 2014, 39, 7842-7851.	3.8	55
2129	Mesoporous MnCo ₂ O ₄ with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8676-8682.	5.2	227
2130	Microwave hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for lithium-ion batteries and supercapacitors with enhanced electrochemical performances. Journal of Alloys and Compounds, 2014, 582, 522-527.	2.8	48
2131	Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte. Chinese Journal of Catalysis, 2014, 35, 185-195.	6.9	100
2132	High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy, 2014, 5, 97-104.	8.2	138
2133	Polymeric Schiff Bases as Lowâ€Voltage Redox Centers for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 5341-5345.	7.2	170
2134	Effective Separation of Lithium Anode and Sulfur Cathode in Lithium–Sulfur Batteries. ChemElectroChem, 2014, 1, 1040-1045.	1.7	64
2135	Nitrogen-doped Li4Ti5O12 nanosheets with enhanced lithium storage properties. Journal of Power Sources, 2014, 266, 150-154.	4.0	52
2136	Challenges of "Going Nano†Enhanced Electrochemical Performance of Cobalt Oxide Nanoparticles by Carbothermal Reduction and In Situ Carbon Coating. ChemPhysChem, 2014, 15, 2177-2185.	1.0	38
2137	Wearable Solar Cells by Stacking Textile Electrodes. Angewandte Chemie - International Edition, 2014, 53, 6110-6114.	7.2	126
2138	Nitrogen ontaining Polycyclic Quinones as Cathode Materials for Lithiumâ€ion Batteries with Increased Voltage. Energy Technology, 2014, 2, 155-158.	1.8	71

#	Article	IF	CITATIONS
2139	Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors – A review. Journal of Power Sources, 2014, 263, 338-360.	4.0	360
2140	Threeâ€Dimensional Structural Engineering for Energyâ€Storage Devices: From Microscope to Macroscope. ChemElectroChem, 2014, 1, 975-1002.	1.7	53
2141	Threeâ€Dimensional Co ₃ O ₄ @MnO ₂ Hierarchical Nanoneedle Arrays: Morphology Control and Electrochemical Energy Storage. Advanced Functional Materials, 2014, 24, 3815-3826.	7.8	378
2142	The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces. Electrochimica Acta, 2014, 135, 356-367.	2.6	26
2143	Optimizing Main Materials for a Lithiumâ€Air Battery of High Cycle Life. Advanced Functional Materials, 2014, 24, 2101-2105.	7.8	46
2144	Wireless power transfer to deep-tissue microimplants. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7974-7979.	3.3	399
2145	Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. Journal of Physical Chemistry Letters, 2014, 5, 1721-1726.	2.1	169
2146	Aprotic and Aqueous Li–O ₂ Batteries. Chemical Reviews, 2014, 114, 5611-5640.	23.0	975
2147	Pre-lithiation of onion-like carbon/MoS ₂ nano-urchin anodes for high-performance rechargeable lithium ion batteries. Nanoscale, 2014, 6, 8884-8890.	2.8	93
2148	Filling the Voids of Graphene Foam with Graphene "Eggshell―for Improved Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2014, 6, 9835-9841.	4.0	64
2149	The Effects of Different Core–Shell Structures on the Electrochemical Performances of Si–Ge Nanorod Arrays as Anodes for Micro-Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 5884-5890.	4.0	49
2150	Controlled synthesis of yolk–mesoporous shell Si@SiO ₂ nanohybrid designed for high performance Li ion battery. RSC Advances, 2014, 4, 20814-20820.	1.7	32
2151	GeO _{<i>x</i>} /Reduced Graphene Oxide Composite as an Anode for Liâ€Ion Batteries: Enhanced Capacity via Reversible Utilization of Li ₂ O along with Improved Rate Performance. Advanced Functional Materials, 2014, 24, 1059-1066.	7.8	143
2152	Enhancement of Lithium Storage Performance of Carbon Microflowers by Achieving a High Surface Area. Chemistry - an Asian Journal, 2014, 9, 1957-1963.	1.7	3
2153	Full-Field Synchrotron Tomography of Nongraphitic Foam and Laminate Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 4524-4534.	4.0	16
2154	Investigation of Changes in the Surface Structure of Li _{<i>x</i>} Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Materials Induced by the Initial Charge. Chemistry of Materials, 2014, 26, 1084-1092.	3.2	308
2155	Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 6086-6091.	5.2	624
2156	Li ₄ Ti ₅ O ₁₂ -based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size. Journal of Materials Chemistry A. 2014. 2. 9982-9993.	5.2	97

#	Article	IF	CITATIONS
2157	Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as Highâ€Performance Anodes of Lithium Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 5165-5169.	7.2	175
2158	Templateâ€Free Fabrication of Mesoporous Hollow ZnMn ₂ O ₄ Subâ€microspheres with Enhanced Lithium Storage Capability towards Highâ€Performance Liâ€Ion Batteries. Particle and Particle Systems Characterization, 2014, 31, 657-663.	1.2	68
2159	Ionicâ€Liquid–Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2014, 53, 488-492.	7.2	295
2160	Superior electrochemical capability of Li2FeSiO4/C/G composite as cathode material for Li-ion batteries. Electrochimica Acta, 2014, 117, 34-40.	2.6	45
2161	Hierarchically Designed SiOx/SiOy Bilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries. Advanced Materials, 2014, 26, 4527-4532.	11.1	141
2162	Crystal structure and multicomponent effects in Tetrahedral Silicate Cathode Materials for Rechargeable Li-ion Batteries. Electrochimica Acta, 2014, 121, 434-442.	2.6	5
2163	Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. Journal of Power Sources, 2014, 256, 258-263.	4.0	162
2164	3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries. Journal of Power Sources, 2014, 257, 186-191.	4.0	102
2165	Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response. Applied Energy, 2014, 126, 297-306.	5.1	100
2166	Rechargeable aqueous lithium–air batteries with an auxiliary electrode for the oxygen evolution. Journal of Power Sources, 2014, 262, 338-343.	4.0	36
2167	Graphite/Silicon Hybrid Electrodes using a 3D Current Collector for Flexible Batteries. Advanced Materials, 2014, 26, 2977-2982.	11.1	53
2168	One-step facile synthesis of porous Co3O4 microspheres as anode materials for lithium-ion batteries. Materials Letters, 2014, 120, 73-75.	1.3	25
2169	Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries. RSC Advances, 2014, 4, 20010-20016.	1.7	39
2170	Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon, 2014, 67, 500-507.	5.4	137
2171	Ultrathin Graphitic C ₃ N ₄ Nanosheets/Graphene Composites: Efficient Organic Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2014, 7, 2125-2130.	3.6	232
2172	Ternary core/shell structure of Co3O4/NiO/C nanowire arrays as high-performance anode material for Li-ion battery. Journal of Power Sources, 2014, 248, 115-121.	4.0	61
2173	Nitrogen-Doped Porous Carbon/Co ₃ O ₄ Nanocomposites as Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 7117-7125.	4.0	223
2174	Na–Vacancy and Charge Ordering in Na _{â‰^2/3} FePO ₄ . Chemistry of Materials, 2014, 26, 3289-3294.	3.2	48

#	Article	IF	CITATIONS
2175	Surface Structure Evolution of LiMn ₂ O ₄ Cathode Material upon Charge/Discharge. Chemistry of Materials, 2014, 26, 3535-3543.	3.2	223
2176	Chemistry, Impedance, and Morphology Evolution in Solid Electrolyte Interphase Films during Formation in Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 896-903.	1.5	261
2177	In Silico Based Rank-Order Determination and Experiments on Nonaqueous Electrolytes for Sodium Ion Battery Applications. Journal of Physical Chemistry C, 2014, 118, 13406-13416.	1.5	74
2178	High Rate Capability and Long Cycle Stability of Co ₃ O ₄ /CoFe ₂ O ₄ Nanocomposite as an Anode Material for High-Performance Secondary Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 11234-11243.	1.5	100
2179	Oxygen storage capacity and structural flexibility of LuFe2O4+xÂ(0â‰ ¤ â‰ 0 .5). Nature Materials, 2014, 13, 74-80.	13.3	59
2180	High performance silicon-based anodes in solid-state lithium batteries. Energy and Environmental Science, 2014, 7, 662-666.	15.6	84
2181	An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery. Journal of Power Sources, 2014, 251, 20-29.	4.0	83
2182	Phase stability of a garnet-type lithium ion conductor Li ₇ La ₃ Zr ₂ O ₁₂ . Dalton Transactions, 2014, 43, 1019-1024.	1.6	86
2183	Mesoporous carbon-coated LiFePO ₄ nanocrystals co-modified with graphene and Mg ²⁺ doping as superior cathode materials for lithium ion batteries. Nanoscale, 2014, 6, 986-995.	2.8	139
2184	Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 5284.	1.3	128
2185	Hollandite-type TiO ₂ : a new negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1825-1833.	5.2	88
2186	Bipolar porous polymeric frameworks for low-cost, high-power, long-life all-organic energy storage devices. Journal of Power Sources, 2014, 245, 553-556.	4.0	66
2187	Block copolymer electrolytes for rechargeable lithium batteries. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1-16.	2.4	331
2188	Sn@graphene grown on vertically aligned graphene for high-capacity, high-rate, and long-life lithium storage. Nano Energy, 2014, 3, 102-112.	8.2	102
2189	Inorganic chemistry solutions to semiconductor nanocrystal problems. Coordination Chemistry Reviews, 2014, 263-264, 182-196.	9.5	35
2190	Highly Reversible Li Storage in Hybrid NiO/Ni/Graphene Nanocomposites Prepared by an Electrical Wire Explosion Process. ACS Applied Materials & Interfaces, 2014, 6, 137-142.	4.0	69
2191	Sulfate-Based Polyanionic Compounds for Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects. Chemistry of Materials, 2014, 26, 394-406.	3.2	137
2192	In situ monitoring of discharge/charge processes in Li–O2 batteries by electrochemical impedance spectroscopy. Journal of Power Sources, 2014, 249, 110-117.	4.0	47

#	Article	IF	CITATIONS
2193	MoS ₂ /Graphene Composite Paper for Sodium-Ion Battery Electrodes. ACS Nano, 2014, 8, 1759-1770.	7.3	1,106
2194	Synthesis of Mn ₂ O ₃ nanomaterials with controllable porosity and thickness for enhanced lithium-ion batteries performance. Nanoscale, 2014, 6, 1725-1731.	2.8	103
2195	Electrochemical performance of the graphene/Y2O3/LiMn2O4 hybrid as cathode for lithium-ion battery. Journal of Alloys and Compounds, 2014, 584, 454-460.	2.8	43
2196	A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nature Communications, 2014, 5, 3026.	5.8	232
2197	Effective wrapping of graphene on individual Li ₄ Ti ₅ O ₁₂ grains for high-rate Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2023-2027.	5.2	76
2198	Na2FePO4F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. Journal of Materials Chemistry A, 2014, 2, 2571.	5.2	101
2199	N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries. Energy and Environmental Science, 2014, 7, 621-626.	15.6	137
2200	Mesoporous silica-assisted carbon free Li ₂ MnSiO ₄ cathode nanoparticles for high capacity Li rechargeable batteries. Physical Chemistry Chemical Physics, 2014, 16, 2085-2089.	1.3	16
2201	Enhanced storage capability and kinetic processes by pores- and hetero-atoms- riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy, 2014, 4, 81-87.	8.2	227
2202	Applicability of triboelectric generator over a wide range of temperature. Nano Energy, 2014, 4, 150-156.	8.2	135
2203	Hyperbranched β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries. Nano Letters, 2014, 14, 864-870.	4.5	277
2204	Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy and Environmental Science, 2014, 7, 1924.	15.6	252
2205	Advanced electrochemical performance of Li4Ti5O12-based materials for lithium-ion battery: Synergistic effect of doping and compositing. Journal of Power Sources, 2014, 248, 1034-1041.	4.0	99
2206	Confined synthesis of hierarchical structured LiMnPO4/C granules by a facile surfactant-assisted solid-state method for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 711-719.	5.2	59
2207	Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO4 (M=Fe, Mn, Co) Tj ETQq0 0	0 rgBT /O\ 9:2	verlock 10 Tf
2208	Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014, 4, 23-30.	8.2	307
2209	Structure-dependent luminescence properties of Eu3+-doped CsBPO4 (BÂ=ÂMg, Zn). Solid State Sciences, 2014, 29, 34-40.	1,5	9

#	Article	IF	CITATIONS
2211	Enhanced capacitor effects in polyoxometalate/graphene nanohybrid materials: a synergetic approach to high performance energy storage. Journal of Materials Chemistry A, 2014, 2, 3801-3807.	5.2	79
2212	On the Dynamics of Charging in Nanoporous Carbon-Based Supercapacitors. ACS Nano, 2014, 8, 1576-1583.	7.3	201
2213	Facile synthesis of electrochemically active α-LiFeO ₂ nanoparticles in absolute ethanol at ambient temperature. RSC Advances, 2014, 4, 3738-3742.	1.7	2
2214	Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Research, 2014, 7, 1-62.	5.8	292
2215	A graphene–MnO2framework as a new generation of three-dimensional oxygen evolution promoter. Chemical Communications, 2014, 50, 207-209.	2.2	77
2216	A fast, inexpensive method for predicting overcharge performance in lithium-ion batteries. Energy and Environmental Science, 2014, 7, 760-767.	15.6	45
2217	Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 2014, 43, 7746-7786.	18.7	1,264
2218	Enhanced cycling stability of silicon anode by in situ polymerization of poly(aniline-co-pyrrole). RSC Advances, 2014, 4, 54134-54139.	1.7	11
2219	One-step solvothermal preparation of Fe3O4/graphene composites at elevated temperature and their application as anode materials for lithium-ion batteries. RSC Advances, 2014, 4, 59981-59989.	1.7	38
2220	High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Advances, 2014, 4, 59637-59642.	1.7	87
2221	Low-temperature and one-pot synthesis of sulfurized graphene nanosheets via in situ doping and their superior electrocatalytic activity for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 20714-20722.	5.2	54
2222	Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 18767-18774.	5.2	52
2223	Integration of Sn/C yolk–shell nanostructures into free-standing conductive networks as hierarchical composite 3D electrodes and the Li-ion insertion/extraction properties in a gel-type lithium-ion battery thereof. Journal of Materials Chemistry A, 2014, 2, 19122-19130.	5.2	50
2224	Facile synthesis of germanium–reduced graphene oxide composite as anode for high performance lithium-ion batteries. RSC Advances, 2014, 4, 58184-58189.	1.7	22
2225	Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries. Nanoscale, 2014, 6, 14441-14445.	2.8	43
2226	Synthesis of Oneâ€Ðimensional Copper Sulfide Nanorods as Highâ€Performance Anode in Lithium Ion Batteries. ChemSusChem, 2014, 7, 3328-3333.	3.6	80
2227	Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nature Communications, 2014, 5, 5280.	5.8	446
2228	Inhibition on polysulfides dissolve during the discharge-charge by using fish-scale-based porous carbon for lithium-sulfur battery. Electrochimica Acta, 2014, 149, 258-263.	2.6	15

#	Article	IF	CITATIONS
2229	Quinone pendant group kinetics in poly(pyrrol-3-ylhydroquinone). Journal of Electroanalytical Chemistry, 2014, 735, 95-98.	1.9	25
2230	Facile fabrication of red phosphorus/TiO ₂ composites for lithium ion batteries. RSC Advances, 2014, 4, 60914-60919.	1.7	15
2231	Facile synthesis of graphene-clamped nanostructured SnO ₂ materials for lithium-ion batteries. RSC Advances, 2014, 4, 64402-64409.	1.7	9
2232	Hierarchical ZnO–Ag–C Composite Porous Microspheres with Superior Electrochemical Properties as Anode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 19895-19904.	4.0	56
2233	Making a better organic–inorganic composite electrolyte to enhance the cycle life of lithium–sulfur batteries. RSC Advances, 2014, 4, 61333-61336.	1.7	14
2234	Monitoring the Solid-State Electrochemistry of Cu(2,7-AQDC) (AQDC = Anthraquinone Dicarboxylate) in a Lithium Battery: Coexistence of Metal and Ligand Redox Activities in a Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 16112-16115.	6.6	261
2235	Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries. Nano Letters, 2014, 14, 6329-6335.	4.5	434
2236	Rechargeable Li//Br battery: a promising platform for post lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 19444-19450.	5.2	76
2237	Mechano-chemical synthesis of nanostructured FePO ₄ /MWCNTs composites as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19536-19541.	5.2	16
2238	An ionic self-assembly approach towards sandwich-like graphene/SnO ₂ /graphene nanosheets for enhanced lithium storage. RSC Advances, 2014, 4, 57869-57874.	1.7	8
2239	Computational and Experimental Investigation of Ti Substitution in Li ₁ (Ni _{<i>x</i>} Co _{1–2<i>x</i>–<i>y</i>} Ti <sul for Lithium Ion Batteries. Journal of Physical Chemistry Letters, 2014, 5, 3649-3655.</sul 	o> 2i ⊉y	<b រុះ8b>)O <sı< td=""></sı<>
2240	Influence of vanadium compound coating on lithium-rich layered oxide cathode for lithium-ion batteries. RSC Advances, 2014, 4, 56273-56278.	1.7	14
2241	SnO2 Nanorods on ZnO Nanofibers: A New Class of Hierarchical Nanostructures Enabled by Electrospinning as Anode Material for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2014, 150, 308-313.	2.6	47
2243	Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nature Communications, 2014, 5, 5381.	5.8	180
2244	Nanoporous Polymer eramic Composite Electrolytes for Lithium Metal Batteries. Advanced Energy Materials, 2014, 4, 1300654.	10.2	222
2245	SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Research, 2014, 7, 1466-1476.	5.8	108
2246	Finite temperature effects on the X-ray absorption spectra of lithium compounds: First-principles interpretation of X-ray Raman measurements. Journal of Chemical Physics, 2014, 140, 034107.	1.2	43
2247	Liquid Crystalline Dispersions of Grapheneâ€Oxideâ€Based Hybrids: A Practical Approach towards the Next Generation of 3D Isotropic Architectures for Energy Storage Applications. Particle and Particle Systems Characterization, 2014, 31, 465-473.	1.2	20

#	Article	IF	CITATIONS
2248	Reduction potential predictions of some aromatic nitrogen-containing molecules. RSC Advances, 2014, 4, 57442-57451.	1.7	58
2249	Mesoporous NaTi ₂ (PO ₄) ₃ /CMK-3 nanohybrid as anode for long-life Na-ion batteries. Journal of Materials Chemistry A, 2014, 2, 20659-20666.	5.2	99
2250	A Highâ€Capacity Tellurium@Carbon Anode Material for Lithiumâ€Ion Batteries. Energy Technology, 2014, 2, 757-762.	1.8	66
2251	The effect of Na0.44MnO2 formation in Na+-modified spinel LiMn2O4. Electronic Materials Letters, 2014, 10, 787-790.	1.0	1
2252	Rechargeable organic lithium-ion batteries using electron-deficient benzoquinones as positive-electrode materials with high discharge voltages. Journal of Materials Chemistry A, 2014, 2, 19347-19354.	5.2	117
2253	Oneâ€Dimensional, Additiveâ€Free, Singleâ€Crystal TiO ₂ Nanostructured Anodes Synthesized by a Singleâ€Step Aerosol Process for Highâ€Rate Lithiumâ€Ion Batteries. Energy Technology, 2014, 2, 906-911.	1.8	17
2254	Graphitic Petal Microâ€Supercapacitor Electrodes for Ultraâ€High Power Density. Energy Technology, 2014, 2, 897-905.	1.8	45
2255	Carbon Nanofibers Decorated with Molybdenum Disulfide Nanosheets: Synergistic Lithium Storage and Enhanced Electrochemical Performance. Angewandte Chemie - International Edition, 2014, 53, 11552-11556.	7.2	326
2256	Long Cycle-life Organic Electrode Material based on an Ionic Naphthoquinone Derivative for Rechargeable Batteries. Energy Procedia, 2014, 56, 228-236.	1.8	15
2257	Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Advances, 2014, 4, 63268-63284.	1.7	167
2258	All-Solid-State Lithium Organic Battery with Composite Polymer Electrolyte and Pillar[5]quinone Cathode. Journal of the American Chemical Society, 2014, 136, 16461-16464.	6.6	375
2259	Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews, 2014, 114, 11503-11618.	23.0	3,841
2260	Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor. Journal of the Electrochemical Society, 2014, 161, A1812-A1817.	1.3	137
2261	Facile and Cost Effective Synthesized Mesoporous Spinel NiCo2O4as Catalyst for Non-Aqueous Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2014, 161, A2188-A2196.	1.3	29
2262	Assembly of MnO2 nanowires@reduced graphene oxide hybrid with an interconnected structure for a high performance lithium ion battery. RSC Advances, 2014, 4, 54416-54421.	1.7	17
2263	3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 13229-13238.	1.3	162
2264	Mussel-inspired nitrogen-doped graphene nanosheet supported manganese oxide nanowires as highly efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 6167.	5.2	41
2265	LiTi ₂ (PO ₄) ₃ /reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2014, 4, 31672-31677.	1.7	26

#	Article	IF	CITATIONS
2266	Mass production of Li ₄ Ti ₅ O ₁₂ with a conductive network via in situ spray pyrolysis as a long cycle life, high rate anode material for lithium ion batteries. RSC Advances, 2014, 4, 38568-38574.	1.7	8
2267	Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction. Physical Chemistry Chemical Physics, 2014, 16, 18765-18771.	1.3	55
2268	Gyroidal mesoporous multifunctional nanocomposites via atomic layer deposition. Nanoscale, 2014, 6, 8736.	2.8	22
2269	Topotactic conversion-derived Li4Ti5O12–rutile TiO2 hybrid nanowire array for high-performance lithium ion full cells. RSC Advances, 2014, 4, 12950.	1.7	28
2270	Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 4135.	1.3	87
2271	Morphology control of SnO and application in lithium-ion batteries. CrystEngComm, 2014, 16, 2589.	1.3	10
2272	Curable polymeric binder–ceramic composite-coated superior heat-resistant polyethylene separator for lithium ion batteries. RSC Advances, 2014, 4, 19229-19233.	1.7	25
2273	Binder effect on the battery performance of mesoporous copper ferrite nanoparticles with grain boundaries as anode materials. RSC Advances, 2014, 4, 44089-44099.	1.7	22
2274	Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities. Journal of Materials Chemistry A, 2014, 2, 17944-17951.	5.2	42
2275	Operando electron magnetic measurements of Li-ion batteries. Energy and Environmental Science, 2014, 7, 2012-2016.	15.6	42
2276	Monodispersed hierarchical Co ₃ O ₄ spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 13805.	5.2	122
2277	In situ polyaniline modified cathode material Li[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ with high rate capacity for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 18613-18623.	5.2	79
2278	Si@SiO2 nanowires/carbon textiles cable-type anodes for high-capacity reversible lithium-ion batteries. RSC Advances, 2014, 4, 18391.	1.7	11
2279	Tuning the structure and property of nanostructured cathode materials of lithium ion and lithium sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 19941-19962.	5.2	56
2280	An RAPET approach to in situ synthesis of carbon modified Li ₄ Ti ₅ O ₁₂ anode nanocrystals with improved conductivity. New Journal of Chemistry, 2014, 38, 616-623.	1.4	17
2281	Porous olive-like carbon decorated Fe ₃ O ₄ based additive-free electrodes for highly reversible lithium storage. Journal of Materials Chemistry A, 2014, 2, 16008-16014.	5.2	18
2282	Hierarchical mesoporous iron-based fluoride with partially hollow structure: facile preparation and high performance as cathode material for rechargeable lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 8556.	1.3	42
2283	Self-assembling few-layer MoS ₂ nanosheets on a CNT backbone for high-rate and long-life lithium-ion batteries. RSC Advances, 2014, 4, 40368-40372.	1.7	35

#	Article	IF	CITATIONS
2284	A novel aluminium–Air rechargeable battery with Al ₂ O ₃ as the buffer to suppress byproduct accumulation directly onto an aluminium anode and air cathode. RSC Advances, 2014, 4, 30346-30351.	1.7	28
2285	Chemical replacement route to Cu2â°'xSe-coated CuO nanotube array anode for enhanced performance in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 5800.	5.2	26
2286	NiO nanorod array anchored Ni foam as a binder-free anode for high-rate lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 20022-20029.	5.2	90
2287	Multifunctional dual Na ₃ V ₂ (PO ₄) ₂ F ₃ cathode for both lithium-ion and sodium-ion batteries. RSC Advances, 2014, 4, 11375-11383.	1.7	88
2288	Controllable synthesis of RGO/Fe _x O _y nanocomposites as high-performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9844-9850.	5.2	68
2289	One step synthesis of sulfur–carbon nanosheet hybrids via a solid solvothermal reaction for lithium sulfur batteries. RSC Advances, 2014, 4, 3684-3690.	1.7	11
2290	ldentifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range. Solid State Ionics, 2014, 268, 110-116.	1.3	53
2291	Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries. Electrochimica Acta, 2014, 149, 293-299.	2.6	18
2292	Strategy to Synthesize Fe3O4/C Nanotubes as Anode Material for Advanced Lithium-Ion Batteries. Electrochimica Acta, 2014, 149, 11-17.	2.6	48
2293	Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries. Journal of Materials Chemistry A, 2014, 2, 11866-11873.	5.2	39
2294	A novel aluminium–air secondary battery with long-term stability. RSC Advances, 2014, 4, 1982-1987.	1.7	31
2295	Novel Au/Pd@carbon macrocellular foams as electrodes for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 18047-18057.	5.2	12
2296	Flexible and high performing polymer electrolytes obtained by UV-induced polymer–cellulose grafting. RSC Advances, 2014, 4, 40873-40881.	1.7	14
2297	Quantum chemistry study of the oxidation-induced stability and decomposition of propylene carbonate-containing complexes. Physical Chemistry Chemical Physics, 2014, 16, 6560.	1.3	33
2298	Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6353.	5.2	58
2299	One-pot low-temperature synthesis of a MnFe ₂ O ₄ –graphene composite for lithium ion battery applications. RSC Advances, 2014, 4, 28421-28425.	1.7	36
2300	Large area multi-stacked lithium-ion batteries for flexible and rollable applications. Journal of Materials Chemistry A, 2014, 2, 10862-10868.	5.2	48
2301	Metal organic frameworks-derived Co ₃ O ₄ hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. Journal of Materials Chemistry A, 2014, 2, 12194-12200.	5.2	353

#	Article	IF	CITATIONS
2302	Adsorption and reaction of sub-monolayer films of an ionic liquid on Cu(111). Chemical Communications, 2014, 50, 8601-8604.	2.2	47
2303	Li _x V ₂ O ₅ /LiV ₃ O ₈ nanoflakes with significantly improved electrochemical performance for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 8009-8016.	5.2	53
2304	Enhanced lithium storage capability of a dual-phase Li ₄ Ti ₅ O ₁₂ –TiO ₂ –carbon nanofiber anode with interfacial pseudocapacitive effect. RSC Advances, 2014, 4, 48632-48638.	1.7	23
2305	A study of the superior electrochemical performance of 3 nm SnO ₂ nanoparticles supported by graphene. Journal of Materials Chemistry A, 2014, 2, 5688-5695.	5.2	96
2307	Synthesis of a nanowire self-assembled hierarchical ZnCo ₂ O ₄ shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3741-3748.	5.2	91
2308	SnO ₂ nanoparticles embedded in 3D nanoporous/solid copper current collectors for high-performance reversible lithium storage. Journal of Materials Chemistry A, 2014, 2, 15519.	5.2	27
2309	Hierarchical core–shell α-Fe2O3@C nanotubes as a high-rate and long-life anode for advanced lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3439-3444.	5.2	55
2310	Scalable synthesis of graphene-wrapped Li ₄ Ti ₅ O ₁₂ dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life. Journal of Materials Chemistry A, 2014, 2, 20221-20230.	5.2	73
2311	Reduced graphene oxide anchoring CoFe ₂ O ₄ nanoparticles as an effective catalyst for non-aqueous lithium–oxygen batteries. Faraday Discussions, 2014, 172, 215-221.	1.6	30
2312	A lithium iron phosphate/nitrogen-doped reduced graphene oxide nanocomposite as a cathode material for high-power lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9594-9599.	5.2	40
2313	Lithium-ion diffusion mechanisms in the battery anode material Li _{1+x} V _{1â^'x} O ₂ . Physical Chemistry Chemical Physics, 2014, 16, 21114-21118.	1.3	56
2314	Self-assembled hairy ball-like V2O5 nanostructures for lithium ion batteries. RSC Advances, 2014, 4, 25205.	1.7	21
2315	The morphology controlled synthesis of 3D networking LiFePO ₄ with multiwalled-carbon nanotubes for Li-ion batteries. CrystEngComm, 2014, 16, 260-269.	1.3	36
2316	New Synthesis of a Foamlike Fe ₃ O ₄ /C Composite via a Self-Expanding Process and Its Electrochemical Performance as Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 19254-19264.	4.0	54
2317	Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode. RSC Advances, 2014, 4, 42412-42417.	1.7	79
2318	Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium–sulfur batteries. Chemical Communications, 2014, 50, 10277-10280.	2.2	75
2319	Influence of Chemical Microstructure of Single-Ion Polymeric Electrolyte Membranes on Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 17534-17542.	4.0	57
2320	Self-assembled growth of Sn@CNTs on vertically aligned graphene for binder-free high Li-storage and excellent stability. Journal of Materials Chemistry A, 2014, 2, 2526.	5.2	69

#	Article	IF	CITATIONS
2321	The electrocatalytic properties of lithium copper composite in the oxygen reduction reaction. Electrochimica Acta, 2014, 148, 276-282.	2.6	8
2322	Influence of CO2 on the stability of discharge performance for Li–air batteries with a hybrid electrolyte based on graphene nanosheets. RSC Advances, 2014, 4, 11798.	1.7	15
2323	Atomistic origin of superior performance of ionic liquid electrolytes for Al-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 20387-20391.	1.3	30
2324	Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 2014, 5, 5017.	5.8	530
2325	Uniquely Arranged Grapheneâ€onâ€Graphene Structure as a Binderâ€Free Anode for Highâ€Performance Lithiumâ€Ion Batteries. Small, 2014, 10, 5035-5041.	5.2	36
2326	Li ₂ FePO ₄ F and its metal-doping for Li-ion batteries: an ab initio study. RSC Advances, 2014, 4, 50195-50201.	1.7	6
2327	A unique hollow Li ₃ VO ₄ /carbon nanotube composite anode for high rate long-life lithium-ion batteries. Nanoscale, 2014, 6, 11072-11077.	2.8	96
2328	Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory. Journal of Physical Chemistry A, 2014, 118, 8852-8860.	1.1	135
2329	Engineered Si Electrode Nanoarchitecture: A Scalable Postfabrication Treatment for the Production of Next-Generation Li-Ion Batteries. Nano Letters, 2014, 14, 277-283.	4.5	116
2330	Single Particle Nanomechanics in Operando Batteries via Lensless Strain Mapping. Nano Letters, 2014, 14, 5123-5127.	4.5	94
2331	Evidence of Solid-Solution Reaction upon Lithium Insertion into Cryptomelane K _{0.25} Mn ₂ O ₄ Material. Journal of Physical Chemistry C, 2014, 118, 3976-3983.	1.5	35
2332	A Highâ€Capacity, Lowâ€Cost Layered Sodium Manganese Oxide Material as Cathode for Sodiumâ€lon Batteries. ChemSusChem, 2014, 7, 2115-2119.	3.6	93
2333	Fe ₂ O ₃ –Ag Porous Film Anodes for Ultrahighâ€Rate Lithiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 1155-1160.	1.7	18
2334	Free-Standing LiNi _{0.5} Mn _{1.5} O ₄ /Carbon Nanofiber Network Film as Lightweight and High-Power Cathode for Lithium Ion Batteries. ACS Nano, 2014, 8, 4876-4882.	7.3	56
2335	Ultrathin Spinel Membrane-Encapsulated Layered Lithium-Rich Cathode Material for Advanced Li-Ion Batteries. Nano Letters, 2014, 14, 3550-3555.	4.5	227
2336	A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17107-17114.	5.2	180
2337	Preparation of porous and hollow Fe3O4@C spheres as an efficient anode material for a high-performance Li-ion battery. RSC Advances, 2014, 4, 6430.	1.7	46
2338	Performance enhancement of Lithium-ion battery with LiFePO4@C/RGO hybrid electrode. Electrochimica Acta, 2014, 144, 406-411.	2.6	27

#	Article	IF	CITATIONS
2339	Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. Journal of Materials Chemistry A, 2014, 2, 17787-17796.	5.2	59
2340	A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 10854-10861.	5.2	68
2341	Benzenediacrylates as organic battery electrode materials: Na versus Li. RSC Advances, 2014, 4, 38004-38011.	1.7	55
2342	Facile synthesis of nitrogen-doped carbon derived from polydopamine-coated Li ₃ V ₂ (PO ₄) ₃ as cathode material for lithium-ion batteries. RSC Advances, 2014, 4, 38791-38796.	1.7	34
2343	Preparation and electrochemical performance of a porous polymer-derived silicon carbonitride anode by hydrofluoric acid etching for lithium ion batteries. RSC Advances, 2014, 4, 23694.	1.7	20
2344	Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium ion battery anodes. Nanoscale, 2014, 6, 4669-4675.	2.8	78
2345	Engineering self-assembled N-doped graphene–carbon nanotube composites towards efficient oxygen reduction electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 13605-13609.	1.3	28
2346	Insitu coating of nitrogen-doped graphene-like nanosheets on silicon as a stable anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11254-11260.	5.2	62
2347	Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. Journal of Materials Chemistry A, 2014, 2, 7256-7264.	5.2	296
2348	Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chemical Society Reviews, 2014, 43, 185-204.	18.7	899
2349	Multi-shelled hollow carbon nanospheres for lithium–sulfur batteries with superior performances. Journal of Materials Chemistry A, 2014, 2, 16199-16207.	5.2	116
2350	Reduction of the oxygen reduction reaction overpotential of nitrogen-doped graphene by designing it to a microspherical hollow shape. Journal of Materials Chemistry A, 2014, 2, 14071.	5.2	38
2351	One-pot synthesis of ultrafine ZnFe2O4 nanocrystals anchored on graphene for high-performance Li and Li-ion batteries. RSC Advances, 2014, 4, 7703.	1.7	41
2352	Exploring zinc coordination in novel zinc battery electrolytes. Physical Chemistry Chemical Physics, 2014, 16, 10816.	1.3	27
2353	Hyper-conjugated lithium carboxylate based on a perylene unit for high-rate organic lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 18225-18228.	5.2	69
2354	A promising Na3V2(PO4)3 cathode for use in the construction of high energy batteries. Physical Chemistry Chemical Physics, 2014, 16, 3055.	1.3	92
2355	Synthesis and high-rate performance of spinel Li4Ti5O12 with core–shell hierarchical macro–mesoporous structure. New Journal of Chemistry, 2014, 38, 1173.	1.4	12
2356	Real-time materials evolution visualized within intact cycling alkaline batteries. Journal of Materials Chemistry A, 2014, 2, 2757-2764.	5.2	53

#	Article	IF	Citations
2357	Lithium cation conducting TDI anion-based ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 11417-11425.	1.3	21
2358	Tuning the electrochemical performances of anthraquinone organic cathode materials for Li-ion batteries through the sulfonic sodium functional group. RSC Advances, 2014, 4, 19878-19882.	1.7	110
2359	Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsulfonyl)-imide ionene polymer. Journal of Materials Chemistry A, 2014, 2, 15952-15957.	5.2	49
2360	A selenium-confined microporous carbon cathode for ultrastable lithium–selenium batteries. Journal of Materials Chemistry A, 2014, 2, 17735-17739.	5.2	117
2361	Criteria for solvate ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 8761.	1.3	240
2362	A study into the extracted ion number for NASICON structured Na ₃ V ₂ (PO ₄) ₃ in sodium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 17681-17687.	1.3	106
2363	Li3.33Cu1.005Ti4.665O12/CuO composite with P4332 space group for Li-ion batteries: synergistic effect of substituting and compositing. RSC Advances, 2014, 4, 31196-31200.	1.7	9
2364	Self-weaving CNT–LiNbO3 nanoplate–polypyrrole hybrid as a flexible anode for Li-ion batteries. Chemical Communications, 2014, 50, 2370.	2.2	27
2365	Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. Journal of Materials Chemistry A, 2014, 2, 19678-19684.	5.2	165
2366	Effect of Fe ²⁺ substitution on the structure and electrochemistry of LiCoPO ₄ prepared by mechanochemically assisted carbothermal reduction. Journal of Materials Chemistry A, 2014, 2, 20697-20705.	5.2	46
2367	ZnO Anchored on Vertically Aligned Graphene: Binder-Free Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 20590-20596.	4.0	90
2368	Aqueous rechargeable lithium batteries using NaV ₆ O ₁₅ nanoflakes as high performance anodes. Journal of Materials Chemistry A, 2014, 2, 12999-13005.	5.2	75
2369	Polyimide as anode electrode material for rechargeable sodium batteries. RSC Advances, 2014, 4, 25369-25373.	1.7	102
2370	Study of a novel gel electrolyte based on poly-(methoxy/hexadecyl-poly(ethylene glycol) methacrylate) co-polymer plasticized with 1-butyl-3-methylimidazolium tetrafluoroborate. RSC Advances, 2014, 4, 36357-36365.	1.7	8
2371	A maize-like FePO ₄ @MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. Journal of Materials Chemistry A, 2014, 2, 7221-7228.	5.2	58
2372	Facile synthesis of mesoporous Mn ₃ O ₄ nanorods as a promising anode material for high performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16755-16760.	5.2	75
2373	A lithium/polysulfide semi-solid rechargeable flow battery with high output performance. RSC Advances, 2014, 4, 47517-47520.	1.7	25
2374	Hierarchical NiFe ₂ O ₄ /Fe ₂ O ₃ nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 8048-8053.	5.2	240

#	Article	IF	CITATIONS
2375	Enhanced lithium storage capacity of Co ₃ O ₄ hexagonal nanorings derived from Co-based metal organic frameworks. Journal of Materials Chemistry A, 2014, 2, 17408-17414.	5.2	72
2376	Vacuum-annealing-tailored robust and flexible nanopore-structured γ-Fe ₂ O ₃ film anodes for high capacity and long life Na-ion batteries. RSC Advances, 2014, 4, 36815.	1.7	32
2377	A nano-Si/FeSi ₂ Ti hetero-structure with structural stability for highly reversible lithium storage. Nanoscale, 2014, 6, 1005-1010.	2.8	19
2378	Effective passivation of a high-voltage positive electrode by 5-hydroxy-1H-indazole additives. Journal of Materials Chemistry A, 2014, 2, 14628-14633.	5.2	21
2379	Benzylamine-directed growth of olivine-type LiMPO ₄ nanoplates by a supercritical ethanol process for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 17400-17407.	5.2	28
2380	Enhanced Cycle Performance of Lithium–Sulfur Batteries Using a Separator Modified with a PVDF-C Layer. ACS Applied Materials & Interfaces, 2014, 6, 20276-20281.	4.0	131
2381	Synergistically reinforced lithium storage performance of in situ chemically grown silicon@silicon oxide core–shell nanowires on three-dimensional conductive graphitic scaffolds. Journal of Materials Chemistry A, 2014, 2, 13859.	5.2	18
2382	Mn0.5Co0.5Fe2O4 nanoparticles highly dispersed in porous carbon microspheres as high performance anode materials in Li-ion batteries. Nanoscale, 2014, 6, 6805.	2.8	14
2383	Understanding the degradation mechanism of rechargeable lithium/sulfur cells: a comprehensive study of the sulfur–graphene oxide cathode after discharge–charge cycling. Physical Chemistry Chemical Physics, 2014, 16, 16931-16940.	1.3	112
2384	Reduction mechanisms of additives on Si anodes of Li-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 17091-17098.	1.3	80
2385	Mesoporous VO ₂ nanowires with excellent cycling stability and enhanced rate capability for lithium batteries. RSC Advances, 2014, 4, 33332-33337.	1.7	47
2386	Templated magnesiothermic synthesis of silicon nanotube bundles and their electrochemical performances in lithium ion batteries. RSC Advances, 2014, 4, 40951-40957.	1.7	12
2387	Diamond-shaped Fe ₂ O ₃ @C ₁₈ H ₃₄ O ₂ core–shell nanostructures as anodes for lithium ion batteries with high over capacity. RSC Advances, 2014, 4, 9166-9171.	1.7	10
2388	Synthesis and characterization of F-doped nanocrystalline Li ₄ Ti ₅ O ₁₂ /C compounds for lithium-ion batteries. RSC Advances, 2014, 4, 41968-41975.	1.7	28
2389	Bulk Ti ₂ Nb ₁₀ O ₂₉ as long-life and high-power Li-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 17258-17262.	5.2	112
2390	Single-Step Plasma Synthesis of Carbon-Coated Silicon Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 19026-19034.	4.0	27
2391	Lithiation mechanism of hierarchical porous MoO ₂ nanotubes fabricated through one-step carbothermal reduction. Journal of Materials Chemistry A, 2014, 2, 80-86.	5.2	84
2392	Enhanced electrochemical performances of FeO _x –graphene nanocomposites as anode materials for alkaline nickel–iron batteries. RSC Advances, 2014, 4, 15394-15399.	1.7	52

#	Article	IF	CITATIONS
2393	Facile fabrication of mesoporous N-doped Fe ₃ O ₄ @C nanospheres as superior anodes for Li-ion batteries. RSC Advances, 2014, 4, 713-716.	1.7	15
2394	A pentakis-fused tetrathiafulvalene system extended by cyclohexene-1,4-diylidenes: a new positive electrode material for rechargeable batteries utilizing ten electron redox. Journal of Materials Chemistry A, 2014, 2, 6747.	5.2	66
2395	Understanding improved electrochemical properties of NiO-doped NiF2–C composite conversion materials by X-ray absorption spectroscopy and pair distribution function analysis. Physical Chemistry Chemical Physics, 2014, 16, 3095.	1.3	15
2396	Facile hydrothermal synthesis and electrochemical properties of orthorhombic LiMnO ₂ cathode materials for rechargeable lithium batteries. RSC Advances, 2014, 4, 13693-13703.	1.7	21
2397	X-Ray absorption spectroscopy of LiBF ₄ in propylene carbonate: a model lithium ion battery electrolyte. Physical Chemistry Chemical Physics, 2014, 16, 23568-23575.	1.3	46
2398	In situ growth of ultrafine tin oxide nanocrystals embedded in graphitized carbon nanosheets for use in high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6960-6965.	5.2	13
2399	Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. Chemical Communications, 2014, 50, 4788-4790.	2.2	229
2400	A freestanding composite film electrode stacked from hierarchical electrospun SnO2 nanorods and graphene sheets for reversible lithium storage. RSC Advances, 2014, 4, 9367-9371.	1.7	26
2401	Size-controlled synthesis of hierarchical nanoporous iron based fluorides and their high performances in rechargeable lithium ion batteries. Chemical Communications, 2014, 50, 6487.	2.2	32
2402	Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. Journal of Materials Chemistry A, 2014, 2, 11417-11425.	5.2	43
2403	Hierarchical WO ₃ @SnO ₂ core–shell nanowire arrays on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 7367-7372.	5.2	84
2404	Graphene nanoarchitecture in batteries. Nanoscale, 2014, 6, 9536-9540.	2.8	27
2405	Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nanoscale, 2014, 6, 2286.	2.8	97
2406	Three-dimensional ultrathin Sn/polypyrrole nanosheet network as high performance lithium-ion battery anode. RSC Advances, 2014, 4, 52074-52082.	1.7	11
2407	Progress of the conversion reaction of Mn3O4 particles as a function of the depth of discharge. Physical Chemistry Chemical Physics, 2014, 16, 6027.	1.3	36
2408	Encapsulation of nanoscale metal oxides into an ultra-thin Ni matrix for superior Li-ion batteries: a versatile strategy. Nanoscale, 2014, 6, 12990-13000.	2.8	21
2409	Facile synthesis of a mesoporous Co ₃ O ₄ network for Li-storage via thermal decomposition of an amorphous metal complex. Nanoscale, 2014, 6, 12476-12481.	2.8	53
2410	Facile fabrication of pompon-like hierarchical CuO hollow microspheres for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1224-1229.	5.2	77

#	Article	IF	CITATIONS
2411	Core–shell CeO2@C nanospheres as enhanced anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 6790.	5.2	59
2412	Graphene anchored with ZrO ₂ nanoparticles as anodes of lithium ion batteries with enhanced electrochemical performance. RSC Advances, 2014, 4, 8472-8480.	1.7	28
2413	Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Physical Chemistry Chemical Physics, 2014, 16, 13568-13582.	1.3	104
2414	Improved electrochemical performance of SnO2–mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Physical Chemistry Chemical Physics, 2014, 16, 6630.	1.3	83
2415	Binder-free phenyl sulfonated graphene/sulfur electrodes with excellent cyclability for lithium sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 5117.	5.2	70
2416	Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16617-16622.	5.2	57
2417	Particle shapes and surface structures of olivine NaFePO ₄ in comparison to LiFePO ₄ . Physical Chemistry Chemical Physics, 2014, 16, 21788-21794.	1.3	61
2418	Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 10398.	1.3	59
2419	A PtRu catalyzed rechargeable oxygen electrode for Li–O ₂ batteries: performance improvement through Li ₂ O ₂ morphology control. Physical Chemistry Chemical Physics, 2014, 16, 20618-20623.	1.3	44
2420	Microstructure – twinning and hexad multiplet(s) in lithium-rich layered cathode materials for lithium-ion batteries. RSC Advances, 2014, 4, 40359.	1.7	11
2421	Effective strategies for improving the electrochemical properties of highly porous Si foam anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 14195-14200.	5.2	36
2422	Fe ₂ O ₃ nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chemical Communications, 2014, 50, 1215-1217.	2.2	297
2423	Highly crystallized Fe2O3nanocrystals on graphene: a lithium ion battery anode material with enhanced cycling. RSC Advances, 2014, 4, 495-499.	1.7	37
2424	Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond. Chemical Reviews, 2014, 114, 11683-11720.	23.0	1,097
2425	Nitrogen-doped graphene–Fe3O4 architecture as anode material for improved Li-ion storage. RSC Advances, 2014, 4, 17653.	1.7	41
2426	CO ₂ /oxalate cathodes as safe and efficient alternatives in high energy density metal–air type rechargeable batteries. RSC Advances, 2014, 4, 1879-1885.	1.7	19
2427	Solvothermal synthesis of pyrite FeS ₂ nanocubes and their superior high rate lithium storage properties. RSC Advances, 2014, 4, 48770-48776.	1.7	51
2428	A novel tunnel Na0.61Ti0.48Mn0.52O2 cathode material for sodium-ion batteries. Chemical Communications, 2014, 50, 7998.	2.2	61

ARTICLE IF CITATIONS Facile fabrication and electrochemical properties of high-quality reduced graphene oxide/cobalt 2429 1.7 59 sulfide composite as anode material for lithium-ion batteries. RSC Advances, 2014, 4, 37180-37186. Synthesis of high performance Li4Ti5O12 microspheres and TiO2 nanowires from natural ilmenite. RSC 2430 1.7 Ádvances, 2014, 4, 40111-40119. Understanding the role of manganese valence in 4 V spinel cathodes for lithium-ion batteries: a 2431 1.7 6 systematic investigation. RSC Advances, 2014, 4, 670-675. Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy and Environmental 2432 195 Science, 2014, 7, 1068. Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V₂0₅nanowires integrated with a SnO₂nanowire UV 2433 2.8 89 sensor. Nanoscale, 2014, 6, 12034-12041. Depolarized and Fully Active Cathode Based on Li(Ni_{0.5}Co_{0.2}Mn_{0.3}O₂ Embedded in Carbon Nanotube 2434 4.5 Network for Advanced Batteries. Nano Letters, 2014, 14, 4700-4706. A Physical Pulverization Strategy for Preparing a Highly Active Composite of CoO_{<i>x</i>} 2435 1.0 10 and Crushed Graphite for Lithium–Oxygen Batteries. ChemPhysChem, 2014, 15, 2070-2076. Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries. Chemistry of 2436 3.2 Materials, 2014, 26, 3739-3746. Relationship between Molecular Structure and Electron Transfer in a Polymeric Nitroxyl-Radical 2437 1.5 67 Energy Storage Material. Journal of Physical Chemistry C, 2014, 118, 17213-17220. Molecularâ€Level Insights into the Reactivity of Siloxaneâ€Based Electrolytes at a Lithiumâ€Metal Anode. 2438 1.0 ChemPhysChem, 2014, 15, 2077-2083. Facile synthesis of a 3D-porous LiNbO3 nanocomposite as a novel electrode material for lithium ion 2439 31 2.8 batteries. Nanoscale, 2014, 6, 7188. Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery. ACS Applied Materials & amp; 2440 4.0 Interfaces, 2014, 6, 13757-13764. A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity. Energy and Environmental 2441 15.6 174 Science, 2014, 7, 655-661. Facile synthesis of a reduced graphene oxide/cobalt sulfide hybrid and its electrochemical capacitance performance. RSC Advances, 2014, 4, 29216-29222. 2442 1.7 Facile synthesis of hierarchically porous NiO micro-tubes as advanced anode materials for lithium-ion 2443 5.273 batteries. Journal of Materials Chemistry A, 2014, 2, 16847-16850. Free-Standing Hierarchically Sandwich-Type Tungsten Disulfide Nanotubes/Graphene Anode for 2444 268 Lithium-Ion Batteries. Nano Letters, 2014, 14, 5899-5904. Energetic Aqueous Rechargeable Sodiumâ€Ion Battery Based on Na₂CuFe(CN)₆â€"NaTi₂(PO₄)₃ 2445 3.6 219 Intercalation Chemistry. ChemSusChem, 2014, 7, 407-411. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries 2446 with high cycle reversibility. Journal of Power Sources, 2014, 271, 291-297.

#	Article	IF	CITATIONS
2447	Ionic and Electronic Mobility in Multicomponent Olivine Silicate Cathode Materials for Li-ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1461-A1467.	1.3	4
2448	Uniform Carbon Coating on Silicon Nanoparticles by Dynamic CVD Process for Electrochemical Lithium Storage. Industrial & Engineering Chemistry Research, 2014, 53, 12697-12704.	1.8	49
2449	Fe ₃ O ₄ /carbon composites obtained by electrospinning as an anode material with high rate capability for lithium ion batteries. RSC Advances, 2014, 4, 41179-41184.	1.7	31
2450	Performance Improvement of Li Ion Battery with Non-Flammable TMP Mixed Electrolyte by Optimization of Lithium Salt Concentration and SEI Preformation Technique on Graphite Anode. Journal of the Electrochemical Society, 2014, 161, A831-A834.	1.3	30
2451	Carbon embedded α-MnO ₂ @graphene nanosheet composite: a bifunctional catalyst for high performance lithium oxygen batteries. Journal of Materials Chemistry A, 2014, 2, 18736-18741.	5.2	44
2452	Initial Assessment of an Empirical Potential as a Portable Tool for Rapid Investigation of Li ⁺ Diffusion in Li ⁺ -Battery Cathode Materials. Journal of Physical Chemistry C, 2014, 118, 11203-11214.	1.5	12
2453	Synthesis of NASICON-type structured NaTi ₂ (PO ₄) ₃ –graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale, 2014, 6, 6328-6334.	2.8	152
2454	Facile synthesis of Li ₂ MnO ₃ nanowires for lithium-ion battery cathodes. New Journal of Chemistry, 2014, 38, 584-587.	1.4	22
2455	Shedding Light on Lithium/Air Batteries Using Millions of Threads on the BG/Q Supercomputer. , 2014, ,		11
2456	MnO2 nanoflakes anchored on reduced graphene oxide nanosheets as high performance anode materials for lithium-ion batteries. RSC Advances, 2014, 4, 30150-30155.	1.7	20
2457	Nano-sized Fe 3 O 4 /carbon as anode material for lithium ion battery. Materials Chemistry and Physics, 2014, 148, 699-704.	2.0	15
2458	Na ₃ V ₂ (PO ₄) ₃ @C core–shell nanocomposites for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 8668-8675.	5.2	348
2459	Heterolayered, One-Dimensional Nanobuilding Block Mat Batteries. Nano Letters, 2014, 14, 5677-5686.	4.5	111
2460	Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode. Journal of Power Sources, 2014, 272, 121-127.	4.0	41
2461	High Performance of Transferring Lithium Ion for Polyacrylonitrile-Interpenetrating Crosslinked Polyoxyethylene Network as Gel Polymer Electrolyte. ACS Applied Materials & Interfaces, 2014, 6, 3156-3162.	4.0	132
2462	LiFe(MoO ₄) ₂ as a Novel Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 10661-10666.	4.0	58
2463	Electrical and lithium ion dynamics in Li ₂ IrO ₃ from density functional theory study. RSC Advances, 2014, 4, 42462-42466.	1.7	7
2464	One-step, simple, and green synthesis of tin dioxide/graphene nanocomposites and their application to lithium-ion battery anodes. Applied Surface Science, 2014, 317, 486-489.	3.1	13

#	Article	IF	CITATIONS
2465	Stretchable Energy Storage and Conversion Devices. Small, 2014, 10, 3443-3460.	5.2	126
2466	Morphology-Controlled Synthesis of Self-Assembled LiFePO ₄ /C/RGO for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 17556-17563.	4.0	32
2467	Synthesis and Extreme Rate Capability of Si–Al–C–N Functionalized Carbon Nanotube Spray-on Coatings as Li-Ion Battery Electrode. ACS Applied Materials & Interfaces, 2014, 6, 16056-16064.	4.0	32
2468	Nitrogen-doped Graphene Hollow Microspheres as an Efficient Electrode Material for Lithium Ion Batteries. Electrochimica Acta, 2014, 146, 455-463.	2.6	56
2469	Nitrogen-doped carbon coated SiO nanoparticles Co-modified with nitrogen-doped graphene as a superior anode material for lithium-ion batteries. RSC Advances, 2014, 4, 35717-35725.	1.7	5
2470	Novel Hierarchically Porous Carbon Materials Obtained from Natural Biopolymer as Host Matrixes for Lithium–Sulfur Battery Applications. ACS Applied Materials & Interfaces, 2014, 6, 13174-13182.	4.0	133
2471	High-performance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. Journal of Materials Chemistry A, 2014, 2, 7997-8002.	5.2	135
2472	Dendritic Niâ€Pâ€Coated Melamine Foam for a Lightweight, Lowâ€Cost, and Amphipathic Threeâ€Dimensional Current Collector for Binderâ€Free Electrodes. Advanced Materials, 2014, 26, 7264-7270.	11.1	103
2473	Effects of electrode loading on low temperature performances of Li-ion batteries. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2625-2630.	0.8	5
2474	Measurement of in-plane thermal conductivity and heat capacity of separator in Li-ion cells using a transient DC heating method. Journal of Power Sources, 2014, 272, 378-385.	4.0	38
2475	The Role of Carbonate and Sulfite Additives in Propylene Carbonate-Based Electrolytes on the Formation of SEI Layers at Graphitic Li-Ion Battery Anodes. Journal of the Electrochemical Society, 2014, 161, A1415-A1421.	1.3	36
2476	3D conductive network-based free-standing PANI–RGO–MWNTs hybrid film for high-performance flexible supercapacitor. Journal of Materials Chemistry A, 2014, 2, 12340-12347.	5.2	92
2477	Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries. Electrochimica Acta, 2014, 148, 39-45.	2.6	76
2478	Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na ₃ V ₂ (PO ₄) ₂ F ₃ . Chemistry of Materials, 2014, 26, 2513-2521.	3.2	156
2479	Carbon-coated Ni ₃ Sn ₂ nanoparticles embedded in porous carbon nanosheets as a lithium ion battery anode with outstanding cycling stability. RSC Advances, 2014, 4, 49247-49256.	1.7	27
2480	Enhanced cyclability of amorphous carbon-coated SnO2-graphene composite as anode for Li-ion batteries. Electrochimica Acta, 2014, 147, 596-602.	2.6	46
2481	Hybrid electrolyte Li-air rechargeable batteries based on nitrogen- and phosphorus-doped graphene nanosheets. RSC Advances, 2014, 4, 13119-13122.	1.7	17
2482	Lithium Insertion / De-Insertion Properties of ï€-Extended Naphthyl-Based Dicarboxylate Electrode Synthesized by Freeze-Drying. Journal of the Electrochemical Society, 2014, 161, A46-A52.	1.3	74

#	Article	IF	CITATIONS
2483	Oxide-on-metal as an inverted design of oxygen electrocatalysts for non-aqueous Li–O2batteries. Nanoscale, 2014, 6, 12324-12327.	2.8	8
2484	Porous inorganic nanostructures with colloidal dimensions: synthesis and applications in electrochemical energy devices. Chemical Communications, 2014, 50, 2077-2088.	2.2	24
2485	Ion dynamics and segmental relaxation of CeO 2 nanoparticles loaded soft - matter like gel polymer electrolyte. Journal of Non-Crystalline Solids, 2014, 405, 76-82.	1.5	19
2486	A Surrogate-Based Multi-Scale Model for Mass Transport and Electrochemical Kinetics in Lithium-Ion Battery Electrodes. Journal of the Electrochemical Society, 2014, 161, E3086-E3096.	1.3	41
2487	Na _{0.67} Mn _{1â^'x} Mg _x O ₂ (0 ≤ ≤0.2): a high capacity cathode for sodium-ion batteries. Energy and Environmental Science, 2014, 7, 1387-1391.	15.6	394
2488	Facile synthesis of uniform flower-like V 2 O 5 hierarchical architecture for high-performance Li-ion battery. Materials Research Bulletin, 2014, 60, 659-664.	2.7	15
2489	Synthesis of Ultrathin GeO ₂ –Reduced Graphene Oxide (RGO) Sheets for a Highâ€Capacity Lithiumâ€Ion Battery Anode. Energy Technology, 2014, 2, 342-347.	1.8	13
2490	Green energy storage chemistries based on neutral aqueous electrolytes. Journal of Materials Chemistry A, 2014, 2, 10739-10755.	5.2	113
2491	Lithium iron(ii) pyrophosphate as a cathode material: structure and transport studies. RSC Advances, 2014, 4, 14348.	1.7	8
2492	A comparative study of nanostructured $\hat{I}\pm$ and \hat{I}' MnO2 for lithium oxygen battery application. RSC Advances, 2014, 4, 8973.	1.7	44
2493	A FeCl ₂ -graphite sandwich composite with Cl doping in graphite layers: a new anode material for high-performance Li-ion batteries. Nanoscale, 2014, 6, 14174-14179.	2.8	42
2494	Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries. Journal of Physical Chemistry C, 2014, 118, 24240-24247.	1.5	99
2495	Li _{1.2} Mn _{0.6} Ni _{0.1} Co _{0.1} O ₂ microspheres constructed by hierarchically arranged nanoparticles as lithium battery cathode with enhanced electrochemical performance. Nanoscale, 2014, 6, 14724-14732.	2.8	37
2496	Mesoporous zinc ferrite/graphene composites: Towards ultra-fast and stable anode for lithium-ion batteries. Carbon, 2014, 79, 493-499.	5.4	65
2497	Highâ€Performance Hybrid Supercapacitor Enabled by a Highâ€Rate Siâ€based Anode. Advanced Functional Materials, 2014, 24, 7433-7439.	7.8	208
2498	Reactive vapor deposition and electrochemical performance of nano-structured magnesium silicide on silicon and silicon carbide substrates. Materials Science in Semiconductor Processing, 2014, 27, 873-876.	1.9	11
2499	A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. Journal of Materials Chemistry A, 2014, 2, 8910-8917.	5.2	115
2500	Enhanced electrochemical performance of sodium lithium titanate by coating various carbons. Journal of Power Sources, 2014, 272, 283-290.	4.0	34

#	Article	IF	CITATIONS
2501	Ta-Doped Li ₇ La ₃ Zr ₂ O ₁₂ for Water-Stable Lithium Electrode of Lithium-Air Batteries. Journal of the Electrochemical Society, 2014, 161, A668-A674.	1.3	135
2502	An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 15640.	5.2	75
2503	A novel coating onto LiMn2O4 cathode with increased lithium ion battery performance. Applied Surface Science, 2014, 317, 884-891.	3.1	38
2504	Facile synthesis of hierarchically porous hematite nanostructures composed of aligned nanorods for superior lithium storage capability. Journal of Power Sources, 2014, 272, 997-1002.	4.0	13
2505	Superfine TiO2/SnO2/Carbon Hybrid Nanocomposite with Greatly Enhanced Electrochemical Properties. Electrochimica Acta, 2014, 147, 603-609.	2.6	12
2506	Facile synthesis of CuO nanoneedle electrodes for high-performance lithium-ion batteries. Materials Chemistry and Physics, 2014, 148, 411-415.	2.0	22
2507	Highâ€Capacity Anode Materials for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2014, 20, 11980-11992.	1.7	508
2508	Effect of the length and surface area on electrochemical performance of cobalt oxide nanowires for alkaline secondary battery application. Journal of Power Sources, 2014, 272, 703-710.	4.0	15
2509	Microstructure Evolution in Lithium-Ion Battery Electrode Processing. Journal of the Electrochemical Society, 2014, 161, E3248-E3258.	1.3	56
2510	Spectroscopic X-ray Diffraction for Microfocus Inspection of Li-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 20750-20755.	1.5	31
2511	Rational Design of Void-Involved Si@TiO ₂ Nanospheres as High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 6497-6503.	4.0	117
2512	<i>In Situ</i> Transmission Electron Microscopy Observation of Electrochemical Sodiation of Individual Co ₉ S ₈ -Filled Carbon Nanotubes. ACS Nano, 2014, 8, 3620-3627.	7.3	76
2513	Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. Journal of Materials Chemistry A, 2014, 2, 10712-10738.	5.2	238
2514	A Facile Supercritical Alcohol Route for Synthesizing Carbon Coated Hierarchically Mesoporous Li ₄ Ti ₅ O ₁₂ Microspheres. Journal of Physical Chemistry C, 2014, 118, 183-193.	1.5	57
2515	Hierarchical structure LiFePO ₄ @C synthesized by oleylamine-mediated method for low temperature applications. Journal of Materials Chemistry A, 2014, 2, 4870-4873.	5.2	33
2516	Lithium cobalt oxide coated lithium zinc titanate anode material with an enhanced high rate capability and long lifespan for lithium-ion batteries. Electrochimica Acta, 2014, 144, 76-84.	2.6	41
2517	A Nanosheetsâ€onâ€Channel Architecture Constructed from MoS ₂ and CMKâ€3 for Highâ€Capacity and Long ycle‣ife Lithium Storage. Advanced Energy Materials, 2014, 4, 1400902.	10.2	180
2518	A facile one-step hydrothermal synthesis of α-Fe ₂ O ₃ nanoplates imbedded in graphene networks with high-rate lithium storage and long cycle life. Journal of Materials Chemistry A, 2014, 2, 13942-13948.	5.2	39

#	Article	IF	CITATIONS
2519	Microscopic and spectroscopic properties of hydrothermally synthesized nano-crystalline LiFePO4 cathode material. Journal of Alloys and Compounds, 2014, 614, 13-19.	2.8	20
2520	Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. Journal of Power Sources, 2014, 268, 683-691.	4.0	74
2521	Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries. Electrochimica Acta, 2014, 137, 546-556.	2.6	91
2522	Temperature dependence of the initial coulombic efficiency in Li-rich layered Li[Li0.144Ni0.136Co0.136Mn0.544]O2 oxide for lithium-ions batteries. Journal of Power Sources, 2014, 268, 517-521.	4.0	35
2523	Effect of different carbon sources on electrochemical properties of Li2ZnTi3O8/C anode material in lithium-ion batteries. Journal of Alloys and Compounds, 2014, 613, 267-274.	2.8	48
2524	Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature Nanotechnology, 2014, 9, 618-623.	15.6	1,535
2525	First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3. Journal of Materials Chemistry A, 2014, 2, 5358.	5.2	222
2526	Fabrication of Core–Shell α-Fe ₂ O ₃ @ Li ₄ Ti ₅ O ₁₂ Composite and Its Application in the Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 4514-4523.	4.0	118
2527	Local structure and lithium mobility in intercalated Li ₃ Al _x Ti _{2â^x} (PO ₄) ₃ NASICON type materials: a combined neutron diffraction and NMR study. Physical Chemistry Chemical Physics, 2014, 16, 18397-18405.	1.3	27
2528	Materials that can replace liquid electrolytes in Li batteries: Superionic conductivities in Li1.7Al0.3Ti1.7Si0.4P2.6O12. Processing combustion synthesized nanopowders to free standing thin films. Journal of Power Sources, 2014, 269, 577-588.	4.0	53
2529	High Performance Porous Anode Based on Template-Free Synthesis of Co3O4 Nanowires for Lithium-Ion Batteries. Electrochimica Acta, 2014, 139, 145-151.	2.6	37
2530	Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. Journal of Power Sources, 2014, 269, 747-754.	4.0	81
2531	Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy and Environmental Science, 2014, 7, 3381-3390.	15.6	476
2532	Tin Dioxide@Carbon Core–Shell Nanoarchitectures Anchored on Wrinkled Graphene for Ultrafast and Stable Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 7434-7443.	4.0	41
2534	Sodiation <i>via</i> Heterogeneous Disproportionation in FeF ₂ Electrodes for Sodium-Ion Batteries. ACS Nano, 2014, 8, 7251-7259.	7.3	89
2535	Xâ€ray Crystal Structure Analysis of Sodiumâ€lon Conductivity in 94 Na ₃ PS ₄ â‹6 Na ₄ SiS ₄ Glassâ€Ceramic Electrolyt ChemElectroChem, 2014, 1, 1130-1132.	:e b. 7	85
2536	Carbonâ€Interconnected Ge Nanocrystals as an Anode with Ultraâ€Longâ€Term Cyclability for Lithium Ion Batteries. Advanced Functional Materials, 2014, 24, 5291-5298.	7.8	82
2537	Graphene Oxide-Immobilized NH ₂ -Terminated Silicon Nanoparticles by Cross-Linked Interactions for Highly Stable Silicon Negative Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 11277-11285.	4.0	72

#	Article	IF	CITATIONS
2538	Maghemite Nanoparticles on Electrospun CNFs Template as Prospective Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2014, 6, 1951-1958.	4.0	97
2539	Electrochemical Properties of Electrodeposited Sn Anodes for Na-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 20086-20093.	1.5	62
2540	Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature Materials, 2014, 13, 961-969.	13.3	1,382
2541	Understanding the Electrochemical Mechanism of K-αMnO ₂ for Magnesium Battery Cathodes. ACS Applied Materials & Interfaces, 2014, 6, 7004-7008.	4.0	132
2542	Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1â^'M)P2S12 (MÂ=ÂSi, Sn). Journal of Power Sources, 2014, 271, 60-64.	4.0	94
2543	Improving high voltage stability of lithium cobalt oxide/graphite battery via forming protective films simultaneously on anode and cathode by using electrolyte additive. Electrochimica Acta, 2014, 141, 263-270.	2.6	58
2544	Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries. Energy and Environmental Science, 2014, 7, 3659-3665.	15.6	94
2545	Chemical and Structural Indicators for Large Redox Potentials in Fe-Based Positive Electrode Materials. ACS Applied Materials & Interfaces, 2014, 6, 10832-10839.	4.0	50
2546	Synthesis of metal ion substituted P2-Na2/3Ni1/3Mn2/3O2 cathode material with enhanced performance for Na ion batteries. Materials Letters, 2014, 135, 131-134.	1.3	76
2547	Hollow spherical La0.8Sr0.2MnO3 perovskite oxide with enhanced catalytic activities for the oxygen reduction reaction. Journal of Power Sources, 2014, 271, 55-59.	4.0	71
2548	Two-dimensional Ti 3 C 2 as anode material for Li-ion batteries. Electrochemistry Communications, 2014, 47, 80-83.	2.3	414
2549	A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy and Environmental Science, 2014, 7, 1339.	15.6	546
2550	Self-adaptive strain-relaxation optimization for high-energy lithium storage material through crumpling of graphene. Nature Communications, 2014, 5, 4565.	5.8	139
2551	Synthesis of Multiphase Cu ₃ Ge/GeO _{<i>x</i>} /CuGeO ₃ Nanowires for Use as Lithiumâ€ion Battery Anodes. ChemElectroChem, 2014, 1, 673-678.	1.7	20
2552	Thermodynamics of Salt-Doped Block Copolymers. ACS Macro Letters, 2014, 3, 708-711.	2.3	46
2553	Facile route for synthesis of mesoporous Cr2O3 sheet as anode materials for Li-ion batteries. Electrochimica Acta, 2014, 139, 76-81.	2.6	47
2554	Impact of the Specific Surface Area on the Memory Effect in Liâ€Ion Batteries: The Case of Anatase TiO ₂ . Advanced Energy Materials, 2014, 4, 1400829.	10.2	33
2555	Assessment of cathode active materials from the perspective of integrating environmental impact with electrochemical performance. Journal of Cleaner Production, 2014, 82, 213-220.	4.6	9

#	Article	IF	CITATIONS
2556	Nano-crystalline FeOOH mixed with SWNT matrix as a superior anode material for lithium batteries. Journal of Energy Chemistry, 2014, 23, 513-518.	7.1	20
2557	Hierarchically porous N-doped carbon nanoflakes: Large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon, 2014, 78, 60-69.	5.4	44
2558	Crystalline red phosphorus incorporated with porous carbon nanofibers as flexible electrode for high performance lithium-ion batteries. Carbon, 2014, 78, 455-462.	5.4	146
2559	Graphene supported Zn2SnO4 nanoflowers with superior electrochemical performance as lithium-ion battery anode. Ceramics International, 2014, 40, 15183-15190.	2.3	13
2560	Boron-doped graphene as a promising anode for Na-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 10419-10424.	1.3	231
2561	Electrochemical Behavior of Iron-based Imidazolium Chloride Ionic Liquids. Electrochimica Acta, 2014, 142, 132-143.	2.6	13
2562	An experimentally validated transient thermal model for cylindrical Li-ion cells. Journal of Power Sources, 2014, 271, 262-268.	4.0	43
2563	Highâ€Performance Sodiumâ€Ion Batteries and Sodiumâ€Ion Pseudocapacitors Based on MoS ₂ /Graphene Composites. Chemistry - A European Journal, 2014, 20, 9607-9612.	1.7	192
2564	Fluorinated Electrolytes for 5-V Li-Ion Chemistry: Synthesis and Evaluation of an Additive for High-Voltage LiNi _{0.5} Mn _{1.5} O ₄ /Graphite Cell. Journal of the Electrochemical Society, 2014, 161, A1777-A1781.	1.3	45
2565	Unveiling the dynamic capacitive storage mechanism of Co3O4 @NiCo2O4 hybrid nanoelectrodes for supercapacitor applications. Electrochimica Acta, 2014, 145, 177-184.	2.6	73
2566	Facile Synthesis of SnO ₂ /Fe ₂ O ₃ Hollow Spheres and their Application as Anode Materials in Lithiumâ€ion Batteries. ChemPlusChem, 2014, 79, 1643-1648.	1.3	20
2567	Non-aqueous aluminium–air battery based on ionic liquid electrolyte. Journal of Power Sources, 2014, 272, 415-421.	4.0	80
2568	Dynamics of Li ₄ Ti ₅ O ₁₂ /sulfone-based electrolyte interfaces in lithium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 5201-5212.	1.3	21
2569	Exploiting Na ₂ MnPO ₄ F as a high-capacity and well-reversible cathode material for Na-ion batteries. RSC Advances, 2014, 4, 40985-40993.	1.7	57
2570	Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries. ACS Nano, 2014, 8, 9606-9615.	7.3	814
2571	Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries. Nanoscale, 2014, 6, 3173.	2.8	379
2572	Vine-like MoS ₂ anode materials self-assembled from 1-D nanofibers for high capacity sodium rechargeable batteries. Nanoscale, 2014, 6, 10975-10981.	2.8	144
2573	A rapid microwave heating route to synthesize graphene modified LiFePO4/C nanocomposite for rechargeable lithium-ion batteries. Ceramics International, 2014, 40, 15801-15806.	2.3	35

#	Article	IF	CITATIONS
2574	Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nature Communications, 2014, 5, 5088.	5.8	276
2575	One-Step Electrodeposited Nickel Cobalt Sulfide Nanosheet Arrays for High-Performance Asymmetric Supercapacitors. ACS Nano, 2014, 8, 9531-9541.	7.3	687
2576	2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorganic Chemistry Frontiers, 2014, 1, 193-199.	3.0	79
2577	Organic Dicarboxylate Negative Electrode Materials with Remarkably Small Strain for Highâ€Voltage Bipolar Batteries. Angewandte Chemie - International Edition, 2014, 53, 11467-11472.	7.2	124
2578	Influence of Solvating Plasticizer on Ion Conduction of Polysiloxane Single-Ion Conductors. Macromolecules, 2014, 47, 3145-3153.	2.2	63
2579	Mesoporous Li ₄ Ti ₅ O _{12â^x} /C submicrospheres with comprehensively improved electrochemical performances for high-power lithium-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 24874-24883.	1.3	40
2580	Nanoporous polymer scaffold-embedded nonwoven composite separator membranes for high-rate lithium-ion batteries. RSC Advances, 2014, 4, 54312-54321.	1.7	15
2581	Local Structure and Dynamics of Lithium Garnet Ionic Conductors: A Model Material Li ₅ La ₃ Ta ₂ N ₁₂ . Chemistry of Materials, 2014, 26, 5613-5624.	3.2	45
2582	Solution processed sun baked electrode material for flexible supercapacitors. RSC Advances, 2014, 4, 20281-20289.	1.7	11
2583	Li-Ion Storage Performance of Carbon-Coated Mn–Al–O Composite Oxides. Journal of Physical Chemistry C, 2014, 118, 23559-23566.	1.5	7
2584	Efficient PdCl2-catalyzed Suzuki reactions using simple dicationic imidazolium salts as ligands in aqueous DMF. Transition Metal Chemistry, 2014, 39, 661-665.	0.7	3
2585	Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties. Electronic Materials Letters, 2014, 10, 819-826.	1.0	18
2586	Micro/nano-complex-structure SiOx–PANI–Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 3776.	5.2	53
2587	Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Nanoscale, 2014, 6, 6819.	2.8	99
2588	Graphene aerogel supported Fe ₅ (PO ₄) ₄ (OH) ₃ ·2H ₂ O microspheres as high performance cathode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 6174-6179.	5.2	46
2589	Low Surface Area Si Alloy/Ionomer Composite Anodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1976-A1980.	1.3	8
2590	Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery. Electrochimica Acta, 2014, 142, 247-253.	2.6	11
2591	Environmentallyâ€Friendly Lithium Recycling From a Spent Organic Liâ€ŀon Battery. ChemSusChem, 2014, 7, 2859-2867.	3.6	47

#	Article	IF	CITATIONS
2592	Experiments and Theory of In situ and Operando Soft X-ray Spectroscopy for Energy Storage. Synchrotron Radiation News, 2014, 27, 4-13.	0.2	11
2593	Facile synthesis of rGO/SnO ₂ composite anodes for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 17139-17145.	5.2	62
2594	Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. Journal of Materials Chemistry A, 2014, 2, 7711-7716.	5.2	62
2595	Interpenetrated Gel Polymer Binder for Highâ€Performance Silicon Anodes in Lithiumâ€ion Batteries. Advanced Functional Materials, 2014, 24, 5904-5910.	7.8	459
2596	Lithiation-Induced Shuffling of Atomic Stacks. Nano Letters, 2014, 14, 5301-5307.	4.5	18
2597	Reversible Storage of Lithium in Three-Dimensional Macroporous Germanium. Chemistry of Materials, 2014, 26, 5683-5688.	3.2	83
2598	Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2014, 147, 201-208.	2.6	42
2599	An SbO _{<i>x</i>} /Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 23527-23534.	1.5	101
2600	General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes. ACS Applied Materials & Interfaces, 2014, 6, 10892-10899.	4.0	179
2601	Effect of ionic liquids on microstructures of micellar aggregates formed by PEO–PPO–PEO block copolymer in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 153-161.	2.3	27
2602	Self-discharge suppression of 4.9ÂV LiNi0.5Mn1.5O4 cathode by using tris(trimethylsilyl)borate as an electrolyte additive. Journal of Power Sources, 2014, 272, 501-507.	4.0	72
2603	Synthesis and electrochemical properties of Li 4 Ti 5 O 12 spheres and its application for hybrid supercapacitors. Electrochimica Acta, 2014, 146, 37-43.	2.6	45
2604	Linear Viscoelasticity and Fourier Transform Infrared Spectroscopy of Polyether–Ester–Sulfonate Copolymer Ionomers. Macromolecules, 2014, 47, 3635-3644.	2.2	47
2605	A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5, 4921.	5.8	328
2606	A metal foam as a current collector for high power and high capacity lithium iron phosphate batteries. Journal of Materials Chemistry A, 2014, 2, 19648-19652.	5.2	39
2607	Synthesis of Li-excess layered cathode material with enhanced reversible capacity for Lithium ion batteries through the optimization of precursor synthesis method. Electrochimica Acta, 2014, 143, 347-356.	2.6	7
2608	Rechargeable Room-Temperature CF _{<i>x</i>} -Sodium Battery. ACS Applied Materials & Interfaces, 2014, 6, 2209-2212.	4.0	48
2609	Virtual screening of borate derivatives as high-performance additives in lithium-ion batteries. Theoretical Chemistry Accounts, 2014, 133, 1.	0.5	14

#	Article	IF	CITATIONS
2610	Fabrication and characteristics of spherical hierarchical LiFePO4/C cathode material by a facile method. Electrochimica Acta, 2014, 147, 330-336.	2.6	14
2611	Aqueous Rechargeable Li and Na Ion Batteries. Chemical Reviews, 2014, 114, 11788-11827.	23.0	1,183
2612	Cobalt orthosilicate as a new electrode material for secondary lithium-ion batteries. Dalton Transactions, 2014, 43, 15013-15021.	1.6	57
2613	Investigating Local Degradation and Thermal Stability of Charged Nickel-Based Cathode Materials through Real-Time Electron Microscopy. ACS Applied Materials & Interfaces, 2014, 6, 15140-15147.	4.0	90
2614	First-Principles Study of an Ethoxycarbonyl-Based Organic Electrode Material of Lithium Battery. Journal of Physical Chemistry C, 2014, 118, 21813-21818.	1.5	25
2615	Binding Energy and Work Function of Organic Electrode Materials Phenanthraquinone, Pyromellitic Dianhydride and Their Derivatives Adsorbed on Graphene. ACS Applied Materials & Interfaces, 2014, 6, 16267-16275.	4.0	97
2616	A novel dendritic crystal Co3O4 as high-performance anode materials for lithium-ion batteries. Journal of Applied Electrochemistry, 2014, 44, 781-788.	1.5	14
2617	Direct hybridization of tin oxide/graphene nanocomposites for highly efficient lithium-ion battery anodes. Journal of Electroceramics, 2014, 33, 195-201.	0.8	6
2618	3D-assembled graphene–LiFePO4 frameworks with enhanced electrochemical performance. Journal of Materials Science: Materials in Electronics, 2014, 25, 2716-2723.	1.1	14
2619	An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 2014, 14, 4901-4906.	4.5	402
2620	Nanolayered manganese oxide/C ₆₀ composite: a good water-oxidizing catalyst for artificial photosynthetic systems. Dalton Transactions, 2014, 43, 12058-12064.	1.6	30
2621	Development of flagella bio-templated nanomaterials for electronics. Nano Convergence, 2014, 1, 10.	6.3	14
2622	Characterization of solid electrolyte interphase on lithium electrodes cycled in ether-based electrolytes for lithium batteries. Journal of Electroanalytical Chemistry, 2014, 719, 122-126.	1.9	42
2623	Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries. Journal of Power Sources, 2014, 248, 852-860.	4.0	15
2624	Performance of through-hole anodic aluminum oxide membrane as a separator for lithium-ion battery. Journal of Membrane Science, 2014, 461, 22-27.	4.1	60
2625	Phase and Dimensionality of Tin Oxide at graphene nanosheet array and its Electrochemical performance as anode for Lithium Ion Battery. Electrochimica Acta, 2014, 125, 380-385.	2.6	17
2626	Economic and environmental characterization of an evolving Li-ion battery waste stream. Journal of Environmental Management, 2014, 135, 126-134.	3.8	122
2627	Organometallic polymer material for energy storage. Chemical Communications, 2014, 50, 6768-6770.	2.2	54

#	Article	IF	CITATIONS
2629	Polymer chain diffusion and Li + hopping of poly(ethylene oxide)/LiAsF 6 crystalline polymer electrolytes as studied by solid state NMR and ac impedance. Solid State Ionics, 2014, 255, 74-79.	1.3	31
2630	Microwave Derived Facile Approach to Sn/Graphene Composite Anodes for, Lithium-Ion Batteries. Electrochimica Acta, 2014, 127, 299-306.	2.6	28
2631	Poly(3,4-ethylenedioxythiophene) Sheath Over a SnO ₂ Hollow Spheres/Graphene Oxide Hybrid for a Durable Anode in Li-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 7296-7306.	1.5	63
2632	Space–Charge Layer Effect at Interface between Oxide Cathode and Sulfide Electrolyte in All-Solid-State Lithium-Ion Battery. Chemistry of Materials, 2014, 26, 4248-4255.	3.2	426
2633	Inverse Opal-Inspired, Nanoscaffold Battery Separators: A New Membrane Opportunity for High-Performance Energy Storage Systems. Nano Letters, 2014, 14, 4438-4448.	4.5	77
2634	Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 2014, 5, 4105.	5.8	1,160
2635	Lithium–tellurium batteries based on tellurium/porous carbon composite. Journal of Materials Chemistry A, 2014, 2, 12201-12207.	5.2	121
2636	Study on SnO2/graphene composites with superior electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 9345.	5.2	42
2637	Surface Chemistry Consequences of Mg-Based Coatings on LiNi _{0.5} Mn _{1.5} O ₄ Electrode Materials upon Operation at High Voltage. Journal of Physical Chemistry C, 2014, 118, 10596-10605.	1.5	53
2638	Quantifying the promise of lithium–air batteries for electric vehicles. Energy and Environmental Science, 2014, 7, 1555.	15.6	399
2639	Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations. Journal of Physical Chemistry C, 2014, 118, 6668-6679.	1.5	176
2640	Mn-Doped TiO ₂ Nanosheet-Based Spheres as Anode Materials for Lithium-Ion Batteries with High Performance at Elevated Temperatures. ACS Applied Materials & amp; Interfaces, 2014, 6, 7292-7300.	4.0	87
2641	Improved cyclability of a lithium–sulfur battery using POP–Sulfur composite materials. RSC Advances, 2014, 4, 27518-27521.	1.7	25
2642	Stable Nanostructured Cathode with Polycrystalline Li-Deficient Li _{0.28} Co _{0.29} Ni _{0.30} Mn _{0.20} O ₂ for Lithium-Ion Batteries. Nano Letters, 2014, 14, 1281-1287.	4.5	36
2643	Anisotropic Lithiation Onset in Silicon Nanoparticle Anode Revealed by <i>in Situ</i> Graphene Liquid Cell Electron Microscopy. ACS Nano, 2014, 8, 7478-7485.	7.3	103
2644	Fe ₃ O ₄ /reduced graphene oxide with enhanced electrochemical performance towards lithium storage. Journal of Materials Chemistry A, 2014, 2, 7214-7220.	5.2	79
2645	Structural and Electrochemical Evidence of Layered to Spinel Phase Transformation of Li and Mn Rich Layered Cathode Materials of the Formulae xLi[Li _{1/3} Mn _{2/3}]O ₂ .(1-x)LiMn _{1/3} Ni _{1/3} Co	1/ 3 -3/sub>	O ₂
2646	Hydrothermal synthesis of uniform nanosized lithiumâ€rich cathode material Li _{0.94} [Li _{0.14} Ni _{0.26} Mn _{0.60}]O ₂ for high power lithiumâ€ion batteries. Micro and Nano Letters, 2014, 9, 19-23.	0.6	4

#	Article	IF	CITATIONS
2647	Effects of Microwave-Hydrothermal Conditions on the Purity and Electrochemical Performance of Orthorhombic LiMnO ₂ . ACS Sustainable Chemistry and Engineering, 2014, 2, 359-366.	3.2	21
2648	Enhancement in electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes by 100ÂMeV Si9+ swift heavy ion irradiation. Ionics, 2014, 20, 1711-1721.	1.2	8
2649	Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research, 2014, 7, 1073-1082.	5.8	100
2650	Sb2O3 Nanowires as Anode Material for Sodium-Ion Battery. Arabian Journal for Science and Engineering, 2014, 39, 6589-6593.	1.1	44
2651	Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery. Journal of Power Sources, 2014, 250, 50-57.	4.0	101
2653	Organic Nanohybrids for Fast and Sustainable Energy Storage. Advanced Materials, 2014, 26, 2558-2565.	11.1	210
2654	High voltage sulphate cathodes Li ₂ M(SO ₄) ₂ (M = Fe, Mn, Co): atomic-scale studies of lithium diffusion, surfaces and voltage trends. Journal of Materials Chemistry A, 2014, 2, 7446-7453.	5.2	57
2655	Toward fully organic rechargeable charge storage devices based on carbon electrodes grafted with redox molecules. Journal of Materials Chemistry A, 2014, 2, 8599-8602.	5.2	29
2656	Combustion synthesis of MgFe 2 O 4 /graphene nanocomposite as a high-performance negative electrode for lithium ion batteries. Materials Characterization, 2014, 95, 259-265.	1.9	53
2657	Accurate hierarchical control of hollow crossed NiCo ₂ O ₄ nanocubes for superior lithium storage. Nanoscale, 2014, 6, 5491-5497.	2.8	95
2658	Unique cyclic performance of post-treated carbide-derived carbon as an anode electrode. Carbon, 2014, 78, 91-101.	5.4	15
2659	Improved Electrochemical Performance of Cu ₃ B ₂ O ₆ -Based Conversion Model Electrodes by Composite Formation with Different Carbon Additives. Journal of the Electrochemical Society, 2014, 161, A1224-A1230.	1.3	2
2660	Nonequilibrium Structural Dynamics of Nanoparticles in LiNi _{1/2} Mn _{3/2} O ₄ Cathode under Operando Conditions. Nano Letters, 2014, 14, 5295-5300.	4.5	67
2661	Electrodeposited three-dimensional porous Si–O–C/Ni thick film as high performance anode for lithium-ion batteries. Journal of Power Sources, 2014, 272, 794-799.	4.0	15
2662	Using Surface Segregation To Design Stable Ruâ€ŀr Oxides for the Oxygen Evolution Reaction in Acidic Environments. Angewandte Chemie - International Edition, 2014, 53, 14016-14021.	7.2	331
2663	A Li–O ₂ /Air Battery Using an Inorganic Solid-State Air Cathode. ACS Applied Materials & Interfaces, 2014, 6, 11204-11210.	4.0	48
2664	Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries. RSC Advances, 2014, 4, 22359-22366.	1.7	37
2665	Recycling of Spent Lithium-Ion Battery: A Critical Review. Critical Reviews in Environmental Science and Technology, 2014, 44, 1129-1165.	6.6	636

#	Article	IF	CITATIONS
2666	A Honeycombâ€Layered Na ₃ Ni ₂ SbO ₆ : A Highâ€Rate and Cycleâ€6table Cathode for Sodiumâ€Ion Batteries. Advanced Materials, 2014, 26, 6301-6306.	11.1	252
2667	Carbon nanofiber/cobalt oxide nanopyramid core–shell nanowires for high-performance lithium-ion batteries. Journal of Power Sources, 2014, 272, 828-836.	4.0	61
2668	Electroactive Organic Compounds as Anode-Active Materials for Solar Rechargeable Redox Flow Battery in Dual-Phase Electrolytes. Journal of the Electrochemical Society, 2014, 161, A736-A741.	1.3	45
2669	Synthesis, characterization and electrochemical performances of LiFePO4/graphene cathode material for high power lithium-ion batteries. Solid State Sciences, 2014, 38, 79-84.	1.5	18
2670	N-doped TiO ₂ nanotubes/N-doped graphene nanosheets composites as high performance anode materials in lithium-ion battery. Journal of Materials Chemistry A, 2014, 2, 15473.	5.2	113
2671	Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 7862.	5.2	226
2672	Environmental In Situ X-ray Absorption Spectroscopy Evaluation of Electrode Materials for Rechargeable Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2014, 118, 12617-12624.	1.5	10
2673	Effect of bulk and surface structural changes in Li ₅ FeO ₄ positive electrodes during first charging on subsequent lithium-ion battery performance. Journal of Materials Chemistry A, 2014, 2, 11847-11856.	5.2	37
2674	Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries. Electrochimica Acta, 2014, 146, 447-454.	2.6	51
2675	Preparation and improved electrochemical performance of SiCN–graphene composite derived from poly(silylcarbondiimide) as Li-ion battery anode. Journal of Materials Chemistry A, 2014, 2, 4168.	5.2	43
2676	A Bowknot-like RuO ₂ quantum dots@V ₂ O ₅ cathode with largely improved electrochemical performance. Physical Chemistry Chemical Physics, 2014, 16, 18680-18685.	1.3	17
2677	Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling. Nano Letters, 2014, 14, 4334-4341.	4.5	163
2678	Synthesis of SnO ₂ /MoS ₂ composites with different component ratios and their applications as lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 17857-17866.	5.2	90
2679	Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery. Advanced Functional Materials, 2014, 24, 4349-4356.	7.8	142
2680	Computational and Experimental Investigation of Li-Doped Ionic Liquid Electrolytes: [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF ₄]. Journal of Physical Chemistry B, 2014, 118, 11295-11309.	1.2	131
2681	Effects of magnesium and fluorine co-doping on the structural and electrochemical performance of the spinel LiMn2O4 cathode materials. Electrochimica Acta, 2014, 147, 271-278.	2.6	56
2682	Composite electrolytes comprised of poly(ethylene oxide) and silica nanoparticles with grafted poly(ethylene oxide)-containing polymers. RSC Advances, 2014, 4, 41087-41098.	1.7	56
2683	Simple Synthesis of Mesoporous Carbon Nanofibers with Hierarchical Nanostructure for Ultrahigh Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 2561-2567.	4.0	76

#	Article	IF	CITATIONS
2684	Small things make a big difference: binder effects on the performance of Li and Na batteries. Physical Chemistry Chemical Physics, 2014, 16, 20347-20359.	1.3	347
2685	Epitaxial Growth of LiMn2O4 Thin Films by Chemical Solution Deposition for Multilayer Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 19540-19547.	1.5	25
2686	Low-Cost, Dendrite-Blocking Polymer-Sb ₂ O ₃ Separators for Lithium and Sodium Batteries. Journal of the Electrochemical Society, 2014, 161, A1655-A1661.	1.3	50
2687	Vapour solid reaction growth of SnO2 nanorods as an anode material for Li ion batteries. RSC Advances, 2014, 4, 26115-26121.	1.7	4
2688	LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Nanoplates with {010} Active Planes Exposing Prepared in Polyol Medium as a High-Performance Cathode for Li-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 5075-5082.	4.0	127
2689	Hierarchically porous three-dimensional electrodes of CoMoO ₄ and ZnCo ₂ O ₄ and their high anode performance for lithium ion batteries. Nanoscale, 2014, 6, 10556.	2.8	77
2690	Hierarchical porous NiCo ₂ O ₄ nanograss arrays grown on Ni foam as electrode material for high-performance supercapacitors. RSC Advances, 2014, 4, 20234-20238.	1.7	29
2691	The origin of anomalous large reversible capacity for SnO ₂ conversion reaction. Journal of Materials Chemistry A, 2014, 2, 13058-13068.	5.2	52
2692	An acid-free rechargeable battery based on PbSO ₄ and spinel LiMn ₂ O ₄ . Chemical Communications, 2014, 50, 13714-13717.	2.2	21
2693	Increase in grain boundary ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 by adding excess lithium. Solid State Ionics, 2014, 263, 125-130.	1.3	67
2694	An Effective Approach To Protect Lithium Anode and Improve Cycle Performance for Li–S Batteries. ACS Applied Materials & Interfaces, 2014, 6, 15542-15549.	4.0	157
2695	Highly porous Li 4 Ti 5 O 12 /C nanofibers for ultrafast electrochemical energy storage. Nano Energy, 2014, 10, 163-171.	8.2	165
2696	Two dimensional silicon nanowalls for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 6051-6057.	5.2	70
2697	Dual phase Li4Ti5O12–TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. Nano Energy, 2014, 9, 383-391.	8.2	114
2698	Lithium Migration Pathways and van der Waals Effects in the LiFeSO ₄ OH Battery Material. Chemistry of Materials, 2014, 26, 3672-3678.	3.2	26
2699	Controllable synthesis of TiO2hierarchical and their applications in lithium ion batteries. RSC Advances, 2014, 4, 42772-42778.	1.7	3
2700	Synergistic Na-Storage Reactions in Sn ₄ P ₃ as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries. Nano Letters, 2014, 14, 1865-1869.	4.5	379
2701	Surface Coating Mediated Swelling and Fracture of Silicon Nanowires during Lithiation. ACS Nano, 2014, 8, 9427-9436.	7.3	48

ARTICLE IF CITATIONS Highâ€Performance Hybrid Supercapacitor Based on Grapheneâ€Wrapped Li₄Ti₅O₁₂ and Activated Carbon. ChemElectroChem, 2014, 1, 2702 1.7 137 125-130. Facile synthesis and performance of polypyrrole-coated sulfur nanocomposite as cathode materials for lithium/sulfur batteries. Journal of Energy Chemistry, 2014, 23, 657-661. 2703 7.1 Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. Journal of the American Chemical Society, 2014, 136, 7395-7402. 2704 6.6 746 Effect of binder and composition ratio on electrochemical performance of silicon/graphite composite 2705 battery electrode. Materials Letters, 2014, 136, 254-257. Li2MnSiO4 cathodes modified by phosphorous substitution and the structural consequences. Solid 2706 1.3 17 State lonics, 2014, 259, 29-39. Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes. Electrochimica Acta, 2014, 128, 163-171. 2.6 84 Halogen-free boron based electrolyte solution for rechargeable magnesium batteries. Journal of 2708 4.0 28 Power Sources, 2014, 248, 690-694. AB5-alloy oxide/graphene composite anode with excellent cyclic stability for lithium ion batteries. 2709 2.8 Journal of Alloys and Compounds, 2014, 582, 289-293. Characterisation of embroidered 3D electrodes by use of anthraquinone-1,5-disulfonic acid as probe 2710 4.0 5 system. Journal of Power Sources, 2014, 254, 224-231. Novel Li(Ni1/3Co1/3Mn1/3)O2 cathode morphologies for high power Li-ion batteries. Journal of Power 2711 Sources, 2014, 248, 729-738. Periodic porous silicon thin films with interconnected channels as durable anode materials for 2712 2.0 38 lithium ion batteries. Materials Chemistry and Physics, 2014, 144, 25-30. Monodispersed mesoporous Li4Ti5O12 submicrospheres as anode materials for lithium-ion batteries: 2713 2.8 morphology and electrochemical performances. Nanoscale, 2014, 6, 6651. Enhanced Electrochemical Performance with Surface Coating by Reactive Magnetron Sputtering on 2714 4.0 98 Lithium-Rich Layered Oxide Electrodes. ACS Applied Materials & amp; Interfaces, 2014, 6, 9185-9193. Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as 2715 5.2 cathode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 4422. Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. 2716 23.0 899 Chemical Reviews, 2014, 114, 5117-5160. Graphenal Polymers for Energy Storage. Small, 2014, 10, 2122-2135. Electrospray deposition of a Co₃O₄nanoparticlesâ€"graphene composite for a 2718 1.7 29 binder-free lithium ion battery electrode. RSC Advances, 2014, 4, 1521-1525. Hierarchical Carbon Decorated Li₃V₂(PO₄)₃ as a Bicontinuous Cathode with Highâ€Rate Capability and Broad Temperature Adaptability. Advanced Energy 2719 Materials, 2014, 4, 1400107.

#	Article	IF	CITATIONS
2720	Toward a Molecular Understanding of Energetics in Li–S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study. Journal of Physical Chemistry C, 2014, 118, 11545-11558.	1.5	154
2721	Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. Journal of Power Sources, 2014, 262, 79-85.	4.0	203
2722	Critical appraisal on the role of catalysts for the oxygen reduction reaction in lithium-oxygen batteries. Electrochimica Acta, 2014, 140, 168-173.	2.6	20
2723	Direct growth of FePO4/graphene hybrids for Li-ion and Na-ion storage. Electrochemistry Communications, 2014, 38, 120-123.	2.3	25
2724	Enhanced rate performance of molybdenum-doped spinel LiNi 0.5 Mn 1.5 O 4 cathode materials for lithium ion battery. Journal of Power Sources, 2014, 247, 778-785.	4.0	84
2725	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	11.1	363
2726	Versatile Coating of Lithium Conductive Li2TiF6 on Over-lithiated Layered Oxide in Lithium-Ion Batteries. Electrochimica Acta, 2014, 117, 492-497.	2.6	23
2727	A straightforward approach towards Si@C/graphene nanocomposite and its superior lithium storage performance. Electrochimica Acta, 2014, 120, 96-101.	2.6	63
2728	Free-standing SnO2 nanoparticles@graphene hybrid paper for advanced lithium-ion batteries. Ceramics International, 2014, 40, 6891-6897.	2.3	40
2729	Morphologies and structures of carbon coated on Li4Ti5O12 and their effects on lithium storage performance. Electrochimica Acta, 2014, 130, 470-476.	2.6	48
2730	A facile one-pot synthesis of TiO2/nitrogen-doped reduced graphene oxide nanocomposite as anode materials for high-rate lithium-ion batteries. Electrochimica Acta, 2014, 133, 209-216.	2.6	59
2731	Solid state lithium ionic conducting thin film Li1.4Al0.4Ge1.6(PO4)3 prepared by tape casting. Journal of Alloys and Compounds, 2014, 590, 147-152.	2.8	78
2732	Nanoscale Kirkendall Effect Synthesis of Echinus-like SnO2@SnS2 Nanospheres as High Performance Anode Material for Lithium Ion Batteries. Electrochimica Acta, 2014, 133, 247-253.	2.6	42
2733	Synthesis and characterization of O3-Na3LiFeSbO6: A new honeycomb ordered layered oxide. Materials Research Bulletin, 2014, 50, 292-296.	2.7	21
2734	CuInZnS-decorated graphene as a high-rate durable anode for lithium-ion batteries. Journal of Power Sources, 2014, 257, 90-95.	4.0	17
2735	Fluorinated electrolytes for 5-V Li-ion chemistry: Dramatic enhancement of LiNi0.5Mn1.5O4/graphite cell performance by a lithium reservoir. Electrochemistry Communications, 2014, 44, 34-37.	2.3	49
2736	Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance. Carbon, 2014, 69, 515-524.	5.4	96
2737	Template-free synthesis of hierarchical porous anatase TiO2 microspheres with carbon coating and their electrochemical properties. Chemical Engineering Journal, 2014, 241, 216-227.	6.6	48

#	Article	IF	CITATIONS
2738	Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors. Journal of Electroanalytical Chemistry, 2014, 713, 98-102.	1.9	49
2739	High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode. Journal of Power Sources, 2014, 251, 466-469.	4.0	115
2740	One-dimensional SiOC/C composite nanofibers as binder-free anodes for lithium-ion batteries. Journal of Power Sources, 2014, 254, 33-38.	4.0	44
2741	Synthesis and application of a novel Li4Ti5O12 composite as anode material with enhanced fast charge-discharge performance for lithium-ion battery. Electrochimica Acta, 2014, 134, 377-383.	2.6	57
2742	One-step hydrothermal method synthesis of core–shell LiNi0.5Mn1.5O4 spinel cathodes for Li-ion batteries. Journal of Power Sources, 2014, 256, 66-71.	4.0	61
2743	The electrochemical activity of polyaniline: An important issue on its use in electrochemical energy storage devices. Synthetic Metals, 2014, 187, 46-51.	2.1	16
2744	Electrochemical synthesis of a three-dimensional porous Sb/Cu 2 Sb anode for Na-ion batteries. Journal of Power Sources, 2014, 247, 423-427.	4.0	101
2745	Lithium storage mechanism in superior high capacity copper nitrate hydrate anode material. Journal of Power Sources, 2014, 260, 218-224.	4.0	17
2746	Gold coating for a high performance Li4Ti5O12 nanorod aggregates anode in lithium-ion batteries. Journal of Power Sources, 2014, 245, 624-629.	4.0	127
2747	Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium–sulfur battery. Journal of Power Sources, 2014, 265, 14-19.	4.0	68
2748	In-situ generated nano-Fe3C embedded into nitrogen-doped carbon for high performance anode in lithium ion battery. Electrochimica Acta, 2014, 116, 292-299.	2.6	66
2749	Ascorbic acid-assisted synthesis of cobalt ferrite (CoFe2O4) hierarchical flower-like microspheres with enhanced lithium storage properties. Journal of Power Sources, 2014, 256, 153-159.	4.0	94
2750	Humidity effect on electrochemical performance of Li–O2 batteries. Journal of Power Sources, 2014, 264, 1-7.	4.0	117
2751	A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring. Journal of Power Sources, 2014, 258, 228-237.	4.0	273
2752	Electrochemical performance of ZnWO4/CNTs composite as anode materials for lithium-ion battery. Applied Surface Science, 2014, 305, 179-185.	3.1	22
2753	Mixed ion/electron-conductive protective soft nanomatter-based conformal surface modification of lithium-ion battery cathode materials. Journal of Power Sources, 2014, 263, 209-216.	4.0	9
2754	In situ electrochemical studies of lithium-ion battery cathodes using atomic force microscopy. Journal of Power Sources, 2014, 249, 373-384.	4.0	53
2755	High-performance hierarchical LiNi1/3Mn1/3Co1/3O2 microspheres synthesized via a facile template-sacrificial route. Journal of Alloys and Compounds, 2014, 589, 615-621.	2.8	27

#	Article	IF	CITATIONS
2756	Sol–gel preparation of V2O5 sheets and their lithium storage behaviors studied by electrochemical and in-situ X-ray diffraction techniques. Ceramics International, 2014, 40, 6115-6125.	2.3	35
2757	Improvement of the thermal stability of LiMn2O4/graphite cells with methylene methanedisulfonate as electrolyte additive. Electrochimica Acta, 2014, 130, 778-784.	2.6	30
2758	Periodic structures of Sn self-inserted between graphene interlayers as anodes for Li-ion battery. Journal of Power Sources, 2014, 253, 287-293.	4.0	44
2759	Preparation of the tetrahydro-hexaquinone as a novel cathode material for rechargeable lithium batteries. Materials Letters, 2014, 117, 290-293.	1.3	29
2760	Hierarchical Co3O4 Nanoparticles Embedded in a Carbon Matrix for Lithium-Ion Battery Anode Materials. Electrochimica Acta, 2014, 133, 16-22.	2.6	42
2761	A chemical and electrochemical multivalent memory made from FeNi3-graphene nanocomposites. Electrochemistry Communications, 2014, 39, 15-18.	2.3	14
2762	Synthesis of three-dimensionally porous MnO thin films for lithium-ion batteries by improved Electrostatic Spray Deposition technique. Electrochimica Acta, 2014, 121, 15-20.	2.6	44
2763	Dual function of quaternary ammonium in Zn/Br redox flow battery: Capturing the bromine and lowering the charge transfer resistance. Electrochimica Acta, 2014, 127, 397-402.	2.6	99
2764	Copper/carbon coated lithium sodium titanate as advanced anode material for lithium-ion batteries. Journal of Power Sources, 2014, 259, 177-182.	4.0	46
2765	Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries. Journal of Power Sources, 2014, 256, 28-31.	4.0	37
2766	Influence of pyrolysis atmosphere on the lithium storage properties of carbon-rich polymer derived SiOC ceramic anodes. Solid State Ionics, 2014, 262, 22-24.	1.3	31
2767	Morphology of carbon nanostructures and their electrochemical performance for lithium ion battery. Journal of Physics and Chemistry of Solids, 2014, 75, 60-67.	1.9	12
2768	Synthesis and characterization of multi-layer core–shell structural LiFeBO3/C as a novel Li-battery cathode material. Journal of Power Sources, 2014, 261, 249-254.	4.0	28
2769	Grain boundary driven capacity fade/hysteresis abated in composite cathode material for lithium-ion batteries/pouch cell. Journal of Power Sources, 2014, 264, 299-310.	4.0	16
2770	Growth of single-crystalline β-Na0.33V2O5 nanowires on conducting substrate: A binder-free electrode for energy storage devices. Journal of Power Sources, 2014, 251, 237-242.	4.0	23
2771	Electrochemical properties of LiMnxFe1â^'xPO4 (xÂ=Â0, 0.2, 0.4, 0.6, 0.8 and 1.0)/vapor grown carbon fiber core–sheath composite nanowire synthesized by electrospinning method. Journal of Power Sources, 2014, 248, 615-620.	4.0	27
2772	Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries. Electrochimica Acta, 2014, 133, 623-630.	2.6	108
2773	Hollow Zn2SnO4 boxes coated with N-doped carbon for advanced lithium-ion batteries. Ceramics International, 2014, 40, 2275-2280.	2.3	29

#	Article	IF	CITATIONS
2774	Interweaved Si@C/CNTs&CNFs composites as anode materials for Li-ion batteries. Journal of Alloys and Compounds, 2014, 588, 206-211.	2.8	52
2775	LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries. Journal of Solid State Chemistry, 2014, 209, 23-28.	1.4	45
2776	A general approach for MFe 2 O 4 (MÂ=ÂZn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries. Journal of Power Sources, 2014, 247, 163-169.	4.0	158
2777	Direct growth of FePO4/graphene and LiFePO4/graphene hybrids for high rate Li-ion batteries. Journal of Power Sources, 2014, 257, 65-69.	4.0	45
2778	One-step hydrothermal synthesis of LiMn2O4 cathode materials for rechargeable lithium batteries. Solid State Sciences, 2014, 31, 16-23.	1.5	38
2779	In situ synthesis of Co3O4/Cu electrode and its high performance for lithium-ion batteries. Materials Letters, 2014, 122, 186-189.	1.3	11
2780	Rechargeable lithium–air batteries: characteristics and prospects. Materials Today, 2014, 17, 24-30.	8.3	184
2781	Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid. Journal of Power Sources, 2014, 246, 783-787.	4.0	77
2782	Porous Fe2O3 nanorods anchored on nitrogen-doped graphenes and ultrathin Al2O3 coating by atomic layer deposition for long-lived lithium ion battery anode. Carbon, 2014, 76, 141-147.	5.4	46
2783	Rapid aqueous synthesis of ordered mesoporous carbons: Investigation of synthesis variables and application as anode materials for Li-ion batteries. Microporous and Mesoporous Materials, 2014, 195, 92-101.	2.2	15
2784	A polymerized vinylene carbonate anode binder enhances performance of lithium-ion batteries. Journal of Power Sources, 2014, 263, 288-295.	4.0	23
2785	Nano-scale simultaneous observation of Li-concentration profile and Ti-, O electronic structure changes in an all-solid-state Li-ion battery by spatially-resolved electron energy-loss spectroscopy. Journal of Power Sources, 2014, 266, 414-421.	4.0	41
2786	Phase transformation of the garnet structured lithium ion conductor: Li7La3Zr2O12. Solid State lonics, 2014, 262, 155-159.	1.3	38
2787	On the Electrode Potentials in Lithium-Sulfur Batteries and Their Solvent-Dependence. Journal of the Electrochemical Society, 2014, 161, A1399-A1406.	1.3	34
2788	Graphene-Supported NaTi ₂ (PO ₄) ₃ as a High Rate Anode Material for Aqueous Sodium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A1181-A1187.	1.3	98
2789	Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition. Journal of Materials Chemistry A, 2014, 2, 3899.	5.2	109
2790	Modeling of Lithium Ion Batteries Employing Grand Canonical Monte Carlo and Multiscale Simulation. Journal of the Electrochemical Society, 2014, 161, A726-A735.	1.3	6
2791	Flexible patterned micro-electrochemical capacitors based on PEDOT. Chemical Communications, 2014, 50, 6789-6792.	2.2	34

#	Article	IF	CITATIONS
2792	Three-Dimensional Macroporous Graphene–Li ₂ FeSiO ₄ Composite as Cathode Material for Lithium-Ion Batteries with Superior Electrochemical Performances. ACS Applied Materials & Interfaces, 2014, 6, 11724-11733.	4.0	54
2793	A long-life lithium-ion battery with a highly porous TiNb ₂ O ₇ anode for large-scale electrical energy storage. Energy and Environmental Science, 2014, 7, 2220-2226.	15.6	312
2794	Elastic and Wearable Wireâ€Shaped Lithiumâ€Ion Battery with High Electrochemical Performance. Angewandte Chemie - International Edition, 2014, 53, 7864-7869.	7.2	306
2795	Fast Solution-Combustion Synthesis of Nitrogen-Modified Li ₄ Ti ₅ O ₁₂ Nanomaterials with Improved Electrochemical Performance. ACS Applied Materials & Interfaces, 2014, 6, 7895-7901.	4.0	68
2796	Theory of Structural Transformation in Lithiated Amorphous Silicon. Nano Letters, 2014, 14, 4065-4070.	4.5	43
2797	Three-Dimensional Porous Supramolecular Architecture from Ultrathin g-C ₃ N ₄ Nanosheets and Reduced Graphene Oxide: Solution Self-Assembly Construction and Application as a Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction, ACS Applied Materials & Amp: Interfaces, 2014, 6, 1011-1017.	4.0	235
2798	Twisted Aligned Carbon Nanotube/Silicon Composite Fiber Anode for Flexible Wireâ€Shaped Lithiumâ€Ion Battery. Advanced Materials, 2014, 26, 1217-1222.	11.1	297
2799	Organic radical functionalized graphene as a superior anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 9164.	5.2	48
2800	Citrateâ€Assisted Growth of NiCo ₂ O ₄ Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage. Advanced Energy Materials, 2014, 4, 1400422.	10.2	227
2801	Three-Dimensional Nanoelectrode by Metal Nanowire Nonwoven Clothes. Nano Letters, 2014, 14, 1932-1937.	4.5	48
2802	Flexible Energy‧torage Devices: Design Consideration and Recent Progress. Advanced Materials, 2014, 26, 4763-4782.	11.1	1,153
2803	A V ₂ O ₅ /Conductiveâ€Polymer Core/Shell Nanobelt Array on Threeâ€Dimensional Graphite Foam: A Highâ€Rate, Ultrastable, and Freestanding Cathode for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 5794-5800.	11.1	450
2804	Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na ₃ V ₂ (PO ₄) ₃ Nanograins for Highâ€Performance Symmetric Sodiumâ€Ion Batteries. Advanced Materials, 2014, 26, 3545-3553.	11.1	473
2805	Green synthesis of metal/C and metal oxide/C films by using natural membrane as support. Frontiers of Materials Science, 2014, 8, 150-156.	1.1	2
2806	Spinel Li _{4–2<i>x</i>} Co _{3<i>x</i>} Ti _{5–<i>x</i>} O ₁₂ (0 â%		
2800	Performances. Journal of Physical Chemistry C, 2014, 118, 14246-14255.	1.5	27
2807	Molybdenum oxide film with stable pseudocapacitive property for aqueous micro-scale electrochemical capacitor. Electrochimica Acta, 2014, 134, 84-91.	2.6	21
2808	Recent Progress on Synchrotronâ€Based In‣itu Soft Xâ€ray Spectroscopy for Energy Materials. Advanced Materials, 2014, 26, 7710-7729.	11.1	123
2809	A Layered Carbon Nanotube Architecture for High Power Lithium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A989-A995.	1.3	19

# 2810	ARTICLE Chemically anchored liquid-PEO based block copolymer electrolytes for solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 11839-11846.	IF 5.2	Citations
2811	Three-Dimensional Thin Film for Lithium-Ion Batteries and Supercapacitors. ACS Nano, 2014, 8, 7279-7287.	7.3	50
2812	Mesoporous LiFePO4 Microspheres Embedded Homogeneously with 3D CNT Conductive Networks for Enhanced Electrochemical Performance. Electrochimica Acta, 2014, 137, 344-351.	2.6	41
2813	Functionalized Grapheneâ€Based Cathode for Highly Reversible Lithium–Sulfur Batteries. ChemSusChem, 2014, 7, 1265-1273.	3.6	51
2814	Alumina coating on 5 V lithium cobalt fluorophosphate cathode material for lithium secondary batteries – synthesis and electrochemical properties. RSC Advances, 2014, 4, 23107-23115.	1.7	14
2815	Degradation mechanisms of lithium-rich nickel manganese cobalt oxide cathode thin films. RSC Advances, 2014, 4, 23364.	1.7	45
2816	LaNi _x Co _{1-x} O _{3-δ} Perovskites as Catalyst Material for Non-Aqueous Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2014, 161, A880-A889.	1.3	53
2817	Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy and Environmental Science, 2014, 7, 2715.	15.6	434
2818	Preparation and characterization of highly sodium ion conducting Na ₃ PS ₄ –Na ₄ SiS ₄ solid electrolytes. RSC Advances, 2014, 4, 17120-17123.	1.7	156
2819	Ultrathin Surface Modification by Atomic Layer Deposition on High Voltage Cathode LiNi _{0.5} Mn _{1.5} O ₄ for Lithium Ion Batteries. Energy Technology, 2014, 2, 159-165.	1.8	40
2820	Electrostatic control of block copolymerÂmorphology. Nature Materials, 2014, 13, 694-698.	13.3	235
2821	Carbon anode thin films for lithium batteries. Current Applied Physics, 2014, 14, 1010-1015.	1.1	10
2822	Performance improvement of phenyl acetate as propylene carbonate-based electrolyte additive for lithium ion battery by fluorine-substituting. Journal of Power Sources, 2014, 267, 182-187.	4.0	35
2823	Fe3O4/C composites synthesized from Fe-based xerogels for anode materials of Li-ion batteries. Solid State Ionics, 2014, 261, 45-52.	1.3	14
2824	Are tomorrow's micro-supercapacitors hidden in a forest of silicon nanotrees?. Journal of Power Sources, 2014, 269, 740-746.	4.0	52
2825	Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries. Solid State Ionics, 2014, 261, 100-105.	1.3	34
2826	Shuttle suppression in room temperature sodium–sulfur batteries using ion selective polymer membranes. Chemical Communications, 2014, 50, 3208.	2.2	140
2827	Sodium-ion battery cathodes Na ₂ FeP ₂ O ₇ and Na ₂ MnP ₂ O ₇ : diffusion behaviour for high rate performance. Journal of Materials Chemistry A, 2014, 2, 11807-11812.	5.2	92

#	Article	IF	CITATIONS
2828	Cellulose/Polysulfonamide Composite Membrane as a High Performance Lithium-Ion Battery Separator. ACS Sustainable Chemistry and Engineering, 2014, 2, 194-199.	3.2	166
2829	In Situ Transmission Electron Microscopy Observation of Electrochemical Behavior of CoS ₂ in Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 3016-3022.	4.0	129
2830	Investigations on Electrochemical Behavior and Structural Stability of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ Lithium-Ion Cathodes via in-Situ and ex-Situ Raman Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 14133-14141.	1.5	93
2831	Heterogeneous branched core–shell SnO2–PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy, 2014, 8, 196-204.	8.2	140
2832	Improving the Performance of Lithium-Sulfur Battery by Blocking Sulfur Diffusing Paths on the Host Materials. Journal of the Electrochemical Society, 2014, 161, A1231-A1235.	1.3	14
2833	A large area, flexible polyaniline/buckypaper composite with a core–shell structure for efficient supercapacitors. Journal of Materials Chemistry A, 2014, 2, 5898-5902.	5.2	43
2834	Electrochemical Synthesis of a Lithium-Rich Rock-Salt-Type Oxide Li5W2O7 with Reversible Deintercalation Properties. Inorganic Chemistry, 2014, 53, 522-527.	1.9	10
2835	Hybrid material design for energy applications: impact of graphene and carbon nanotubes. Pure and Applied Chemistry, 2014, 86, 39-52.	0.9	4
2836	Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries. Journal of the American Chemical Society, 2014, 136, 5039-5046.	6.6	1,046
2837	A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. Renewable and Sustainable Energy Reviews, 2014, 37, 627-633.	8.2	93
2838	Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy and Environmental Science, 2014, 7, 2025.	15.6	265
2839	Lithium Storage Property of MoS ₂ with Mechanical Alloying Treatment. Materials Science Forum, 2014, 787, 1-5.	0.3	0
2840	A Lithium-Ion Sulfur Battery Based on a Carbon-Coated Lithium-Sulfide Cathode and an Electrodeposited Silicon-Based Anode. ACS Applied Materials & Interfaces, 2014, 6, 10924-10928.	4.0	124
2841	Investigation of (1Ââ^'Âx)LiMnPO4·xLi3V2(PO4)3/C: Phase composition and electrochemical performance. Journal of Power Sources, 2014, 263, 332-337.	4.0	23
2842	Computational screening of lactam molecules as solid electrolyte interphase forming additives in lithium-ion batteries. Current Applied Physics, 2014, 14, 897-900.	1.1	17
2843	Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries. Applied Surface Science, 2014, 311, 484-489.	3.1	18
2844	Solvothermal synthesis of ZnMn2O4 as an anode material in lithium ion battery. Electrochimica Acta, 2014, 137, 266-272.	2.6	52
	Low temperature synthesis of Fe2O3 and LiFeO2 as cathode materials for lithium-ion batteries.	2.6	29

#	Article	IF	CITATIONS
2846	Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products. Journal of Chromatography A, 2014, 1354, 92-100.	1.8	91
2847	3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 363-375.	7.1	32
2848	A ternary phased SnO2-Fe2O3/SWCNTs nanocomposite as a high performance anode material for lithium ion batteries. Journal of Energy Chemistry, 2014, 23, 376-382.	7.1	18
2849	DNA metallization for high performance Li-ion battery anodes. Nano Energy, 2014, 8, 17-24.	8.2	8
2850	Preparation of uniform carbon nanoshell coated monodispersed iron oxide nanocrystals as an anode material for lithium-ion batteries. Electrochimica Acta, 2014, 136, 47-51.	2.6	8
2851	Electrochemical reactivity of pyrolytic carbon film electrodes in organic carbonate electrolytes. Electrochemistry Communications, 2014, 46, 5-8.	2.3	7
2852	Effect of binder properties on electrochemical performance for silicon-graphite anode: Method and application of binder screening. Electrochimica Acta, 2014, 136, 112-120.	2.6	72
2853	High-performance self-organized Si nanocomposite anode for lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 291-300.	7.1	10
2854	L-Cysteine-Assisted Synthesis of Cubic Pyrite/Nitrogen-Doped Graphene Composite as Anode Material for Lithium-ion Batteries. Electrochimica Acta, 2014, 137, 197-205.	2.6	42
2855	Monothioanthraquinone as an organic active material for greener lithium batteries. Journal of Power Sources, 2014, 267, 553-559.	4.0	56
2856	Effects of Ni2+ doping on the performances of lithium iron pyrophosphate cathode material. Journal of Power Sources, 2014, 268, 96-105.	4.0	20
2857	Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries. Nano Energy, 2014, 6, 211-218.	8.2	155
2858	Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries. Electrochimica Acta, 2014, 136, 355-362.	2.6	36
2859	Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. Journal of Power Sources, 2014, 267, 388-393.	4.0	80
2860	In-plane Vacancy-Induced Growth of Ultra-High Loading Cobalt Oxide-Graphene Composite for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2014, 136, 330-339.	2.6	12
2861	Complex spinel titanate as an advanced anode material for rechargeable lithium-ion batteries. Journal of Alloys and Compounds, 2014, 611, 65-73.	2.8	34
2862	Mesoporous nanonickel oxide: Anode with good initial discharge capacity and efficiency in lithium ion batteries at 1C rate. Journal of Alloys and Compounds, 2014, 585, 357-361.	2.8	14
2863	Single-ion-conducting nanocomposite polymer electrolytes based on PEG400 and anionic nanoparticles: Part 1. Synthesis, structure and properties. International Journal of Hydrogen Energy, 2014, 39, 2872-2883.	3.8	30

#	Article	IF	Citations
2864	Desolvation and decomposition of metal (Mn, Co and Ni)–ethylene carbonate complexes: Relevance to battery performance. Computational Materials Science, 2014, 81, 548-550.	1.4	9
2865	Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods. Progress in Solid State Chemistry, 2014, 42, 39-39.	3.9	59
2866	A Facile Route for Synthesis of LiFePO4/C Cathode Material with Nano-sized Primary Particles. Chinese Journal of Chemical Engineering, 2014, 22, 590-595.	1.7	9
2867	Facile synthesis and performance of polypyrrole-coated hollow Zn2SnO4 boxes as anode materials for lithium-ion batteries. Ceramics International, 2014, 40, 2359-2364.	2.3	32
2868	Co3O4 mesoporous nanostructures@graphene membrane as an integrated anode for long-life lithium-ion batteries. Journal of Power Sources, 2014, 255, 52-58.	4.0	98
2869	Uniformly dispersed Sn-MnO@C nanocomposite derived from MnSn(OH)6 precursor as anode material for lithium-ion batteries. Electrochimica Acta, 2014, 121, 21-26.	2.6	25
2870	Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries. Electrochimica Acta, 2014, 132, 323-331.	2.6	39
2871	Applications of carbon nanotubes in high performance lithium ion batteries. Frontiers of Physics, 2014, 9, 351-369.	2.4	54
2872	Influence of citrate/nitrate ratio on the preparation of Li0.5La0.5TiO3 nanopowder by combustion method. Ceramics International, 2014, 40, 249-256.	2.3	14
2873	Nonisothermal kinetics study with advanced isoconversional procedure and DAEM. Journal of Thermal Analysis and Calorimetry, 2014, 115, 237-245.	2.0	6
2874	Design of organic–inorganic hybrid ion-gel electrolytes composed of borosilicate and allylimidazolium type ionic liquids. International Journal of Hydrogen Energy, 2014, 39, 2936-2942.	3.8	6
2875	Nanotin alloys supported by multiwall carbon nanotubes as high-capacity and safer anode materials for EV lithium batteries. Journal of Power Sources, 2014, 245, 345-351.	4.0	21
2876	Bulk-type All-solid-state Lithium Secondary Batteries Using Highly Ion-conductive Sulfide Solid Electrolyte Thin Films. Electrochemistry, 2014, 82, 591-594.	0.6	10
2877	Improving Reversible Capacities of High-Surface Lithium Insertion Materials ââ,¬â€œ The Case of Amorphous TiO2. Frontiers in Energy Research, 2014, 2, .	1.2	7
2878	Understanding and Overcoming the Challenges Posed by Electrode/Electrolyte Interfaces in Rechargeable Magnesium Batteries. Frontiers in Energy Research, 2014, 2, .	1.2	29
2879	Effect of a Surfactant Assisted Synthesis on the Electrochemical Performance of a LiFePO4-CNT Composite Electrode. International Journal of Material Science, 2014, 4, 1.	0.4	3
2880	Current Scheduling for Parallel Buck Regulated Battery Modules. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 2112-2117.	0.4	6
2881	Lithium Batteries: Status and Future. , 2014, , 121-162.		0

ARTICLE

2882 4. ã,ノンã,'基本骨æ¼ãªã™ã,‹æ₤æ¥μ活物質ã,'稨ã,ã,‹æœ‰æ©ŸäºŒæ¬¡é>»æ±. Electrochemistry, 20₫4, 82, 688-693.

2883	Development of SPICA, New Dedicated Neutron Powder Diffractometer for Battery Studies. Journal of Physics: Conference Series, 2014, 502, 012053.	0.3	43
2885	A Highâ€Performance Anode Material for Liâ€lon Batteries Based on a Vertically Aligned CNTs/NiCo ₂ O ₄ Core/Shell Structure. Particle and Particle Systems Characterization, 2014, 31, 1151-1157.	1.2	35
2887	An Antiaromatic Electrodeâ€Active Material Enabling High Capacity and Stable Performance of Rechargeable Batteries. Angewandte Chemie - International Edition, 2014, 53, 3096-3101.	7.2	154
2888	Fe ₂ O ₃ –SnO ₂ –graphene films as flexible and binder-free anode materials for lithium-ion batteries. Journal of Materials Research, 2015, 30, 2736-2746.	1.2	12
2889	Understanding growth mechanisms of epitaxial manganese oxide (Mn3O4) nanostructures on strontium titanate (STO) oxide substrates. MRS Communications, 2015, 5, 277-284.	0.8	4
2890	Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics. MRS Energy & Sustainability, 2015, 2, 1.	1.3	42
2891	Lithium Dendrite Inhibition on Post-Charge Anode Surface: The Kinetics Role. Materials Research Society Symposia Proceedings, 2015, 1774, 31-39.	0.1	0
2892	Synthesis of Nano-Sized SiOx/C Composite by a Drip Combustion in Fluidized Bed Reactor and Its Electrochemical Properties. Materials Research Society Symposia Proceedings, 2015, 1775, 13-18.	0.1	1
2893	Advances in Electrochemical Energy Materials and Technologies. Electrochemical Energy Storage and Conversion, 2015, , 33-53.	0.0	Ο
2894	Application of polymethyl methacrylate in cathode materials of lithium-ion batteries. Russian Journal of Applied Chemistry, 2015, 88, 1633-1636.	0.1	2
2896	Vanadium Pentoxide Nanorods Anchored to and Wrapped with Graphene Nanosheets for Highâ€Power Asymmetric Supercapacitors. ChemElectroChem, 2015, 2, 1264-1269.	1.7	31
2897	Threeâ€Dimensional Interconnected Network of Grapheneâ€Wrapped Silicon/Carbon Nanofiber Hybrids for Binderâ€Free Anodes in Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1699-1706.	1.7	44
2898	Airâ€Stable Copperâ€Based P2â€Na _{7/9} Cu _{2/9} Fe _{1/9} Mn _{2/3} O ₂ as a New Positive Electrode Material for Sodiumâ€ion Batteries. Advanced Science, 2015, 2, 1500031.	5.6	287
2899	Design and Fabrication of Microspheres with Hierarchical Internal Structure for Tuning Battery Performance. Advanced Science, 2015, 2, 1500078.	5.6	9
2900	Reserving Interior Void Space for Volume Change Accommodation: An Example of Cableâ€Like MWNTs@SnO ₂ @C Composite for Superior Lithium and Sodium Storage. Advanced Science, 2015, 2, 1500097.	5.6	69
2902	All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range. Scientific Reports, 2015, 5, 13271.	1.6	62
2903	Reaction temperature sensing (RTS)-based control for Li-ion battery safety. Scientific Reports, 2015, 5, 18237.	1.6	26

#	Article	IF	CITATIONS
2904	Steric Effects on the Cyclability of Benzoquinone-type Organic Cathode Active Materials for Rechargeable Batteries. Chemistry Letters, 2015, 44, 1726-1728.	0.7	22
2906	xmlns:mml="http://www.w3.org/1998/Math/MathML" ' display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi>Li</mml:mi></mml:mrow><mml:rrow><mml:rrow><mml:mi>Li</mml:mi></mml:rrow></mml:rrow></mml:msub></mml:mrow> <mml:rrow><mml:mi>="normal">P</mml:mi><mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow>mathvariant="normal">S</mml:mrow><mml:mrow><mml:mrow><mml:mn>11</mml:mn></mml:mrow><td>> < mml:ms</td><td>uts < mml;m</td></mml:mrow></mml:rrow>	> < mml:ms	uts < mml;m
2907	Physical Review Applied, 2015, 4, . Crystal and electronic structures of nitridophosphate compounds as cathode materials for Na-ion batteries. Physical Review B, 2015, 92, .	1.1	10
2910	Long-lived Aqueous Rechargeable Lithium Batteries Using Mesoporous LiTi2(PO4)3@C Anode. Scientific Reports, 2015, 5, 17452.	1.6	43
2911	Breathing silicon anodes for durable high-power operations. Scientific Reports, 2015, 5, 14433.	1.6	51
2912	Lithium Sulfur Primary Battery with Super High Energy Density: Based on the Cauliflower-like Structured C/S Cathode. Scientific Reports, 2015, 5, 14949.	1.6	86
2913	Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Scientific Reports, 2015, 5, 18053.	1.6	150
2914	3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage. Scientific Reports, 2015, 5, 14229.	1.6	139
2915	Carbon-Encapsulated Co3O4 Nanoparticles as Anode Materials with Super Lithium Storage Performance. Scientific Reports, 2015, 5, 16629.	1.6	73
2916	Defective Ti2Nb10O27.1: an advanced anode material for lithium-ion batteries. Scientific Reports, 2015, 5, 17836.	1.6	81
2917	Hierarchical Spatiotemporal Analyses of Reactions Using Synchrotron Radiation and the Design of Next-Generation Energy Conversion Devices. Electrochemistry, 2015, 83, 695-700.	0.6	1
2918	Structure Analyses of Amorphous MoS ₃ Active Materials in All-solid-state Lithium Batteries. Electrochemistry, 2015, 83, 889-893.	0.6	29
2919	Visualization of Electrochemical Reactions in All-Solid-State Li-Ion Batteries by Spatially Resolved Electron Energy-Loss Spectroscopy and Electron Holography. Materials Transactions, 2015, 56, 617-624.	0.4	11
2920	Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes. Scientific Reports, 2015, 5, 13219.	1.6	14
2921	Carbon Nanohorns Carried Iron Fluoride Nanocomposite with ultrahigh rate lithium ion storage properties. Scientific Reports, 2015, 5, 12154.	1.6	17
2923	Annealing kinetics of electrodeposited lithium dendrites. Journal of Chemical Physics, 2015, 143, 134701.	1.2	42
2924	Simple synthesis of highly catalytic carbon-free MnCo2O4@Ni as an oxygen electrode for rechargeable Li–O2 batteries with long-term stability. Scientific Reports, 2015, 5, 13266.	1.6	44
2925	Enhanced ionic conductivity and optical studies of plasticized (PEO-KCl) solid polymer electrolytes. AIP Conference Proceedings, 2015, , .	0.3	Ο

#	Article	IF	CITATIONS
2926	Energy conversion from aluminium and phosphate rich solution via ZnO activation of aluminium. Materials Chemistry and Physics, 2015, 163, 245-252.	2.0	6
2927	Concentration and mobility of mobile Li+ ions in Li6BaLa2Ta2O12 and Li5La3Ta2O12 garnet lithium ion conductors. Journal of Materials Science: Materials in Electronics, 2015, 26, 8136-8142.	1.1	7
2928	Highly Stable Na _{2/3} (Mn _{0.54} Ni _{0.13} Co _{0.13})O ₂ Cathode Modified by Atomic Layer Deposition for Sodiumâ€ion Batteries. ChemSusChem, 2015, 8, 2537-2543.	3.6	97
2929	Safer Electrolytes for Lithiumâ€lon Batteries: State of the Art and Perspectives. ChemSusChem, 2015, 8, 2154-2175.	3.6	641
2930	Recycled Poly(vinyl alcohol) Sponge for Carbon Encapsulation of Sizeâ€Tunable Tin Dioxide Nanocrystalline Composites. ChemSusChem, 2015, 8, 2084-2092.	3.6	7
2931	Numerical simulation of lithium-ion battery performance considering electrode microstructure. International Journal of Energy Research, 2015, 39, 2062-2074.	2.2	24
2932	Investigation of Lithium Insertion Mechanisms of a Thin-Film Si Electrode by Coupling Time-of-Flight Secondary-Ion Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Focused-Ion-Beam/SEM. ACS Applied Materials & Interfaces, 2015, 7, 27853-27862.	4.0	25
2933	Rational Construction of a Functionalized V ₂ O ₅ Nanosphere/MWCNT Layerâ€byâ€Layer Nanoarchitecture as Cathode for Enhanced Performance of Lithiumâ€Ion Batteries. Advanced Functional Materials, 2015, 25, 5633-5639.	7.8	62
2934	A Highâ€Power Symmetric Naâ€lon Pseudocapacitor. Advanced Functional Materials, 2015, 25, 5778-5785.	7.8	105
2935	Heteroâ€Nanonet Rechargeable Paper Batteries: Toward Ultrahigh Energy Density and Origami Foldability. Advanced Functional Materials, 2015, 25, 6029-6040.	7.8	111
2936	Smart Hybrids of Zn ₂ GeO ₄ Nanoparticles and Ultrathin gâ€C ₃ N ₄ Layers: Synergistic Lithium Storage and Excellent Electrochemical Performance. Advanced Functional Materials, 2015, 25, 6858-6866.	7.8	182
2937	Enabling Prominent Highâ€Rate and Cycle Performances in One Lithium–Sulfur Battery: Designing Permselective Gateways for Li ⁺ Transportation in Holeyâ€CNT/S Cathodes. Advanced Materials, 2015, 27, 3774-3781.	11.1	92
2938	Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials, 2015, 5, 1402115.	10.2	271
2939	Safetyâ€Reinforced Poly(Propylene Carbonate)â€Based Allâ€Solidâ€State Polymer Electrolyte for Ambientâ€Temperature Solid Polymer Lithium Batteries. Advanced Energy Materials, 2015, 5, 1501082.	10.2	532
2944	The Chemistry of Redoxâ€Flow Batteries. Angewandte Chemie - International Edition, 2015, 54, 9776-9809.	7.2	565
2945	Critical Requirements for Rapid Charging of Rechargeable Al―and Liâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 9452-9455.	7.2	59
2946	Highâ€Capacity NiO–(Mesocarbon Microbeads) Conversion Anode for Lithiumâ€ion Battery. ChemElectroChem, 2015, 2, 988-994.	1.7	33
2947	Design and Preparation of a Lithiumâ€rich Layered Oxide Cathode with a Mgâ€Concentrationâ€Gradient Shell for Improved Rate Capability. ChemElectroChem, 2015, 2, 1346-1354.	1.7	17

#	Article	IF	CITATIONS
2948	Rechargeable Zn/PEDOT Battery with an Imidazoliumâ€Based Ionic Liquid as the Electrolyte. ChemElectroChem, 2015, 2, 2071-2078.	1.7	41
2949	A Facile Moltenâ€Salt Route for Largeâ€Scale Synthesis of NiFe 2 O 4 Nanoplates with Enhanced Lithium Storage Capability. Chemistry - A European Journal, 2015, 21, 14140-14145.	1.7	34
2950	A Superior Na ₃ V ₂ (PO ₄) ₃ â€Based Nanocomposite Enhanced by Both Nâ€Doped Coating Carbon and Graphene as the Cathode for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2015, 21, 17371-17378.	1.7	163
2951	Low-Voltage FIB/SEM Tomography for 3D Microstructure Evolution of LiFePO ₄ /C Electrode. ECS Transactions, 2015, 69, 71-80.	0.3	8
2952	New Insights into Improving Rate Performance of Lithiumâ€Rich Cathode Material. Advanced Materials, 2015, 27, 3915-3920.	11.1	185
2953	Sulfur Atoms Bridging Fewâ€Layered MoS ₂ with Sâ€Doped Graphene Enable Highly Robust Anode for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1501106.	10.2	165
2954	Na ₃ PSe ₄ : A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity. Advanced Energy Materials, 2015, 5, 1501294.	10.2	207
2958	Antimonyâ€based Intermetallic Alloy Anodes for Highâ€Performance Sodiumâ€lon Batteries: Effect of Additives. Bulletin of the Korean Chemical Society, 2015, 36, 1625-1630.	1.0	10
2959	Reconstruction of Pyrolyzed Bacterial Cellulose (PBC)â€Based Threeâ€Dimensional Conductive Network for Silicon Lithium Battery Anodes. ChemElectroChem, 2015, 2, 1238-1242.	1.7	7
2960	A Selfâ€Standing and Flexible Electrode of Yolk–Shell CoS ₂ Spheres Encapsulated with Nitrogenâ€Doped Graphene for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2015, 21, 4359-4367.	1.7	128
2961	Meltâ€Polymerization of TEMPO Methacrylates with Nano Carbons Enables Superior Battery Materials. ChemSusChem, 2015, 8, 1692-1696.	3.6	59
2962	Effects of cell construction parameters on the performance of lithium/sulfur cells. AICHE Journal, 2015, 61, 2749-2756.	1.8	6
2963	Iron Carbide Nanoparticles Encapsulated in Mesoporous Feâ€Nâ€Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie, 2015, 127, 8297-8301.	1.6	142
2964	Softâ€Templating Synthesis of <i>N</i> â€Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2015, 10, 1546-1553.	1.7	57
2965	A Solvate Ionic Liquid as the Anolyte for Aqueous Rechargeable Li–O ₂ Batteries. ChemElectroChem, 2015, 2, 1144-1151.	1.7	28
2966	Optimisation of Potential Boundaries with Dynamic Electrochemical Impedance Spectroscopy for an Anodic Half-Cell Based on Organic-Inorganic Hybrid Electrolytes. ChemElectroChem, 2015, 2, 1913-1916.	1.7	11
2967	Mesoporous Carbon Nanofibers Embedded with MoS ₂ Nanocrystals for Extraordinary Liâ€lon Storage. Chemistry - A European Journal, 2015, 21, 18248-18257.	1.7	25
2968	AlF ₃ Surfaceâ€Coated Li[Li _{0.2} Ni _{0.17} Co _{0.07} Mn _{0.56}]O ₂ Nanoparticles with Superior Electrochemical Performance for Lithiumâ€Ion Batteries. ChemSusChem, 2015. 8. 2544-2550.	3.6	51

ARTICLE IF CITATIONS Scalable Preparation of Ternary Hierarchical Silicon Oxide–Nickel–Graphite Composites for 2969 3.6 40 Lithiumâ€Ion Batteries. ChemŚusChem, 2015, 8, 4073-4080. Dual Doping: An Effective Method to Enhance the Electrochemical Properties of Li₁₀GeP₂S₁₂â€Based Solid Electrolytes. Journal of the American 2970 1.9 Ceramic Society, 2015, 98, 3831-3835. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the 2971 1.0 47 Metal and its Position on the Periodic Table. ChemPhysChem, 2015, 16, 3527-3531. A Rigid Naphthalenediimide Triangle for Organic Rechargeable Lithiumâ€Ion Batteries. Advanced 11.1 145 Materials, 2015, 27, 2907-2912. Storage Capacity and Cycling Stability in Ge Anodes: Relationship of Anode Structure and Cycling Rate. 2973 10.2 51 Advanced Energy Materials, 2015, 5, 1500599. Miniaturized Supercapacitors: Focused Ion Beam Reduced Graphene Oxide Supercapacitors with Enhanced Performance Metrics. Advanced Energy Materials, 2015, 5, 1500665. 2974 10.2 Sandwich‧tructured Graphene–Nickel Silicate–Nickel Ternary Composites as Superior Anode 2975 1.7 32 Materials for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2015, 21, 9014-9017. Monodisperse Sandwichâ€Like Coupled Quasiâ€Graphene Sheets Encapsulating Ni₂P 2976 1.7 Nanoparticles for Enhanced Lithiuma€Ion Batteries. Chemistry - A European Journal, 2015, 21, 9229-9235. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Singleâ€Layer 2977 10.2 72 Graphene. Advanced Energy Materials, 2015, 5, 1500646. Threeâ€Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction. Advanced Energy 10.2 168 Materials, 2015, 5, 1500936. Novel K₃V₂(PO₄)₃/C Bundled Nanowires as Superior Sodiumâ€Ion Battery Electrode with Ultrahigh Cycling Stability. Advanced Energy Materials, 2015, 5, 2979 10.2 150 1500716. Superlattice Crystals–Mimic, Flexible/Functional Ceramic Membranes: Beyond Polymeric Battery 2980 10.2 Separators. Advanced Energy Materials, 2015, 5, 1500954. Multiphase LiNi_{0.33}Mn_{0.54}Co_{0.13}O₂ Cathode Material 2981 1.7 16 with High Capacity Retention for Liâ€Ion Batteries. ChemElectroChem, 2015, 2, 1957-1965. Highâ€Performance Olivine for Lithium Batteries: Effects of Ni/Co Doping on the Properties of LiFe<i>_α</i>Ni<i>_β</i>Co<i>_γ</i>PO₄ Cathodes. Advanced 7.8 2982 29 Functional Materials, 2015, 25, 4032-4037. Faceâ€toâ€Face Contact and Openâ€Void Coinvolved Si/C Nanohybrids Lithiumâ€Ion Battery Anodes with 2983 7.8 85 Extremely Long Cycle Life. Advanced Functional Materials, 2015, 25, 5395-5401. Advanced Grapheneâ€Based Binderâ€Free Electrodes for Highâ€Performance Energy Storage. Advanced 2984 11.1 153 Materials, 2015, 27, 5264-5279. Controllable Synthesis of Mesoporous Peapodâ€like Co₃O₄@Carbon Nanotube 2985 1.6 42 Arrays for Highâ€Performance Lithiumâ€Ion Batteries. Angewandte Chemie, 2015, 127, 7166-7170. Conducting Polymer Paperâ€Based Cathodes for Highâ€Arealâ€Capacity Lithium–Organic Batteries. Energy 1.8 Technology, 2015, 3, 563-569.

#	Article	IF	CITATIONS
2987	Direct Synthesis of Phosphorusâ€Doped Mesoporous Carbon Materials for Efficient Electrocatalytic Oxygen Reduction. ChemCatChem, 2015, 7, 2903-2909.	1.8	65
2988	Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 982-987.	1.7	46
2989	A Facile Synthesis of High‣urfaceâ€Area Sulfur–Carbon Composites for Li/S Batteries. Chemistry - A European Journal, 2015, 21, 10061-10069.	1.7	20
2990	Fabrication of Porous Nitrogenâ€Đoped Carbon Materials as Anodes for Highâ€Performance Lithium Ion Batteries. Chinese Journal of Chemistry, 2015, 33, 1293-1302.	2.6	21
2991	Allâ€Solidâ€State Lithiumâ€Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. ChemSusChem, 2015, 8, 3039-3043.	3.6	121
2992	Anthraquinoneâ€Based Polymer as Cathode in Rechargeable Magnesium Batteries. ChemSusChem, 2015, 8, 4128-4132.	3.6	137
2993	3D Wovenâ€Like Carbon Micropattern Decorated with Silicon Nanoparticles for Use in Lithiumâ€lon Batteries. ChemSusChem, 2015, 8, 3414-3418.	3.6	8
2994	Solid–Electrolyte Interphase Evolution of Carbonâ€Coated Silicon Nanoparticles for Lithiumâ€lon Batteries Monitored by Transmission Electron Microscopy and Impedance Spectroscopy. Energy Technology, 2015, 3, 699-708.	1.8	19
2995	Mechanistic Insight into the Stability of HfO ₂ oated MoS ₂ Nanosheet Anodes for Sodium Ion Batteries. Small, 2015, 11, 4341-4350.	5.2	78
2996	Probing Operating Electrochemical Interfaces by Photons and Neutrons. ChemElectroChem, 2015, 2, 1427-1445.	1.7	51
2997	2D Monolayer MoS ₂ –Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage. Advanced Materials, 2015, 27, 3687-3695.	11.1	504
2998	Fabrication of Highâ€Power Liâ€lon Hybrid Supercapacitors by Enhancing the Exterior Surface Charge Storage. Advanced Energy Materials, 2015, 5, 1500550.	10.2	203
2999	A Novel High Capacity Positive Electrode Material with Tunnelâ€Type Structure for Aqueous Sodiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1501005.	10.2	161
3000	Feâ€Based Tunnelâ€Type Na _{0.61} [Mn _{0.27} Fe _{0.34} Ti _{0.39}]O ₂ Designed by a New Strategy as a Cathode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1501156.	10.2	122
3001	Improving the Electrochemical Performance of the Li ₄ Ti ₅ O ₁₂ Electrode in a Rechargeable Magnesium Battery by Lithium–Magnesium Coâ€Intercalation. Angewandte Chemie - International Edition, 2015, 54, 5757-5761.	7.2	156
3002	Iron Carbide Nanoparticles Encapsulated in Mesoporous Feâ€Nâ€Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 8179-8183.	7.2	544
3003	Design of Bi-Tortuous, Anisotropic Graphite Anodes for Fast Ion-Transport in Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1415-A1423.	1.3	63
3004	Economical approach for sizing a battery in plug-in hybrid electric vehicles considering statistical user behaviour and power demand for climatisation. International Journal of Electric and Hybrid Vehicles, 2015, 7, 62.	0.2	2

#	Article	IF	CITATIONS
3006	Emerging Analysis on the Preparation and Application of Graphene by Bibliometry. Journal of Material Science & Engineering, 2015, 04, .	0.2	1
3007	First-Principles Investigation of Adsorption and Diffusion of Ions on Pristine, Defective and B-doped Graphene. Materials, 2015, 8, 6163-6178.	1.3	42
3008	High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum. Membranes, 2015, 5, 632-645.	1.4	30
3009	Redox Species of Redox Flow Batteries: A Review. Molecules, 2015, 20, 20499-20517.	1.7	167
3010	Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage. Nanomaterials, 2015, 5, 1610-1619.	1.9	10
3011	Direct Growth of Bismuth Film as Anode for Aqueous Rechargeable Batteries in LiOH, NaOH and KOH Electrolytes. Nanomaterials, 2015, 5, 1756-1765.	1.9	37
3012	Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery. Nanomaterials, 2015, 5, 2348-2358.	1.9	20
3013	Analysis of Ageing Effect on Li-Polymer Batteries. Scientific World Journal, The, 2015, 2015, 1-8.	0.8	46
3014	Enhancement of Electrochemical Stability about Silicon/Carbon Composite Anode Materials for Lithium Ion Batteries. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	5
3015	Synthesis of LiFePO ₄ /Graphene Nanocomposite and Its Electrochemical Properties as Cathode Material for Li-Ion Batteries. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	3
3016	EG-Assisted Synthesis and Electrochemical Performance of Ultrathin Carbon-Coated LiMnPO ₄ Nanoplates as Cathodes in Lithium Ion Batteries. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	1
3017	Characterization of Trapped Charge in Ge/LixGe Core/Shell Structure during Lithiation using Off-axis Electron Holography. Microscopy and Microanalysis, 2015, 21, 1397-1398.	0.2	0
3019	Applications of Mesoporous Ordered Semiconductor Materials $\hat{a} \in$ "Case Study of TiO2. , 0, , .		5
3020	In situ sodium chloride template synthesis of cobalt oxide hollow octahedra for lithium-ion batteries. RSC Advances, 2015, 5, 23326-23330.	1.7	5
3021	Three-dimensional porous nickel supported Sn–O–C composite thin film as anode material for lithium-ion batteries. RSC Advances, 2015, 5, 31275-31281.	1.7	8
3022	Firework-shaped TiO ₂ microspheres embedded with few-layer MoS ₂ as an anode material for excellent performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6392-6401.	5.2	104
3023	Space-confinement-induced synthesis of hierarchically nanoporous carbon nanowires for the enhanced electrochemical reduction of oxygen. Journal of Materials Chemistry A, 2015, 3, 7093-7099.	5.2	20
3024	A review of cathode materials and structures for rechargeable lithium–air batteries. Energy and Environmental Science, 2015, 8, 2144-2198.	15.6	415

#	Article	IF	Citations
	Template synthesis of hollow MoS ₂ –carbon nanocomposites using microporous organic		
3025	polymers and their lithium storage properties. Nanoscale, 2015, 7, 11280-11285.	2.8	38
3026	Highly conductive, twistable and bendable polypyrrole–carbon nanotube fiber for efficient supercapacitor electrodes. RSC Advances, 2015, 5, 22015-22021.	1.7	63
3027	Enhanced lithium storage property of Na-doped Li2Na2Ti6O14 anode materials for secondary lithium-ion batteries. RSC Advances, 2015, 5, 41999-42008.	1.7	9
3028	Amorphous carbon framework stabilized SnO ₂ porous nanowires as high performance Li-ion battery anode materials. RSC Advances, 2015, 5, 49926-49932.	1.7	33
3029	A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na _{0.6} Ni _{0.22} Fe _{0.11} Mn _{0.66} O ₂ cathode. RSC Advances, 2015, 5, 48928-48934.	1.7	59
3030	Black titanium oxide nanoarray electrodes for high rate Li-ion microbatteries. Journal of Materials Chemistry A, 2015, 3, 11183-11188.	5.2	77
3031	Hollow Ball-in-Ball Co _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ Nanostructures: High-Performance Anode Materials for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 11063-11068.	4.0	34
3032	Understanding the Effect of Different Polymeric Surfactants on Enhancing the Silicon/Reduced Graphene Oxide Anode Performance. Journal of Physical Chemistry C, 2015, 119, 5848-5854.	1.5	83
3033	Graphene-based integrated electrodes for flexible lithium ion batteries. 2D Materials, 2015, 2, 024004.	2.0	44
3034	Femtosecond laser patterning of lithium-ion battery separator materials: impact on liquid electrolyte wetting and cell performance. Proceedings of SPIE, 2015, , .	0.8	3
3035	Screening of Novel Li–Air Battery Catalyst Materials by a Thin Film Combinatorial Materials Approach. ACS Combinatorial Science, 2015, 17, 355-364.	3.8	6
3036	Enhancing sodium-ion battery performance with interlayer-expanded MoS2–PEO nanocomposites. Nano Energy, 2015, 15, 453-461.	8.2	269
3037	Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum. Journal of Power Sources, 2015, 293, 33-41.	4.0	29
3038	Synthesis of ultralong MnO/C coaxial nanowires as freestanding anodes for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 13699-13705.	5.2	133
3039	Correlations between Electrochemical Data and Results from Post-Mortem Analysis of Aged Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1500-A1505.	1.3	37
3040	Nonaqueous redox-flow batteries: features, challenges, and prospects. Current Opinion in Chemical Engineering, 2015, 8, 105-113.	3.8	71
3041	Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials. Science and Technology of Advanced Materials, 2015, 16, 015006.	2.8	10
3042	The controlled synthesis and improved electrochemical cyclability of Mn-doped α-Fe ₂ O ₃ hollow porous quadrangular prisms as lithium-ion battery anodes. RSC Advances, 2015, 5, 7604-7610.	1.7	16

#	Article	IF	CITATIONS
3043	Firmly bonded graphene–silicon nanocomposites as high-performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 46173-46180.	1.7	22
3044	First-Principles Study on the Thermal Stability of LiNiO ₂ Materials Coated by Amorphous Al ₂ O ₃ with Atomic Layer Thickness. ACS Applied Materials & Interfaces, 2015, 7, 11599-11603.	4.0	47
3045	Improved capacity and stability of integrated Li and Mn rich layered-spinel Li _{1.17} Ni _{0.25} Mn _{1.08} O ₃ cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14598-14608.	5.2	29
3046	Synthesis of LiMnPO ₄ /C with superior performance as Li-ion battery cathodes by a two-stage microwave solvothermal process. Journal of Materials Chemistry A, 2015, 3, 13920-13925.	5.2	27
3047	Enhancement of electrochemical performances for LiFePO4/C with 3D-grape-bunch structure and selection of suitable equivalent circuit for fitting EIS results. Journal of Power Sources, 2015, 291, 75-84.	4.0	35
3048	Integration of network-like porous NiMoO ₄ nanoarchitectures assembled with ultrathin mesoporous nanosheets on three-dimensional graphene foam for highly reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 13691-13698.	5.2	72
3049	At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. Journal of Materials Chemistry A, 2015, 3, 13994-14000.	5.2	101
3050	New Cr ₂ Mo ₃ O ₁₂ -based anodes: morphology tuning and Li-storage properties. Journal of Materials Chemistry A, 2015, 3, 15030-15038.	5.2	14
3051	High-performance Si-based 3D Cu nanostructured electrode assembly for rechargeable lithium batteries. Journal of Materials Chemistry A, 2015, 3, 11912-11919.	5.2	36
3052	One-pot fabrication of Co3O4 microspheres via hydrothermal method at low temperature for high capacity supercapacitor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 199, 15-21.	1.7	29
3053	A facile approach of introducing DMS into LiODFB–PYR ₁₄ TFSI electrolyte for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6366-6372.	5.2	18
3054	A high-capacity Li-ion/Li–oxygen hybrid cathode. Journal of Materials Chemistry A, 2015, 3, 13628-13631.	5.2	6
3055	Fabrication of high power LiNi0.5Mn1.5O4 battery cathodes by nanostructuring of electrode materials. RSC Advances, 2015, 5, 50433-50439.	1.7	12
3056	Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ ⁶ Li/ ⁷ Li NMR and SEM. Journal of Physical Chemistry C, 2015, 119, 16443-16451.	1.5	130
3057	Unconventional poly(ionic liquid)s combining motionless main chain 1,2,3-triazolium cations and high ionic conductivity. Polymer Chemistry, 2015, 6, 4299-4308.	1.9	44
3058	Structure of Spontaneously Formed Solid-Electrolyte Interphase on Lithiated Graphite Determined Using Small-Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 9816-9823.	1.5	28
3059	Structure, phase separation and Li dynamics in sol–gel-derived Li1+xAlxGe2â^'x(PO4)3. Solid State Ionics, 2015, 276, 47-55.	1.3	41
3060	Synthesis of graphene@Fe ₃ O ₄ @C core–shell nanosheets for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 7036-7043.	5.2	93

#	Article	IF	CITATIONS
3061	Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon, 2015, 92, 362-381.	5.4	132
3062	Porous MnFe ₂ O ₄ microrods as advanced anodes for Li-ion batteries with long cycle lifespan. Journal of Materials Chemistry A, 2015, 3, 9550-9555.	5.2	49
3063	A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries. Journal of Power Sources, 2015, 283, 300-304.	4.0	41
3064	Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors. Journal of Physical Chemistry Letters, 2015, 6, 2305-2309.	2.1	358
3065	Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li _{<i>x</i>} FePO ₄ . Nano Letters, 2015, 15, 4282-4288.	4.5	99
3066	Synthesizing Porous NaTi ₂ (PO ₄) ₃ Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle-Life Sodium Electrodes. ACS Nano, 2015, 9, 6610-6618.	7.3	260
3067	Multifunctional semi-interpenetrating polymer network-nanoencapsulated cathode materials for high-performance lithium-ion batteries. Scientific Reports, 2014, 4, 4602.	1.6	21
3068	Mitigating mechanical failure of crystalline silicon electrodes for lithium batteries by morphological design. Physical Chemistry Chemical Physics, 2015, 17, 17718-17728.	1.3	25
3069	Hydroxyl-functionalized poly(trimethylene carbonate) electrolytes for 3D-electrode configurations. Polymer Chemistry, 2015, 6, 4766-4774.	1.9	22
3070	Sandwich nanoarchitecture of LiV ₃ O ₈ /graphene multilayer nanomembranes via layer-by-layer self-assembly for long-cycle-life lithium-ion battery cathodes. Journal of Materials Chemistry A, 2015, 3, 13717-13723.	5.2	16
3071	Nanogravel structured NiO/Ni foam as electrode for high-performance lithium-ion batteries. Ionics, 2015, 21, 2709-2723.	1.2	23
3072	Development of Pyridine-Boron Trifluoride Electrolyte Additives for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1186-A1195.	1.3	56
3073	High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy, 2015, 15, 662-669.	8.2	63
3074	Enhanced kinetic behaviors of LiMn0.5Fe0.5PO4/C cathode material by Fe substitution and carbon coating. Journal of Solid State Electrochemistry, 2015, 19, 2943-2950.	1.2	17
3075	Carbon-coated MoO2 dispersed in three-dimensional graphene aerogel for lithium-ion battery. Electrochimica Acta, 2015, 174, 8-14.	2.6	57
3076	Synthesis of nanostructured Ni3S2 with different morphologies asÂnegative electrode materials for lithium ion batteries. Journal of Power Sources, 2015, 293, 706-711.	4.0	51
3077	Porous hollow α-Fe ₂ O ₃ @TiO ₂ core–shell nanospheres for superior lithium/sodium storage capability. Journal of Materials Chemistry A, 2015, 3, 13807-13818.	5.2	82
3078	Phase-pure β-NiMoO4 yolk-shell spheres for high-performance anode materials in lithium-ion batteries. Electrochimica Acta, 2015, 174, 102-110.	2.6	52

#	Article	IF	CITATIONS
3079	Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries. RSC Advances, 2015, 5, 55136-55142.	1.7	45
3080	Delithiation/Lithiation Behavior of LiNi _{0.5} Mn _{1.5} O ₄ Studied by In Situ and Ex Situ ^{6,7} Li NMR Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 13472-13480.	1.5	32
3081	Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi2(PO4)3/C as a superior anode. Scientific Reports, 2015, 5, 10733.	1.6	46
3082	Improving Cycling Performance of LiMn2O4 Battery by Adding an Ester-Functionalized Ionic Liquid to Electrolyte. Australian Journal of Chemistry, 2015, 68, 1911.	0.5	6
3083	Sol–gel-assisted, fast and low-temperature synthesis of La-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. RSC Advances, 2015, 5, 17924-17930.	1.7	24
3084	Free standing SnS ₂ nanosheets on 3D graphene foam: an outstanding hybrid nanostructure anode for Li-ion batteries. 2D Materials, 2015, 2, 024010.	2.0	31
3085	Magnesium-Doped Li _{1.2} [Co _{0.13} Ni _{0.13} Mn _{0.54}]O ₂ for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability. ACS Applied Materials & Interfaces, 2015, 7, 13014-13021.	4.0	115
3086	NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation. Electrochimica Acta, 2015, 174, 246-253.	2.6	90
3087	Supply chain design in e-mobility supply chain networks. , 2015, , 383-408.		0
3088	Room Temperature Ionic Liquidâ€based Electrolytes as an Alternative to Carbonateâ€based Electrolytes. Israel Journal of Chemistry, 2015, 55, 586-598.	1.0	45
3089	Graphene Oxide. , 2015, , .		91
3090	Studies on the Working Mode of Hyperbranched New Materials STOBA in Lithium-ion Battery Cathode Materials. Lecture Notes in Electrical Engineering, 2015, , 81-88.	0.3	1
3091	Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Physical Chemistry Chemical Physics, 2015, 17, 8706-8713.	1.3	123
3092	Mesoporous crystalline–amorphous oxide nanocomposite network for high-performance lithium storage. Chemical Communications, 2015, 51, 12056-12059.	2.2	7
3093	GO/rGO as Advanced Materials for Energy Storage and Conversion. , 2015, , 97-127.		0
3094	Pristine hollow microspheres of Mn ₂ O ₃ as a potential anode for lithium-ion batteries. CrystEngComm, 2015, 17, 5038-5045.	1.3	32
3095	Fabrication of electrospun ZnMn 2 O 4 nanofibers as anode material for lithium-ion batteries. Electrochimica Acta, 2015, 177, 283-289.	2.6	44
3096	Ion- and Electron Transport in Pyrrole/Quinone Conducting Redox Polymers Investigated by In Situ Conductivity Methods. Electrochimica Acta, 2015, 179, 336-342.	2.6	37

#	Article	IF	CITATIONS
3097	Synthesis of La-doped Li2MnSiO4 nano-particle with high-capacity via polyol-assisted hydrothermal method. Electrochimica Acta, 2015, 166, 40-46.	2.6	17
3098	Synthesis and characterization of lithium-salt complexes with difluoroalkoxyborates for application as lithium electrolytes. Electrochimica Acta, 2015, 175, 104-112.	2.6	5
3099	A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries. Journal of Power Sources, 2015, 284, 103-108.	4.0	211
3100	Synthesis of Li 2 FeSiO 4 /carbon nano-composites by impregnation method. Journal of Power Sources, 2015, 284, 574-581.	4.0	20
3101	Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method. Journal of Power Sources, 2015, 285, 161-168.	4.0	75
3102	Edge dislocation surface modification: A new and efficient strategy for realizing outstanding lithium storage performance. Nano Energy, 2015, 15, 558-566.	8.2	42
3103	Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries. Ultrasonics Sonochemistry, 2015, 26, 332-339.	3.8	23
3104	Composites of MnO2 nanocrystals and partially graphitized hierarchically porous carbon spheres with improved rate capability for high-performance supercapacitors. Carbon, 2015, 93, 258-265.	5.4	56
3105	The origins and mechanism of phase transformation in bulk Li ₂ MnO ₃ : first-principles calculations and experimental studies. Journal of Materials Chemistry A, 2015, 3, 7066-7076.	5.2	91
3106	Facile Hydrothermal Synthesis of VS ₂ /Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2015, 7, 13044-13052.	4.0	210
3107	Facile synthesis of porous Li-rich layered Li[Li _{0.2} Mn _{0.534} Ni _{0.133} Co _{0.133}]O ₂ as high-performance cathode materials for Li-ion batteries. RSC Advances, 2015, 5, 30507-30513.	1.7	20
3108	Asynchronous stoichiometric response in lithium iron phosphate batteries. Journal of Materials Research, 2015, 30, 417-423.	1.2	8
3109	A Polyborate Coated Cellulose Composite Separator for High Performance Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A834-A838.	1.3	32
3110	Morphological Influence in Lithium-Ion Battery 3D Electrode Architectures. Journal of the Electrochemical Society, 2015, 162, A991-A1002.	1.3	17
3111	Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage. Journal of Materials Chemistry C, 2015, 3, 6109-6143.	2.7	254
3112	Thermal behavior analyses of stacked prismatic LiCoO 2 lithium-ion batteries during oven tests. International Journal of Heat and Mass Transfer, 2015, 88, 411-423.	2.5	36
3113	High-performance silicon-based multicomponent battery anodes produced via synergistic coupling of multifunctional coating layers. Energy and Environmental Science, 2015, 8, 2075-2084.	15.6	146
3114	Enhanced Li+ storage properties of few-layered MoS2-C composite microspheres embedded with Si nanopowder. Nano Research, 2015, 8, 2492-2502.	5.8	27

#	Article	IF	CITATIONS
3115	Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes. ACS Nano, 2015, 9, 6576-6586.	7.3	92
3116	FeS ₂ microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. Journal of Materials Chemistry A, 2015, 3, 12898-12904.	5.2	111
3117	Microwave-assisted optimization of the manganese redox states for enhanced capacity and capacity retention of LiAl _x Mn _{2â^'x} O ₄ (x = 0 and 0.3) spinel materials. RSC Advances, 2015, 5, 32256-32262.	1.7	31
3118	High capacity nanocomposite Fe3O4/Fe anodes for Li-ion batteries. Journal of Power Sources, 2015, 291, 102-107.	4.0	37
3119	Inorganic–Organic Hybrid Ionic Liquid Electrolytes for Na Secondary Batteries. Journal of the Electrochemical Society, 2015, 162, A1409-A1414.	1.3	30
3120	Anisotropic ion transport in nanostructured solid polymer electrolytes. RSC Advances, 2015, 5, 48793-48810.	1.7	59
3121	Pre-heat treatment of carbonate precursor firstly in nitrogen and then oxygen atmospheres: A new procedure to improve tap density of high-performance cathode material Li1.167(Ni0.139Co0.139Mn0.556)O2 for lithium ion batteries. Journal of Power Sources, 2015, 292, 58-65.	4.0	41
3122	Porous carbon/CeO2composites for Li-ion battery application. , 2015, , .		1
3123	Engineered Electronic Contacts for Composite Electrodes in Li Batteries Using Thiophene-Based Molecular Junctions. Chemistry of Materials, 2015, 27, 4057-4065.	3.2	11
3124	High-voltage performance of LiNi1/3Co1/3Mn1/3O2/graphite batteries with di(methylsulfonyl) methane as a new sulfone-based electrolyte additive. Journal of Power Sources, 2015, 293, 196-202.	4.0	47
3125	Preparation of high performance lithium-ion batteries with a separator–cathode assembly. RSC Advances, 2015, 5, 34184-34190.	1.7	20
3126	A study of the structure–activity relationship of the electrochemical performance and Li/Ni mixing of lithium-rich materials by neutron diffraction. RSC Advances, 2015, 5, 31238-31244.	1.7	31
3127	General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nature Communications, 2015, 6, 7402.	5.8	370
3128	Self-templating Scheme for the Synthesis of Nanostructured Transition-Metal Chalcogenide Electrodes for Capacitive Energy Storage. Chemistry of Materials, 2015, 27, 4661-4668.	3.2	121
3129	One-step hydrothermal synthesis and characterization of LiNi0.5Mn0.5O2nanoparticles. Materials Technology, 2015, 30, A176-A180.	1.5	2
3130	Estimation and control of battery electrochemistry models: A tutorial. , 2015, , .		24
3131	Poly(benzoquinonyl sulfide) as a Highâ€Energy Organic Cathode for Rechargeable Li and Na Batteries. Advanced Science, 2015, 2, 1500124.	5.6	267
3132	Graphitic Carbon Nitride/Graphene Hybrids as New Active Materials for Energy Conversion and Storage. ChemNanoMat, 2015, 1, 298-318.	1.5	117

#	Article	IF	CITATIONS
3133	<scp>FeF₃</scp> Nanoparticles Embedded in Activated Carbon Foam (<scp>ACF</scp>) as a Cathode Material with Enhanced Electrochemical Performance for Lithium Ion Batteries. Bulletin of the Korean Chemical Society, 2015, 36, 1878-1884.	1.0	11
3134	Encapsulating Tin Dioxide@Porous Carbon in Carbon Tubes: A Fiberâ€inâ€Tube Hierarchical Nanostructure for Superior Capacity and Longâ€Life Lithium Storage. Particle and Particle Systems Characterization, 2015, 32, 952-961.	1.2	17
3135	DIP-coating process to fabricate SnO2/C nanotube networks as binder-free anodes for lithium ion batteries. Materials Letters, 2015, 158, 244-247.	1.3	6
3136	A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nature Communications, 2015, 6, 10101.	5.8	386
3137	Multiple cell lithium-ion battery system electric fault online diagnostics. , 2015, , .		16
3138	A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries. Nanoscale Research Letters, 2015, 10, 450.	3.1	51
3139	Search for Li-electrochemical activity and Li-ion conductivity among lithium bismuth oxides. Solid State Ionics, 2015, 283, 68-74.	1.3	11
3140	A Versatile Coating Strategy to Highly Improve the Electrochemical Properties of Layered Oxide LiMO ₂ (M = Ni _{0.5} Mn _{0.5} and) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 27096-27105.	50,462 Td 4.0	l (Ŋi ₁
3141	Lithium chromium pyrophosphate as an insertion material for Li-ion batteries. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 661-667.	0.5	4
3142	An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries. RSC Advances, 2015, 5, 101115-101120.	1.7	56
3143	High-Rate LiTi ₂ (PO ₄) ₃ @N–C Composite via Bi-nitrogen Sources Doping. ACS Applied Materials & Interfaces, 2015, 7, 28337-28345.	4.0	77
3145	Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability. ACS Applied Materials & Interfaces, 2015, 7, 27486-27493.	4.0	53
3146	Anode properties of Al2O3-added MgH2 for all-solid-state lithium-ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 3639-3644.	1.2	19
3147	Synthesis and Redox Properties of Thiophene Terephthalate Building Blocks for Low-Potential Conducting Redox Polymers. Journal of Physical Chemistry C, 2015, 119, 27247-27254.	1.5	11
3148	High-Performance Electrospun Poly(vinylidene fluoride)/Poly(propylene carbonate) Gel Polymer Electrolyte for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 27882-27891.	1.5	88
3149	Investigating the Mg–Si Binary System via Combinatorial Sputter Deposition As High Energy Density Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20124-20133.	4.0	40
3150	Hierarchical 3D ZnIn ₂ S ₄ /graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 31850-31861.	1.3	57
3151	Interconnected mesoporous NiO sheets deposited onto TiO ₂ nanosheet arrays as binder-free anode materials with enhanced performance for lithium ion batteries. RSC Advances, 2015, 5, 101247-101256.	1.7	15

#	Article	IF	CITATIONS
3152	Dynamical observation of lithium insertion/extraction reaction during charge–discharge processes in Li-ion batteries by <i>in situ</i> spatially resolved electron energy-loss spectroscopy. Microscopy (Oxford, England), 2015, 64, 401-408.	0.7	9
3153	One pot synthesis of in situ Au decorated LiNiPO4 nanoplates for Li-ion batteries. Applied Materials Today, 2015, 1, 95-99.	2.3	9
3154	Microwave-assisted synthesis of Co3O4–graphene sheet-on-sheet nanocomposites and electrochemical performances for lithium ion batteries. Materials Research Bulletin, 2015, 72, 43-49.	2.7	30
3155	Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model. Journal of Power Sources, 2015, 300, 376-385.	4.0	235
3156	Plasma-Assisted Sulfur Doping of LiMn ₂ O ₄ for High-Performance Lithium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 28776-28782.	1.5	52
3157	Homogeneous precipitation synthesis and electrochemical performance of LiFePO ₄ /CNTs/C composites as advanced cathode materials for lithium ion batteries. RSC Advances, 2015, 5, 107293-107298.	1.7	8
3158	Adaption of kinetics to solid electrolyte interphase layer formation and application to electrolyte-soluble reaction products. Journal of Power Sources, 2015, 299, 451-459.	4.0	5
3159	Block-shaped pure and doped Li ₄ Ti ₅ O ₁₂ containing a high content of a Li ₂ TiO ₃ dual phase: an anode with excellent cycle life for high rate performance lithium-ion batteries. RSC Advances, 2015, 5, 108058-108066.	1.7	17
3160	Improvement of the overall performances of LiMn2O4 via surface-modification by polypyrrole. Materials Research Bulletin, 2015, 71, 91-97.	2.7	31
3161	Titanium-containing complex oxides as anode materials for lithium-ion batteries: a review. Materials Technology, 2015, 30, A192-A202.	1.5	6
3162	Application for Simply Recovered LiCoO ₂ Material as a High-Performance Candidate for Supercapacitor in Aqueous System. ACS Sustainable Chemistry and Engineering, 2015, 3, 2435-2442.	3.2	42
3163	Very fast bulk Li ion diffusivity in crystalline Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ as seen using NMR relaxometry. Physical Chemistry Chemical Physics, 2015, 17, 32115-32121.	1.3	83
3164	Role of Na ⁺ Interstitials and Dopants in Enhancing the Na ⁺ Conductivity of the Cubic Na ₃ PS ₄ Superionic Conductor. Chemistry of Materials, 2015, 27, 8318-8325.	3.2	202
3165	A High Performance Dual Electrolyte Aluminium-air Cell. Energy Procedia, 2015, 75, 1983-1989.	1.8	3
3166	A chemically stable PVD multilayer encapsulation for lithium microbatteries. Journal Physics D: Applied Physics, 2015, 48, 395306.	1.3	8
3167	Nanowire interwoven NiCo ₂ S ₄ nanowall arrays as promising anodes for lithium ion batteries. Materials Technology, 2015, 30, A53-A57.	1.5	56
3168	ZnO activation of aluminum for energy generation in physiological saline buffer. , 2015, , .		0
3169	Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries. SpringerPlus, 2015, 4, 643.	1.2	12

	CITATION RE	PORT	
#	Article	IF	Citations
3170	Surface Reactivity of a Carbonaceous Cathode in a Lithium Triflate/Ether Electrolyte-Based Li–O ₂ Cell. ACS Applied Materials & Interfaces, 2015, 7, 21751-21762.	4.0	31
3171	A soil/Vulcan XC-72 hybrid as a highly-effective catalytic cathode for rechargeable Li–O2batteries. Inorganic Chemistry Frontiers, 2015, 2, 1006-1010.	3.0	9
3172	Structure–property relationships in lithium superionic conductors having a Li ₁₀ GeP ₂ S ₁₂ -type structure. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 727-736.	0.5	46
3173	Preparation and properties of ZnO, MgO and Al ₂ O ₃ coated LiNi _{1/3} Co _{1/3 â^' x} Mn _{1/3} M _x O ₂ (<i>xcathode materials. Materials Technology, 2015, 30, 344-348.</i>	i> â€ ‰=â€	5‰10%)
3174	Designing Novel Sulphate-based Ceramic Materials as Insertion Host Compounds for Secondary Batteries. Transactions of the Indian Ceramic Society, 2015, 74, 191-194.	0.4	7
3175	A feasibility study of an electric–hydraulic hybrid powertrain for passenger vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229, 1894-1906.	1.1	16
3176	Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. Journal of Power Sources, 2015, 300, 525-532.	4.0	152
3177	Preparation and Lithium Storage Performance of NiO/ C@CNT Anode Material. Rare Metal Materials and Engineering, 2015, 44, 2109-2113.	0.8	2
3178	Preisach modelling of lithium-iron-phosphate battery hysteresis. Journal of Energy Storage, 2015, 4, 51-61.	3.9	27
3179	PDE battery model simplification for charging strategy evaluation. , 2015, , .		1
3180	Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Research, 2015, 8, 481-490.	5.8	74
3181	Novel hybrid Si film/carbon nanofibers as anode materials in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1947-1952.	5.2	28
3182	Scribable multi-walled carbon nanotube-silicon nanocomposites: a viable lithium-ion battery system. Nanoscale, 2015, 7, 3504-3510.	2.8	38
3183	Porous layered lithium-rich oxide nanorods: Synthesis and performances as cathode of lithium ion battery. Electrochimica Acta, 2015, 154, 83-93.	2.6	44
3184	Carbon-Coated Anatase TiO ₂ Nanotubes for Li- and Na-Ion Anodes. Journal of the Electrochemical Society, 2015, 162, A3013-A3020.	1.3	80
3185	A stable Li-deficient oxide as high-performance cathode for advanced lithium-ion batteries. Chemical Communications, 2015, 51, 3231-3234.	2.2	17
3186	A Li-rich Layered@Spinel@Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. Journal of Materials Chemistry A, 2015, 3, 3995-4003.	5.2	135
3187	A sodium ion intercalation material: a comparative study of amorphous and crystalline FePO ₄ . Physical Chemistry Chemical Physics, 2015, 17, 4551-4557.	1.3	25

#	Article	IF	CITATIONS
3188	Highâ€Arealâ€Capacity Silicon Electrodes with Lowâ€Cost Silicon Particles Based on Spatial Control of Selfâ€Healing Binder. Advanced Energy Materials, 2015, 5, 1401826.	10.2	207
3189	Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity. Scientific Reports, 2014, 4, 7133.	1.6	51
3190	Porosityâ€Controlled TiNb ₂ O ₇ Microspheres with Partial Nitridation as A Practical Negative Electrode for Highâ€Power Lithiumâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1401945.	10.2	153
3191	Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 2036-2042.	5.2	53
3192	A three-dimensional porous LiFePO ₄ cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy and Environmental Science, 2015, 8, 869-875.	15.6	412
3193	Sandwich-like Cr ₂ O ₃ –graphite intercalation composites as high-stability anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1703-1708.	5.2	45
3194	Electrochemical lithiation performance and characterization of silicon–graphite composites with lithium, sodium, potassium, and ammonium polyacrylate binders. Physical Chemistry Chemical Physics, 2015, 17, 3783-3795.	1.3	72
3195	Unexpected discovery of low-cost maricite NaFePO ₄ as a high-performance electrode for Na-ion batteries. Energy and Environmental Science, 2015, 8, 540-545.	15.6	299
3196	In Situ X-ray Absorption Spectroscopy Study of the Capacity Fading Mechanism in Hybrid Sn ₃ O ₂ (OH) ₂ /Graphite Battery Anode Nanomaterials. Chemistry of Materials, 2015, 27, 574-580.	3.2	16
3197	One-step synthesis of continuous free-standing Carbon Nanotubes-Titanium oxide composite films as anodes for lithium-ion batteries. Electrochimica Acta, 2015, 154, 321-328.	2.6	17
3198	Crystallization and Glass Transition Kinetics of Na ₂ s-P ₂ s ₅ -Based Super-Ionic Glasses. Particulate Science and Technology, 2015, 33, 166-171.	1.1	4
3199	Effect of thermal treatment on the properties of electrospun LiFePO4–carbon nanofiber composite cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 627, 91-100.	2.8	35
3200	A systematic approach to high and stable discharge capacity for scaling up the lithium–sulfur battery. Journal of Power Sources, 2015, 279, 231-237.	4.0	25
3201	Exploration of vanadium benzenedicarboxylate as a cathode for rechargeable lithium batteries. Journal of Power Sources, 2015, 278, 265-273.	4.0	63
3202	A New Oxyfluorinated Titanium Phosphate Anode for A High-Energy Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 1270-1274.	4.0	12
3203	Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 622, 966-972.	2.8	56
3204	Novel Germanium/Polypyrrole Composite for High Power Lithium-ion Batteries. Scientific Reports, 2014, 4, 6095.	1.6	63
3205	In-situ One-step Hydrothermal Synthesis of a Lead Germanate-Graphene Composite as a Novel Anode Material for Lithium-Ion Batteries. Scientific Reports, 2014, 4, 7030.	1.6	16

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
3206	Atomic insight into electrochemical inactivity of lithium chromate (LiCrO2): Irreversible migration of chromium into lithium layers in surface regions. Journal of Power Sources, 2015, 273, 1218-1225.	4.0	45
3207	Importance of nanostructure for reversible Li-insertion into octahedral sites of LiNi0.5Mn1.5O4 and its application towards aqueous Li-ion chemistry. Journal of Power Sources, 2015, 280, 240-245.	4.0	15
3208	Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries. Journal of Power Sources, 2015, 279, 581-592.	4.0	41
3209	A novel NaA-type zeolite-embedded composite separator for lithium-ion battery. Materials Letters, 2015, 145, 177-179.	1.3	23
3210	Graphene/acid assisted facile synthesis of structure-tuned Fe3O4 and graphene composites as anode materials for lithium ion batteries. Carbon, 2015, 86, 310-317.	5.4	61
3211	Hollow nanospheres of mesoporous Co 9 S 8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy, 2015, 12, 528-537.	8.2	303
3212	An Efficient Bi-functional Electrocatalyst Based on Strongly Coupled CoFe 2 O 4 /Carbon Nanotubes Hybrid for Oxygen Reduction and Oxygen Evolution. Electrochimica Acta, 2015, 177, 65-72.	2.6	92
3213	Nitrogen-doped Carbon-coated SnxOy (x = 1 and y = 0 and 2) Nanoparticles for Rechargeable Li-Ion Batteries. Electrochimica Acta, 2015, 161, 269-278.	2.6	22
3214	Carbon-supported SnO2 nanowire arrays with enhanced lithium storage properties. Electrochimica Acta, 2015, 158, 321-326.	2.6	35
3215	Preparation of nanographite sheets supported Si nanoparticles by in situ reduction of fumed SiO 2 with magnesium for lithium ion battery. Journal of Power Sources, 2015, 281, 425-431.	4.0	57
3216	Influence of polymorphism on the electrochemical behavior of M Sb negative electrodes in Li/Na batteries. Journal of Power Sources, 2015, 280, 695-702.	4.0	21
3217	A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode. Electrochimica Acta, 2015, 160, 131-138.	2.6	21
3218	Enhanced electrochemical performance of Si–Cu–Ti thin films by surface covered with Cu 3 Si nanowires. Journal of Power Sources, 2015, 281, 455-460.	4.0	22
3219	New Insight into the Atomic-Scale Bulk and Surface Structure Evolution of Li ₄ Ti ₅ O ₁₂ Anode. Journal of the American Chemical Society, 2019 137, 1581-1586.	5, 6.6	106
3220	Realization of high performance polycarbonate-based Li polymer batteries. Electrochemistry Communications, 2015, 52, 71-74.	2.3	84
3221	Extended π-Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 3124-3130.	6.6	361
3222	Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nature Communications, 2015, 6, 6276.	5.8	187
3223	Mesoporous Carbon Interlayers with Tailored Pore Volume as Polysulfide Reservoir for High-Energy Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 4580-4587.	1.5	120

#	Article	IF	CITATIONS
3224	Evaluating Pristine and Modified SnS ₂ as a Lithium-Ion Battery Anode: A First-Principles Study. ACS Applied Materials & Interfaces, 2015, 7, 4000-4009.	4.0	75
3225	5V-class high-voltage batteries with over-lithiated oxide and a multi-functional additive. Journal of Materials Chemistry A, 2015, 3, 6157-6167.	5.2	51
3226	The effect of K-Ion on the electrochemical performance of spinel LiMn2O4. Electronic Materials Letters, 2015, 11, 138-142.	1.0	6
3227	All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes. Journal of the Electrochemical Society, 2015, 162, A704-A710.	1.3	158
3228	Design of N-graphene-NbOx hybrid nanosheets with sandwich-like structure and electrocatalytic performance towards oxygen reduction reaction. Electrochimica Acta, 2015, 158, 42-48.	2.6	7
3229	"We Create Chemistry for a Sustainable Futureâ€: Chemistry Creates Sustainable Solutions for a Growing World Population. Angewandte Chemie - International Edition, 2015, 54, 3178-3195.	7.2	12
3230	Atomicâ€Scale Structure Evolution in a Quasiâ€Equilibrated Electrochemical Process of Electrode Materials for Rechargeable Batteries. Advanced Materials, 2015, 27, 2134-2149.	11.1	63
3231	Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning. Electrochimica Acta, 2015, 158, 105-112.	2.6	79
3232	A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte. RSC Advances, 2015, 5, 20800-20809.	1.7	61
3233	Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries. Solid State Sciences, 2015, 41, 36-42.	1.5	24
3234	Small Change—Great Effect: Steep Increase of Li Ion Dynamics in Li ₄ Ti ₅ O ₁₂ at the Early Stages of Chemical Li Insertion. Chemistry of Materials, 2015, 27, 1740-1750.	3.2	102
3235	Significant piezoelectric and energy harvesting enhancement of poly(vinylidene fluoride)/polypeptide fiber composites prepared through near-field electrospinning. Journal of Materials Chemistry A, 2015, 3, 6835-6843.	5.2	66
3236	Shell Structure Control of PPy-Modified CuO Composite Nanoleaves for Lithium Batteries with Improved Cyclic Performance. ACS Sustainable Chemistry and Engineering, 2015, 3, 507-517.	3.2	54
3237	Self-Assembly of PEI/SiO ₂ on Polyethylene Separators for Li-Ion Batteries with Enhanced Rate Capability. ACS Applied Materials & Interfaces, 2015, 7, 3314-3322.	4.0	130
3238	Ionic aggregate dissolution and conduction in a plasticized single-ion polymer conductor. Polymer, 2015, 59, 133-143.	1.8	44
3239	Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries. Nano Letters, 2015, 15, 656-661.	4.5	119
3240	Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries. Electrochimica Acta, 2015, 159, 61-65.	2.6	51
3241	Stable Alkali Metal Ion Intercalation Compounds as Optimized Metal Oxide Nanowire Cathodes for Lithium Batteries. Nano Letters, 2015, 15, 2180-2185.	4.5	160

#	Article	IF	Citations
3242	High-rate lithium storage capability of cupric-cobaltous oxalate induced by unavoidable crystal water and functionalized graphene oxide. Journal of Power Sources, 2015, 282, 109-117.	4.0	47
3243	Stable Cycling of Lithium Metal Batteries Using High Transference Number Electrolytes. Advanced Energy Materials, 2015, 5, 1402073.	10.2	314
3244	Lithium-Ion Batteries. Neutron Scattering Applications and Techniques, 2015, , 139-203.	0.2	2
3245	High Performance Zn/LiFePO4 Aqueous Rechargeable Battery for Large Scale Applications. Electrochimica Acta, 2015, 152, 505-511.	2.6	118
3246	Electrochemical behavior of MgO-templated mesoporous carbons in the propylene carbonate solution of sodium hexafluorophosphate. Journal of Applied Electrochemistry, 2015, 45, 273-280.	1.5	6
3247	Synthesis and characterization of LiFePO4 cathode preparation by low temperature method. Physica B: Condensed Matter, 2015, 464, 57-60.	1.3	3
3248	Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. Journal of Power Sources, 2015, 278, 574-581.	4.0	83
3249	Sulfur Cathodes Based on Conductive MXene Nanosheets for Highâ€Performance Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2015, 54, 3907-3911.	7.2	1,006
3250	SnO ₂ nanotube arrays embedded in a carbon layer for high-performance lithium-ion battery applications. New Journal of Chemistry, 2015, 39, 2541-2546.	1.4	9
3251	Fracture of crystalline germanium during electrochemical lithium insertion. Extreme Mechanics Letters, 2015, 2, 15-19.	2.0	51
3252	Small amount of reduce graphene oxide modified Li4Ti5O12 nanoparticles for ultrafast high-power lithium ion battery. Journal of Power Sources, 2015, 278, 693-702.	4.0	89
3253	Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Scientific Reports, 2015, 5, 8225.	1.6	303
3254	SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3â^'<i>δ</i>} Perovskite as a Nextâ€Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2015, 54, 3897-3901.	7.2	400
3255	Paperâ€Based Nâ€Doped Carbon Films for Enhanced Oxygen Evolution Electrocatalysis. Advanced Science, 2015, 2, 1400015.	5.6	67
3256	Two-step synthesis of sulfur/graphene composite cathode for rechargeable lithium sulfur batteries. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 10-15.	0.4	3
3257	A nitrogen-doped graphene/gold nanoparticle/formate dehydrogenase bioanode for high power output membrane-less formic acid/O ₂ biofuel cells. Analyst, The, 2015, 140, 1822-1826.	1.7	39
3258	TiO2 Nanotube Arrays Grafted with MnO2 Nanosheets as High-Performance Anode for Lithium Ion Battery. Electrochimica Acta, 2015, 156, 252-260.	2.6	68
3259	Electrospun titania-based fibers for high areal capacity Li-ion battery anodes. Journal of Power Sources, 2015, 282, 187-193.	4.0	49

# 3260	ARTICLE Improved electrochemical and thermal properties of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode materials by SiO2 coating. Journal of Power Sources, 2015, 282, 45-50.	IF 4.0	CITATIONS 270
3261	Looking beyond single electron extraction in cathode materials for lithium ion batteries. Journal of Power Sources, 2015, 279, 563-566.	4.0	0
3262	Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification. Journal of Power Sources, 2015, 282, 378-384.	4.0	96
3263	New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochimica Acta, 2015, 157, 282-289.	2.6	87
3264	Multi-layered Al2O3/LixV2O5/LiV3O8 nanoflakes with superior cycling stability as cathode material for Li-ion battery. Electrochimica Acta, 2015, 157, 211-217.	2.6	14
3265	Facile synthesis of fine Zn 2 SnO 4 nanoparticles/graphene composites with superior lithium storage performance. Journal of Power Sources, 2015, 281, 341-349.	4.0	47
3266	Anomalous Localization of Electrochemical Activity in Reversible Charge Transfer at a Weierstrass Fractal Electrode: Local Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 10876-10887.	1.2	14
3267	Lithium–Sulfur Batteries: Progress and Prospects. Advanced Materials, 2015, 27, 1980-2006.	11.1	1,288
3268	Nanostructured Mo-based electrode materials for electrochemical energy storage. Chemical Society Reviews, 2015, 44, 2376-2404.	18.7	599
3269	Size-Tunable Single-Crystalline Anatase TiO ₂ Cubes as Anode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 3923-3930.	1.5	46
3270	Li ⁺ Solvation in Pure, Binary, and Ternary Mixtures of Organic Carbonate Electrolytes. Journal of Physical Chemistry C, 2015, 119, 4502-4515.	1.5	110
3271	Synthesis, Morphology, and Ion Conduction of Polyphosphazene Ammonium Iodide Ionomers. Macromolecules, 2015, 48, 111-118.	2.2	27
3272	Controlled Electrochemical Etching of Nanoporous Si Anodes and Its Discharge Behavior in Alkaline Si <i>–</i> Air Batteries. ACS Applied Materials & Interfaces, 2015, 7, 3126-3132.	4.0	26
3273	Micro Li-ion capacitor with activated carbon/graphite configuration for energy storage. Journal of Power Sources, 2015, 282, 394-400.	4.0	37
3274	Conjugated microporous polymers with excellent electrochemical performance for lithium and sodium storage. Journal of Materials Chemistry A, 2015, 3, 1896-1901.	5.2	133
3275	Damage Management in Water-Oxidizing Catalysts: From Photosystem II to Nanosized Metal Oxides. ACS Catalysis, 2015, 5, 1499-1512.	5.5	55
3276	A silver-nanoparticle-catalyzed graphite composite for electrochemical energy storage. Journal of Power Sources, 2015, 275, 688-693.	4.0	19
3277	Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries. Electrochimica Acta, 2015, 158, 258-263.	2.6	43

#	Article	IF	CITATIONS
3278	Heat-resistant and rigid-flexible coupling glass-fiber nonwoven supported polymer electrolyte for high-performance lithium ion batteries. Electrochimica Acta, 2015, 157, 191-198.	2.6	35
3279	In situ synthesis of GeO ₂ /reduced graphene oxide composite on Ni foam substrate as a binder-free anode for high-capacity lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1619-1623.	5.2	83
3280	Synthesis of hierarchical worm-like SnO2@C aggregates and their enhanced lithium storage properties. Journal of Alloys and Compounds, 2015, 620, 407-412.	2.8	14
3281	Direct growth of FePO ₄ /reduced graphene oxide nanosheet composites for the sodium-ion battery. Journal of Materials Chemistry A, 2015, 3, 5501-5508.	5.2	47
3282	3D V ₆ O ₁₃ Nanotextiles Assembled from Interconnected Nanogrooves as Cathode Materials for High-Energy Lithium Ion Batteries. Nano Letters, 2015, 15, 1388-1394.	4.5	194
3283	Structural and electrochemical evaluation of bismuth doped lithium titanium oxides for lithium ion batteries. Journal of Power Sources, 2015, 280, 23-29.	4.0	41
3284	Pyrite FeS ₂ for high-rate and long-life rechargeable sodium batteries. Energy and Environmental Science, 2015, 8, 1309-1316.	15.6	628
3285	Synthesis of Polymer Electrolytes Based on Poly(ethylene oxide) and an Anion-Stabilizing Hard Polymer for Enhancing Conductivity and Cation Transport. ACS Macro Letters, 2015, 4, 225-230.	2.3	58
3286	A fundamental study on the [(μ-Cl) ₃ Mg ₂ (THF) ₆] ⁺ dimer electrolytes for rechargeable Mg batteries. Chemical Communications, 2015, 51, 2312-2315.	2.2	53
3287	Threeâ€Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for Highâ€Rate Longâ€Life Lithium Batteries. Small, 2015, 11, 2654-2660.	5.2	59
3288	Silica nanonetwork confined in nitrogen-doped ordered mesoporous carbon framework for high-performance lithium-ion battery anodes. Nanoscale, 2015, 7, 3971-3975.	2.8	86
3289	Re-entrant Lithium Local Environments and Defect Driven Electrochemistry of Li- and Mn-Rich Li-Ion Battery Cathodes. Journal of the American Chemical Society, 2015, 137, 2328-2335.	6.6	173
3290	Ni–Si nanosheet network as high performance anode for Li ion batteries. Journal of Power Sources, 2015, 280, 393-396.	4.0	51
3291	Sulfone-based electrolytes for aluminium rechargeable batteries. Physical Chemistry Chemical Physics, 2015, 17, 5758-5766.	1.3	60
3292	Understanding the Effect of Lithium Bis(oxalato) Borate (LiBOB) on the Structural and Electrochemical Aging of Li and Mn Rich High Capacity Li _{1.2} Ni _{0.16} Mn _{0.56} Co _{0.08} O ₂ Cathodes. Journal of the Electrochemical Society, 2015, 162, A596-A602.	1.3	47
3293	Mesoporous nanostructured Co ₃ O ₄ derived from MOF template: a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 5585-5591.	5.2	255
3294	Asymmetric supercapacitors based on carbon nanofibre and polypyrrole/nanocellulose composite electrodes. RSC Advances, 2015, 5, 16405-16413.	1.7	54
3295	Ultrathin mesoporous Co3O4 nanosheets on Ni foam for high-performance supercapacitors. Electrochimica Acta, 2015, 157, 62-68.	2.6	85

#	Article	IF	CITATIONS
3296	Utilization of Al ₂ O ₃ Atomic Layer Deposition for Li Ion Pathways in Solid State Li Batteries. Journal of the Electrochemical Society, 2015, 162, A344-A349.	1.3	45
3297	Recent Development on Anodes for Naâ€ion Batteries. Israel Journal of Chemistry, 2015, 55, 486-507.	1.0	169
3298	Localized polyselenides in a graphene-coated polymer separator for high rate and ultralong life lithium–selenium batteries. Chemical Communications, 2015, 51, 3667-3670.	2.2	63
3299	A dendrite-suppressing composite ion conductor from aramid nanofibres. Nature Communications, 2015, 6, 6152.	5.8	272
3300	Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chemical Society Reviews, 2015, 44, 1777-1790.	18.7	1,768
3301	Improved electrochemical performance of the spherical LiNi0.5Mn1.5O4 particles modified by nano-Y2O3 coating. Journal of Solid State Electrochemistry, 2015, 19, 1235-1246.	1.2	24
3302	Enhancements of Catalyst Distribution and Functioning Upon Utilization of Conducting Polymers as Supporting Matrices in DMFCs: A Review. Polymer Reviews, 2015, 55, 1-56.	5.3	74
3303	Sulfur cathode based on layered carbon matrix for high-performance Li–S batteries. Nano Energy, 2015, 12, 742-749.	8.2	57
3304	Delithiation Mechanisms in Acid of Spinel LiMn _{2-x} M _x O ₄ (M = Cr,) Tj ETQq(0 0 0 rgBT	/Qyerlock 10
3305	Redox-active polyimide–polyether block copolymers as electrode materials for lithium batteries. RSC Advances, 2015, 5, 17096-17103.	1.7	71
3306	High capacity retention Si/silicide nanocomposite anode materials fabricated by high-energy mechanical milling for lithium-ion rechargeable batteries. Journal of Power Sources, 2015, 281, 293-300.	4.0	31
3307	Application of sulfur-doped carbon coating on the surface of Li ₃ V ₂ (PO ₄) ₃ composites to facilitate Li-ion storage as cathode materials. Journal of Materials Chemistry A, 2015, 3, 6064-6072.	5.2	54
3308	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage. , 2015, , 213-289.		6
3309	Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery. Current Applied Physics, 2015, 15, 435-440.	1.1	20
3310	Atomic-Scale Mechanisms of Sliding along an Interdiffused Li–Si–Cu Interface. Nano Letters, 2015, 15, 1716-1721.	4.5	15
3311	Structure and ionic conductivity of liquid crystals having propylene carbonate units. Journal of Materials Chemistry A, 2015, 3, 2942-2953.	5.2	18
3312	Multifunctional AlPO ₄ Coating for Improving Electrochemical Properties of Low-Cost Li[Li _{0.2} Fe _{0.1} Ni _{0.15} Mn _{0.55}]O ₂ Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 3773-3781.	4.0	189
3313	A Facile Layerâ€byâ€Layer Approach for Highâ€Arealâ€Capacity Sulfur Cathodes. Advanced Materials, 2015, 27, 1694-1700.	11.1	270

#	Article	IF	CITATIONS
3314	One-pot synthesis of ultra-small magnetite nanoparticles on the surface of reduced graphene oxide nanosheets as anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 4793-4798.	5.2	59
3315	Sodium Storage Behavior in Natural Graphite using Etherâ€based Electrolyte Systems. Advanced Functional Materials, 2015, 25, 534-541.	7.8	625
3316	Nanostructured Conjugated Ladder Polymers for Stable and Fast Lithium Storage Anodes with Highâ€Capacity. Advanced Energy Materials, 2015, 5, 1402189.	10.2	253
3317	Dicarboxylate CaC8H4O4 as a high-performance anode for Li-ion batteries. Nano Research, 2015, 8, 523-532.	5.8	58
3318	High-areal-capacity lithium storage of the Kirkendall effect-driven hollow hierarchical NiSxnanoarchitecture. Nanoscale, 2015, 7, 2790-2796.	2.8	38
3319	Impact of linker in polypyrrole/quinone conducting redox polymers. RSC Advances, 2015, 5, 11309-11316.	1.7	31
3320	LiMn0.8Fe0.2PO4/C cathode material synthesized via co-precipitation method with superior high-rate and low-temperature performances for lithium-ion batteries. Journal of Power Sources, 2015, 275, 785-791.	4.0	65
3321	MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. Journal of Materials Chemistry A, 2015, 3, 4738-4744.	5.2	168
3322	Reversible Electrochemical Insertion/Extraction of Mg and Li Ions for Orthorhombic Mo ₉ Se ₁₁ with Cluster Structure. Journal of the Electrochemical Society, 2015, 162, A198-A202.	1.3	19
3323	Nanoâ€ŧoâ€Microdesign of Marimo‣ike Carbon Nanotubes Supported Frameworks via Inâ€spaced Polymerization for High Performance Silicon Lithium Ion Battery Anodes. Small, 2015, 11, 2314-2322.	5.2	29
3324	Encapsulation of α-Fe ₂ O ₃ nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale, 2015, 7, 3270-3275.	2.8	82
3325	Sodium storage in Na-rich Na x FeFe(CN) 6 nanocubes. Nano Energy, 2015, 12, 386-393.	8.2	253
3326	Hierarchical architectured NiS@SiO2 nanoparticles enveloped in graphene sheets as anode material for lithium ion batteries. Electrochimica Acta, 2015, 155, 85-92.	2.6	45
3327	Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries. Journal of Power Sources, 2015, 276, 247-254.	4.0	99
3328	Stable lithium electrodeposition in salt-reinforced electrolytes. Journal of Power Sources, 2015, 279, 413-418.	4.0	106
3329	Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy, 2015, 12, 314-321.	8.2	108
3330	A novel aqueous lithium–oxygen cell based on the oxygen-peroxide redox couple. Chemical Communications, 2015, 51, 3189-3192.	2.2	20
3331	Facile synthesis of Li2MnSiO4/C/graphene composite with superior high-rate performances as cathode materials for Li-ion batteries. Electrochimica Acta, 2015, 155, 116-124.	2.6	26

#	Article	IF	CITATIONS
3332	Self-assembly synthesis and electrochemical performance of Li _{1.5} Mn _{0.75} Ni _{0.15} Co _{0.10} O _{2+δ} microspheres with multilayer shells. Journal of Materials Chemistry A, 2015, 3, 3120-3129.	5.2	34
3333	Graphene-encapsulated Li2MnTi3O8 nanoparticles as a high rate anode material for lithium-ion batteries. Electrochimica Acta, 2015, 155, 272-278.	2.6	25
3334	Silicene, a promising new 2D material. Progress in Surface Science, 2015, 90, 46-83.	3.8	221
3335	One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries. Scientific Reports, 2015, 5, 7665.	1.6	86
3336	Cylindrical nanostructured MoS ₂ directly grown on CNT composites for lithium-ion batteries. Nanoscale, 2015, 7, 3404-3409.	2.8	86
3337	Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics, 2015, 17, 4799-4844.	1.3	237
3338	Electrochemical performance of rod-like Sb–C composite as anodes for Li-ion and Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3276-3280.	5.2	94
3339	Metallic tin-based nanoparticles synthesis by laser pyrolysis: Parametric studies focused on the decreasing of the crystallite size. Applied Surface Science, 2015, 336, 290-296.	3.1	6
3340	Hierarchically porous carbon architectures embedded with hollow nanocapsules for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 5054-5059.	5.2	22
3341	A Peanut Shell Inspired Scalable Synthesis of Three-Dimensional Carbon Coated Porous Silicon Particles as an Anode for Lithium-Ion Batteries. Electrochimica Acta, 2015, 156, 11-19.	2.6	54
3342	A novel ferrocene-containing aniline copolymer: its synthesis and electrochemical performance. RSC Advances, 2015, 5, 14053-14060.	1.7	20
3343	Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe–MOF as high-performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 7356-7362.	1.7	57
3344	Simple approach to advanced binder-free nitrogen-doped graphene electrode for lithium batteries. RSC Advances, 2015, 5, 3881-3887.	1.7	14
3345	A lithium-ion sulfur battery using a polymer, polysulfide-added membrane. Scientific Reports, 2015, 5, 7591.	1.6	54
3346	LiMO2 (MÂ=ÂMn, Co, Ni) hexagonal sheets with (101) facets for ultrafast charging–discharging lithium ion batteries. Journal of Power Sources, 2015, 276, 238-246.	4.0	20
3347	Facile Synthesis and Lithium Storage Properties of a Porous NiSi ₂ /Si/Carbon Composite Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 1508-1515.	4.0	71
3348	Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries. Journal of Power Sources, 2015, 274, 1254-1262.	4.0	188
3349	Multiwalled carbon nanotube@a-C@Co ₉ S ₈ nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries. Nanoscale, 2015, 7, 3520-3525.	2.8	112

#	Article	IF	CITATIONS
3350	Facile Synthesis and High Rate Capability of Silicon Carbonitride/Boron Nitride Composite with a Sheet-Like Morphology. Journal of Physical Chemistry C, 2015, 119, 2783-2791.	1.5	44
3351	Growth of three dimensional flower-like molybdenum disulfide hierarchical structures on graphene/carbon nanotube network: An advanced heterostructure for energy storage devices. Journal of Power Sources, 2015, 280, 39-46.	4.0	51
3352	Highly Stable Supercapacitors with Conducting Polymer Coreâ€6hell Electrodes for Energy Storage Applications. Advanced Energy Materials, 2015, 5, 1401805.	10.2	139
3353	Template-free synthesis of Na0.95V3O8 nanobelts with improved cycleability as high-rate cathode material for rechargeable lithium ion batteries. Ceramics International, 2015, 41, 6127-6131.	2.3	13
3354	Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries. Ionics, 2015, 21, 667-671.	1.2	28
3355	Lithium-ion batteries (LIBs) for medium- and large-scale energy storage:. , 2015, , 125-211.		10
3356	Extracting the Redox Orbitals in Li Battery Materials with High-Resolution X-Ray Compton Scattering Spectroscopy. Physical Review Letters, 2015, 114, 087401.	2.9	41
3358	Hierarchical zigzag Na _{1.25} V ₃ O ₈ nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy and Environmental Science, 2015, 8, 1267-1275.	15.6	158
3359	Enhanced electrochemical performance of a lead–acid battery by a surface modified negative grid with multiwall carbon nanotube coating. RSC Advances, 2015, 5, 26081-26091.	1.7	8
3360	Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nature Communications, 2015, 6, 6230.	5.8	212
3361	Hierarchical NiMn ₂ 0 ₄ @CNT nanocomposites for high-performance asymmetric supercapacitors. RSC Advances, 2015, 5, 24607-24614.	1.7	73
3362	Thermal relaxation of lithium dendrites. Physical Chemistry Chemical Physics, 2015, 17, 8000-8005.	1.3	66
3363	Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 6534-6541.	5.2	305
3364	Recycling mobile phone batteries for lighting. Renewable Energy, 2015, 78, 509-515.	4.3	18
3365	All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries. Scientific Reports, 2015, 5, 8623.	1.6	16
3366	Non-isothermal electrochemical model for lithium-ion cells with composite cathodes. Journal of Power Sources, 2015, 283, 132-150.	4.0	39
3367	Unconventional irreversible structural changes in a high-voltage Li–Mn-rich oxide for lithium-ion battery cathodes. Journal of Power Sources, 2015, 283, 423-428.	4.0	17
3368	Li 3 PO 4 -doped Li 7 P 3 S 11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries. Journal of Power Sources, 2015, 284, 206-211.	4.0	101

#	Article	IF	CITATIONS
3369	Electrochemical Behavior of LiFePO4 Thin Film Prepared by RF Magnetron Sputtering in Li2SO4 Aqueous Electrolyte. International Journal of Nanoscience, 2015, 14, 1460027.	0.4	3
3370	Li ₃ Fe ₂ (HPO ₃) ₃ Cl: an electroactive iron phosphite as a new polyanionic cathode material for Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 7488-7497.	5.2	23
3371	Sodiation vs. lithiation phase transformations in a high rate – high stability SnO ₂ in carbon nanocomposite. Journal of Materials Chemistry A, 2015, 3, 7100-7111.	5.2	100
3372	Ordered and Disordered Polymorphs of Na(Ni _{2/3} Sb _{1/3})O ₂ : Honeycomb-Ordered Cathodes for Na-Ion Batteries. Chemistry of Materials, 2015, 27, 2387-2399.	3.2	103
3373	Superior lithium storage performance of hierarchical porous vanadium pentoxide nanofibers for lithium ion battery cathodes. Journal of Alloys and Compounds, 2015, 634, 50-57.	2.8	39
3374	New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries. Chinese Physics B, 2015, 24, 038202.	0.7	35
3375	Carbon cage encapsulating nano-cluster Li2S by ionic liquid polymerization and pyrolysis for high performance Li–S batteries. Nano Energy, 2015, 13, 467-473.	8.2	76
3376	Silk-regulated hierarchical hollow magnetite/carbon nanocomposite spheroids for lithium-ion battery anodes. Nanotechnology, 2015, 26, 115603.	1.3	14
3377	The influence of graphene/carbon mass ratio on microstructure and electrochemical behavior in the graphene–SnO2–carbon composite as anodes for Li-ion batteries. Journal of Alloys and Compounds, 2015, 636, 202-210.	2.8	18
3378	Nanostructured alkali cation incorporated Îʿ-MnO ₂ cathode materials for aqueous sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7780-7785.	5.2	70
3379	Thermally Controlled V2O5 Nanoparticles as Cathode Materials for Lithium-Ion Batteries with Enhanced Rate Capability. Electrochimica Acta, 2015, 164, 227-234.	2.6	32
3380	Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 2781-2792.	1.2	71
3381	Enhanced lithium ionic conductivity and study of the relaxation and giant dielectric properties of spark plasma sintered Li5La3Nb2O12 nanomaterials. Ceramics International, 2015, 41, 6398-6408.	2.3	21
3382	Local structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li ₇ La ₃ Zr ₂ O ₇ . Physical Chemistry Chemical Physics, 2015, 17, 8758-8768.	1.3	55
3383	High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy, 2015, 13, 387-396.	8.2	311
3384	Designed synthesis of LiFe _{0.2} Co _{0.8} O ₂ nanomeshes to greatly improve the positive performance in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 6671-6678.	5.2	7
3385	Novel Largeâ€ S cale Synthesis of a C/S Nanocomposite with Mixed Conducting Networks through a Spray Drying Approach for Li–S Batteries. Advanced Energy Materials, 2015, 5, 1500046.	10.2	96
3386	Co ₃ S ₄ porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. Journal of Materials Chemistry A, 2015, 3, 6787-6791.	5.2	247

#	Article	IF	CITATIONS
3387	Nanoconfined Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₃ Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodiumâ€ion Batteries. Advanced Energy Materials, 2015, 5, 1402104.	10.2	305
3388	Nanoscale Imaging of Fundamental Li Battery Chemistry: Solid-Electrolyte Interphase Formation and Preferential Growth of Lithium Metal Nanoclusters. Nano Letters, 2015, 15, 2011-2018.	4.5	185
3389	Enhanced electrochemical performance of LiMn ₂ O ₄ cathode with a Li _{0.34} La _{0.51} TiO ₃ -coated layer. RSC Advances, 2015, 5, 17592-17600.	1.7	14
3390	Oxidative stability and reduction decomposition mechanism studies on a novel salt: lithium difluoro(sulfato)borate. RSC Advances, 2015, 5, 18000-18007.	1.7	2
3391	Ternary-layered nitrogen-doped graphene/sulfur/ polyaniline nanoarchitecture for the high-performance of lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 8022-8027.	5.2	49
3392	The effect of grain size on aluminum anodes for Al–air batteries in alkaline electrolytes. Journal of Power Sources, 2015, 284, 409-415.	4.0	159
3393	Preparation and electrochemical characterization of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 coated with LiAlO2. Journal of Solid State Electrochemistry, 2015, 19, 805-812.	1.2	16
3394	Dinitrile compound containing ethylene oxide moiety with enhanced solubility of lithium salts as electrolyte solvent for high-voltage lithium-ion batteries. Ionics, 2015, 21, 909-915.	1.2	11
3395	Enhanced cycling stability of spinel LiMn2O4 cathode by incorporating graphene sheets. Russian Journal of Electrochemistry, 2015, 51, 125-133.	0.3	4
3396	Synthesis of spinel LiMn2O4 cathode material by a modified solid state reaction. Functional Materials Letters, 2015, 08, 1540002.	0.7	5
3398	Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes. ACS Nano, 2015, 9, 2540-2547.	7.3	433
3399	Nanoporous graphene materials by low-temperature vacuum-assisted thermal process for electrochemical energy storage. Journal of Power Sources, 2015, 284, 146-153.	4.0	42
3400	One-dimensional nanostructures for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16382-16392.	5.2	70
3401	FeCl ₃ intercalated few-layer graphene for high lithium-ion storage performance. Journal of Materials Chemistry A, 2015, 3, 15498-15504.	5.2	38
3402	Polysulfide-containing Glyme-based Electrolytes for Lithium Sulfur Battery. Chemistry of Materials, 2015, 27, 4604-4611.	3.2	105
3403	TiO2 polymorphs in â€~rocking-chair' Li-ion batteries. Materials Today, 2015, 18, 345-351.	8.3	143
3404	An in situ self-developed graphite as high capacity anode of lithium-ion batteries. Chemical Communications, 2015, 51, 12118-12121.	2.2	17
3405	Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. Journal of Power Sources, 2015, 294, 31-50.	4.0	107

#	Article	IF	CITATIONS
3406	Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: toward metal-ion chelating battery separator membranes. Journal of Materials Chemistry A, 2015, 3, 10687-10692.	5.2	43
3407	Highly nitrogen doped carbon nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2015, 51, 11791-11794.	2.2	52
3408	Midfield Wireless Power Transfer for Bioelectronics. IEEE Circuits and Systems Magazine, 2015, 15, 54-60.	2.6	51
3409	Facile fabrication of hierarchical porous rose-like NiCo ₂ O ₄ nanoflake/MnCo ₂ O ₄ nanoparticle composites with enhanced electrochemical performance for energy storage. Journal of Materials Chemistry A, 2015, 3, 16142-16149.	5.2	106
3410	Electrode potential and activation energy of sodium transition-metal oxides as cathode materials for sodium batteries: A first-principles investigation. Computational Materials Science, 2015, 106, 15-22.	1.4	26
3411	Structure and electrochemical properties of mixed transition-metal pyrophosphates Li2Fe1â^'yMnyP2O7 (0â‰9⁄â‰≇). Electrochimica Acta, 2015, 174, 1278-1289.	2.6	18
3412	Facile Synthesis of Na0.33V2O5 Nanosheet-Graphene Hybrids as Ultrahigh Performance Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 17433-17440.	4.0	70
3413	High-coulombic-efficiency Si-based hybrid microspheres synthesized by the combination of graphene and IL-derived carbon. Journal of Materials Chemistry A, 2015, 3, 20935-20943.	5.2	26
3414	Scalable synthesis of highly dispersed silicon nanospheres by RF thermal plasma and their use as anode materials for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18136-18145.	5.2	31
3415	Electrochemical characteristics of nanostructured NiO plates hydrothermally treated on nickel foam for Li-ion storage. Electrochimica Acta, 2015, 176, 1427-1433.	2.6	30
3416	Unusual Mn coordination and redox chemistry in the high capacity borate cathode Li ₇ Mn(BO ₃) ₃ . Physical Chemistry Chemical Physics, 2015, 17, 22259-22265.	1.3	17
3417	Multiscale anode materials in lithium ion batteries by combining micro- with nanoparticles: design of mesoporous TiO ₂ microfibers@nitrogen doped carbon composites. Nanoscale, 2015, 7, 13898-13906.	2.8	20
3418	Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries. Chemical Communications, 2015, 51, 15261-15264.	2.2	154
3419	Characteristics of discharge products in all-solid-state Li-air batteries. Solid State Ionics, 2015, 278, 222-227.	1.3	17
3420	In situ and ex situ carbon coated Zn ₂ SnO ₄ nanoparticles as promising negative electrodes for Li-ion batteries. RSC Advances, 2015, 5, 67210-67219.	1.7	31
3421	Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material. Journal of Materials Chemistry A, 2015, 3, 18190-18197.	5.2	53
3422	Deposition of silver nanoparticles into silicon/carbon composite as a high-performance anode material for Li-ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 3595-3604.	1.2	12
3423	Two-dimensional ion chromatography for the separation of ionic organophosphates generated in thermally decomposed lithium hexafluorophosphate-based lithium ion battery electrolytes. Journal of Chromatography A, 2015, 1409, 201-209.	1.8	61

#	Article	IF	CITATIONS
3424	Characterization and electrochemical properties of Li2MoO4 modified Li4Ti5O12/C anode material for lithium-ion batteries. Electrochimica Acta, 2015, 170, 202-209.	2.6	19
3425	Improved rate performance of amorphous carbon coated lithium zinc titanate anode material with alginic acid as carbon precursor and particle size controller. Journal of Electroanalytical Chemistry, 2015, 751, 57-64.	1.9	42
3426	Growth of oxygen bubbles during recharge process in zinc-air battery. Journal of Power Sources, 2015, 296, 40-45.	4.0	40
3427	Na2EDTA-assisted hydrothermal synthesis and electrochemical performance of LiFePO4 powders with rod-like and block-like morphologies. Materials Chemistry and Physics, 2015, 160, 398-405.	2.0	11
3428	ZnFe2O4/C nanodiscs as high performance anode material for lithium-ion batteries. Materials Letters, 2015, 158, 218-221.	1.3	12
3429	The effect of SiO2 nanoparticles in Li3V2(PO4)3/graphene as a cathode material for Li-ion batteries. Materials Letters, 2015, 160, 206-209.	1.3	9
3430	Atomic resolution observation of conversion-type anode RuO ₂ during the first electrochemical lithiation. Nanotechnology, 2015, 26, 125404.	1.3	14
3431	Searching for electrode materials with high electrochemical reactivity. Journal of Materiomics, 2015, 1, 170-187.	2.8	27
3432	Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 17910-17918.	4.0	47
3433	The preparation of flowerlike ZnMn ₂ O ₄ microspheres assembled with porous nanosheets and their lithium battery performance as anode materials. RSC Advances, 2015, 5, 70379-70386.	1.7	26
3434	Efficient lithium storage from modified vertically aligned carbon nanotubes with open-ends. RSC Advances, 2015, 5, 68875-68880.	1.7	12
3435	One-Pot Synthesis of Three-Dimensional Graphene/Carbon Nanotube/SnO ₂ Hybrid Architectures with Enhanced Lithium Storage Properties. ACS Applied Materials & Interfaces, 2015, 7, 17963-17968.	4.0	75
3436	Growth of rutile TiO 2 nanosheets with {O 1 0} exposed facets on bulk Ti 3 Si 0.9 Al 0.1 C 2 solid solution. Scripta Materialia, 2015, 108, 92-95.	2.6	2
3437	Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ionics, 2015, 278, 85-90.	1.3	40
3438	Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. Nano Letters, 2015, 15, 5982-5987.	4.5	201
3439	Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries. Scientific Reports, 2015, 5, 12099.	1.6	98
3440	Interface modification in high voltage spinel lithium-ion battery by using N-methylpyrrole as an electrolyte additive. Electrochimica Acta, 2015, 178, 127-133.	2.6	30
3441	Stress-modulated driving force for lithiation reaction in hollow nano-anodes. Journal of Power Sources, 2015, 275, 866-876.	4.0	54

ARTICLE IF CITATIONS Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical 3442 3.2 32 Reaction Mechanism. Chemistry of Materials, 2015, 27, 5736-5744. Energy Harvesting by Nickel Prussian Blue Analogue Electrode in Neutralization and Mixing Entropy 3443 1.6 Batteries. Langmuir, 2015, 31, 8710-8717. A functional carbon layer-coated separator for high performance lithium sulfur batteries. Solid 3444 1.3 90 State Ionics, 2015, 278, 166-171. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS 3445 800 Catalysis, 2015, 5, 5207-5234. 3-(1,1,2,2-Tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane as a High Voltage Solvent for LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂/Graphite Cells. Journal of the 3446 1.3 21 Electrochemical Society, 2015, 162, A1997-A2003. Comparative study on lithium borates as corrosion inhibitors of aluminum current collector in 3447 4.0 lithium bis(fluorosulfonyl)imide electrolytes. Journal of Power Sources, 2015, 296, 197-203. Electric vehicle battery technologies: From present state to future systems. Renewable and 3448 8.2 336 Sustainable Energy Reviews, 2015, 51, 1004-1012. Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li–Air Batteries. Journal of 3449 1.5 Physical Chemistry C, 2015, 119, 18066-18073. Crumpled graphene: preparation and applications. RSC Advances, 2015, 5, 66767-66796. 3450 1.7 69 Three-dimensional carbon foam supported tin oxide nanocrystallites with tunable size range: 3451 Sulfonate anchoring synthesis and high rate lithium storage properties. Journal of Power Sources, 2015, 294, 208-215 One-dimensional porous nanofibers of Co3O4 on the carbon matrix from human hair with superior 3452 1.6 65 lithium ion storage performance. Scientific Reports, 2015, 5, 12382. Microwave assisted synthesis of α-Fe₂O₃/reduced graphene oxide as anode 3453 1.4 material for high performance lithium ion batteries. New Journal of Chemistry, 2015, 39, 7923-7931. Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ionics, 2015, 3455 1.3 151 278, 172-176. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for 3456 8.2 132 lithium–sulfur batteries with long cycle life. Nano Energy, 2015, 16, 268-280. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free 3457 electrode for high-performance lithium-ion batteries and supercapacitors. Electrochimica Acta, 2015, 110 2.6 176, 1-9. High activity and durability of novel perovskite electrocatalysts for water oxidation. Materials 3458 6.4 128 Horizons, 2015, 2, 495-501. Aqueous Lithium-Air Batteries. Green Energy and Technology, 2015, , 559-585. 3459 0.4 0 3460 Electrolytes for Lithium and Lithium-Ion Batteries. Green Energy and Technology, 2015, , 231-261. 0.4

ARTICLE

IF CITATIONS

4

3461 Lithium Battery Technologies. , 2015, , 125-166.

3462	Perspectives in Lithium Batteries. , 2015, , 191-232.		3
3463	Polyhedral MnO nanocrystals anchored on reduced graphene oxide as an anode material with superior lithium storage capability. Ceramics International, 2015, 41, 10680-10688.	2.3	13
3464	Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites. Journal of Power Sources, 2015, 293, 735-740.	4.0	97
3465	Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI and FSI anions?. Physical Chemistry Chemical Physics, 2015, 17, 19569-19581.	1.3	157
3466	Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Research, 2015, 8, 2654-2662.	5.8	109
3467	lodine doped graphene as anode material for lithium ion battery. Carbon, 2015, 94, 1-8.	5.4	89
3468	Dual hetero atom containing bio-carbon: Multifunctional electrode material for High Performance Sodium-ion Batteries and Oxygen Reduction Reaction. Electrochimica Acta, 2015, 176, 670-678.	2.6	21
3469	Electrospun SnO2–ZnO nanofibers with improved electrochemical performance as anode materials for lithium-ion batteries. International Journal of Hydrogen Energy, 2015, 40, 14338-14344.	3.8	50
3470	Dual-Size Silicon Nanocrystal-Embedded SiO _{<i>x</i>} Nanocomposite as a High-Capacity Lithium Storage Material. ACS Nano, 2015, 9, 7690-7696.	7.3	107
3471	lso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage. Scientific Reports, 2015, 5, 11960.	1.6	66
3472	Enhanced electrochemical performance by unfolding a few wings of graphene nanoribbons of multiwalled carbon nanotubes as an anode material for Li ion battery applications. Nanoscale, 2015, 7, 13379-13386.	2.8	22
3473	The Influence of Water and Metal Salt on the Transport and Structural Properties of 1-Octyl-3-methylimidazolium Chloride. Australian Journal of Chemistry, 2015, 68, 420.	0.5	4
3474	3D Nanostructured Molybdenum Diselenide/Graphene Foam as Anodes for Long-Cycle Life Lithium-ion Batteries. Electrochimica Acta, 2015, 176, 103-111.	2.6	107
3475	Transforming anatase TiO2 nanorods into ultrafine nanoparticles for advanced electrochemical performance. Journal of Power Sources, 2015, 294, 406-413.	4.0	11
3476	Fast ultrasound-assisted synthesis of Li2MnSiO4 nanoparticles for a lithium-ion battery. Journal of Power Sources, 2015, 294, 522-529.	4.0	18
3477	Improved electrochemical performance of spinel LiMn _{1.5} Ni _{0.5} O ₄ through MgF ₂ nano-coating. Nanoscale, 2015, 7, 15609-15617.	2.8	65
3478	Structure and electrochemical performance of hollow microspheres of LiFe _x Ni _{1/3â^'x} Co _{1/3} Mn _{1/3} O ₂ (0.000 ≤ â‰)	₽Ţj . ₽ŢQq1	190.7843

#	Article	IF	CITATIONS
3479	Large-scale synthesis of Co ₂ V ₂ O ₇ hexagonal microplatelets under ambient conditions for highly reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 16728-16736.	5.2	116
3480	Update on anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17899-17913.	5.2	408
3481	Insight into the electrochemical behavior of micrometric Bi and Mg ₃ Bi ₂ as high performance negative electrodes for Mg batteries. Journal of Materials Chemistry A, 2015, 3, 16478-16485.	5.2	77
3482	Kinetics Tuning of Li-Ion Diffusion in Layered Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>})O ₂ . Journal of the American Chemical Society, 2015, 137, 8364-8367.	6.6	292
3483	Composited Co ₃ O ₄ /Ag with flower-like nanosheets anchored on a porous substrate as a high-performance anode for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 15944-15950.	5.2	63
3484	Mesoporous NiO with a single-crystalline structure utilized as a noble metal-free catalyst for non-aqueous Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 16177-16182.	5.2	135
3485	Robust polymeric coating enables the stable operation of silicon micro-plate anodes recovered from photovoltaic industry waste for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 15432-15443.	5.2	36
3486	Li 2 O 2 oxidation: the charging reaction in the aprotic Li-O 2 batteries. Science Bulletin, 2015, 60, 1227-1234.	4.3	18
3487	Hydrothermal synthesis of urchin-like MnO2 nanostructures and its electrochemical character for supercapacitor. Applied Surface Science, 2015, 351, 862-868.	3.1	69
3488	Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material. Journal of Alloys and Compounds, 2015, 647, 612-619.	2.8	120
3489	Intertwined Cu3V2O7(OH)2·2H2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries. Journal of Power Sources, 2015, 294, 193-200.	4.0	26
3490	Optimization of Block Copolymer Electrolytes for Lithium Metal Batteries. Chemistry of Materials, 2015, 27, 4682-4692.	3.2	125
3491	Improving the Anode Performance of WS ₂ through a Self-Assembled Double Carbon Coating. Journal of Physical Chemistry C, 2015, 119, 15874-15881.	1.5	90
3492	Synthesis, characterization and observation of antisite defects in LiNiPO4 nanomaterials. Scientific Reports, 2015, 5, 11041.	1.6	63
3493	Fabrication and properties of polybutadiene rubber-interpenetrating cross-linking poly(propylene) Tj ETQq0 0 0 rg 52978-52984.	gBT /Overlo 1.7	ock 10 Tf 50 25
3494	Nanocomposite Li ₃ V ₂ (PO ₄) ₃ /carbon as a cathode material with high rate performance and long-term cycling stability in lithium-ion batteries. RSC Advances, 2015, 5, 57127-57132.	1.7	13
3495	Synthesis of different CuO nanostructures by a new catalytic template method as anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 57300-57308.	1.7	8
3496	A Stable Flexible Silicon Nanowire Array as Anode for High-Performance Lithium-ion Batteries. Electrochimica Acta, 2015, 176, 321-326.	2.6	14

#ARTICLEIF3497High-temperature capacity fading mechanism for LiFePO4/graphite soft-packed cell without Fe dissolution. Journal of Electroanalytical Chemistry, 2015, 754, 148-153.1.93498Porous Ni0.14Mn0.86O1.43 hollow microspheres as high-performing anodes for lithium-ion batteries. Journal of Power Sources, 2015, 291, 156-162.4.03499Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety. Journal of Power Sources, 2015, 293, 675-683.4.03500Facile synthesis of tin dioxide-based high performance anodes for lithium ion batteries assisted by graphene gel. Journal of Power Sources, 2015, 295, 41-46.4.0Probing Reversible Multielectron Transfer and Structure Evolution of	CITATIONS 24 30 87 21
3498Porous Ni0.14Mn0.86O1.43 hollow microspheres as high-performing anodes for lithium-ion batteries. Journal of Power Sources, 2015, 291, 156-162.4.03499Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety. Journal of Power Sources, 2015, 293, 675-683.4.03500Facile synthesis of tin dioxide-based high performance anodes for lithium ion batteries assisted by graphene gel. Journal of Power Sources, 2015, 295, 41-46.4.0	87
3499batteries with enhanced safety. Journal of Power Sources, 2015, 293, 675-683.4.03500Facile synthesis of tin dioxide-based high performance anodes for lithium ion batteries assisted by graphene gel. Journal of Power Sources, 2015, 295, 41-46.4.0	
graphene gel. Journal of Power Sources, 2015, 295, 41-46.	21
Probing Reversible Multielectron Transfer and Structure Evolution of	
3501 Li _{1.2} Cr _{0.4} Mn _{0.4} O _{O₂ Cathode Material for Li-Ion 3.2 Batteries in a Voltage Range of 1.0–4.8 V. Chemistry of Materials, 2015, 27, 5238-5252. 3.2}	57
Hexaazatriphenylene (HAT) derivatives: from synthesis to molecular design, self-organization and device applications. Chemical Society Reviews, 2015, 44, 6850-6885.	130
Improved rate capability of the conducting functionalized FTO-coated 3503 Li-[Li _{0.2} Mn _{0.54} Ni _{0.13} Co _{0.13}]O ₂ cathode 5.2 material for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17113-17119.	34
³⁵⁰⁴ Electrode thickness control: Precondition for quite different functions of graphene conductive additives in LiFePO4 electrode. Carbon, 2015, 92, 311-317.	42
3505Evolution of optogenetic microdevices. Neurophotonics, 2015, 2, 031206.1.7	26
Synergistic thermal stabilization of ceramic/co-polyimide coated polypropylene separators for lithium-ion batteries. Journal of Power Sources, 2015, 294, 537-544.	108
3507Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2015, 7, 14851-14858.4.0	96
3508 Nanostructured Layered Cathode for Rechargeable Mg-Ion Batteries. ACS Nano, 2015, 9, 8194-8205. 7.3	181
Reciprocal hybridization of MoO ₂ nanoparticles and few-layer MoS ₂ for stable lithium-ion batteries. Chemical Communications, 2015, 51, 13838-13841.	67
Nano-sized Mn oxides on halloysite or high surface area montmorillonite as efficient catalysts for 3510 water oxidation with cerium(<scp>iv</scp>) ammonium nitrate: support from natural sources. Dalton 1.6 Transactions, 2015, 44, 15441-15449.	15
Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 19218-19253.	1,566
Synthesis and Characterization of Li ₄ Ti ₅ O ₁₂ Doped by Na and Alas Anodes Material for Li-Ion Batteries. Advanced Materials Research, 2015, 1112, 241-244.0.3	1
Catalyst Ni-assisted synthesis of interweaved SiO/G/CNTs&CNFs composite as anode material for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2015, 26, 7507-7514.	11
Hierarchically structured reduced graphene oxide/WO3 frameworks for an application into lithium ion battery anodes. Chemical Engineering Journal, 2015, 281, 724-729.	61

#	Article	IF	CITATIONS
3515	3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries. Electrochimica Acta, 2015, 176, 575-585.	2.6	72
3516	Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochimica Acta, 2015, 176, 533-541.	2.6	236
3517	FeF3 microspheres anchored on reduced graphene oxide as a high performance cathode material for lithium ion batteries. Journal of Alloys and Compounds, 2015, 647, 750-755.	2.8	35
3518	Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. Journal of Power Sources, 2015, 295, 305-313.	4.0	71
3519	Template-assisted formation of porous vanadium oxide as high performance cathode materials for lithium ion batteries. Journal of Power Sources, 2015, 295, 254-258.	4.0	25
3520	An electrochemical approach to graphene oxide coated sulfur for long cycle life. Nanoscale, 2015, 7, 13249-13255.	2.8	20
3521	Rationally designed hierarchical MnO ₂ @NiO nanostructures for improved lithium ion storage. RSC Advances, 2015, 5, 61148-61154.	1.7	9
3522	Synthesis of cambered nano-walls of SnO ₂ /rGO composites using a recyclable melamine template for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 17635-17643.	5.2	44
3523	Carbon-coated Zn2GeO4 on Ni foam as lithium ion battery anodes with exceptional long cycling stability. Electrochimica Acta, 2015, 176, 96-102.	2.6	12
3524	High reversible capacity and rate capability of ZnCo 2 O 4 /graphene nanocomposite anode for high performance lithium ion batteries. Solid State Sciences, 2015, 48, 90-96.	1.5	10
3525	Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics. Nano Letters, 2015, 15, 5168-5177.	4.5	182
3526	Heterogeneous intergrowth xLi1.5Ni0.25Mn0.75O2.5·(1 â^' x)Li0.5Ni0.25Mn0.75O2 (0 ≤ ≤) composites synergistic effect on electrochemical performance. Dalton Transactions, 2015, 44, 14255-14264.	^{5:} 1.6	10
3527	SiO ₂ @NiO core–shell nanocomposites as high performance anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 63012-63016.	1.7	20
3528	Three dimensional architecture of carbon wrapped multilayer Na ₃ V ₂ O ₂ (PO ₄) ₂ F nanocubes embedded in graphene for improved sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17563-17568.	5.2	91
3529	Revealing Defects in Crystalline Lithium-Ion Battery Electrodes by Solid-State NMR: Applications to LiVPO ₄ F. Chemistry of Materials, 2015, 27, 5212-5221.	3.2	47
3530	Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal–Organic Framework with High Capacity and Rate Performance. ACS Applied Materials & Interfaces, 2015, 7, 16357-16363.	4.0	284
3531	Preparation, electrochemical characterization and in-situ kinetic observation of Na2Li2Ti6O14 as anode material for lithium ion batteries. Ceramics International, 2015, 41, 14508-14516.	2.3	16
3532	Nanoporous Sn-SnO ₂ -TiO ₂ Composite Films Electrodeposited on Cu Sheets as Anode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, D305-D311.	1.3	21

#	Article	IF	CITATIONS
3533	Microwave synthesis of α-Fe2O3 nanoparticles and their lithium storage properties: A comparative study. Journal of Alloys and Compounds, 2015, 648, 732-739.	2.8	38
3534	High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ionÂbatteries. Journal of Materiomics, 2015, 1, 153-169.	2.8	185
3535	Copper oxide supported on platinum nanosheets array: High performance carbon-free cathode for lithium–oxygen cells. Journal of Power Sources, 2015, 294, 377-385.	4.0	17
3536	Electrochemical study of Si/C composites with particulate and fibrous morphology as negative electrodes for lithium-ion batteries. Journal of Power Sources, 2015, 294, 128-135.	4.0	18
3537	Uniform-loaded SnS2/single-walled carbon nanotubes hybrid with improved electrochemical performance for lithium ion battery. Materials Letters, 2015, 159, 329-332.	1.3	22
3538	Brannerite-Type Vanadium–Molybdenum Oxide LiVMoO ₆ as a Promising Anode Material for Lithium-Ion Batteries with High Capacity and Rate Capability. ACS Applied Materials & Interfaces, 2015, 7, 16117-16123.	4.0	31
3539	Hierarchical Nanotube-Constructed Porous TiO2-B Spheres for High Performance Lithium Ion Batteries. Scientific Reports, 2015, 5, 11557.	1.6	53
3540	Heading towards novel superior silicon-based lithium-ion batteries: ultrasmall nanoclusters top-down dispersed over synthetic graphite flakes as binary hybrid anodes. Journal of Materials Chemistry A, 2015, 3, 16998-17007.	5.2	10
3541	ZnSb/C composite anode in additive free electrolyte for sodium ion batteries. Materials Letters, 2015, 159, 349-352.	1.3	19
3542	Nanonet-structured poly(m-phenylene isophthalamide)–polyurethane membranes with enhanced thermostability and wettability for high power lithium ion batteries. RSC Advances, 2015, 5, 55478-55485.	1.7	62
3543	Binary Additive Blends Including Pyridine Boron Trifluoride for Li-Ion Cells. Journal of the Electrochemical Society, 2015, 162, A1693-A1701.	1.3	20
3544	One-step synthesis of SnO _x nanocrystalline aggregates encapsulated by amorphous TiO ₂ as an anode in Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 9982-9988.	5.2	36
3545	A Zn–NiO rechargeable battery with long lifespan and high energy density. Journal of Materials Chemistry A, 2015, 3, 8280-8283.	5.2	141
3546	Designed synthesis of a unique single-crystal Fe-doped LiNiPO4 nanomesh as an enhanced cathode for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 15969-15976.	5.2	29
3547	Preparation of highly expanded graphene with large surface area and its additional conductive effect for EDLC performance. Journal of Materials Science: Materials in Electronics, 2015, 26, 6945-6953.	1.1	8
3548	One-pot route to synthesize SnO2-Reduced graphene oxide composites and their enhanced electrochemical performance as anodes in lithium-ion batteries. Journal of Power Sources, 2015, 293, 1024-1031.	4.0	86
3549	Phosphite as Polyanion-Based Cathode for Li-Ion Battery: Synthesis, Structure, and Electrochemistry of LiFe(HPO ₃) ₂ . Inorganic Chemistry, 2015, 54, 6566-6572.	1.9	17
3550	Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Cells by Double-Layer Coating of Cathode Materials with Al ₂ O ₃ Nanoparticles and Conductive Polymer. ACS Applied Materials & Interfaces, 2015, 7, 13944-13951.	4.0	151

#	Article	IF	CITATIONS
3551	Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium–sulfur batteries. Nature Communications, 2015, 6, 7278.	5.8	357
3552	The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications, 2015, 6, 7436.	5.8	1,250
3553	One-step synthesis of highly aligned SnO ₂ nanorods on a self-produced Na ₂ Sn(OH) ₆ substrate for high-performance lithium-ion batteries. CrystEngComm, 2015, 17, 1754-1757.	1.3	20
3554	Solid-state activation of Li ₂ O ₂ oxidation kinetics and implications for Li–O ₂ batteries. Energy and Environmental Science, 2015, 8, 2417-2426.	15.6	68
3555	Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li–O ₂ batteries. Nanoscale, 2015, 7, 11833-11840.	2.8	69
3556	Zwitterionic liquid crystals as 1D and 3D lithium ion transport media. Journal of Materials Chemistry A, 2015, 3, 11232-11238.	5.2	71
3557	Insight into lithium–metal anodes in lithium–sulfur batteries with a fluorinated ether electrolyte. Journal of Materials Chemistry A, 2015, 3, 14864-14870.	5.2	133
3558	Construction of spongy antimony-doped tin oxide/graphene nanocomposites using commercially available products and its excellent electrochemical performance. Journal of Power Sources, 2015, 294, 223-231.	4.0	20
3559	Effects of morphology on the electrochemical performances of Li ₃ V ₂ (PO ₄) ₃ cathode material for lithium ion batteries. RSC Advances, 2015, 5, 54225-54245.	1.7	24
3560	Fluorinated Electrolytes for 5-V Li-Ion Chemistry: Probing Voltage Stability of Electrolytes with Electrochemical Floating Test. Journal of the Electrochemical Society, 2015, 162, A1725-A1729.	1.3	115
3561	Facile synthesis of mesoporous V2O5 nanosheets with superior rate capability and excellent cycling stability for lithium ion batteries. Journal of Power Sources, 2015, 294, 1-7.	4.0	91
3562	New science at the meso frontier: Dense nanostructure architectures for electrical energy storage. Current Opinion in Solid State and Materials Science, 2015, 19, 227-234.	5.6	14
3563	Polyhedral oligomeric silsesquioxane containing gel polymer electrolyte based on a PMMA matrix. RSC Advances, 2015, 5, 45908-45918.	1.7	18
3564	Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium–sulfur batteries. Journal of Power Sources, 2015, 294, 386-392.	4.0	65
3565	A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy and Environmental Science, 2015, 8, 2371-2376.	15.6	397
3566	Facile synthesis of hierarchical worm-like MoS ₂ structures assembled with nanosheets as anode for lithium ion batteries. RSC Advances, 2015, 5, 58084-58090.	1.7	20
3567	A review on porous negative electrodes for high performance lithium-ion batteries. Journal of Porous Materials, 2015, 22, 1313-1343.	1.3	52
3568	Why Grignard's Century Old Nobel Prize Should Spark Your Curiosity. Green Energy and Technology, 2015, , 611-635.	0.4	6

#	Article	IF	Citations
3569	A novel sandwich-like Co3O4/TiO2 composite with greatly enhanced electrochemical performance as anode for lithium ion batteries. Electrochimica Acta, 2015, 174, 985-991.	2.6	29
3570	Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte. Journal of Power Sources, 2015, 293, 11-16.	4.0	73
3571	Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries. Journal of Power Sources, 2015, 294, 141-149.	4.0	88
3572	Reactive Interaction of (Sub-)monolayers and Multilayers of the Ionic Liquid 1-Butyl-1-methylpyrrolidinium Bis(trifluoro-methylsulfonyl)imide with Coadsorbed Lithium on Cu(111). Journal of Physical Chemistry C, 2015, 119, 16649-16659.	1.5	30
3573	Hexagonal BC ₃ : A Robust Electrode Material for Li, Na, and K Ion Batteries. Journal of Physical Chemistry Letters, 2015, 6, 2728-2732.	2.1	100
3574	Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature Communications, 2015, 6, 7393.	5.8	449
3575	Facile synthesis of 3D few-layered MoS ₂ coated TiO ₂ nanosheet core–shell nanostructures for stable and high-performance lithium-ion batteries. Nanoscale, 2015, 7, 12895-12905.	2.8	85
3576	Microwave-assisted and large-scale synthesis of SnO ₂ /carbon-nanotube hybrids with high lithium storage capacity. RSC Advances, 2015, 5, 58568-58573.	1.7	44
3577	Incorporated oxygen in MoS ₂ ultrathin nanosheets for efficient ORR catalysis. Journal of Materials Chemistry A, 2015, 3, 16050-16056.	5.2	91
3578	A spray drying approach for the synthesis of a Na ₂ C ₆ H ₂ O ₄ /CNT nanocomposite anode for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 13193-13197.	5.2	75
3579	Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries. Journal of Materials Chemistry A, 2015, 3, 7773-7779.	5.2	63
3580	A facile approach to prepare biomimetic composite separators toward safety-enhanced lithium secondary batteries. RSC Advances, 2015, 5, 39392-39398.	1.7	23
3581	Flexible Carbon Nanotube–Graphene/Sulfur Composite Film: Free-Standing Cathode for High-Performance Lithium/Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 10288-10294.	1.5	116
3582	Effect of Ni ²⁺ Content on Lithium/Nickel Disorder for Ni-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2015, 7, 7702-7708.	4.0	287
3583	Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. Journal of Alloys and Compounds, 2015, 640, 321-326.	2.8	93
3584	Enhanced electrochemical performance of Ti substituted P2-Na2/3Ni1/4Mn3/4O2 cathode material for sodium ion batteries. Electrochimica Acta, 2015, 170, 171-181.	2.6	46
3585	Reduced graphene oxide encapsulated selenium nanoparticles for high-power lithium–selenium battery cathode. Journal of Power Sources, 2015, 288, 214-220.	4.0	88
3586	Magnesium Sulphide as Anode Material for Lithium-Ion Batteries. Electrochimica Acta, 2015, 169, 180-185.	2.6	10

#	Article	IF	CITATIONS
3587	CNT-enhanced electrochemical property and sodium storage mechanism of Pb(NO3)2 as anode material for Na-ion batteries. Electrochimica Acta, 2015, 169, 382-394.	2.6	12
3588	Facile Synthesis of Hollow Mesoporous CoFe ₂ O ₄ Nanospheres and Graphene Composites as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1010-1018.	1.7	45
3589	Porous Co ₃ O ₄ /CuO Composite Assembled from Nanosheets as Highâ€Performance Anodes for Lithiumâ€ion Batteries. ChemSusChem, 2015, 8, 1435-1441.	3.6	46
3590	Three-Dimensionally Mesostructured Fe ₂ O ₃ Electrodes with Good Rate Performance and Reduced Voltage Hysteresis. Chemistry of Materials, 2015, 27, 2803-2811.	3.2	74
3591	Re-building Daniell Cell with a Li-ion exchange Film. Scientific Reports, 2014, 4, 6916.	1.6	35
3592	Tantalum-doped lithium titanate with enhanced performance for lithium-ion batteries. Journal of Power Sources, 2015, 283, 372-380.	4.0	83
3593	High-Density Lithium-Ion Energy Storage Utilizing the Surface Redox Reactions in Folded Graphene Films. Chemistry of Materials, 2015, 27, 3291-3298.	3.2	78
3594	Separators for Lithiumâ€ion Batteries: A Review on the Production Processes and Recent Developments. Energy Technology, 2015, 3, 453-468.	1.8	263
3595	Copolymers of trimethylene carbonate and ε-caprolactone asÂelectrolytes for lithium-ion batteries. Polymer, 2015, 63, 91-98.	1.8	102
3596	Single-ion diblock copolymers for solid-state polymer electrolytes. Polymer, 2015, 68, 344-352.	1.8	71
3597	Investigation on performance of Li(Ni0.5Co0.2Mn0.3)1â^'Ti O2 cathode materials for lithium-ion battery. Ceramics International, 2015, 41, 9069-9077.	2.3	54
3598	Ultrafine SnO2 nanocrystals anchored graphene composites as anode material for lithium-ion batteries. Materials Research Bulletin, 2015, 68, 120-125.	2.7	35
3599	Facile one step synthesis and enhanced electrochemical performance of Molybdenum dioxide and carbon co-modified lithium manganese silicate cathode materials for lithium-ion batteries. Electrochimica Acta, 2015, 166, 183-189.	2.6	6
3600	Fabrication and lithium storage performance of sugar apple-shaped SiO x @C nanocomposite spheres. Journal of Power Sources, 2015, 288, 53-61.	4.0	87
3601	Fabrication of SandwichÂ-structured Si Nanoparticles-Graphene Nanocomposites for High-performance Lithium-ion Batteries. Electrochimica Acta, 2015, 169, 409-415.	2.6	51
3602	Synthesis of Sodium Poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]-co-ethylacrylate] Solid Polymer Electrolytes. Electrochimica Acta, 2015, 175, 232-239.	2.6	27
3603	Controllable Synthesis of Mesoporous Peapodâ€ŀike Co ₃ O ₄ @Carbon Nanotube Arrays for Highâ€Performance Lithiumâ€ŀon Batteries. Angewandte Chemie - International Edition, 2015, 54, 7060-7064.	7.2	355

#	Article	IF	CITATIONS
3605	Hydrogenated TiO ₂ Branches Coated Mn ₃ O ₄ Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 10348-10355.	4.0	81
3606	Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance. Nano Energy, 2015, 15, 145-152.	8.2	72
3607	Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy, 2015, 15, 164-176.	8.2	162
3608	Cooperative surface effect and dislocation effect in lithium ion battery electrode. Solid State Ionics, 2015, 274, 46-54.	1.3	13
3609	Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Energy, 2015, 13, 563-572.	8.2	78
3610	Cobalt oxide modified porous carbon anode enhancing electrochemical performance for Li-ion batteries. Electrochimica Acta, 2015, 167, 246-253.	2.6	31
3611	Rate-dependent phase transitions in Li2FeSiO4 cathode nanocrystals. Scientific Reports, 2015, 5, 8599.	1.6	31
3612	Effect of silicon doping on the electrochemical properties of MoP2 nano-cluster anode for lithium ion batteries. Journal of Alloys and Compounds, 2015, 639, 296-300.	2.8	17
3613	Synthesis of self-assembled cobalt sulphide coated carbon nanotube and its superior electrochemical performance as anodes for Li-ion batteries. Electrochimica Acta, 2015, 167, 388-395.	2.6	65
3614	Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators. Electrochimica Acta, 2015, 167, 396-403.	2.6	57
3615	A low-cost and advanced SiO _x –C composite with hierarchical structure as an anode material for lithium-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 13451-13456.	1.3	84
3616	Computational comparison of oxidation stability: Solvent/salt monomers vs solvent–solvent/salt pairs. Journal of Power Sources, 2015, 288, 393-400.	4.0	22
3617	Synthesis of ZnO–ZnCo2O4 hybrid hollow microspheres with excellent lithium storage properties. Electrochimica Acta, 2015, 169, 283-290.	2.6	64
3618	Microâ€MoS ₂ with Excellent Reversible Sodiumâ€ion Storage. Chemistry - A European Journal, 2015, 21, 6465-6468.	1.7	55
3619	Beaded structured CNTs-Fe ₃ O ₄ @C with low Fe ₃ O ₄ content as anode materials with extra enhanced performances in lithium ion batteries. RSC Advances, 2015, 5, 28864-28869.	1.7	27
3620	Hierarchical Si hydrogel architecture with conductive polyaniline channels on sulfonated-graphene for high-performance Li ion battery anodes having a robust cycle life. Journal of Materials Chemistry A, 2015, 3, 10238-10242.	5.2	22
3621	Electrochemical lithium storage of Li4Ti5O12/NiO nanocomposites for high-performance lithium-ion battery anodes. Journal of Solid State Electrochemistry, 2015, 19, 1859-1866.	1.2	9
3622	Improved Electrochemical Performance of Fe-Substituted NaNi _{0.5} Mn _{0.5} O ₂ Cathode Materials for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 8585-8591.	4.0	216

#	Article	IF	CITATIONS
3623	Carbon–Sulfur Composites from Cylindrical and Gyroidal Mesoporous Carbons with Tunable Properties in Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 3349-3357.	3.2	65
3624	Understanding self-discharge mechanism of layered nickel cobalt manganese oxide at high potential. Journal of Power Sources, 2015, 286, 551-556.	4.0	53
3625	Graphene based integrated tandem supercapacitors fabricated directly on separators. Nano Energy, 2015, 15, 1-8.	8.2	30
3626	Effect of an Electrolyte Additive of Vinylene Carbonate on the Electronic Structure at the Surface of a Lithium Cobalt Oxide Electrode under Battery Operating Conditions. Journal of Physical Chemistry C, 2015, 119, 9791-9797.	1.5	55
3627	Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging. Nature Communications, 2015, 6, 6883.	5.8	80
3628	Ionic Conductivity and Self-Assembly in Poly(isoprene- <i>b</i> ethylene oxide) Electrolytes Doped with LiTf and EMITf. Macromolecules, 2015, 48, 1473-1482.	2.2	24
3629	Doping-induced memory effect in Li-ion batteries: the case of Al-doped Li ₄ Ti ₅ O ₁₂ . Chemical Science, 2015, 6, 4066-4070.	3.7	23
3630	MOF-derived, N-doped, hierarchically porous carbon sponges as immobilizers to confine selenium as cathodes for Li–Se batteries with superior storage capacity and perfect cycling stability. Nanoscale, 2015, 7, 9597-9606.	2.8	164
3631	Tape-Cast Water-Stable NASICON-Type High Lithium Ion Conducting Solid Electrolyte Films for Aqueous Lithium-Air Batteries. Journal of the Electrochemical Society, 2015, 162, A1265-A1271.	1.3	38
3632	Schmitt Trigger Using a Selfâ€Healing Ionic Liquid Gated Transistor. Advanced Materials, 2015, 27, 3331-3335.	11.1	48
3633	Polydopamine-coated separator for high-performance lithium-sulfur batteries. Journal of Solid State Electrochemistry, 2015, 19, 1709-1715.	1.2	52
3634	One-step synthesis of carbon-coated Li4Ti4.95Nd0.05O12 by modified citric acid sol–gel method for lithium-ion battery. Journal of Sol-Gel Science and Technology, 2015, 75, 38-44.	1.1	8
3635	Nanostructured Nickelate Oxides as Efficient and Stable Cathode Electrocatalysts for Li–O2 Batteries. Topics in Catalysis, 2015, 58, 513-521.	1.3	12
3636	Soft template PEG-assisted synthesis of Fe3O4@C nanocomposite as superior anode materials for lithium-ion batteries. Science Bulletin, 2015, 60, 884-891.	4.3	17
3637	Hierarchical porous carbons fabricated from silica via flame synthesis as anode materials for high-performance lithium-ion batteries. Ionics, 2015, 21, 1881-1891.	1.2	14
3638	Preparation and electrochemical performance of spinel LiNi0.5â [~] 'x Mn1.5+x O4 (x = 0, 0.05, 0.1) hollow microspheres as cathode materials for lithium-ion batteries. Ionics, 2015, 21, 1843-1849.	1.2	7
3639	Hollow structured Sn-Co nanospheres by galvanic replacement reaction as high-performance anode for lithium ion batteries. Ionics, 2015, 21, 2137-2147.	1.2	10
3640	Hydrothermal Synthesis of Mn x Co y Ni1â~'xâ~'y (OH)2 as a Novel Anode Material for the Lithium-Ion Battery. Journal of Electronic Materials, 2015, 44, 2877-2882.	1.0	2

#	Article	IF	CITATIONS
3641	Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries. Electronic Materials Letters, 2015, 11, 282-287.	1.0	20
3642	Desired crystal oriented LiFePO ₄ nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale, 2015, 7, 8819-8828.	2.8	107
3643	Ultraâ€Fast Microwave Synthesis of 3D Flowerâ€Like Co ₉ S ₈ Hierarchical Architectures for Highâ€Performance Supercapacitor Applications. European Journal of Inorganic Chemistry, 2015, 2015, 2457-2462.	1.0	64
3644	Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials. Annual Review of Materials Research, 2015, 45, 63-84.	4.3	341
3645	Understanding the Initial Stages of Reversible Mg Deposition and Stripping in Inorganic Nonaqueous Electrolytes. Chemistry of Materials, 2015, 27, 3317-3325.	3.2	105
3646	A self-supported peapod-like mesoporous TiO ₂ –C array with excellent anode performance in lithium-ion batteries. Nanoscale, 2015, 7, 8758-8765.	2.8	22
3647	Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi 0.8 Co 0.1 Mn 0.1 O 2 utilized in lithium ion battery. Journal of Power Sources, 2015, 283, 211-218.	4.0	145
3648	Sandwich-Structured Graphene-Fe ₃ O ₄ @Carbon Nanocomposites for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 9709-9715.	4.0	141
3649	Improving the kinetics and surface stability of sodium manganese oxide cathode materials for sodium rechargeable batteries with Al ₂ O ₃ /MWCNT hybrid networks. Journal of Materials Chemistry A, 2015, 3, 10730-10737.	5.2	18
3650	Li4Ti5O12 hollow mesoporous microspheres assembled from nanoparticles for high rate lithium-ion battery anodes. RSC Advances, 2015, 5, 35643-35650.	1.7	19
3651	Using Li ⁺ as the electrochemical messenger to fabricate an aqueous rechargeable Zn–Cu battery. Chemical Communications, 2015, 51, 7294-7297.	2.2	25
3652	Sulfate Chemistry for Highâ€Voltage Insertion Materials: Synthetic, Structural and Electrochemical Insights. Israel Journal of Chemistry, 2015, 55, 537-557.	1.0	54
3653	Molybdenum oxide-iron oxide/graphene composite as anode materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 1867-1874.	1.2	8
3654	Scalable synthesis of a Pd nanoparticle loaded hierarchically porous graphene network through multiple synergistic interactions. Chemical Communications, 2015, 51, 8357-8360.	2.2	34
3655	Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries. Energy, 2015, 85, 159-166.	4.5	39
3656	Flexible Ionâ€Conducting Composite Membranes for Lithium Batteries. Advanced Energy Materials, 2015, 5, 1500265.	10.2	110
3657	Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 6827-6834.	5.2	73
3658	Interface Reduction Synthesis of H ₂ V ₃ O ₈ Nanobelts–Graphene for High-Rate Li-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 11391-11399.	1.5	31

#	Article	IF	CITATIONS
3659	Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy and Environmental Science, 2015, 8, 1404-1427.	15.6	1,628
3660	Effects of Synthesis Temperature and Holding Time on the Electrochemical Properties of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material Using Rheological Phase Method. Materials Science Forum, 2015, 814, 351-357.	0.3	2
3661	Highly monodisperse magnetite/carbon composite microspheres with a mesoporous structure as high-performance lithium-ion battery anodes. RSC Advances, 2015, 5, 42990-42996.	1.7	8
3662	Electrochemical properties of all-solid-state lithium batteries with amorphous MoS ₃ electrodes prepared by mechanical milling. Journal of Materials Chemistry A, 2015, 3, 14142-14147.	5.2	60
3663	Effect of Misfit Dislocation on Li Diffusion and Stress in a Phase Transforming Spherical Electrode. Journal of the Electrochemical Society, 2015, 162, H493-H500.	1.3	13
3664	Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy, 2015, 15, 104-115.	8.2	263
3665	V 2 O 5 /Mesoporous Carbon Composite as a Cathode Material for Lithium-ion Batteries. Electrochimica Acta, 2015, 173, 172-177.	2.6	36
3666	2D hybrid anode based on SnS nanosheet bonded with graphene to enhance electrochemical performance for lithium-ion batteries. RSC Advances, 2015, 5, 46941-46946.	1.7	76
3667	Silicon-nanoparticles isolated by in situ grown polycrystalline graphene hollow spheres for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2015, 3, 7810-7821.	5.2	41
3668	Hydrated vanadium pentoxide with superior sodium storage capacity. Journal of Materials Chemistry A, 2015, 3, 8070-8075.	5.2	190
3669	Mn ₃ O ₄ @C core–shell composites as an improved anode for advanced lithium ion batteries. RSC Advances, 2015, 5, 46829-46833.	1.7	14
3670	Optimized electrospinning synthesis of iron–nitrogen–carbon nanofibers for high electrocatalysis of oxygen reduction in alkaline medium. Nanotechnology, 2015, 26, 165401.	1.3	11
3671	FeS/C composite as high-performance anode material for alkaline nickel–iron rechargeable batteries. Journal of Power Sources, 2015, 291, 29-39.	4.0	68
3672	A General Method to Fabricate Free-Standing Electrodes: Sulfonate Directed Synthesis and their Li ⁺ Storage Properties. Chemistry of Materials, 2015, 27, 3957-3965.	3.2	23
3673	One-pot synthesis of 3-D dandelion-like architectures constructed by rutile TiO2 nanorods grown along [001] axis for high-rate lithium ion batteries. RSC Advances, 2015, 5, 21285-21289.	1.7	9
3674	Robust α-Fe ₂ O ₃ nanorod arrays with optimized interstices as high-performance 3D anodes for high-rate lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 13377-13383.	5.2	46
3675	Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry. Journal of the Electrochemical Society, 2015, 162, A1123-A1134.	1.3	151
3676	A comparative study on the oxidation state of lattice oxygen among Li _{1.14} Ni _{0.136} Co _{0.136} Mn _{0.544} O ₂ , Li ₂ MnO ₃ , LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ and LiCoO ₂ for the Initial charge&E discharge. Journal of Materials Chemistry A, 2015, 3, 11930-11939.	5.2	61

#	Article	IF	CITATIONS
3677	Hierarchical LiZnVO ₄ @C nanostructures with enhanced cycling stability for lithium-ion batteries. Dalton Transactions, 2015, 44, 7967-7972.	1.6	20
3678	Electrochemical Performance of a Layered-Spinel Integrated Li[Ni _{1/3} Mn _{2/3}]O ₂ as a High Capacity Cathode Material for Li-Ion Batteries. Chemistry of Materials, 2015, 27, 2600-2611.	3.2	46
3679	Chemically Reduced Organic Small-Molecule-Based Lithium Battery with Improved Efficiency. Chemistry of Materials, 2015, 27, 2121-2126.	3.2	80
3680	Nanoporous NiO Plates with a Unique Role for Promoted Oxidation of Carbonate and Carboxylate Species in the Li–O ₂ Battery. Chemistry of Materials, 2015, 27, 2234-2241.	3.2	104
3681	Platinum nanocuboids supported on reduced graphene oxide as efficient electrocatalyst for the hydrogen evolution reaction. Journal of Power Sources, 2015, 285, 393-399.	4.0	117
3682	The Optimized Tin Dioxide-Carbon Nanocomposites as High-performance Anode for Lithium ion Battery with a long cycle life. Electrochimica Acta, 2015, 167, 69-74.	2.6	14
3683	Enhanced electrochemical performance of template-free carbon-coated iron(II, III) oxide hollow nanofibers as anode material for lithium-ion batteries. Journal of Power Sources, 2015, 284, 392-399.	4.0	57
3684	Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex. Scientific Reports, 2015, 5, 8869.	1.6	62
3685	Binder-free carbonized bacterial cellulose-supported ruthenium nanoparticles for Li–O ₂ batteries. Chemical Communications, 2015, 51, 7302-7304.	2.2	69
3686	Li2Cu2O(SO4)2: a Possible Electrode for Sustainable Li-Based Batteries Showing a 4.7 V Redox Activity vs Li+/Li0. Chemistry of Materials, 2015, 27, 3077-3087.	3.2	31
3687	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	5.8	316
3688	Synergetic Fe substitution and carbon connection in LiMn1â^'xFexPO4/C cathode materials for enhanced electrochemical performances. Journal of Alloys and Compounds, 2015, 628, 471-479.	2.8	38
3689	Cobalt carbonate dumbbells for high-capacity lithium storage: A slight doping of ascorbic acid and an enhancement in electrochemical performances. Journal of Power Sources, 2015, 284, 154-161.	4.0	67
3690	Hierarchical micro-architectures of electrodes for energy storage. Journal of Power Sources, 2015, 284, 435-445.	4.0	70
3691	Flexible nitrogen-doped graphene/SnO2 foams promise kinetically stable lithium storage. Nano Energy, 2015, 13, 482-490.	8.2	140
3692	Synthesis of stable anisotropic carbon particle aggregates covered by surface nano-graphitic sheets. Carbon, 2015, 88, 33-41.	5.4	14
3693	Nano-silicon/polyaniline composites with an enhanced reversible capacity as anode materials for lithium ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 1773-1782.	1.2	38
3694	Nickelâ€Rich Layered Lithium Transitionâ€Metal Oxide for Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2015, 54, 4440-4457.	7.2	1,512

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
3695	Encapsulating micro-nano Si/SiO _x into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Nanoscale, 2015, 7, 8023-8034.	2.8	81
3696	Using structural diversity to tune the catalytic performance of Pt nanoparticle ensembles. Catalysis Science and Technology, 2015, 5, 2848-2855.	2.1	20
3697	A Tale of Two Sites: On Defining the Carrier Concentration in Garnetâ€Based Ionic Conductors for Advanced Li Batteries. Advanced Energy Materials, 2015, 5, 1500096.	10.2	143
3698	Renewableâ€Jugloneâ€Based Highâ€Performance Sodiumâ€Ion Batteries. Advanced Materials, 2015, 27, 2348-2	35 14. 1	208
3700	Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries. Scientific Reports, 2015, 5, 8946.	1.6	42
3701	Bowl-like sulfur particles wrapped by graphene oxide as cathode material of lithium–sulfur batteries. RSC Advances, 2015, 5, 28832-28835.	1.7	12
3702	Solvent-mediated directionally self-assembling MoS ₂ nanosheets into a novel worm-like structure and its application in sodium batteries. Journal of Materials Chemistry A, 2015, 3, 9932-9937.	5.2	74
3703	A coral-inspired nanoscale design of Sn–Cu/PANi/GO hybrid anode materials for high performance lithium-ion batteries. RSC Advances, 2015, 5, 21525-21531.	1.7	10
3704	In situ strain evolution during a disconnection event in a battery nanoparticle. Physical Chemistry Chemical Physics, 2015, 17, 10551-10555.	1.3	40
3705	Nanoeffects promote the electrochemical properties of organic Na2C8H4O4 as anode material for sodium-ion batteries. Nano Energy, 2015, 13, 450-457.	8.2	139
3706	Effect of modified polypropylene on the interfacial bonding of polymer–aluminum laminated films. Materials & Design, 2015, 81, 141-148.	5.1	41
3707	A Green Route: From Carbon Dioxide to Silyl Substituted Carbonate Electrolytes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1319-A1326.	1.3	16
3708	Solid-state flexible micro supercapacitors by direct-write porous nanofibers. , 2015, , .		2
3709	Interfacial stabilizing effect of ZnO on Si anodes for lithium ion battery. Nano Energy, 2015, 13, 620-625.	8.2	88
3710	An Amorphous Carbon Nitride Composite Derived from ZIFâ€8 as Anode Material for Sodiumâ€lon Batteries. ChemSusChem, 2015, 8, 1856-1861.	3.6	91
3711	Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 11021-11030.	5.2	49
3712	Electrochemical Characterization of Electrospun Nanocomposite Polymer Blend Electrolyte Fibrous Membrane for Lithium Battery. Journal of Physical Chemistry B, 2015, 119, 5299-5308.	1.2	26
3713	Fabrication and Shell Optimization of Synergistic TiO ₂ â€MoO ₃ Core–Shell Nanowire Array Anode for High Energy and Power Density Lithiumâ€Ion Batteries. Advanced Functional Materials, 2015, 25, 3524-3533.	7.8	255

ARTICLE IF CITATIONS Exploring the potential of polymer battery cathodes with electrically conductive molecular 3714 5.2 58 backbone. Journal of Materials Chemistry A, 2015, 3, 11189-11193. Metal hydride-based materials towards high performance negative electrodes for all-solid-state 3715 2.2 64 lithium-ion batteries. Chemical Communications, 2015, 51, 9773-9776. Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion 3716 70 2.6 battery anodes. Electrochimica Acta, 2015, 167, 132-138. Enhanced electrochemical performance and thermal stability of LiNi_{0.5}Mn_{1.5}O₄ using an electrolyte with sulfolane. Physical Chemistry Chemical Physics, 2015, 17, 10353-10357. 3717 29 Enhanced high rate performance of Li[Li_{0.17}Ni_{0.2}Co_{0.05}Mn_{0.58â^xx}Al_x]O<sub>2â^0_5x</sub227 3718 cathode material for lithium-ion batteries. RSC Advances, 2015, 5, 49651-49656. Stabilized titanium nitride nanowire supported silicon core–shell nanorods as high capacity lithium-ion anodes. Journal of Materials Chemistry A, 2015, 3, 12476-12481. 3719 5.2 Na₃V₂(PO₄)₃/C composite as the intercalation-type 3720 anode material for sodium-ion batteries with superior rate capability and long-cycle life. Journal of 5.2 100 Materials Chemistry A, 2015, 3, 8636-8642. Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. Angewandte 7.2 234 Chemie - International Edition, 2015, 54, 7354-7358. TiNb₆O₁₇: a new electrode material for lithium-ion batteries. Chemical 3722 2.2 110 Communications, 2015, 51, 8970-8973. Template-Assisted Hydrothermal Synthesis of Li₂MnSiO₄ as a Cathode Material for Lithium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2015, 7, 10779-10784. A new carbon additive compounded Li3V1.97Zn0.05(PO4)3/C cathode for plug-in hybrid electric 3724 2.6 13 vehicles. Electrochimica Acta, 2015, 170, 269-275. Snâ€Based Nanoparticles Encapsulated in a Porous 3D Graphene Network: Advanced Anodes for Highâ€Rate 7.8 156 and Long Life Liâ €Ion Batteries. Advanced Functional Materials, 2015, 25, 3488-3496. Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for 3726 5.8 159 pseudocapacitive electrodes. Nature Communications, 2015, 6, 7040. Three-dimensional NiCo₂O₄@NiMoO₄ core/shell nanowires for 5.2 electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 12069-12075. Grafting of a redox polymer onto carbon nanotubes for high capacity battery materials. Journal of 3728 5.277 Materials Chemistry A, 2015, 3, 8832-8839. An Electrochemical Cell for Selective Lithium Capture from Seawater. Environmental Science & amp; Technology, 2015, 49, 9415-9422. 74 NMR crystallography of monovalent cations in inorganic matrixes: Li+ siting and the local structure 3730 2.214 of Li+ sites in ferrierites. Chemical Communications, 2015, 51, 8962-8965. Yolk–shell Fe₂O₃⊙ C composites anchored on MWNTs with enhanced lithium 2.8 and sodium storage. Nanoscale, 2015, 7, 9520-9525.

#	Article	IF	CITATIONS
3732	A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. Journal of Materials Chemistry A, 2015, 3, 4938-4944.	5.2	65
3733	In Situ Gas Analysis of Li ₄ Ti ₅ O ₁₂ Based Electrodes at Elevated Temperatures. Journal of the Electrochemical Society, 2015, 162, A870-A876.	1.3	89
3734	Theory and Practice: Bulk Synthesis of C ₃ B and its H ₂ ―and Li torage Capacity. Angewandte Chemie - International Edition, 2015, 54, 5919-5923.	7.2	33
3735	A ratiometric biosensor for metallothionein based on a dual heterogeneous electro-chemiluminescent response from a TiO ₂ mesocrystalline interface. Chemical Communications, 2015, 51, 7697-7700.	2.2	30
3736	Li fast ion conductive La0.56Li0.33TiO3 inlaid LiFePO4/C microspheres with enhanced high-rate performance as cathode materials. Electrochimica Acta, 2015, 152, 368-377.	2.6	22
3737	Three-dimension hierarchical flower-like Ni1.5Co1.5O4 nanostructures composed of two-dimension ultrathin nanosheets as an anode material for lithium ion batteries. Materials Letters, 2015, 151, 49-52.	1.3	5
3738	Si nanoparticles encapsulated in elastic hollow carbon fibres for Li-ion battery anodes with high structural stability. Nanoscale, 2015, 7, 7409-7414.	2.8	52
3739	Role of LiCoO ₂ Surface Terminations in Oxygen Reduction and Evolution Kinetics. Journal of Physical Chemistry Letters, 2015, 6, 1357-1362.	2.1	54
3740	3D mapping of lithium in battery electrodes using neutron activation. Journal of Power Sources, 2015, 287, 226-230.	4.0	15
3741	Three-dimensional nanoporous and nanopillar composite Cu-Sn electrode for lithium-ion battery. Journal of Solid State Electrochemistry, 2015, 19, 1765-1771.	1.2	18
3742	Comprehensive Investigation of the Na ₃ V ₂ (PO ₄) ₂ F ₃ –NaV ₂ (PO <sub System by Operando High Resolution Synchrotron X-ray Diffraction. Chemistry of Materials, 2015, 27, 3009-3020.</sub 	>>4) ₂
3743	p-Dopable poly(4-cyano)triphenylamine: A high voltage organic cathode for lithium ion batteries. Materials Letters, 2015, 150, 16-19.	1.3	23
3744	Structural and electronic properties of Li-ion battery cathode material MoF3 from first-principles. Journal of Solid State Chemistry, 2015, 227, 25-29.	1.4	4
3745	An ultrafast rechargeable aluminium-ion battery. Nature, 2015, 520, 324-328.	13.7	1,970
3746	Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon, 2015, 92, 41-63.	5.4	371
3747	Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Research, 2015, 8, 1395-1442.	5.8	106
3748	Recent development in 2D materials beyond graphene. Progress in Materials Science, 2015, 73, 44-126.	16.0	1,152
3749	Mesoporous CuCo ₂ O ₄ nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. Journal of Materials Chemistry A, 2015, 3, 9769-9776.	5.2	192

#	Article	IF	CITATIONS
3750	Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. Journal of the American Chemical Society, 2015, 137, 4956-4959.	6.6	242
3751	Reduced Graphene Oxide/Boron Nitride Composite Film as a Novel Binder-Free Anode for Lithium Ion Batteries with Enhanced Performances. Electrochimica Acta, 2015, 166, 197-205.	2.6	69
3752	Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving. Applied Energy, 2015, 147, 246-257.	5.1	156
3753	Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications. Chemical Engineering Journal, 2015, 273, 622-629.	6.6	149
3754	Cobaltite oxide nanosheets anchored graphene nanocomposite as an efficient oxygen reduction reaction (ORR) catalyst for the application of lithium-air batteries. Journal of Power Sources, 2015, 288, 451-460.	4.0	68
3755	A high energy density Li-rich positive-electrode material with superior performances via a dual chelating agent co-precipitation route. Journal of Materials Chemistry A, 2015, 3, 9427-9431.	5.2	36
3756	Structural evolution of electrodes in the NCR and CGR cathode-containing commercial lithium-ion batteries cycled between 3.0 and 4.5 V: An operando neutron powder-diffraction study. Journal of Materials Research, 2015, 30, 373-380.	1.2	23
3757	Facile scalable synthesis and superior lithium storage performance of ball-milled MoS ₂ –graphite nanocomposites. Journal of Materials Chemistry A, 2015, 3, 10466-10470.	5.2	34
3758	Synthesis of different CuO nanostructures from Cu(OH) ₂ nanorods through changing drying medium for lithium-ion battery anodes. RSC Advances, 2015, 5, 28611-28618.	1.7	26
3759	Structures and properties of diradical compounds containing disulfide and nitroxide groups. Synthetic Metals, 2015, 208, 17-20.	2.1	0
3760	Single-Ion-Conducting Nanocomposite Polymer Electrolytes for Lithium Batteries Based on Lithiated-Fluorinated-Iron Oxide and Poly(ethylene glycol) 400. Electrochimica Acta, 2015, 175, 113-123.	2.6	47
3761	Carbonyls: Powerful Organic Materials for Secondary Batteries. Advanced Energy Materials, 2015, 5, 1402034.	10.2	674
3762	Enhanced Electrochemical Performance of Fe _{0.74} Sn ₅ @Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 7912-7919.	4.0	61
3763	Synthesis of snowflake-shaped Co ₃ O ₄ with a high aspect ratio as a high capacity anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 9689-9699.	5.2	99
3764	3D porous hybrids of defect-rich MoS ₂ /graphene nanosheets with excellent electrochemical performance as anode materials for lithium ion batteries. RSC Advances, 2015, 5, 34777-34787.	1.7	57
3765	Inâ€Situ Formation of Hollow Hybrids Composed of Cobalt Sulfides Embedded within Porous Carbon Polyhedra/Carbon Nanotubes for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2015, 27, 3038-3044.	11.1	620
3766	Theoretical Prediction of Anode Materials in Li-Ion Batteries on Layered Black and Blue Phosphorus. Journal of Physical Chemistry C, 2015, 119, 8662-8670.	1.5	169
3767	Enhanced electrochemical performance of Li3V2(PO4)3 microspheres assembled with nanoparticles embedded in a carbon matrix. RSC Advances, 2015, 5, 31410-31414.	1.7	9

#	Article	IF	CITATIONS
3768	Characterization of LiNi0.5Mn1.5O4 spinel electrode in the presence of 1,3,5-trihydroxybenzene as additive. Journal of Materials Chemistry A, 2015, 3, 2776-2783.	5.2	27
3769	Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. Nano Letters, 2015, 15, 3398-3402.	4.5	115
3770	Structural Changes in Li ₂ CoPO ₄ F during Lithium-Ion Battery Reactions. Chemistry of Materials, 2015, 27, 2839-2847.	3.2	15
3771	Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon, 2015, 92, 177-184.	5.4	78
3772	A polyimide based all-organic sodium ion battery. Journal of Materials Chemistry A, 2015, 3, 10453-10458.	5.2	151
3773	Flexible Membranes of MoS2/C Nanofibers by Electrospinning as Binder-Free Anodes for High-Performance Sodium-Ion Batteries. Scientific Reports, 2015, 5, 9254.	1.6	255
3774	Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery. Scientific Reports, 2014, 4, 7231.	1.6	48
3775	Highly Active Epitaxial La _(1–<i>x</i>) Sr _{<i>x</i>} MnO ₃ Surfaces for the Oxygen Reduction Reaction: Role of Charge Transfer. Journal of Physical Chemistry Letters, 2015, 6, 1435-1440.	2.1	107
3776	Designed synthesis of hollow Co ₃ O ₄ nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 8825-8831.	5.2	54
3777	Integration of Si in a metal foam current collector for stable electrochemical cycling in Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10114-10118.	5.2	21
3778	Porous carbon sphere anodes for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2015, 3, 9861-9868.	5.2	130
3781	Single-layer ionic conduction on carboxyl-terminated silane monolayers patternedÂbyÂconstructive lithography. Nature Materials, 2015, 14, 613-621.	13.3	33
3782	Improving the electrochemical performance of layered lithium-rich cathode materials by fabricating a spinel outer layer with Ni ³⁺ . Journal of Materials Chemistry A, 2015, 3, 7554-7559.	5.2	45
3783	Hydrothermal synthesis of Li ₄ Ti ₅ O ₁₂ nanosheets as anode materials for lithium ion batteries. RSC Advances, 2015, 5, 35224-35229.	1.7	25
3784	Electrochemical characterization of rechargeable lithium batteries. , 2015, , 183-232.		6
3785	Ru _{0.01} Ti _{0.99} Nb ₂ O ₇ as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 8627-8635.	5.2	131
3786	Tunable and Robust Phosphite-Derived Surface Film to Protect Lithium-Rich Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 8319-8329.	4.0	121
3787	Synthesis and electrochemical performance of spherical-like Li2FeSiO4/C/SP cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 633, 456-462.	2.8	7

#	Article	IF	CITATIONS
3788	Hierarchical Mn ₂ O ₃ Hollow Microspheres as Anode Material of Lithium Ion Battery and Its Conversion Reaction Mechanism Investigated by XANES. ACS Applied Materials & Interfaces, 2015, 7, 8488-8494.	4.0	119
3789	Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. Journal of Materials Chemistry A, 2015, 3, 959-962.	5.2	297
3790	Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries. Nano Energy, 2015, 18, 47-56.	8.2	53
3791	"Sea cucumber―like Ti@MoO ₃ nanorod arrays as self-supported lithium ion battery anodes with enhanced rate capability and durability. Journal of Materials Chemistry A, 2015, 3, 22547-22551.	5.2	10
3792	Application of biogenic iron phosphate for lithium-ion batteries. RSC Advances, 2015, 5, 68751-68757.	1.7	3
3793	In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe3O4 nanocrystal/carbon nanofiber composite electrodes. Energy Storage Materials, 2015, 1, 25-34.	9.5	46
3794	Yeast bio-template synthesis of porous anatase TiO2 and potential application as an anode for sodium-ion batteries. Electrochimica Acta, 2015, 182, 596-603.	2.6	40
3795	In Situ Analysis of Gas Generation in Lithium-Ion Batteries with Different Carbonate-Based Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 22751-22755.	4.0	76
3796	High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs for Li–Se batteries. RSC Advances, 2015, 5, 84038-84043.	1.7	36
3797	High-performance flexible dye-sensitized solar cells by using hierarchical anatase TiO ₂ nanowire arrays. RSC Advances, 2015, 5, 88052-88058.	1.7	24
3798	Robust and thermal-enhanced melamine formaldehyde–modified glassfiber composite separator for high-performance lithium batteries. Electrochimica Acta, 2015, 182, 334-341.	2.6	27
3799	Hierarchical Graphene-Encapsulated Hollow SnO ₂ @SnS ₂ Nanostructures with Enhanced Lithium Storage Capability. ACS Applied Materials & Interfaces, 2015, 7, 22533-22541.	4.0	78
3800	Effect of Cu substitution on structures and electrochemical properties of Li[NiCo _{1â^'x} Cu _x Mn] _{1/3} O ₂ as cathode materials for lithium ion batteries. Dalton Transactions, 2015, 44, 18624-18631.	1.6	25
3801	Synthesis of curved Si flakes using Mg powder as both the template and reductant and their derivatives for lithium-ion batteries. RSC Advances, 2015, 5, 67315-67322.	1.7	5
3802	Extremely high-rate capacity and stable cycling of a highly ordered nanostructured carbon–FeF ₂ battery cathode. Journal of Materials Chemistry A, 2015, 3, 22377-22384.	5.2	35
3803	Architectural design and phase engineering of N/B-codoped TiO ₂ (B)/anatase nanotube assemblies for high-rate and long-life lithium storage. Journal of Materials Chemistry A, 2015, 3, 22591-22598.	5.2	49
3804	Scaling up "Nano―Li ₄ Ti ₅ O ₁₂ for High-Power Lithium-Ion Anodes Using Large Scale Flame Spray Pyrolysis. Journal of the Electrochemical Society, 2015, 162, A2331-A2338.	1.3	32
3805	Significantly improved cyclability of lithium manganese oxide under elevated temperature by an easily oxidized electrolyte additive. Journal of Power Sources, 2015, 299, 485-491.	4.0	27

#	Article	IF	CITATIONS
3806	Saving electric energy by integrating a photoelectrode into a Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 20903-20907.	5.2	56
3807	Ionic Conductivity, Self-Assembly, and Viscoelasticity in Poly(styrene-b-ethylene oxide) Electrolytes Doped with LiTf. Macromolecules, 2015, 48, 7164-7171.	2.2	34
3808	A novel mixture of diethylene glycol diethylether and non-flammable methyl-nonafluorobutyl ether as a safe electrolyte for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 21159-21166.	5.2	39
3809	Electrocatalytic performances of N-doped graphene with anchored iridium species in oxygen reduction reaction. 2D Materials, 2015, 2, 034019.	2.0	20
3810	Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. Journal of Power Sources, 2015, 297, 436-441.	4.0	72
3811	Carbonate-assisted hydrothermal synthesis of porous, hierarchical CuO microspheres and CuO/GO for high-performance lithium-ion battery anodes. RSC Advances, 2015, 5, 85179-85186.	1.7	19
3812	Flexible free-standing Fe2O3/graphene/carbon nanotubes hybrid films as anode materials for high performance lithium-ion batteries. Electrochimica Acta, 2015, 182, 192-201.	2.6	71
3813	Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. Journal of Power Sources, 2015, 299, 417-424.	4.0	110
3814	Structural and Electrochemical Study of Hierarchical LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 21939-21947.	4.0	95
3815	Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS ₂ . ACS Nano, 2015, 9, 11296-11301.	7.3	167
3816	Self-improving anodes for lithium-ion batteries: continuous interlamellar spacing expansion induced capacity increase in polydopamine-derived nitrogen-doped carbon tubes during cycling. Journal of Materials Chemistry A, 2015, 3, 20880-20885.	5.2	41
3817	Architecture-controlled synthesis of M _x O _y (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 22708-22715.	5.2	75
3818	Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend. Journal of Chemical Physics, 2015, 143, 024904.	1.2	78
3819	Effects of precursor particle size on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material. Ceramics International, 2015, 41, 15185-15192.	2.3	37
3820	Trivalent Ti self-doped Li 4 Ti 5 O 12 : A high performance anode material for lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2015, 757, 1-7.	1.9	63
3821	Materials insights into low-temperature performances of lithium-ion batteries. Journal of Power Sources, 2015, 300, 29-40.	4.0	250
3822	High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries. Journal of Power Sources, 2015, 300, 182-189.	4.0	39
3823	Model Parametrization and Adaptation Based on the Invariance of Support Vectors With Applications to Battery State-of-Health Monitoring. IEEE Transactions on Vehicular Technology, 2015, 64, 3908-3917.	3.9	51

#	Article	IF	CITATIONS
3824	Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Science Advances, 2015, 1, e1500330.	4.7	170
3825	Exploration and progress of high-energy supercapacitors and related electrode materials. Science China Technological Sciences, 2015, 58, 1851-1863.	2.0	15
3826	Gd doped single-crystalline Li4Ti5O12/TiO2 nanosheets composites as superior anode material in lithium ion batteries. Electrochimica Acta, 2015, 182, 368-375.	2.6	37
3827	Investigation of carbon-coated lithiated Li4+xTi5O12/C for lithium-ion batteries. Materials Research Bulletin, 2015, 71, 48-52.	2.7	2
3828	A Highly Reversible Room-Temperature Sodium Metal Anode. ACS Central Science, 2015, 1, 449-455.	5.3	733
3829	Suppression of Self-Discharge by a LiPF ₆ /Methyl Difluoroacetate Electrolyte in Li/CuCl ₂ Batteries. Journal of the Electrochemical Society, 2015, 162, A2747-A2752.	1.3	7
3830	Hollow Nitrogen-doped Fe3O4/Carbon Nanocages with Hierarchical Porosities as Anode Materials for Lithium-ion Batteries. Electrochimica Acta, 2015, 186, 50-57.	2.6	48
3831	Advances in high-capacity Li ₂ MSiO ₄ (MÂ= Mn, Fe, Co, Ni, …) cathode materials for lithium-ion batteries. RSC Advances, 2015, 5, 98666-98686.	1.7	63
3832	Polymer Electrolytes. Materials and Energy, 2015, , 523-589.	2.5	3
3833	Si Nanoparticles Intercalated into Interlayers of Slightly Exfoliated Graphite filled by Carbon as Anode with High Volumetric Capacity for Lithium-ion Battery. Electrochimica Acta, 2015, 184, 364-370.	2.6	24
3834	Diffusion-induced stress and strain energy affected by dislocation mechanisms in a cylindrical nanoanode. Solid State Ionics, 2015, 281, 21-28.	1.3	7
3835	The "filler effect― A study of solid oxide fillers with β-Li3PS4 for lithium conducting electrolytes. Solid State Ionics, 2015, 283, 75-80.	1.3	41
3836	Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 7244-7253.	5.5	500
3837	Exceptional electrochemical performance of two-year aged V2O5 nanowires for lithium storage. Current Applied Physics, 2015, 15, 1488-1491.	1.1	2
3838	Brittle versus ductile fracture mechanism transition in amorphous lithiated silicon: From intrinsic nanoscale cavitation to shear banding. Nano Energy, 2015, 18, 89-96.	8.2	49
3839	lron Doping in Spinel NiMn ₂ O ₄ : Stabilization of the Mesoporous Cubic Phase and Kinetics Activation toward Highly Reversible Li ⁺ Storage. Chemistry of Materials, 2015, 27, 7698-7709.	3.2	37
3840	Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn ₂ O ₄ and lambda-MnO ₂ for both aqueous and non-aqueous magnesium-ion batteries. CrystEngComm, 2015, 17, 8728-8735.	1.3	71
3841	Advanced Sodium Ion Battery Anode Constructed <i>via</i> Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. ACS Nano, 2015, 9, 11933-11941.	7.3	255

#	Article	IF	CITATIONS
3842	An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 2015, 527, 78-81.	13.7	766
3843	Facile synthesis of MoO3/carbon nanobelts as high-performance anode material for lithium ion batteries. Electrochimica Acta, 2015, 180, 947-956.	2.6	96
3844	Li-storage performance of binder-free and flexible iron fluoride@graphene cathodes. Journal of Materials Chemistry A, 2015, 3, 23930-23935.	5.2	29
3845	Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13473-13477.	3.3	56
3846	Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries. Accounts of Chemical Research, 2015, 48, 2947-2956.	7.6	195
3847	Multi-cations doped LiVPO ₄ F cathode for lithium-ion batteries. Functional Materials Letters, 2015, 08, 1550060.	0.7	4
3848	Recent advances in designing and fabrication of planar micro-supercapacitors for on-chip energy storage. Energy Storage Materials, 2015, 1, 82-102.	9.5	114
3849	Reversibility of Noble Metal-Catalyzed Aprotic Li-O ₂ Batteries. Nano Letters, 2015, 15, 8084-8090.	4.5	165
3850	Highly Flexible Full Lithium Batteries with Self-Knitted α-MnO ₂ Fabric Foam. ACS Applied Materials & Interfaces, 2015, 7, 25298-25305.	4.0	34
3851	Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. Journal of Physical Chemistry Letters, 2015, 6, 4653-4672.	2.1	811
3852	Analytical insight into the oxygen diffusion in wetted porous cathodes of Li-air batteries. Energy, 2015, 93, 416-420.	4.5	13
3853	Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries. Nature Communications, 2015, 6, 8597.	5.8	163
3854	A comparative investigation of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes. RSC Advances, 2015, 5, 95073-95078.	1.7	57
3855	Multidimensional Polycation β-Cyclodextrin Polymer as an Effective Aqueous Binder for High Sulfur Loading Cathode in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26257-26265.	4.0	116
3856	Making Polymeric Nanofilms (Grafting-to, Grafting-from, Spin Coating, Layer-by-Layer, Plasma) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 182
3857	Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy. Journal of Power Sources, 2015, 294, 173-179.	4.0	43
3858	Unlocking the energy capabilities of micron-sized LiFePO4. Nature Communications, 2015, 6, 7898.	5.8	65
	A nanofibrous polynyrrole/silicon composite derived from cellulose substance as the anode material		

2250	///////////////////////////////////////	polypyriolejon	leon composite acrived		an
1009	for lithium ion	battorios Cha	mical Communications	, 2015, 51, 14590-14593.	
		Datteries. Che		, 2013, 31, 14330-14333.	

#	Article	IF	CITATIONS
3860	A novel shuttle-like Fe ₃ O ₄ –Co ₃ O ₄ self-assembling architecture with highly reversible lithium storage. RSC Advances, 2015, 5, 70527-70535.	1.7	9
3861	Consequences of Electrolyte Degradation for the Electrochemical Performance of Li _{1+x} (Ni _a Co _b Mn _{1-a-b}) _{1-x} O ₂ . Journal of the Electrochemical Society, 2015, 162, A7072-A7077.	1.3	14
3862	Li5Cr9Ti4O24: A new anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 650, 616-621.	2.8	22
3863	Scalable Production of Si Nanoparticles Directly from Low Grade Sources for Lithium-Ion Battery Anode. Nano Letters, 2015, 15, 5750-5754.	4.5	119
3864	Theory of melt polyelectrolyte blends and block copolymers: Phase behavior, surface tension, and microphase periodicity. Journal of Chemical Physics, 2015, 142, 034902.	1.2	59
3865	Mesoscale elucidation of laser-assisted chemical deposition of Sn nanostructured electrodes. Journal of Applied Physics, 2015, 117, 214301.	1.1	2
3866	Electrochemical properties of Li ₂ MnO ₃ nanocrystals synthesized using a hydrothermal method. RSC Advances, 2015, 5, 71088-71094.	1.7	27
3867	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44, 7968-7996.	18.7	388
3868	A crystalline Cu–Sn–S framework for high-performance lithium storage. Journal of Materials Chemistry A, 2015, 3, 19410-19416.	5.2	60
3869	Electrochemically Fabricated Nanostructures in Energy Storage and Conversion Applications. , 2015, , 1-25.		0
3870	Structural design for anodes of lithium-ion batteries: emerging horizons from materials to electrodes. Materials Horizons, 2015, 2, 553-566.	6.4	115
3871	Designing high-voltage carbonyl-containing polycyclic aromatic hydrocarbon cathode materials for Li-ion batteries guided by Clar's theory. Journal of Materials Chemistry A, 2015, 3, 19137-19143.	5.2	68
3872	Going Green: An Exploratory Analysis of Energy-Related Questions. , 2015, , .		17
3873	Alternative power sources for miniature and micro devices. , 2015, , .		2
3874	Copolymerization of Polythiophene and Sulfur To Improve the Electrochemical Performance in Lithium–Sulfur Batteries. Chemistry of Materials, 2015, 27, 7011-7017.	3.2	120
3875	Reaction and degradation mechanism in all-solid-state lithium–air batteries. Chemical Communications, 2015, 51, 17560-17563.	2.2	22
3876	Dendrite growth in the recharging process of zinc–air batteries. Journal of Materials Chemistry A, 2015, 3, 22648-22655.	5.2	166
3877	Aligned carbon nanostructures based 3D electrodes for energy storage. Journal of Energy Chemistry, 2015, 24, 559-586.	7.1	19

#	Article	IF	CITATIONS
3878	Self-Terminated Artificial SEI Layer for Nickel-Rich Layered Cathode Material via Mixed Gas Chemical Vapor Deposition. Chemistry of Materials, 2015, 27, 7370-7379.	3.2	61
3879	Eliminating Voltage Decay of Lithiumâ€Rich Li _{1.14} Mn _{0.54} Ni _{0.14} Co _{0.14} O ₂ Cathodes by Controlling the Electrochemical Process. Chemistry - A European Journal, 2015, 21, 7503-7510.	1.7	36
3880	Preparation of a γâ€Fe ₂ O ₃ /Ag Nanowire Coaxial Nanocable for Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2015, 21, 11129-11133.	1.7	24
3881	The electrochemical performance of transition metal and graphene added Li3V2(PO4)3 cathode material for Li-ion Batteries. Materials Letters, 2015, 160, 194-199.	1.3	6
3882	Intrinsically Coupled 3D nGs@CNTs Frameworks as Anode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 7289-7295.	3.2	24
3883	Multifunctional Carbon for Electrochemical Double‣ayer Capacitors. Advanced Functional Materials, 2015, 25, 6775-6785.	7.8	32
3884	Anthraquinone-based polyimide cathodes for sodium secondary batteries. Electrochemistry Communications, 2015, 60, 117-120.	2.3	81
3885	Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects. Energy Storage Materials, 2015, 1, 127-145.	9.5	581
3886	Chemical fabrication and electrochemical performance of Bi2S3-nanorods charged reduced graphene oxide. Materials Letters, 2015, 161, 774-777.	1.3	13
3887	Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery. Solid State Ionics, 2015, 281, 73-81.	1.3	30
3888	Coaxial Manganese Dioxide@N-doped Carbon Nanotubes as Superior Anodes for Lithium Ion Batteries. Electrochimica Acta, 2015, 182, 676-681.	2.6	37
3889	Fluorinated Reduced Graphene Oxide as an Interlayer in Li–S Batteries. Chemistry of Materials, 2015, 27, 7070-7081.	3.2	124
3890	Physically Cross-linked Polymer Binder Induced by Reversible Acid–Base Interaction for High-Performance Silicon Composite Anodes. ACS Applied Materials & Interfaces, 2015, 7, 23545-23553.	4.0	88
3891	A comprehensive picture of the current rate dependence of the structural evolution of P2-Na _{2/3} Fe _{2/3} Mn _{1/3} O ₂ . Journal of Materials Chemistry A, 2015, 3, 21023-21038.	5.2	41
3892	Cubic and octahedral Cu ₂ O nanostructures as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 23003-23010.	5.2	63
3893	Controllable synthesis of spinel nano-CoMn2O4 via a solvothermal carbon templating method and its application in lithium ion batteries. Electrochimica Acta, 2015, 182, 550-558.	2.6	34
3894	Rational synthesis of Ni nanoparticle-embedded porous graphitic carbon nanosheets with enhanced lithium storage properties. Nanoscale, 2015, 7, 18211-18217.	2.8	30
3895	Review—Chemical Analysis for a Better Understanding of Aging and Degradation Mechanisms of Non-Aqueous Electrolytes for Lithium Ion Batteries: Method Development, Application and Lessons Learned Journal of the Electrochemical Society, 2015, 162, A2500-A2508	1.3	138

#	Article	IF	CITATIONS
3896	Synthesis and Electrochemistry Study of P2- and O3-phase Na2/3Fe1/2Mn1/2O2. Electrochimica Acta, 2015, 182, 1029-1036.	2.6	55
3897	Cyanoethylated Carboxymethyl Chitosan as Water Soluble Binder with Enhanced Adhesion Capability and electrochemical performances for LiFePO4 Cathode. Electrochimica Acta, 2015, 182, 900-907.	2.6	54
3898	Electrochemical properties of SnO ₂ nanoparticles immobilized within a metal–organic framework as an anode material for lithium-ion batteries. RSC Advances, 2015, 5, 84662-84665.	1.7	19
3899	Graphene/Co ₉ S ₈ nanocomposite paper as a binder-free and free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 23677-23683.	5.2	98
3900	Copper substituted P2-type Na _{0.67} Cu _x Mn _{1â^'x} O ₂ : a stable high-power sodium-ion battery cathode. Journal of Materials Chemistry A, 2015, 3, 22846-22852.	5.2	135
3901	Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn–air batteries. Energy Storage Materials, 2015, 1, 17-24.	9.5	67
3902	Mechanisms and Performances of Na1.5Fe0.5Ti1.5(PO4)3/C Composite as Electrode Material for Na-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 25220-25234.	1.5	31
3903	High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure. Electrochimica Acta, 2015, 182, 507-515.	2.6	34
3904	Improvement in hydrophobicity of olivine lithium manganese iron phosphate cathodes by SiF4 treatment for lithium-ion batteries. Solid State Ionics, 2015, 281, 82-88.	1.3	5
3905	Concentration Effects on the Entropy of Electrochemical Lithium Deposition: Implications for Li ⁺ Solvation. Journal of Physical Chemistry B, 2015, 119, 13385-13390.	1.2	11
3906	Preparation of LiBOB via rheological phase method and its application to mitigate voltage fade of Li1.16[Mn0.75Ni0.25]0.84O2 cathode. RSC Advances, 2015, 5, 86763-86770.	1.7	23
3907	Redox Shuttles for Lithium-Ion Batteries at Concentrations up to 1 M Using an Electroactive Ionic Liquid Based on 2,5-di- <i>tert</i> -butyl-1,4-dimethoxybenzene. Journal of the Electrochemical Society, 2015, 162, A1432-A1438.	1.3	16
3908	A Comparative Study of Pyridine-Boron Trifluoride, Pyrazine-(BF ₃) ₂ and Triazine-(BF ₃) ₃ as Electrolyte Additives for Lithium-Ion Cells. Journal of the Electrochemical Society, 2015, 162, A2066-A2074.	1.3	21
3909	Lithiation of Rutile TiO ₂ -Coated Si NWs Observed by in Situ TEM. Chemistry of Materials, 2015, 27, 6929-6933.	3.2	17
3910	In Situ Transmission Electron Microscopy Observation of the Lithiation–Delithiation Conversion Behavior of CuO/Graphene Anode. ACS Applied Materials & Interfaces, 2015, 7, 23062-23068.	4.0	27
3911	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23291-23296.	4.0	123
3912	One-pot synthesis of carbon-coated Ni ₅ P ₄ nanoparticles and CoP nanorods for high-rate and high-stability lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 23345-23351.	5.2	68
3913	Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2015, 162, A2447-A2467.	1.3	141

#	Article	IF	CITATIONS
3914	Review—Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2509-A2528.	1.3	289
3915	Nitrogen-doped carbon coated LiFePO ₄ /carbon nanotube interconnected nanocomposites for high performance lithium ion batteries. New Journal of Chemistry, 2015, 39, 9782-9788.	1.4	13
3916	Dependence of Young's modulus on the sodium content within the structural tunnels of a one-dimensional Na-ion battery cathode. Nanoscale, 2015, 7, 17642-17648.	2.8	14
3917	Poly(ionic liquid) binders as Li ⁺ conducting mediators for enhanced electrochemical performance. RSC Advances, 2015, 5, 85517-85522.	1.7	35
3918	Uniform LiMO ₂ assembled microspheres as superior cycle stability cathode materials for high energy and power Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22026-22030.	5.2	14
3919	Carbon-based electrocatalysts for advanced energy conversion and storage. Science Advances, 2015, 1, e1500564.	4.7	567
3920	Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach. Journal of Power Sources, 2015, 297, 540-550.	4.0	26
3921	Cyclic silicon–nitrogen–silicon core derived silylamido–magnesium compounds for magnesium–battery electrolytes with improved oxidation stability. Journal of Power Sources, 2015, 297, 551-555.	4.0	3
3922	2D Electrides as Promising Anode Materials for Na-Ion Batteries from First-Principles Study. ACS Applied Materials & Interfaces, 2015, 7, 24016-24022.	4.0	181
3923	Facile synthesis of nanocage Co3O4 for advanced lithium-ion batteries. Journal of Power Sources, 2015, 298, 203-208.	4.0	100
3924	Synthesis and electrochemical performance of Ni and F doped LiMn ₂ O ₄ cathode materials. RSC Advances, 2015, 5, 75333-75340.	1.7	10
3925	Synthesis of lithium ion selective porous phenolic microsphere adsorbents with lithium manganese oxide (LMO) by template and their lithium ion adsorption properties. Macromolecular Research, 2015, 23, 313-319.	1.0	2
3926	Synthesis of novel book-like K _{0.23} V ₂ O ₅ crystals and their electrochemical behavior in lithium batteries. Chemical Communications, 2015, 51, 15290-15293.	2.2	17
3927	Doped Si nanoparticles with conformal carbon coating and cyclized-polyacrylonitrile network as high-capacity and high-rate lithium-ion battery anodes. Nanotechnology, 2015, 26, 365401.	1.3	9
3928	Upcycling of Packing-Peanuts into Carbon Microsheet Anodes for Lithium-Ion Batteries. Environmental Science & Technology, 2015, 49, 11191-11198.	4.6	48
3929	Metallopolymers for energy production, storage and conservation. Polymer Chemistry, 2015, 6, 6905-6930.	1.9	74
3930	Synthesis and electrochemical performance of Li ₄ Ti ₅ O ₁₂ /TiO ₂ /C nanocrystallines for high-rate lithium ion batteries. RSC Advances, 2015, 5, 74774-74782.	1.7	31
3931	A Novel High-Power Battery-Pseudocapacitor Hybrid Based on Fast Lithium Reactions in Silicon Anode and Titanium Dioxide Cathode Coated on Vertically Aligned Carbon Nanofibers. Electrochimica Acta, 2015, 178, 797-805.	2.6	17

#	Article	IF	CITATIONS
3932	Synthesis of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties. Journal of Materials Chemistry A, 2015, 3, 20236-20243.	5.2	107
3933	Synthesis and electrochemical properties of ZnMn 2 O 4 anode for lithium-ion batteries. Electrochimica Acta, 2015, 178, 847-855.	2.6	47
3934	Enhanced lithium storage capability of sodium lithium titanate via lithium-site doping. Journal of Power Sources, 2015, 297, 283-294.	4.0	28
3935	Investigating the Reversibility of Structural Modifications of Li _{<i>x</i>} Ni _{<i>y</i>} Mn _{<i>z</i>} Co _{1–<i>y</i>–<i>z</i>} O Cathode Materials during Initial Charge/Discharge, at Multiple Length Scales. Chemistry of Materials, 2015. 27. 6044-6052.	_{2<td>ub> 80</td>}	ub> 80
3936	Plasticized Polymer Composite Single-Ion Conductors for Lithium Batteries. ACS Applied Materials & Interfaces, 2015, 7, 19494-19499.	4.0	31
3937	Improved electrochemical properties of LiMn ₂ O ₄ with the Bi and La co-doping for lithium-ion batteries. RSC Advances, 2015, 5, 73315-73322.	1.7	24
3938	Preparation of a nanoporous CuO/Cu composite using a dealloy method for high performance lithium-ion batteries. RSC Advances, 2015, 5, 71760-71764.	1.7	19
3939	Thermally-responsive, nonflammable phosphonium ionic liquid electrolytes for lithium metal batteries: operating at 100 degrees celsius. Chemical Science, 2015, 6, 6601-6606.	3.7	39
3940	Self-template synthesis of hollow shell-controlled Li ₃ VO ₄ as a high-performance anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18839-18842.	5.2	57
3941	Nanostructured organic radical cathodes from self-assembled nitroxide-containing block copolymer thin films. Journal of Materials Chemistry A, 2015, 3, 19575-19581.	5.2	26
3942	Progress in Developments of Inorganic Nanocatalysts for Application in Direct Methanol Fuel Cells. Critical Reviews in Solid State and Materials Sciences, 2015, 40, 316-357.	6.8	27
3943	Simulation and Measurement of Local Potentials of Modified Commercial Cylindrical Cells. Journal of the Electrochemical Society, 2015, 162, A2099-A2105.	1.3	44
3944	Elucidation of few layered graphene-complex metal oxide (A 2 Mo 3 O 8 , A = Co, Mn and Zn) composites as robust anode materials in Li ion batteries. Electrochimica Acta, 2015, 178, 699-708.	2.6	43
3945	Selectively accelerated lithium ion transport to silicon anodes via an organogel binder. Journal of Power Sources, 2015, 298, 8-13.	4.0	26
3946	Superior electrochemical performance of LiCoO2 electrodes enabled by conductive Al2O3-doped ZnO coating via magnetron sputtering. Journal of Power Sources, 2015, 298, 114-122.	4.0	63
3947	The transformation of graphite electrode materials in lithium-ion batteries after cycling. Journal of Power Sources, 2015, 298, 349-354.	4.0	36
3948	Core–shell ZnO/ZnFe ₂ O ₄ @C mesoporous nanospheres with enhanced lithium storage properties towards high-performance Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 20389-20398.	5.2	77
3949	Porous Hierarchical Nitrogen-doped Carbon Coated ZnFe2O4 Composites as High Performance Anode Materials for Lithium Ion Batteries. Electrochimica Acta, 2015, 180, 622-628.	2.6	56

#	Article	IF	CITATIONS
3950	Nanocrystal-constructed mesoporous CoFe ₂ O ₄ nanowire arrays aligned on flexible carbon fabric as integrated anodes with enhanced lithium storage properties. Physical Chemistry Chemical Physics, 2015, 17, 21476-21484.	1.3	28
3951	Solid electrolytes based on poly(ethylene oxide)/poly(4-vinyl phenol-co-2-hydroxyethyl methacrylate) blends and LiClO4. Solid State Ionics, 2015, 279, 78-89.	1.3	18
3952	High power organic cathodes using thin films of electropolymerized benzidine polymers. Chemical Communications, 2015, 51, 14674-14677.	2.2	12
3953	Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. Journal of Power Sources, 2015, 297, 344-350.	4.0	53
3954	Naturally derived nanostructured materials from biomass for rechargeable lithium/sodium batteries. Nano Energy, 2015, 17, 91-103.	8.2	135
3955	In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries. Nano Letters, 2015, 15, 6170-6176.	4.5	73
3956	A novel preparation of core–shell electrode materials via evaporation-induced self-assembly of nanoparticles for advanced Li-ion batteries. Chemical Communications, 2015, 51, 15000-15003.	2.2	27
3957	Electrode Side Reactions, Capacity Loss and Mechanical Degradation in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A2026-A2035.	1.3	165
3958	Catalytic Behavior of Lithium Nitrate in Li-O ₂ Cells. ACS Applied Materials & Interfaces, 2015, 7, 16590-16600.	4.0	127
3959	Investigation into diffusion induced plastic deformation behavior in hollow lithium ion battery electrode revealed by analytical model and atomistic simulation. Electrochimica Acta, 2015, 178, 597-607.	2.6	25
3960	Improved performance of sulfur cathode by an easy and scale-up coating strategy. Journal of Power Sources, 2015, 297, 265-270.	4.0	21
3961	Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH. Physical Chemistry Chemical Physics, 2015, 17, 22576-22580.	1.3	108
3962	Nanotechnology enabled rechargeable Li–SO ₂ batteries: another approach towards post-lithium-ion battery systems. Energy and Environmental Science, 2015, 8, 3173-3180.	15.6	23
3963	Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy and Environmental Science, 2015, 8, 3577-3588.	15.6	201
3964	Synchronously synthesized Si@C composites through solvothermal oxidation of Mg ₂ Si as lithium ion battery anode. RSC Advances, 2015, 5, 71355-71359.	1.7	8
3965	Synergistic Effects of Suberonitrile-LiBOB Binary Additives on the Electrochemical Performance of High-Voltage LiCoO ₂ Electrodes. Journal of the Electrochemical Society, 2015, 162, A7015-A7023.	1.3	40
3966	Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation. Nano Letters, 2015, 15, 5755-5763.	4.5	122
3967	Unique synthesis of hollow Co ₃ O ₄ nanoparticles embedded in thin Al ₂ O ₃ nanosheets for enhanced lithium storage. Nanoscale, 2015, 7, 15983-15989	2.8	19

#	Article	IF	CITATIONS
3968	Honeycomb in honeycomb carbon bubbles: excellent Li- and Na-storage performances. Journal of Materials Chemistry A, 2015, 3, 20065-20072.	5.2	17
3969	Molecular dynamics simulations on lithium diffusion in LiFePO ₄ : the effect of anti-site defects. Journal of Materials Chemistry A, 2015, 3, 20399-20407.	5.2	32
3970	Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries. Journal of Power Sources, 2015, 298, 130-137.	4.0	76
3971	Template-directed fabrication of porous gas diffusion layer for magnesium air batteries. Journal of Power Sources, 2015, 297, 202-207.	4.0	22
3972	Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20909-20918.	4.0	37
3973	Layer-by-Layer Deposition of Organic–Inorganic Hybrid Multilayer on Microporous Polyethylene Separator to Enhance the Electrochemical Performance of Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 20678-20686.	4.0	131
3974	Growth of nickel silicate nanoplates on reduced graphene oxide as layered nanocomposites for highly reversible lithium storage. Nanoscale, 2015, 7, 16805-16811.	2.8	47
3975	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	23.0	770
3976	Combined operando X-ray diffraction–electrochemical impedance spectroscopy detecting solid solution reactions of LiFePO4 in batteries. Nature Communications, 2015, 6, 8169.	5.8	60
3977	Anatase/TiO ₂ -B hybrid microspheres constructed from ultrathin nanosheets: facile synthesis and application for fast lithium ion storage. CrystEngComm, 2015, 17, 7930-7937.	1.3	18
3978	Facile fabrication of RGO wrapped LiMn ₂ O ₄ nanorods as a cathode with enhanced specific capacity. RSC Advances, 2015, 5, 80063-80068.	1.7	33
3979	Elastomers uploaded electrospun nanofibrous membrane as solid state polymer electrolytes for lithium-ion batteries. RSC Advances, 2015, 5, 82960-82967.	1.7	2
3980	Uniform GeO ₂ dispersed in nitrogen-doped porous carbon core–shell architecture: an anode material for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 21722-21732.	5.2	41
3981	Pt/single-stranded DNA/graphene nanocomposite with improved catalytic activity and CO tolerance. Journal of Materials Chemistry A, 2015, 3, 10353-10359.	5.2	32
3982	Effect of Microstructure and Morphology of Electrospun Ultra-Small Carbon Nanofibers on Anode Performances for Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A1085-A1093.	1.3	36
3983	Li–Si-alloy-assisted improvement in the intrinsic cyclability of Mg 2 Si as an anode material for Li-ion batteries. Acta Materialia, 2015, 98, 128-134.	3.8	21
3984	Rational in-situ construction of three-dimensional reduced graphene oxide supported Li2S/C composite as enhanced cathode for rechargeable lithium–sulfur batteries. Journal of Power Sources, 2015, 299, 293-300.	4.0	65
3985	Trends in Na-Ion Solvation with Alkyl-Carbonate Electrolytes for Sodium-Ion Batteries: Insights from First-Principles Calculations. Journal of Physical Chemistry C, 2015, 119, 22747-22759.	1.5	84

# 3986	ARTICLE Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy and Environmental Science, 2015, 8, 3325-3335.	IF 15.6	CITATIONS
3987	Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries. Electrochimica Acta, 2015, 180, 852-857.	2.6	36
3988	Hollow Core–Shell SnO ₂ /C Fibers as Highly Stable Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 21472-21478.	4.0	123
3989	In situ synthesis of hierarchical CoFe ₂ O ₄ nanoclusters/graphene aerogels and their high performance for lithium-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 27109-27117.	1.3	36
3990	Excellent Cycle Stability of Fe ₃ O ₄ Nanoparticles Decorated Graphene as Anode Material for Lithium-ion Batteries. Nano, 2015, 10, 1550081.	0.5	6
3991	The influence of different pre-treatments of current collectors and variation of the binders on the performance of Li4Ti5O12 anodes for lithium ion batteries. Journal of Applied Electrochemistry, 2015, 45, 1043-1055.	1.5	13
3992	Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 20902-20908.	4.0	210
3993	NanoCOT: Low-Cost Nanostructured Electrode Containing Carbon, Oxygen, and Titanium for Efficient Oxygen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 11996-12005.	6.6	61
3994	Nanosized LiNi1â^'xFexPO4 embedded in a mesoporous carbon matrix for high-performance electrochemical water splitting. Chemical Communications, 2015, 51, 15815-15818.	2.2	9
3995	Ultrafine Mo ₂ C nanoparticles encapsulated in N-doped carbon nanofibers with enhanced lithium storage performance. Physical Chemistry Chemical Physics, 2015, 17, 24803-24809.	1.3	91
3996	MoS ₂ –graphene nanosheet–CNT hybrids with excellent electrochemical performances for lithium-ion batteries. RSC Advances, 2015, 5, 77518-77526.	1.7	52
3997	Physical mixtures of Si nanoparticles and carbon nanofibers as anode materials for lithium-ion batteries. Japanese Journal of Applied Physics, 2015, 54, 085001.	0.8	2
3998	A simple technique for measuring the fracture energy of lithiated thin-film silicon electrodes at various lithium concentrations. Journal of Power Sources, 2015, 294, 159-166.	4.0	32
3999	Fluorinated Carbamates as Suitable Solvents for LiTFSI-Based Lithium-Ion Electrolytes: Physicochemical Properties and Electrochemical Characterization. Journal of Physical Chemistry C, 2015, 119, 22404-22414.	1.5	30
4000	Amorphous cobalt silicate nanobelts@carbon composites as a stable anode material for lithium ion batteries. Chemical Science, 2015, 6, 6908-6915.	3.7	69
4001	Three-dimensional Mn-doped Zn ₂ GeO ₄ nanosheet array hierarchical nanostructures anchored on porous Ni foam as binder-free and carbon-free lithium-ion battery anodes with enhanced electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 21328-21336.	5.2	66
4002	Understanding the combined effects of microcrystal growth and band gap reduction for Fe(1â^')Ti F3 nanocomposites as cathode materials for lithium-ion batteries. Nano Energy, 2015, 17, 140-151.	8.2	63
4003	Honeycomb-like porous iron fluoride hybrid nanostructures: excellent Li-storage properties and investigation of the multi-electron reversible conversion reaction mechanism. Journal of Materials Chemistry A, 2015, 3, 19832-19841.	5.2	22

#	Article	IF	CITATIONS
4004	Hollow microspheres and nanoparticles MnFe2O4 as superior anode materials for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2015, 26, 9535-9545.	1.1	23
4005	Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Research, 2015, 8, 3535-3543.	5.8	71
4006	Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catalysis, 2015, 5, 6021-6031.	5.5	369
4007	An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. Journal of Materials Chemistry A, 2015, 3, 19850-19856.	5.2	61
4008	Ionic liquid assisted solid-state synthesis of lithium iron oxide nanoparticles for rechargeable lithium ion batteries. Solid State Ionics, 2015, 280, 37-43.	1.3	7
4009	Metal–Sulfur Battery Cathodes Based on PAN–Sulfur Composites. Journal of the American Chemical Society, 2015, 137, 12143-12152.	6.6	488
4010	Initiated Chemical Vapor Deposition (iCVD) of Highly Cross <i>-</i> Linked Polymer Films for Advanced Lithium-Ion Battery Separators. ACS Applied Materials & Interfaces, 2015, 7, 18849-18855.	4.0	40
4011	Solving spent lithium-ion battery problems in China: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 2015, 52, 1759-1767.	8.2	258
4012	Ternary Hybrid Material for High-Performance Lithium–Sulfur Battery. Journal of the American Chemical Society, 2015, 137, 12946-12953.	6.6	253
4013	Carbonate coprecipitation preparation of Li-rich layered oxides using the oxalate anion ligand as high-energy, high-power and durable cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 21219-21226.	5.2	33
4014	Pseudocapacitive behaviours of Na ₂ Ti ₃ O ₇ @CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 2015, 3, 21277-21283.	5.2	187
4015	Toward Understanding the Lithium Transport Mechanism in Garnet-type Solid Electrolytes: Li ⁺ Ion Exchanges and Their Mobility at Octahedral/Tetrahedral Sites. Chemistry of Materials, 2015, 27, 6650-6659.	3.2	107
4016	A review of equalization topologies for lithium-ion battery packs. , 2015, , .		24
4017	One-step synthesis of the nickel foam supported network-like ZnO nanoarchitectures assembled with ultrathin mesoporous nanosheets with improved lithium storage performance. RSC Advances, 2015, 5, 81341-81347.	1.7	18
4018	Organic solvent-assisted free-standing Li ₂ MnO ₃ ·LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ on 3D graphene as a high energy density cathode. Chemical Communications, 2015, 51, 16381-16384.	2.2	17
4019	Controllable synthesis of micro/nano-structured MnCo ₂ O ₄ with multiporous core–shell architectures as high-performance anode materials for lithium-ion batteries. New Journal of Chemistry, 2015, 39, 8416-8423.	1.4	21
4020	Model calculation and experimental identification of nanocrystalline Li2C2 as cathode material for lithium-ion battery. Electrochimica Acta, 2015, 186, 512-521.	2.6	10
4021	A type of sodium-ion full-cell with a layered NaNi _{0.5} Ti _{0.5} O ₂ cathode and a pre-sodiated hard carbon anode. RSC Advances, 2015, 5, 106519-106522.	1.7	82

#	Article	IF	CITATIONS
4022	Superior high rate capability of size-controlled LiMnPO4/C nanosheets with preferential orientation. RSC Advances, 2015, 5, 100709-100714.	1.7	11
4023	Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26549-26556.	4.0	47
4024	Optimization of Charging Strategy by Prevention of Lithium Deposition on Anodes in high-energy Lithium-ion Batteries – Electrochemical Experiments. Electrochimica Acta, 2015, 178, 525-532.	2.6	158
4025	Enhanced initial coulombic efficiency of Li1.14Ni0.16Co0.08Mn0.57O2 cathode materials with superior performance for lithium-ion batteries. Electrochimica Acta, 2015, 182, 723-732.	2.6	27
4026	Three-dimensional structures and lithium-ion conduction pathways of (Li2S) (GeS2)100â^' superionic glasses. Solid State Ionics, 2015, 280, 44-50.	1.3	5
4027	Cotton-Textile-Enabled, Flexible Lithium-Ion Batteries with Enhanced Capacity and Extended Lifespan. Nano Letters, 2015, 15, 8194-8203.	4.5	200
4028	Facile hydrothermal synthesis of flower-like Co-doped NiO hierarchical nanosheets as anode materials for lithium-ion batteries. RSC Advances, 2015, 5, 91493-91499.	1.7	40
4029	Spinel materials for Li-ion batteries: new insights obtained by <i>operando</i> neutron and synchrotron X-ray diffraction. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 688-701.	0.5	41
4030	High Throughput Screening of Organic Electrode Materials for Lithium Battery by Theoretical Method. Journal of Physical Chemistry C, 2015, 119, 25770-25777.	1.5	29
4031	Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2015, 7, 26572-26578.	4.0	82
4032	Metal–Organic Frameworks (MOFs) as Sandwich Coating Cushion for Silicon Anode in Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 26608-26613.	4.0	75
4033	One-step, continuous synthesis of a spherical Li4Ti5O12/graphene composite as an ultra-long cycle life lithium-ion battery anode. NPG Asia Materials, 2015, 7, e224-e224.	3.8	30
4034	Carbon for engineering of a water-oxidizing catalyst. Dalton Transactions, 2015, 44, 20991-20998.	1.6	7
4035	Sn(ii,iv) steric and electronic structure effects enable self-selective doping on Fe/Si-sites of Li2FeSiO4 nanocrystals for high performance lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 24437-24445.	5.2	15
4036	"Water-in-salt―electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015, 350, 938-943.	6.0	2,553
4037	Molecular Dynamics Modelling of Block-Copolymer Electrolytes with High t+ Values. Electrochimica Acta, 2015, 175, 47-54.	2.6	7
4038	Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi _{0.5} Mn _{1.5} O ₄ Electrodes. Journal of Physical Chemistry C, 2015, 119, 27228-27233.	1.5	125
4039	Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Physical Chemistry Chemical Physics, 2015, 17, 30963-30977.	1.3	142

#	Article	IF	CITATIONS
4040	Pseudocapacitive slurry electrodes using redox-active quinone for high-performance flow capacitors: an atomic-level understanding of pore texture and capacitance enhancement. Journal of Materials Chemistry A, 2015, 3, 23323-23332.	5.2	58
4041	Nanoconfined LiBH ₄ as a Fast Lithium Ion Conductor. Advanced Functional Materials, 2015, 25, 184-192.	7.8	176
4042	Modeling of steady-state and transient thermal performance of a Li-ion cell with an axial fluidic channel for cooling. International Journal of Energy Research, 2015, 39, 573-584.	2.2	17
4043	Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ Hollow Microspheres and Their Lithiumâ€&torage Properties. ChemElectroChem, 2015, 2, 127-133.	1.7	25
4044	Manipulating the polarity of conductive polymer binders for Si-based anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3651-3658.	5.2	43
4045	Building sponge-like robust architectures of CNT–graphene–Si composites with enhanced rate and cycling performance for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3962-3967.	5.2	51
4046	Electrospun SnSb Crystalline Nanoparticles inside Porous Carbon Fibers as a High Stability and Rate Capability Anode for Rechargeable Batteries. ChemPlusChem, 2015, 80, 516-521.	1.3	26
4047	Tuning Proton Conductivity in Alkali Metal Phosphonocarboxylates by Cation Size-Induced and Water-Facilitated Proton Transfer Pathways. Chemistry of Materials, 2015, 27, 424-435.	3.2	82
4048	Li[B(OCH ₂ CF ₃) ₄]: Synthesis, Characterization and Electrochemical Application as a Conducting Salt for LiSB Batteries. ChemPhysChem, 2015, 16, 666-675.	1.0	20
4049	Synthesis of ruthenium oxide coated ordered mesoporous carbon nanofiber arrays as a catalyst for lithium oxygen battery. Journal of Power Sources, 2015, 276, 181-188.	4.0	66
4050	Mn2CoO4/reduced graphene oxide composite as a promising anode material for lithium-ion batteries. Ceramics International, 2015, 41, 4080-4086.	2.3	4
4051	Carbon-coating functionalized La0.6Sr1.4MnO4+l̂′ layered perovskite oxide: enhanced catalytic activity for the oxygen reduction reaction. RSC Advances, 2015, 5, 974-980.	1.7	30
4052	The enhanced rate performance of LiFe _{0.5} Mn _{0.5} PO ₄ /C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating. Journal of Materials Chemistry A, 2015, 3, 996-1004.	5.2	75
4053	Surfactants assisted synthesis of nano-LiFePO ₄ /C composite as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 2025-2035.	5.2	41
4054	Hydrogen-Enriched Reduced Graphene Oxide with Enhanced Electrochemical Performance in Lithium Ion Batteries. Chemistry of Materials, 2015, 27, 266-275.	3.2	53
4055	Tailoring Hollow Silicon–Carbon Nanocomposites As High-Performance Anodes in Secondary Lithium-Based Batteries through Economical Chemistry. Chemistry of Materials, 2015, 27, 37-43.	3.2	42
4056	Orderly Packed Anodes for Highâ€Power Lithiumâ€lon Batteries with Superâ€Long Cycle Life: Rational Design of MnCO ₃ /Largeâ€Area Graphene Composites. Advanced Materials, 2015, 27, 806-812.	11.1	181
4057	Indicative energy technology assessment of advanced rechargeable batteries. Applied Energy, 2015, 138, 559-571.	5.1	91

#	Article	IF	CITATIONS
4058	Hybrid annealing method synthesis of Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ composites with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2015, 5, 3352-3357.	1.7	2
4059	Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries. Scientific Reports, 2014, 4, 7452.	1.6	83
4060	Ultraâ€Thin Hollow Carbon Nanospheres for Pseudocapacitive Sodiumâ€Ion Storage. ChemElectroChem, 2015, 2, 359-365.	1.7	66
4061	Synthesis of Ordered Mesoporous Phenanthrenequinone-Carbon via π-π Interaction-Dependent Vapor Pressure for Rechargeable Batteries. Scientific Reports, 2014, 4, 7404.	1.6	35
4062	Highly efficient solid polymer electrolytes using ion containing polymer microgels. Polymer Chemistry, 2015, 6, 1052-1055.	1.9	7
4063	Hierarchical NiCo ₂ O ₄ Nanosheets Grown on Ni Nanofoam as High-Performance Electrodes for Supercapacitors. Small, 2015, 11, 804-808.	5.2	232
4064	Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon, 2015, 84, 434-443.	5.4	144
4065	Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique. Solid State Ionics, 2015, 270, 6-9.	1.3	32
4066	One-step synthesis of hematite nanospindles from choline chloride/urea deep eutectic solvent with highly powerful storage versus lithium. Journal of Power Sources, 2015, 274, 1-7.	4.0	74
4067	Insight into the Atomic Structure of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Material in the First Cycle. Chemistry of Materials, 2015, 27, 292-303.	3.2	151
4068	Improvement of cycling performance in Ti substituted 0.5Li2MnO3–0.5LiNi0.5Mn0.5O2 through suppressing metal dissolution. Journal of Power Sources, 2015, 278, 76-86.	4.0	33
4069	Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. Journal of Power Sources, 2015, 277, 36-43.	4.0	154
4070	Glucose-assisted synthesis of the hierarchical TiO ₂ nanowire@MoS ₂ nanosheet nanocomposite and its synergistic lithium storage performance. Journal of Materials Chemistry A, 2015, 3, 2762-2769.	5.2	142
4071	Ubiquitous computer aided design: A broken promise or a Sleeping Beauty?. CAD Computer Aided Design, 2015, 59, 161-175.	1.4	35
4072	Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy, 2015, 11, 490-499.	8.2	253
4073	Preparation and electrochemical characterization of Li2+xNa2â^'xTi6O14 (0â‰ x â‰ 0 .2) as anode materials for lithium-ion batteries. Ceramics International, 2015, 41, 2900-2907.	2.3	17
4074	Interconnected porous carbon with tunable pore size as a model substrate to confine LiFePO4 cathode material for energy storage. Microporous and Mesoporous Materials, 2015, 204, 190-196.	2.2	12
4075	Facile Fabrication of Binder-free Metallic Tin Nanoparticle/Carbon Nanofiber Hybrid Electrodes for Lithium-ion Batteries. Electrochimica Acta, 2015, 153, 468-475.	2.6	50

#	Article	IF	Citations
4076	Enhanced catalytic activity for the oxygen reduction reaction with co-doping of phosphorus and iron in carbon. Journal of Power Sources, 2015, 277, 161-168.	4.0	46
4077	Highly enhanced low temperature discharge capacity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with lithium boron oxide glass modification. Journal of Power Sources, 2015, 277, 139-146.	4.0	86
4078	Potential of lithium-ion batteries in renewable energy. Renewable Energy, 2015, 76, 375-380.	4.3	680
4079	Fixing of highly soluble Br ₂ /Br ^{â^'} in porous carbon as a cathode material for rechargeable lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 1879-1883.	5.2	14
4080	MSnS ₂ (M = Cu, Fe) Electrode Family as Dual-Performance Electrodes for Li–S and Li–Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A284-A287.	1.3	7
4081	In situ catalytic growth of large-area multilayered graphene/MoS2 heterostructures. Scientific Reports, 2014, 4, 4673.	1.6	58
4082	Efficient Water Splitting Using a Simple Ni/N/C Paper Electrocatalyst. Advanced Energy Materials, 2015, 5, 1401660.	10.2	144
4083	High-power lithium ion batteries based on flexible and light-weight cathode of LiNi 0.5 Mn 1.5 O 4 /carbon nanotube film. Nano Energy, 2015, 12, 43-51.	8.2	63
4084	Polymer electrolytes based on dicationic polymeric ionic liquids: application in lithium metal batteries. Journal of Materials Chemistry A, 2015, 3, 170-178.	5.2	120
4085	Facile and large-scale fabrication of hierarchical ZnFe ₂ O ₄ /graphene hybrid films as advanced binder-free anodes for lithium-ion batteries. New Journal of Chemistry, 2015, 39, 1725-1733.	1.4	29
4086	Water soluble graphene as electrolyte additive in magnesium-air battery system. Journal of Power Sources, 2015, 276, 32-38.	4.0	73
4087	CVD of carbon nanotubes in porous nickel for anodes in lithium ion battery. Current Opinion in Chemical Engineering, 2015, 7, 32-39.	3.8	9
4088	Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes. Electrochimica Acta, 2015, 152, 172-177.	2.6	85
4089	A sodium ion conducting gel polymer electrolyte. Solid State Ionics, 2015, 269, 1-7.	1.3	153
4090	Identifying trends in battery technologies with regard to electric mobility: evidence from patenting activities along and across the battery value chain. Journal of Cleaner Production, 2015, 87, 800-810.	4.6	82
4091	Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale, 2015, 7, 1791-1795.	2.8	88
4092	Facile one-pot synthesis of platinum nanoparticles decorated nitrogen-graphene with high electrocatalytic performance for oxygen reduction and anodic fuels oxidation. Journal of Power Sources, 2015, 277, 268-276.	4.0	29
4093	In situ preparation of 3D graphene aerogels@hierarchical Fe ₃ O ₄ nanoclusters as high rate and long cycle anode materials for lithium ion batteries. Chemical Communications, 2015, 51, 1597-1600.	2.2	76

#	Article	IF	CITATIONS
4094	One-minute deposition of micrometre-thick porous Si anodes for lithium ion batteries. RSC Advances, 2015, 5, 2938-2946.	1.7	7
4095	Mesoporous hexagonal Co3O4 for high performance lithium ion batteries. Scientific Reports, 2014, 4, 6519.	1.6	84
4096	Advanced semi-interpenetrating polymer network gel electrolyte for rechargeable lithium batteries. Electrochimica Acta, 2015, 152, 489-495.	2.6	92
4097	Pyrolytic carbon-coated Si nanoparticles on elastic graphene framework as anode materials for high-performance lithium-ion batteries. Carbon, 2015, 82, 161-167.	5.4	105
4098	Fabrication of nanostructured V ₂ O ₅ via urea combustion for high-performance Li-ion battery cathode. RSC Advances, 2015, 5, 4256-4260.	1.7	12
4099	Energy Storage for Mitigating the Variability of Renewable Electricity Sources. , 2015, , 1-33.		20
4100	Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon, 2015, 82, 562-571.	5.4	224
4101	Identification of lithium–sulfur battery discharge products through 6Li and 33S solid-state MAS and 7Li solution NMR spectroscopy. Surface Science, 2015, 631, 295-300.	0.8	58
4102	Synthesis of nanosheets-assembled lithium titanate hollow microspheres and their application to lithium ion battery anodes. Electrochimica Acta, 2015, 151, 502-509.	2.6	26
4103	The effect of titanium in Li ₃ V ₂ (PO ₄) ₃ /graphene composites as cathode material for high capacity Li-ion batteries. RSC Advances, 2015, 5, 4872-4879.	1.7	22
4104	Temperature-dependent self-assembly of NiO/Co ₃ O ₄ composites for supercapacitor electrodes with good cycling performance: from nanoparticles to nanorod arrays. RSC Advances, 2015, 5, 1943-1948.	1.7	43
4105	Origin of voltage decay in high-capacity layered oxide electrodes. Nature Materials, 2015, 14, 230-238.	13.3	757
4106	Copperâ€Doped Dual Phase Li ₄ Ti ₅ O ₁₂ –TiO ₂ Nanosheets as Highâ€Rate and Long Cycle Life Anodes for Highâ€Power Lithiumâ€Ion Batteries. ChemSusChem, 2015, 8, 114-122.	3.6	110
4107	Carbon coated K _{0.8} Ti _{1.73} Li _{0.27} O ₄ : a novel anode material for sodium-ion batteries with a long cycle life. Chemical Communications, 2015, 51, 1608-1611.	2.2	33
4108	Progress toward Metal-Air Batteries: Mechanistic Investigation of the Effect of Water on the Oxygen Reduction Reaction at Carbon-Conductive Polymer-Silver Composite Air Electrodes. Journal of the Electrochemical Society, 2015, 162, A69-A76.	1.3	2
4109	Dendrite-separator interactions in lithium-based batteries. Journal of Power Sources, 2015, 275, 912-921.	4.0	143
4110	Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries. Journal of Power Sources, 2015, 275, 694-701.	4.0	55
4111	Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochimica Acta, 2015, 152, 286-293.	2.6	91

ARTICLE IF CITATIONS Sulfur/bamboo charcoal composites cathode for lithium–sulfur batteries. RSC Advances, 2015, 5, 1.7 27 4112 68-74. Manganese modified zeolite silicalite-1 as polysulphide sorbent in lithium sulphur batteries. Journal of Power Sources, 2015, 274, 1239-1248. A nano-granular Sn impregnated NiTi alloy matrix anode for high voltage Li-ion pouch cells. RSC 4114 1.7 2 Advances, 2015, 5, 3844-3853. Is there a universal reaction mechanism of Li insertion into oxidic spinels: a case study using MgFe₂O₄. Journal of Materials Chemistry A, 2015, 3, 1549-1561. Facile Synthesis of Co3O4-Graphene Composite as an Anode Material for Lithium-Ion Batteries With Enhanced Reversible Capacity and Cyclic Performance. Synthesis and Reactivity in Inorganic, Metal 4116 7 0.6 Organic, and Nano Metal Chemistry, 2015, 45, 614-620. Combustion calorimetry of carbonate electrolytes used in lithium ion batteries. Journal of Fire Sciences, 2015, 33, 22-36. From a historic review to horizons beyond: lithium–sulphur batteries run on the wheels. Chemical 4118 2.2 170 Communications, 2015, 51, 18-33. Electrochemical Model-Based State of Charge Estimation for Li-Ion Cells. IEEE Transactions on 4119 3.2 104 Control Systems Technology, 2015, 23, 117-127. Cyclability of binder-free Î²-Ni(OH)2 anodes shaped by EPD for Li-ion batteries. Journal of the European 4120 2.8 17 Ceramic Society, 2015, 35, 573-584. Defining role of the surface and bulk contributions in camphoric carbon grafted lithium nickel 2.3 manganese oxide powders for lithium ion batteries. Ceramics International, 2015, 41, 3269-3276. Improving the electrochemical performance of the LiNi_{0.5}Mn_{1.5}O₄spinel by polypyrrole coating as a cathode 4122 5.2 130 material for the lithium-ion battery. Journal of Materials Chemistry A, 2015, 3, 404-411. Li₃VO₄ anchored graphene nanosheets for long-life and high-rate lithium-ion batteries. Chemical Communications, 2015, 51, 229-231. 2.2 107 Observation of ionic transport and ion-coordinated segmental motions in composite 4124 1.2 43 (polymer-salt-clay) solid polymer electrolyte. Ionics, 2015, 21, 401-410. Stable Silicon Anodes for Lithiumâ€lon Batteries Using Mesoporous Metallurgical Silicon. Advanced Energy Materials, 2015, 5, 1401556. 10.2 Performance Improvement of Magnesium Sulfur Batteries with Modified Nonâ€Nucleophilic 4126 10.2 308 Electrolytes. Advanced Energy Materials, 2015, 5, 1401155. Synthesis of graphene-like MoS2 nanowall/graphene nanosheet hybrid materials with high lithium 2.2 storage performance. Catalysis Today, 2015, 246, 165-171. Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion 4128 4.0 343 batteries: A review. Journal of Power Sources, 2015, 274, 869-884. Genetics of superionic conductivity in lithium lanthanum titanates. Physical Chemistry Chemical 4129 1.3 Physics, 2015, 17, 178-183.

#	Article	IF	CITATIONS
4130	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 71-77.	5.2	432
4131	Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. Journal of Materials Chemistry A, 2015, 3, 1364-1387.	5.2	396
4132	CuO single crystal with exposed {001} facets - A highly efficient material for gas sensing and Li-ion battery applications. Scientific Reports, 2014, 4, 5753.	1.6	123
4133	Prospects, challenges, and latest developments in lithium-air batteries. International Journal of Energy Research, 2015, 39, 303-316.	2.2	36
4134	Lithium aluminate-based ceramic membranes as separators for lithium-ion batteries. Ceramics International, 2015, 41, 3045-3050.	2.3	44
4135	Mechanistic investigation of ion migration in Na ₃ V ₂ (PO ₄) ₂ F ₃ hybrid-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 159-165.	1.3	62
4136	Mixed Transition Metal Titanate and Vanadate Negative Electrode Materials for Na-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A15-A20.	1.3	19
4137	Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries. Electrochimica Acta, 2015, 151, 203-213.	2.6	53
4138	NaV ₆ O ₁₅ Nanoflakes with Good Cycling Stability as a Cathode for Sodium Ion Battery. Journal of the Electrochemical Society, 2015, 162, A39-A43.	1.3	65
4139	Core–shell Co@Co3O4nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction. Nanoscale, 2015, 7, 7056-64.	2.8	95
4140	Silver/carbon nanotube hybrids: A novel conductive network for high-rate lithium ion batteries. Electrochimica Acta, 2015, 151, 16-20.	2.6	18
4141	Inkjet-Printed Wideband Planar Monopole Antenna on Cardboard for RF Energy-Harvesting Applications. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 325-328.	2.4	44
4142	Metal-free aqueous redox capacitor via proton rocking-chair system in an organic-based couple. Scientific Reports, 2014, 4, 3591.	1.6	87
4143	Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries. Nano Research, 2015, 8, 808-820.	5.8	25
4144	The effects of Co doping on the crystal structure and electrochemical performance of Mg(Mn2Ââ^'ÂxCox)O4 negative materials for lithium ion battery. Solid State Sciences, 2015, 39, 23-28.	1.5	15
4145	A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries. Energy and Environmental Science, 2015, 8, 81-102.	15.6	1,085
4146	Electrochemical property studies of carbon nanotube films fabricated by CVD method as anode materials for lithium-ion battery applications. Vacuum, 2015, 112, 1-4.	1.6	35
4147	Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO. Journal of Power Sources, 2015, 275, 136-143.	4.0	39

#	Article	IF	CITATIONS
4148	Phase composition and electrochemical performance of sodium lithium titanates as anode materials for lithium rechargeable batteries. Journal of Power Sources, 2015, 275, 419-428.	4.0	31
4149	Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives. Chemical Physics Letters, 2015, 618, 208-213.	1.2	41
4150	Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries. Applied Surface Science, 2015, 324, 399-404.	3.1	53
4151	Ge–graphene–carbon nanotube composite anode for high performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 1498-1503.	5.2	105
4152	Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties. Carbon, 2015, 81, 739-747.	5.4	25
4153	Chitosan oligosaccharides: A novel and efficient water soluble binder for lithium zinc titanate anode in lithium-ion batteries. Electrochimica Acta, 2015, 151, 27-34.	2.6	39
4154	Selfâ€Sacrifice Template Fabrication of Hierarchical Mesoporous Biâ€Componentâ€Active ZnO/ZnFe ₂ O ₄ Subâ€Microcubes as Superior Anode Towards Highâ€Performance Lithiumâ€Ion Battery. Advanced Functional Materials, 2015, 25, 238-246.	7.8	334
4155	Advances in sealed liquid cells for in-situ TEM electrochemial investigation of lithium-ion battery. Nano Energy, 2015, 11, 196-210.	8.2	75
4156	Ordered Network of Interconnected SnO ₂ Nanoparticles for Excellent Lithiumâ€ l on Storage. Advanced Energy Materials, 2015, 5, 1401289.	10.2	147
4157	Tracking inhomogeneity in high-capacity lithium iron phosphate batteries. Journal of Power Sources, 2015, 275, 429-434.	4.0	40
4158	Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries. Scientific Reports, 2015, 4, 5785.	1.6	30
4159	SnSe alloy as a promising anode material for Na-ion batteries. Chemical Communications, 2015, 51, 50-53.	2.2	129
4160	Synthesis of CuO nanowire arrays as high-performance electrode for lithium ion batteries. Materials Letters, 2015, 139, 55-58.	1.3	45
4161	A core–shell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries. Journal of Power Sources, 2015, 274, 219-228.	4.0	31
4162	Insight into cobalt-doping in Li2FeSiO4 cathode material for lithium-ion battery. Journal of Power Sources, 2015, 274, 194-202.	4.0	62
4163	High energy xLi2MnO3–(1â^'x)LiNi2/3Co1/6Mn1/6O2 composite cathode for advanced Li-ion batteries. Journal of Power Sources, 2015, 274, 440-450.	4.0	16
4164	Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium–sulfur batteries. Journal of Power Sources, 2015, 274, 471-476.	4.0	88
4165	Flexible electronics based on inorganic nanowires. Chemical Society Reviews, 2015, 44, 161-192.	18.7	429

#	Article	IF	CITATIONS
4166	Monitoring innovation in electrochemical energy storage technologies: A patent-based approach. Applied Energy, 2015, 137, 537-544.	5.1	65
4167	Novel nanoarchitectured Zn2SnO4 anchored on porous carbon as high performance anodes for lithium ion batteries. Materials Letters, 2015, 138, 120-123.	1.3	34
4168	Review of electrical energy storage system for vehicular applications. Renewable and Sustainable Energy Reviews, 2015, 41, 225-236.	8.2	242
4169	Micro―and Mesoporous Carbideâ€Derived Carbon–Selenium Cathodes for Highâ€Performance Lithium Selenium Batteries. Advanced Energy Materials, 2015, 5, 1400981.	10.2	144
4170	Nitrogen containing bio-carbon as a potential anode for lithium batteries. Carbon, 2015, 81, 43-53.	5.4	121
4171	High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Scientific Reports, 2014, 4, 5622.	1.6	286
4172	Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43, 136-164.	11.8	251
4173	Silicon anode for rechargeable aqueous lithium–air batteries. Journal of Power Sources, 2015, 273, 538-543.	4.0	8
4174	Sulfurâ€Based Composite Cathode Materials for Highâ€Energy Rechargeable Lithium Batteries. Advanced Materials, 2015, 27, 569-575.	11.1	293
4175	Combustion synthesized rod-like nanostructure hematite with enhanced lithium storage properties. Materials Research Bulletin, 2015, 61, 83-88.	2.7	11
4176	A highly safe battery with a non-flammable triethyl-phosphate-based electrolyte. Journal of Power Sources, 2015, 273, 954-958.	4.0	33
4177	An Advanced MoS ₂ /Carbon Anode for High-Performance Sodium-Ion Batteries. Small, 2015, 11, 473-481.	5.2	390
4178	Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Scientific Reports, 2014, 4, 4315.	1.6	274
4179	All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Scientific Reports, 2014, 4, 5278.	1.6	185
4180	Improving electrochemical performance of spherical LiMn2O4 cathode materials for lithium ion batteries by Al-F codoping and AlF3 surface coating. Ionics, 2015, 21, 27-35.	1.2	21
4181	TiO2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries. Ionics, 2015, 21, 51-58.	1.2	16
4182	Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics, 2015, 21, 381-385.	1.2	105
4183	Solid Electrolyte: the Key for Highâ€Voltage Lithium Batteries. Advanced Energy Materials, 2015, 5, 1401408.	10.2	544

#	Article	IF	CITATIONS
4184	Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science, 2015, 8, 31-54.	15.6	232
4185	Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm, 2015, 17, 10-22.	1.3	89
4186	Chapter 5. Assessing the Need for High Impact Technology Research, Development & Deployment for Mitigating Climate Change. Collabra, 2016, 2, .	1.3	3
4187	Capacity Improvement of Tin-Deposited on Carbon-Coated Graphite Anode for Rechargeable Lithium Ion Batteries. International Journal of Electrochemical Science, 2016, 11, 5807-5818.	0.5	18
4188	Lithium-Sulfur Batteries: Overview and Advances. Nanoscience and Nanotechnology - Asia, 2016, 6, 28-48.	0.3	4
4189	Thermal Imaging of Electrochemical Power Systems: A Review. Journal of Imaging, 2016, 2, 2.	1.7	29
4190	Enhanced Performance of LiNiCoMnO Cathodes at Elevated Temperatures Using an Imidazolium-Based Electrolyte with Lithium Difluoro(oxalate)Borate. International Journal of Electrochemical Science, 2016, 11, 6149-6163.	0.5	1
4191	Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2 as Cathode Materials for Li-Ion Batteries via an Efficacious Sol- Gel Method. International Journal of Electrochemical Science, 2016, , 5267-5278.	0.5	24
4192	Ultra-long Nanorods of Single-crystalline Na0.44MnO2 as Cathode Materials for Sodium-ion Batteries. International Journal of Electrochemical Science, 2016, , 7242-7253.	0.5	5
4193	Preparation of Activated Carbons from Sisal Fibers as Anode Materials for Lithium Ion Batteries. International Journal of Electrochemical Science, 2016, 11, 8418-8429.	0.5	12
4194	Multi-Walled Carbon Nanotubes Modified Li3V2(PO4)3/Carbon Composites with Enhanced Electrochemical Performances as Cathode Materials for Li-Ion Batteries. International Journal of Electrochemical Science, 2016, , 5217-5225.	0.5	6
4195	Synthesis and Characterization of Maghemite as an Anode for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2016, 11, 6432-6442.	0.5	9
4196	Reduced Graphene Oxide Encapsulated N-type Si Nanoparticles as Anode for Lithium-ion Batteries. International Journal of Electrochemical Science, 2016, , 4794-4801.	0.5	1
4197	MnFe2O4 Colloidal Nanocrystal Assemblies as Anode Materials for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2016, , 7309-7317.	0.5	1
4198	High Reversibility of "Soft―Electrode Materials in All-Solid-State Batteries. Frontiers in Energy Research, 2016, 4, .	1.2	22
4199	Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries. Frontiers in Energy Research, 2016, 4, .	1.2	42
4200	Lithium Superionic Conductor Li9.42Si1.02P2.1S9.96O2.04 with Li10GeP2S12-Type Structure in the Li2S–P2S5–SiO2 Pseudoternary System: Synthesis, Electrochemical Properties, and Structure–Composition Relationships. Frontiers in Energy Research, 2016, 4, .	1.2	54
4201	Optimal Scheduling of Energy Storage System for Self-Sustainable Base Station Operation Considering Battery Wear-Out Cost. Energies, 2016, 9, 462.	1.6	56

#	Article	IF	CITATIONS
4202	Nature of the Electrochemical Properties of Sulphur Substituted LiMn2O4 Spinel Cathode Material Studied by Electrochemical Impedance Spectroscopy. Materials, 2016, 9, 696.	1.3	10
4203	Preparation and Electrocapacitive Properties of Hierarchical Porous Carbons Based on Loofah Sponge. Materials, 2016, 9, 912.	1.3	19
4204	Electrochemical Characteristics of Cubic ZnFe2O4 Anode for Li-Ion Batteries at Low Temperature. , 2016, , .		0
4205	A Mini Review: Nanostructured Silicon-based Materials for Lithium Ion Battery. Nanoscience and Nanotechnology - Asia, 2016, 6, 3-27.	0.3	10
4206	Enhanced Electrochemical Performances of LiFePO4/C via V and F Co-doping for Lithium-Ion Batteries. Chinese Journal of Chemical Physics, 2016, 29, 303-307.	0.6	3
4207	Nano-Li3V2(PO4)3/C Synthesized by Thermal Polymerization Method as Cathode Material for Lithium Ion Batteries. Chinese Journal of Chemical Physics, 2016, 29, 699-702.	0.6	2
4208	Metal Hydride-Based Materials as Negative Electrode for All- Solid-State Lithium-Ion Batteries. , 0, , .		3
4209	Synthesis and Electrocatalysis of Pt-Pd Bimetallic Nanocrystals for Fuel Cells. Nanostructure Science and Technology, 2016, , 169-223.	0.1	0
4210	Hierarchical LiMn ₂ O ₄ Hollow Cubes with Exposed {111} Planes as High-Power Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 19567-19572.	4.0	48
4211	High performance lithium–sulfur batteries with a permselective sulfonated acetylene black modified separator. Journal of Materials Chemistry A, 2016, 4, 12319-12327.	5.2	83
4212	Preparation and characterization of Na ₃ BO ₃ –Na ₂ SO ₄ glass electrolytes with Na ⁺ ion conductivity prepared by a mechanical milling technique. Journal of Asian Ceramic Societies, 2016, 4, 6-10.	1.0	7
4213	Hierarchical LiNixCoyO2 mesostructures as high-performance cathode materials for lithium ion batteries. Journal of Power Sources, 2016, 326, 279-284.	4.0	7
4214	Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2 via Al gradient doping. Journal of Power Sources, 2016, 326, 322-330.	4.0	125
4215	Effects of battery chemistry and performance on the life cycle greenhouse gas intensity of electric mobility. Transportation Research, Part D: Transport and Environment, 2016, 47, 182-194.	3.2	79
4216	One-Step Catalytic Synthesis of CuO/Cu ₂ O in a Graphitized Porous C Matrix Derived from the Cu-Based Metal–Organic Framework for Li- and Na-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 19514-19523.	4.0	99
4217	High performance Li–S battery based on amorphous NiS ₂ as the host material for the S cathode. Journal of Materials Chemistry A, 2016, 4, 13395-13399.	5.2	74
4218	Nanostructured Iron Oxide/Hydroxideâ€Based Electrode Materials for Supercapacitors. ChemNanoMat, 2016, 2, 588-600.	1.5	82
4219	Lowâ€Permeability Poly(ether Ether Ketone)â€Based Ampholytic Membranes. ChemPlusChem, 2016, 81, 550-556.	1.3	9

#	Article	IF	CITATIONS
4220	Association and Diffusion of Li ⁺ in Carboxymethylcellulose Solutions for Environmentally Friendly Liâ€ion Batteries. ChemSusChem, 2016, 9, 1804-1813.	3.6	6
4221	Constructing Hierarchically Hollow Core–Shell MnO ₂ /C Hybrid Spheres for Highâ€Performance Lithium Storage. Small, 2016, 12, 3914-3919.	5.2	48
4222	Structure Formation and Thermal Stability of Mono- and Multilayers of Ethylene Carbonate on Cu(111): A Model Study of the Electrode Electrolyte Interface. Journal of Physical Chemistry C, 2016, 120, 16791-16803.	1.5	15
4223	Recent Developments and Understanding of Novel Mixed Transitionâ€Metal Oxides as Anodes in Lithium Ion Batteries. Advanced Energy Materials, 2016, 6, 1502175.	10.2	756
4224	A Hierarchical Porous C@LiFePO ₄ /Carbon Nanotubes Microsphere Composite for Highâ€Rate Lithiumâ€Ion Batteries: Combined Experimental and Theoretical Study. Advanced Energy Materials, 2016, 6, 1600426.	10.2	194
4225	3Dâ€Printed Cathodes of LiMn _{1â^'} <i>_x</i> Fe <i>_x</i> PO ₄ Nanocrystals Achieve Both Ultrahigh Rate and High Capacity for Advanced Lithiumâ€ion Battery. Advanced Energy Materials, 2016, 6, 1600856.	10.2	157
4226	A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a Highâ€Performance Rechargeable Lithiumâ€ion Battery. Angewandte Chemie - International Edition, 2016, 55, 6428-6432.	7.2	183
4227	Enhanced Intrinsic Catalytic Activity of λâ€MnO ₂ by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie - International Edition, 2016, 55, 8599-8604.	7.2	107
4228	Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 9514-9518.	7.2	308
4229	Oneâ€Pot Synthesis of Pomegranate‣tructured Fe ₃ O ₄ /Carbon Nanospheresâ€Đoped Graphene Aerogel for Highâ€Rate Lithium Ion Batteries. Chemistry - A European Journal, 2016, 22, 4454-4459.	1.7	41
4230	Core–Shell Ge@Graphene@TiO ₂ Nanofibers as a Highâ€Capacity and Cycleâ€Stable Anode for Lithium and Sodium Ion Battery. Advanced Functional Materials, 2016, 26, 1104-1111.	7.8	265
4231	A Wearable Allâ€Solid Photovoltaic Textile. Advanced Materials, 2016, 28, 263-269.	11.1	254
4232	A High Energy Lithiumâ€Sulfur Battery with Ultrahigh‣oading Lithium Polysulfide Cathode and its Failure Mechanism. Advanced Energy Materials, 2016, 6, 1502459.	10.2	282
4233	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie - International Edition, 2016, 55, 4977-4982.	7.2	258
4234	Charge Correlations for Precise, Coulombically Driven Self Assembly. Macromolecular Chemistry and Physics, 2016, 217, 126-136.	1.1	22
4235	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	5.2	86
4236	High performance porous iron oxide-carbon nanotube nanocomposite as an anode material for lithium-ion batteries. Electrochimica Acta, 2016, 212, 179-186.	2.6	34
4237	Ionic liquid incorporated nanocomposite polymer electrolytes for rechargeable lithium ion battery: A way to achieve improved electrochemical and interfacial properties. Journal of Industrial and Engineering Chemistry, 2016, 40, 168-176.	2.9	34

#	Article	IF	CITATIONS
4238	Electrochemical Reduction of Oxygen on Hydrophobic Ultramicroporous PolyHIPE Carbon. ACS Catalysis, 2016, 6, 5618-5628.	5.5	67
4239	Mg(PF ₆) ₂ -Based Electrolyte Systems: Understanding Electrolyte–Electrode Interactions for the Development of Mg-Ion Batteries. Journal of the American Chemical Society, 2016, 138, 8682-8685.	6.6	101
4240	Capacity-limiting mechanisms in Li/O ₂ batteries. Physical Chemistry Chemical Physics, 2016, 18, 22840-22851.	1.3	29
4241	Green and Facile Fabrication of MWNTs@Sb ₂ S ₃ @PPy Coaxial Nanocables for Highâ€Performance Naâ€Ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 493-499.	1.2	66
4242	Flexible SnO ₂ /N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. Small, 2016, 12, 853-859.	5.2	292
4243	Transitionâ€Metalâ€Free Biomoleculeâ€Based Flexible Asymmetric Supercapacitors. Small, 2016, 12, 4683-4689.	5.2	45
4244	Threeâ€Dimensional Coralâ€Like Structure Constructed of Carbonâ€Coated Interconnected Monocrystalline SnO ₂ Nanoparticles with Improved Lithiumâ€Storage Properties. ChemElectroChem, 2016, 3, 1098-1106.	1.7	9
4245	Biomassâ€Derived Porous Carbon with Micropores and Small Mesopores for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2016, 22, 3239-3244.	1.7	117
4246	High Performance Particle/Polymer Nanofiber Anodes for Liâ€ion Batteries using Electrospinning. ChemSusChem, 2016, 9, 208-215.	3.6	11
4247	Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. International Journal of Energy Research, 2016, 40, 1032-1049.	2.2	226
4248	Electrochemical Performance of MnO ₂ â€based Air Cathodes for Zincâ€air Batteries. Fuel Cells, 2016, 16, 395-400.	1.5	21
4249	Enhanced Cycling Stability of Rechargeable Li–O ₂ Batteries Using High oncentration Electrolytes. Advanced Functional Materials, 2016, 26, 605-613.	7.8	104
4250	Flexible Integrated Electrical Cables Based on Biocomposites for Synchronous Energy Transmission and Storage. Advanced Functional Materials, 2016, 26, 3472-3479.	7.8	72
4251	Color oded Batteries – Electroâ€Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics. Advanced Materials, 2016, 28, 5681-5688.	11.1	44
4252	Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glueâ€Nanofiller for Advanced Liâ€Ion Battery Cathode. Advanced Materials, 2016, 28, 4705-4712.	11.1	106
4253	High Capacity Lithium Ion Battery Anodes Using Sn Nanowires Encapsulated Al ₂ O ₃ Tubes in Carbon Matrix. Advanced Materials Interfaces, 2016, 3, 1500491.	1.9	29
4254	Optimized Temperature Effect of Liâ€lon Diffusion with Layer Distance in Li(Ni <i>_x</i> Mn <i>_y</i> Co <i>_z</i>)O ₂ Cathode Materials for High Performance Liâ€lon Battery. Advanced Energy Materials, 2016, 6, 1501309.	10.2	182
4255	Tailoring a New 4V lass Cathode Material for Naâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1502147.	10.2	65

#	Article	IF	CITATIONS
4256	Critical Challenges in Rechargeable Aprotic Li–O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1502303.	10.2	369
4257	A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a Highâ€Performance Rechargeable Lithium″on Battery. Angewandte Chemie, 2016, 128, 6538-6542.	1.6	29
4258	Rechargeable Roomâ€Temperature Na–CO ₂ Batteries. Angewandte Chemie, 2016, 128, 6592-6596.	1.6	43
4259	Estimation of energy density of Li-S batteries with liquid and solid electrolytes. Journal of Power Sources, 2016, 326, 1-5.	4.0	88
4260	The Electrochemistry with Lithium versus Sodium of Selenium Confined To Slit Micropores in Carbon. Nano Letters, 2016, 16, 4560-4568.	4.5	140
4261	Enhancing the Stability of Sulfur Cathodes in Li–S Cells via in Situ Formation of a Solid Electrolyte Layer. ACS Energy Letters, 2016, 1, 373-379.	8.8	61
4262	Allyl ethers as combined plasticizing and crosslinkable side groups in polycarbonateâ€based polymer electrolytes for solidâ€state Li batteries. Journal of Polymer Science Part A, 2016, 54, 2128-2135.	2.5	55
4263	A High-Rate V ₂ O ₅ Hollow Microclew Cathode for an All-Vanadium-Based Lithium-Ion Full Cell. Small, 2016, 12, 1082-1090.	5.2	55
4264	High performance Ni3S2/Ni film with three dimensional porous architecture as binder-free anode for lithium ion batteries. Electrochimica Acta, 2016, 211, 761-767.	2.6	28
4265	Impact of the Cut-Off Voltage on Cyclability and Passive Interphase of Sn-Polyacrylate Composite Electrodes for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 15017-15026.	1.5	40
4266	Functionalized Nanocellulose-Integrated Heterolayered Nanomats toward Smart Battery Separators. Nano Letters, 2016, 16, 5533-5541.	4.5	96
4267	A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851.	5.8	198
4268	Tin Selenide – Multi-Walled Carbon Nanotubes Hybrid Anodes for High Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 211, 720-725.	2.6	105
4269	Conductive Polymer-Coated VS ₄ Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 18797-18805.	4.0	134
4270	Pt Alloy Electrocatalysts for the Oxygen Reduction Reaction: From Model Surfaces to Nanostructured Systems. ACS Catalysis, 2016, 6, 5378-5385.	5.5	130
4271	Lithium Sulfide/Metal Nanocomposite as a High apacity Cathode Prelithiation Material. Advanced Energy Materials, 2016, 6, 1600154.	10.2	87
4272	Revealing the Electrochemical Lithiation Routes of CuO Nanowires by inâ€Situ TEM. ChemElectroChem, 2016, 3, 1296-1300.	1.7	11
4273	Stable Deep Doping of Vaporâ€Phase Polymerized Poly(3,4â€ethylenedioxythiophene)/Ionic Liquid Supercapacitors. ChemSusChem, 2016, 9, 2112-2121.	3.6	30

#	Article	IF	CITATIONS
4274	Toward Ultrahighâ€Capacity V ₂ O ₅ Lithiumâ€Ion Battery Cathodes via Oneâ€Pot Synthetic Route from Precursors to Electrode Sheets. Advanced Materials Interfaces, 2016, 3, 1600173.	1.9	16
4275	Hard Carbon Microspheres: Potassiumâ€ion Anode Versus Sodiumâ€ion Anode. Advanced Energy Materials, 2016, 6, 1501874.	10.2	814
4276	Enhanced Intrinsic Catalytic Activity of λâ€MnO ₂ by Electrochemical Tuning and Oxygen Vacancy Generation. Angewandte Chemie, 2016, 128, 8741-8746.	1.6	18
4277	Unusual Formation of CoSe@carbon Nanoboxes, which have an Inhomogeneous Shell, for Efficient Lithium Storage. Angewandte Chemie, 2016, 128, 9666-9670.	1.6	37
4278	Synthesis of Nanoporous Li ₄ Ti ₅ O ₁₂ –TiO ₂ Composites for Highâ€Performance Lithiumâ€Ionâ€Battery Anodes. ChemElectroChem, 2016, 3, 1951-1959.	1.7	11
4279	Alkyl Substitution Effect on Oxidation Stability of Sulfoneâ€Based Electrolytes. ChemElectroChem, 2016, 3, 790-797.	1.7	18
4280	A Highâ€Voltage and Highâ€Capacity Li _{1+<i>x</i>} Ni _{0.5} Mn _{1.5} O ₄ Cathode Material: From Synthesis to Full Lithiumâ€Ion Cells. ChemSusChem, 2016, 9, 1843-1849.	3.6	59
4281	Quick Determination of Electroactive Surface Area of Some Oxide Electrode Materials. Electroanalysis, 2016, 28, 2394-2399.	1.5	57
4282	Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology, 2016, , .	0.1	11
4283	In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochimica Acta, 2016, 211, 404-410.	2.6	60
4284	Electrochemical properties of Li 2 MnO 3 nanowires with polycrystalline and monocrystalline states. Journal of Alloys and Compounds, 2016, 686, 496-502.	2.8	13
4285	Electrocatalysis Paradigm for Protection of Cathode Materials in High-Voltage Lithium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 15119-15128.	1.5	24
4286	A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li–S cathodes. Physical Chemistry Chemical Physics, 2016, 18, 22146-22153.	1.3	63
4287	Synthesis of mesoporous TiO ₂ @C@MnO ₂ multi-shelled hollow nanospheres with high rate capability and stability for lithium-ion batteries. RSC Advances, 2016, 6, 65243-65251.	1.7	14
4288	Smart Electronic Textiles. Angewandte Chemie - International Edition, 2016, 55, 6140-6169.	7.2	460
4289	Hierarchical Tubular Structures Composed of Co ₃ O ₄ Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. Angewandte Chemie - International Edition, 2016, 55, 5990-5993.	7.2	413
4290	Polymer/Graphene Hybrids for Advanced Energy onversion and â€6torage Materials. Chemistry - an Asian Journal, 2016, 11, 1151-1168.	1.7	31
4291	Mechanism of Oxygen Vacancy on Impeded Phase Transformation and Electrochemical Activation in Inactive Li ₂ MnO ₃ . ChemElectroChem, 2016, 3, 943-949.	1.7	44

#	Article	IF	CITATIONS
4292	Macroporous Nanostructured Nb ₂ O ₅ with Surface Nb ⁴⁺ for Enhanced Lithium Ion Storage Properties. ChemNanoMat, 2016, 2, 675-680.	1.5	32
4293	Freeâ€Standing Grapheneâ€Encapsulated Silicon Nanoparticle Aerogel as an Anode for Lithium Ion Batteries. ChemNanoMat, 2016, 2, 671-674.	1.5	29
4294	Ionicallyâ€Functionalized Poly(thiophene) Conductive Polymers as Binders for Silicon and Graphite Anodes for Liâ€Ion Batteries. Energy Technology, 2016, 4, 331-340.	1.8	38
4295	The Effect of Different Carbon Materials on Manganese Oxideâ€Based Lithium–Air Batteries in Ambient Environment. Energy Technology, 2016, 4, 510-516.	1.8	5
4296	Binary Lithium Titanate–Titania Nanocomposite Thinâ€Film Electrodes for Electrochemical Energy Storage. Energy Technology, 2016, 4, 798-803.	1.8	6
4297	Ultrafast Discharge/Charge Rate and Robust Cycle Life for Highâ€Performance Energy Storage Using Ultrafine Nanocrystals on the Binderâ€Free Porous Graphene Foam. Advanced Functional Materials, 2016, 26, 5139-5148.	7.8	53
4298	Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016, 28, 4373-4395.	11.1	1,033
4299	Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities. Advanced Electronic Materials, 2016, 2, 1500246.	2.6	284
4300	Recent Advances in Controlling Syntheses and Energy Related Applications of MX ₂ and MX ₂ /Graphene Heterostructures. Advanced Energy Materials, 2016, 6, 1600459.	10.2	43
4301	All weather solar cell- a new trend of design of solar cell. , 2016, , .		6
4302	Enhanced charge storage of Li3FeF6 with carbon nanotubes for lithium-ion batteries. RSC Advances, 2016, 6, 113283-113288.	1.7	5
4303	Search of high-capacity cathode materials based on lithium–iron silicate compounds. Glass Physics and Chemistry, 2016, 42, 576-581.	0.2	1
4304	Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium–Sulfur Batteries. ChemSusChem, 2016, 9, 3419-3425.	3.6	124
4305	The binder-free Ca ₂ Ge ₇ O ₁₆ nanosheet/carbon nanotube composite as a high-capacity anode for Li-ion batteries with long cycling life. RSC Advances, 2016, 6, 107040-107048.	1.7	4
4306	Governance and Security Issues of the European Union. , 2016, , .		4
4307	Multi-yolk–shell SnO ₂ /Co ₃ Sn ₂ @C Nanocubes with High Initial Coulombic Efficiency and Oxygen Reutilization for Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 35172-35179.	4.0	50
4308	Magnetic field induced motion behavior of gas bubbles in liquid. Scientific Reports, 2016, 6, 21068.	1.6	14
4309	Enhanced electrochemical performance of Lithium Metasilicate-coated LiNi0.6Co0.2Mn0.2O2 Ni-rich cathode for Li-ion batteries at high cutoff voltage. Electrochimica Acta, 2016, 222, 806-813.	2.6	31

		CITATION REPORT		
#	Article		IF	CITATIONS
4310	Quality Management for Battery Production: A Quality Gate Concept. Procedia CIRP, 2016	5, 57, 568-573.	1.0	47
4311	A second life for mobile phone batteries in light emitting diode solar home systems. Journa Renewable and Sustainable Energy, 2016, 8, .	al of	0.8	5
4312	Determination of the mechanism and extent of surface degradation in Ni-based cathode n after repeated electrochemical cycling. APL Materials, 2016, 4, .	naterials	2.2	24
4313	Conceptual Design of an Energy Harvesting Accessory for Road Vehicles. , 2016, , .			0
4314	Nanodevices and Novel Materials for Energy-Efficient constructions. Energy Procedia, 201 113-120.	5, 101,	1.8	0
4315	Li(V0.5Ti0.5)S2 as a 1 V lithium intercalation electrode. Nature Communications, 201	6, 7, 10898.	5.8	29
4316	Facile Synthesis of Non-Graphitizable Polypyrrole-Derived Carbon/Carbon Nanotubes for Li Batteries. Scientific Reports, 2016, 6, 19317.	thium-ion	1.6	52
4317	Chemical Stability of Lithium 2-Trifluoromethyl-4,5-dicyanoimidazolide, an Electrolyte Salt Cells. Journal of Physical Chemistry C, 2016, 120, 28463-28471.	for Li-lon	1.5	15
4318	Ultrahigh-Performance Cu ₂ ZnSnS ₄ Thin Film and Its Applicatior Microscale Thin-Film Lithium-Ion Battery: Comparison with SnO ₂ . ACS Applie & Interfaces, 2016, 8, 34372-34378.		4.0	23
4319	Electrospun one-dimensional BaLi2Ti6O14 nanofibers for high rate performing lithium-ion Materials Today Energy, 2016, 1-2, 17-23.	battery.	2.5	16
4320	Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with H and Long-Life Lithium-Ion Battery Cathodes. Scientific Reports, 2016, 6, 19843.	igh-Capacity	1.6	26
4321	Temperature-dependent oxygen behavior of LixNi0.5Mn1.5O4 cathode material for lithiun Materials, 2016, 4, .	n battery. APL	2.2	5
4322	Controllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lit Batteries. Nanoscale Research Letters, 2016, 11, 549.	nium-lon	3.1	17
4323	A Microstructurally Resolved Model for Li-S Batteries Assessing the Impact of the Cathode the Discharge Performance. Journal of the Electrochemical Society, 2016, 163, A2817-A28		1.3	52
4324	Enhanced ionic conductivity with Li7O2Br3 phase in Li3OBr anti-perovskite solid electroly Physics Letters, 2016, 109, .	e. Applied	1.5	48
4325	Development of electrochemical performances of carbon black obtained by the surface organosilicon-modified method. Russian Journal of Applied Chemistry, 2016, 89, 1019-102	26.	0.1	3
4326	Quantum-chemical modeling of lithiation–delithiation of infinite fibers [Si n C m] k (k = 12–16 and m = 8–19 and small silicon clusters. Russian Journal of Inorganic Chemistr 1677-1687.		0.3	6
4327	Rechargeable Mg–Li hybrid batteries: status and challenges. Journal of Materials Researd 3125-3141.	:h, 2016, 31,	1.2	92

#	Article	IF	Citations
4328	<i>Operando</i> observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Microscopy (Oxford, England), 2017, 66, 154.	0.7	1
4329	Lithiated and Sulfonated Poly (Ether Ether Ketone) Binders with High Rate Capability for LiFePO4 Cathodes. ECS Transactions, 2016, 73, 19-26.	0.3	0
4330	Enhanced Lithium Storage in Hierarchically Porous Carbon Derived from Waste Tea Leaves. Scientific Reports, 2016, 6, 39099.	1.6	37
4331	A simple method to synthesize V2O5 nanostructures with controllable morphology for high performance Li-ion batteries. Electrochimica Acta, 2016, 222, 1691-1699.	2.6	24
4332	Transition metal redox and Mn disproportional reaction in LiMn0.5Fe0.5PO4 electrodes cycled with aqueous electrolyte. Applied Physics Letters, 2016, 109, .	1.5	13
4333	Challenges and new opportunities of in situ NMR characterization of electrochemical processes. AIP Conference Proceedings, 2016, , .	0.3	9
4334	Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries. Journal of Materials Research, 2016, 31, 2715-2727.	1.2	60
4335	Research Progress in Magnesium Alloys as Functional Materials. Rare Metal Materials and Engineering, 2016, 45, 2269-2274.	0.8	35
4336	Doping Effect of Alkaline Earth Metal on Oxygen Reduction Reaction in Praseodymium Nickelate With Layered Perovskite Structure. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	7
4337	Lattice Boltzmann Simulation of Lithium Peroxide Formation in Lithium–Oxygen Battery. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	14
4338	Interfacial Impedance Studies of Multilayer Structured Electrolyte Fabricated With Solvent-Casted PEO10–LiN(CF3SO2)2 and Ceramic Li1.3Al0.3Ti1.7(PO4)3 and Its Application in All-Solid-State Lithium Ion Batteries. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	12
4339	Electrochemomechanics of Electrodes in Li-Ion Batteries: A Review. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	47
4340	Layered Naâ€ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P―and Oâ€Type Phases. Advanced Energy Materials, 2016, 6, 1501555.	10.2	156
4341	Organic polytriphenylamine derivative-based cathode with tailored potential and its electrochemical performances. Electrochimica Acta, 2016, 196, 440-449.	2.6	20
4342	Carbon-coated mesoporous LiTi 2 (PO 4) 3 nanocrystals with superior performance for lithium-ion batteries. Electrochimica Acta, 2016, 200, 66-74.	2.6	42
4343	Facile synthesis of NiCo2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable Zn–air batteries. International Journal of Hydrogen Energy, 2016, 41, 9211-9218.	3.8	71
4344	Intrinsic stress mitigation via elastic softening during two-step electrochemical lithiation of amorphous silicon. Journal of the Mechanics and Physics of Solids, 2016, 91, 278-290.	2.3	34
4345	Microporous organic polymer-based lithium ion batteries with improved rate performance and energy density. Journal of Power Sources, 2016, 317, 49-56.	4.0	110

#	Article	IF	CITATIONS
4346	Biomass carbon micro/nano-structures derived from ramie fibers and corncobs as anode materials for lithium-ion and sodium-ion batteries. Applied Surface Science, 2016, 379, 73-82.	3.1	208
4347	Hydrogen storage alloys/reduced graphite oxide: an efficient hybrid electrode with enhanced high-rate dischargeability. Electrochimica Acta, 2016, 200, 59-65.	2.6	36
4348	Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery. Green Chemistry, 2016, 18, 3796-3803.	4.6	122
4349	Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale, 2016, 8, 8443-8465.	2.8	172
4350	Li ⁺ -conductive Li ₂ SiO ₃ stabilized Li-rich layered oxide with an in situ formed spinel nano-coating layer: toward enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6, 34245-34253.	1.7	29
4351	Carbon fiber cloth@VO ₂ (B): excellent binder-free flexible electrodes with ultrahigh mass-loading. Journal of Materials Chemistry A, 2016, 4, 6426-6432.	5.2	58
4352	Ni coated LiH nanoparticles for reversible hydrogen storage. International Journal of Hydrogen Energy, 2016, 41, 6376-6386.	3.8	29
4353	Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries. Nano Energy, 2016, 22, 301-309.	8.2	73
4354	From α-NaMnO ₂ to crystal water containing Na-birnessite: enhanced cycling stability for sodium-ion batteries. CrystEngComm, 2016, 18, 3136-3141.	1.3	46
4355	(PO4)3â^' polyanions doped LiNi1/3Co1/3Mn1/3O2: An ultrafast-rate, long-life and high-voltage cathode material for Li-ion rechargeable batteries. Electrochimica Acta, 2016, 201, 8-19.	2.6	36
4356	Investigations of Relaxation Dynamics and Observation of Nearly Constant Loss Phenomena in PEO 20 -LiCF 3 SO 3 -ZrO 2 Based Polymer Nano-Composite Electrolyte. Electrochimica Acta, 2016, 202, 147-156.	2.6	43
4357	Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4. Electrochimica Acta, 2016, 199, 172-179.	2.6	27
4358	A critical review on secondary lead recycling technology and its prospect. Renewable and Sustainable Energy Reviews, 2016, 61, 108-122.	8.2	157
4359	Effect of nitridation on LiMn1.5Ni0.5O4 and its application as cathode material in lithium-ion batteries. Journal of Applied Electrochemistry, 2016, 46, 479-485.	1.5	8
4360	Effect of phosphoric acid concentration on conductivity of anodic passive film formed on surface of lead–indium alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 882-894.	1.7	2
4361	Electrochemical Investigations on TiO 2 -B Nanowires as a Promising High Capacity Anode for Sodium-ion Batteries. Electrochimica Acta, 2016, 200, 21-28.	2.6	47
4362	A MoS2 coating strategy to improve the comprehensive electrochemical performance of LiVPO4F. Journal of Power Sources, 2016, 315, 294-301.	4.0	83
4363	Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries. Journal of Power Sources, 2016, 317, 103-111.	4.0	71

ARTICLE IF CITATIONS In situ characterization of electrochemical processes in one dimensional nanomaterials for energy 4364 8.2 97 storages devices. Nano Energy, 2016, 24, 165-188. In Situ Packaging FeF_{<i>x</i>} into Sack-like Carbon Nanoreactors: A Smart Way To Make Soluble Fluorides Applicable to Aqueous Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 4.0 3874-3882. The design and synthesis of porous NiCo₂O₄ ellipsoids supported by flexile carbon nanotubes with enhanced lithium-storage properties for lithium-ion batteries. RSC Advances, 4366 1.7 15 2016, 6, 31925-31933. A particle–carbon matrix architecture for long-term cycle stability of ZnFe₂O₄ anode. RSČ Advanćes, 2016, 6, 35110-35117. In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine 4368 8.2 31 cathode. Nano Energy, 2016, 22, 406-413. Vanadium Oxyfluoride/Few-Layer Graphene Composite as a High-Performance Cathode Material for Lithium Batteries. Inorganic Chemistry, 2016, 55, 3789-3796. 4369 The effect of block copolymer additives for a highly active polymeric metal-free oxygen reduction 4370 1.7 9 electrode. RSC Advances, 2016, 6, 28809-28814. Construction of a cathode using amorphous FePO 4 nanoparticles for a high-power/energy-density 4371 4.0 34 lithium-ion battery with long-term stability. Journal of Power Sources, 2016, 324, 52-60. Novel Pd₁₃Cu₃S₇nanotubes with high electrocatalytic activity 4372 1.3 14 towards both oxygen reduction and ethanol oxidation reactions. CrystEngComm, 2016, 18, 6055-6061. The formation and mechanism of nano-monocrystalline \hat{I}^3 -Fe₂O₃ with 4373 1.7 graphene-shell for high-performance lithium ion batteries. RSC Advances, 2016, 6, 51777-51782. Uniform distribution of 1-D SnO2 nanorod arrays anchored on 2-D graphene sheets for reversible 4374 1.9 18 sodium storage. Chemical Engineering Science, 2016, 154, 54-60. Surface engineering of nanomaterials for improved energy storage – A review. Chemical Engineering 1.9 49 Science, 2016, 154, 3-19. A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes. Computer Methods in Applied 4376 3.4 75 Mechanics and Engineering, 2016, 312, 51-77. Li4Ti5O12/Ketjen Black with open conductive frameworks for high-performance lithium-ion batteries. Electrochimica Acta, 2016, 201, 179-186. 2.6 Atomic layer deposition assisted sacrificial template synthesis of mesoporous TiO2 electrode for high 4378 29 9.5 performance lithium ion battery anodes. Energy Storage Materials, 2016, 2, 27-34. Synthesis of carbon-coated Li4Ti5O12 nanosheets as anode materials for high-performance lithium-ion 4379 2.8 38 batteries. Journal of Alloys and Compounds, 2016, 687, 232-239. Sr0.95In0.05Li2Ti6O14: A high performance lithium host material. Journal of Power Sources, 2016, 322, 4380 4.0 8 68-76. Ultrafast charge–discharge characteristics of a nanosized core–shell structured LiFePO₄ material for hybrid supercapacitor applications. Energy and Environmental 4381 Science, 2016, 9, 2143-2151.

#	Article	IF	CITATIONS
4382	Three-dimensional polymer-derived ceramic/graphene paper as a Li-ion battery and supercapacitor electrode. RSC Advances, 2016, 6, 53894-53902.	1.7	37
4383	Studies of a layered-spinel Li[Ni1/3Mn2/3]O2 cathode material for Li-ion batteries synthesized by a hydrothermal precipitation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 131-139.	1.7	11
4384	Robust NaO ₂ Electrochemistry in Aprotic Na–O ₂ Batteries Employing Ethereal Electrolytes with a Protic Additive. Journal of Physical Chemistry Letters, 2016, 7, 2164-2169.	2.1	51
4385	Hollow K _{0.27} MnO ₂ Nanospheres as Cathode for High-Performance Aqueous Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 14564-14571.	4.0	81
4386	Electrochemical properties of carbonyl substituted phthalocyanines as electrode materials for lithium-ion batteries. RSC Advances, 2016, 6, 52850-52853.	1.7	21
4387	Panoscopic alloying of cobalt in CeO2–ZrO2 solid solutions for superior oxygen-storage capacity. Acta Materialia, 2016, 113, 206-212.	3.8	9
4388	TiO2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage. Applied Energy, 2016, 175, 488-494.	5.1	29
4389	Synthesis of high rate performance LiFe1â^xMnxPO4/C composites for lithium-ion batteries. Ceramics International, 2016, 42, 12435-12440.	2.3	27
4390	Enhancement of the electrochemical performance of silicon anodes through alloying with inert metals and encapsulation by graphene nanosheets. Electrochimica Acta, 2016, 209, 278-284.	2.6	19
4391	Effect of liquid oil additive on lithium-ion battery ceramic composite separator prepared with an aqueous coating solution. Journal of Alloys and Compounds, 2016, 675, 341-347.	2.8	15
4392	High capacity and cycle stability Rechargeable Lithium–Sulfur batteries by sandwiched gel polymer electrolyte. Electrochimica Acta, 2016, 210, 71-78.	2.6	83
4393	Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries. Journal of Power Sources, 2016, 320, 231-238.	4.0	66
4394	Structure, morphology and optical behavior of Ni 1â^'x Co x O thin films prepared by a modified sol-gel method. Superlattices and Microstructures, 2016, 96, 75-81.	1.4	4
4395	Surface and Interface Issues in Spinel LiNi _{0.5} Mn _{1.5} O ₄ : Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chemistry of Materials, 2016, 28, 3578-3606.	3.2	296
4396	Blue Phosphorene/MS ₂ (M = Nb, Ta) Heterostructures As Promising Flexible Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 13449-13457.	4.0	165
4397	Manganese dioxide nanosheet functionalized sulfur@PEDOT core–shell nanospheres for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 9403-9412.	5.2	112
4398	Nitrogen-doped graphene guided formation of monodisperse microspheres of LiFePO ₄ nanoplates as the positive electrode material of lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 12065-12072.	5.2	75
4399	Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reaction. Nano Energy, 2016, 29, 243-248.	8.2	26

#	Article	IF	CITATIONS
4400	Electrochemical and cycling performances of novel nonafluorobutanesulfonate (nonaflate) ionic liquid based ternary gel polymer electrolyte membranes for rechargeable lithium ion batteries. Journal of Membrane Science, 2016, 514, 350-357.	4.1	79
4401	Efficient plasma-enhanced method for layered LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ cathodes with sulfur atom-scale modification for superior-performance Li-ion batteries. Nanoscale, 2016, 8, 11234-11240.	2.8	38
4402	Synthesis and high cycle performance of Li ₂ ZnTi ₃ O ₈ /C anode material promoted by asphalt as a carbon precursor. RSC Advances, 2016, 6, 49298-49306.	1.7	22
4403	In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries. Nanoscale, 2016, 8, 14048-14056.	2.8	64
4404	Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. Journal of Alloys and Compounds, 2016, 683, 123-132.	2.8	90
4405	Tris(trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathode. Journal of Energy Chemistry, 2016, 25, 659-666.	7.1	36
4406	Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario. Applied Energy, 2016, 176, 309-319.	5.1	86
4407	Scalable synthesis of core-shell structured SiO x /nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries. Journal of Power Sources, 2016, 318, 184-191.	4.0	133
4408	Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane. Journal of Power Sources, 2016, 323, 134-141.	4.0	34
4409	Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 13973-13981.	4.0	43
4410	Designed construction and validation of carbon-free porous MnO spheres with hybrid architecture as anodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 15854-15860.	1.3	16
4411	Tailoring the Electrode Interface with Enhanced Electron Transfer for High-Rate Lithium-Ion Battery Anodes. Industrial & Engineering Chemistry Research, 2016, 55, 6643-6648.	1.8	3
4412	Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries. Journal of Materials Chemistry A, 2016, 4, 9661-9669.	5.2	86
4413	A new electrolyte with good compatibility to a lithium anode for non-aqueous Li–O ₂ batteries. RSC Advances, 2016, 6, 47820-47823.	1.7	8
4414	Multimodal and <i>In-Situ</i> Chemical Imaging of Critical Surfaces and Interfaces in Li Batteries. Microscopy Today, 2016, 24, 32-39.	0.2	6
4415	A Low-Cost Mechanically Rechargeable Aluminum–Air Cell for Energy Conversion Using Low-Grade Aluminum Foil. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	8
4416	Grapheneâ€Based Electrochemical Microsupercapacitors for Miniaturized Energy Storage Applications. Nanoscience and Technology, 2016, , 271-291.	1.5	3
4417	Experimental and Computational Investigation of Lepidocrocite Anodes for Sodium-Ion Batteries. Chemistry of Materials, 2016, 28, 4284-4291.	3.2	20

#	Article	IF	CITATIONS
4418	Fabrication of SnO ₂ Asymmetric Membranes for High Performance Lithium Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 13946-13956.	4.0	26
4419	Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 10350-10359.	4.0	251
4420	LiVP ₂ O ₇ /C: A New Insertion Anode Material for High-Rate Lithium-Ion Battery Applications. Inorganic Chemistry, 2016, 55, 3807-3814.	1.9	13
4421	Sandwich electrode designed for high performance lithium-ion battery. Nanoscale, 2016, 8, 9511-9516.	2.8	19
4422	Facile synthesis of nickel doped walnut-like MnO2 nanoflowers and their application in supercapacitor. Journal of Materials Science: Materials in Electronics, 2016, 27, 6202-6207.	1.1	12
4423	A novel quinone-based polymer electrode for high performance lithium-ion batteries. Science China Materials, 2016, 59, 6-11.	3.5	67
4424	Design of Fe3–xO4 raspberry decorated graphene nanocomposites with high performances in lithium-ion battery. Journal of Energy Chemistry, 2016, 25, 272-277.	7.1	11
4425	Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes. Nano Energy, 2016, 22, 202-210.	8.2	30
4426	Nanostructured Polypyrrole as a flexible electrode material of supercapacitor. Nano Energy, 2016, 22, 422-438.	8.2	629
4427	A synergistic effect between layer surface configurations and K ions of potassium vanadate nanowires for enhanced energy storage performance. Journal of Materials Chemistry A, 2016, 4, 4893-4899.	5.2	65
4428	Enhanced moisture repulsion of ceramic-coated separators from aqueous composite coating solution for lithium-ion batteries inspired by a plant leaf surface. Journal of Materials Chemistry A, 2016, 4, 5069-5074.	5.2	19
4429	Boron-doped Ketjenblack based high performances cathode for rechargeable Li–O 2 batteries. Journal of Energy Chemistry, 2016, 25, 131-135.	7.1	12
4430	Polyaniline-coated partially unzipped vapor-grown carbon fibers/sulfur microsphere composites for Li–S cathodes. Journal of Electroanalytical Chemistry, 2016, 761, 62-67.	1.9	8
4431	Failure mechanism of layered lithium-rich oxide/graphite cell and its solution by using electrolyte additive. Journal of Power Sources, 2016, 317, 65-73.	4.0	64
4432	Perylenediimide dyes as a cheap and sustainable cathode for lithium ion batteries. Materials Letters, 2016, 175, 191-194.	1.3	33
4433	Sodium chloride-assisted green synthesis of a 3D Fe–N–C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7781-7787.	5.2	88
4434	Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 6282-6289.	5.2	63
4435	Generalizable Synthesis of Metal‧ulfides/Carbon Hybrids with Multiscale, Hierarchically Ordered Structures as Advanced Electrodes for Lithium Storage. Advanced Materials, 2016, 28, 174-180.	11.1	145

#	Article	IF	CITATIONS
4436	Tailoring atomic distribution in micron-sized and spherical Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7689-7699.	5.2	55
4437	Synthesis and lithium storage performance of graphene/Co3O4 microrods hybrids. Journal of Materials Science: Materials in Electronics, 2016, 27, 7657-7664.	1.1	7
4438	High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	25
4439	The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016, 105, 52-76.	5.4	1,335
4440	Porous Mn ₂ O ₃ microcubes with exposed {001} facets as electrode for lithium ion batteries. New Journal of Chemistry, 2016, 40, 6030-6035.	1.4	9
4441	Chiral Redox-Active Isosceles Triangles. Journal of the American Chemical Society, 2016, 138, 5968-5977.	6.6	62
4442	A study of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives for high voltage LiNi 0.8 Mn 0.1 Co 0.1 O 2 /graphite pouch cells. Journal of Power Sources, 2016, 318, 228-234.	4.0	57
4443	Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Materialia, 2016, 112, 11-19.	3.8	30
4444	NiCo2O4@TiN Core-shell Electrodes through Conformal Atomic Layer Deposition for All-solid-state Supercapacitors. Electrochimica Acta, 2016, 196, 611-621.	2.6	41
4445	Capacity-increasing robust porous SiO ₂ /Si/graphene/C microspheres as an anode for Li-ion batteries. RSC Advances, 2016, 6, 45077-45084.	1.7	18
4446	Fabrication of graphene-encapsulated Na ₃ V ₂ (PO ₄) ₃ as high-performance cathode materials for sodium-ion batteries. RSC Advances, 2016, 6, 43591-43597.	1.7	39
4447	Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries. Waste Management, 2016, 52, 221-227.	3.7	133
4448	The electrochemical performance of AB3-type hydrogen storage alloy as anode material for the nickel metal hydride accumulators. Journal of Solid State Electrochemistry, 2016, 20, 1949-1959.	1.2	17
4449	Cu 2 O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries. Electrochimica Acta, 2016, 202, 24-31.	2.6	57
4450	Embedding nano-Li4Ti5O12 in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials. Journal of Alloys and Compounds, 2016, 673, 336-348.	2.8	20
4451	High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode. ACS Applied Materials & Interfaces, 2016, 8, 10850-10857.	4.0	66
4452	Rational design of graphitic carbon based nanostructures for advanced electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 8497-8511.	5.2	73
4453	High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes. ACS Energy Letters, 2016, 1, 46-51.	8.8	109

#	Article	IF	CITATIONS
4454	Design and synthesis of one-dimensional Co ₃ O ₄ /Co ₃ V ₂ O ₈ hybrid nanowires with improved Li-storage properties. RSC Advances, 2016, 6, 36418-36424.	1.7	15
4455	Ionic Liquid Crystals: Versatile Materials. Chemical Reviews, 2016, 116, 4643-4807.	23.0	617
4456	Comparative study of Li2ZnTi3O8 anode material with good high rate capacities prepared by solid state, molten salt and sol–gel methods. Journal of Electroanalytical Chemistry, 2016, 771, 10-16.	1.9	26
4457	Materials chemistry toward electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 7522-7537.	5.2	140
4458	Morphology controlled La2O3/Co3O4/MnO2–CNTs hybrid nanocomposites with durable bi-functional air electrode in high-performance zinc–air energy storage. Applied Energy, 2016, 175, 495-504.	5.1	68
4459	The fabrication of hollow magnetite microspheres with a nearly 100% morphological yield and their applications in lithium ion batteries. Chinese Chemical Letters, 2016, 27, 887-890.	4.8	6
4460	Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation. Journal of Power Sources, 2016, 321, 193-200.	4.0	46
4461	Lithium Dendrite Suppression with UV-Curable Polysilsesquioxane Separator Binders. ACS Applied Materials & Interfaces, 2016, 8, 12852-12858.	4.0	63
4462	Synthesis and Electrochemical Properties of a High Capacity Li-rich Cathode Material in molten KCl-Na2CO3 flux. Electrochimica Acta, 2016, 196, 749-755.	2.6	8
4463	Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems. Journal of Power Sources, 2016, 326, 717-725.	4.0	82
4464	Synthesis, Properties, and Applications of Hollow Micro-/Nanostructures. Chemical Reviews, 2016, 116, 10983-11060.	23.0	1,215
4465	NiCo2O4@La0.8Sr0.2MnO3 core–shell structured nanorods as efficient electrocatalyst for Li O2 battery with enhanced performances. Journal of Power Sources, 2016, 319, 19-26.	4.0	43
4466	Highly-crystalline lanthanide doped and carbon encapsulated Li 4 Ti 5 O 12 nanosheets as an anode material for sodium ion batteries with superior electrochemical performance. Electrochimica Acta, 2016, 207, 275-283.	2.6	17
4467	A Semi-Empirical Capacity Fade Model for Lithium Ion Cells with Nickel Based Composite Cathode. Journal of the Electrochemical Society, 2016, 163, A1286-A1294.	1.3	3
4468	In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Research, 2016, 9, 1844-1855.	5.8	69
4469	Synthesis and evaluation of NaNi0.5Co0.2Mn0.3O2 as a cathode material for Na-ion battery. Ceramics International, 2016, 42, 12521-12524.	2.3	12
4470	First principles study of nanostructured TiS2 electrodes for Na and Mg ion storage. Journal of Power Sources, 2016, 320, 322-331.	4.0	46
4471	Scalable and template-free synthesis of nanostructured Na1.08V6O15 as high-performance cathode material for lithium-ion batteries. Materials Research Bulletin, 2016, 81, 10-15.	2.7	10

#	Article	IF	CITATIONS
4472	Phase-field model for the two-phase lithiation of silicon. Journal of the Mechanics and Physics of Solids, 2016, 94, 18-32.	2.3	36
4473	Bacteria Absorption-Based Mn ₂ P ₂ O ₇ –Carbon@Reduced Graphene Oxides for High-Performance Lithium-Ion Battery Anodes. ACS Nano, 2016, 10, 5516-5524.	7.3	81
4474	Electrochemical activity and high ionic conductivity of lithium copper pyroborate Li ₆ CuB ₄ O ₁₀ . Physical Chemistry Chemical Physics, 2016, 18, 14960-14969.	1.3	14
4475	A novel Li2Mn2.9Ni0.9Co0.2O8 spinel composite interweaved with carbon nanotube architecture as a lithium battery cathode. RSC Advances, 2016, 6, 49198-49205.	1.7	2
4476	In situ grown Co3O4 on hydrogen storage alloys for enhanced electrochemical performance. International Journal of Hydrogen Energy, 2016, 41, 8946-8953.	3.8	26
4477	Hydrothermal synthesis and electrochemical performance of walnutâ€like CoS ₂ hierarchical structures. Micro and Nano Letters, 2016, 11, 281-283.	0.6	5
4478	Binding TiO ₂ -B nanosheets with N-doped carbon enables highly durable anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8172-8179.	5.2	47
4479	Large-scale synthesis of LiNi _{0.75} Fe _{0.25} PO ₄ covalently anchored on graphene nanosheets for remarkable electrochemical water oxidation. Journal of Materials Chemistry A, 2016, 4, 8149-8154.	5.2	10
4480	Hierarchical rutile TiO2 with mesocrystalline structure for Li-ion and Na-ion storage. Electrochimica Acta, 2016, 202, 203-208.	2.6	38
4481	Optimal hydrothermal synthesis of hierarchical porous ZnMn 2 O 4 microspheres with more porous core for improved lithium storage performance. Electrochimica Acta, 2016, 207, 58-65.	2.6	24
4482	Effect of silver and carbon double coating on the electrochemical performance of LiFePO4 cathode material for lithium ion batteries. International Journal of Hydrogen Energy, 2016, 41, 9774-9779.	3.8	34
4483	Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. Journal of Alloys and Compounds, 2016, 682, 381-403.	2.8	131
4484	Synthesis and structural characterisation of transition metal fluoride sulfates. Dalton Transactions, 2016, 45, 8854-8861.	1.6	4
4485	A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal–Organic Material. Inorganic Chemistry, 2016, 55, 4935-4940.	1.9	75
4486	Novel 1.5 V anode materials, ATiOPO4(A = NH4, K, Na), for room-temperature sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7141-7147.	5.2	35
4487	Enhanced performance of organic materials for lithium-ion batteries using facile electrode calendaring techniques. Electrochemistry Communications, 2016, 68, 45-48.	2.3	13
4488	Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries. Electrochimica Acta, 2016, 206, 199-206.	2.6	73
4489	Graphite-coated ZnO nanosheets as high-capacity, highly stable, and binder-free anodes for lithium-ion batteries. Journal of Power Sources, 2016, 320, 314-321.	4.0	70

#	Article	IF	CITATIONS
4490	TiO2fibre/particle nanohybrids as efficient anodes for lithium-ion batteries. RSC Advances, 2016, 6, 45802-45808.	1.7	8
4491	Depolarization effects of Li ₂ FeSiO ₄ nanocrystals wrapped in different conductive carbon networks as cathodes for high performance lithium-ion batteries. RSC Advances, 2016, 6, 47723-47729.	1.7	19
4492	Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries. Journal of Power Sources, 2016, 322, 40-48.	4.0	65
4493	An equivalent circuit model for state of energy estimation of lithium-ion battery. , 2016, , .		20
4494	Carbon nanocages@ultrathin carbon nanosheets: One-step facile synthesis and application as anode material for lithium-ion batteries. Carbon, 2016, 105, 586-592.	5.4	35
4495	Discriminating the Mobile Ions from the Immobile Ones in Li _{4+<i>x</i>} Ti ₅ O ₁₂ : ⁶ Li NMR Reveals the Main Li ⁺ Diffusion Pathway and Proposes a Refined Lithiation Mechanism. Journal of Physical Chemistry C. 2016. 120. 11372-11381.	1.5	40
4496	Nanosized 0.3Li2MnO3·0.7LiNi1/3Mn1/3Co1/3O2 synthesized by CNTs-assisted hydrothermal method as cathode material for lithium ion battery. Journal of Applied Electrochemistry, 2016, 46, 907-915.	1.5	5
4497	Ethanol reduced molybdenum trioxide for Li-ion capacitors. Nano Energy, 2016, 26, 100-107.	8.2	74
4498	Lithium ion battery anodes using Si-Fe based nanocomposite structures. Nano Energy, 2016, 26, 37-42.	8.2	62
4499	Rechargeable Lithium Batteries with Electrodes of Small Organic Carbonyl Salts and Advanced Electrolytes. Industrial & Engineering Chemistry Research, 2016, 55, 5795-5804.	1.8	91
4500	Organogel electrolyte for high-loading silicon batteries. Journal of Materials Chemistry A, 2016, 4, 8005-8009.	5.2	23
4501	Germanium sulfide nanosheet: a universal anode material for alkali metal ion batteries. Journal of Materials Chemistry A, 2016, 4, 8905-8912.	5.2	188
4502	Pre-lithiated Li x Mn 2 O 4 : A new approach to mitigate the irreversible capacity loss in negative electrodes for Li-ion battery. Electrochimica Acta, 2016, 208, 225-230.	2.6	39
4503	A polydopamine coating ultralight graphene matrix as a highly effective polysulfide absorbent for high-energy Li S batteries. Renewable Energy, 2016, 96, 333-340.	4.3	24
4504	Effect of Sodium-Site Doping on Enhancing the Lithium Storage Performance of Sodium Lithium Titanate. ACS Applied Materials & Interfaces, 2016, 8, 10302-10314.	4.0	23
4505	Lithium Ion Pathway within Li ₇ La ₃ Zr ₂ O ₁₂ â€Polyethylene Oxide Composite Electrolytes. Angewandte Chemie, 2016, 128, 12726-12730.	1.6	114
4506	The sucrose-assisted NiCo 2 O 4 @C composites with enhanced lithium-storage properties. Carbon, 2016, 109, 616-623.	5.4	57
4507	Well-dispersed sulfur wrapped in reduced graphene oxide nanoscroll as cathode material for lithium–sulfur battery. Journal of Electroanalytical Chemistry, 2016, 780, 19-25.	1.9	37

#	Article	IF	CITATIONS
4508	Enhanced electrochemical performance promoted by monolayer graphene and void space in silicon composite anode materials. Nano Energy, 2016, 27, 647-657.	8.2	61
4509	Energy Storage Performance Enhancement by Surface Engineering of Electrode Materials. Advanced Materials Interfaces, 2016, 3, 1600430.	1.9	17
4510	Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy, 2016, 28, 447-454.	8.2	651
4511	Covalently functionalized carbon nanotubes as stable cathode materials of lithium/organic batteries. Journal of Materials Chemistry A, 2016, 4, 15036-15040.	5.2	19
4512	Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li ⁺ Mobility of Li ₃ PS ₄ : Insights from First-Principles Calculations. ACS Applied Materials & Interfaces, 2016, 8, 25229-25242.	4.0	114
4513	Capacity control of ferric coordination polymers by zinc nitrate for lithium-ion batteries. RSC Advances, 2016, 6, 86126-86130.	1.7	42
4514	Cobalt nanoparticles encapsulated in N-doped graphene nanoshells as an efficient cathode electrocatalyst for a mechanical rechargeable zinc–air battery. RSC Advances, 2016, 6, 90069-90075.	1.7	22
4515	Enhanced high-rate capability and high voltage cycleability of Li ₂ TiO ₃ -coated LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ cathode materials. RSC Advances, 2016, 6, 88713-88718.	1.7	15
4516	Janusâ€Faced, Dualâ€Conductive/Chemically Active Battery Separator Membranes. Advanced Functional Materials, 2016, 26, 7074-7083.	7.8	67
4517	Oxocarbon Salts for Fast Rechargeable Batteries. Angewandte Chemie - International Edition, 2016, 55, 12528-12532.	7.2	238
4518	2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Science and Technology of Advanced Materials, 2016, 17, 563-582.	2.8	77
4519	Lithium Ion Pathway within Li ₇ La ₃ Zr ₂ O ₁₂ â€Polyethylene Oxide Composite Electrolytes. Angewandte Chemie - International Edition, 2016, 55, 12538-12542.	7.2	438
4520	Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage. Nano Research, 2016, 9, 3725-3734.	5.8	45
4521	Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries. Journal of Power Sources, 2016, 329, 422-427.	4.0	41
4522	A chemically modified graphene oxide wrapped porous hematite nano-architecture as a high rate lithium-ion battery anode material. RSC Advances, 2016, 6, 82698-82706.	1.7	12
4523	Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application. Electrochimica Acta, 2016, 216, 24-34.	2.6	64
4524	Core-shell hexacyanoferrate for superior Na-ion batteries. Journal of Power Sources, 2016, 329, 290-296.	4.0	57
4525	Biological cell derived N-doped hollow porous carbon microspheres for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 15612-15620.	5.2	80

#	Article	IF	CITATIONS
4526	Ultrathin paper-like boron-doped carbon nanosheet electrodes combined with boron-enriched gel polymer electrolytes for high-performance energy storage. Journal of Materials Chemistry A, 2016, 4, 15589-15596.	5.2	16
4527	Fabrication of MnO@C-CNTs composite by CVD for enhanced performance of lithium ion batteries. Ceramics International, 2016, 42, 18568-18572.	2.3	11
4528	Polycyclic Quinone Fused by a Sulfur-containing Ring as an Organic Positive-electrode Material for Use in Rechargeable Lithium Batteries. Energy Procedia, 2016, 89, 222-230.	1.8	18
4529	Robust iron nanoparticles with graphitic shells for high-performance Ni-Fe battery. Nano Energy, 2016, 30, 217-224.	8.2	76
4530	The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials. Nano Today, 2016, 11, 678-694.	6.2	72
4531	<i>Operando</i> observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Microscopy (Oxford, England), 2017, 66, 50-61.	0.7	17
4532	Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries. CheM, 2016, 1, 287-297.	5.8	247
4533	Preparation and performance of Li 4 C 10 H 4 O 8 with multi-carboxyl groups as anode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2016, 782, 202-206.	1.9	17
4534	Semi-interpenetrating solid polymer electrolyte based on thiol-ene cross-linker for all-solid-state lithium batteries. Journal of Power Sources, 2016, 334, 154-161.	4.0	57
4535	Mitigating voltage and capacity fading of lithium-rich layered cathodes by lanthanum doping. Journal of Power Sources, 2016, 335, 65-75.	4.0	79
4536	A designed core-shell structural composite of lithium terephthalate coating on Li4Ti5O12 as anode for lithium ion batteries. Progress in Natural Science: Materials International, 2016, 26, 368-374.	1.8	5
4537	Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures. Electrochimica Acta, 2016, 218, 149-155.	2.6	147
4538	One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. Journal of Power Sources, 2016, 331, 322-331.	4.0	65
4539	Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO ₂ (B). Journal of Physical Chemistry C, 2016, 120, 22910-22917.	1.5	69
4540	Anomalous Enhancement of Liâ€O ₂ Battery Performance with Li ₂ O ₂ Films Assisted by NiFeO <i>_x</i> Nanofiber Catalysts: Insights into Morphology Control. Advanced Functional Materials, 2016, 26, 8290-8299.	7.8	47
4541	Na-Rich Na _{3+<i>x</i>} V _{2–<i>x</i>} Ni _{<i>x</i>} (PO ₄) ₃ /C for Sodium Ion Batteries: Controlling the Doping Site and Improving the Electrochemical Performances. ACS Applied Materials & amp: Interfaces. 2016. 8. 27779-27787.	4.0	99
4542	Gel-type polymer separator with higher thermal stability and effective overcharge protection of 4.2ÂV for secondary lithium-ion batteries. RSC Advances, 2016, 6, 52966-52973.	1.7	11
4543	Eco-friendly polyvinyl alcohol/cellulose nanofiber–Li ⁺ composite separator for high-performance lithium-ion batteries. RSC Advances, 2016, 6, 97912-97920.	1.7	43

#	Article	IF	CITATIONS
4544	A flexible zirconium oxide based-ceramic membrane as a separator for lithium-ion batteries. RSC Advances, 2016, 6, 92020-92027.	1.7	36
4545	A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries. New Journal of Chemistry, 2016, 40, 9746-9752.	1.4	104
4546	The Mechanism of the Interfacial Charge and Mass Transfer during Intercalation of Alkali Metal Cations. Advanced Science, 2016, 3, 1600211.	5.6	32
4547	Improved performance in micron-sized silicon anodes by in situ polymerization of acrylic acid-based slurry. Journal of Materials Chemistry A, 2016, 4, 16982-16991.	5.2	47
4548	Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology, 2016, 27, 442001.	1.3	112
4549	Organic-inorganic hybrid solid electrolytes for solid-state lithium cells operating at room temperature. Electrochimica Acta, 2016, 218, 271-277.	2.6	77
4550	Porous NiO/graphene composite thin films as high performance anodes for lithium-ion batteries. Journal of Energy Storage, 2016, 8, 198-204.	3.9	19
4551	Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte. Journal of Power Sources, 2016, 331, 308-314.	4.0	31
4552	Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes. Journal of Power Sources, 2016, 333, 88-98.	4.0	92
4553	Rosin-Embedded Poly(acrylic acid) Binder for Silicon/Graphite Negative Electrode. ACS Sustainable Chemistry and Engineering, 2016, 4, 6362-6370.	3.2	22
4554	Charge–discharge studies of all-solid-state Li/LiFePO ₄ cells with PEO-based composite electrolytes encompassing metal organic frameworks. RSC Advances, 2016, 6, 97180-97186.	1.7	50
4555	Hybrid solid electrolyte with the combination of Li ₇ La ₃ Zr ₂ O ₁₂ ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17025-17032.	5.2	77
4556	Suppression of voltage depression in Li-rich layered oxide by introducing GaO4 structural units in the Li2MnO3-like nano-domain. Nano Energy, 2016, 30, 717-727.	8.2	24
4557	Interconnected Nanoflake Network Derived from a Natural Resource for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27843-27849.	4.0	33
4558	Encasing Si particles within a versatile TiO2â^'xFx layer as an extremely reversible anode for high energy-density lithium-ion battery. Nano Energy, 2016, 30, 745-755.	8.2	33
4559	Self-Assembled Synthesis of Mesocrystalline TiO ₂ @C-rGO Hybrid Nanostructures for Highly Reversible Sodium Storage. Crystal Growth and Design, 2016, 16, 6605-6612.	1.4	22
4560	Binder-free hierarchically-porous carbon nanofibers decorated with cobalt nanoparticles as efficient cathodes for lithium–oxygen batteries. RSC Advances, 2016, 6, 103072-103080.	1.7	20
4561	Improving the Cycle-life of Naphthoquinone-based Active Materials by Their Polymerization for Rechargeable Organic Batteries. Energy Procedia, 2016, 89, 213-221.	1.8	5

ARTICLE IF CITATIONS Enhanced lithium storage performance of Li 5 Cr 9 Ti 4 O 24 anode by nitrogen and sulfur dual-doped 4562 2.6 17 carbon coating. Electrochimica Acta, 2016, 213, 217-224. Effect of crystalline structure on the electrochemical properties of K0.25V2O5 nanobelt for fast Li 2.6 insertion. Electrochimica Acta, 2016, 218, 199-207. Stable freestanding Li-ion battery cathodes by in situ conformal coating of conducting polypyrrole 4564 4.0 44 on NiS-carbon nanofiber films. Journal of Power Sources, 2016, 331, 360-365. Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen 229 bifunctional electrocatalyst. Nano Energy, 2016, 30, 368-378. Novel Li[(CF₃SO₂)(n-C₄F₉SO₂)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. 4566 4.0 87 ACS Applied Materials & amp; Interfaces, 2016, 8, 29705-29712. Two-dimensional dysprosium-modified bamboo-slip-like lithium titanate with high-rate capability and long cycle life for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17782-17790. 4567 5.2 Cycling of a Lithiumâ€Ion Battery with a Silicon Anode Drives Large Mechanical Actuation. Advanced 4568 11.1 40 Materials, 2016, 28, 10236-10243. Highly Stable Three Lithium Insertion in Thin V₂O₅ Shells on Vertically Aligned Carbon Nanofiber Arrays for Ultrahighâ€Capacity Lithium Ion Battery Cathodes. Advanced 4569 1.9 Materials Interfaces, 2016, 3, 1600824. The Role of Reduced Graphite Oxide in Transition Metal Oxide Nanocomposites Used as Li Anode 4570 Material: An Operando Study on CoFe₂0₄/rGO. Chemistry - A European 1.7 16 Journal, 2016, 22, 16929-16938. Porous nitrogen-doped carbon tubes derived from reed catkins as a high-performance anode for 4571 1.7 lithium ion batteries. RSC Advances, 2016, 6, 98434-98439. Light-weight functional layer on a separator as a polysulfide immobilizer to enhance cycling stability 4572 70 5.2 for lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 17033-17041. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Applied Energy, 2016, 183, 659-673. 5.1 169 A New Bio-based Battery Material: Effect of Rate of Anthraguinone Skeleton Incorporation into 4574 1.8 1 Polyglycidol on Battery Performance. Energy Procedia, 2016, 89, 207-212. Exploring hierarchical FeS2/C composite nanotubes arrays as advanced cathode for lithium ion batteries. Journal of Power Sources, 2016, 332, 383-388. Silicon-Reduced Graphene Oxide Self-Standing Composites Suitable as Binder-Free Anodes for 4576 4.0 50 Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 28800-28808. Ultra-long Na₂Ti₃O₇ nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17111-17120. Enhancement on the Cycling Stability of the Layered Ni-Rich Oxide Cathode by In-Situ Fabricating 4578 1.3101 Nano-Thickness Cation-Mixing Layers. Journal of the Electrochemical Society, 2016, 163, A2665-A2672. Honeysuckle-derived hierarchical porous nitrogen, sulfur, dual-doped carbon for ultra-high rate 4579 lithium ion battery anodes. Journal of Power Sources, 2016, 333, 193-202.

#	Article	IF	CITATIONS
4580	Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium-sulfur battery with improved cyclic stability. Journal of Power Sources, 2016, 334, 23-30.	4.0	50
4581	Precise Perforation and Scalable Production of Si Particles from Low-Grade Sources for High-Performance Lithium Ion Battery Anodes. Nano Letters, 2016, 16, 7210-7215.	4.5	105
4582	Flower-like NiCo ₂ O ₄ Microstructures as Promising Anode Material for High Performance Lithium-Ion Batteries: Facile Synthesis and its Lithium Storage Properties. ChemistrySelect, 2016, 1, 5129-5136.	0.7	12
4583	Electrochemical Properties of Rutile TiO2 Nanorod Array in Lithium Hydroxide Solution. Nanoscale Research Letters, 2016, 11, 448.	3.1	8
4584	Strong Impact of the Oxygen Content in Na ₃ V ₂ (PO ₄) ₂ F _{3–<i>y</i>} O _{<i>y</i>} (0 ≤i>y ≤0.5) on Its Structural and Electrochemical Properties. Chemistry of Materials, 2016, 28, 7683-7692.	اله> 3.2	126
4585	Polyimide binder by combining with polyimide separator for enhancing the electrochemical performance of lithium ion batteries. Electrochimica Acta, 2016, 216, 1-7.	2.6	29
4586	Surface Morphology and Surface Stability against Oxygen Loss of the Lithium-Excess Li ₂ MnO ₃ Cathode Material as a Function of Lithium Concentration. ACS Applied Materials & Interfaces, 2016, 8, 25595-25602.	4.0	38
4587	Self-assembly of transition-metal-oxide nanoparticle supraparticles with designed architectures and their enhanced lithium storage properties. Journal of Materials Chemistry A, 2016, 4, 16128-16135.	5.2	43
4588	Structure and Li ⁺ ion transport in a mixed carbonate/LiPF ₆ electrolyte near graphite electrode surfaces: a molecular dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 27868-27876.	1.3	39
4589	Analytical Charged Capacity Expression of Lithium-Ion Battery for SOH Estimation Based on Constant Current Charging Curves. ECS Transactions, 2016, 73, 305-318.	0.3	7
4590	A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. Journal of Power Sources, 2016, 329, 586-593.	4.0	40
4591	High-rate layered lithium-rich cathode nanomaterials for lithium-ion batteries synthesized with the assist of carbon spheres templates. Journal of Power Sources, 2016, 331, 247-257.	4.0	29
4592	Two-dimensional MnO ₂ /graphene hybrid nanostructures as anode for lithium ion batteries. International Journal of Modern Physics B, 2016, 30, 1650208.	1.0	4
4593	The Effect of Diffusion Induced Fatigue Stress on Capacity Loss in Nano Silicon Particle Electrodes during Cycling. Journal of the Electrochemical Society, 2016, 163, A2592-A2599.	1.3	7
4594	Ternary mixtures of nitrile-functionalized glyme, non-flammable hydrofluoroether and fluoroethylene carbonate as safe electrolytes for lithium-ion batteries. Journal of Power Sources, 2016, 331, 445-451.	4.0	25
4595	Co3O4 negative electrode material for rechargeable sodium ion batteries: An investigation of conversion reaction mechanism and morphology-performances correlations. Journal of Power Sources, 2016, 332, 42-50.	4.0	86
4596	3-Dimensional cuboid structured ZnFe ₂ O ₄ @C nano-whiskers as anode materials for lithium-ion batteries based on the in situ graft polymerization method. RSC Advances, 2016, 6, 96743-96751.	1.7	14
4597	Al ₂ O ₃ -modified Ti–Mn–O nanocomposite coated with nitrogen-doped carbon as anode material for high power lithium-ion battery. RSC Advances, 2016, 6, 40953-40961.	1.7	8

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
4598	Polymer-Based Organic Batteries. Chemical Reviews, 2016, 116, 9438-9484.	23.0	919
4599	Polypyrrole modified porous poly(ether sulfone) membranes with high performance for vanadium flow batteries. Journal of Materials Chemistry A, 2016, 4, 12955-12962.	5.2	46
4600	Interface-enhanced Li ion conduction in a LiBH ₄ –SiO ₂ solid electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 22540-22547.	1.3	72
4601	Flame made nanoparticles permit processing of dense, flexible, Li ⁺ conducting ceramic electrolyte thin films of cubic-Li ₇ La ₃ Zr ₂ O ₁₂ (c-LLZO). Journal of Materials Chemistry A, 2016, 4, 12947-12954.	5.2	131
4602	Mesoporous Carbon Nanomaterials. , 2016, , 505-540.		0
4603	Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy. Nano Energy, 2016, 27, 447-456.	8.2	58
4604	The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions. Advanced Functional Materials, 2016, 26, 6555-6562.	7.8	18
4605	Amorphous Li ₂ O ₂ : Chemical Synthesis and Electrochemical Properties. Angewandte Chemie - International Edition, 2016, 55, 10717-10721.	7.2	135
4606	Molybdenum Disulfide oated Lithium Vanadium Fluorophosphate Anode: Experiments and Firstâ€Principles Calculations. ChemSusChem, 2016, 9, 2122-2128.	3.6	25
4607	Cobalt Oxide–Tin Core–Shell Nanowire Arrays as Highâ€Performance Electrodes for Lithiumâ€ion Batteries. Energy Technology, 2016, 4, 1435-1439.	1.8	3
4608	Synthesis and characterization of LiNi _{0.48} Co _{0.18} Mn _{0.3} Mg _{0.02} Ti _{0.02} O _{2<!--<br-->as a cathode material for lithium ion batteries. RSC Advances, 2016, 6, 75293-75298.}	/sub>	9
4609	Constraining Si Particles within Graphene Foam Monolith: Interfacial Modification for Highâ€Performance Li ⁺ Storage and Flexible Integrated Configuration. Advanced Functional Materials, 2016, 26, 6797-6806.	7.8	82
4610	Highâ€Aspectâ€Ratio Parallelâ€Plate Microchannels Applicable to Kinetic Analysis of Chemical Vapor Deposition. Advanced Materials Interfaces, 2016, 3, 1600254.	1.9	6
4611	Self‣upported Lithium Titanium Oxide Nanosheet Arrays Decorated with Molybdenum Disulfide for Highâ€Performance Lithiumâ€lon Batteries. Energy Technology, 2016, 4, 1420-1426.	1.8	11
4612	Evaluation of the Electrochemical Properties of Crystalline Copper Antimonide Thin Film Anodes for Lithium Ion Batteries Produced by Single Step Electrodeposition. Electrochimica Acta, 2016, 214, 253-264.	2.6	27
4613	Structural and Electrochemical Properties of Li Ion Solvation Complexes in the Salt-Concentrated Electrolytes Using an Aprotic Donor Solvent, <i>N</i> , <i>N</i> Dimethylformamide. Journal of Physical Chemistry C, 2016, 120, 17196-17204.	1.5	72
4614	Safe Electrolytes for Lithium-Ion Batteries Based on Ternary Mixtures of Triethylene Glycol Dimethylether, Fluoroethylene Carbonate and Non-Flammable Methyl-Nonafluorobutyl Ether. Journal of the Electrochemical Society, 2016, 163, A1951-A1958.	1.3	20
4615	Recent Progress in 1D Air Electrode Nanomaterials for Enhancing the Performance of Nonaqueous Lithium–Oxygen Batteries. ChemNanoMat, 2016, 2, 616-634.	1.5	24

#	Article	IF	CITATIONS
4616	Fabrication of voids-involved SnO2@C nanofibers electrodes with highly reversible Sn/SnO2 conversion and much enhanced coulombic efficiency for lithium-ion batteries. Journal of Power Sources, 2016, 327, 21-28.	4.0	80
4617	Bismuth oxide: a versatile high-capacity electrode material for rechargeable aqueous metal-ion batteries. Energy and Environmental Science, 2016, 9, 2881-2891.	15.6	215
4618	Electro-precipitation via oxygen reduction: a new technique for thin film manganese oxide deposition. Journal of Materials Chemistry A, 2016, 4, 13555-13562.	5.2	2
4619	Doped graphenes as anodes with large capacity for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13407-13413.	5.2	57
4620	Introduction to Li-ion Batteries. Springer Theses, 2016, , 1-30.	0.0	1
4621	High-reversible capacity of Perovskite BaSnO3/rGO composite for Lithium-Ion Battery Anodes. Electrochimica Acta, 2016, 214, 31-37.	2.6	28
4622	Unique electrochemical behavior of heterocyclic selenium–sulfur cathode materials in ether-based electrolytes for rechargeable lithium batteries. Energy Storage Materials, 2016, 5, 171-179.	9.5	72
4623	Relationship between Particle Hardness of <scp>LiNi₁</scp> _/ <scp>₃Co₁</scp> _/ <scp><sul and its Electrochemical Stability at High Temperature. Bulletin of the Korean Chemical Society, 2016, 37, 1298-1304.</sul </scp>	b>31.0	>Mgn≺sub>l<
4624	Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2016, 688, 1072-1079.	2.8	44
4625	A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics, 2016, 295, 65-71.	1.3	205
4626	The ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO ₂₀ -LiCF ₃ 3O ₃ based ion conducting polymer clay composites. Physical Chemistry Chemical Physics, 2016, 18, 19955-19965.	1.3	30
4627	Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage. Journal of Materials Chemistry A, 2016, 4, 12098-12105.	5.2	72
4628	Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodiumâ€ion Batteries. ChemElectroChem, 2016, 3, 1741-1745.	1.7	76
4629	Facile Synthesis of WS ₂ Nanosheets–Carbon Composites Anodes for Sodium and Lithium Ion Batteries. ChemNanoMat, 2016, 2, 997-1002.	1.5	38
4630	LiCoO2-Based Fiber Cathodes for Electrospun Full Cell Li-ion Batteries. Electrochimica Acta, 2016, 214, 139-146.	2.6	28
4631	All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator. Journal of the American Chemical Society, 2016, 138, 11044-11050.	6.6	170
4632	Lithium-excess olivine electrode for lithium rechargeable batteries. Energy and Environmental Science, 2016, 9, 2902-2915.	15.6	49
4633	An in situ formed Se/CMK-3 composite for rechargeable lithium-ion batteries with long-term cycling performance. Journal of Materials Chemistry A, 2016, 4, 13646-13651.	5.2	54

ARTICLE IF CITATIONS Cobalt silicate hierarchical hollow spheres for lithium-ion batteries. Nanotechnology, 2016, 27, 1.3 21 4634 365401. Synthesis of Ti2Nb10O29/C composite as an anode material for lithium-ion batteries. International 3.8 Journal of Hydrogen Energy, 2016, 41, 14807-14812. Graphene Aerogels with Anchored Subâ€Micrometer Mulberryâ€Like ZnO Particles for Highâ€Rate and 4636 5.287 Longâ€Cycle Anode Materials in Lithium Ion Batteries. Small, 2016, 12, 5208-5216. Advanced electrolyte/additive for lithium-ion batteries with silicon anode. Current Opinion in Chemical Engineering, 2016, 13, 24-35. P2-Type Na_{0.67}Ni_{0.23}Mg_{0.1}Mn_{0.67}O₂ as a 4638 1.9 98 High-Performance Cathode for a Sodium-Ion Battery. Inorganic Chemistry, 2016, 55, 9033-9037. Excimer Ultraviolet-Irradiated Carbon Nanofibers as Advanced Anodes for Long Cycle Life Lithium-Ion 5.2 Batteries. Small, 2016, 12, 5269-5275. Synthesis of MXene/Ag Composites for Extraordinary Long Cycle Lifetime Lithium Storage at High 4640 4.0 266 Rates. ACS Applied Materials & amp; Interfaces, 2016, 8, 22280-22286. Solvothermal synthesis and self-assembling mechanism of micro-nano spherical 4641 1.7 LiFePO₄with high tap density. RSC Advances, 2016, 6, 75602-75608. Cheese-like bulk carbon with nanoholes prepared from egg white as an anode material for lithium and sodium ion batteries. RSC Advances, 2016, 6, 80986-80993. 4642 1.7 14 Titanium Dioxide/Lithium Phosphate Nanocomposite Derived from Atomic Layer Deposition as a 4643 1.9 Highâ€Performance Anode for Lithium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600369. Na0.282V2O5: A high-performance cathode material for rechargeable lithium batteries and sodium 4644 4.037 batteries. Journal of Power Sources, 2016, 328, 241-249. Cu0.02Ti0.94Nb2.04O7: An advanced anode material for lithium-ion batteries of electric vehicles. 4645 4.0 Journal of Power Sources, 2016, 328, 336-344. Computational design and refinement of self-heating lithium ion batteries. Journal of Power Sources, 4646 4.0 104 2016, 328, 203-211. Conducting Graphene Decorated Li₃V₂(PO₄)₃/C for Lithiumâ€Ion Battery Cathode with Superior Rate Capability and Cycling Stability. Chinese Journal of Chemistry, 2016, 34, 795-800. 4647 2.6 MoO 2 nanoparticles as high capacity intercalation anode material for long-cycle lithium ion battery. 4648 2.6 26 Electrochimica Acta, 2016, 213, 416-422. Solid polymer electrolyte coating three-dimensional Sn/Ni bimetallic nanotube arrays for high 4649 23 performance lithium-ión battery anodes. Journal of Alloys and Compounds, 2016, 685, 690-698. Quantifying Bulk Electrode Strain and Material Displacement within Lithium Batteries via Highâ€Speed 4650 5.6 66 Operando Tomography and Digital Volume Correlation. Advanced Science, 2016, 3, 1500332. Recent Progress in Selfâ€Supported Metal Oxide Nanoarray Electrodes for Advanced Lithiumâ€Ion 5.6 Batteries. Advanced Science, 2016, 3, 1600049.

#	Article	IF	CITATIONS
4652	Liquidâ€Crystalâ€Mediated Selfâ€Assembly of Porous αâ€Fe ₂ O ₃ Nanorods on PEDOT:PSSâ€Functionalized Graphene as a Flexible Ternary Architecture for Capacitive Energy Storage. Particle and Particle Systems Characterization, 2016, 33, 27-37.	1.2	22
4653	Polymer-Derived and Sodium Hydroxide-Treated Silicon Carbonitride Material as Anodes for High Electrochemical Performance Li-ion Batteries. ChemistrySelect, 2016, 1, 309-317.	0.7	6
4654	Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2016, 37, 1049-1061.	6.9	59
4655	First-principles simulations of lithiation–deformation behavior in silicon nanotube electrodes. Computational Materials Science, 2016, 123, 44-51.	1.4	36
4656	Experimental and numerical investigation of core cooling of Li-ion cells using heat pipes. Energy, 2016, 113, 852-860.	4.5	85
4657	Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1-B O2 as cathode materials for lithium-ion batteries. Journal of Power Sources, 2016, 327, 273-280.	4.0	91
4658	Reconstruction of Miniâ€Hollow Polyhedron Mn ₂ O ₃ Derived from MOFs as a Highâ€Performance Lithium Anode Material. Advanced Science, 2016, 3, 1500185.	5.6	83
4659	Nanoengineering to Achieve High Sodium Storage: A Case Study of Carbon Coated Hierarchical Nanoporous TiO ₂ Microfibers. Advanced Science, 2016, 3, 1600013.	5.6	47
4660	Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chemical Communications, 2016, 52, 10427-10430.	2.2	167
4661	Design of nanoconfined MWNTs@NaTi2(PO4)3 coaxial cables with superior rate capability and long-cycle life for Na-ion batteries. Applied Materials Today, 2016, 4, 54-61.	2.3	24
4662	Na0.33V2O5 nanosheet@graphene composites: Towards high performance cathode materials for sodium ion batteries. Materials Letters, 2016, 183, 346-350.	1.3	17
4663	P2–Na _{2/3} Ni _{1/3} Mn _{5/9} Al _{1/9} O ₂ Microparticles as Superior Cathode Material for Sodium-Ion Batteries: Enhanced Properties and Mechanism via Graphene Connection. ACS Applied Materials & Interfaces, 2016, 8, 20650-20659.	4.0	168
4664	Modified Electronic Properties of Graphene. , 2016, , 167-182.		0
4665	Cubic KTi 2 (PO 4) 3 as electrode materials for sodium-ion batteries. Journal of Colloid and Interface Science, 2016, 483, 67-72.	5.0	20
4666	Three-dimensionally ordered macroporous Li2FeSiO4/C composite as a high performance cathode for advanced lithium ion batteries. Journal of Power Sources, 2016, 329, 297-304.	4.0	23
4667	Recent progress in first-principles simulations of anode materials and interfaces for lithium ion batteries. Current Opinion in Chemical Engineering, 2016, 13, 75-81.	3.8	9
4668	High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO ₃ /C anodes and MOF-derived polyhedral hollow carbon cathodes. Nanoscale, 2016, 8, 16761-16768.	2.8	85
4669	Si/SiO _{<i>x</i>} â€Conductive Polymer Coreâ€Shell Nanospheres with an Improved Conducting Path Preservation for Lithiumâ€Ion Battery. ChemSusChem, 2016, 9, 2754-2758.	3.6	42

	CITATION	Report	
#	Article	IF	CITATIONS
4670	Carbon-coated LiFePO4synthesized by a simple solvothermal method. CrystEngComm, 2016, 18, 7537-7543.	1.3	12
4671	Titaniumâ€Carbideâ€Decorated Carbon Nanofibers as Hybrid Electrodes for High Performance Liâ€ S Batteries. ChemNanoMat, 2016, 2, 937-941.	1.5	37
4672	A novel facile and fast hydrothermal-assisted method to synthesize sulfur/carbon composites for high-performance lithium–sulfur batteries. RSC Advances, 2016, 6, 81950-81957.	1.7	10
4673	Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chemical Engineering Journal, 2016, 306, 1193-1202.	6.6	66
4674	Ultra-slow Li ion jump diffusion in Li2SnO3 studied by two-time 7Li spin-alignment echo NMR and 7Li NMR relaxometry. Solid State Ionics, 2016, 293, 85-93.	1.3	3
4675	Effects of Preinserted Na Ions on Li-Ion Electrochemical Intercalation Properties of V ₂ O ₅ . ACS Applied Materials & Interfaces, 2016, 8, 24629-24637.	4.0	41
4676	Intrinsic factors attenuate the performance of anhydride organic cathode materials of lithium battery. Journal of Electroanalytical Chemistry, 2016, 773, 22-26.	1.9	12
4677	Dynamic Behavior at the Interface between Lithium Cobalt Oxide and an Organic Electrolyte Monitored by Neutron Reflectivity Measurements. Journal of Physical Chemistry C, 2016, 120, 20082-20088.	1.5	39
4678	Recent progress of silicon composites as anode materials for secondary batteries. RSC Advances, 2016, 6, 87778-87790.	1.7	61
4679	A cathode material for lithium-ion batteries based on graphitized carbon-wrapped FeF ₃ nanoparticles prepared by facile polymerization. Journal of Materials Chemistry A, 2016, 4, 14857-14864.	5.2	54
4680	Electrochemical reaction and surface chemistry for performance enhancement of a Si composite anode using a bis(fluorosulfonyl)imide-based ionic liquid. Journal of Materials Chemistry A, 2016, 4, 15117-15125.	5.2	39
4681	Evolution of crystal structure and electrochemical performance of layered Li1.20Ti0.44Cr0.36O2/C cathode materials with cycling. Ionics, 2016, 22, 2291-2298.	1.2	1
4682	Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 2016, 5, 191-197.	9.5	239
4683	Liquid Phase Exfoliated MoS ₂ Nanosheets Percolated with Carbon Nanotubes for High Volumetric/Areal Capacity Sodium-Ion Batteries. ACS Nano, 2016, 10, 8821-8828.	7.3	258
4684	Ab initio and kinetic Monte Carlo study of lithium diffusion in LiSi, Li12Si7, Li13Si5 and Li15Si4. Journal of Power Sources, 2016, 328, 558-566.	4.0	18
4685	Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. Journal of Power Sources, 2016, 329, 31-40.	4.0	202
4686	Ironâ€Based Supercapacitor Electrodes: Advances and Challenges. Advanced Energy Materials, 2016, 6, 1601053.	10.2	358
4687	Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochimica Acta, 2016, 215, 261-266.	2.6	58

#	Article	IF	CITATIONS
4688	Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45, 5925-5950.	18.7	2,969
4689	Perovskite solar cell powered electrochromic batteries for smart windows. Materials Horizons, 2016, 3, 588-595.	6.4	148
4690	Safe and flexible ion gel based composite electrolyte for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 14132-14140.	5.2	46
4691	Graphite–silicon alloy composite anodes employing cross-linked poly(vinyl alcohol) binders for high-energy density lithium-ion batteries. RSC Advances, 2016, 6, 83126-83134.	1.7	24
4692	Improving the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 by double-layer coating with Li2TiO3 for lithium-ion batteries. Ionics, 2016, 22, 2235-2238.	1.2	9
4693	Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries. Applied Surface Science, 2016, 390, 175-184.	3.1	44
4694	Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries. Journal of Power Sources, 2016, 329, 72-78.	4.0	97
4695	High Capacity Na–O ₂ Batteries: Key Parameters for Solution-Mediated Discharge. Journal of Physical Chemistry C, 2016, 120, 20068-20076.	1.5	96
4696	Multifunctional Separator Coatings for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2016, 3, 1600450.	1.9	59
4697	MoS ₂ Nanosheets Vertically Grown on Graphene Sheets for Lithium-Ion Battery Anodes. ACS Nano, 2016, 10, 8526-8535.	7.3	447
4698	Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 14106-14110.	5.2	149
4699	Yolk–Shell MnO@ZnMn ₂ O ₄ /N–C Nanorods Derived from <i>î±</i> â€MnO ₂ /ZlFâ€8 as Anode Materials for Lithium Ion Batteries. Small, 2016, 12, 5564-5571.	5.2	130
4700	High temperature electrical energy storage: advances, challenges, and frontiers. Chemical Society Reviews, 2016, 45, 5848-5887.	18.7	268
4701	Using confined carbonate crystals for the fabrication of nanosized metal oxide@carbon with superior lithium storage capacity. Journal of Materials Chemistry A, 2016, 4, 15030-15035.	5.2	20
4702	Li ₃ PO ₄ Matrix Enables a Long Cycle Life and High Energy Efficiency Bismuth-Based Battery. Nano Letters, 2016, 16, 5875-5882.	4.5	37
4703	Carbon-based cathodes for sodium-air batteries. New Carbon Materials, 2016, 31, 264-270.	2.9	5
4704	Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi2(PO4)3 nanocrystals for high-performance sodium electrodes. Journal of Power Sources, 2016, 327, 580-590.	4.0	45
4705	Formation of CoS ₂ Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. Angewandte Chemie, 2016, 128, 13620-13624.	1.6	49

ARTICLE IF CITATIONS Formation of CoS₂ Nanobubble Hollow Prisms for Highly Reversible Lithium Storage. 4706 7.2 346 Angewandte Chemie - International Edition, 2016, 55, 13422-13426. Mesoporous spherical Li4Ti5O12/TiO2 composites as an excellent anode material for lithium-ion 4707 2.6 batteries. Electrochimica Acta, 2016, 212, 41-46. Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion 4708 9.5 61 batteries. Energy Storage Materials, 2016, 5, 180-190. Highly porous three-dimensional carbon nanotube foam as a freestanding anode for a lithium-ion 4709 44 battery. RSC Advances, 2016, 6, 79734-79744. Enhanced low-temperature ionic conductivity via different Li⁺ solvated clusters in organic solvent/ionic liquid mixed electrolytes. Physical Chemistry Chemical Physics, 2016, 18, 4710 1.335 25458-25464. Nanostructured metal phosphide-based materials for electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 14915-14931. 4711 5.2 240 Anion effect on lithium electrodeposition from N â€propyl―N â€methylpyrrolidinium 4712 2.6 15 bis(fluorosulfonyl)imide ionic liquid electrolytes. Electrochimica Acta, 2016, 215, 19-28. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries. Energy and 4713 15.6 368 Environmental Science, 2016, 9, 2978-3006. Molybdenum disulfide nanosheet embedded three-dimensional vertically aligned carbon nanotube 4714 1.7 13 arrays for extremely-excellent cycling stability lithium-ion anodes. RSC Ádvances, 2016, 6, 80320-80327. Rechargeable lithium–air batteries: a perspective on the development of oxygen electrodes. Journal of 4715 5.2 Materials Chemistry A, 2016, 4, 14050-14068. Fundamental Research on a New Process to Remove Al3+ as Potassium Alum during Lithium Extraction from Lepidolite. Metallurgical and Materials Transactions B: Process Metallurgy and Materials 4716 1.0 14 Processing Science, 2016, 47, 3557-3564. Aluminum Titania Nanoparticle Composites as Nonprecious Catalysts for Efficient Electrochemical 4717 4.0 Generation of H_{2'}. ACS Applied Materials & amp; Interfaces, 2016, 8, 23655-23667. Structurally stable Mg-doped P2-Na_{2/3}Mn_{1â^'y}Mg_yO₂ sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies. Energy and Environmental Science, 2016, 9, 3240-3251. 4718 15.6 264 The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016, 3, 487-516. 4719 6.4 Soft approach hydrothermal synthesis of a 3D sulfur/graphene/ multiwalled carbon nanotube 4720 1.7 14 cathode for lithium–sulfur batteries. RSC Advances, 2016, 6, 78994-78998. Visualization of the Phase Propagation within Carbon-Free Li4Ti5O12 Battery Electrodes. Journal of Physical Chemistry C, 2016, 120, 29030-29038. 4721 A Novel Single-Ion-Conducting Polymer Electrolyte Derived from CO₂-Based 4722 4.0 80 Multifunctional Polycarbonate. ACS Applied Materials & amp; Interfaces, 2016, 8, 33642-33648. On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as 89 Cathodes for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 33619-33625.

#	Article	IF	CITATIONS
4724	Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Interfaces, 2016, 8, 32631-32636.	4.0	71
4725	Analytical ABF-STEM imaging of Li ions in rechargeable batteries. Microscopy (Oxford, England), 2016, 66, 25-38.	0.7	11
4726	Redox-active metal–organic frameworks as electrode materials for batteries. MRS Bulletin, 2016, 41, 883-889.	1.7	34
4727	Sputtered Synthesis of MnO2 Nanorods as Binder Free Electrode for High Performance Symmetric Supercapacitors. Electrochimica Acta, 2016, 222, 1761-1769.	2.6	52
4728	Sn/carbon nanofibers fabricated by electrospinning with enhanced lithium storage capabilities. RSC Advances, 2016, 6, 111976-111981.	1.7	9
4729	Advanced LiTi2(PO4)3@N-doped carbon anode for aqueous lithium ion batteries. Electrochimica Acta, 2016, 222, 1491-1500.	2.6	52
4730	Preparation of Si/Ti Mesoporous Molecular Sieve and Its Application in P(VDF-HFP)-based Composite Polymer Electrolytes. Electrochimica Acta, 2016, 216, 467-474.	2.6	28
4731	Cation-Deficient Spinel ZnMn ₂ O ₄ Cathode in Zn(CF ₃ SO ₃) ₂ Electrolyte for Rechargeable Aqueous Zn-Ion Battery. Journal of the American Chemical Society, 2016, 138, 12894-12901.	6.6	1,451
4732	A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9551-9558.	11.1	514
4733	3D NiCo2S4 nanorod arrays as electrode materials for electrochemical energy storage application. Ceramics International, 2016, 42, 18173-18180.	2.3	16
4734	Investigation into the Surface Chemistry of Li ₄ Ti ₅ O ₁₂ Nanoparticles for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26008-26012.	4.0	31
4735	Review—Post-Mortem Analysis of Aged Lithium-Ion Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques. Journal of the Electrochemical Society, 2016, 163, A2149-A2164.	1.3	203
4736	Facile Synthesis of Platelike Hierarchical Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ with Exposed {010} Planes for High-Rate and Long Cycling-Stable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 26082-26090.	4.0	65
4737	LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Research, 2016, 9, 3903-3913.	5.8	29
4738	Macro-mesoporous hollow carbon spheres as anodes for lithium-ion batteries with high rate capability and excellent cycling performance. Journal of Power Sources, 2016, 331, 10-15.	4.0	46
4739	Peapod-like V2O3 nanorods encapsulated into carbon as binder-free and flexible electrodes in lithium-ion batteries. Journal of Power Sources, 2016, 331, 58-66.	4.0	86
4740	Flexible foams of graphene entrapped SnO ₂ –Co ₃ O ₄ nanocubes with remarkably large and fast lithium storage. Journal of Materials Chemistry A, 2016, 4, 16101-16107.	5.2	38
4741	A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horizons, 2016, 1, 496-501.	4.1	51

#	Article	IF	CITATIONS
4742	Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li 1+x Al x Ge 2â^'x (PO 4) 3. Solid State Ionics, 2016, 295, 32-40.	1.3	32
4743	Ultrafine Mn ₃ O ₄ Nanowires/Three-Dimensional Graphene/Single-Walled Carbon Nanotube Composites: Superior Electrocatalysts for Oxygen Reduction and Enhanced Mg/Air Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27710-27719.	4.0	48
4744	Novel one-step gas-phase reaction synthesis of transition metal sulfide nanoparticles embedded in carbon matrices for reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 16849-16855.	5.2	46
4745	Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-Rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. Journal of Power Sources, 2016, 331, 91-99.	4.0	95
4746	Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy and Environmental Science, 2016, 9, 3348-3367.	15.6	202
4747	Amorphous Li ₂ O ₂ : Chemical Synthesis and Electrochemical Properties. Angewandte Chemie, 2016, 128, 10875-10879.	1.6	37
4748	Arginineâ€Assisted Formation of Hierarchical TiO ₂ Microspheres for Lithiumâ€Ion and Sodiumâ€Ion Battery Applications. ChemNanoMat, 2016, 2, 1092-1097.	1.5	11
4749	Graphene encapsulated spherical hierarchical superstructures self-assembled by LiFe0.75Mn0.25PO4 nanoplates for high-performance Li-ion batteries. Electrochimica Acta, 2016, 218, 325-334.	2.6	17
4750	α-MnO 2 Nanowires/Graphene Composites with High Electrocatalytic Activity for Mg-Air Fuel Cell. Electrochimica Acta, 2016, 219, 492-501.	2.6	44
4751	Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries. Journal of Power Sources, 2016, 331, 232-239.	4.0	41
4752	Removal of Aluminum from Leaching Solution of Lepidolite by Adding Ammonium. Jom, 2016, 68, 2653-2658.	0.9	11
4753	Redesign of Li ₂ MP ₂ O ₇ (M = Fe or Mn) by Tuning the Li Diffusion in Rechargeable Battery Electrodes. Chemistry of Materials, 2016, 28, 6894-6899.	3.2	17
4754	Facile and scalable synthesis of nanosized core–shell Li ₂ S@C composite for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 16653-16660.	5.2	26
4755	Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy. Journal Physics D: Applied Physics, 2016, 49, 413003.	1.3	90
4756	A flexible Li-ion battery with design towards electrodes electrical insulation. Journal of Microengineering, 2016, 26, 084002.	1.5	4
4757	Electrochemical Properties of Anthraquinone-based Polyimides as Cathodes for Lithium Secondary Batteries. Chemistry Letters, 2016, 45, 271-273.	0.7	14
4758	Sulfur Encapsulated in Graphitic Carbon Nanocages for Highâ€Rate and Long ycle Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9539-9544.	11.1	392
4759	From M(BH4)3 (M = La, Ce) Borohydride Frameworks to Controllable Synthesis of Porous Hydrides and Ion Conductors. Inorganic Chemistry, 2016, 55, 9748-9756.	1.9	32

#	Article	IF	CITATIONS
4760	Inhomogeneous Degradation of Graphite Anodes in Li-Ion Cells: A Postmortem Study Using Glow Discharge Optical Emission Spectroscopy (GD-OES). Journal of Physical Chemistry C, 2016, 120, 22225-22234.	1.5	62
4761	3D nest-shaped Sb ₂ O ₃ /RGO composite based high-performance lithium-ion batteries. Nanoscale, 2016, 8, 17131-17135.	2.8	45
4762	An Aqueous Symmetric Sodiumâ€lon Battery with NASICONâ€6tructured Na ₃ MnTi(PO ₄) ₃ . Angewandte Chemie, 2016, 128, 12960-12964.	1.6	72
4763	Oxocarbon Salts for Fast Rechargeable Batteries. Angewandte Chemie, 2016, 128, 12716-12720.	1.6	53
4764	An Aqueous Symmetric Sodiumâ€lon Battery with NASICON‣tructured Na ₃ MnTi(PO ₄) ₃ . Angewandte Chemie - International Edition, 2016, 55, 12768-12772.	7.2	236
4765	Effects of the volume changes and elastic-strain energies on the phase transition in the Li-Sn battery. Journal of Power Sources, 2016, 330, 111-119.	4.0	24
4766	Chlorideâ€Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium–Sulfur Batteries. Advanced Science, 2016, 3, 1600175.	5.6	68
4767	Phase Separation of Li ₂ S/S at Nanoscale during Electrochemical Lithiation of the Solidâ€5tate Lithium–Sulfur Battery Using In Situ TEM. Advanced Energy Materials, 2016, 6, 1600806.	10.2	69
4768	Microwave-assisted synthesis of functional electrode materials for energy applications. Journal of Solid State Electrochemistry, 2016, 20, 2915-2928.	1.2	32
4769	One-Pot Hydrothermal Synthesis of LiMn2O4 Cathode Material with Excellent High-Rate and Cycling Properties. Journal of Electronic Materials, 2016, 45, 4350-4356.	1.0	12
4770	Complex titanates Sr1-xPbxLi2Ti6O14 (0â‰竊翁‰聲) as anode materials for high-performance lithium-ion batteries. Electrochimica Acta, 2016, 212, 950-957.	2.6	16
4771	All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016, 5, 139-164.	9.5	768
4772	Energy storage in the energy transition context: A technology review. Renewable and Sustainable Energy Reviews, 2016, 65, 800-822.	8.2	447
4773	Superior Lithium-Ion Storage at Room and Elevated Temperature in an Industrial Woodchip Derived Porous Carbon. Industrial & Engineering Chemistry Research, 2016, 55, 8706-8712.	1.8	23
4774	Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as a cathode material for sodium ion batteries. RSC Advances, 2016, 6, 71581-71588.	1.7	67
4775	Review of Local Inâ€Situ Probing Techniques for the Interfaces of Lithiumâ€lon and Lithium–Oxygen Batteries. Energy Technology, 2016, 4, 1472-1485.	1.8	26
4776	Design and synthesis of N-doped graphene sheets loaded with Li4Ti5O12 nanocrystals as advanced anode material for Li-ion batteries. Ceramics International, 2016, 42, 16031-16039.	2.3	29
4777	Atomic-Scale Control of Silicon Expansion Space as Ultrastable Battery Anodes. ACS Nano, 2016, 10, 8243-8251.	7.3	128

#	Article	IF	CITATIONS
4778	Half and full sodium-ion batteries based on maize with high-loading density and long-cycle life. Nanoscale, 2016, 8, 15497-15504.	2.8	35
4779	A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13046-13052.	5.2	246
4780	Nitrogen-rich MOF derived porous Co ₃ O ₄ /N–C composites with superior performance in lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13040-13045.	5.2	140
4781	Designing high-energy lithium–sulfur batteries. Chemical Society Reviews, 2016, 45, 5605-5634.	18.7	2,008
4782	Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2016, 55, 10027-10031.	7.2	158
4783	Electrochemical sodium storage in amorphous GeO x powder. Electrochimica Acta, 2016, 195, 192-198.	2.6	24
4784	Carbon nanotubes in Li-ion batteries: A review. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 12-40.	1.7	127
4785	Yolk–Shell Sn@C Eggette-like Nanostructure: Application in Lithium-Ion and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 19438-19445.	4.0	129
4786	In situ preparation of hollow Mo ₂ C–C hybrid microspheres as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 12583-12590.	5.2	89
4787	Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology, 2016, , .	0.1	34
4788	Tris(trimethylsilyl)phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide. Electrochimica Acta, 2016, 212, 352-359.	2.6	33
4789	New aromatic polymer electrolytes for application in lithium metal batteries. New Journal of Chemistry, 2016, 40, 7840-7845.	1.4	4
4790	Quaternary phase diagrams of spinel <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:mi mathvariant="normal">O<mml:mn>4<td>>yk‡mml:r</td><td>niz </td></mml:mn></mml:mi </mml:msub></mml:mrow></mml:math 	>yk‡mml:r	ni z
4791	Nitrogen-doped carbon coated silicon derived from a facile strategy with enhanced performance for lithium storage. Functional Materials Letters, 2016, 09, 1650055.	0.7	6
4792	Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 20138-20146.	4.0	197
4793	Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. Journal of the American Chemical Society, 2016, 138, 9385-9388.	6.6	844
4794	In situ analyses for ion storage materials. Chemical Society Reviews, 2016, 45, 5717-5770.	18.7	101
4795	Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries. Angewandte Chemie, 2016, 128, 10181-10185.	1.6	19

#	Article	IF	CITATIONS
4796	Carbon-Encapsulated Hollow Porous Vanadium-Oxide Nanofibers for Improved Lithium Storage Properties. ACS Applied Materials & Interfaces, 2016, 8, 19466-19474.	4.0	48
4797	Membrane Separators for Electrochemical Energy Storage Technologies. Nanostructure Science and Technology, 2016, , 417-462.	0.1	1
4798	Nanocomposite Polymer Electrolytes in Electrochemical Energy Storage Systems. Nanostructure Science and Technology, 2016, , 463-479.	0.1	0
4799	Computational Modelling as a Value Add in Energy Storage Materials. Nanostructure Science and Technology, 2016, , 481-513.	0.1	1
4800	Li2MnSiO4 Nanostructured Cathodes for Rechargeable Lithium-Ion Batteries. Nanostructure Science and Technology, 2016, , 25-54.	0.1	3
4801	Tin oxide nano-flower-anchored graphene composites as high-performance anode materials for lithium-ion batteries. Ionics, 2016, 22, 2307-2313.	1.2	8
4802	Facile fabrication of SnO ₂ @TiO ₂ core–shell structures as anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 12850-12857.	5.2	76
4803	Hollow Li1.2Mn0.54Ni0.13Co0.13O2 micro-spheres synthesized by a co-precipitation method as a high-performance cathode material for Li-ion batteries. RSC Advances, 2016, 6, 70091-70098.	1.7	15
4804	Recent Advances in Nonâ€Aqueous Electrolyte for Rechargeable Li–O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1600751.	10.2	149
4805	Selfâ€Supporting and Binderâ€Free Anode Film Composed of Beaded Streamâ€Like Li ₄ Ti ₅ O ₁₂ Nanoparticles for Highâ€Performance Lithiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1301-1305.	1.7	21
4806	Tailored Combination of Low Dimensional Catalysts for Efficient Oxygen Reduction and Evolution in Li–O ₂ Batteries. ChemSusChem, 2016, 9, 2080-2088.	3.6	39
4807	LiFePO4 nanoplates with {010} exposed active planes prepared by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2016, 27, 12258-12263.	1.1	7
4808	Nitrogen-doped graphene assists Fe2O3 in enhancing electrochemical performance. Journal of Power Sources, 2016, 326, 389-396.	4.0	42
4809	Cyclized-polyacrylonitrile modified carbon nanofiber interlayers enabling strong trapping of polysulfides in lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 12973-12980.	5.2	64
4810	Nanostructured Li2Se cathodes for high performance lithium-selenium batteries. Nano Energy, 2016, 27, 238-246.	8.2	54
4811	Forthcoming perspectives of photoelectrochromic devices: a critical review. Energy and Environmental Science, 2016, 9, 2682-2719.	15.6	122
4812	Concentration dependence of Li+/Na+diffusion in manganese hexacyanoferrates. Japanese Journal of Applied Physics, 2016, 55, 067101.	0.8	2
4813	Musselâ€Inspired Polydopamineâ€Functionalized Superâ€P as a Conductive Additive for Highâ€Performance Silicon Anodes. Advanced Materials Interfaces, 2016, 3, 1600270.	1.9	14

		CITATION REPORT		
#	Article		IF	CITATIONS
4814	Recent Progress in Electrode Materials for Sodiumâ€lon Batteries. Advanced Energy Ma 1600943.	terials, 2016, 6,	10.2	815
4815	Enabling a High Performance of Mesoporous α-Fe ₂ O ₃ Anode Conformal Coating of Cyclized-PAN Network. ACS Applied Materials & amp; Interfaces, 2 19524-19532.		4.0	29
4816	Power from nature: designing green battery materials from electroactive quinone deriva organic polymers. Journal of Materials Chemistry A, 2016, 4, 12370-12386.	itives and	5.2	161
4818	Threeâ€Dimensional Molybdenum Disulfide Nanoflowers Decorated on Graphene Nano Highâ€Performance Lithiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1503-1512.	sheets for	1.7	20
4819	A Core–Shell Fe/Fe ₂ O ₃ Nanowire as a Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 12081-12087.	Anode Material for	1.7	39
4820	A novel method to synthesize SnP2O7 spherical particles for lithium-ion battery anode. 2315-2319.	Ionics, 2016, 22,	1.2	11
4821	Multifunctional Energy Storage and Conversion Devices. Advanced Materials, 2016, 28,	8344-8364.	11.1	420
4822	Red Mud and Li″on Batteries: A Magnetic Connection. ChemSusChem, 2016, 9, 2193	-2200.	3.6	15
4823	Surfactant-free self-assembly of reduced graphite oxide-MoO2 nanobelt composites use for lithium-ion batteries. Electrochimica Acta, 2016, 211, 972-981.	2d as electrode	2.6	53
4824	Vanadium K-Edge X-ray Absorption Spectroscopy as a Probe of the Heterogeneous Lithi V ₂ O ₅ : First-Principles Modeling and Principal Component Ana Physical Chemistry C, 2016, 120, 23922-23932.		1.5	52
4825	Facile synthesis of ultrathin, undersized MoS ₂ /graphene for lithium-ion bat RSC Advances, 2016, 6, 99833-99841.	ttery anodes.	1.7	15
4826	Preparation and performance of spherical FeF _{2.5} ·0.5H ₂ O na wrapped by MWCNTs as cathode material of lithium ion batteries. RSC Advances, 2016		1.7	14
4827	Electrochemical Activation of Silica for Enhanced Performances of Si-Based Electrodes. J the Electrochemical Society, 2016, 163, A2791-A2796.	ournal of	1.3	22
4828	Three-dimensional and hierarchically porous bulk battery electrode. Journal of Alloys and Compounds, 2016, 685, 705-709.	1	2.8	3
4829	Highly doped and exposed Cu(<scp>i</scp>)–N active sites within graphene towards reduction for zinc–air batteries. Energy and Environmental Science, 2016, 9, 3736-37		15.6	374
4830	Highâ€Performance LiCoO ₂ Subâ€Micrometer Materials from Scalable Mic Processing. ChemistrySelect, 2016, 1, 3992-3999.	croparticle Template	0.7	32
4831	Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons deri honey. Journal of Power Sources, 2016, 335, 20-30.	ved from	4.0	90

4832	Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 2016, 1, .	23.3	3,562
------	--	------	-------

		CITATION R	EPORT	
#	Article		IF	CITATIONS
4833	A stable room-temperature sodium–sulfur battery. Nature Communications, 2016, 7	⁷ , 11722.	5.8	459
4834	Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nature Communications, 2016, 7, 11886.		5.8	211
4835	Multidimensional materials and device architectures for future hybrid energy storage. I Communications, 2016, 7, 12647.	Nature	5.8	1,281
4836	Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nature Energy, 20)16, 1, .	19.8	712
4837	Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. N 2016, 1, .	Vature Energy,	19.8	2,186
4838	Graphene–Selenium Hybrid Microballs as Cathode Materials for High-performance Li Secondary Battery Applications. Scientific Reports, 2016, 6, 30865.	thium–Selenium	1.6	30
4839	Superstructure ZrV ₂ O ₇ nanofibres: thermal expansion, elect storage properties. Physical Chemistry Chemical Physics, 2016, 18, 32160-32168.	ronic and lithium	1.3	8
4840	Porous TiNb ₂₄ O ₆₂ microspheres as high-performance anode lithium-ion batteries of electric vehicles. Nanoscale, 2016, 8, 18792-18799.	e materials for	2.8	94
4841	Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped ca as high-performance positive electrode material for lithium-ion batteries. Electrochimic 222, 64-73.	arbon nanotubes :a Acta, 2016,	2.6	34
4842	Novel method of current collector coating by multiwalled carbon nanotube Langmuir l enhanced power performance of LiMn2O4 electrode of Li-ion batteries. Electrochimica 921-925.	ayer for Acta, 2016, 222,	2.6	12
4843	Insight into the electrochemical behaviors of 5V–class high–voltage batteries com lithium–rich layered oxide with multifunctional additive. Journal of Power Sources, 20 465-474.		4.0	24
4844	In Situ Spectroscopic Identification of μ-OO Bridging on Spinel Co ₃ O <s Oxidation Electrocatalyst. Journal of Physical Chemistry Letters, 2016, 7, 4847-4853.</s 	ub>4 Water	2.1	136
4845	High-performance flexible energy storage and harvesting system for wearable electron Reports, 2016, 6, 26122.	ics. Scientific	1.6	182
4846	Facile, Water-Based, Direct–Deposit Fabrication of Hybrid Silicon Assemblies for Sca High–Performance Li–ion Battery Anodes. Electrochimica Acta, 2016, 222, 946-95		2.6	5
4847	Synthesis of α-Fe ₂ O ₃ , Fe ₃ O ₄ and magnetic hollow nanofibers as anode materials for Li-ion batteries. RSC Advances, 201		1.7	30
4848	Synthesis and solvent-free polymerisation of vinyl terephthalate for application as an a in organic batteries. RSC Advances, 2016, 6, 111350-111357.	node material	1.7	15
4849	Synthesis of α-Fe ₂ O ₃ /carbon nanocomposites as high capa next generation lithium ion batteries: a review. Journal of Materials Chemistry A, 2016,		5.2	85
4850	Additive-free synthesis of Li ₄ Ti ₅ O ₁₂ nanowire freestanding ultrathin graphite as a hybrid anode for flexible lithium ion batteries. Journ Materials Chemistry A, 2016, 4, 19197-19206.		5.2	26

ARTICLE IF CITATIONS Vertically oriented MoS₂nanoflakes coated on 3D carbon nanotubes for next generation 4851 1.3 24 Li-ion batteries. Nanotechnology, 2016, 27, 495401. An Intermediate-Temperature Solid Oxide Iron–Air Redox Battery Operated on O^{2–}-Chemistry and Loaded with Pd-Catalyzed Iron-Based Energy Storage Material. ACS 4852 8.8 Energy Letters, 2016, 1, 1206-1211. Heteroaromatic organic compound with conjugated multi-carbonyl as cathode material for 4853 1.6 34 rechargeable lithium batteries. Scientific Reports, 2016, 6, 23515. Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction 4854 123 Distribution. Scientific Reports, 2016, 6, 26382. Facile synthesis of a nickel vanadate/Ni composite and its electrochemical performance as an anode 4855 1.7 23 for lithium ion batteries. RSC Advances, 2016, 6, 90197-90205. Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Scientific Reports, 2016, 6, 18978. 1.6 Unique nanocrystalline frameworks in mesoporous tin phosphate prepared through a hydrofluoric 4857 5.2 14 acid assisted chemical reaction. Journal of Materials Chemistry A, 2016, 4, 18091-18099. Study of Room Temperature Solid Polymer Electrolyte for Lithium Sulfur Battery. ECS Transactions, 0.3 2016, 72, 209-221. Chemical and Radiation Stability of Ionic Liquids: A Computational Screening Study. Journal of 4859 1.5 45 Physical Chemistry C, 2016, 120, 27757-27767. High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating. ACS 8.8 281 Energy Letters, 2016, 1, 1247-1255. Preparation and Performance of Metal-Organic-Frameworks-Derived Activated Mesoporous Carbon Polyhedron with Sponge-Like Structure for Lithiumâ€"Sulfur Batteries. Journal of the Electrochemical 4861 17 1.3 Society, 2016, 163, A2922-A2929. Microsized Porous SiO_{<i>x</i>}@C Composites Synthesized through Aluminothermic Reduction from Rice Husks and Used as Anode for Lithium-Ion Batteries. ACS Applied Materials & amp; 4862 4.0 131 Interfaces, 2016, 8, 30239-30247. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. 4863 5.8 745 Nature Communications, 2016, 7, 10992. Stabilizing high voltage LiCoO₂ cathode in aqueous electrolyte with interphase-forming additive. Energy and Environmental Science, 2016, 9, 3666-3673. 4864 15.6 190 Effects of Li₂SO₄·H₂O amounts on morphologies of 4865 1.7 8 hydrothermal synthesized LiMnPO₄ cathodes. RSC Advances, 2016, 6, 103232-103237. In situ soft-chemistry synthesis of \hat{l}^2 -Na_{0.33}V₂O₅ nanorods as 4866 high-performance cathode for lithium-ion batteries. RSC Advances, 2016, 6, 105833-105839. Ultrafast Lithium Storage Using Antimony-Doped Tin Oxide Nanoparticles Sandwiched between Carbon 4867 4.0 63 Nanofibers and a Carbon Skin. ACS Applied Materials & amp; Interfaces, 2016, 8, 30264-30270. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nature Communications, 2016, 7, 4868 5.8 361 ncomms11794.

#	Article	IF	CITATIONS
4869	Batteries: Getting solid. Nature Energy, 2016, 1, .	19.8	295
4870	Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity. RSC Advances, 2016, 6, 104597-104607.	1.7	46
4871	Unique 1D Co3O4 crystallized nanofibers with (220) oriented facets as high-performance lithium ion battery anode material. Scientific Reports, 2016, 6, 26460.	1.6	32
4872	Mussel-inspired Polydopamine-treated Copper Foil as a Current Collector for High-performance Silicon Anodes. Scientific Reports, 2016, 6, 30945.	1.6	26
4873	Hierarchical Mesoporous 3D Flower-like CuCo2O4/NF for High-Performance Electrochemical Energy Storage. Scientific Reports, 2016, 6, 31120.	1.6	125
4874	Stepwise carbon growth on Si/SiOx core-shell nanoparticles and its effects on the microstructures and electrochemical properties for high-performance lithium-ion battery's anode. Electrochimica Acta, 2016, 222, 535-542.	2.6	18
4875	Exploration of MnFeO ₃ /Multiwalled Carbon Nanotubes Composite as Potential Anode for Lithium Ion Batteries. Inorganic Chemistry, 2016, 55, 11644-11651.	1.9	22
4876	Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Anchored on Freestanding Graphite Foam for High-Performance Sodium-Ion Cathodes. ACS Applied Materials & Interfaces, 2016, 8, 32360-32365.	4.0	50
4877	Freestanding three-dimensional core–shell nanoarrays for lithium-ion battery anodes. Nature Communications, 2016, 7, 11774.	5.8	143
4878	WS ₂ –3D graphene nano-architecture networks for high performance anode materials of lithium ion batteries. RSC Advances, 2016, 6, 107768-107775.	1.7	29
4879	The role of graphene in nano-layered structure and long-term cycling stability of Mn _x Co _y Ni _z CO ₃ as an anode material for lithium-ion batteries. RSC Advances, 2016, 6, 105252-105261.	1.7	7
4880	A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries. Journal of Materials Chemistry A, 2016, 4, 18543-18550.	5.2	66
4881	5L-Scale Magnesio-Milling Reduction of Nanostructured SiO ₂ for High Capacity Silicon Anodes in Lithium-Ion Batteries. Nano Letters, 2016, 16, 7261-7269.	4.5	67
4882	Evaluation of graphene-wrapped LiFePO ₄ as novel cathode materials for Li-ion batteries. RSC Advances, 2016, 6, 105081-105086.	1.7	16
4883	Sodium vanadate nanowires @ polypyrrole with synergetic core-shell structure for enhanced reversible sodium-ion storage. Composites Science and Technology, 2016, 137, 130-137.	3.8	28
4884	Nanoscale Chemical Evolution of Silicon Negative Electrodes Characterized by Low-Loss STEM-EELS. Nano Letters, 2016, 16, 7381-7388.	4.5	45
4885	A simple, one-pot synthesis of molybdenum oxide-reduced graphene oxide composites in supercritical methanol and their electrochemical performance. RSC Advances, 2016, 6, 108298-108309.	1.7	21
4886	Facile synthesis of hierarchical CoMoO ₄ @NiMoO ₄ core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 18578-18584.	5.2	171

#	Article	IF	CITATIONS
4887	Graphene nanoribbons wrapping double nanoshells of SnO2@TiO2 for high lithium storage. Journal of Power Sources, 2016, 336, 298-306.	4.0	31
4888	Investigating the Interfacial Chemistry of Organic Electrodes in Li- and Na-Ion Batteries. Chemistry of Materials, 2016, 28, 8742-8751.	3.2	30
4889	Standout electrochemical performance of SnO ₂ and Sn/SnO ₂ nanoparticles embedded in a KOH-activated carbonized porous aromatic framework (PAF-1) matrix as the anode for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18822-18831.	5.2	28
4890	Enhancement of cyclic stability for high voltage lithium ion battery at elevated temperature by using polyethylene-supported poly(methyl methacrylate â^' butyl acrylate â^' acrylonitrile â^' styrene) based novel gel electrolyte. Electrochimica Acta, 2016, 220, 47-56.	2.6	20
4891	Nonclassical nucleation and growth of inorganic nanoparticles. Nature Reviews Materials, 2016, 1, .	23.3	343
4892	Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nature Energy, 2016, 1, .	19.8	609
4893	Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1, .	19.8	1,710
4894	High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy, 2016, 1, .	19.8	2,421
4895	Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 2016, 1, .	19.8	1,388
4896	In situ X-ray photoelectron and Auger electron spectroscopic characterization of reaction mechanisms during Li-ion cycling. Chemical Communications, 2016, 52, 13257-13260.	2.2	22
4897	Carbon-Encapsulated Co 3 O 4 @CoO@Co Nanocomposites for Multifunctional Applications in Enhanced Long-life Lithium Storage, Supercapacitor and Oxygen Evolution Reaction. Electrochimica Acta, 2016, 220, 322-330.	2.6	68
4898	Constructing a Protective Interface Film on Layered Lithium-Rich Cathode Using an Electrolyte Additive with Special Molecule Structure. ACS Applied Materials & Interfaces, 2016, 8, 30116-30125.	4.0	115
4899	Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes. Nature Communications, 2016, 7, 11049.	5.8	112
4900	High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy, 2016, 1, .	19.8	265
4901	Aspergillus flavus Conidia-derived Carbon/Sulfur Composite as a Cathode Material for High Performance Lithium–Sulfur Battery. Scientific Reports, 2016, 6, 18739.	1.6	22
4902	Oxygen Evolution Reaction on Perovskite Electrocatalysts with Localized Spins and Orbital Rotation Symmetry. ChemCatChem, 2016, 8, 3762-3768.	1.8	35
4903	Poly(vinylidene fluoride) separators with dual-asymmetric structure for high-performance lithium ion batteries. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1423-1435.	2.0	25
4904	Porous CoC2O4 Nanorods as High Performance Anode Material for Lithium Ion Batteries. Jom, 2016, 68, 2952-2957.	0.9	10

#	Article	IF	CITATIONS
4905	Design of a p-Type Electrode for Enhancing Electronic Conduction in High-Mn, Li-Rich Oxides. Chemistry of Materials, 2016, 28, 8201-8209.	3.2	24
4906	Aqueous synthesis of LiFePO4 with Fractal Granularity. Scientific Reports, 2016, 6, 27024.	1.6	37
4907	Polymeric binder based on PAA and conductive PANI for high performance silicon-based anodes. RSC Advances, 2016, 6, 101622-101625.	1.7	28
4908	Carbon-coated Si micrometer particles binding to reduced graphene oxide for a stable high-capacity lithium-ion battery anode. Journal of Materials Chemistry A, 2016, 4, 17757-17763.	5.2	25
4909	A dense transparent polymeric single ion conductor for lithium ion batteries with remarkable long-term stability. Journal of Power Sources, 2016, 336, 75-82.	4.0	74
4910	High lithium-ion conducting NASICON-type Li1+xâ^'yAlxNbyTi2–xâ^'y(PO4)3 solid electrolytes. Solid State Ionics, 2016, 297, 43-48.	1.3	23
4911	From the Junkyard to the Power Grid: Ambient Processing of Scrap Metals into Nanostructured Electrodes for Ultrafast Rechargeable Batteries. ACS Energy Letters, 2016, 1, 1034-1041.	8.8	9
4912	Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts. Scientific Reports, 2016, 6, 28367.	1.6	94
4913	Crystal Engineering of Naphthalenediimide-Based Metal–Organic Frameworks: Structure-Dependent Lithium Storage. ACS Applied Materials & Interfaces, 2016, 8, 31067-31075.	4.0	71
4914	Rational design of efficient electrode–electrolyte interfaces for solid-state energy storage using ion soft landing. Nature Communications, 2016, 7, 11399.	5.8	86
4915	Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries. Scientific Reports, 2016, 6, 19892.	1.6	300
4916	Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Scientific Reports, 2016, 6, 30248.	1.6	153
4917	Thermally reversible solidification of novel ionic liquid [im]HSO ₄ by self-nucleated rapid crystallization: investigations of ionic conductivity, thermal properties, and catalytic activity. RSC Advances, 2016, 6, 108896-108907.	1.7	8
4918	Hierarchical MoS ₂ tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries. Science Advances, 2016, 2, e1600021.	4.7	362
4919	Hierarchical Mesoporous Iron Fluoride with Superior Rate Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 32869-32874.	4.0	26
4920	Durability of the Li _{1+<i>x</i>} Ti _{2–<i>x</i>} Al _{<i>x</i>} (PO ₄) ₃ Solid Electrolyte in Lithium–Sulfur Batteries. ACS Energy Letters, 2016, 1, 1080-1085.	8.8	89
4921	Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. Scientific Reports, 2016, 6, 33590.	1.6	57
4922	Facile strategy of NCA cation mixing regulation and its effect on electrochemical performance. RSC Advances, 2016, 6, 108558-108565.	1.7	28

	CITATION REF	PORT	
# 4923	ARTICLE Electrochemical performance of highly amorphous GeO _x powders synthesized in different alcohols for use in Na- and Li-ion batteries. RSC Advances, 2016, 6, 102109-102115.	IF 1.7	CITATIONS 3
4924	Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18621-18627.	5.2	188
4925	High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18737-18741.	5.2	158
4926	Large size nitrogen-doped graphene-coated graphite for high performance lithium-ion battery anode. RSC Advances, 2016, 6, 104010-104015.	1.7	14
4927	Surface Layer and Morphology of Lithium Metal Electrodes. Electrochemistry, 2016, 84, 854-860.	0.6	60
4928	Structural and electrochemical properties of PEMA with the influence of MWCNT / TiO2 filler. AIP Conference Proceedings, 2016, , .	0.3	0
4929	Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature. Journal of Visualized Experiments, 2016, , .	0.2	1
4930	Profitability of different li-ion batteries as back-up power in LVDC distribution network. , 2016, , .		3
4931	Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity. APL Materials, 2016, 4, .	2.2	2
4932	Sodiumâ€Deficient O3â€Na _{0.9} [Ni _{0.4} Mn <i>_x</i> Ti _{0.6â^²<i>x</i>}]O _{2Layeredâ€Oxide Cathode Materials for Sodiumâ€Ion Batteries. Particle and Particle Systems Characterization, 2016, 33, 538-544.}	1.2	47
4933	Influence of Carbon Matrix Dimensions on the Electrochemical Performance of Germanium Oxide in Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2016, 33, 524-530.	1.2	8
4934	A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Selfâ€Healing Elastic Polymer. Advanced Materials, 2016, 28, 2455-2461.	11.1	197
4935	Renewableâ€Biomoleculeâ€Based Full Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 3486-3492.	11.1	147
4936	Going Beyond Lithium Hybrid Capacitors: Proposing a New Highâ€Performing Sodium Hybrid Capacitor System for Nextâ€Generation Hybrid Vehicles Made with Bioâ€Inspired Activated Carbon. Advanced Energy Materials, 2016, 6, 1502199.	10.2	137
4937	Poly(vinylferrocene)–Reduced Graphene Oxide as a High Power/High Capacity Cathodic Battery Material. Advanced Energy Materials, 2016, 6, 1600108.	10.2	48
4938	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie, 2016, 128, 5061-5066.	1.6	20
4939	A Highly Ion‣elective Zeolite Flake Layer on Porous Membranes for Flow Battery Applications. Angewandte Chemie - International Edition, 2016, 55, 3058-3062.	7.2	148
4940	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	0.8	81

#	Article	IF	CITATIONS
4941	An Effectively Activated Hierarchical Nanoâ€∤Microspherical Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode for Longâ€Life and Highâ€Rate Lithiumâ€Ion Batteries. ChemSusChem, 2016, 9, 728-735.	3.6	65
4942	Silicon Asymmetric Membranes for Efficient Lithium Storage: A Scalable Method. Energy Technology, 2016, 4, 502-509.	1.8	7
4943	Nanostructured Silicon Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 647-678.	7.8	261
4944	A Green and Facile Way to Prepare Granadillaâ€Like Siliconâ€Based Anode Materials for Liâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 440-446.	7.8	187
4945	MoS ₂ â€Quantumâ€Dotâ€Interspersed Li ₄ Ti ₅ O ₁₂ Nanosheet with Enhanced Performance for Liâ€and Naâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 3349-3358.	.s 7.8	128
4946	Elastic Carbon Nanotube Aerogel Meets Tellurium Nanowires: A Binder―and Collectorâ€Free Electrode for Liâ€Te Batteries. Advanced Functional Materials, 2016, 26, 3580-3588.	7.8	73
4947	Solutionâ€Processable Glass Lil‣i ₄ SnS ₄ Superionic Conductors for Allâ€Solidâ€State Liâ€Ion Batteries. Advanced Materials, 2016, 28, 1874-1883.	11.1	265
4948	An Aqueous Rechargeable Zn//Co ₃ O ₄ Battery with High Energy Density and Good Cycling Behavior. Advanced Materials, 2016, 28, 4904-4911.	11.1	417
4949	3D Interconnected Electrode Materials with Ultrahigh Areal Sulfur Loading for Li–S Batteries. Advanced Materials, 2016, 28, 3374-3382.	11.1	488
4950	Revealing Rate Limitations in Nanocrystalline Li ₄ Ti ₅ O ₁₂ Anodes for Highâ€Power Lithium Ion Batteries. Advanced Materials Interfaces, 2016, 3, 1600003.	1.9	21
4951	Twoâ€Dimensional Materials for Beyondâ€Lithiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600025.	10.2	533
4952	Hierarchical Tubular Structures Composed of Co ₃ O ₄ Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. Angewandte Chemie, 2016, 128, 6094-6097.	1.6	58
4953	Rechargeable Roomâ€Temperature Na–CO ₂ Batteries. Angewandte Chemie - International Edition, 2016, 55, 6482-6486.	7.2	202
4954	High Pseudocapacitive Performance of MnO ₂ Nanowires on Recyclable Electrodes. ChemSusChem, 2016, 9, 1020-1026.	3.6	13
4955	SnO ₂ @Nâ€Doped Carbon Hollow Nanoclusters for Advanced Lithiumâ€lon Battery Anodes. European Journal of Inorganic Chemistry, 2016, 2016, 812-817.	1.0	12
4956	Operando X-ray Absorption Spectroscopy Study of Atomic Phase Reversibility with Wavelet Transform in the Lithium-Rich Manganese Based Oxide Cathode. Chemistry of Materials, 2016, 28, 4191-4203.	3.2	30
4957	<i>In Situ</i> Polymerization Synthesis of Ternary Sulfur/Polypyrrole/Graphene Nanosheet Cathode for Lithium/Sulfur Batteries. Materials Science Forum, 0, 847, 8-13.	0.3	2
4958	Synthesis and Electrochemical Performance of Polypyrrole-Coated Sulfur/Multi-Walled Carbon Nanotube Composite Cathode Materials for Lithium/Sulfur Batteries. Materials Science Forum, 0, 847, 33-38.	0.3	0

# 4959	ARTICLE Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices. Journal of Solid State Electrochemistry, 2016, 20, 2663-2671.	IF 1.2	CITATIONS
4960	Influence of europium doping on the electrochemical performance of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials for lithium ion batteries. Ceramics International, 2016, 42, 10433-10438.	2.3	23
4961	Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. Journal of Power Sources, 2016, 325, 25-34.	4.0	81
4962	Direct Mapping of Charge Distribution during Lithiation of Ge Nanowires Using Off-Axis Electron Holography. Nano Letters, 2016, 16, 3748-3753.	4.5	34
4963	Rational confinement of molybdenum based nanodots in porous carbon for highly reversible lithium storage. Journal of Materials Chemistry A, 2016, 4, 10403-10408.	5.2	16
4964	Coordination polymer-derived mesoporous Co ₃ O ₄ hollow nanospheres for high-performance lithium-ions batteries. RSC Advances, 2016, 6, 50846-50850.	1.7	15
4965	Lithium-ion Open Circuit Voltage (OCV) curve modelling and its ageing adjustment. Journal of Power Sources, 2016, 324, 694-703.	4.0	109
4966	Cluster-Inspired Design of High-Capacity Anode for Li-Ion Batteries. ACS Energy Letters, 2016, 1, 202-208.	8.8	23
4967	Biomediated green synthesis of TiO2 nanoparticles for lithium ion battery application. Composites Part B: Engineering, 2016, 99, 297-304.	5.9	102
4968	Polyquinoneimines for lithium storage: more than the sum of its parts. Materials Horizons, 2016, 3, 429-433.	6.4	85
4969	Ultra-uniform CuO/Cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 10585-10592.	5.2	59
4970	A unique porous architecture built by ultrathin wrinkled NiCoO ₂ /rGO/NiCoO ₂ sandwich nanosheets for pseudocapacitance and Li ion storage. Journal of Materials Chemistry A, 2016, 4, 10304-10313.	5.2	72
4971	Synchrotron-based x-ray absorption spectroscopy for energy materials. MRS Bulletin, 2016, 41, 466-472.	1.7	21
4972	Lithium-ion battery anodes of highly dispersed carbon nanotubes, graphene nanoplatelets, and carbon nanofibers. Journal of Materials Science: Materials in Electronics, 2016, 27, 10342-10346.	1.1	7
4973	A comparative study on electrochemical cycling stability of lithium rich layered cathode materials Li 1.2 Ni 0.13 M 0.13 Mn 0.54 O 2 where MÂ=ÂFe or Co. Journal of Power Sources, 2016, 324, 462-474.	4.0	59
4974	Finite Bias Calculations to Model Interface Dipoles in Electrochemical Cells at the Atomic Scale. Journal of Physical Chemistry C, 2016, 120, 13485-13491.	1.5	35
4975	lonic Liquid–Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C. ACS Applied Materials & Interfaces, 2016, 8, 15242-15249.	4.0	51
4976	Selenium Embedded in Metal–Organic Framework Derived Hollow Hierarchical Porous Carbon Spheres for Advanced Lithium–Selenium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16063-16070.	4.0	106

ARTICLE IF CITATIONS Ionic Liquid-Based Polymer Electrolytes via Surfactant-Assisted Polymerization at the Plasma–Liquid 4977 4.0 14 Interface. ACS Applied Materials & amp; Interfaces, 2016, 8, 16125-16135. Porous carbon-wrapped mesoporous Co9S8 fibers as stable anode for Li-Ion Batteries. Electrochimica 2.6 Acta, 2016, 211, 305-312. Enhanced conversion reaction kinetics in low crystallinity SnO₂/CNT anodes for Na-ion 4979 5.2111 batteries. Journal of Materials Chemistry A, 2016, 4, 10964-10973. A primary battery-on-a-chip using monolayer graphene. Nanotechnology, 2016, 27, 29LT01. 4980 High performance NiO nanosheets anchored on three-dimensional nitrogen-doped carbon nanotubes 4981 5.2 55 as a binder-free anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 10940-10947. Closely packed x-poly(ethylene glycol diacrylate) coated polyetherimide/poly(vinylidene fluoride) fiber 4982 separators for lithium ion batteries with enhanced thermostability and improved electrolyte 4.0 44 wettability. Journal of Power Sources, 2016, 325, 292-300. One-Dimensional Peptide Nanostructure Templated Growth of Iron Phosphate Nanostructures for 4983 4.0 14 Lithium-Ion Battery Cathodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 17421-17427. Effect of Pore Size Distribution of Carbon Matrix on the Performance of Phosphorus@Carbon Material as Anode for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 4984 3.2 34 4217-4223. Template-free synthesis of highly porous V₂O₅ cuboids with enhanced 4985 8 1.3 performance for lithium ion batteries. Nanotechnology, 2016, 27, 305404. Controlled synthesis of mesoporous nanostructured anatase TiO₂on a genetically 4986 modified Escherichia coli surface for high reversible capacity and long-life lithium-ion batteries. RSC 1.7 Advances, 2016, 6, 59422-59428. A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. 4987 2.6 185 Electrochimica Acta, 2016, 21Ó, 905-914. Micron-sized Spherical Si/C Hybrids Assembled via Water/Oil System for High-Performance Lithium Ion 4988 Battery. Electrochimica Acta, 2016, 211, 982-988. Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage 4989 9.5 41 properties?. Energy Storage Materials, 2016, 5, 214-222. Highly Conductive, Sulfonated, UV-Cross-Linked Separators for Li–S Batteries. Chemistry of Materials, 2016, 28, 5147-5154. 4990 3.2 Novel and scalable solid-state synthesis of a nanocrystalline FeF3/C composite and its excellent 4991 2.2 20 electrochemical performance. Chemical Communications, 2016, 52, 9414-9417. Solvothermal synthesis of Na2Ti3O7 nanowires embedded in 3D graphene networks as an anode for 4992 63 high-performance sodium-ion batteries. Electrochimica Acta, 2016, 211, 430-436. Concept development and techno-economic assessment for a solar home system using lithium-ion 4993 battery for developing regions to provide electricity for lighting and electronic devices. Energy 4.4 36 Conversion and Management, 2016, 122, 439-448. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for 4994 rechargeable lithium-ion batteries. Journal of Power Sources, 2016, 325, 465-473.

ARTICLE IF CITATIONS Synthesis and electrochemical performance of micro-sized Li-rich layered cathode material for 4995 2.6 34 Lithium-ion batteries. Electrochimica Acta, 2016, 211, 507-514. Electrospun carbon-based nanostructured electrodes for advanced energy storage – A review. Energy 4996 178 Storage Materials, 2016, 5, 58-92. Stem-like nano-heterostructural MWCNTs/α-Fe2O3@TiO2 composite with high lithium storage 4997 2.8 27 capability. Journal of Alloys and Compounds, 2016, 684, 419-427. Two-Dimensional Group IV Monochalcogenides: Anode Materials for Li-Ion Batteries. Journal of 4998 120 Physical Chemistry C, 2016, 120, 14522-14530. Enhancing the Thermal and Upper Voltage Performance of Ni-Rich Cathode Material by a Homogeneous and Facile Coating Method: Spray-Drying Coating with Nano-Al₂O₃. ACS 4999 4.0 147 Applied Materials & amp; Interfaces, 2016, 8, 17713-17720. excellent rate capability and cycling stability for sodium ion batteries. Journal of Materials Chemistry 5.2 A, 2016, 4, 11103-11109. Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for 5001 5.2 86 lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 11381-11387. Improvement of Cycling Performance of FeF₃-Based Lithium-Ion Battery by Boron-Based 5002 1.3 16 Additives. Journal of the Electrochemical Society, 2016, 163, A1633-A1636. A facile cathode design combining Ni-rich layered oxides with Li-rich layered oxides for lithium-ion 5003 4.0 46 batteries. Journal of Power Sources, 2016, 325, 620-629. Structure of Surface Entrance Sites for Li Intercalation into TiO₂ Nanoparticles, 5004 Nanosheets, and Mesoporous Architectures with Application for Li-Ion Batteries. Journal of Physical 1.5 Chemistry C, 2016, 120, 14001-14008. Extremely Accessible Potassium Nitrate (KNO₃) as the Highly Efficient Electrolyte Additive 5005 123 4.0in Lithium Battery. ACS Applied Materials & amp; Interfaces, 2016, 8, 15399-15405. Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode 3.8 for rechargeable lithium batteries. NPG Asia Materials, 2016, 8, e270-e270. Zinc Pyrovanadate Nanoplates Embedded in Graphene Networks with Enhanced Electrochemical 5007 1.8 47 Performance. Industrial & amp; Engineering Chemistry Research, 2016, 55, 2992-2999. Li-lon Conduction and Stability of Perovskite Li_{3/8}Sr_{7/16}Hf_{1/4}Ta_{3/4}O₃. ACS Applied Materials & amp; Interfaces, 2016, 8, 14552-14557. 5008 4.0 89 Fabrication of rutile TiO₂ nanorod arrays on a copper substrate for high-performance 5009 1.7 11 lithium-ion batteries. RSC Advances, 2016, 6, 55671-55675. Interplay of Operational Parameters on Lithium Deposition in Lithium-Ion Cells: Systematic Measuréments with Reconstructed 3-Electrode Pouch Full Cells. Journal of the Electrochemical 136 Society, 2016, 163, A1232-A1238. Electrochemical performance of aluminum niobium oxide as anode for lithium-ion batteries. Rare 5011 3.6 11 Metals, 2016, 35, 256-261. Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance. Composites Part B: Engineering, 2016, 96, 48 94-102.

#	Article	IF	CITATIONS
5013	Long cycle life of carbon coated lithium zinc titanate using copper as conductive additive for lithium ion batteries. Electrochimica Acta, 2016, 191, 887-894.	2.6	33
5014	Semi-rechargeable Aluminum–Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte. Journal of Electronic Materials, 2016, 45, 3375-3382.	1.0	8
5015	Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries. Extreme Mechanics Letters, 2016, 9, 495-502.	2.0	83
5016	First exploration of ultrafine Na7V3(P2O7)4 as a high-potential cathode material for sodium-ion battery. Energy Storage Materials, 2016, 4, 71-78.	9.5	63
5017	SnO2 nanospheres among GO and SWNTs networks as anode for enhanced lithium storage performances. Journal of Energy Chemistry, 2016, 25, 445-449.	7.1	13
5018	A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. Journal of Power Sources, 2016, 321, 257-263.	4.0	127
5019	Comparison of electrospun and conventional LiFePO4/C composite cathodes for Li-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 98-104.	1.7	7
5020	Effect of different MnO2 precursors on the electrochemical properties of spinel LiNi0.5Mn1.5O4 cathode active materials for high-voltage lithium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 157-162.	1.7	7
5021	Controlled synthesis of Co _x Mn _{3â^'x} O ₄ nanoparticles with a tunable composition and size for high performance lithium-ion batteries. RSC Advances, 2016, 6, 54270-54276.	1.7	14
5022	Electrostatic spray deposition of Li ₄ Ti ₅ O ₁₂ based anode with enhanced rate capability and energy density for lithium-ion batteries. Proceedings of SPIE, 2016, , .	0.8	1
5023	Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries. Electrochimica Acta, 2016, 210, 45-52.	2.6	66
5024	Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na ₃ OBr and Na ₄ OI ₂ : An <i>in Situ</i> Neutron Diffraction Study. Inorganic Chemistry, 2016, 55, 5993-5998.	1.9	68
5025	Flexible additive free H ₂ V ₃ O ₈ nanowire membrane as cathode for sodium ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 12074-12079.	1.3	79
5026	Controlled synthesis of concentration gradient LiNi _{0.84} Co _{0.10} Mn _{0.04} Al _{0.02} O _{1.90} F _{0.10 with improved electrochemical properties in Li-ion batteries. RSC Advances, 2016, 6, 58173-58181.})⊲/ <i>s</i> ub>	17
5027	Hierarchical MnCo 2 O 4 constructed by mesoporous nanosheets@polypyrrole composites as anodes for lithium ion batteries. Electrochimica Acta, 2016, 209, 163-170.	2.6	59
5028	Influence of current collecting tab design on thermal and electrochemical performance of cylindrical Lithium-ion cells during high current discharge. Journal of Energy Storage, 2016, 5, 163-168.	3.9	23
5029	Controlling hydrogen evolution on iron electrodes. International Journal of Hydrogen Energy, 2016, 41, 20807-20817.	3.8	32
5030	Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7 (PO4)3 solid electrolytes: The effect of dispersant. Journal of Alloys and Compounds, 2016, 680, 646-653.	2.8	69

#	Article	IF	CITATIONS
5031	Employment of SnO2:F@Ni3Sn2/Ni nanoclusters composites as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 680, 744-751.	2.8	7
5032	Nitrogen-doped Carbon Coated Porous Silicon as High Performance Anode Material for Lithium-Ion Batteries. Electrochimica Acta, 2016, 209, 299-307.	2.6	52
5033	One-pot solvothermal synthesis of hierarchical WO3 hollow microspheres with superior lithium ion battery anode performance. Electrochimica Acta, 2016, 210, 147-154.	2.6	58
5034	Reduction of thermal conductivity by low energy multi-Einstein optic modes. Journal of Materiomics, 2016, 2, 187-195.	2.8	53
5035	Fabrication of TiNb2O7 thin film electrodes for Li-ion micro-batteries by pulsed laser deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 213, 90-97.	1.7	27
5036	Electrochemical performance of an all-solid-state lithium–oxygen battery under humidified oxygen. Solid State Ionics, 2016, 289, 72-76.	1.3	19
5037	Double-Nanocarbon Synergistically Modified Na ₃ V ₂ (PO ₄) ₃ : An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 15341-15351.	4.0	133
5038	In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte. Nanoscale Research Letters, 2016, 11, 223.	3.1	12
5039	Lithium La _{0.57} Li _{0.33} TiO ₃ Perovskite and Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Li-NASICON Supported Thick Films Electrolytes Prepared by Tape Casting Method. Journal of the Electrochemical Society, 2016, 163, A1653-A1659.	1.3	30
5040	One-step fabrication of Fe-Si-O/carbon nanotube composite anode material with excellent high-rate long-term cycling stability. Journal of Alloys and Compounds, 2016, 686, 318-325.	2.8	11
5041	Zinc pyrovanadate nanosheets of atomic thickness: excellent Li-storage properties and investigation of their electrochemical mechanism. Journal of Materials Chemistry A, 2016, 4, 10974-10985.	5.2	30
5042	Design of an ultra-durable silicon-based battery anode material with exceptional high-temperature cycling stability. Nano Energy, 2016, 26, 192-199.	8.2	40
5043	High Capacity Rechargeable Magnesium-Ion Batteries Based on a Microporous Molybdenum–Vanadium Oxide Cathode. Chemistry of Materials, 2016, 28, 4593-4601.	3.2	102
5044	Environmentally Friendly Synthesis of LiFePO ₄ Using Fe–P Waste Slag and Greenhouse Gas CO ₂ . Industrial & Engineering Chemistry Research, 2016, 55, 7069-7075.	1.8	7
5045	Novel Conjugated Ladder-Structured Oligomer Anode with High Lithium Storage and Long Cycling Capability. ACS Applied Materials & Interfaces, 2016, 8, 16932-16938.	4.0	64
5046	Design and synthesis of hollow NiCo ₂ O ₄ nanoboxes as anodes for lithium-ion and sodium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 18949-18957.	1.3	74
5047	In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium–Imide- and Lithium–Imidazole-Based Electrolytes. ACS Applied Materials & Interfaces, 2016, 8, 16087-16100.	4.0	159
5048	Core–Shell Structured <i>o</i> -LiMnO ₂ @Li ₂ CO ₃ Nanosheet Array Cathode for High-Performance, Wide-Temperature-Tolerance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16116-16124.	4.0	31

ARTICLE IF CITATIONS Building thermally stable Li-ion batteries using a temperature-responsive cathode. Journal of 5049 5.2 68 Materials Chemistry A, 2016, 4, 11239-11246. Simple method for synthesizing few-layer graphene as cathodes in surface-enabled lithium 1.2 ion-exchanging cells. Ionics, 2016, 22, 1575-1584. 5051 1.0 27 Magnesium Ion Rechargeable Batteries. Macromolecular Research, 2016, 24, 422-428. High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-lon Battery. 4.0 AČS Applied Materials & amp; Interfaces, 2016, 8, 15352-15360. Synthesis of Vanadiumâ€Incorporated, Polyoxometalateâ€Based Open Frameworks and Their Applications 5053 1.0 17 fór Cathodeâ€Active Materials. European Jóurnal of Inorganic Chemistry, 2016, 2016, 1242-1250. Theoretical Study of the Reductive Decomposition of Vinylethylene Sulfite as an Additive in Lithium Ion Battery. Journal of the Chinese Chemical Society, 2016, 63, 480-487. 5054 0.8 Hydrothermally Oxidized Singleâ€Walled Carbon Nanotube Networks for High Volumetric 5055 5.2 17 Electrochemical Energy Storage. Small, 2016, 12, 3423-3431. MgO-template-assisted synthesis of worm-like carbon@MoS2 composite for lithium ion battery 5056 2.6 14 anodes. Electrochimica Ácta, 2016, 211, 962-971. Reversible lithium storage in manganese and cobalt 1,2,4,5-benzenetetracarboxylate metal–organic 5057 1.7 45 framework with high capacity. RSC Advances, 2016, 6, 61319-61324. Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical 1.2 capacitors: A review. Journal of Materials Research, 2016, 31, 1648-1664. Improved electrical properties of Fe nanofillerÂimpregnated PEOÂ+ÂPVP:Li+ blended polymer electrolytes 5059 21 1.1 for lithium battery applications. Applied Physics A: Materials Science and Processing, 2016, 122, 1. Synthesis of nano-sized silicon from natural halloysite clay and its high performance as anode for 4.0 lithium-ion batteries. Journal of Power Sources, 2016, 324, 33-40. First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of Li₇P₂S₈1 as a Solid Electrolyte for High-Voltage Li Ion Batteries. 5061 2.1 37 Journal of Physical Chemistry Letters, 2016, 7, 2671-2675. Poly(anthraquinonyl imide) as a high capacity organic cathode material for Na-ion batteries. Journal of Materials Chemistry A, 2016, 4, 11491-11497. 5062 5.2 Hydrogenated V₂O₅ Nanosheets for Superior Lithium Storage Properties. 5063 149 7.8 Advanced Functional Materials, 2016, 26, 784-791. Highly Connected Silicon–Copper Alloy Mixture Nanotubes as Highâ€Rate and Durable Anode Materials 5064 for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2016, 26, 524-531. Ultraflexible Inâ€Plane Microâ€Supercapacitors by Direct Printing of Solutionâ€Processable 5065 11.1 366 Electrochemically Exfoliated Graphene. Advanced Materials, 2016, 28, 2217-2222. Reagentâ€Free Synthesis and Plasmonic Antioxidation of Unique Nanostructured Metal–Metal Oxide 11.1 Coreâ€"Shell Microfibers. Advanced Materials, 2016, 28, 4097-4104.

CITATIONS ARTICLE IF Microâ€Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithiumâ€Ion 5067 149 1.9 Batteries. Advanced Materials Interfaces, 2016, 3, 1600140. Insights into Ionic Transport and Structural Changes in Magnetite during Multipleâ€Electron Transfer 5068 10.2 Reactions. Advanced Energy Materials, 2016, 6, 1502471. Smarte elektronische Textilien. Angewandte Chemie, 2016, 128, 6248-6277. 5069 1.6 11 A Highly Ionâ€Selective Zeolite Flake Layer on Porous Membranes for Flow Battery Applications. 5070 Angewandte Chemie, 2016, 128, 3110-3114. An Allâ€Solidâ€State Fiberâ€Shaped Aluminumâ€"Air Battery with Flexibility, Stretchability, and High 5071 1.6 70 Electrochemical Performance. Angewandte Chemie, 2016, 128, 8111-8114. Synthesis of Lithium Boracarbonate Ion Pairs by Copper atalyzed Multi omponent Coupling of 1.6 Carbon Dioxide, Diboron, and Aldehydes. Angewandte Chemie, 2016, 128, 6365-6368. An Allâ€Solidâ€State Fiberâ€Shaped Aluminum–Air Battery with Flexibility, Stretchability, and High 5073 7.2 211 Electrochemical Performance. Angewandte Chemie - International Edition, 2016, 55, 7979-7982. Synthesis of Lithium Boracarbonate Ion Pairs by Copperâ€Catalyzed Multiâ€Component Coupling of Carbon Dioxide, Diboron, and Aldehydes. Angewandte Chemie - International Edition, 2016, 55, 5074 7.2 38 6257-6260. Synthesis and characterization of LiFePO₄â€"carbon nanofiberâ€"carbon nanotube 5075 composites prepared by electrospinning and thermal treatment as a cathode material for lithiumâ€ion 1.3 2 batteries. Journal of Applied Polymer Science, 2016, 133, . Fabrication of Highâ€Energy Liâ€Ion Cells with Li₄Ti₅O₁₂ Microspheres as Anode and 5076 0.5 Li₂MnO₃â<...0.5 LiNi_{0.4}Co_{0.2}Mn_{0.4}10/sub>21/sub> Microspheres as Cathode. Chemistry - an Asian Journal. 2016, 11, 1273-1280. Importance of Specific Capacity Based on the Mass of Active Material in the High Energy Density 5077 Liâ€<scp>SO₂</scp> Secondary Batteries with an Inorganic Electrolyte. Bulletin of the 1.0 6 Korean Chemical Society, 2016, 37, 917-922. Three Strongly Coupled Allotropes in a Functionalized Porous Allâ€Carbon Nanocomposite as a 1.7 Superior Anode for Lithiumâ€ion Batteries. ChemElectroChem, 2016, 3, 698-703. Highâ€Performance Lowâ€Temperature Li⁺ Intercalation in Disordered Rockâ€Salt Liâ€"Crâ€"V 5079 1.7 32 Oxyfluorides. ChemElectroChem, 2016, 3, 892-895. Hierarchical Ternary MoO₂/MoS₂/Heteroatomâ€Doped Carbon Hybrid Materials 5080 1.7 for Highâ€Performance Lithiumâ€Ion Storage. ChemElectroChem, 2016, 3, 922-932. Controlled synthesis of porous spinel cobalt manganese oxides as efficient oxygen reduction 5081 5.8 56 reaction electrocatalysts. Nano Research, 2016, 9, 207-213. Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for 5082 lithium-ion batteries. Electrochimica Acta, 2016, 190, 33-39. Controlled synthesis of spherical hierarchical LiNi1â[^]xâ[^]yCoxAlyO2 (0<x, y<0.2) via a novel cation 5083 exchange process as cathode materials for High-Performance Lithium Batteries. Electrochimica Acta, 2.6 32 2016, 190, 932-938. One-Pot Solvothermal Synthesis of ZnO@α-Co(OH)₂ Core–Shell Hierarchical Microspheres with Superior Lithium Storage Properties. Journal of Physical Chemistry C, 2016, 120, 5084 1.5 2984-2992.

#	ARTICLE	IF	Citations
5085	MnO nanoparticles with cationic vacancies and discrepant crystallinity dispersed into porous carbon for Li-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 3362-3370.	5.2	85
5086	Synthesis and Reaction Mechanism of Novel Fluorinated Carbon Fiber as a High-Voltage Cathode Material for Rechargeable Na Batteries. Chemistry of Materials, 2016, 28, 1026-1033.	3.2	53
5087	Shape-Controlled Synthesis of Co ₂ P Nanostructures and Their Application in Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 3892-3900.	4.0	319
5088	Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 4691-4699.	4.0	99
5089	Kinetic Study of Parasitic Reactions in Lithium-Ion Batteries: A Case Study on LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ . ACS Applied Materials & Interfaces, 2016, 8, 3446-3451.	4.0	88
5090	Homoleptic octahedral coordination of CH ₃ CN to Mg ²⁺ in the Mg[N(SO ₂ CF ₃) ₂] ₂ –CH ₃ CN system. Dalton Transactions, 2016, 45, 2810-2813.	1.6	12
5091	Sea urchin-like cobalt–iron phosphide as an active catalyst for oxygen evolution reaction. Nanoscale, 2016, 8, 3244-3247.	2.8	135
5092	Effect of PMMA blend and ZnAl ₂ O ₄ fillers on ionic conductivity and electrochemical performance of electrospun nanocomposite polymer blend fibrous electrolyte membranes for lithium batteries. RSC Advances, 2016, 6, 6486-6495.	1.7	18
5093	Sisal-derived activated carbons for cost-effective lithium–sulfur batteries. RSC Advances, 2016, 6, 13772-13779.	1.7	45
5094	Impact of Nanoscale Lithium Nickel Manganese Cobalt Oxide (NMC) on the Bacterium <i>Shewanella oneidensis</i> MR-1. Chemistry of Materials, 2016, 28, 1092-1100.	3.2	70
5095	Chemical synthesis of germanium nanoparticles with uniform size as anode materials for lithium ion batteries. Dalton Transactions, 2016, 45, 2814-2817.	1.6	34
5096	Monoclinic Li ₃ V ₂ (PO ₄) ₃ /C nanocrystals co-modified with graphene nanosheets and carbon nanotubes as a three-dimensional-network cathode material for rechargeable lithium-ion batteries. RSC Advances, 2016, 6, 8431-8439.	1.7	16
5097	Gelatin assisted wet chemistry synthesis of high quality \hat{I}^2 -FeOOH nanorods anchored on graphene nanosheets with superior lithium-ion battery application. RSC Advances, 2016, 6, 17504-17509.	1.7	23
5098	High thermal and electrochemical stability of a SiO ₂ nanoparticle hybird–polyether cross-linked membrane for safety reinforced lithium-ion batteries. RSC Advances, 2016, 6, 18089-18095.	1.7	17
5099	Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery. Electrochimica Acta, 2016, 191, 200-206.	2.6	39
5100	Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochimica Acta, 2016, 191, 385-391.	2.6	99
5101	Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy. Energy Storage Materials, 2016, 3, 45-54.	9.5	47
5102	Biomorphic combustion synthesis of hematite porous structure with enhanced Li storage properties. Materials Letters, 2016, 168, 107-110.	1.3	7

#	Article	IF	CITATIONS
5103	Comparison of Storage Mechanisms in RuO ₂ , SnO ₂ , and SnS ₂ for Lithium-Ion Battery Anode Materials. Journal of Physical Chemistry C, 2016, 120, 2036-2046.	1.5	54
5104	The Effects of Cross-Linking in a Supramolecular Binder on Cycle Life in Silicon Microparticle Anodes. ACS Applied Materials & Interfaces, 2016, 8, 2318-2324.	4.0	90
5105	Carbon coated SnO ₂ nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries. Nanoscale, 2016, 8, 4121-4126.	2.8	129
5106	Novel solvent-free direct coating process for battery electrodes and their electrochemical performance. Journal of Power Sources, 2016, 306, 758-763.	4.0	44
5107	Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. Journal of Membrane Science, 2016, 504, 89-96.	4.1	152
5108	Lithium-ion battery structure that self-heats at low temperatures. Nature, 2016, 529, 515-518.	13.7	595
5109	A mixed iron–manganese based pyrophosphate cathode, Na ₂ Fe _{0.5} Mn _{0.5} P ₂ O ₇ , for rechargeable sodium ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 3929-3935.	1.3	45
5110	Novel peapod NiO nanoparticles encapsulated in carbon fibers for high-efficiency supercapacitors and lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 3267-3277.	5.2	69
5111	Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery. Nano Research, 2016, 9, 240-248.	5.8	165
5112	Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. Journal of Power Sources, 2016, 308, 75-82.	4.0	93
5113	Three-dimensional graphene nanosheets loaded with Si nanoparticles by in situ reduction of SiO2 for lithium ion batteries. Electrochimica Acta, 2016, 190, 628-635.	2.6	47
5114	A high-rate and long cycling life cathode for rechargeable lithium-ion batteries: hollow LiNi0.5Mn0.5O2 nano/micro hierarchical microspheres. Electrochimica Acta, 2016, 191, 974-979.	2.6	28
5115	Interaction of the ionic liquid [BMP][TFSA] with rutile TiO ₂ (110) and coadsorbed lithium. Physical Chemistry Chemical Physics, 2016, 18, 6618-6636.	1.3	35
5116	Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes. Journal of Power Sources, 2016, 307, 259-269.	4.0	48
5117	Performance Enhancement and Side Reactions in Rechargeable Nickel–Iron Batteries with Nanostructured Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 2088-2096.	4.0	62
5118	Salt-Templating Protocol To Realize Few-Layered Ultrasmall MoS ₂ Nanosheets Inlayed into Carbon Frameworks for Superior Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 1148-1153.	3.2	39
5119	Measurements of stress and fracture in germanium electrodes of lithium-ion batteries during electrochemical lithiation and delithiation. Journal of Power Sources, 2016, 304, 164-169.	4.0	57
5120	Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects. Nanoscale, 2016, 8, 4001-4006.	2.8	84

#	Article	IF	CITATIONS
5121	Scalable synthesis of nanometric α-Fe ₂ O ₃ within interconnected carbon shells from pyrolytic alginate chelates for lithium storage. RSC Advances, 2016, 6, 7961-7969.	1.7	15
5122	Chemically integrated hierarchical hybrid zinc cobaltate/reduced graphene oxide microspheres as an enhanced lithium-ion battery anode. RSC Advances, 2016, 6, 4914-4924.	1.7	11
5123	Synthesis of cobalt-based layered coordination polymer nanosheets and their application in lithium-ion batteries as anode materials. RSC Advances, 2016, 6, 4442-4447.	1.7	38
5124	Ultra-long Na ₂ V ₆ O ₁₆ ·xH ₂ O nanowires: large-scale synthesis and application in binder-free flexible cathodes for lithium ion batteries. RSC Advances, 2016, 6, 5161-5168.	1.7	18
5125	An effective coupling of nanostructured Si and gel polymer electrolytes for high-performance lithium-ion battery anodes. RSC Advances, 2016, 6, 6960-6966.	1.7	23
5126	A Framework for Simplification of PDE-Based Lithium-Ion Battery Models. IEEE Transactions on Control Systems Technology, 2016, 24, 1594-1609.	3.2	148
5127	Tailoring the Interplay between Ternary Composite Binder and Graphite Anodes toward High-Rate and Long-Life Li-Ion Batteries. Electrochimica Acta, 2016, 191, 70-80.	2.6	25
5128	Effects of Ion-Induced Cross-Linking on the Phase Behavior in Salt-Doped Polymer Blends. Macromolecules, 2016, 49, 425-431.	2.2	35
5129	Synthesis of Cu2ZnSnS4 as Novel Anode material for Lithium-ion Battery. Electrochimica Acta, 2016, 190, 703-712.	2.6	35
5130	Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochimica Acta, 2016, 191, 346-354.	2.6	42
5131	Blending of hard and soft organic–inorganic hybrids for use as an effective electrolyte membrane in lithium-ion batteries. Journal of Membrane Science, 2016, 503, 59-68.	4.1	16
5132	Two-step synthesis of nanocomposite LiFePO ₄ /C cathode materials for lithium ion batteries. New Journal of Chemistry, 2016, 40, 1742-1746.	1.4	8
5133	Enhanced rate capability of a lithium ion battery anode based on liquid–solid-solution assembly of Fe ₂ O ₃ on crumpled graphene. RSC Advances, 2016, 6, 9007-9012.	1.7	20
5134	Interfacial Study on Solid Electrolyte Interphase at Li Metal Anode: Implication for Li Dendrite Growth. Journal of the Electrochemical Society, 2016, 163, A592-A598.	1.3	180
5135	Facile synthesis of a MoO2–Mo2C–C composite and its application as favorable anode material for lithium-ion batteries. Journal of Power Sources, 2016, 307, 552-560.	4.0	98
5136	A flexible freestanding Si/rGO hybrid film anode for stable Li-ion batteries. Journal of Power Sources, 2016, 307, 214-219.	4.0	47
5137	Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. Journal of Power Sources, 2016, 307, 649-656.	4.0	197
5138	Phenyl-rich silicone oil as a precursor for SiOC anode materials for long-cycle and high-rate lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2651-2656.	5.2	93

#	Article	IF	CITATIONS
5139	Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 1285-1294.	1.2	35
5140	A Novel Approach for Differential Electrochemical Mass Spectrometry Studies on the Decomposition of Ionic Liquids. Electrochimica Acta, 2016, 197, 290-299.	2.6	23
5141	A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. Journal of Power Sources, 2016, 307, 624-633.	4.0	127
5142	Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Science Advances, 2016, 2, e1501038.	4.7	282
5143	Iron-nickel spinel oxide as an electrocatalyst for non-aqueous rechargeable lithium-oxygen batteries. Journal of Alloys and Compounds, 2016, 666, 476-481.	2.8	21
5144	lon and gas chromatography mass spectrometry investigations of organophosphates in lithium ion battery electrolytes by electrochemical aging at elevated cathode potentials. Journal of Power Sources, 2016, 306, 193-199.	4.0	55
5145	Synthesis and electrochemical study of sodium ion transport polymer gel electrolytes. RSC Advances, 2016, 6, 7504-7510.	1.7	46
5146	Triethylborate as an electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery. Journal of Power Sources, 2016, 307, 587-592.	4.0	82
5147	Fabrication of graphene supported SnO2 nanoparticles and their sodium storage properties. Materials Letters, 2016, 166, 292-295.	1.3	23
5148	Photoelectron Spectroscopy for Lithium Battery Interface Studies. Journal of the Electrochemical Society, 2016, 163, A178-A191.	1.3	109
5149	Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage. Journal of Power Sources, 2016, 307, 510-518.	4.0	80
5150	Rational synthesis of Cu-doped porous δ-MnO2 microsphere for high performance supercapacitor applications. Electrochimica Acta, 2016, 191, 716-723.	2.6	52
5151	Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. Journal of Power Sources, 2016, 307, 391-400.	4.0	499
5152	Investigation on the grain boundaries electrical characteristics of perovskite lithium ion conductors by derivative of tanl ´approach. Materials Research Bulletin, 2016, 74, 134-139.	2.7	3
5153	Few-layer MoS2 nanosheets incorporated into hierarchical porous carbon for lithium-ion batteries. Chemical Engineering Journal, 2016, 288, 179-184.	6.6	69
5154	Synthesis of nanostructured lithium cobalt oxide using cherry blossom leaf templates and its electrochemical performances. Electrochimica Acta, 2016, 189, 237-244.	2.6	10
5155	Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries. Journal of Power Sources, 2016, 305, 156-160.	4.0	61
5156	Graphene functionalized attapulgite/sulfur composite as cathode of lithium–sulfur batteries for energy storage. Microporous and Mesoporous Materials, 2016, 224, 239-244.	2.2	23

#	Article	IF	CITATIONS
5157	Extending the High-Voltage Capacity of LiCoO ₂ Cathode by Direct Coating of the Composite Electrode with Li ₂ CO ₃ via Magnetron Sputtering. Journal of Physical Chemistry C, 2016, 120, 422-430.	1.5	97
5158	Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 656, 745-752.	2.8	67
5159	Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today, 2016, 19, 109-123.	8.3	811
5160	Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nature Materials, 2016, 15, 311-317.	13.3	170
5161	Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 2016, 8, 74-103.	2.8	559
5162	Preparation of hollow microsphere@onion-like solid nanosphere MoS ₂ coated by a carbon shell as a stable anode for optimized lithium storage. Nanoscale, 2016, 8, 420-430.	2.8	53
5163	Nitrogen-Doped Carbon-Encapsulated SnO ₂ @Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 197-207.	4.0	84
5164	Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries. Chemical Communications, 2016, 52, 1957-1960.	2.2	30
5165	Self-assembled Co 3 O 4 nanostructure with controllable morphology towards high performance anode for lithium ion batteries. Electrochimica Acta, 2016, 188, 909-916.	2.6	34
5166	High power layered titanate nano-sheets as pseudocapacitive lithium-ion battery anodes. Journal of Power Sources, 2016, 305, 115-121.	4.0	28
5167	Facile fabrication of reduced graphene oxide covered ZnCo ₂ O ₄ porous nanowire array hierarchical structure on Ni-foam as a high performance anode for a lithium-ion battery. RSC Advances, 2016, 6, 547-554.	1.7	19
5168	How simple are the models of Na intercalation in aqueous media?. Energy and Environmental Science, 2016, 9, 955-961.	15.6	51
5169	Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0ÂV LiNi _{0.5} Mn _{1.5} O ₄ Electrode s . Journal of the Electrochemical Society, 2016, 163, A83-A89.	1.3	52
5170	Tailoring high-voltage and high-performance LiNi0.5Mn1.5O4 cathode material for high energy lithium-ion batteries. Journal of Power Sources, 2016, 301, 151-159.	4.0	53
5171	Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries. Journal of Power Sources, 2016, 304, 181-188.	4.0	46
5172	Dynamic study of (De)sodiation in alpha-MnO2 nanowires. Nano Energy, 2016, 19, 382-390.	8.2	54
5173	Superionic conduction of silver in homogeneous chalcogenide glasses. Journal of Materials Chemistry A, 2016, 4, 861-868.	5.2	13
5174	Spontaneous Cross-linking for Fabrication of Nanohybrids Embedded with Size-Controllable Particles. ACS Nano, 2016, 10, 889-898.	7.3	61

#	Article	IF	CITATIONS
5175	Chemical doping of a core–shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode. Nanoscale, 2016, 8, 1280-1287.	2.8	69
5176	Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chemical Communications, 2016, 52, 2035-2038.	2.2	65
5177	Polyimide Binder: A Facile Way to Improve Safety of Lithium Ion Batteries. Electrochimica Acta, 2016, 187, 113-118.	2.6	53
5178	ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery. Electrochimica Acta, 2016, 189, 245-251.	2.6	60
5179	Functionally Graded Si Based Thin Films as Negative Electrodes for Next Generation Lithium Ion Batteries. Electrochimica Acta, 2016, 187, 293-299.	2.6	14
5180	High performance and bifunctional cobalt-embedded nitrogen doped carbon/nanodiamond electrocatalysts for oxygen reduction and oxygen evolution reactions in alkaline media. Journal of Power Sources, 2016, 305, 64-71.	4.0	54
5181	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.	8.2	597
5182	Phosphorus-doped carbon–carbon nanotube hierarchical monoliths as true three-dimensional electrodes in supercapacitor cells. Journal of Materials Chemistry A, 2016, 4, 1251-1263.	5.2	136
5183	Lignin-Based Aerogels. , 2016, , 67-93.		15
5184	Process Investigation of a Solid Carbon-Fueled Solid Oxide Fuel Cell Integrated with a CO ₂ -Permeating Membrane and a Sintering-Resistant Reverse Boudouard Reaction Catalyst. Energy & amp; Fuels, 2016, 30, 1841-1848.	2.5	16
5185	Dramatically enhanced reversibility of Li ₂ O in SnO ₂ -based electrodes: the effect of nanostructure on high initial reversible capacity. Energy and Environmental Science, 2016, 9, 595-603.	15.6	300
5186	Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes. Nano Energy, 2016, 19, 187-197.	8.2	148
5187	Interactions Between Electrolytes and Carbon-Based Materials—NMR Studies on Electrical Double-Layer Capacitors, Lithium-Ion Batteries, and Fuel Cells. Annual Reports on NMR Spectroscopy, 2016, , 237-318.	0.7	17
5188	Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode. Chemical Engineering Journal, 2016, 287, 516-522.	6.6	90
5189	Perspectives in in situ transmission electron microscopy studies on lithium battery electrodes. Current Opinion in Chemical Engineering, 2016, 12, 37-43.	3.8	26
5190	Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. Journal of Materials Chemistry A, 2016, 4, 4941-4951.	5.2	106
5191	Origin of H ₂ Evolution in LIBs: H ₂ O Reduction vs. Electrolyte Oxidation. Journal of the Electrochemical Society, 2016, 163, A798-A809.	1.3	262
5192	Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 3265-3270.	1.1	20

#	Article	IF	CITATIONS
5193	Optimizing the electrolyte and binder composition for Sodium Prussian Blue, Na 1-x Fe x+(1/3) (CN) 6 ·yH 2 O, as cathode in sodium ion batteries. Electrochimica Acta, 2016, 200, 123-130.	2.6	42
5194	Underlying mechanisms of the synergistic role of Li ₂ MnO ₃ and LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ in high-Mn, Li-rich oxides. Physical Chemistry Chemical Physics, 2016, 18, 11411-11421.	1.3	22
5195	Investigation of new manganese orthophosphate Mn3(PO4)2 coating for nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode and improvement of its thermal properties. Electrochimica Acta, 2016, 198, 77-83.	2.6	117
5196	A graphene–SnO2–TiO2 ternary nanocomposite electrode as a high stability lithium-ion anode material. Journal of Alloys and Compounds, 2016, 673, 144-148.	2.8	12
5197	Synthesis and electrochemical performance of hole-rich Li 4 Ti 5 O 12 anode material for lithium-ion secondary batteries. Journal of Physics and Chemistry of Solids, 2016, 93, 52-58.	1.9	12
5198	Elaborately prepared hierarchical structure titanium dioxide for remarkable performance in lithium storage. Journal of Power Sources, 2016, 313, 189-197.	4.0	12
5199	Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology, 2016, 11, 626-632.	15.6	1,557
5200	Three-dimensional fusiform hierarchical micro/nano Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016. 4. 5942-5951.	5.2	101
5201	An effective approach to improve the electrochemical performance of LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ cathode by an MOF-derived coating. Journal of Materials Chemistry A, 2016, 4, 5823-5827.	5.2	84
5202	Recent progress in rechargeable lithium batteries with organic materials as promising electrodes. Journal of Materials Chemistry A, 2016, 4, 7091-7106.	5.2	259
5203	Superior electrochemical properties of manganese dioxide/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries. Journal of Power Sources, 2016, 312, 207-215.	4.0	57
5204	A methodical approach for fabrication of binder-free Li2S-C composite cathode with high loading of active material for Li-S battery. Carbon, 2016, 103, 163-171.	5.4	45
5205	Analytical Model on Stress-Regulated Lithiation Kinetics and Fracture of Si-C Yolk-Shell Anodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A940-A946.	1.3	10
5206	(Invited paper) energy delivery for self-powered IoT devices. , 2016, , .		2
5207	Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries. Electrochimica Acta, 2016, 199, 35-44.	2.6	29
5208	Mesoporous Hybrids of Reduced Graphene Oxide and Vanadium Pentoxide for Enhanced Performance in Lithium-Ion Batteries and Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2016, 8, 9200-9210.	4.0	70
5209	Nano-sized Li4Ti5O12/C anode material with ultrafast charge/discharge capability for lithium ion batteries. Journal of Alloys and Compounds, 2016, 671, 157-163.	2.8	57
5210	High-performance NaFePO ₄ formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4882-4892.	5.2	129

#	Article	IF	CITATIONS
5211	Controllable synthesis of Cu-doped CoO hierarchical structure for high performance lithium-ion battery. Journal of Power Sources, 2016, 314, 66-75.	4.0	65
5212	Li2S@C composite incorporated into 3D reduced graphene oxide as a cathode material for lithium-sulfur batteries. Journal of Power Sources, 2016, 313, 233-239.	4.0	57
5213	Microwave synthesis of SnS2 nanoflakes anchored graphene foam for flexible lithium-ion battery anodes with long cycling life. Materials Letters, 2016, 174, 24-27.	1.3	31
5214	On the effect of gold nanoparticles loading within carbonaceous macro-mesocellular foams toward lithium-sulfur battery performances. Solid State Sciences, 2016, 55, 112-120.	1.5	4
5215	Charge Transport of Polyester Ether Ionomers in Unidirectional Silica Nanopores. ACS Macro Letters, 2016, 5, 476-480.	2.3	11
5216	Reversible anion intercalation in a layered aromatic amine: a high-voltage host structure for organic batteries. Journal of Materials Chemistry A, 2016, 4, 6131-6139.	5.2	97
5217	Failure mechanics of a wrinkling thin film anode on a substrate under cyclic charging and discharging. Extreme Mechanics Letters, 2016, 8, 273-282.	2.0	24
5218	Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries. Langmuir, 2016, 32, 3300-3307.	1.6	46
5219	Effect of Polymer Architecture on the Ionic Conductivity. Densely Grafted Poly(ethylene oxide) Brushes Doped with LiTf. Macromolecules, 2016, 49, 2679-2687.	2.2	43
5220	Full graphitization of amorphous carbon by microwave heating. RSC Advances, 2016, 6, 24667-24674.	1.7	73
5221	Ecoâ€friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte. ChemSusChem, 2016, 9, 42-49.	3.6	42
5222	Nitrogen-doped hollow carbon spheres with highly graphitized mesoporous shell: Role of Fe for oxygen evolution reaction. Applied Catalysis B: Environmental, 2016, 191, 202-208.	10.8	81
5223	Comprehensive Understanding of High Polar Polyacrylonitrile as an Effective Binder for Li-Ion Battery Nano-Si Anodes. ACS Applied Materials & Interfaces, 2016, 8, 8154-8161.	4.0	64
5224	Electrochemistry and structure of Li-rich cathode composites: Li _{1.26} Fe _{0.22} Mn _{0.52} O ₂ in situ integrated with conductive network-graphene oxide for lithium-ion batteries. RSC Advances, 2016, 6, 31762-31768.	1.7	10
5225	A graphene oxide-wrapped bipyramidal sulfur@polyaniline core–shell structure as a cathode for Li–S batteries with enhanced electrochemical performance. Journal of Materials Chemistry A, 2016, 4, 6404-6410.	5.2	98
5226	Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion. Journal of Materials Chemistry A, 2016, 4, 6098-6106.	5.2	81
5227	Electrochemical Performance of Amorphous GeOxPowder Synthesized by Oxidation of NaGe Serving as an Anode for Lithium Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A552-A556.	1.3	10
5228	One-pot synthesis of pearl-chain-like manganese dioxide-decorated titanium grids as advanced binder-free supercapacitors electrodes. Ceramics International, 2016, 42, 9227-9233.	2.3	21

#	Article	IF	CITATIONS
5229	Porous micrometer-sized MnO cubes as anode of lithium ion battery. Electrochimica Acta, 2016, 200, 152-160.	2.6	42
5230	Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries. Journal of Alloys and Compounds, 2016, 674, 360-367.	2.8	106
5231	In operando X-ray absorption spectroscopy study of charge rate effects on the atomic environment in graphene-coated Li-rich mixed oxide cathode. Materials and Design, 2016, 98, 231-242.	3.3	20
5232	Lithium iron silicate sol–gel synthesis and electrochemical investigation. Journal of Alloys and Compounds, 2016, 672, 93-97.	2.8	21
5233	Rational Design of NiCoO ₂ @SnO ₂ Heterostructure Attached on Amorphous Carbon Nanotubes with Improved Lithium Storage Properties. ACS Applied Materials & Interfaces, 2016, 8, 6004-6010.	4.0	44
5234	Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon, 2016, 102, 32-38.	5.4	73
5235	Biomass derived fabrication of a novel sea cucumber-like LiMn 2 O 4 /C composite with a hierarchical porous structure as the cathode for lithium-ion batteries. Electrochimica Acta, 2016, 188, 645-652.	2.6	18
5236	Rhombohedral iron trifluoride with a hierarchized macroporous/mesoporous texture from gaseous fluorination of iron disilicide. Materials Chemistry and Physics, 2016, 173, 355-363.	2.0	8
5237	Ag enhanced electrochemical performance for Na 2 Li 2 Ti 6 O 14 anode in rechargeable lithium-ion batteries. Ceramics International, 2016, 42, 6874-6882.	2.3	16
5238	Uniform Ni-rich LiNi0.6Co0.2Mn0.2O2 Porous Microspheres: Facile Designed Synthesis and Their Improved Electrochemical Performance. Electrochimica Acta, 2016, 191, 401-410.	2.6	75
5239	Latest development of nanostructured Si/C materials for lithium anode studies and applications. Energy Storage Materials, 2016, 4, 1-14.	9.5	101
5240	Highly Crystallized Na ₂ CoFe(CN) ₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5393-5399.	4.0	334
5241	MoS ₂ nanosheets grown on amorphous carbon nanotubes for enhanced sodium storage. Journal of Materials Chemistry A, 2016, 4, 4375-4379.	5.2	78
5242	Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries. Journal of Magnetic Resonance, 2016, 265, 200-209.	1.2	47
5243	Morphology- and lattice stability-dependent performance of nanostructured Li4Ti5O12 probed by in situ high-pressure Raman spectroscopy and synchrotron X-ray diffraction. CrystEngComm, 2016, 18, 736-743.	1.3	11
5244	A polytriphenylamine derivative exhibiting a four-electron redox center as a high free radical density organic cathode. RSC Advances, 2016, 6, 22989-22995.	1.7	15
5245	A New High Energy Lithium ion Batteries Consisting of 0.5Li2MnO3·0.5LiMn0.33Ni0.33Co0.33O2 and Soft Carbon Components. Electrochimica Acta, 2016, 194, 1-9.	2.6	9
5246	Enhanced ionic conductivity and electrochemical capacity of lithium ion battery based on PVDF-HFP/HDPE membrane. Materials Letters, 2016, 170, 126-129.	1.3	40

#	Article	IF	CITATIONS
5247	Self-anchoring dendritic ternary vanadate compound on graphene nanoflake as high-performance conversion-type anode for lithium ion batteries. Nano Energy, 2016, 22, 179-188.	8.2	9
5248	Understanding oxygen reactions in aprotic Li-O ₂ batteries. Chinese Physics B, 2016, 25, 018204.	0.7	9
5249	Enhanced Li- and Na-storage in Sb-Graphene nanocomposite anodes. Materials Research Bulletin, 2016, 76, 338-343.	2.7	26
5250	1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether as a co-solvent for high voltage LiNi1/3Co1/3Mn1/3O2/graphite cells. Journal of Power Sources, 2016, 307, 772-781.	4.0	30
5251	Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 10274-10282.	4.0	49
5252	Fast Ion Conduction in Nanodimensional Lithium Silicate Glasses. Journal of Physical Chemistry C, 2016, 120, 431-436.	1.5	12
5253	Core–Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5358-5365.	4.0	60
5254	Facile synthesis of β-MnO ₂ /polypyrrole nanorods and their enhanced lithium-storage properties. RSC Advances, 2016, 6, 19952-19956.	1.7	18
5255	Natural graphite enhanced the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 311-318.	1.2	16
5256	Efficient Fabrication of Hierarchically Porous Graphene-Derived Aerogel and Its Application in Lithium Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 6072-6081.	4.0	54
5257	Effect of electrode manufacturing defects on electrochemical performance of lithium-ion batteries: Cognizance of the battery failure sources. Journal of Power Sources, 2016, 312, 70-79.	4.0	132
5258	LiCuS, an intermediate phase in the electrochemical conversion reaction of CuS with Li: A potential environment-friendly battery and solar cell material. Solid State Sciences, 2016, 55, 83-87.	1.5	9
5259	Self-Assembly of Polyethylene Glycol-Grafted Carbon Nanotube/Sulfur Composite with Nest-like Structure for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 6061-6071.	4.0	42
5260	High-rate and long-life of Li-ion batteries using reduced graphene oxide/Co ₃ O ₄ as anode materials. RSC Advances, 2016, 6, 24320-24330.	1.7	25
5261	Mesoporous transition metal dichalcogenide ME ₂ (M = Mo, W; E = S, Se) with 2-D layered crystallinity as anode materials for lithium ion batteries. RSC Advances, 2016, 6, 14253-14260.	1.7	52
5262	Communication—XAFS Analysis of Discharge/Charge Reactions on the Li/CuCl ₂ Battery Cathode with LiPF ₆ /Methyl Difluoroacetate Electrolyte. Journal of the Electrochemical Society, 2016, 163, A727-A729.	1.3	2
5263	Cu 3 (1,3,5-benzenetricarboxylate) 2 metal-organic framework: A promising anode material for lithium-ion battery. Microporous and Mesoporous Materials, 2016, 226, 353-359.	2.2	141
5264	Origins of Large Voltage Hysteresis in High-Energy-Density Metal Fluoride Lithium-Ion Battery Conversion Electrodes. Journal of the American Chemical Society, 2016, 138, 2838-2848.	6.6	212

# 5265	ARTICLE Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochimica Acta, 2016, 194, 59-66.	IF 2.6	CITATIONS
5266	Solvent-directed sol-gel assembly of 3-dimensional graphene-tented metal oxides and strong synergistic disparities in lithium storage. Journal of Materials Chemistry A, 2016, 4, 4032-4043.	5.2	19
5267	The synthesis of porphyrin and metalporphyrins and their improvement to the property of Li/SOCl2 primary battery. Russian Journal of Electrochemistry, 2016, 52, 94-98.	0.3	4
5268	Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life. Nano Letters, 2016, 16, 1960-1968.	4.5	124
5269	Improved coulombic efficiency and cycleability of SnO ₂ –Cu–graphite composite anode with dual scale embedding structure. RSC Advances, 2016, 6, 13384-13391.	1.7	17
5270	Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: The role of oxygen vacancies and cation doping. Computational Materials Science, 2016, 115, 109-116.	1.4	57
5271	Graphene-nanosheet-wrapped LiV3O8 nanocomposites as high performance cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2016, 307, 426-434.	4.0	38
5272	Effects of stoichiometric maximum concentration on lithium diffusion and stress within an insertion electrode particle. Materials and Design, 2016, 92, 438-444.	3.3	4
5273	In-situ precipitation of Metal–Organic Frameworks from a simulant battery waste solution. Materials Letters, 2016, 167, 188-191.	1.3	21
5274	Bimodal highly ordered mesostructure carbon with high activity for Br2/Brâ^ redox couple in bromine based batteries. Nano Energy, 2016, 21, 217-227.	8.2	79
5275	Study of nano-TiO2 composite polymer electrolyte incorporating ionic liquid PP12O1TFSI for lithium battery. Solid State Ionics, 2016, 286, 111-116.	1.3	15
5276	Designed Functional Systems for High-Performance Lithium-Ion Batteries Anode: From Solid to Hollow, and to Core–Shell NiCo ₂ O ₄ Nanoparticles Encapsulated in Ultrathin Carbon Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 4745-4753.	4.0	48
5277	High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method. Electrochimica Acta, 2016, 191, 237-246.	2.6	76
5278	The electrochemical behaviors of Li2C8H4O6 and its corresponding organic acid C8H6O6 as anodes for Li-ion batteries. Journal of Electroanalytical Chemistry, 2016, 761, 74-79.	1.9	29
5279	Titanium dioxide and carbon co-modified lithium manganese silicate cathode materials with improved electrochemical performance for lithium ion batteries. Journal of Electroanalytical Chemistry, 2016, 761, 37-45.	1.9	17
5280	Ellipsoid-like Li ₄ Ti ₅ O ₁₂ –TiO ₂ composites constructed by nanocrystals for lithium ion batteries. RSC Advances, 2016, 6, 13505-13513.	1.7	14
5281	Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film. Journal of Power Sources, 2016, 309, 20-26.	4.0	109
5282	A Core-Shell Si@NiSi2/Ni/C Nanocomposite as an Anode Material for Lithium-ion Batteries. Electrochimica Acta, 2016, 192, 303-309.	2.6	36

#	Article	IF	CITATIONS
5283	Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries. Energy Storage Materials, 2016, 3, 69-76.	9.5	102
5284	Insights on the fundamental lithium storage behavior of all-solid-state lithium batteries containing the LiNi0.8Co0.15Al0.05O2 cathode and sulfide electrolyte. Journal of Power Sources, 2016, 307, 724-730.	4.0	67
5285	Li ₂ S Film Formation on Lithium Anode Surface of Li–S batteries. ACS Applied Materials & Interfaces, 2016, 8, 4700-4708.	4.0	70
5286	Direct growth of an economic green energy storage material: a monocrystalline jarosite-KFe ₃ (SO ₄) ₂ (OH) ₆ -nanoplates@rGO hybrid as a superior lithium-ion battery cathode. Journal of Materials Chemistry A, 2016, 4, 3735-3742.	5.2	28
5287	A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries. Journal of Power Sources, 2016, 309, 202-211.	4.0	89
5288	Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries. Applied Surface Science, 2016, 380, 151-158.	3.1	45
5289	High Performance Supercapacitors from Novel Metal-Doped Ceria-Decorated Aminated Graphene. Journal of Physical Chemistry C, 2016, 120, 3107-3116.	1.5	83
5290	Potential-Dependent Generation of O ₂ [–] and LiO ₂ and Their Critical Roles in O ₂ Reduction to Li ₂ O ₂ in Aprotic Li–O ₂ Batteries. Journal of Physical Chemistry C, 2016, 120, 3690-3698.	1.5	149
5291	In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. Nano Letters, 2016, 16, 1497-1501.	4.5	112
5292	Electrospun polycrystalline Li Fe0.2Mn0.8PO4/carbon composite fibers for lithium-ion battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 495, 54-61.	2.3	9
5293	Toward Uniformly Dispersed Battery Electrode Composite Materials: Characteristics and Performance. ACS Applied Materials & Interfaces, 2016, 8, 3452-3463.	4.0	47
5294	Caterpillar structured Ni(OH) ₂ @MnO ₂ core/shell nanocomposite arrays on nickel foam as high performance anode materials for lithium ion batteries. RSC Advances, 2016, 6, 15541-15548.	1.7	15
5295	Improvement of electrochemical performance for AlF3-coated Li1.3Mn4/6Ni1/6Co1/6O2.40 cathode materials for Li-ion batteries. Ionics, 2016, 22, 1353-1359.	1.2	13
5296	High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery. Journal of Alloys and Compounds, 2016, 667, 82-90.	2.8	33
5297	One-Dimensional RuO ₂ /Mn ₂ O ₃ Hollow Architectures as Efficient Bifunctional Catalysts for Lithium–Oxygen Batteries. Nano Letters, 2016, 16, 2076-2083.	4.5	193
5298	Porous Silicon–Carbon Composite Materials Engineered by Simultaneous Alkaline Etching for High-Capacity Lithium Storage Anodes. Electrochimica Acta, 2016, 196, 197-205.	2.6	37
5299	Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries. Journal of Power Sources, 2016, 312, 216-222.	4.0	31
5300	Current density distribution in cylindrical Li-Ion cells during impedance measurements. Journal of Power Sources, 2016, 314, 93-101.	4.0	56

#	Article	IF	CITATIONS
5301	A pinecone-inspired nanostructure design for long-cycle and high performance Si anodes. Journal of Materials Chemistry A, 2016, 4, 5395-5401.	5.2	12
5302	Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 5260-5268.	3.8	44
5303	Potential-Resolved In Situ X-ray Absorption Spectroscopy Study of Sn and SnO ₂ Nanomaterial Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 5331-5339.	1.5	57
5304	Ab Initio Prediction and Characterization of Mo ₂ C Monolayer as Anodes for Lithium-Ion and Sodium-Ion Batteries. Journal of Physical Chemistry Letters, 2016, 7, 937-943.	2.1	334
5305	Bio-inspired synthesis of N,F co-doped 3D graphitized carbon foams containing manganese fluoride nanocrystals for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2691-2698.	5.2	42
5306	Facile synthesis of Fe@Fe2O3 core-shell nanowires as O2 electrode for high-energy Li-O2 batteries. Journal of Solid State Electrochemistry, 2016, 20, 1831-1836.	1.2	18
5307	Biopolymer hybrid electrodes for scalable electricity storage. Materials Horizons, 2016, 3, 174-185.	6.4	58
5308	Study on compositions and changes of SEI film of Li 2 MnO 3 positive material during the cycles. Catalysis Today, 2016, 274, 116-122.	2.2	16
5309	<i>In Situ</i> Reactive Assembly of Scalable Core–Shell Sulfur–MnO ₂ Composite Cathodes. ACS Nano, 2016, 10, 4192-4198.	7.3	351
5310	To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4440-4447.	5.2	72
5311	Bruggeman's Exponents for Effective Thermal Conductivity of Lithium-Ion Battery Electrodes. Journal of the Electrochemical Society, 2016, 163, A119-A130.	1.3	44
5312	From Lithiumâ€Oxygen to Lithiumâ€Air Batteries: Challenges and Opportunities. Advanced Energy Materials, 2016, 6, 1502164.	10.2	296
5313	Life Cycle Assessment and resource analysis of all-solid-state batteries. Applied Energy, 2016, 169, 757-767.	5.1	87
5314	Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chemistry of Materials, 2016, 28, 1691-1697.	3.2	635
5315	TiNb ₂ O ₇ /graphene composites as high-rate anode materials for lithium/sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4242-4251.	5.2	134
5316	lonic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries. Chemical Communications, 2016, 52, 4369-4372.	2.2	51
5317	Co-modification of LiNi0.5Co0.2Mn0.3O2 cathode materials with zirconium substitution and surface polypyrrole coating: towards superior high voltage electrochemical performances for lithium ion batteries. Electrochimica Acta, 2016, 196, 101-109.	2.6	83
5318	Silicon- and carbon-based anode materials: Quantum-chemical modeling. Russian Journal of Inorganic Chemistry, 2016, 61, 48-54.	0.3	11

#	Article	IF	Citations
5319	Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries. Journal of Power Sources, 2016, 312, 101-108.	4.0	34
5320	Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping. Journal of Power Sources, 2016, 313, 65-72.	4.0	91
5321	Solid polymer electrolyte membranes based on organic/inorganic nanocomposites with star-shaped structure for high performance lithium ion battery. Journal of Membrane Science, 2016, 509, 138-148.	4.1	100
5322	Superlithiation of Organic Electrode Materials: The Case of Dilithium Benzenedipropiolate. Chemistry of Materials, 2016, 28, 1920-1926.	3.2	109
5323	Silicon nanoparticles grown on a reduced graphene oxide surface as high-performance anode materials for lithium-ion batteries. RSC Advances, 2016, 6, 25159-25166.	1.7	25
5324	Effect of surface fluorine substitution on high voltage electrochemical performances of layered LiNi0.5Co0.2Mn0.3O2 cathode materials. Applied Surface Science, 2016, 371, 172-179.	3.1	37
5325	Electrochemical and Transport Properties of Ions in Mixtures of Electroactive Ionic Liquid and Propylene Carbonate with a Lithium Salt for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 5315-5325.	1.5	19
5326	Identification of Li-Ion Battery SEI Compounds through ⁷ Li and ¹³ C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry. ACS Applied Materials & Interfaces, 2016, 8, 371-380.	4.0	49
5327	Comparison of two energy storage options for optimum balancing of wind farm power outputs. IET Generation, Transmission and Distribution, 2016, 10, 832-839.	1.4	34
5328	Preparation of nanostructured Ge/GeO2 composite in carbon matrix as an anode material for lithium-ion batteries. Electrochimica Acta, 2016, 188, 120-125.	2.6	35
5329	Effects of Operating Temperature on the Electrical Performance of a Li-air Battery operated with Ionic Liquid Electrolyte. Electrochimica Acta, 2016, 194, 317-329.	2.6	28
5330	Synthesis and electrochemical characterization of nano-sized Ag4Sn particles as anode material for lithium-ion batteries. Electrochimica Acta, 2016, 196, 597-602.	2.6	17
5331	Microwave-Assisted Synthesis of Silver Vanadium Phosphorus Oxide, Ag ₂ VO ₂ PO ₄ : Crystallite Size Control and Impact on Electrochemistry. Chemistry of Materials, 2016, 28, 2191-2199.	3.2	11
5332	Understanding the mechanism of hydrogenated NiCo ₂ O ₄ nanograss supported on Ni foam for enhanced-performance supercapacitors. Journal of Materials Chemistry A, 2016, 4, 5198-5204.	5.2	64
5333	Comparison of amorphous, pseudohexagonal and orthorhombic Nb ₂ O ₅ for high-rate lithium ion insertion. CrystEngComm, 2016, 18, 2532-2540.	1.3	146
5334	Ultrafine SnO 2 nanoparticles as a high performance anode material for lithium ion battery. Ceramics International, 2016, 42, 9433-9437.	2.3	63
5335	Electrospun Lotus Root-like CoMoO4@Graphene Nanofibers as High-Performance Anode for Lithium Ion Batteries. Electrochimica Acta, 2016, 196, 125-130.	2.6	63
5336	Carbonate-assisted hydrothermal synthesis of porous hierarchical Co3O4/CuO composites as high capacity anodes for lithium-ion batteries. Electrochimica Acta, 2016, 197, 23-31.	2.6	43

#	Article	IF	CITATIONS
5337	Mixed-carbon-coated LiMn0.4Fe0.6PO4 nanopowders with excellent high rate and low temperature performances for lithium-ion batteries. Electrochimica Acta, 2016, 196, 377-385.	2.6	44
5338	Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries. Journal of Power Sources, 2016, 314, 18-27.	4.0	59
5339	Insight into the Vibrational and Thermodynamic Properties of Layered Lithium Transition-Metal Oxides LiMO ₂ (M = Co, Ni, Mn): A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 5876-5882.	1.5	28
5340	Insights into the Performance Limits of the Li ₇ P ₃ S ₁₁ Superionic Conductor: A Combined First-Principles and Experimental Study. ACS Applied Materials & Interfaces, 2016, 8, 7843-7853.	4.0	169
5341	A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes. ACS Nano, 2016, 10, 3702-3713.	7.3	394
5342	Controlled construction of 3D hierarchical manganese fluoride nanostructures via an oleylamine-assisted solvothermal route with high performance for rechargeable lithium ion batteries. RSC Advances, 2016, 6, 27170-27176.	1.7	10
5343	Temperature and Pressure Dependent Phase Transitions of β′-LiZr ₂ (PO ₄) ₃ Studied by Raman Spectroscopy. Journal of Physical Chemistry A, 2016, 120, 1971-1977.	1.1	15
5344	High-capacity organic cathode active materials of 2,2′-bis-p-benzoquinone derivatives for rechargeable batteries. Journal of Materials Chemistry A, 2016, 4, 5457-5466.	5.2	69
5345	Preparation of few-layer reduced graphene oxide-wrapped mesoporous Li 4 Ti 5 O 12 spheres and its application as an anode material for lithium-ion batteries. Chinese Chemical Letters, 2016, 27, 1559-1562.	4.8	9
5346	Geometry and fast diffusion of AlCl4 cluster intercalated in graphite. Electrochimica Acta, 2016, 195, 158-165.	2.6	84
5347	Nanospherical-Like Manganese Monoxide/Reduced Graphene Oxide Composite Synthesized by Electron Beam Radiation as Anode Material for High-Performance Lithium-Ion Batteries. Electrochimica Acta, 2016, 196, 431-439.	2.6	34
5348	Lithium diffusion in graphene and graphite: Effect of edge morphology. Carbon, 2016, 103, 209-216.	5.4	53
5349	Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries. Journal of Power Sources, 2016, 311, 35-41.	4.0	68
5350	Rate performance enhanced Li/S batteries with a Li ion conductive gel-binder. Solid State Ionics, 2016, 289, 23-27.	1.3	9
5351	Materials and membrane technologies for water and energy sustainability. Sustainable Materials and Technologies, 2016, 7, 1-28.	1.7	279
5352	Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo ₆ S ₈ and Zn ₂ Mo ₆ S ₈ Chevrel Phases in Aqueous Electrolytes. Inorganic Chemistry, 2016, 55, 3294-3301.	1.9	161
5353	Synthesis and Electrochemical Performance of Nano-sized Li4Ti5O12 Coated with Boron-Doped Carbon. Electrochimica Acta, 2016, 196, 300-308.	2.6	34
5354	Electrochemical Performance of Nanostructured PbO@C Obtained by Sol–Gel Method. Journal of Electronic Materials, 2016, 45, 3127-3133.	1.0	7

#	Article	IF	CITATIONS
5355	Visualizing the Electrochemical Lithiation/Delithiation Behaviors of Black Phosphorus by <i>in Situ</i> Transmission Electron Microscopy. Journal of Physical Chemistry C, 2016, 120, 5861-5868.	1.5	65
5356	Sodium–Oxygen Battery: Steps Toward Reality. Journal of Physical Chemistry Letters, 2016, 7, 1161-1166.	2.1	86
5357	In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co ₃ O ₄ . Journal of the American Chemical Society, 2016, 138, 36-39.	6.6	787
5358	Novel 3-D network SeS /NCPAN composites prepared by one-pot in-situ solid-state method and its electrochemical performance as cathode material for lithium-ion battery. Journal of Alloys and Compounds, 2016, 664, 92-98.	2.8	28
5359	Enhancement of the oxygen evolution reaction in Mn ³⁺ -based electrocatalysts: correlation between Jahn–Teller distortion and catalytic activity. RSC Advances, 2016, 6, 2019-2023.	1.7	95
5360	A polyimide derivative containing different carbonyl groups for flexible lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2115-2121.	5.2	92
5361	Synthesis and electrochemical performances of Mn x Co y Ni z CO3. Journal of Materials Science: Materials in Electronics, 2016, 27, 1700-1707.	1.1	5
5362	Self-Volatilization Approach to Mesoporous Carbon Nanotube/Silver Nanoparticle Hybrids: The Role of Silver in Boosting Li Ion Storage. ACS Nano, 2016, 10, 1648-1654.	7.3	56
5363	Mesoporous Li4Ti5O12 nanoparticles synthesized by a microwave-assisted hydrothermal method for high rate lithium-ion batteries. Journal of Electroanalytical Chemistry, 2016, 763, 45-50.	1.9	18
5364	Hierarchical nano-branched c-Si/SnO2 nanowires for high areal capacity and stable lithium-ion battery. Nano Energy, 2016, 19, 511-521.	8.2	52
5365	Fe3O4 nanoparticles encapsulated in one-dimensional Li4Ti5O12 nanomatrix: An extremely reversible anode for long life and high capacity Li-ion batteries. Nano Energy, 2016, 19, 246-256.	8.2	28
5366	Designed synthesis of nitrogen-rich carbon wrapped Sn nanoparticles hybrid anode via in-situ growth of crystalline ZIF-8 on a binary metal oxide. Nano Energy, 2016, 19, 486-494.	8.2	83
5367	Reaction mechanism studies towards effective fabrication of lithium-rich anti-perovskites Li3OX (X=) Tj ETQq0 0	0 rgBT /Ov 1:3	verlock 10 Tf
5368	Hollow Nanobarrels of α-Fe ₂ O ₃ on Reduced Graphene Oxide as High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2027-2034.	4.0	84
5369	Facile synthesis of well-shaped spinel LiNi _{0.5} Mn _{1.5} O ₄ nanoparticles as cathode materials for lithium ion batteries. RSC Advances, 2016, 6, 2785-2792.	1.7	32
5370	Study of LiNi _{0.5} Mn _{1.5} O ₄ Morphological Features for Reduced Electrolyte Decomposition at High Potential. Journal of the Electrochemical Society, 2016, 163, A470-A476.	1.3	16
5371	Stable high-areal-capacity nanoarchitectured germanium anodes on three-dimensional current collectors for Li ion microbatteries. Journal of Materials Chemistry A, 2016, 4, 1060-1067.	5.2	17
5372	A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon, 2016, 99, 633-641.	5.4	77

#	Article	IF	CITATIONS
5373	Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li _{0.2} Ni _{0.16} Co _{0.1} Mn _{0.54}]O ₂ Cathode and Si Anode. ACS Applied Materials & Interfaces, 2016, 8, 208-214.	4.0	21
5374	Ge/GeO ₂ -Ordered Mesoporous Carbon Nanocomposite for Rechargeable Lithium-Ion Batteries with a Long-Term Cycling Performance. ACS Applied Materials & Interfaces, 2016, 8, 232-239.	4.0	88
5375	NiSi _{<i>x</i>} /a-Si Nanowires with Interfacial a-Ge as Anodes for High-Rate Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 673-679.	4.0	11
5376	Controllable synthesis of carbon-coated Snâ¿¿SnO 2 â¿¿carbon-nanofiber membrane as advanced binder-free anode for lithium-ion batteries. Electrochimica Acta, 2016, 188, 661-670.	2.6	50
5377	Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45, 1308-1330.	18.7	167
5378	Remarkable anodic performance of lead titanate 1D nanostructures via in-situ irreversible formation of abundant Ti3+ as conduction pathways. Nano Research, 2016, 9, 353-362.	5.8	7
5379	MoO3–MnO2 intergrown nanoparticle composite prepared by one-step hydrothermal synthesis as anode for lithium ion batteries. Journal of Alloys and Compounds, 2016, 663, 148-155.	2.8	30
5380	Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Materials Chemistry and Physics, 2016, 171, 137-144.	2.0	20
5381	Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors. Journal of Power Sources, 2016, 306, 753-757.	4.0	29
5382	Growth of 3D hierarchical porous NiO@carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 3893-3899.	1.3	46
5383	Metal hydrides as negative electrode materials for Ni–MH batteries. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	49
5384	Anhydrous Proton Transport in Polymerized Ionic Liquid Block Copolymers: Roles of Block Length, Ionic Content, and Confinement. Macromolecules, 2016, 49, 395-404.	2.2	88
5385	Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries. Physical Chemistry Chemical Physics, 2016, 18, 3204-3213.	1.3	49
5386	Graphene/N-doped carbon sandwiched nanosheets with ultrahigh nitrogen doping for boosting lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 1423-1431.	5.2	146
5387	Quasi-thermodynamic model on hydride formation in palladium–hydrogen thin films: Impact of elastic and microstructural constraints. International Journal of Hydrogen Energy, 2016, 41, 2727-2738.	3.8	49
5388	Solid Suspension Flow Batteries Using Earth Abundant Materials. ACS Applied Materials & Interfaces, 2016, 8, 1759-1765.	4.0	16
5389	Segmental Dynamics and Dielectric Constant of Polysiloxane Polar Copolymers as Plasticizers for Polymer Electrolytes. ACS Applied Materials & Interfaces, 2016, 8, 3215-3225.	4.0	73
5390	Hierarchical architecture of hybrid carbon-encapsulated hollow manganese oxide nanotubes with a porous-wall structure for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 2049-2054.	5.2	35

ARTICLE IF CITATIONS An optimization of MnO 2 amount in CNT-MnO 2 nanocomposite as a high rate cathode catalyst for the 5391 2.6 55 rechargeable Li-O 2 batteries. Electrochimica Acta, 2016, 188, 428-440. Composite gel polymer electrolyte with modified silica for LiMn2O4 positive electrode in lithium-ion 5392 2.6 battery. Electrochímica Acta, 2016, 190, 780-789. Facile synthesis of nickel-foam-based nano-architectural composites as binder-free anodes for high 5393 4.0 16 capacity Li-ion batteries. Journal of Power Sources, 2016, 304, 311-318. Self-Assembled N/S Codoped Flexible Graphene Paper for High Performance Energy Storage and Oxygen 5394 4.0 113 Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 2078-2087 Hydroquinone Resin Induced Carbon Nanotubes on Ni Foam As Binder-Free Cathode for 5395 4.0 33 Li–O₂ Batteries. ACS Applied Materials & amp; Interfaces, 2016, 8, 3868-3873. Free-Standing Si/Graphene Paper Using Si Nanoparticles Synthesized by Acid-Etching Al-Si Alloy Powder for High-Stability Li-Ion Battery Anodes. Electrochimica Acta, 2016, 188, 777-784. 2.6 Facile Synthesis of Mesoporous Co3O4–Carbon Nanowires Array Nanocomposite for the Enhanced 5397 2.6 25 Lithium Storage. Electrochimica Acta, 2016, 190, 126-133. Interaction of a Self-Assembled Ionic Liquid Layer with Graphite(0001): A Combined Experimental and 5398 2.1 68 Theoretical Study. Journal of Physical Chemistry Letters, 2016, 7, 226-233. NASICON-Structured NaTi₂(PO₄)₃@C Nanocomposite as the Low 5399 Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials 4.0 159 & Interfaces, 2016, 8, 2238-2246. Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries. RSC 5400 1.7 Advances, 2016, 6, 12107-12113. Magnetic PSA-Fe 3 O 4 @C 3D mesoporous microsphere as anode for lithium ion batteries. 5401 2.6 26 Electrochimica Acta, 2016, 188, 734-743. Understanding conversion mechanism of NiO anodic materials for Li-ion battery using in situ X-ray 4.0 absorption near edge structure spectroscopy. Journal of Power Sources, 2016, 304, 189-195. TiS 2 nanoplates: A high-rate and stable electrode material for sodium ion batteries. Nano Energy, 2016, 5403 8.2 137 20, 168-175. What Happens Structurally and Electronically during the Li Conversion Reaction of CoFe₂O₄ Nanoparticles: An Operando XAS and XRD Investigation. Chemistry 5404 3.2 63 of Materials, 2016, 28, 434-444. Suppressing the Phase Transition of the Layered Ni-Rich Oxide Cathode during High-Voltage Cycling by Introducing Low-Content Li₂MnO₃. ACS Applied Materials & amp; Interfaces, 5405 273 4.0 2016, 8, 1297-1308. Rechargeable Mg battery cathode TiS₃ with d–p orbital hybridized electronic structures. 5406 48 Applied Physics Express, 2016, 9, 011801. The effect of polymorphism on the lithium storage performance of Li2MnSiO4. Journal of Power 5407 4.0 24 Sources, 2016, 306, 552-558. Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full 5408 4.5 Cells. Nano Letters, 2016, 16, 282-288.

CITATION REPORT

ARTICLE IF CITATIONS One-step synthesis of a silicon/hematite@carbon hybrid nanosheet/silicon sandwich-like composite as 5409 5.2 45 an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4056-4061. Template-directed metal oxides for electrochemical energy storage. Energy Storage Materials, 2016, 3, 5410 1 - 17A facile synthesis and electrochemical performance of Na0.6Li0.6 [Mn0.72Ni0.18Co0.10]O2 as cathode 5411 1.1 4 materials for Li and Na ion batteries. Current Applied Physics, 2016, 16, 226-230. Nitrogen-doped carbon decorated LiFePO4 composite synthesized via a microwave heating route using 5412 34 polydopamine as carbon–nitrogen precursor. Ceramics International, 2016, 42, 2789-2797. The effect of AIF3 modification on the physicochemical and electrochemical properties of Li-rich 5413 2.3 46 layered oxide. Ceramics International, 2016, 42, 5397-5402. Tucked flower-like SnS2/Co3O4 composite for high-performance anode material in lithium-ion batteries. Electrochimica Acta, 2016, 190, 843-851. 2.6 Multiwall carbon nanotube-nickel cobalt oxide hybrid structure as high performance electrodes for 5415 2.6 49 supercapacitors and lithium ion batteries. Electrochimica Acta, 2016, 190, 346-353. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in 5416 245 organic electrolytes. Journal of Power Sources, 2016, 306, 510-515. Structural Transformation of MXene (V₂C, Cr₂C, and Ta₂C) with 5417 O Groups during Lithiation: A First-Principles Investigation. ACS Applied Materials & amp; Interfaces, 4.0 159 2016, 8, 74-81. Controllable synthesis of rod-like SnO₂ nanoparticles with tunable length anchored 5418 1.7 onto graphene nanosheets for improved lithium storage capability. RSC Advances, 2016, 6, 4116-4127. Flexible conductive nanocellulose combined with silicon nanoparticles and polyaniline. 5419 5.136 Carbohydrate Polymers, 2016, 140, 43-50. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion 5420 23.0 1,777 Conduction. Chemical Reviews, 2016, 116, 140-162. Improvement of thermal stability and safety of lithium ion battery using SiO anode material. Journal 5421 4.0 28 of Power Sources, 2016, 304, 9-14. Binder-free graphene as an advanced anode for lithium batteries. Journal of Materials Chemistry A, 5422 5.2 79 2016, 4, 6886-6895. High-yield and scalable synthesis of a Silicon/Aminosilane-functionalized Carbon NanoTubes/Carbon 5423 (Si/A-CNT/C) composite as a high-capacity anode for lithium-ion batteries. Journal of Applied 1.5 15 Electrochemistry, 2016, 46, 229-239. Toward ambient temperature operation with all-solid-state lithium metal batteries with a sp boron-based solid single ion conducting polymer electrolyte. Journal of Power Sources, 2016, 306, 5424 152-161. Sulfonyl-based polyimide cathode for lithium and sodium secondary batteries: Enhancing the cycling 5425 2.040 performance by the electrolyte. Materials Chemistry and Physics, 2016, 169, 192-197. [100]-Oriented LiFePO₄ Nanoflakes toward High Rate Li-Ion Battery Cathode. Nano Letters, 5426 4.5 2016, 16, 795-799.

CITATION REPORT

#	Article	IF	CITATIONS
5427	Facile synthesis of Cu ₂ O microstructures and their morphology dependent electrochemical supercapacitor properties. RSC Advances, 2016, 6, 3815-3822.	1.7	92
5428	Flexible paper electrodes constructed from Zn ₂ GeO ₄ nanofibers anchored with amorphous carbon for advanced lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 2055-2059.	5.2	21
5429	A non-isothermal transient model for a metal-free quinone–bromide flow battery. Electrochimica Acta, 2016, 190, 434-445.	2.6	21
5430	Honeycomb-like NiCo2O4 films assembled from interconnected porous nanoflakes for supercapacitor. Materials Chemistry and Physics, 2016, 171, 208-215.	2.0	17
5431	Sol–gel design strategy for embedded Na3V2(PO4)3 particles into carbon matrices for high-performance sodium-ion batteries. Carbon, 2016, 96, 1028-1033.	5.4	77
5432	Si nanoparticles/graphene composite membrane for high performance silicon anode in lithium ion batteries. Carbon, 2016, 98, 373-380.	5.4	109
5433	In situ 7Li and 133Cs nuclear magnetic resonance investigations on the role of Cs+ additive in lithium-metal deposition process. Journal of Power Sources, 2016, 304, 51-59.	4.0	20
5434	Improving the electrochemical performance of high voltage spinel cathode at elevated temperature by a novel electrolyte additive. Journal of Power Sources, 2016, 303, 41-48.	4.0	62
5435	Capacitive behaviour of MnF2 and CoF2 submicro/nanoparticles synthesized via a mild ionic liquid-assisted route. Journal of Power Sources, 2016, 303, 49-56.	4.0	29
5436	Role of zirconium dopant on the structure and high voltage electrochemical performances of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials for lithium ion batteries. Electrochimica Acta, 2016, 188, 48-56.	2.6	228
5437	Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries. Electrochimica Acta, 2016, 187, 535-542.	2.6	86
5438	High-Rate and Cycling-Stable Nickel-Rich Cathode Materials with Enhanced Li ⁺ Diffusion Pathway. ACS Applied Materials & Interfaces, 2016, 8, 582-587.	4.0	108
5439	Synthesis of pyrite/carbon shells on cobalt nanowires forming core/branch arrays as high-performance cathode for lithium ion batteries. Journal of Power Sources, 2016, 303, 35-40.	4.0	20
5440	Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. Journal of Materials Chemistry A, 2016, 4, 856-860.	5.2	62
5441	Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries. Extreme Mechanics Letters, 2016, 8, 13-21.	2.0	56
5442	Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO ₂ Nanocomposites. Nano Letters, 2016, 16, 40-47.	4.5	159
5443	Synthesis and characterization of porous maghemite as an anode for Li-ion batteries. Ceramics International, 2016, 42, 4370-4376.	2.3	12
5444	Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2016, 19, 265-273.	8.3	268

#	Article	IF	CITATIONS
5445	Mixed Polyanion Glass Cathodes: Glass-State Conversion Reactions. Journal of the Electrochemical Society, 2016, 163, A131-A137.	1.3	17
5446	Analytical Model for Sandwich-Lithiation in Hollow Amorphous Silicon Nano-Anodes Coated on Carbon Nanofibers. Journal of the Electrochemical Society, 2016, 163, A163-A170.	1.3	5
5447	Carbon-supported and nanosheet-assembled vanadium oxide microspheres for stable lithium-ion battery anodes. Nano Research, 2016, 9, 128-138.	5.8	64
5448	Comparative study on experiments and simulation of blended cathode active materials for lithium ion batteries. Electrochimica Acta, 2016, 187, 422-432.	2.6	48
5449	Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 187, 234-242.	2.6	83
5450	Understanding the effects of a multi-functionalized additive on the cathode–electrolyte interfacial stability of Ni-rich materials. Journal of Power Sources, 2016, 302, 431-438.	4.0	82
5451	Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries. Chemical Communications, 2016, 52, 803-806.	2.2	20
5452	Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy and Environmental Science, 2016, 9, 102-106.	15.6	910
5453	A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 96-104.	5.2	322
5454	Rational design of SnO ₂ @C nanocomposites for lithium ion batteries by utilizing adsorption properties of MOFs. Chemical Communications, 2016, 52, 717-720.	2.2	69
5455	Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochimica Acta, 2016, 187, 186-192.	2.6	91
5456	Microwave synthesized self-standing electrode of MoS 2 nanosheets assembled on graphene foam for high-performance Li-lon and Na-Ion batteries. Journal of Alloys and Compounds, 2016, 660, 11-16.	2.8	64
5457	Novel synergistic 0.9LiMn0.9Fe0.1PO4·0.1Na3V2(PO4)2F3/C nano-hybrid cathode with enhanced electrochemical performance for lithium-ion batteries. Journal of Power Sources, 2016, 303, 29-34.	4.0	4
5458	Controlled synthesis of graphitic carbon-encapsulated α-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property. Electrochimica Acta, 2016, 187, 508-516.	2.6	58
5459	High-Performance P2-Phase Na _{2/3} Mn _{0.8} Fe _{0.1} Ti _{0.1} O ₂ Cathode Material for Ambient-Temperature Sodium-Ion Batteries. Chemistry of Materials, 2016, 28, 106-116.	3.2	192
5460	One-dimensional metal oxide–carbon hybrid nanostructures for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 27-40.	4.1	119
5461	MoV ₂ O ₈ nanostructures: controlled synthesis and lithium storage mechanism. Nanoscale, 2016, 8, 508-516.	2.8	33
5462	Design and synthesis of a 3-D hierarchical molybdenum dioxide/nickel/carbon structured composite with superior cycling performance for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 605-611.	5.2	30

#	Article	IF	CITATIONS
5463	Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 372-378.	5.2	123
5464	Synergistic Effect for LiMn2O4Microcubes with Enhanced Rate Capability and Excellent Cycle Stability for Lithium Ion Batteries. Journal of the Electrochemical Society, 2016, 163, A197-A202.	1.3	20
5465	Effect of Ball Milling on Electrocatalytic Activity of Perovskite La0.6Sr0.4CoO3-δApplied for Lithium Air Battery. Journal of the Electrochemical Society, 2016, 163, A244-A250.	1.3	28
5466	Novel amperometric xanthine biosensor based on xanthine oxidase immobilized on electrochemically polymerized 10-[4H-dithieno(3,2-b:2′,3′-d)pyrrole-4-yl]decane-1-amine film. Sensors and Actuators B: Chemical, 2016, 225, 181-187.	4.0	46
5467	High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO ₂ Nanospheres in Poly(ethylene oxide). Nano Letters, 2016, 16, 459-465.	4.5	791
5468	Dislocation effect on diffusion-induced stress for lithiation in hollow spherical electrode. Journal of Solid State Electrochemistry, 2016, 20, 37-46.	1.2	12
5469	Improved cycle performance of LiMn2O4 cathode material for aqueous rechargeable lithium battery by LaF3 coating. Journal of Alloys and Compounds, 2016, 654, 384-391.	2.8	84
5470	Lithium Batteries. , 2016, , .		114
5471	The high electrochemical performance of Li 3 V 2 (PO 4) 3 supported by graphene and carbon-nanofibers for advanced Li-ion batteries. Materials Research Bulletin, 2016, 73, 211-218.	2.7	15
5472	Divergent technological strategies among leading electric vehicle firms in China: Multiplicity of institutional logics and responses of firms. Science and Public Policy, 2016, 43, 492-504.	1.2	6
5473	A facial solvothermal reduction route for the production of Li4Ti5O12/graphene composites with enhanced electrochemical performance. Ceramics International, 2016, 42, 334-340.	2.3	19
5474	Composite electrolyte membranes incorporating viscous copolymers with cellulose for high performance lithium-ion batteries. Journal of Membrane Science, 2016, 497, 259-269.	4.1	66
5475	Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries. Energy Storage Materials, 2016, 2, 139-145.	9.5	274
5476	Diffusion-induced stresses in an imperfect bilayer electrode of coin-shaped lithium-ion batteries. European Journal of Mechanics, A/Solids, 2016, 55, 167-180.	2.1	4
5477	Synthesis and lithium storage properties of MoS 2 nanoparticles prepared using supercritical ethanol. Chemical Engineering Journal, 2016, 285, 517-527.	6.6	33
5478	Graphene oxide wrapped Na3V2(PO4)3/C nanocomposite as superior cathode material for sodium-ion batteries. Ceramics International, 2016, 42, 820-827.	2.3	32
5479	Highly cross-linked Cu/a-Si core–shell nanowires for ultra-long cycle life and high rate lithium batteries. Nanoscale, 2016, 8, 2613-2619.	2.8	33
5480	Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 176-183.	15.6	299

#	Article	IF	CITATIONS
5481	Binder-free polymer encapsulated sulfur–carbon nanotube composite cathodes for high performance lithium batteries. Carbon, 2016, 96, 1053-1059.	5.4	64
5482	In-situ observation of volume expansion behavior of a silicon particle in various electrolytes. Journal of Power Sources, 2016, 302, 46-52.	4.0	27
5483	The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries. Journal of Power Sources, 2016, 302, 61-69.	4.0	78
5484	Evaluation on the effect of gadolinium-doping for niobium on the morphology and ionic conductivity of garnet-like Li ₅ La ₃ Nb ₂ O ₁₂ . Canadian Journal of Chemistry, 2016, 94, 321-329.	0.6	4
5485	Plasma-enhanced low-temperature solid-state synthesis of spinel LiMn ₂ O ₄ with superior performance for lithium-ion batteries. Green Chemistry, 2016, 18, 662-666.	4.6	27
5486	Corn stalk-derived activated carbon with a stacking sheet-like structure as sulfur cathode supporter for lithium/sulfur batteries. Ionics, 2016, 22, 63-69.	1.2	25
5487	Preparation and structural evolution of well aligned-carbon nanotube arrays onto conductive carbon-black layer/carbon paper substrate with enhanced discharge capacity for Li–air batteries. Chemical Engineering Journal, 2016, 283, 911-921.	6.6	17
5488	Lithium Iron Phosphate Powders and Coatings Obtained by Means of Inductively Coupled Thermal Plasma. Journal of Thermal Spray Technology, 2016, 25, 357-364.	1.6	8
5489	Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications. Journal of Power Sources, 2016, 301, 35-40.	4.0	44
5490	Targeted synthesis of novel hierarchical sandwiched NiO/C arrays as high-efficiency lithium ion batteries anode. Journal of Power Sources, 2016, 301, 78-86.	4.0	77
5491	Safety Aspects of Li-Ion Batteries. , 2016, , 549-583.		2
5492	Lithium cobalt oxide crystallization on flexible polyimide substrate. Journal of Materials Science: Materials in Electronics, 2016, 27, 631-636.	1.1	3
5493	Self-supported hierarchical hollow-branch cobalt oxide nanorod arrays as binder-free electrodes for high-performance lithium ion batteries. Materials Letters, 2016, 162, 101-104.	1.3	10
5494	Coordination environments and ï€-conjugation in dense lithium coordination polymers. CrystEngComm, 2016, 18, 398-406.	1.3	11
5495	Principles of Intercalation. , 2016, , 69-91.		1
5496	Factors determining the packing-limitation of active materials in the composite electrode of lithium-ion batteries. Journal of Power Sources, 2016, 301, 11-17.	4.0	65
5497	Advanced porous membranes with ultra-high selectivity and stability for vanadium flow batteries. Energy and Environmental Science, 2016, 9, 441-447.	15.6	265
5498	TEM in situ lithiation of tin nanoneedles for battery applications. Journal of Materials Science, 2016, 51, 589-602.	1.7	19

#	Article	IF	CITATIONS
5499	Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horizons, 2016, 1, 41-44.	4.1	54
5500	Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics, 2016, 285, 101-105.	1.3	94
5501	Methods of synthesis and performance improvement of lithium iron phosphate for high rate Li-ion batteries: A review. Engineering Science and Technology, an International Journal, 2016, 19, 178-188.	2.0	86
5502	Second life of electric vehicle batteries: relation between materials degradation and environmental impact. International Journal of Life Cycle Assessment, 2017, 22, 82-93.	2.2	115
5503	Study on the impact of Fe ₂ P phase on the electrochemical performance of LiFePO ₄ . Science and Engineering of Composite Materials, 2017, 24, 23-27.	0.6	4
5504	Nanocarbon-intercalated and Fe–N-codoped graphene as a highly active noble-metal-free bifunctional electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 1930-1934.	5.2	88
5505	A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance. Applied Energy, 2017, 185, 1303-1308.	5.1	60
5506	Studies on cyclic voltammogram properties of SnO2 nanoflower. Materials Research Innovations, 2017, 21, 195-197.	1.0	1
5507	Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Research, 2017, 10, 1268-1281.	5.8	43
5508	Controllable Synthesis of TiO2@Fe2O3 Core-Shell Nanotube Arrays with Double-Wall Coating as Superb Lithium-Ion Battery Anodes. Scientific Reports, 2017, 7, 40927.	1.6	55
5509	Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chemical Society Reviews, 2017, 46, 797-815.	18.7	862
5510	Crystallographic-plane tuned Prussian-blue wrapped with RGO: a high-capacity, long-life cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 3569-3577.	5.2	75
5511	Redoxâ€Flowâ€Batterien: von metallbasierten zu organischen Aktivmaterialien. Angewandte Chemie, 2017, 129, 702-729.	1.6	89
5512	Synthesis of Three-Dimensional Nanoporous Li-Rich Layered Cathode Oxides for High Volumetric and Power Energy Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3661-3666.	4.0	50
5513	Amino group enhanced phenazine derivatives as electrode materials for lithium storage. Chemical Communications, 2017, 53, 2914-2917.	2.2	81
5514	Slow Stabilization of Si-Li Alloys Formed during Charge and Discharge of a Si-C Mixed Electrode Studied by In Situ Solid-State ⁷ Li Nuclear Magnetic Resonance Spectroscopy. Journal of the Electrochemical Society, 2017, 164, A6334-A6340.	1.3	4
5515	Porous Oneâ€Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1602300.	11.1	615
5516	Sodiumâ€lon Batteries: Improving the Rate Capability of 3D Interconnected Carbon Nanofibers Thin Film by Boron, Nitrogen Dualâ€Doping. Advanced Science, 2017, 4, 1600468.	5.6	164

#	Article	IF	CITATIONS
5517	Real-time mass spectroscopy analysis of Li-ion battery electrolyte degradation under abusive thermal conditions. Journal of Power Sources, 2017, 342, 808-815.	4.0	13
5518	Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: Towards high-performance lithium-ion batteries anode materials. Nano Energy, 2017, 33, 247-256.	8.2	130
5519	Unlocking the potential of SnS2: Transition metal catalyzed utilization of reversible conversion and alloying reactions. Scientific Reports, 2017, 7, 41015.	1.6	26
5520	Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 6142-6152.	1.3	65
5521	A Defectâ€Free Principle for Advanced Graphene Cathode of Aluminumâ€Ion Battery. Advanced Materials, 2017, 29, 1605958.	11.1	280
5522	Improved electrochemical performance of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material by double-layer coating with graphene oxide and V 2 O 5 for lithium-ion batteries. Applied Surface Science, 2017, 404, 310-317.	3.1	70
5523	Synthesis and electrochemical characteristics of isostructural LiMTiO 4 (M = Mn, Fe, Co). Ceramics International, 2017, 43, 5728-5733.	2.3	6
5524	Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications. Electrochimica Acta, 2017, 228, 545-552.	2.6	58
5525	Nitrogen-doped graphene aerogels-supported cobaltosic oxide nanocrystals as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reactions. Journal of Electroanalytical Chemistry, 2017, 787, 46-54.	1.9	24
5526	Graphene coated La 3+ /Sc 3+ co-doped Li 4 Ti 5 O 12 anodes for enhanced Li-ion battery performance. Materials Letters, 2017, 193, 179-182.	1.3	11
5527	Mesoscale Elucidation of Surface Passivation in the Li–Sulfur Battery Cathode. ACS Applied Materials & Interfaces, 2017, 9, 5263-5271.	4.0	49
5528	Electrochemical Window of the Li-Ion Solid Electrolyte Li ₇ La ₃ Zr ₂ N ₁₂ . ACS Energy Letters, 2017, 2, 462-468.	8.8	255
5529	A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery. NPG Asia Materials, 2017, 9, e340-e340.	3.8	66
5530	Self-sacrificed synthesis of carbon-coated SiO _x nanowires for high capacity lithium ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 4183-4189.	5.2	112
5531	In Situ TEM Study of Volume Expansion in Porous Carbon Nanofiber/Sulfur Cathodes with Exceptional Highâ€Rate Performance. Advanced Energy Materials, 2017, 7, 1602078.	10.2	93
5532	Nanoporous Hybrid Electrolytes for Highâ€Energy Batteries Based on Reactive Metal Anodes. Advanced Energy Materials, 2017, 7, 1602367.	10.2	122
5533	Rationally designed layer-by-layer structure of Fe 3 O 4 nanospheres@MWCNTs/graphene as electrode for lithium ion batteries with enhanced electrochemical performance. Journal of Alloys and Compounds, 2017, 699, 812-817.	2.8	14
5534	Power characteristics of spinel cathodes correlated with elastic softness and phase transformation for high-power lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 3404-3411.	5.2	12

# 5535	ARTICLE Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy and Environmental Science, 2017, 10, 580-592.	lF 15.6	CITATIONS
5536	Organic carbon gel assisted-synthesis of Li _{1.2} Mn _{0.6} Ni _{0.2} O ₂ for a high-performance cathode material for Li-ion batteries. RSC Advances, 2017, 7, 1561-1566.	1.7	13
5537	Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells. Journal of the Electrochemical Society, 2017, 164, A389-A399.	1.3	356
5538	Inorganic Porous Films for Renewable Energy Storage. ACS Energy Letters, 2017, 2, 373-390.	8.8	68
5539	Intrinsic Origins of Crack Generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 Layered Oxide Cathode Material. Scientific Reports, 2017, 7, 39669.	1.6	225
5540	Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries. Ionics, 2017, 23, 2613-2619.	1.2	11
5541	Carbon-coated SiO/ZrO 2 composites as anode materials for lithium-ion batteries. Ceramics International, 2017, 43, 4309-4313.	2.3	40
5542	High-performance CuO/Cu composite current collectors with array-pattern porous structures for lithium-ion batteries. Electrochimica Acta, 2017, 226, 89-97.	2.6	29
5543	SnS 2 Nanoflakes Anchored Graphene obtained by Liquid Phase Exfoliation and MoS 2 Nanosheet Composites as Lithium and Sodium Battery Anodes. Electrochimica Acta, 2017, 227, 203-209.	2.6	57
5544	Facile synthesis of porous Nb2O5 microspheres as anodes for lithium-ion batteries. International Journal of Hydrogen Energy, 2017, 42, 6065-6071.	3.8	48
5545	Nanoporous Platinum/(Mn,Al) ₃ O ₄ Nanosheet Nanocomposites with Synergistically Enhanced Ultrahigh Oxygen Reduction Activity and Excellent Methanol Tolerance. ACS Applied Materials & Interfaces, 2017, 9, 2485-2494.	4.0	36
5546	Room-temperature synthesis of a cobalt 2,3,5,6-tetrafluoroterephthalic coordination polymer with enhanced capacity and cycling stability for lithium batteries. New Journal of Chemistry, 2017, 41, 1813-1819.	1.4	31
5547	Nitrogen and sulfur co-doped metal monochalcogen encapsulated honeycomb like carbon nanostructure as a high performance lithium-ion battery anode material. Carbon, 2017, 115, 249-260.	5.4	57
5548	Diffusion-induced stresses in graphene-based composite bilayer electrode of lithium-ion battery. Composite Structures, 2017, 165, 91-98.	3.1	25
5549	Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal. ACS Applied Materials & Interfaces, 2017, 9, 3808-3816.	4.0	307
5550	Highly microporous graphite-like BC _x O _{3â^'x} /C nanospheres for anode materials of lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2835-2843.	5.2	25
5551	All-carbon-based porous topological semimetal for Li-ion battery anode material. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 651-656.	3.3	125
5552	Graphene-based Composites for Electrochemical Energy Storage. Springer Theses, 2017, , .	0.0	10

#	Article	IF	CITATIONS
5553	A comparative study of Si-containing electrolyte additives for lithium ion battery: Which one is better and why is it better. Journal of Power Sources, 2017, 342, 677-684.	4.0	59
5554	A novel 3D-layered electrochemical-thermal coupled model strategy for the nail-penetration process simulation. Journal of Power Sources, 2017, 342, 836-845.	4.0	32
5555	Tetrathiafulvalene as a Conductive Film-Making Additive on High-Voltage Cathode. ACS Applied Materials & Interfaces, 2017, 9, 3590-3595.	4.0	12
5556	Tailored Yolk–Shell Sn@C Nanoboxes for Highâ€Performance Lithium Storage. Advanced Functional Materials, 2017, 27, 1606023.	7.8	173
5557	Plasticized polymer electrolyte membranes based on PEO/PVdF-HFP for use as an effective electrolyte in lithium-ion batteries. Chinese Journal of Polymer Science (English Edition), 2017, 35, 407-421.	2.0	58
5558	Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries. Chemical Engineering Journal, 2017, 315, 101-107.	6.6	64
5559	Poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) glued and graphene encapsulated sulfur-carbon film for high-performance free-standing lithium-sulfur batteries. Journal of Power Sources, 2017, 342, 772-778.	4.0	22
5560	Al conductive hybrid solid polymer electrolyte. Solid State Ionics, 2017, 300, 165-168.	1.3	24
5561	Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Letters, 2017, 17, 1132-1139.	4.5	1,081
5562	Lithium-ion storage properties of a micro/nanosheet-like NaV ₆ O ₁₅ anode in aqueous solution. Dalton Transactions, 2017, 46, 3857-3863.	1.6	18
5563	Rational synthesis of highly uniform hollow core–shell Mn3O4/CuO@TiO2 submicroboxes for enhanced lithium storage performance. Chemical Engineering Journal, 2017, 316, 214-224.	6.6	28
5564	Measurement of interfacial thermal conductance in Lithium ion batteries. Journal of Power Sources, 2017, 343, 431-436.	4.0	23
5565	Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li _{3x} La _{0.67â^'x} TiO ₃ . Physical Chemistry Chemical Physics, 2017, 19, 5880-5887.	1.3	100
5566	Dendriteâ€Free, Highâ€Rate, Longâ€Life Lithium Metal Batteries with a 3D Crossâ€Linked Network Polymer Electrolyte. Advanced Materials, 2017, 29, 1604460.	11.1	604
5567	Dual Heteroatomâ€Doped Carbon Nanofoamâ€Wrapped Iron Monosulfide Nanoparticles: An Efficient Cathode Catalyst for Li–O ₂ Batteries. ChemSusChem, 2017, 10, 1554-1562.	3.6	15
5568	Ge Nanoparticles Encapsulated in Interconnected Hollow Carbon Boxes as Anodes for Sodium Ion and Lithium Ion Batteries with Enhanced Electrochemical Performance. Particle and Particle Systems Characterization, 2017, 34, 1600115.	1.2	34
5569	LiNi0.5Mn1.5O4 nano-submicro cubes as high-performance 5 V cathode materials for lithium-ion batteries. Electrochimica Acta, 2017, 230, 293-298.	2.6	34
5570	High-voltage and free-standing poly(propylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 72 Td (carbonate) composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. Journal of Materials Chemistry A, 2017, 5, 4940-4948.	/Li _{6 5.2}	.75La< 373

#	Article	IF	CITATIONS
5571	Superior sodium storage of novel VO ₂ nano-microspheres encapsulated into crumpled reduced graphene oxide. Journal of Materials Chemistry A, 2017, 5, 4850-4860.	5.2	79
5572	Grapheneâ€Encapsulated Copper tin Sulfide Submicron Spheres as Highâ€Capacity Binderâ€Free Anode for Lithiumâ€Ion Batteries. ChemElectroChem, 2017, 4, 1124-1129.	1.7	27
5573	Carboxylic and sulfonic N-substituted naphthalene diimide salts as highly stable non-polymeric organic electrodes for lithium batteries. Electrochemistry Communications, 2017, 76, 47-50.	2.3	37
5574	Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery. Electrochimica Acta, 2017, 229, 371-379.	2.6	53
5575	Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. ACS Applied Materials & Interfaces, 2017, 9, 7050-7058.	4.0	147
5576	Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 5254-5262.	4.0	129
5577	High surface area C/SiO2 composites from rice husks as a high-performance anode for lithium ion batteries. Powder Technology, 2017, 311, 1-8.	2.1	94
5578	Lithiation Behavior of Individual Carbon-Coated Fe ₃ O ₄ Nanowire Observed by in Situ TEM. Journal of Physical Chemistry C, 2017, 121, 3295-3303.	1.5	25
5579	Understanding the Effects of Electrode Formulation on the Mechanical Strength of Composite Electrodes for Flexible Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6390-6400.	4.0	57
5580	Vinyltriethoxysilane as an electrolyte additive to improve the safety of lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5142-5147.	5.2	35
5581	Three dimensional cellular architecture of sulfur doped graphene: self-standing electrode for flexible supercapacitors, lithium ion and sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 5290-5302.	5.2	118
5582	Strain enhanced lithium adsorption and diffusion on silicene. Physical Chemistry Chemical Physics, 2017, 19, 6563-6568.	1.3	30
5583	Quasi–solid state rechargeable Na-CO ₂ batteries with reduced graphene oxide Na anodes. Science Advances, 2017, 3, e1602396.	4.7	193
5584	Sodium Titanate/Carbon (<scp>Na₂Ti₃O₇</scp> /C) Nanofibers via Electrospinning Technique as the Anode of Sodiumâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 79-85.	2.6	24
5585	The mechanism of Li2S activation in lithium-sulfur batteries: Can we avoid the polysulfide formation?. Journal of Power Sources, 2017, 344, 208-217.	4.0	82
5586	Regulating Li deposition at artificial solid electrolyte interphases. Journal of Materials Chemistry A, 2017, 5, 3483-3492.	5.2	258
5587	Specific synthesis of CoS ₂ nanoparticles embedded in porous Al ₂ O ₃ nanosheets for efficient hydrogen evolution and enhanced lithium storage. Journal of Materials Chemistry A, 2017, 5, 2861-2869.	5.2	50
5588	Study of Sucrose Based Room Temperature Solid Polymer Electrolyte for Lithium Sulfur Battery. Journal of the Electrochemical Society, 2017, 164, A447-A452.	1.3	9

#	Article	IF	CITATIONS
5589	High-Performance Graphene Foam/Fe3O4 Hybrid Electrode for Lithium Ion Battery. Springer Theses, 2017, , 51-63.	0.0	0
5590	Polymer electrolytes for lithium ion batteries: a critical study. Ionics, 2017, 23, 497-540.	1.2	335
5591	Designing strategies to tune reduction potential of organic molecules for sustainable high capacity battery application. Journal of Materials Chemistry A, 2017, 5, 4430-4454.	5.2	61
5592	Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4047-4057.	5.2	11
5593	La2O3-NCNTs hybrids in-situ derived from LaNi0.9Fe0.1O3-C composites as novel robust bifunctional oxygen electrocatalysts. Carbon, 2017, 115, 261-270.	5.4	25
5594	Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 2017, 117, 7190-7239.	23.0	1,214
5595	Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Science Advances, 2017, 3, e1601978.	4.7	245
5596	Improvement of the Cycling Performance and Thermal Stability of Lithium-Ion Batteries by Coating Cathode Materials with Al ₂ O ₃ Nano Layer. Journal of the Electrochemical Society, 2017, 164, A475-A481.	1.3	31
5597	Double-edge X-ray absorption study of LiFe \$\$_{1-x}\$\$ 1 - x Ni \$\$_{x}\$ x PO \$\$_{4}\$\$ 4 cathode materials. Journal of Materials Science, 2017, 52, 4886-4893.	1.7	4
5598	Emerging nanostructured electrode materials for water electrolysis and rechargeable beyond Li-ion batteries. Advances in Physics: X, 2017, 2, 211-253.	1.5	25
5599	High performance lithium metal anode: Progress and prospects. Energy Storage Materials, 2017, 7, 115-129.	9.5	160
5600	Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery. Journal of Power Sources, 2017, 342, 816-824.	4.0	89
5601	Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte. Journal of Power Sources, 2017, 342, 1006-1016.	4.0	11
5602	Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy, 2017, 33, 350-355.	8.2	209
5603	Impressive lithium storage properties of layered sodium titanate with hierarchical nanostructures as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 699, 540-547.	2.8	10
5604	The Room-Temperature Superionic Conductivity of Silver Iodide Nanoparticles under Pressure. Journal of the American Chemical Society, 2017, 139, 1392-1395.	6.6	25
5605	Tuning Block Polymer Structure, Properties, and Processability for the Design of Efficient Nanostructured Materials Systems. Macromolecular Chemistry and Physics, 2017, 218, 1600513.	1.1	22
5606	Surface Coating Constraint Induced Anisotropic Swelling of Silicon in Si–Void@SiO <i>_x</i> Nanowire Anode for Lithiumâ€Ion Batteries. Small, 2017, 13, 1603754.	5.2	49

#	Article	IF	CITATIONS
5607	N-doped graphene/Bi nanocomposite with excellent electrochemical properties for lithium–ion batteries. Ionics, 2017, 23, 1407-1415.	1.2	28
5608	Multi-functional integration of pore P25@C@MoS2 core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties. Applied Surface Science, 2017, 401, 232-240.	3.1	24
5609	Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. Journal of Alloys and Compounds, 2017, 701, 870-874.	2.8	131
5610	Quantification of preferred orientation in graphite electrodes for Li-ion batteries with a novel X-ray-diffraction-based method. Journal of Power Sources, 2017, 343, 338-344.	4.0	14
5611	Solar Energy Storage by a Heterostructured BiVO ₄ –PbO _{<i>x</i>} Photocapacitive Device. ACS Energy Letters, 2017, 2, 469-475.	8.8	38
5612	Structural, electrical, and electrochemical properties of PVA-based biodegradable gel polymer electrolyte membranes for Mg-ion battery applications. Ionics, 2017, 23, 1759-1769.	1.2	35
5613	Fabrication of free-standing N-doped carbon/TiO2 hierarchical nanofiber films and their application in lithium and sodium storages. Journal of Alloys and Compounds, 2017, 701, 372-379.	2.8	29
5614	In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode. Journal of Power Sources, 2017, 343, 502-512.	4.0	22
5615	Influence of the metal-induced crystallization on the structural and electrochemical properties of sputtered LiCoO2 thin films. Thin Solid Films, 2017, 641, 53-58.	0.8	6
5616	Naphthalene-based Polyimide Derivatives as Organic Electrode Materials for Lithium-ion Batteries. Electrochimica Acta, 2017, 229, 387-395.	2.6	60
5617	La0.7(Sr0.3-xPdx)MnO3 as a highly efficient electrocatalyst for oxygen reduction reaction in aluminum air battery. Electrochimica Acta, 2017, 230, 418-427.	2.6	32
5618	Flexible V2O3/carbon nano-felts as free-standing electrode for high performance lithium ion batteries. Journal of Alloys and Compounds, 2017, 702, 13-19.	2.8	35
5619	NASICON‧tructured Materials for Energy Storage. Advanced Materials, 2017, 29, 1601925.	11.1	394
5620	Batteryâ€Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science, 2017, 4, 1600539.	5.6	1,223
5621	Toward Enhanced Electronic and Ionic Conductivity in Olivine LiCoPO ₄ Thin Film Electrode Material for 5 V Lithium Batteries: Effect of LiCo ₂ P ₃ O ₁₀ Impurity Phase. Advanced Energy Materials, 2017, 7, 1602321.	10.2	14
5622	Ge@CNFs Anchored on 3D Graphene Foam for Binderâ€Free and Highâ€Efficiency Anodes in Li–Ion Batteries. ChemElectroChem, 2017, 4, 1002-1006.	1.7	6
5623	Sol-Gel Processed Cathode Materials for Lithium-Ion Batteries. Advances in Sol-gel Derived Materials and Technologies, 2017, , 155-195.	0.3	4
5624	Graphite felt decorated with porous NiCo2O4 nanosheets for high-performance pseudocapacitor electrodes. Journal of Materials Science, 2017, 52, 5179-5187.	1.7	15

#	Article	IF	CITATIONS
5625	Synergistic effect of magnesium and fluorine doping on the electrochemical performance of lithium-manganese rich (LMR)-based Ni-Mn-Co-oxide (NMC) cathodes for lithium-ion batteries. Ionics, 2017, 23, 1655-1662.	1.2	15
5626	Facile synthesis of Si-C nanocomposites with yolk-shell structure as an anode for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 704, 599-606.	2.8	50
5627	Synthesis and Exploration of Ladder‣tructured Large Aromatic Dianhydrides as Organic Cathodes for Rechargeable Lithium″on Batteries. Chemistry - an Asian Journal, 2017, 12, 868-876.	1.7	39
5628	Ultrathin mesoporous Co 3 O 4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries. Applied Surface Science, 2017, 406, 46-55.	3.1	31
5629	Fabrication of binder-free graphene-SnO 2 electrodes by laser introduced conversion of precursors for lithium secondary batteries. Applied Surface Science, 2017, 406, 265-273.	3.1	14
5630	Uniform one-pot anchoring of Fe 3 O 4 to defective reduced graphene oxide for enhanced lithium storage. Chemical Engineering Journal, 2017, 317, 890-900.	6.6	34
5631	Construction of cobalt sulfide/graphitic carbon nitride hybrid nanosheet composites for high performance supercapacitor electrodes. Journal of Alloys and Compounds, 2017, 706, 41-47.	2.8	91
5632	Enhancing Sodium-Ion Storage Behaviors in TiNb ₂ O ₇ by Mechanical Ball Milling. ACS Applied Materials & Interfaces, 2017, 9, 8696-8703.	4.0	70
5633	Shedding light on the light-driven lithium ion de-insertion reaction: towards the design of a photo-rechargeable battery. Journal of Materials Chemistry A, 2017, 5, 5927-5933.	5.2	43
5634	Lowâ€Temperature Synthesis of Graphene/SiC Nanocomposite Anodes with Super‣ong Cycling Stability. ChemElectroChem, 2017, 4, 1320-1326.	1.7	10
5635	Synergistic Effects of Stabilizing the Surface Structure and Lowering the Interface Resistance in Improving the Low-Temperature Performances of Layered Lithium-Rich Materials. ACS Applied Materials & Interfaces, 2017, 9, 8641-8648.	4.0	38
5636	Graphitic Nanocarbon–Selenium Cathode with Favorable Rate Capability for Li–Se Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8759-8765.	4.0	54
5637	Filter paper derived nanofibrous silica–carbon composite as anodic material with enhanced lithium storage performance. Chemical Engineering Journal, 2017, 317, 673-686.	6.6	60
5638	LiTDI: A Highly Efficient Additive for Electrolyte Stabilization in Lithium-Ion Batteries. Chemistry of Materials, 2017, 29, 2254-2263.	3.2	69
5639	A stabilized high-energy Li-polyiodide semi-liquid battery with a dually-protected Li anode. Journal of Power Sources, 2017, 347, 136-144.	4.0	17
5640	<i>Ab Initio</i> Atomistic Thermodynamics Study of the (001) Surface of LiCoO ₂ in a Water Environment and Implications for Reactivity under Ambient Conditions. Journal of Physical Chemistry C, 2017, 121, 5069-5080.	1.5	37
5641	3,3′-(Ethylenedioxy)dipropiononitrile as an Electrolyte Additive for 4.5 V LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ /Graphite Cells. ACS Applied Materials & Interfaces, 2017, 9, 9630-9639.	4.0	43
5642	Advanced Micro/Nanostructures for Lithium Metal Anodes. Advanced Science, 2017, 4, 1600445.	5.6	444

#	Article	IF	CITATIONS
5643	Research progress on the low-temperature electrochemical performance of Li4Ti5O12 anode material. Ionics, 2017, 23, 803-811.	1.2	11
5644	Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries. CheM, 2017, 2, 258-270.	5.8	474
5645	Structural origin of massive improvement in Li-ion conductivity on transition from (Li2S)5(GeS2)(P2S5) glass to Li10GeP2S12 crystal. Solid State Ionics, 2017, 301, 163-169.	1.3	15
5646	Synthesis of well-dispersed ZnO–Co–C composite hollow microspheres as advanced anode materials for lithium ion batteries. RSC Advances, 2017, 7, 4269-4277.	1.7	10
5647	A novel K-ion battery: hexacyanoferrate(<scp>ii</scp>)/graphite cell. Journal of Materials Chemistry A, 2017, 5, 4325-4330.	5.2	396
5648	Theoretical Investigation of 2D Layered Materials as Protective Films for Lithium and Sodium Metal Anodes. Advanced Energy Materials, 2017, 7, 1602528.	10.2	196
5649	Electrolytes for Li- and Na-Ion Batteries: Concepts, Candidates, and the Role of Nanotechnology. , 2017, , 1-43.		10
5650	High-performance lithium-ion batteries with 1.5Âμ m thin copper nanowire foil as a current collector. Journal of Power Sources, 2017, 346, 40-48.	4.0	73
5651	POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy, 2017, 34, 205-214.	8.2	308
5652	Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets. Scientific Reports, 2017, 7, 41708.	1.6	5
5653	Structural Redetermination and Photoluminescence Properties of the Niobium Oxyphosphate (NbO) ₂ P ₄ O ₁₃ . Inorganic Chemistry, 2017, 56, 2736-2741.	1.9	6
5654	Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries. Chemical Engineering Journal, 2017, 316, 1004-1010.	6.6	46
5655	Mechanical properties, electronic structure and alkali-ion diffusion of Eldfellite-type AFe(SO ₄) ₂ (A = Li, Na, K) as potential cathode materials comparing with LiFePO ₄ . Journal of Micromechanics and Molecular Physics, 2017, 02, 1750002.	0.7	14
5656	Hydrothermally Synthesized Reduced Graphene Oxide-NiWO ₄ Nanocomposite for Lithium-Ion Battery Anode. Journal of the Electrochemical Society, 2017, 164, A785-A795.	1.3	26
5657	Topochemical Reaction of Exfoliated Layered Cobalt(II) Hydroxide for the Synthesis of Ultrapure Co ₃ O ₄ as an Oxygen Reduction Catalyst. European Journal of Inorganic Chemistry, 2017, 2017, 2184-2189.	1.0	12
5658	Si/iron silicide nanocomposite anodes with furfuryl-alcohol-derived carbon coating for Li-ion batteries. Journal of Materials Science, 2017, 52, 5027-5037.	1.7	17
5659	Enhanced electrochemical performance of LiNi 0.8 Co 0.15 Al 0.05 O 2 by nanoscale surface modification with Co 3 O 4. Electrochimica Acta, 2017, 231, 294-299.	2.6	74
5660	TiP ₂ O ₇ and Expanded Graphite Nanocomposite as Anode Material for Aqueous Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 8075-8082.	4.0	54

#	Article	IF	CITATIONS
5661	La _{1â^'x} Ag _x MnO ₃ electrocatalyst with high catalytic activity for oxygen reduction reaction in aluminium air batteries. RSC Advances, 2017, 7, 5214-5221.	1.7	33
5662	An approach to flexible Na-ion batteries with exceptional rate capability and long lifespan using Na ₂ FeP ₂ O ₇ nanoparticles on porous carbon cloth. Journal of Materials Chemistry A, 2017, 5, 5502-5510.	5.2	64
5663	3D Conductive Network Supported Monolithic Molybdenum Disulfide Nanosheets for Highâ€Performance Lithium Storage Applications. Advanced Materials Interfaces, 2017, 4, 1601228.	1.9	5
5664	Nb 2 O 5 nanospheres/surface-modified graphene composites as superior anode materials in lithium ion batteries. Ceramics International, 2017, 43, 6232-6238.	2.3	20
5665	The impact of high-frequency-high-current perturbations on film formation at the negative electrolyte interface. Electrochimica Acta, 2017, 233, 1-12.	2.6	32
5666	Origin of excellent rate and cycle performance of Na + -solvent cointercalated graphite vs. poor performance of Li + -solvent case. Nano Energy, 2017, 34, 456-462.	8.2	75
5667	Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery. Nature Communications, 2017, 8, 14658.	5.8	68
5668	State-of-the-art characterization techniques for advanced lithium-ion batteries. Nature Energy, 2017, 2, .	19.8	337
5669	Hollow nanocubes constructed from <001> oriented anatase TiO ₂ nanoarrays: topotactic conversion and fast lithium-ion storage. CrystEngComm, 2017, 19, 2456-2463.	1.3	11
5670	A binary metal organic framework derived hierarchical hollow Ni ₃ S ₂ /Co ₉ S ₈ /N-doped carbon composite with superior sodium storage performance. Journal of Materials Chemistry A, 2017, 5, 11781-11787.	5.2	110
5671	In Situ Exfoliated, Edgeâ€Rich, Oxygenâ€Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Advanced Materials, 2017, 29, 1606207.	11.1	532
5672	High Areal Capacity Si/LiCoO 2 Batteries from Electrospun Composite Fiber Mats. ChemSusChem, 2017, 10, 1823-1831.	3.6	22
5673	Hierarchical porous NiCo ₂ O ₄ nanosheet arrays directly grown on carbon cloth with superior lithium storage performance. Dalton Transactions, 2017, 46, 4717-4723.	1.6	32
5674	Transmission electron microscopy analysis of some transition metal compounds for energy storage and conversion. TrAC - Trends in Analytical Chemistry, 2017, 90, 62-79.	5.8	8
5675	In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO ₂ Cathode in a Working All-Solid-State Battery. Journal of the American Chemical Society, 2017, 139, 4274-4277.	6.6	142
5676	Exploring Oxygen Activity in the High Energy P2-Type Na _{0.78} Ni _{0.23} Mn _{0.69} O ₂ Cathode Material for Na-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 4835-4845.	6.6	363
5677	A stepwise-designed Rh-Au-Si nanocomposite that surpasses Pt/C hydrogen evolution activity at high overpotentials. Nano Research, 2017, 10, 1749-1755.	5.8	37
5678	Flexible micro-supercapacitors prepared using direct-write nanofibers. RSC Advances, 2017, 7, 11724-11731.	1.7	26

#	Article	IF	CITATIONS
5679	Electrochemical Performance and Storage Mechanism of Ag ₂ Mo ₂ O ₇ Microâ€rods as the Anode Material for Lithiumâ€ron Batteries. Chemistry - A European Journal, 2017, 23, 5148-5153.	1.7	8
5680	Synthesis of hierarchical Na2FeP2O7 spheres with high electrochemical performance via spray drying. Ionics, 2017, 23, 1783-1791.	1.2	9
5681	V2O3 nanoparticles anchored onto the reduced graphene oxide for superior lithium storage. Electrochimica Acta, 2017, 231, 732-738.	2.6	32
5682	Core-shell structured Fe 3 O 4 @NiS nanocomposite as high-performance anode material for alkaline nickel-iron rechargeable batteries. Electrochimica Acta, 2017, 231, 479-486.	2.6	35
5683	Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries. Journal of Alloys and Compounds, 2017, 705, 413-419.	2.8	79
5684	Enhanced Structural and Electrochemical Stability of Self-Similar Rice-Shaped SnO ₂ Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 9747-9755.	4.0	47
5685	Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrodeÂβ-Li2IrO3. Nature Materials, 2017, 16, 580-586.	13.3	290
5686	Electrochemical performance of Na _{0.6} [Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ cathodes with high-working average voltage for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5858-5864.	5.2	35
5687	A high-performance oxygen electrode for Li–O ₂ batteries: Mo ₂ C nanoparticles grown on carbon fibers. Journal of Materials Chemistry A, 2017, 5, 5690-5695.	5.2	46
5688	The staging mechanism of AlCl ₄ intercalation in a graphite electrode for an aluminium-ion battery. Physical Chemistry Chemical Physics, 2017, 19, 7980-7989.	1.3	144
5689	Understanding Surface and Interfacial Chemistry in Functional Nanomaterials via Solid‧tate NMR. Advanced Materials, 2017, 29, 1605895.	11.1	91
5690	CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries. Green Energy and Environment, 2017, 2, 160-167.	4.7	39
5691	Investigating the Kinetic Effect on Structural Evolution of Li _{<i>x</i>} Ni _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Materials during the Initial Charge/Discharge. Chemistry of Materials, 2017, 29, 2708-2716.	3.2	39
5692	Transport of ions and electrons in nanostructured liquid crystals. Nature Reviews Materials, 2017, 2, .	23.3	333
5693	Quinone based conducting redox polymers for electrical energy storage. Russian Journal of Electrochemistry, 2017, 53, 8-15.	0.3	21
5694	SnO ₂ @PANI Core–Shell Nanorod Arrays on 3D Graphite Foam: A High-Performance Integrated Electrode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9620-9629.	4.0	78
5695	Tracking areal lithium densities from neutron activation – quantitative Li determination in self-organized TiO ₂ nanotube anode materials for Li-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 8602-8611.	1.3	16
5696	Modified chalcogens with a tuned nano-architecture for high energy density and long life hybrid super capacitors. Journal of Materials Chemistry A, 2017, 5, 7523-7532.	5.2	14

#	Article	IF	CITATIONS
5697	Iron incorporation affecting the structure and boosting catalytic activity of Î ² -Co(OH) ₂ : exploring the reaction mechanism of ultrathin two-dimensional carbon-free Fe ₃ O ₄ -decorated Î ² -Co(OH) ₂ nanosheets as efficient oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 6849-6859.	5.2	67
5698	One-Step Fabrication of Fe-Si-O/Carbon Nanotube Composite Anode Material with Excellent High-Rate Long-Term Cycling Stability. MRS Advances, 2017, 2, 1157-1163.	0.5	Ο
5699	A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries. Advanced Materials, 2017, 29, 1605160.	11.1	284
5700	Ionic Liquids in Lithium-Ion Batteries. Topics in Current Chemistry, 2017, 375, 20.	3.0	95
5701	Spray pyrolysis-deposited nanoengineered TiO 2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications. Journal of Power Sources, 2017, 345, 50-58.	4.0	36
5702	Intricate Hollow Structures: Controlled Synthesis and Applications in Energy Storage and Conversion. Advanced Materials, 2017, 29, 1602914.	11.1	523
5703	Synthesis and Electrochemical Study of a TCAA Derivative – A potential bipolar redox-active material. Electrochimica Acta, 2017, 228, 494-502.	2.6	13
5704	Improvement in high-voltage and high rate cycling performance of nickel-rich layered cathode materials via facile chemical vapor deposition with methane. Electrochimica Acta, 2017, 230, 308-315.	2.6	21
5705	Phase-separation induced hollow/porous carbon nanofibers containing in situ generated ultrafine SnO _x as anode materials for lithium-ion batteries. Materials Chemistry Frontiers, 2017, 1, 1331-1337.	3.2	32
5706	Effective Suppression of Polysulfide Dissolution by Uniformly Transfer-Printed Conducting Polymer on Sulfur Cathode for Li-S Batteries. Journal of the Electrochemical Society, 2017, 164, A6417-A6421.	1.3	26
5707	Preparation of High-Purity V ₂ C MXene and Electrochemical Properties as Li-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A709-A713.	1.3	282
5708	Improving High-Voltage Performance of Lithium-Ion Batteries with Sulfolane as an Electrolyte Additive. Journal of the Electrochemical Society, 2017, 164, A714-A720.	1.3	31
5709	Preparation and structure of Na2Ag5Fe3(P2O7)4 -Ag metal composite: Insights on electrochemistry. MRS Advances, 2017, 2, 395-400.	0.5	2
5710	Core–Shell Nanoparticle Coating as an Interfacial Layer for Dendrite-Free Lithium Metal Anodes. ACS Central Science, 2017, 3, 135-140.	5.3	162
5711	Linking particle size to improved electrochemical performance of SiO anodes for Li-ion batteries. RSC Advances, 2017, 7, 2273-2280.	1.7	34
5712	Depolarization effect to enhance the performance of lithium ions batteries. Nano Energy, 2017, 33, 497-507.	8.2	79
5713	Porous Si@C coaxial nanotubes: layer-by-layer assembly on ZnO nanorod templates and application to lithium-ion batteries. CrystEngComm, 2017, 19, 1220-1229.	1.3	15
5714	Sea urchin-like CoO/Co/N-doped carbon matrix hybrid composites with superior high-rate performance for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 701, 524-532.	2.8	28

#	Article	IF	CITATIONS
5715	Improve the lithium storage performance of SrLi2Ti6O14 anode material by trivalent metal ion doping. Journal of Power Sources, 2017, 343, 329-337.	4.0	7
5716	High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility. Journal of Power Sources, 2017, 345, 202-211.	4.0	41
5717	Promising Proton Conductor for Intermediate-Temperature Fuel Cells: Li _{13.9} Sr _{0.1} Zn(GeO ₄) ₄ . Chemistry of Materials, 2017, 29, 1490-1495.	3.2	25
5718	Synthesis and lithium storage properties of interconnected fullerene-like carbon nanofibers encapsulated with tin nanoparticles. Journal of Materials Science, 2017, 52, 6969-6975.	1.7	7
5719	Chemical modification of N-methylphenothiazine to lead to interesting and potential organic material for lithium battery. Electrochimica Acta, 2017, 232, 182-191.	2.6	6
5720	Application of Electrochemical Liquid Cells for Electrical Energy Storage and Conversion Studies. , 0, , 237-257.		1
5721	Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nature Communications, 2017, 8, 14627.	5.8	912
5722	Green chemistry and polymers made from sulfur. Green Chemistry, 2017, 19, 2748-2761.	4.6	290
5723	Electrochemical behavior of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte. Electrochemistry Communications, 2017, 77, 89-92.	2.3	103
5724	Hairy graphite of high electrochemical performances prepared through in-situ decoration of carbon nanotubes. Electrochimica Acta, 2017, 233, 229-236.	2.6	4
5725	Boehmite particle coating modified microporous polyethylene membrane: A promising separator for lithium ion batteries. Journal of Power Sources, 2017, 348, 80-86.	4.0	88
5726	Well-dispersed sulfur anchored on interconnected polypyrrole nanofiber network as high performance cathode for lithium-sulfur batteries. Solid State Sciences, 2017, 66, 44-49.	1.5	61
5727	Facile preparation of a Na ₂ MnSiO ₄ /C/graphene composite as a high performance cathode for sodium ion batteries. RSC Advances, 2017, 7, 14145-14151.	1.7	24
5728	The electrochemical performance of NiO nanowalls/Ni anode in half-cell and full-cell sodium ion batteries. Materials Letters, 2017, 195, 127-130.	1.3	26
5729	Low-Cost and Novel Si-Based Gel for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 10699-10707.	4.0	42
5730	A carbon-based 3D current collector with surface protection for Li metal anode. Nano Research, 2017, 10, 1356-1365.	5.8	200
5731	In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials. Journal of Alloys and Compounds, 2017, 708, 500-507.	2.8	41
5732	Nanoparticle-assembled LiMn 2 O 4 hollow microspheres as high-performance lithium-ion battery cathode. Materials Research Bulletin, 2017, 96, 437-442.	2.7	17

#	Article	IF	Citations
5733	Potential of Si-doped boron nitride nanotubes as a highly active and metal-free electrocatalyst for oxygen reduction reaction: A DFT study. Synthetic Metals, 2017, 226, 129-138.	2.1	16
5734	Ultrasmall Fe2O3 nanoparticles/MoS2 nanosheets composite as high-performance anode material for lithium ion batteries. Scientific Reports, 2017, 7, 42772.	1.6	57
5735	Highly Ordered Mesostructured Vanadium Phosphonate toward Electrode Materials for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2017, 23, 4344-4352.	1.7	30
5736	Enhancing sampling in atomistic simulations of solid-state materials for batteries: a focus on olivine \$\$hbox {NaFePO}_4\$\$ NaFePO 4. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	10
5737	Pyrrole as a promising electrolyte additive to trap polysulfides for lithium-sulfur batteries. Journal of Power Sources, 2017, 348, 175-182.	4.0	95
5738	Hierarchical Structural Evolution of Zn ₂ GeO ₄ in Binary Solvent and Its Effect on Li-ion Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 9778-9784.	4.0	26
5739	A class of liquid anode for rechargeable batteries with ultralong cycle life. Nature Communications, 2017, 8, 14629.	5.8	71
5740	Enhanced Li ⁺ conduction in perovskite Li _{3x} La _{2/3â^x} â–i _{1/3â^2x} TiO ₃ solid-electrolytes via microstructural engineering. Journal of Materials Chemistry A, 2017, 5, 6257-6262.	5.2	105
5741	A High-Performance Sintered Iron Electrode for Rechargeable Alkaline Batteries to Enable Large-Scale Energy Storage. Journal of the Electrochemical Society, 2017, 164, A418-A429.	1.3	41
5742	Modest Oxygenâ€Defective Amorphous Manganeseâ€Based Nanoparticle Mullite with Superior Overall Electrocatalytic Performance for Oxygen Reduction Reaction. Small, 2017, 13, 1603903.	5.2	69
5743	Nanostructured silicon/silicide/carbon composite anodes with controllable voids for Li-ion batteries. Materials and Design, 2017, 120, 230-237.	3.3	14
5744	Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries. Nano Letters, 2017, 17, 1906-1914.	4.5	131
5745	Flexible full-solid-state supercapacitors based on self-assembly of mesoporous MoSe ₂ nanomaterials. Inorganic Chemistry Frontiers, 2017, 4, 675-682.	3.0	37
5747	A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy, 2017, 34, 188-194.	8.2	84
5748	Purification and Characterization of Reclaimed Electrolytes from Spent Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 4181-4187.	1.5	79
5749	Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries. Advanced Materials Interfaces, 2017, 4, 1600798.	1.9	107
5750	From an Enhanced Understanding to Commercially Viable Electrodes: The Case of PTCLi ₄ as Sustainable Organic Lithiumâ€lon Anode Material. Advanced Sustainable Systems, 2017, 1, 1600032.	2.7	31
5751	Titanium vanadium nitride electrode for micro-supercapacitors. Electrochemistry Communications, 2017, 77, 40-43.	2.3	79

#	Article	IF	CITATIONS
5752	Activation of silicon towards hydrogen generation by pelletisation. Journal of Alloys and Compounds, 2017, 704, 146-151.	2.8	10
5753	A comparative investigation of different chemical treatments on SiO anode materials for lithium-ion batteries: towards long-term stability. RSC Advances, 2017, 7, 4501-4509.	1.7	21
5754	The effects of humidity on the self-discharge properties of Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ /graphite and LiCoO ₂ /graphite lithium-ion batteries during storage. RSC Advances, 2017, 7, 10915-10921.	1.7	22
5755	Enhanced Li–S batteries using cation-functionalized pigment nanocarbon in core–shell structured composite cathodes. Journal of Materials Chemistry A, 2017, 5, 5559-5567.	5.2	21
5756	Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transitionâ€Metal Spinels. Advanced Materials, 2017, 29, 1606800.	11.1	525
5757	Emerging Prototype Sodiumâ€lon Full Cells with Nanostructured Electrode Materials. Small, 2017, 13, 1604181.	5.2	96
5758	Improved electrochemical, mechanical and transport properties of novel lithium bisnonafluoro-1-butanesulfonimidate (LiBNFSI) based solid polymer electrolytes for rechargeable lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2017, 52, 224-234.	2.9	26
5759	Core-shell Li 2 S@Li 3 PS 4 nanoparticles incorporated into graphene aerogel for lithium-sulfur batteries with low potential barrier and overpotential. Journal of Power Sources, 2017, 353, 167-175.	4.0	37
5760	<i>In Situ</i> Formation of Stable Interfacial Coating for High Performance Lithium Metal Anodes. Chemistry of Materials, 2017, 29, 3572-3579.	3.2	105
5761	Synthesis of LiFePO4 Using an Ionic Liquid/Water Composite Medium. MRS Advances, 2017, 2, 945-949.	0.5	Ο
5762	Synthesis of LiFePO4/graphene microspheres while avoiding restacking of graphene sheet's for high-rate lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2017, 52, 251-259.	2.9	28
5763	Electrochemically engineered single Li-ion conducting solid polymer electrolyte on titania nanotubes for microbatteries. Journal of Power Sources, 2017, 353, 95-103.	4.0	24
5764	Copper-substituted Na _{0.67} Ni _{0.3â^'x} Cu _x Mn _{0.7} O ₂ cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. Journal of Materials Chemistry A, 2017, 5, 8752-8761.	5.2	272
5765	Recent Advances in Atomic Metal Doping of Carbonâ€based Nanomaterials for Energy Conversion. Small, 2017, 13, 1700191.	5.2	290
5766	High Power Cathode Material Na ₄ VO(PO ₄) ₂ with Open Framework for Na Ion Batteries. Chemistry of Materials, 2017, 29, 3363-3366.	3.2	18
5767	Urea decomposition enhancing the hydrothermal synthesis of lithium iron phosphate powders: Effect of the lithium precursor. Advanced Powder Technology, 2017, 28, 1593-1602.	2.0	14
5768	Carbon nanotube-graphene nanosheet conductive framework supported SnO2 aerogel as a high performance anode for lithium ion battery. Electrochimica Acta, 2017, 240, 7-15.	2.6	41
5769	Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li–S Cell. Journal of Physical Chemistry Letters, 2017, 8, 1956-1960.	2.1	166

#	Article	IF	CITATIONS
5770	Porous Co ₃ V ₂ O ₈ Nanosheets with Ultrahigh Performance as Anode Materials for Lithium Ion Batteries. Advanced Materials Interfaces, 2017, 4, 1700054.	1.9	43
5771	Microwave assisted hydrothermal synthesis of Ni 1.5 Co 1.5 S 4 as high-performance electrode material for lithium storage. Applied Surface Science, 2017, 414, 270-276.	3.1	7
5772	Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors. Nano Energy, 2017, 36, 322-330.	8.2	469
5773	Flexible Light-Weight Lithium-Ion-Conducting Inorganic–Organic Composite Electrolyte Membrane. ACS Energy Letters, 2017, 2, 1130-1136.	8.8	22
5774	A promising energy storage system: rechargeable Ni–Zn battery. Rare Metals, 2017, 36, 381-396.	3.6	69
5775	Dispersion–Assembly Approach to Synthesize Three-Dimensional Graphene/Polymer Composite Aerogel as a Powerful Organic Cathode for Rechargeable Li and Na Batteries. ACS Applied Materials & Interfaces, 2017, 9, 15549-15556.	4.0	79
5776	Porous Graphene Sponge Additives for Lithium Ion Batteries with Excellent Rate Capability. Scientific Reports, 2017, 7, 925.	1.6	22
5777	3D porous Li ₃ V ₂ (PO ₄) ₃ /hard carbon composites for improving the rate performance of lithium ion batteries. RSC Advances, 2017, 7, 21848-21855.	1.7	14
5778	Computational screening for high-activity MoS ₂ monolayer-based catalysts for the oxygen reduction reaction via substitutional doping with transition metal. Journal of Materials Chemistry A, 2017, 5, 9842-9851.	5.2	81
5779	Boosting the adsorption performance of BN nanosheet as an anode of Na-ion batteries: DFT studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2010-2015.	0.9	31
5780	In Situ Growth of Ceria on Cerium–Nitrogen–Carbon as Promoter for Oxygen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700272.	1.9	17
5781	Modeling and Simulation of Piezoelectrically Driven Self-Charging Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 15893-15897.	4.0	19
5782	Atomic Interface Engineering and Electricâ€Field Effect in Ultrathin Bi ₂ MoO ₆ Nanosheets for Superior Lithium Ion Storage. Advanced Materials, 2017, 29, 1700396.	11.1	343
5783	Ab initio study of the operating mechanisms of tris(trimethylsilyl) phosphite as a multifunctional additive for Li-ion batteries. Journal of Power Sources, 2017, 355, 154-163.	4.0	21
5784	Redox-Active Macrocycles for Organic Rechargeable Batteries. Journal of the American Chemical Society, 2017, 139, 6635-6643.	6.6	106
5785	Mechanistic origin of low polarization in aprotic Na–O ₂ batteries. Physical Chemistry Chemical Physics, 2017, 19, 12375-12383.	1.3	24
5786	A first-principles study of NbSe ₂ monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries. Journal Physics D: Applied Physics, 2017, 50, 235501.	1.3	69
5787	An in vitro synthetic biology platform for the industrial biomanufacturing of myoâ€inositol from starch. Biotechnology and Bioengineering, 2017, 114, 1855-1864.	1.7	121

#	Article	IF	CITATIONS
5788	Expanded graphite@SnO2@ polyaniline Composite with Enhanced Performance as Anode Materials for Lithium Ion Batteries. Electrochimica Acta, 2017, 240, 63-71.	2.6	74
5789	Hierarchically branched TiO 2 @SnO 2 nanofibers as high performance anodes for lithium-ion batteries. Materials Research Bulletin, 2017, 96, 405-412.	2.7	24
5790	Toward ultrafast lithium ion capacitors: A novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode. Nano Energy, 2017, 36, 46-57.	8.2	138
5791	High Ion Conducting Nanohybrid Solid Polymer Electrolytes <i>via</i> Single-Ion Conducting Mesoporous Organosilica in Poly(ethylene oxide). Chemistry of Materials, 2017, 29, 4401-4410.	3.2	67
5792	Bio-degradable zinc-ion battery based on a prussian blue analogue cathode and a bio-ionic liquid-based electrolyte. Journal of Solid State Electrochemistry, 2017, 21, 2021-2027.	1.2	105
5793	Mechanochemical treatment of maricite-type NaFePO4 for achieving high electrochemical performance. Journal of Solid State Electrochemistry, 2017, 21, 2373-2380.	1.2	17
5794	Threeâ€Ðimensional Carbon@Fe ₂ O ₃ @SnO ₂ Hierarchical Inverse Opals Arrays as Li–ion Battery Anode with Improved Cycling Life and Rate Capability. ChemistrySelect, 2017, 2, 3223-3230.	0.7	9
5795	Excellent long-term electrochemical performance of graphite oxide as cathode materials for lithium-ion batteries. Ionics, 2017, 23, 3023-3029.	1.2	2
5796	Scalable Production of the Silicon–Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 15388-15393.	4.0	36
5797	Functional metal–organic framework boosting lithium metal anode performance via chemical interactions. Chemical Science, 2017, 8, 4285-4291.	3.7	164
5798	Enhanced storage of sodium ions in Prussian blue cathode material through nickel doping. Journal of Materials Chemistry A, 2017, 5, 9604-9610.	5.2	95
5799	Atomic-Scale Structure-Property Relationships in Lithium Ion Battery Electrode Materials. Annual Review of Materials Research, 2017, 47, 175-198.	4.3	23
5800	Electrochemical behavior of interconnected Ti 2 Nb 10 O 29 nanoparticles for high-power Li-ion battery anodes. Electrochimica Acta, 2017, 236, 451-459.	2.6	42
5801	Electrodeposited Germanium/Carbon Composite as an Anode Material for Lithium Ion Batteries. Electrochimica Acta, 2017, 238, 319-329.	2.6	21
5802	A phenyl disulfide@CNT composite cathode for rechargeable lithium batteries. Sustainable Energy and Fuels, 2017, 1, 1007-1012.	2.5	34
5803	Silicon Composite Electrodes with Dynamic Ionic Bonding. Advanced Energy Materials, 2017, 7, 1700045.	10.2	41
5804	Porous Si/C/reduced graphene oxide microspheres by spray drying as anode for Li-ion batteries. Journal of Electroanalytical Chemistry, 2017, 797, 16-22.	1.9	47
5805	"Electron/Ion Sponge―Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano, 2017, 11, 6911-6920.	7.3	95

#	Article	IF	CITATIONS
5806	A critical SiO _x layer on Si porous structures to construct highly-reversible anode materials for lithium-ion batteries. Chemical Communications, 2017, 53, 6101-6104.	2.2	42
5807	Fe ₇ Se ₈ @C core–shell nanoparticles encapsulated within a three-dimensional graphene composite as a high-performance flexible anode for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 5121-5124.	1.4	31
5808	Evaluation of Electrical Energy Storage (EES) technologies for renewable energy: A case from the US Pacific Northwest. Journal of Energy Storage, 2017, 11, 25-54.	3.9	68
5809	Facile Growth of Caterpillar-like NiCo ₂ S ₄ Nanocrystal Arrays on Nickle Foam for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 18774-18781.	4.0	165
5810	Long-Life Lithium–Sulfur Battery Derived from Nori-Based Nitrogen and Oxygen Dual-Doped 3D Hierarchical Biochar. ACS Applied Materials & Interfaces, 2017, 9, 18889-18896.	4.0	66
5811	An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. Journal of Materials Chemistry A, 2017, 5, 11124-11130.	5.2	89
5812	Electrospun Li4Ti5O12/Li2TiO3 composite nanofibers for enhanced high-rate lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2779-2790.	1.2	22
5813	Self–adaptive Si/reduced graphene oxide scrolls for high–performance Li–ion battery anodes. Carbon, 2017, 120, 397-404.	5.4	51
5814	Dilithium 2-aminoterephthalate as a negative electrode material for lithium-ion batteries. Solid State lonics, 2017, 307, 1-5.	1.3	12
5815	Highly Rechargeable Lithium CO ₂ Batteries with a Boron―and Nitrogen odoped Holeyâ€Graphene Cathode. Angewandte Chemie - International Edition, 2017, 56, 6970-6974.	7.2	260
5816	Preparation, properties, and Li-ion battery application of ECÂ+ÂPC-modified PVdF-HFP gel polymer electrolyte films. Ionics, 2017, 23, 3365-3375.	1.2	23
5817	Raspberry-like Nanostructured Silicon Composite Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 18766-18773.	4.0	65
5818	Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-Ion Storage. ACS Nano, 2017, 11, 6186-6193.	7.3	127
5819	Review Article: Flow battery systems with solid electroactive materials. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	0.6	45
5820	Comparison of the basic physical and chemical properties of complex oxides LiNi x Mn y Co1–x–y O2 (0.3 ≤ ≤0.6; 0.2 â‰ı¥ â‰ı¤0.4) obtained by different methods. Inorganic Materials: Applied Research, 2017 229-237.	,&,1	0
5821	Review on High‣oading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307
5822	Novel design and preparation of N-doped graphene decorated Na 3 V 2 (PO 4) 3 /C composite for sodium-ion batteries. Solid State Ionics, 2017, 307, 65-72.	1.3	18
5823	Metal–Organic Framework Derived Iron Sulfide–Carbon Core–Shell Nanorods as a Conversion-Type Battery Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 5039-5048.	3.2	82

#	Article	IF	CITATIONS
5824	Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustainable Chemistry and Engineering, 2017, 5, 5224-5233.	3.2	301
5825	Ultrathin Graphene–Protein Supercapacitors for Miniaturized Bioelectronics. Advanced Energy Materials, 2017, 7, 1700358.	10.2	88
5826	Reconciled Nanoarchitecture with Overlapped 2 D Anatomy for Highâ€Energy Hybrid Supercapacitors. Energy Technology, 2017, 5, 1919-1926.	1.8	4
5827	LiO ₂ : Cryosynthesis and Chemical/Electrochemical Reactivities. Journal of Physical Chemistry Letters, 2017, 8, 2334-2338.	2.1	70
5828	Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries. ACS Energy Letters, 2017, 2, 1337-1345.	8.8	350
5829	Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-rayÂdiffraction. Nature Energy, 2017, 2, .	19.8	257
5830	Modification of Li ₂ MnSiO ₄ cathode materials for lithium-ion batteries: a review. Journal of Materials Chemistry A, 2017, 5, 10772-10797.	5.2	66
5831	The role of ceramic and glass science research in meeting societal challenges: Report from an <scp>NSF</scp> â€sponsored workshop. Journal of the American Ceramic Society, 2017, 100, 1777-1803.	1.9	23
5832	Recent Progress in the Design of Advanced Cathode Materials and Battery Models for Highâ€Performance Lithiumâ€X (X = O ₂ , S, Se, Te, I ₂ , Br ₂) Batteries. Advanced Materials, 2017, 29, 1606454.	11.1	240
5833	Highâ€Performance Aqueous Rechargeable Liâ€Ni Battery Based on Ni(OH) ₂ /NiOOH Redox Couple with High Voltage. Advanced Energy Materials, 2017, 7, 1700155.	10.2	39
5834	Facile fabrication of ZnO–CuO porous hybrid microspheres as lithium ion battery anodes with enhanced cyclability. Rare Metals, 2017, 36, 403-410.	3.6	9
5835	Hierarchically nanoporous pyropolymer nanofibers for surface-induced sodium-ion storage. Electrochimica Acta, 2017, 242, 38-46.	2.6	15
5836	Carbon coated mesoporous Si anode prepared by a partial magnesiothermic reduction for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 716, 204-209.	2.8	45
5837	Microporous novolac-derived carbon beads/sulfur hybrid cathode for lithium-sulfur batteries. Journal of Power Sources, 2017, 357, 198-208.	4.0	33
5838	Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Materials Today, 2017, 20, 425-451.	8.3	339
5839	Metal-Organic Framework Template Synthesis of NiCo ₂ S ₄ @C Encapsulated in Hollow Nitrogen-Doped Carbon Cubes with Enhanced Electrochemical Performance for Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 18178-18186.	4.0	98
5840	A Computational Study of a Singleâ€Walled Carbonâ€Nanotubeâ€Based Ultrafast Highâ€Capacity Aluminum Battery. Chemistry - an Asian Journal, 2017, 12, 1944-1951.	1.7	20
5841	Alleviating structural degradation of nickel-rich cathode material by eliminating the surface Fm <mml:math <br="" altimg="si0001.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mrow><mml:mo stretchy="true">Â⁻</mml:mo </mml:mrow></mml:mover></mml:math> m phase. Energy Storage Materials, 2017, 8, 134-140.	9.5	30

#	Article	IF	CITATIONS
5842	3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 2017, 37, 177-186.	8.2	431
5843	High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes. Nature Communications, 2017, 8, 14989.	5.8	40
5844	Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2017, 38, 51-66.	0.7	17
5845	P2-type Na 2/3 Mn 1-x Al x O 2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. Journal of Power Sources, 2017, 356, 80-88.	4.0	182
5846	CuS@Cu freestanding electrode via electrochemical corrosion for high performance Li-ion batteries. Materials Letters, 2017, 201, 13-17.	1.3	11
5847	Preparation and properties of Li _{<i>x</i>} La _{0.5} TiO ₃ perovskite oxide electrolytes. Journal of the American Ceramic Society, 2017, 100, 4153-4158.	1.9	8
5848	Facile synthesis of low-dimensional SnO 2 nanostructures: An investigation of their performance and mechanism of action as anode materials for lithium-ion batteries. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 91, 119-127.	1.3	8
5849	Peapodâ€like Li ₃ VO ₄ /Nâ€Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for Highâ€Energy Lithiumâ€lon Capacitors. Advanced Materials, 2017, 29, 1700142.	11.1	298
5850	Mesoporous Silicon Hollow Nanocubes Derived from Metal–Organic Framework Template for Advanced Lithium-Ion Battery Anode. ACS Nano, 2017, 11, 4808-4815.	7.3	181
5851	Novel Single Lithium″on Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq1 1 0.784314 2352-2358.	rgBT /Ove 1.7	erlock 10 Tf 5 56
5851 5852	Novel Single Lithiumâ€lon Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq1 1 0.784314		
	Novel Single Lithiumâ€lon Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq1 1 0.784314 2352-2358. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. Journal of Solid	1.7	56
5852	Novel Single Lithiumâ€lon Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq1 1 0.784314 2352-2358. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2425-2432. Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials, 2017, 29,	1.7	56 34
5852 5853	Novel Single Lithium″on Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq1 1 0.784314 2352-2358. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2425-2432. Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials, 2017, 29, 4181-4189. In situ observation of macroscopic phase separation in cobalt hexacyanoferrate film. Scientific	1.7 1.2 3.2	56 34 199
5852 5853 5854	Novel Single Lithiumâ€ion Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq1 1 0.784314 2352-2358. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2425-2432. Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials, 2017, 29, 4181-4189. In situ observation of macroscopic phase separation in cobalt hexacyanoferrate film. Scientific Reports, 2017, 7, 42694. Nanosized core–shell structured graphene–MnO ₂ nanosheet arrays as stable electrodes	1.7 1.2 3.2 1.6	56 34 199 6
5852 5853 5854 5855	Novel Single Lithiumâ€kon Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq1 1 0.784314 2352-2358. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2425-2432. Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials, 2017, 29, 4181-4189. In situ observation of macroscopic phase separation in cobalt hexacyanoferrate film. Scientific Reports, 2017, 7, 42694. Nanosized core–shell structured graphene–MnO ₂ nanosheet arrays as stable electrodes for superior supercapacitors. Journal of Materials Chemistry A, 2017, 5, 10678-10686. Supramolecular polymerization-assisted synthesis of nitrogen and sulfur dual-doped porous graphene networks from petroleum coke as efficient metal-free electrocatalysts for the oxygen	1.7 1.2 3.2 1.6 5.2	56 34 199 6 54
5852 5853 5854 5855 5856	Novel Single Lithiumâ€ion Conducting Polymer Electrolyte Based on Poly(hexafluorobutyl) Tj ETQq1 1 0.784314 2352-2358. Submicro-sized porous SiO2/C and SiO2/C/graphene spheres for lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2425-2432. Stable Artificial Solid Electrolyte Interphases for Lithium Batteries. Chemistry of Materials, 2017, 29, 4181-4189. In situ observation of macroscopic phase separation in cobalt hexacyanoferrate film. Scientific Reports, 2017, 7, 42694. Nanosized coreâ€"shell structured grapheneâ€"MnO ₂ nanosheet arrays as stable electrodes for superior supercapacitors. Journal of Materials Chemistry A, 2017, 5, 10678-10686. Supramolecular polymerization-assisted synthesis of nitrogen and sulfur dual-doped porous graphene networks from petroleum coke as efficient metal-free electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 11331-11339. Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur	1.7 1.2 3.2 1.6 5.2 5.2	 56 34 199 6 54 54

#	Article	IF	CITATIONS
5860	High Performance Lithium-Ion Hybrid Capacitors Employing Fe ₃ O ₄ –Graphene Composite Anode and Activated Carbon Cathode. ACS Applied Materials & Interfaces, 2017, 9, 17136-17144.	4.0	152
5861	Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters, 2017, 2, 1385-1394.	8.8	314
5862	LiNi0.8Co0.15Al0.05O2: Enhanced Electrochemical Performance From Reduced Cationic Disordering in Li Slab. Scientific Reports, 2017, 7, 1408.	1.6	46
5863	Structure-preserved 3D porous silicon/reduced graphene oxide materials as anodes for Li-ion batteries. RSC Advances, 2017, 7, 24305-24311.	1.7	23
5864	Advanced Cathode Materials for Sodiumâ€ion Batteries: What Determines Our Choices?. Small Methods, 2017, 1, 1700098.	4.6	179
5865	Tunable construction of multi-shell hollow SiO2 microspheres with hierarchically porous structure as high-performance anodes for lithium-ion batteries. Chemical Engineering Journal, 2017, 323, 252-259.	6.6	74
5866	Non-aqueous lithium bromine battery of high energy density with carbon coated membrane. Journal of Energy Chemistry, 2017, 26, 639-646.	7.1	15
5867	Syntheses, Structures, and Characterization of Quaternary Tellurites, Li3MTe4O11 (M = Al, Ga, and Fe). Inorganic Chemistry, 2017, 56, 5873-5879.	1.9	10
5868	Hexagonal BC ₃ Electrode for a High-Voltage Al-Ion Battery. Journal of Physical Chemistry C, 2017, 121, 9748-9756.	1.5	37
5869	Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nature Communications, 2017, 8, 14589.	5.8	306
5870	High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews, 2017, 46, 3006-3059.	18.7	986
5871	Nitrogen-doped tubular/porous carbon channels implanted on graphene frameworks for multiple confinement of sulfur and polysulfides. Journal of Materials Chemistry A, 2017, 5, 10380-10386.	5.2	32
5872	Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. Journal of Materials Chemistry A, 2017, 5, 10127-10149.	5.2	65
5873	Insight into the enhancement of transport property for oriented La _{0.9} MnO ₃ films. Journal Physics D: Applied Physics, 2017, 50, 205306.	1.3	8
5874	Improving the Electrochemical Properties of High-Voltage LiNi0.5Mn1.5O4for Li-Ion Battery by Modified Current Collectors. Journal of the Electrochemical Society, 2017, 164, A1298-A1306.	1.3	3
5875	Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Liâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1602607.	10.2	122
5876	Objectively Evaluating the Cathode Performance of Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602938.	10.2	33
5877	Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Research, 2017, 10, 4201-4209.	5.8	56

#	Article	IF	CITATIONS
5878	Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries. Journal of Power Sources, 2017, 356, 18-26.	4.0	65
5879	Cubic-shaped WS ₂ nanopetals on a Prussian blue derived nitrogen-doped carbon nanoporous framework for high performance sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 10406-10415.	5.2	98
5880	Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy and Environmental Science, 2017, 10, 1427-1434.	15.6	140
5881	Nanostructured layered vanadium oxide as cathode for high-performance sodium-ion batteries: a perspective. MRS Communications, 2017, 7, 152-165.	0.8	34
5882	Imidazolium-based Mono and Dicationic Ionic Liquid Sodium Polymer Gel Electrolytes. Electrochimica Acta, 2017, 241, 517-525.	2.6	31
5883	A Flame-Retardant Composite Polymer Electrolyte for Lithium-Ion Polymer Batteries. Electrochimica Acta, 2017, 241, 553-559.	2.6	60
5884	Interactions at the electrode-electrolyte interfaces in batteries studied by quasi-in-situ soft x-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 58-64.	0.8	6
5885	A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 12480-12489.	1.3	30
5886	Deformable and flexible electrospun nanofiber-supported cross-linked gel polymer electrolyte membranes for high safety lithium-ion batteries. RSC Advances, 2017, 7, 22728-22734.	1.7	27
5887	Photovoltaic Monocrystalline Silicon Wasteâ€Derived Hierarchical Silicon/Flake Graphite/Carbon Composite as Lowâ€Cost and Highâ€Capacity Anode for Lithiumâ€Ion Batteries. ChemistrySelect, 2017, 2, 3479-3489.	0.7	22
5888	The electrochemical performance of super P carbon black in reversible Li/Na ion uptake. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	32
5889	Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries. Electrochimica Acta, 2017, 241, 261-271.	2.6	56
5890	Electrochemomechanical degradation of high-capacity battery electrode materials. Progress in Materials Science, 2017, 89, 479-521.	16.0	144
5891	Lithium Transport in an Amorphous Li _{<i>x</i>} Si Anode Investigated by Quasi-elastic Neutron Scattering. Journal of Physical Chemistry C, 2017, 121, 11083-11088.	1.5	15
5892	Building an Electronic Bridge via Ag Decoration To Enhance Kinetics of Iron Fluoride Cathode in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 19852-19860.	4.0	54
5893	A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Advances, 2017, 7, 23494-23501.	1.7	186
5894	Constructing an elastic solid electrolyte interphase on graphite: a novel strategy suppressing lithium inventory loss in lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 10885-10894.	5.2	44
5895	N-doped carbon-coated MoS 2 nanosheets on hollow carbon microspheres for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2017, 698, 68-76.	2.8	40

#	Article	IF	CITATIONS
5896	Advanced electron holography techniques for in situ observation of solid-state lithium ion conductors. Ultramicroscopy, 2017, 173, 64-70.	0.8	9
5897	From biomass chitin to mesoporous nanosheets assembled loofa sponge-like N-doped carbon/g-C 3 N 4 3D network architectures as ultralow-cost bifunctional oxygen catalysts. Microporous and Mesoporous Materials, 2017, 240, 216-226.	2.2	51
5898	Development and perspective of the insertion anode Li 3 VO 4 for lithium-ion batteries. Energy Storage Materials, 2017, 7, 17-31.	9.5	61
5899	Newer polyanionic bio-composite anode for sodium ion batteries. Journal of Power Sources, 2017, 340, 401-410.	4.0	7
5900	Irregular micro-sized Li1.2Mn0.54Ni0.13Co0.13O2 particles as cathode material with a high volumetric capacity for Li-ion batteries. Journal of Alloys and Compounds, 2017, 695, 2951-2958.	2.8	20
5901	Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery. Journal of Materials Chemistry A, 2017, 5, 730-738.	5.2	287
5902	On the sol-gel synthesis mechanism of nanostructured Li3.95La0.05Ti4.95Ag0.05O12 with enhanced electrochemical performance for lithium ion battery. Ceramics International, 2017, 43, 3393-3400.	2.3	4
5903	Enhanced composites of V2O5 nanowires decorating on graphene layers as ideal cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 695, 2974-2980.	2.8	26
5904	A Multifunction Lithium–Carbon Battery System Using a Dual Electrolyte. ACS Energy Letters, 2017, 2, 36-44.	8.8	28
5905	Asymmetric Energy Storage Devices Based on Surface-Driven Sodium-Ion Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 616-624.	3.2	30
5906	Graphene-modified copper chromate as the anode of ultrafast rechargeable Li-ion batteries. Journal of Materials Science, 2017, 52, 2131-2141.	1.7	4
5907	Computational electrochemistry of Pillar[5]quinone cathode material for lithium-ion batteries. Computational Materials Science, 2017, 137, 233-242.	1.4	17
5908	Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles. Journal of Power Sources, 2017, 360, 328-335.	4.0	59
5909	Monoclinic-Orthorhombic Na _{1.1} Li _{2.0} V ₂ (PO ₄) ₃ /C Composite Cathode for Na ⁺ /Li ⁺ Hybrid-Ion Batteries. Chemistry of Materials, 2017, 29, 6642-6652.	3.2	17
5910	Nanostructured Polymer Particles as Additives for High Conductivity, High Modulus Solid Polymer Electrolytes. Macromolecules, 2017, 50, 4699-4706.	2.2	44
5911	Structure–Property Relationships of Organic Electrolytes and Their Effects on Li/S Battery Performance. Advanced Materials, 2017, 29, 1700449.	11.1	96
5912	A high-performance Li-ion anode from direct deposition of Si nanoparticles. Nano Energy, 2017, 38, 477-485.	8.2	67
5913	Layered perovskite LiEuTiO4 as a 0.8 V lithium intercalation electrode. Chemical Communications, 2017, 53, 7800-7803.	2.2	15

#	Article	IF	CITATIONS
5914	Structural and optical properties of alumina passivated amorphous Si slanted columnar thin films during electrochemical Li-ion intercalation and deintercalation observed byin situgeneralized spectroscopic ellipsometry. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 031401.	0.6	0
5915	Interfacial Fracture of Nanowire Electrodes of Lithium-Ion Batteries. Jom, 2017, 69, 1519-1523.	0.9	12
5916	Cationic two-dimensional sheets for an ultralight electrostatic polysulfide trap toward high-performance lithium-sulfur batteries. Energy Storage Materials, 2017, 9, 39-46.	9.5	37
5917	A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy, 2017, 38, 504-509.	8.2	73
5918	Challenges and Perspectives for NASICONâ€Type Electrode Materials for Advanced Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1700431.	11.1	499
5919	Exploration of Spinel LiCrTiO ₄ as Cathode Material for Rechargeable Mg‣i Hybrid Batteries. Chemistry - A European Journal, 2017, 23, 17935-17939.	1.7	22
5920	Electrochemical presodiation promoting lithium storage performance of Mo-based anode materials. Ceramics International, 2017, 43, 11967-11972.	2.3	13
5921	Stress effects on lithiation in silicon. Nano Energy, 2017, 38, 486-493.	8.2	50
5922	Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides. Journal of Physical Chemistry C, 2017, 121, 14222-14227.	1.5	86
5923	Flexible and Free-Standing Organic/Carbon Nanotubes Hybrid Films as Cathode for Rechargeable Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 14498-14506.	1.5	52
5924	Biogenic Realgar As ₄ S ₄ Molecular Clusters Formed by a Oneâ€Pot Microbialâ€Driven Process as a Liâ€ion Storage Material. Advanced Sustainable Systems, 2017, 1, 1700056.	2.7	8
5925	Mesoscale Evaluation of Titanium Silicide Monolayer as a Cathode Host Material in Lithium–Sulfur Batteries. Jom, 2017, 69, 1532-1536.	0.9	5
5926	Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Research, 2017, 10, 4082-4114.	5.8	104
5927	Facile synthesis of Li4Ti5O12/Graphene nanocomposites for high performance lithium-ion batteries via a thermal-decomposition reduction in air. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 677-685.	2.3	15
5928	Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi-functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 721, 482-491.	2.8	29
5929	Development and assessment of a solar home system to cover cooking and lighting needs in developing regions as a better alternative for existing practices. Solar Energy, 2017, 155, 7-17.	2.9	27
5930	Rhombohedral Iron Trifluoride with a Hierarchized Macroporous/Mesoporous Texture from Gaseous Fluorination of Iron Disilicide. E3S Web of Conferences, 2017, 16, 08001.	0.2	0
5931	Highly Rechargeable Lithium O ₂ Batteries with a Boron―and Nitrogen odoped Holeyâ€Graphene Cathode. Angewandte Chemie, 2017, 129, 7074-7078.	1.6	24

ARTICLE IF CITATIONS Reactive Precipitation of Anhydrous Alkali Sulfide Nanocrystals with Concomitant Abatement of 5932 3.6 15 Hydrogen Sulfide and Cogeneration of Hydrogen. ChemSusChem, 2017, 10, 2904-2913. Lithium Batteries with Nearly Maximum Metal Storage. ACS Nano, 2017, 11, 6362-6369. 180 Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high 5934 1.2 787 energy density. Journal of Solid State Electrochemistry, 2017, 21, 1939-1964. Improving the electrochemistry performance of layer LiNi 0.5 Mn 0.3 Co 0.2 O 2 material at 4.5 V cutoff 44 potential using lithium metaborate. Electrochimica Acta, 2017, 243, 105-111. Highly active and durable nitrogen doped-reduced graphene oxide/double perovskite bifunctional 5936 5.2 45 hybrid catalysts. Journal of Materials Chemistry A, 2017, 5, 13019-13031. Strategies of constructing stable and high sulfur loading cathodes based on the blade-casting 5.2 technique. Journal of Materials Chemistry A, 2017, 5, 12879-12888. Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and 5938 high-capacity lithium-ion storage materials stimulated by pseudocapacitance. Journal of Materials 5.2 80 Chemistry A, 2017, 5, 12828-12837. Design and Development of Efficient Bifunctional Catalysts by Tuning the Electronic Properties of Cobalt–Manganese Tungstate for Oxygen Reduction and Evolution Reactions. ChemCatChem, 2017, 9, 1.8 3681-3690. Nanostructured Na-ion and Li-ion anodes for battery application: A comparative overview. Nano 5940 5.8 88 Research, 2017, 10, 3942-3969. Synthesis and evaluation of a novel pyrrolidinium-based zwitterionic additive with an ether side chain 5941 for ionic liquid electrolytes in high-voltage lithium-ion batteries. Electrochimica Acta, 2017, 241, 2.6 24 272-280. A free-standing and thermostable polymer/plastic crystal electrolyte for all-solid-state lithium 5942 1.2 6 batteries. lonics, 2017, 23, 3339-3345. State of the Art and Future Research Needs for Multiscale Analysis of Li-Ion Cells. Journal of 5943 1.1 Electrochemical Energy Conversion and Storage, 2017, 14, . Stress-mediated lithiation in nanoscale phase transformation electrodes. Acta Mechanica Solida 5944 1.0 8 Sinica, 2017, 30, 248-253. Self-standing silicon-carbon nanotube/graphene by a scalable in situ approach from low-cost Al-Si alloy powder for lithium ion batteries. Journal of Physics and Chemistry of Solids, 2017, 109, 9-17. 5945 59 Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging 5946 130 4.0 Protocols. ACS Applied Materials & amp; Interfaces, 2017, 9, 18691-18698. Stannate Increases Hydrogen Evolution Overpotential on Rechargeable Alkaline Iron Electrodes. 5947 Journal of the Electrochemical Society, 2017, 164, A1251-A1257. Antipulverization Electrode Based on Lowâ€Carbon Tripleâ€Shelled Superstructures for Lithiumâ€Ion 5948 11.1 92 Batteries. Advanced Materials, 2017, 29, 1701494. Amorphous <scp>MnO₂</scp> as Cathode Material for Sodiumâ€ion Batteries. Chinese 5949 29 Journal of Chemistry, 2017, 35, 1294-1298.

CITATION REPORT

#	Article	IF	CITATIONS
5950	Two-dimensional sandwich-like Ag coated silicon-graphene-silicon nanostructures for superior lithium storage. Applied Surface Science, 2017, 425, 614-621.	3.1	18
5951	Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery. Energy, 2017, 135, 171-181.	4.5	30
5952	A low-cost, environment-friendly lignin-polyvinyl alcohol nanofiber separator using a water-based method for safer and faster lithium-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 223, 84-90.	1.7	70
5953	Unraveling the Complex Delithiation and Lithiation Mechanisms of the High Capacity Cathode Material V ₆ O ₁₃ . Chemistry of Materials, 2017, 29, 5513-5524.	3.2	35
5954	Nanoporous carbon leading to the high performance of a Na ₃ V ₂ O ₂ (PO ₄) ₂ F@carbon/graphene cathode in a sodium ion battery. CrystEngComm, 2017, 19, 4287-4293.	1.3	31
5955	Prussian Blue Nanocubes with an Open Framework Structure Coated with PEDOT as Highâ€Capacity Cathodes for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1700587.	11.1	170
5956	Carbon oated Li ₃ VO ₄ Spheres as Constituents of an Advanced Anode Material for Highâ€Rate Longâ€Life Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1701571.	11.1	119
5957	Novel fabrication of Ni3S2/MnS composite as high performance supercapacitor electrode. Journal of Alloys and Compounds, 2017, 722, 662-668.	2.8	51
5958	Nanolayered manganese oxides: insights from inorganic electrochemistry. Catalysis Science and Technology, 2017, 7, 3499-3510.	2.1	27
5959	Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template. Nanoscale, 2017, 9, 10138-10144.	2.8	73
5960	Adhesive nanocomposites of hypergravity induced Co ₃ O ₄ nanoparticles and natural gels as Li-ion battery anode materials with high capacitance andÂlow resistance. RSC Advances, 2017, 7, 21061-21067.	1.7	15
5961	Electrocatalytic Properties of Cuprous Delafossite Oxides for the Alkaline Oxygen Reduction Reaction. ChemCatChem, 2017, 9, 3837-3842.	1.8	10
5962	Batteries in Portable Electronic Devices: A User's Perspective. IEEE Industrial Electronics Magazine, 2017, 11, 35-44.	2.3	20
5963	Electrochemical and structural study on LiMn0.8Fe0.2PO4 and Mn0.8Fe0.2PO4 battery cathodes: diffusion limited lithium transport. Journal of Solid State Electrochemistry, 2017, 21, 3221-3228.	1.2	0
5964	Cobalt-phthalocyanine-derived ultrafine Co 3 O 4 nanoparticles as high-performance anode materials for lithium ion batteries. Applied Surface Science, 2017, 414, 398-404.	3.1	19
5965	Exploration of Cr0.2Fe0.8Nb11O29 as an advanced anode material for lithium-ion batteries of electric vehicles. Electrochimica Acta, 2017, 245, 482-488.	2.6	35
5966	Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. Electrochimica Acta, 2017, 245, 981-992.	2.6	58
5967	Elaborate strategy for preparing Li 4 Ti 5 O 12 -based anode materials with significantly improved lithium storage: TiO 2 nanodots in-situ decoration and hierarchical structure construction. Journal of Physics and Chemistry of Solids, 2017, 110, 49-57.	1.9	8

#	Article		CITATIONS
5968	Mn oxidation state controllable spinel manganese-based intergrown cathode for excellent reversible lithium storage. Journal of Power Sources, 2017, 359, 295-302.	4.0	14
5969	Size-controllable porous NiO electrodes for high-performance lithium ion battery anodes. Materials Research Bulletin, 2017, 96, 533-537.	2.7	28
5970	Activation of NaFePO 4 with maricite structure for application as a cathode material in sodium-ion batteries. Mendeleev Communications, 2017, 27, 263-264.	0.6	16
5971	Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2017, 9, 20566-20576.	4.0	54
5972	Understanding the effects of 3D porous architectures on promoting lithium or sodium intercalation in iodine/C cathodes synthesized via a biochemistry-enabled strategy. Nanoscale, 2017, 9, 9365-9375.	2.8	37
5973	Roomâ€Temperature Sodiumâ€Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry. Advanced Energy Materials, 2017, 7, 1602829.	10.2	270
5974	Capacity Fade in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials, 2017, 29, 5574-5582.	3.2	655
5975	Simulation Protocol for Prediction of a Solid-Electrolyte Interphase on the Silicon-based Anodes of a Lithium-Ion Battery: ReaxFF Reactive Force Field. Journal of Physical Chemistry Letters, 2017, 8, 2812-2818.	2.1	51
5976	Three-dimensional MnO/reduced graphite oxide composite films as anode materials for high performance lithium-ion batteries. Ceramics International, 2017, 43, 10873-10880.	2.3	21
5977	Tailoring the morphological properties of anodized Ti 3 SiC 2 for better power density of Li-ion microbatteries. Electrochemistry Communications, 2017, 81, 29-33.	2.3	15
5978	Surface layer design of cathode materials based on mechanical stability towards long cycle life for lithium secondary batteries. Energy Storage Materials, 2017, 8, 141-146.	9.5	35
5979	Structural and magnetic properties of lithium cathode materials Li x Fe 1/3 Co 1/3 Ni 1/3 PO 4 (x = 0, 1). Materials Research Bulletin, 2017, 93, 361-365.	2.7	3
5980	One-step radiation synthesis of gel polymer electrolytes with high ionic conductivity for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 12393-12399.	5.2	79
5981	Non-linearity of the solid-electrolyte-interphase overpotential. Electrochimica Acta, 2017, 244, 69-76.	2.6	21
5982	Chrysanthemum-like Bi2S3 nanostructures: A promising anode material for lithium-ion batteries and sodium-ion batteries. Journal of Alloys and Compounds, 2017, 715, 432-437.	2.8	58
5983	Facile preparation of quasi-coral-like SnO x @C for improved lithium storage. Materials Letters, 2017, 202, 107-110.	1.3	16
5984	Enhanced Lithium- and Sodium-Ion Storage in an Interconnected Carbon Network Comprising Electronegative Fluorine. ACS Applied Materials & Interfaces, 2017, 9, 18790-18798.	4.0	38
5985	Synthesis and characterization of Mg 2 TiO 4 -coated LiCoO 2 as a cathode material for lithium ion batteries. Electrochimica Acta, 2017, 243, 162-169.	2.6	17

#	Article		CITATIONS
5986	Tuning the Morphology of Li ₂ O ₂ by Noble and 3d metals: A Planar Model Electrode Study for Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2017, 9, 19800-19806.	4.0	39
5987	Investigation of graphene oxide nanogel and carbon nanorods as electrode for electrochemical supercapacitor. Electrochimica Acta, 2017, 245, 268-278.	2.6	32
5988	Stable 1T-MoSe ₂ and Carbon Nanotube Hybridized Flexible Film: Binder-Free and High-Performance Li-Ion Anode. ACS Nano, 2017, 11, 6483-6491.	7.3	135
5989	A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery. International Journal of Biological Macromolecules, 2017, 103, 1032-1043.	3.6	138
5990	Charge–Discharge Behavior of Bismuth in a Liquid Electrolyte for Rechargeable Batteries Based on a Fluoride Shuttle. ACS Energy Letters, 2017, 2, 1460-1464.	8.8	77
5991	Multihierarchical Structure of Hybridized Phosphates Anchored on Reduced Graphene Oxide for High Power Hybrid Energy Storage Devices. ACS Sustainable Chemistry and Engineering, 2017, 5, 5679-5685.	3.2	49
5992	lonic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 12934-12942.	5.2	126
5993	Lithium metal protected by atomic layer deposition metal oxide for high performance anodes. Journal of Materials Chemistry A, 2017, 5, 12297-12309.	5.2	150
5994	High-Rate and Long-Cycle Silicon/Porous Nitrogen-Doped Carbon Anode via a Low-Cost Facile Pre-Template-Coating Approach for Li-ion Batteries. Electrochimica Acta, 2017, 245, 14-24.	2.6	46
5995	Well encapsulated Mn3O4 octahedra in graphene nanosheets with much enhanced Li-storage performances. Journal of Colloid and Interface Science, 2017, 504, 603-610.	5.0	13
5996	Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect. Journal of Power Sources, 2017, 359, 198-204.	4.0	36
5997	Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and Highâ€Capacity Lithium Storage. Advanced Functional Materials, 2017, 27, 1700447.	7.8	91
5998	Polyacrylonitrile-polyvinylidene fluoride as high-performance composite binder for layered Li-rich oxides. Journal of Power Sources, 2017, 359, 226-233.	4.0	32
5999	Electrochemical performance and interfacial investigation on Si composite anode for lithium ion batteries in full cell. Journal of Power Sources, 2017, 359, 173-181.	4.0	69
6000	Construct hierarchical electrode with Ni x Co 3-x S 4 nanosheet coated on NiCo 2 O 4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. Journal of Power Sources, 2017, 359, 262-269.	4.0	117
6001	Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. Chemistry of Materials, 2017, 29, 5031-5042.	3.2	548
6002	Unveiling the Ion Conduction Mechanism in Imidazolium-Based Poly(ionic liquids): A Comprehensive Investigation of the Structure-to-Transport Interplay. Macromolecules, 2017, 50, 4309-4321.	2.2	41
6003	Unveiling the Catalytic Origin of Nanocrystalline Yttrium Ruthenate Pyrochlore as a Bifunctional Electrocatalyst for Zn–Air Batteries. Nano Letters, 2017, 17, 3974-3981.	4.5	80

#	Article		CITATIONS
6004	N,S co-doped 3D mesoporous carbon–Co ₃ Si ₂ O ₅ (OH) ₄ architectures for high-performance flexible pseudo-solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 12774-12781.	5.2	160
6005	High-performance reduced graphene oxide – red phosphorous composites anodes for lithium batteries and soft X-ray near-edge structure studies. Canadian Journal of Chemistry, 2017, 95, 1178-1182.	0.6	2
6006	Morphological and Chemical Tuning of High-Energy-Density Metal Oxides for Lithium Ion Battery Electrode Applications. ACS Energy Letters, 2017, 2, 1465-1478.	8.8	56
6007	Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chemistry, 2017, 19, 3442-3467.	4.6	205
6008	A novel microstructural reconstruction phenomenon and electrochemical performance of cactus-like SnO2/carbon composites as anode materials for Na-ion batteries. Electrochimica Acta, 2017, 245, 587-596.	2.6	21
6009	Lithium titanate as anode material for lithium ion batteries: Synthesis, post-treatment and its electrochemical response. Journal of Electroanalytical Chemistry, 2017, 799, 142-155.	1.9	60
6010	Improved electrochemical performance of Li 2 Fe 1-x Ce x SiO 4 /C cathode material via cerium ions doping for lithium-ion batteries. Materials Chemistry and Physics, 2017, 198, 83-89.	2.0	1
6011	Tailored Solution Combustion Synthesis of High Performance ZnCo ₂ O ₄ Anode Materials for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2017, 56, 7173-7183.	1.8	41
6012	Effect of Lithium Borate Additives on Cathode Film Formation in LiNi _{0.5} Mn _{1.5} O ₄ /Li Cells. ACS Applied Materials & Interfaces, 2017, 9, 20467-20475.		65
6013	Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries. Nanoscale, 2017, 9, 8871-8878.	2.8	81
6014	Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery. Journal of Power Sources, 2017, 359, 270-276.	4.0	24
6015	KCl-Modified Graphite as High Performance Anode Material for Lithium-Ion Batteries with Excellent Rate Performance. Journal of Physical Chemistry C, 2017, 121, 13052-13058.	1.5	22
6016	Anchoring Iodine to N-Doped Hollow Carbon Fold-Hemisphere: Toward a Fast and Stable Cathode for Rechargeable Lithium–Iodine Batteries. ACS Applied Materials & Interfaces, 2017, 9, 20508-20518.	4.0	85
6017	Prussian Blue Analogue with Fast Kinetics Through Electronic Coupling for Sodium Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 20306-20312.	4.0	96
6018	Quantifying lithium in the solid electrolyte interphase layer and beyond using Lithium- Nuclear Reaction Analysis technique. Journal of Power Sources, 2017, 360, 129-135.	4.0	12
6019	Silica template-assisted synthesis of SnO ₂ @porous carbon composites as anode materials with excellent rate capability and cycling stability for lithium-ion batteries. RSC Advances, 2017, 7, 30070-30079.	1.7	29
6020	A novel porous reduced microcrystalline graphene oxide supported Fe3O4@C nanoparticle composite as anode material with excellent lithium storage performances. Chemical Engineering Journal, 2017, 326, 507-517.	6.6	34
6021	Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance. Energy Storage Materials, 2017, 9, 31-38.	9.5	149

#	Article	IF	Citations
6022	One-pot synthesis of La 0.7 Sr 0.3 MnO 3 supported on flower-like CeO 2 as electrocatalyst for oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 2017, 358, 50-60.	4.0	38
6023	Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries. Journal of Power Sources, 2017, 360, 98-105.	4.0	59
6024	Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode. Waste Management, 2017, 65, 147-152.	3.7	20
6025	Robust Benzimidazole-Based Electrolyte Overcomes High-Voltage and High-Temperature Applications in 5 V Class Lithium Ion Batteries. Chemistry of Materials, 2017, 29, 5537-5549.	3.2	31
6026	Two-dimensional heterostructures for energy storage. Nature Energy, 2017, 2, .	19.8	747
6027	A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols. Small Methods, 2017, 1, 1700134.	4.6	230
6028	Facile Synthesis of Ni(OH) ₂ /Carbon Nanofiber Composites for Improving NiZn Battery Cycling Life. ACS Sustainable Chemistry and Engineering, 2017, 5, 6827-6834.	3.2	51
6029	Dual carbon layer hybridized mesoporous tin hollow spheres for fast-rechargeable and highly-stable lithium-ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 14422-14429.	5.2	39
6030	Compositional control of precipitate precursors for lithium-ion battery active materials: role of solution equilibrium and precipitation rate. Journal of Materials Chemistry A, 2017, 5, 13785-13798.	5.2	32
6031	Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Research, 2017, 10, 3136-3150.	5.8	67
6032	Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Storage Materials, 2017, 9, 85-95.	9.5	85
6033	Mechanical synthesis and structural properties of the fast fluoride-ion conductor PbSnF4. Journal of Solid State Chemistry, 2017, 253, 287-293.	1.4	28
6034	Synthesis of Fe2O3 in situ on the surface of mesoporous carbon from alginate as a high-performance anode for lithium-ion batteries. Materials Letters, 2017, 205, 10-14.	1.3	25
6035	Negative Electrode Comprised of Nanostructured CuO for Advanced Lithium Ion Batteries. Journal of Cluster Science, 2017, 28, 1595-1604.	1.7	14
6036	NbSe 3 nanobelts wrapped by reduced graphene oxide for lithium ion battery with enhanced electrochemical performance. Applied Surface Science, 2017, 412, 113-120.	3.1	11
6037	Novel gel polymer electrolyte based on matrix of PMMA modified with polyhedral oligomeric silsesquioxane. Journal of Solid State Electrochemistry, 2017, 21, 2291-2299.	1.2	14
6038	MOF-templated thermolysis for porous CuO/Cu2O@CeO2 anode material of lithium-ion batteries with high rate performance. Journal of Materials Science, 2017, 52, 7140-7148.	1.7	23
6039	Influence of different lithium sources on the morphology, structure and electrochemical performances of lithium-rich layered oxides. Ceramics International, 2017, 43, 8694-8702.	2.3	14

ARTICLE

Synthesis, dielectric, conductivity and magnetic studies of LiNi1/3Co1/3Mn(1/3) \hat{a} 'xAlxO2 (x = 0.0, 0.02,) Tj ETQq0 0.0 rgBT / \mathcal{O} verlock 1

6041	A new Na[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-based polymer electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2017, 5, 7738-7743.	5.2	76
6042	Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramicÂnanowires. Nature Energy, 2017, 2, .	19.8	763
6043	Fabrication of new conductive gels by tuning the macromolecular architectures using fluorinated acrylates. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 249-254.	1.2	1
6044	Hierarchical Porous Carbon Spheres for Highâ€Performance Na–O ₂ Batteries. Advanced Materials, 2017, 29, 1606816.	11.1	81
6045	Novel Methods for Sodiumâ€lon Battery Materials. Small Methods, 2017, 1, 1600063.	4.6	84
6046	High activity of a Pt decorated Ni/C nanocatalyst for hydrogen oxidation. Chinese Journal of Catalysis, 2017, 38, 396-403.	6.9	11
6047	Engineering radical polymer electrodes for electrochemical energy storage. Journal of Power Sources, 2017, 352, 226-244.	4.0	73
6048	Highly Crumpled Hybrids of Nitrogen/Sulfur Dual-Doped Graphene and Co ₉ S ₈ Nanoplates as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2017, 9, 12340-12347.	4.0	105
6049	More Reliable Lithium‣ulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 2017, 29, 1606823.	11.1	1,414
6050	Sc ₂ C as a Promising Anode Material with High Mobility and Capacity: A Firstâ€Principles Study. ChemPhysChem, 2017, 18, 1627-1634.	1.0	88
6051	Facile Synthesis of Rodâ€like Cu _{2â~°<i>x</i>} Se and Insight into its Improved Lithiumâ€&torage Property. ChemSusChem, 2017, 10, 2235-2241.	3.6	43
6052	Li1.2Mn0.54Ni0.13Co0.13O2 hollow hierarchical microspheres with enhanced electrochemical performances as cathode material for lithium-ion battery application. Electrochimica Acta, 2017, 237, 217-226.	2.6	41
6053	A facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2017, 787, 158-162.	1.9	19
6054	A 3-D binder-free nanoporous anode for a safe and stable charging of lithium ion batteries. Materials Research Bulletin, 2017, 93, 1-8.	2.7	21
6055	Core–shell MoO 2 /C nanospheres embedded in bubble sheet-like carbon film as lithium ion Battery anodes. Materials Letters, 2017, 199, 139-142.	1.3	7
6056	Core–shell Si/Cu nanocomposites synthesized by self-limiting surface reaction as anodes for lithium ion batteries. Functional Materials Letters, 2017, 10, 1750025.	0.7	10
6057	Monodispersed Carbon-Coated Cubic NiP ₂ Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage. ACS Nano, 2017, 11, 3705-3715.	7.3	231

# 6058	ARTICLE How to improve the stability and rate performance of lithium-ion batteries with transition metal oxide anodes. Journal of Materials Research, 2017, 32, 16-36.	IF 1.2	CITATIONS 36
6059	Enhanced electrochemical performance of core-shell Li4Ti5O12/PTh as advanced anode for rechargeable lithium-ion batteries. Ceramics International, 2017, 43, 7600-7606.	2.3	22
6060	Tailoring the (Ni 1/6 Co 1/6 Mn 4/6)CO 3 precursors of Li-rich layered oxides for advanced lithium-ion batteries with the seed-mediated method. Journal of Alloys and Compounds, 2017, 709, 692-699.	2.8	18
6061	A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery. Journal of Power Sources, 2017, 351, 17-25.	4.0	45
6062	Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries. Scientific Reports, 2017, 7, 44838.	1.6	61
6063	High rate performance SnO ₂ based three-dimensional graphene composite electrode for lithium-ion battery applications. RSC Advances, 2017, 7, 18054-18059.	1.7	12
6064	Evaporation induced nanoparticle $\hat{a} \in$ binder interaction in electrode film formation. Physical Chemistry Chemical Physics, 2017, 19, 10051-10061.	1.3	13
6065	Lithium–oxygen (air) batteries (state-of-the-art and perspectives). Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 1-48.	0.3	16
6066	Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries. Energy Storage Materials, 2017, 8, 10-19.	9.5	78
6067	Quantitative Characterization of the Surface Evolution for LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /Graphite Cell during Long-Term Cycling. ACS Applied Materials & Interfaces, 2017, 9, 12445-12452.	4.0	55
6068	Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 12461-12468.	4.0	179
6069	Tunneled Mesoporous Carbon Nanofibers with Embedded ZnO Nanoparticles for Ultrafast Lithium Storage. ACS Applied Materials & Interfaces, 2017, 9, 12478-12485.	4.0	95
6070	3D dendritic-Fe ₂ O ₃ @C nanoparticles as an anode material for lithium ion batteries. RSC Advances, 2017, 7, 18508-18511.	1.7	9
6071	Self-assembled porous carbon microparticles derived from halloysite clay as a lithium battery anode. Journal of Materials Chemistry A, 2017, 5, 7345-7354.	5.2	56
6072	Research Update: Fast and tunable nanoionics in vertically aligned nanostructured films. APL Materials, 2017, 5, .	2.2	35
6073	High-capacity sodium ion battery anodes based on CuO nanosheets and carboxymethyl cellulose binder. Materials Technology, 2017, 32, 598-605.	1.5	26
6074	Synthesis and characterization of poly-3-((2,5-hydroquinone)vinyl)-1H-pyrrole: investigation on backbone/pendant interactions in a conducting redox polymer. Physical Chemistry Chemical Physics, 2017, 19, 10427-10435.	1.3	7
6075	A highly stable polyoxometalate-based metal–organic framework with π–π stacking for enhancing lithium ion battery performance. Journal of Materials Chemistry A, 2017, 5, 8477-8483.	5.2	136

ARTICLE IF CITATIONS Cageâ€Like Porous Carbon with Superhigh Activity and Br₂â€Complexâ€Entrapping Capability for 6076 11.1 88 Bromineâ€Based Flow Batteries. Advanced Materials, 2017, 29, 1605815. New approach to design solid block copolymer electrolytes for 40 ŰC lithium metal battery operation. 2.6 Electrochimica Acta, 2017, 238, 21-29. Composite sodium p-toluenesulfonate/polypyrrole/TiO 2 nanotubes/Ti anode for sodium ion battery. 6078 3.8 16 International Journal of Hydrogen Energy, 2017, 42, 12414-12419. Facile synthesis of metal hydroxide nanoplates and their application as lithium-ion battery anodes. 6079 Journal of Materials Chemistry A, 2017, 5, 8744-8751. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial 6080 4.7 647 solid-state electrolyte/metallic Li interface. Science Advances, 2017, 3, e1601659. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate 8.2 sodium ion charge storage. Nano Energy, 2017, 35, 396-404. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries. ACS Applied 6082 4.0 97 Materials & amp; Interfaces, 2017, 9, 14180-14186. Degradation Dynamics for Electrochromic WO₃ Films under Extended Charge Insertion and Extraction: Unveiling Physicochemical Mechanisms. ACS Applied Materials & amp; Interfaces, 2017, 9, 4.0 58 12872-12877. Effect of excess lithium in LiMn2O4 and Li1.15Mn1.85O4 electrodes revealed by quantitative analysis of 6084 1.5 21 soft X-ray absorption spectroscopy. Applied Physics Letters, 2017, 110, . Fluorine gradient-doped LiNi0.5Mn1.5O4 spinel with improved high voltage stability for Li-ion 2.6 batteries. Electrochimica Acta, 2017, 238, 237-245. Coating effect of LiFePO 4 and Al 2 O 3 on Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode surface for lithium 6086 4.058 ion batteries. Journal of Power Sources, 2017, 353, 210-220. α-MoO 3 nanowire bundles fabricated from a self-assembled organicâ \in inorganic precursor as cathodes 2.7 for lithium-ion batteries. Materials Research Bulletin, 2017, 96, 419-424. Enhanced Lithium Ion Storage Performance of Tannic Acid in LiTFSI Electrolyte. ACS Omega, 2017, 2, 6088 1.6 37 1273-1278. The Influence of Ultrathin Amorphous ALD Alumina and Titania on the Rate Capability of Anatase TiO₂ and LiMn₂O₄ Lithium Ion Battery Electrodes. Advanced 6089 Materials Interfaces, 2017, 4, 1601237. Hierarchical Porous Intercalationâ€Type V₂O₃ as Highâ€Performance Anode 6090 1.7 63 Materials for Liâ€Ion Batteries. Chemistry - A European Journal, 2017, 23, 7538-7544. Filling and unfilling carbon capsules with transition metal oxide nanoparticles for Li-ion hybrid 6091 supercapacitors: towards hundred grade energy density. Science China Materials, 2017, 60, 217-227. Hollow Cu0.10Mg0.40Zn0.50Fe2O4/Ca2Ni5 nanocomposite: A novel form as anode material in 6092 2.8 14 lithium-ion battery. Journal of Alloys and Compounds, 2017, 710, 501-509. Electronic and Ionic Dynamics Coupled at Solid–Liquid Electrolyte Interfaces in Porous 6093 Nanocomposites of Carbon Black, Poly(vinylidene fluoride), and 1^3 -Alumina. Journal of Physical 1.5 19 Chemistry C, 2017, 121, 8364-8377.

CITATION REPORT

# 6094	ARTICLE Rational Design of 1-D Co3O4 Nanofibers@Low content Graphene Composite Anode for High Performance Li-Ion Batteries. Scientific Reports, 2017, 7, 45105.	IF 1.6	Citations 49
6095	Advanced anodes composed of graphene encapsulated nano-silicon in a carbon nanotube network. RSC Advances, 2017, 7, 15694-15701.	1.7	31
6096	Graphene aerogel supported crystalline ZnO@amorphous Zn ₂ GeO ₄ core–shell hierarchical structure for lithium storage. RSC Advances, 2017, 7, 17769-17772.	1.7	8
6097	Carbonâ€Coated Na _{3.32} Fe _{2.34} (P ₂ O ₇) ₂ Cathode Material for Highâ€Rate and Longâ€Life Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605535.	11.1	161
6098	An Innovative Freezeâ€Dried Reduced Graphene Oxide Supported SnS ₂ Cathode Active Material for Aluminumâ€lon Batteries. Advanced Materials, 2017, 29, 1606132.	11.1	263
6099	Tungsten diselenide nanoplates as advanced lithium/sodium ion electrode materials with different storage mechanisms. Nano Research, 2017, 10, 2584-2598.	5.8	65
6100	Ultrafast lithium storage of high dispersed silicon and titanium oxide nanoparticles in carbon. Journal of Alloys and Compounds, 2017, 710, 274-280.	2.8	24
6101	Influencing factors of low- and high-temperature behavior of Co-doped Zn2SnO4–graphene–carbon nanocomposite as anode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2017, 791, 56-63.	1.9	15
6102	Super-aligned carbon nanotube films with a thin metal coating as highly conductive and ultralight current collectors for lithium-ion batteries. Journal of Power Sources, 2017, 351, 160-168.	4.0	22
6103	Enhanced electrochemical performance from 3DG/LiFePO 4 /G sandwich cathode material. Journal of Physics and Chemistry of Solids, 2017, 107, 36-41.	1.9	20
6104	A controlled red phosphorus@Ni–P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries. Energy and Environmental Science, 2017, 10, 1222-1233.	15.6	170
6105	Adsorption and diffusion of mono, di, and trivalent ions on two-dimensional TiS ₂ . Nanotechnology, 2017, 28, 175401.	1.3	124
6106	Research Progress towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Advanced Science, 2017, 4, 1700032.	5.6	363
6107	Effect of nano-dispersed silica on the ion-conducting behavior of PMMA-based polymer gel electrolytes containing LiPF6. Ionics, 2017, 23, 2685-2695.	1.2	9
6108	2D Layered Graphitic Carbon Nitride Sandwiched with Reduced Graphene Oxide as Nanoarchitectured Anode for Highly Stable Lithium-ion Battery. Electrochimica Acta, 2017, 237, 69-77.	2.6	51
6109	Fe 2 O 3 amorphous nanoparticles/graphene composite as high-performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 711, 15-21.	2.8	39
6110	Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging. Journal of Power Sources, 2017, 342, 904-912.	4.0	54
6111	Enabling technologies for autonomous MAV operations. Progress in Aerospace Sciences, 2017, 91, 27-52.	6.3	51

ARTICLE IF CITATIONS Cr_{0.5}Nb_{24.5}O₆₂ Nanowires with High Electronic Conductivity 6112 7.3 121 for High-Rate and Long-Life Lithium-Ion Storage. ACS Nano, 2017, 11, 4217-4224. Morphology Dependency of Li3V2(PO4)3/C Cathode Material Regarding to Rate Capability and Cycle Life 2.6 in Lithium-ion Batteries. Électrochimica Ácta, 2017, 232, 310-322 One-Dimensional Glass Micro-Fillers in Gel Polymer Electrolytes for Li-O2 Battery Applications. 6114 2.6 26 Electrochimica Acta, 2017, 235, 56-63. Quantifying TEMPO Redox Polymer Charge Transport toward the Organic Radical Battery. ACS Applied 4.0 Materials & amp; Interfaces, 2017, 9, 10692-10698. Promoting effects of Ce_{0.75}Zr_{0.25}O₂ on the 6116 La_{0.7}Sr_{0.3}MnO₃ electrocatalyst for the oxygen reduction 5.2 35 reaction in metal–air batteries. Journal of Materials Chemistry A, 2017, 5, 6411-6415. Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries. Electrochimica Acta, 2017, 235, 356-364. 2.6 Uniform Lithium Deposition Induced by Polyacrylonitrile Submicron Fiber Array for Stable Lithium 6118 4.0 57 Metal Anode. ACS Applied Materials & amp; Interfaces, 2017, 9, 10360-10365. Self-Assembled Array of Tethered Manganese Oxide Nanoparticles for the Next Generation of Energy 1.6 10 Storage. Scientific Reports, 2017, 7, 44191. High lithium anodic performance of N-doped porous biocarbon-integrated indium sulfide thin 6120 1.4 11 nanosheets. New Journal of Chemistry, 2017, 41, 3297-3302. Identifying the Conversion Mechanism of NiCo₂O₄ during 39 Sodiation–Desodiation Cycling by In Situ TEM. Advanced Functional Materials, 2017, 27, 1606163. A New Strategy to Effectively Suppress the Initial Capacity Fading of Iron Oxides by Reacting with 6122 49 7.8 LiBH₄. Advanced Functional Materials, 2017, 27, 1700342. Dualâ€Functionalized Double Carbon Shells Coated Silicon Nanoparticles for High Performance 11.1 325 Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1605650. Soft Carbon as Anode for Highâ€Performance Sodiumâ€Based Dual Ion Full Battery. Advanced Energy 6124 10.2 255 Materials, 2017, 7, 1602778. Synthesis of Robust Silicon Nanoparticles@Void@Graphitic Carbon Spheres for Highâ€Performance 1.7 Líthiumâ€Ionâ€Battery Anodes. ĊhemElectroChem, 2017, 4, 1463-1469. 6126 An All-Organic Proton Battery. Journal of the American Chemical Society, 2017, 139, 4828-4834. 194 6.6 Microstructure dynamics of rechargeable battery materials studied by advanced transmission 6127 electron microscópy. NPG Asia Materials, 2017, 9, e360-e360. Enhanced capacity and cycle life of nitrogen-doped activated charcoal anode for the lithium ion 6128 1.7 9 battery: a solvent-free approach. RSC Advances, 2017, 7, 16505-16512. Mesoporous graphene/carbon framework embedded with SnO₂ nanoparticles as a 6129 high-performance anode for lithium storage. Inorganic Chemistry Frontiers, 2017, 4, 889-897.

CITATION REPORT

		CITATION RE	EPORT	
#	Article		IF	Citations
6130	Ion dynamics in solid electrolytes for lithium batteries. Journal of Electroceramics, 2017, 3	38, 142-156.	0.8	83
6131	Extensively interconnected silicon nanoparticles via carbon network derived from ultrathi cellulose nanofibers as high performance lithium ion battery anodes. Carbon, 2017, 118,		5.4	58
6132	Advanced electron holography techniques for in situ observation of solid-state lithium ior conductors. Ultramicroscopy, 2017, 176, 86-92.	1	0.8	1
6133	Effect of Potential Profile on Battery Capacity Decrease during Continuous Cycling. Journ Physical Chemistry C, 2017, 121, 6018-6023.	al of	1.5	12
6134	Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial He Control. Journal of the American Chemical Society, 2017, 139, 8458-8466.	terogeneity	6.6	198
6135	Investigation of effects of design parameters on the internal short-circuit in cylindrical lith batteries. RSC Advances, 2017, 7, 14360-14371.	hium-ion	1.7	29
6136	Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ior batteries. Energy and Environmental Science, 2017, 10, 900-904.	1	15.6	119
6137	Pushing the Energy Output and Cyclability of Sodium Hybrid Capacitors at High Power to Advanced Energy Materials, 2017, 7, 1602654.	New Limits.	10.2	105
6138	Solving Key Challenges in Battery Research Using In Situ Synchrotron and Neutron Techn Advanced Energy Materials, 2017, 7, 1602831.	iques.	10.2	67
6139	Theoretical investigation of pillar[4]quinone as a cathode active material for lithium-ion b Journal of Molecular Modeling, 2017, 23, 105.	atteries.	0.8	14
6140	High performance rechargeable Li-S batteries using binder-free large sulfur-loaded three-d carbon nanotubes. Carbon, 2017, 118, 120-126.	imensional	5.4	70
6141	Efficient sodium storage: Experimental study of anode with additive-free ether-based elec system. Journal of Power Sources, 2017, 349, 152-162.	trolyte	4.0	11
6142	Lithium Metal Anodes with an Adaptive "Solid-Liquid―Interfacial Protective Layer. Joe American Chemical Society, 2017, 139, 4815-4820.	urnal of the	6.6	460
6143	Mixed Molybdenum Oxides with Superior Performances as an Advanced Anode Material f Batteries. Scientific Reports, 2017, 7, 44697.	or Lithium-Ion	1.6	52
6144	Interfacial engineering of metal oxide/graphene nanoscrolls with remarkable performance lithium ion batteries. Energy Storage Materials, 2017, 8, 35-41.	? for	9.5	31
6145	Enhanced electrochemical performances and thermal stability of LiNi 1/3 Co 1/3 Mn 1/3 C modification with YF 3. Journal of Alloys and Compounds, 2017, 711, 462-472.) 2 by surface	2.8	34
6146	The synergistic effects of combining the high energy mechanical milling and wet milling c electrode materials for lithium ion battery. Journal of Power Sources, 2017, 349, 111-120	n Si negative).	4.0	30
6147	New-type K0.7Fe0.5Mn0.5O2 cathode with an expanded and stabilized interlayer structu high-capacity sodium-ion batteries. Nano Energy, 2017, 35, 71-78.	re for	8.2	60

IF

CITATIONS

6148	Mg _{<i>x</i>} Mn _{2–<i>x</i>} B ₂ O ₅ Pyroborates (2/3 â‰)#Tj E 29, 3118-3125.	TQq0 0 0 3.2	rgBT /Overlo 13
6149	Mechanistic Evolution of Aprotic Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2017, 7, 1602934.	10.2	130
6150	From Trash to Treasure: Turning Air Pollutants into Materials for Energy Storage. ChemNanoMat, 2017, 3, 392-400.	1.5	4
6151	Composite Electrolyte for Allâ€Solidâ€State Lithium Batteries: Lowâ€Temperature Fabrication and Conductivity Enhancement. ChemSusChem, 2017, 10, 2175-2181.	3.6	46
6152	High Tap Density Li ₄ Ti ₅ O ₁₂ Microspheres: Synthetic Conditions and Advanced Electrochemical Performance. Energy Technology, 2017, 5, 1680-1686.	1.8	16
6153	High microporosity of carbide-derived carbon prepared from a vacuum-treated precursor for energy storage devices. Carbon, 2017, 118, 327-338.	5.4	11
6154	Preparation of bamboo carbon fiber and sandwich-like bamboo carbon fiber@SnO2@carbon composites and their potential application in structural lithium-ion battery anodes. Journal of Alloys and Compounds, 2017, 709, 227-233.	2.8	39
6155	Adsorption of Aromatic Decomposition Products from Phenyl-Containing Magnesium-Ion Battery Electrolyte Solutions. Journal of Physical Chemistry C, 2017, 121, 7711-7717.	1.5	2
6156	Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 4258-4261.	6.6	775
6157	Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 7667-7690.	5.2	144
6158	Facile synthesis of nanoporous Li _{1+x} V _{1â^'x} O ₂ @C composites as promising anode materials for lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 9156-9163.	1.3	2
6159	Interconnected LiCuVO ₄ networks with in situ Cu generation as high-performance lithium-ion battery anode. Physical Chemistry Chemical Physics, 2017, 19, 13341-13347.	1.3	15
6160	High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3584-3589.	3.3	412
6161	Investigation of Li5Cr7Ti6O25 as novel anode material for high-power lithium-ion batteries. Ceramics International, 2017, 43, 7908-7915.	2.3	9
6162	Phosphorus nanoparticles combined with cubic boron nitride and graphene as stable sodium-ion battery anodes. Electrochimica Acta, 2017, 235, 150-157.	2.6	34
6163	Visualization of Electrochemical Reactions in Battery Materials with X-ray Microscopy and Mapping. Chemistry of Materials, 2017, 29, 3347-3362.	3.2	80
6164	Structural Exfoliation of Layered Cathode under High Voltage and Its Suppression by Interface Film Derived from Electrolyte Additive. ACS Applied Materials & Interfaces, 2017, 9, 12021-12034.	4.0	62
6165	Design of coherent anode materials with 0D Ni ₃ S ₂ nanoparticles self-assembled on 3D interconnected carbon networks for fast and reversible sodium storage. Journal of Materials Chemistry A, 2017, 5, 7394-7402.	5.2	125

ARTICLE

#

#	Article	IF	CITATIONS
6166	Beyond lithium-ion batteries: A computational study on Na-S and Na-O batteries. IOP Conference Series: Materials Science and Engineering, 2017, 169, 012001.	0.3	4
6167	A Tunable 3D Nanostructured Conductive Gel Framework Electrode for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2017, 29, 1603922.	11.1	175
6168	High-performance lithium ion batteries using SiO 2 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 microspheres as cathodes. Journal of Alloys and Compounds, 2017, 709, 708-716.	2.8	90
6169	Lithium vanadate nanowires@reduced graphene oxide nanocomposites on titanium foil with super high capacities for lithium-ion batteries. Journal of Colloid and Interface Science, 2017, 498, 210-216.	5.0	15
6170	Achievement of significantly improved lithium storage for novel clew-like Li 4 Ti 5 O 12 anode assembled by ultrafine nanowires. Journal of Power Sources, 2017, 350, 49-55.	4.0	24
6171	MoS ₂ â€Based Nanocomposites for Electrochemical Energy Storage. Advanced Science, 2017, 4, 1600289.	5.6	374
6172	Confined selenium within metal-organic frameworks derived porous carbon microcubes as cathode for rechargeable lithium–selenium batteries. Journal of Power Sources, 2017, 341, 53-59.	4.0	56
6173	Synthesis and improved electrochemical performance of LiMn2–xGdxO4 based cathodes. Solid State Ionics, 2017, 300, 18-25.	1.3	15
6174	Synthesis of disk-like LiNi1/3Co1/3Mn1/3O2nanoplates with exposed (001) planes and their enhanced rate performance in a lithium ion battery. CrystEngComm, 2017, 19, 442-446.	1.3	19
6175	New insight into Li/Ni disorder in layered cathode materials for lithium ion batteries: a joint study of neutron diffraction, electrochemical kinetic analysis and first-principles calculations. Journal of Materials Chemistry A, 2017, 5, 1679-1686.	5.2	73
6176	Highly Stable Cycling of Amorphous Li ₂ CO ₃ -Coated α-Fe ₂ O ₃ Nanocrystallines Prepared via a New Mechanochemical Strategy for Li-Ion Batteries. Advanced Functional Materials, 2017, 27, 1605011.	7.8	53
6177	Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2017, 10, 129-136.	15.6	154
6178	Improved structural stability and electrochemical performance of Na3V2 (PO4)3 cathode material by Cr doping. Ionics, 2017, 23, 1097-1105.	1.2	26
6179	A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes. Advanced Energy Materials, 2017, 7, 1601424.	10.2	486
6180	Pr-modified Li4Ti5O12 nanofibers as an anode material for lithium-ion batteries with outstanding cycling performance and rate performance. Ionics, 2017, 23, 597-605.	1.2	8
6181	Assessing the electrochemical properties of polypyridine and polythiophene for prospective applications in sustainable organic batteries. Physical Chemistry Chemical Physics, 2017, 19, 3307-3314.	1.3	15
6182	Porous graphdiyne applied for sodium ion storage. Journal of Materials Chemistry A, 2017, 5, 2045-2051.	5.2	73
6183	A precise theoretical method for high- throughput screening of novel organic electrode materials for Li-ion batteries. Journal of Materiomics, 2017, 3, 184-190.	2.8	10

#	Article	IF	CITATIONS
6184	(La1â^'xSrx)0.98MnO3 perovskite with A-site deficiencies toward oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 2017, 342, 192-201.	4.0	87
6185	Gallium-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Garnet-Type Electrolytes with High Lithium-Ion Conductivity. ACS Applied Materials & Interfaces, 2017, 9, 1542-1552.	4.0	266
6186	Carbonâ€Assisted Technique to Modify the Surface of Recycled Silicon/Silicon Carbide Composite for Lithiumâ€Ion Batteries. Energy Technology, 2017, 5, 1415-1422.	1.8	7
6187	Formation of hollow Co3O4 nanocages with hierarchical shell structure as anode materials for lithium-ion batteries. Journal of Porous Materials, 2017, 24, 1079-1088.	1.3	12
6188	Oneâ€Dimensional Earthâ€Abundant Nanomaterials for Waterâ€Splitting Electrocatalysts. Advanced Science, 2017, 4, 1600380.	5.6	253
6189	A molybdenum disulfide/reduced oxide-graphene nanoflakelet-on-sheet structure for lithium ion batteries. Applied Surface Science, 2017, 399, 237-244.	3.1	14
6190	SiO 2 @C hollow sphere anodes for lithium-ion batteries. Journal of Materials Science and Technology, 2017, 33, 239-245.	5.6	90
6191	Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li S batteries: A density functional theory study. Journal of Power Sources, 2017, 342, 64-69.	4.0	135
6192	Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes. Composites Part B: Engineering, 2017, 112, 31-37.	5.9	45
6193	Small Dopants Make Big Differences: Enhanced Electrocatalytic Performance of MoS2 Monolayer for Oxygen Reduction Reaction (ORR) by N– and P–Doping. Electrochimica Acta, 2017, 225, 543-550.	2.6	106
6194	Tunable Pseudocapacitance in 3D TiO _{2â^îr} Nanomembranes Enabling Superior Lithium Storage Performance. ACS Nano, 2017, 11, 821-830.	7.3	124
6195	All-solid-state secondary lithium battery using solid polymer electrolyte and anthraquinone cathode. Solid State Ionics, 2017, 300, 114-119.	1.3	43
6196	Fast Na ⁺ Ion Conduction in NASICON-Type Na _{3.4} Sc ₂ (SiO ₄) _{0.4} (PO ₄) _{2.6} Observed by ²³ Na NMR Relaxometry. Journal of Physical Chemistry C, 2017, 121, 1449-1454.	1.5	36
6197	Bulk-Type All-Solid-State Lithium-Ion Batteries: Remarkable Performances of a Carbon Nanofiber-Supported MgH ₂ Composite Electrode. ACS Applied Materials & Interfaces, 2017, 9, 2261-2266.	4.0	45
6198	Long-Lasting Nb ₂ O ₅ -Based Nanocomposite Materials for Li-Ion Storage. ACS Applied Materials & Interfaces, 2017, 9, 2267-2274.	4.0	75
6199	Thin flexible lithium-ion battery featuring graphite paper based current collectors with enhanced conductivity. Canadian Journal of Chemistry, 2017, 95, 169-173.	0.6	17
6200	Challenges and potential advantages of membranes in lithium air batteries: A review. Renewable and Sustainable Energy Reviews, 2017, 77, 1114-1129.	8.2	51
6201	Electrochemical properties of Sn/C nanoparticles fabricated by redox treatment and pulsed wire evaporation method. Applied Surface Science, 2017, 415, 14-18.	3.1	6

#	Article	IF	CITATIONS
6202	Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Materials, 2017, 7, 64-114.	9.5	211
6203	Effects of binders on electrochemical properties of the SnS 2 nanostructured anode of the lithium-ion batteries. Journal of Alloys and Compounds, 2017, 698, 828-834.	2.8	38
6204	A novel strategy to prepare Ge@C/rGO hybrids as high-rate anode materials for lithium ion batteries. Journal of Power Sources, 2017, 342, 521-528.	4.0	50
6205	Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4290-4295.	4.0	74
6206	Vanadium-Substituted LiCoPO4 Core with a Monolithic LiFePO4 Shell for High-Voltage Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 64-69.	8.8	47
6207	Natureâ€Inspired Electrochemical Energyâ€Storage Materials and Devices. Advanced Energy Materials, 2017, 7, 1601709.	10.2	119
6208	A start of the renaissance for nickel metal hydride batteries: a hydrogen storage alloy series with an ultra-long cycle life. Journal of Materials Chemistry A, 2017, 5, 1145-1152.	5.2	54
6209	General synthesis of graphene-supported bicomponent metal monoxides as alternative high-performance Li-ion anodes to binary spinel oxides. Journal of Materials Chemistry A, 2017, 5, 1687-1697.	5.2	30
6210	Synthesis and electrochemical properties of FeCO 3 with different morphology for lithium-ion battery application. Journal of Alloys and Compounds, 2017, 698, 87-93.	2.8	23
6211	Carbon-coated vanadium selenide as anode for lithium-ion batteries and sodium-ion batteries with enhanced electrochemical performance. Materials Letters, 2017, 189, 152-155.	1.3	38
6212	Interconnected Ni(HCO ₃) ₂ Hollow Spheres Enabled by Self-Sacrificial Templating with Enhanced Lithium Storage Properties. ACS Energy Letters, 2017, 2, 111-116.	8.8	108
6213	Freestanding hollow double-shell Se@CNx nanobelts as large-capacity and high-rate cathodes for Li-Se batteries. Nano Energy, 2017, 32, 1-9.	8.2	108
6214	CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2017, 224, 90-95.	2.6	56
6215	Rapid hydrothermal and post-calcination synthesis of well-shaped LiNi0.5Mn1.5O4 cathode materials for lithium ion batteries. Journal of Alloys and Compounds, 2017, 695, 3393-3401.	2.8	32
6216	A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction. Carbon, 2017, 114, 284-290.	5.4	92
6217	Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi _{0.5} Mn _{1.5} O ₄ cathode material at elevated temperatures. Journal of Materials Chemistry A, 2017, 5, 822-834.	5.2	75
6218	Atomic Insights into the Enhanced Surface Stability in High Voltage Cathode Materials by Ultrathin Coating. Advanced Functional Materials, 2017, 27, 1602873.	7.8	37
6219	Tuning the Electronic Bandgap: An Efficient Way To Improve the Electrocatalytic Activity of Carbonâ€Supported Co ₃ O ₄ Nanocrystals for Oxygen Reduction Reactions. Chemistry - A European Journal, 2017, 23, 2599-2609.	1.7	42

#	Article	IF	CITATIONS
6220	Li/Li ₇ La ₃ Zr ₂ O ₁₂ /LiFePO ₄ All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte. Journal of Physical Chemistry C, 2017, 121, 1431-1435.	1.5	98
6221	Rechargeable Sodium All-Solid-State Battery. ACS Central Science, 2017, 3, 52-57.	5.3	332
6222	Protein-assisted assembly of mesoporous nanocrystals and carbon nanotubes for self-supporting high-performance sodium electrodes. Journal of Materials Chemistry A, 2017, 5, 2749-2758.	5.2	24
6223	Synthesis of fluorine-doped <i>α</i> -Fe ₂ O ₃ nanorods toward enhanced lithium storage capability. Nanotechnology, 2017, 28, 065401.	1.3	15
6224	Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. Journal of Materials Chemistry A, 2017, 5, 3014-3038.	5.2	165
6225	A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative: its preparation and electrochemical performance as a cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2701-2709.	5.2	86
6226	Effect of Graphite and Copper Oxide on the Performance of High Potential Li[Fe 1/3 Ni 1/3 Co 1/3]PO 4 Olivine Cathodes for Lithium Batteries. Electrochimica Acta, 2017, 225, 533-542.	2.6	17
6227	A stable lithiated silicon–chalcogen battery via synergetic chemical coupling between silicon and selenium. Nature Communications, 2017, 8, 13888.	5.8	46
6228	The positive role of (NH ₄) ₃ AlF ₆ coating on Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ oxide as the cathode material for lithium-ion batteries. RSC Advances, 2017, 7, 1191-1199.	1.7	18
6229	Graphene encapsulated Fe ₃ O ₄ nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material. Materials Chemistry Frontiers, 2017, 1, 1185-1193.	3.2	41
6230	Hierarchical Mn1.5Co1.5O4 microspheres constructed from one-dimensional nanorods as high-performance anode material for lithium-ion battery. Ionics, 2017, 23, 1067-1074.	1.2	2
6231	Fast charging self-powered electric double layer capacitor. Journal of Power Sources, 2017, 342, 70-78.	4.0	98
6232	Microwave-assisted chemical insertion: a rapid technique for screening cathodes for Mg-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2309-2318.	5.2	22
6233	Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals Sb ₂ S ₃ Anodes for Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1602149.	10.2	152
6234	Pseudocapacitanceâ€Enhanced Highâ€Rate Lithium Storage in "Honeycombâ€â€like Mn ₂ O ₃ Anodes. ChemElectroChem, 2017, 4, 565-569.	1.7	19
6235	Low-cost and high-performance electrode materials based on BiCoO3 microspheres. Ceramics International, 2017, 43, 2956-2961.	2.3	4
6236	An aprotic lithium/polyiodide semi-liquid battery with an ionic shield. Journal of Power Sources, 2017, 342, 9-16.	4.0	15
6237	High-Performance Aluminum-Ion Battery with CuS@C Microsphere Composite Cathode. ACS Nano, 2017, 11, 469-477.	7.3	388

#	Article	IF	CITATIONS
6238	Advanced Organic Electrode Materials for Rechargeable Sodiumâ€ l on Batteries. Advanced Energy Materials, 2017, 7, 1601792.	10.2	438
6239	SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches. Journal of Molecular Modeling, 2017, 23, 6.	0.8	42
6240	Tunable Properties of Mg-Doped V ₂ O ₅ Thin Films for Energy Applications: Li-Ion Batteries and Electrochromics. Journal of Physical Chemistry C, 2017, 121, 70-79.	1.5	82
6241	Cation Mixing Properties toward Co Diffusion at the LiCoO ₂ Cathode/Sulfide Electrolyte Interface in a Solid-State Battery. ACS Applied Materials & Interfaces, 2017, 9, 286-292.	4.0	110
6242	Synthesis of Vesicle-Like MgFe ₂ O ₄ /Graphene 3D Network Anode Material with Enhanced Lithium Storage Performance. ACS Sustainable Chemistry and Engineering, 2017, 5, 563-570.	3.2	49
6243	Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives. Polymer Journal, 2017, 49, 291-299.	1.3	103
6244	Microwave-assisted Synthesis of CuS/Graphene Composite for Enhanced Lithium Storage Properties. Electrochimica Acta, 2017, 225, 443-451.	2.6	89
6245	Recent advances on MgCl2 based electrolytes for rechargeable Mg batteries. Energy Storage Materials, 2017, 8, 184-188.	9.5	52
6246	Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries. ACS Nano, 2017, 11, 347-357.	7.3	369
6247	Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2459-2469.	7.3	700
6248	Effect of precipitators on the morphologies and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 via rapid nucleation and post-solvothermal method. Electrochimica Acta, 2017, 224, 161-170.	2.6	37
6249	Carbon-coated core–shell Li ₂ S@C nanocomposites as high performance cathode materials for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 1428-1433.	5.2	36
6250	Improving the Performance at Elevated Temperature of High Voltage Graphite/LiNi _{0.5} Mn _{1.5} O ₄ Cells with Added Lithium Catechol Dimethyl Borate. Journal of the Electrochemical Society, 2017, 164, A128-A136.	1.3	19
6251	Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode for Highâ€Energy Aqueous Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1600922.	10.2	103
6252	Coir Pith Derived Bio-carbon: Demonstration of Potential Anode Behavior in Lithium-ion Batteries. Electrochimica Acta, 2017, 225, 143-150.	2.6	50
6253	Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. Nano Letters, 2017, 17, 544-550.	4.5	356
6254	Self-assembled Co3O4hexagonal plates by solvent engineering and their dramatically enhanced electrochemical performance. Nanoscale, 2017, 9, 940-946.	2.8	13
6255	Single lithium-ion conducting poly(tetrafluorostyrene sulfonate) – polyether block copolymer electrolytes. Polymer Chemistry, 2017, 8, 785-794.	1.9	55

#	Article	IF	CITATIONS
6256	Efficient electricity storage with a battolyser, an integrated Ni–Fe battery and electrolyser. Energy and Environmental Science, 2017, 10, 756-764.	15.6	62
6257	Greatly Suppressed Shuttle Effect for Improved Lithium Sulfur Battery Performance through Short Chain Intermediates. Nano Letters, 2017, 17, 538-543.	4.5	271
6258	Amorphous ZnO Quantum Dot/Mesoporous Carbon Bubble Composites for a High-Performance Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2017, 9, 439-446.	4.0	77
6259	A sulfonated poly(arylene ether ketone)/polyoxometalate–graphene oxide composite: a highly ion selective membrane for all vanadium redox flow batteries. Chemical Communications, 2017, 53, 917-920.	2.2	43
6260	Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2411-2428.	5.2	632
6261	Progress in 3D Printing of Carbon Materials for Energyâ€Related Applications. Advanced Materials, 2017, 29, 1603486.	11.1	364
6262	A Bioinspired Nanofibrous Titania/Silicon Composite as an Anode Material for Lithiumâ€lon Batteries. ChemNanoMat, 2017, 3, 120-129.	1.5	14
6263	Synthesis, structure and impedance spectroscopy of NaCsZn 0.5 Mn 0.5 P 2 O 7 pyrophosphate ceramics. Solid State Ionics, 2017, 302, 92-97.	1.3	3
6264	Chemically Driven Enhancement of Oxygen Reduction Electrocatalysis in Supported Perovskite Oxides. Journal of Physical Chemistry Letters, 2017, 8, 235-242.	2.1	6
6265	Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. Nano Letters, 2017, 17, 565-571.	4.5	556
6266	Long-cycled Li ₂ ZnTi ₃ O ₈ /TiO ₂ composite anode material synthesized via a one-pot co-precipitation method for lithium ion batteries. New Journal of Chemistry, 2017, 41, 975-981.	1.4	18
6267	Exploitation of redox-active 1,4-dicyanobenzene and 9,10-dicyanoanthracene as the organic electrode materials in rechargeable lithium battery. Electrochemistry Communications, 2017, 75, 29-32.	2.3	47
6268	Facile fabrication of patterned Si film electrodes containing trench-structured Cu current collectors for thin-film batteries. Electrochimica Acta, 2017, 224, 649-659.	2.6	21
6269	Insights from Studying the Origins of Reversible and Irreversible Capacities on Silicon Electrodes. Journal of the Electrochemical Society, 2017, 164, A6206-A6212.	1.3	17
6270	A review on battery thermal management in electric vehicle application. Journal of Power Sources, 2017, 367, 90-105.	4.0	415
6271	Preparation of 3D Architecture Graphdiyne Nanosheets for High-Performance Sodium-Ion Batteries and Capacitors. ACS Applied Materials & amp; Interfaces, 2017, 9, 40604-40613.	4.0	91
6272	Formation of Stable Solid–Electrolyte Interphase Layer on Few-Layer Graphene-Coated Silicon Nanoparticles for High-Capacity Li-Ion Battery Anodes. Journal of Physical Chemistry C, 2017, 121, 26155-26162.	1.5	20
6273	Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 24159-24167.	5.2	28

	Сітатіої	n Report	
#	Article	IF	CITATIONS
6274	A flexible solar cell/supercapacitor integrated energy device. Nano Energy, 2017, 42, 181-186.	8.2	92
6275	Single-wall carbon nanotube network enabled ultrahigh sulfur-content electrodes for high-performance lithium-sulfur batteries. Nano Energy, 2017, 42, 205-214.	8.2	183
6276	Rapidly Synthesized, Few-Layered Pseudocapacitive SnS ₂ Anode for High-Power Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 40187-40196.	4.0	102
6277	Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 40215-40223.	4.0	95
6278	Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nature Communications, 2017, 8, 1172.	5.8	357
6279	Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries. Journal of Power Sources, 2017, 367, 106-115.	4.0	32
6280	General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes. Journal of the American Chemical Society, 2017, 139, 17359-17367.	6.6	112
6281	An Aqueous Ca″on Battery. Advanced Science, 2017, 4, 1700465.	5.6	254
6282	Multiphase Ge-based Ge/FeGe/FeGe2/C composite anode for high performance lithium ion batteries. Electrochimica Acta, 2017, 253, 522-529.	2.6	27
6283	A Laterally Extended Perylene Hexacarboxylate via Diels-Alder Reaction for High-Performance Organic Lithium-Ion Batteries. Electrochimica Acta, 2017, 254, 255-261.	2.6	22
6284	Hydrothermal synthesis of antimony oxychlorides submicron rods as anode materials for lithium-ion batteries and sodium-ion batteries. Electrochimica Acta, 2017, 254, 246-254.	2.6	47
6285	Redox-Active Polymers for Energy Storage Nanoarchitectonics. Joule, 2017, 1, 739-768.	11.7	400
6286	Self-assembled Li3V2(PO4)3/reduced graphene oxide multilayer composite prepared by sequential adsorption. Journal of Power Sources, 2017, 367, 167-176.	4.0	5
6287	Self-assembled three-dimensional graphene/polyaniline/polyoxometalate hybrid as cathode for improved rechargeable lithium ion batteries. Materials Today Energy, 2017, 6, 53-64.	2.5	38
6290	Red Phosphorus-Embedded Cross-Link-Structural Carbon Films as Flexible Anodes for Highly Reversible Li-Ion Storage. ACS Applied Materials & Interfaces, 2017, 9, 36261-36268.	4.0	24
6291	Synthesis and electrochemical property of amorphous carbon nanotubes wrapped sulfur particles as cathode material for lithium-sulfur batteries. Chemical Physics Letters, 2017, 688, 59-65.	1.2	7
6292	An ingenious design of lamellar Li1.2Mn0.54Ni0.13Co0.13O2 hollow nanosphere cathode for advanced lithium-ion batteries. Electrochimica Acta, 2017, 256, 316-324.	2.6	10
6293	Physicochemical and electrochemical characterisation of imidazolium based IL + GBL mixtures as electrolytes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 28139-28152.	1.3	10

#	Article	IF	CITATIONS
6294	A new layered titanate Na ₂ Li ₂ Ti ₅ O ₁₂ as a high-performance intercalation anode for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 22208-22215.	5.2	18
6295	Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: A DFT study. Applied Materials Today, 2017, 9, 333-340.	2.3	84
6296	Insight into the effects of conductive PANI layer on Li 4 Ti 5 O 12 nanofibers anode for lithium-ion batteries. Solid State Ionics, 2017, 311, 52-57.	1.3	9
6297	Facile synthesis of porous iron oxide/graphene hybrid nanocomposites and potential application in electrochemical energy storage. New Journal of Chemistry, 2017, 41, 13553-13559.	1.4	21
6298	Internal short circuit mitigation of high-voltage lithium-ion batteries with functional current collectors. RSC Advances, 2017, 7, 45662-45667.	1.7	11
6299	Surface/Interfacial Structure and Chemistry of Highâ€Energy Nickelâ€Rich Layered Oxide Cathodes: Advances and Perspectives. Small, 2017, 13, 1701802.	5.2	228
6300	Hybrid LiMn2O4–radical polymer cathodes for pulse power delivery applications. Electrochimica Acta, 2017, 255, 442-448.	2.6	16
6301	Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries. Accounts of Chemical Research, 2017, 50, 2642-2652.	7.6	261
6302	Mesoporous Mn ₃ O ₄ /C Microspheres Fabricated from MOF Template as Advanced Lithium-Ion Battery Anode. Crystal Growth and Design, 2017, 17, 5881-5886.	1.4	60
6303	VS ₂ /Graphene Heterostructures as Promising Anode Material for Li-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 24179-24184.	1.5	73
6304	Local Structures and Li Ion Dynamics in a Li ₁₀ SnP ₂ S ₁₂ -Based Composite Observed by Multinuclear Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 23370-23376.	1.5	30
6305	Synthesis of Mesoporous CoS ₂ and Ni <i>_x</i> Co _{1–<i>x</i>} S ₂ with Superior Supercapacitive Performance Using a Facile Solid-Phase Sulfurization. ACS Applied Materials & amp; Interfaces, 2017, 9, 36837-36848.	4.0	64
6306	Role of Superexchange Interaction on Tuning of Ni/Li Disordering in Layered Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>})O ₂ . Journal of Physical Chemistry Letters, 2017, 8, 5537-5542.	2.1	125
6307	Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range. Journal of Materials Chemistry A, 2017, 5, 24677-24685.	5.2	35
6308	A strategy of selective and dendrite-free lithium deposition for lithium batteries. Nano Energy, 2017, 42, 262-268.	8.2	90
6309	Between Scylla and Charybdis: Balancing Among Structural Stability and Energy Density of Layered NCM Cathode Materials for Advanced Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 26163-26171.	1.5	233
6310	A Si-doped flexible self-supporting comb-like polyethylene glycol copolymer (Si-PEG) film as a polymer electrolyte for an all solid-state lithium-ion battery. Journal of Materials Chemistry A, 2017, 5, 24444-24452.	5.2	39
6311	Identification of Fractional Differential Models for Lithium-ion Polymer Battery Dynamics. IFAC-PapersOnLine, 2017, 50, 405-410.	0.5	6

ARTICLE IF CITATIONS Effect of groove width of modified current collector on internal short circuit of abused lithium-ion 6312 1.3 2 battery. Journal Physics D: Applied Physics, 2017, 50, 425503. Promising Routes to a High Li⁺ Transference Number Electrolyte for Lithium Ion Batteries. 8.8 ACS Energy Letters, 2017, 2, 2563-2575. Rapidly annealed nanoporous graphene materials for electrochemical energy storage. Journal of 6314 5.213 Materials Chemistry A, 2017, 5, 23720-23726. Redox-active cathode interphases in solid-state batteries. Journal of Materials Chemistry A, 2017, 5, 206 22750-22760. Aligned MWNT channels in free standing polymer nanocomposite as an electrode for Li-ion battery. 6316 1.5 9 Applied Physics Letters, 2017, 110, . Computational and experimental characterization of a pyrrolidinium-based ionic liquid for electrolyte applications. Journal of Chemical Physics, 2017, 147, 161731. 1.2 The mediated synthesis of FeF3 nanocrystals through (NH4)3FeF6 precursors as the cathode material 6318 2.6 25 for high power lithium ion batteries. Electrochimica Acta, 2017, 253, 545-553. Size effect in nanocrystalline lithium-ion conducting perovskite: Li0.30La0.57TiO3. Solid State Ionics, 6319 1.3 2017, 310, 38-43. Lithium Azide as an Electrolyte Additive for Allâ€Solidâ€State Lithium–Sulfur Batteries. Angewandte 6320 7.2 213 Chemie - International Edition, 2017, 56, 15368-15372. Enhanced electrochemical performance of lithium rich layered cathode materials by Ca2+ 2.6 substitution. Electrochimica Acta, 2017, 256, 10-18. Hierarchically structural TiO2 nanorods composed of rutile core and anatase shell as a durable 6322 12 1.9 anode material for lithium-ion intercalation. Journal of Electroanalytical Chemistry, 2017, 804, 87-91. Polytriphenylamine derivative with enhanced electrochemical performance as the organic cathode 1.8 material for rechargeable batteries. Polymer, 2017, 130, 135-142. Poly(quinone-amine)/nanocarbon composite electrodes with enhanced proton storage capacity. 6324 5.2 47 Journal of Materials Chemistry A, 2017, 5, 23292-23298. Development of a new alluaudite-based cathode material with high power and long cyclability for 5.2 application in Na ion batteries in real-life. Journal of Materials Chemistry A, 2017, 5, 22334-22340. Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Advanced Functional 6326 7.8 141 Materials, 2017, 27, 1704391. Chemical Intercalation of Topological Insulator Grid Nanostructures for Highâ€Performance 11.1 Transparent Electrodes. Advanced Materials, 2017, 29, 1703424. Lithium Azide as an Electrolyte Additive for Allâ€Solidâ€State Lithium–Sulfur Batteries. Angewandte 6328 1.6 12 Chemie, 2017, 129, 15570-15574. Group IVA Element (Si, Ge, Sn)â€Based Alloying/Dealloying Anodes as Negative Electrodes for Fullâ€Cell 5.2 Lithiumâ€Ion Batteries. Small, 2017, 13, 1702000.

CITATION REPORT

#	Article	IF	CITATIONS
6330	Carbon-Encapsulated Sn@N-Doped Carbon Nanotubes as Anode Materials for Application in SIBs. ACS Applied Materials & amp; Interfaces, 2017, 9, 37682-37693.	4.0	52
6331	Highly stable lithium ion capacitor enabled by hierarchical polyimide derived carbon microspheres combined with 3D current collectors. Journal of Materials Chemistry A, 2017, 5, 23283-23291.	5.2	94
6332	Comb-like solid polymer electrolyte based on polyethylene glycol-grafted sulfonated polyether ether ketone. Electrochimica Acta, 2017, 255, 396-404.	2.6	59
6333	Test of Diethylmethylammonium Trifluoromethanesulfonate Ionic Liquid as Electrolyte in Electrically Rechargeable Zn/Air Battery. Journal of the Electrochemical Society, 2017, 164, H5224-H5229.	1.3	24
6334	Carbon-Based Nanomaterials Using Low-Temperature Plasmas for Energy Storage Application. , 2017, , 739-805.		1
6335	A highly elastic and flexible solid-state polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium batteries. New Journal of Chemistry, 2017, 41, 13096-13103.	1.4	23
6336	Theoretical design of solid electrolytes with superb ionic conductivity: alloying effect on Li ⁺ transportation in cubic Li ₆ PA ₅ X chalcogenides. Journal of Materials Chemistry A, 2017, 5, 21846-21857.	5.2	70
6337	Porous ZrNb ₂₄ O ₆₂ nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. Journal of Materials Chemistry A, 2017, 5, 22297-22304.	5.2	71
6338	Self-assembly synthesis of nitrogen-doped mesoporous carbons used as high-performance electrode materials in lithium-ion batteries and supercapacitors. New Journal of Chemistry, 2017, 41, 12901-12909.	1.4	19
6339	Synthesis of NiMoS ₄ for High-Performance Hybrid Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A2881-A2888.	1.3	55
6340	Nanosized manganese oxide/holmium oxide: a new composite for water oxidation. New Journal of Chemistry, 2017, 41, 13732-13741.	1.4	7
6341	Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochimica Acta, 2017, 256, 28-36.	2.6	106
6342	Mechatronic design and implementation of a two axes sun tracking photovoltaic system driven by a robotic sensor. Mechatronics, 2017, 47, 148-159.	2.0	39
6343	Designing solid-liquid interphases for sodium batteries. Nature Communications, 2017, 8, 898.	5.8	303
6344	Hierarchical flower-like NiCo ₂ O ₄ @TiO ₂ hetero-nanosheets as anodes for lithium ion batteries. RSC Advances, 2017, 7, 47602-47613.	1.7	29
6345	Designing solid-electrolyte interphases for lithium sulfur electrodes using ionic shields. Nano Energy, 2017, 41, 573-582.	8.2	34
6346	Amorphous carbon coated multiwalled carbon nanotubes@transition metal sulfides composites as high performance anode materials for lithium ion batteries. Electrochimica Acta, 2017, 257, 20-30.	2.6	53
6347	Advances in Structure and Property Optimizations of Battery Electrode Materials. Joule, 2017, 1, 522-547.	11.7	219

# 6348	ARTICLE Ternary AlCl ₃ -Urea-[EMIm]Cl Ionic Liquid Electrolyte for Rechargeable Aluminum-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3093-A3100.	lF 1.3	CITATIONS
6349	Flexible, Highâ€Wettability and Fireâ€Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1703548.	11.1	272
6350	Atomicâ€Scale Monitoring of Electrode Materials in Lithiumâ€Ion Batteries using In Situ Transmission Electron Microscopy. Advanced Energy Materials, 2017, 7, 1700709.	10.2	53
6351	Structural and electrochemical properties of Fe-doped Na 2 Mn 3-x Fe x (P 2 O 7) 2 cathode material for sodium ion batteries. Journal of Power Sources, 2017, 370, 114-121.	4.0	20
6352	Simple and Effective Gas-Phase Doping for Lithium Metal Protection in Lithium Metal Batteries. Chemistry of Materials, 2017, 29, 9182-9191.	3.2	32
6353	Improved Performances of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Material Employing NaAlO ₂ as a New Aluminum Source. ACS Applied Materials & Interfaces, 2017, 9, 38567-38574.	4.0	39
6354	Engineering 2D Nanofluidic Liâ€lon Transport Channels for Superior Electrochemical Energy Storage. Advanced Materials, 2017, 29, 1703909.	11.1	97
6355	Intercalating Ti ₂ Nb ₁₄ O ₃₉ Anode Materials for Fastâ€Charging, Highâ€Capacity and Safe Lithium–Ion Batteries. Small, 2017, 13, 1702903.	5.2	50
6356	Oxygen Vacancies and Stacking Faults Introduced by Low-Temperature Reduction Improve the Electrochemical Properties of Li ₂ MnO ₃ Nanobelts as Lithium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2017, 9, 38545-38555.	4.0	50
6357	Foam-like CoO@N,S-codoped carbon composites derived from a well-designedÂN,S-rich Co-MOF for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 22964-22969.	5.2	106
6358	Electrochemical Magnetization Switching and Energy Storage in Manganese Oxide filled Carbon Nanotubes. Scientific Reports, 2017, 7, 13625.	1.6	16
6359	Interface structure between tetraglyme and graphite. Journal of Chemical Physics, 2017, 147, 124701.	1.2	13
6360	Effect of Nucleophilic Lithium Trimethylsiloxide on Chemical and Electrochemical Aspects of Electrophilic Carbonateâ€based Solvents for Lithiumâ€ion Batteries. Bulletin of the Korean Chemical Society, 2017, 38, 1214-1220.	1.0	1
6361	Reduced Graphene Oxide/Lil Composite Lithium Ion Battery Cathodes. Nano Letters, 2017, 17, 6893-6899.	4.5	67
6362	Evaluating the effect of solid electrolyte interphase formers on lithium depth profiles of the solid electrolyte interphase layer and bulk electrode material in LiNi0.4Mn0.4Co0.2O2/graphite pouch cells obtained with lithium nuclear reaction analysis. Journal of Energy Storage, 2017, 14, 106-111.	3.9	3
6363	Sodium carboxyl methyl cellulose and polyacrylic acid binder with enhanced electrochemical properties for ZnMoO4·0.8H2O anode in lithium ion batteries. Journal of Electroanalytical Chemistry, 2017, 804, 158-164.	1.9	15
6364	Effect of the Hydrofluoroether Cosolvent Structure in Acetonitrile-Based Solvate Electrolytes on the Li ⁺ Solvation Structure and Li–S Battery Performance. ACS Applied Materials & Interfaces, 2017, 9, 39357-39370.	4.0	58
6365	Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Science Advances, 2017, 3, eaao0713.	4.7	131

#	Article	IF	CITATIONS
6366	Large‣cale Fabrication of Core–Shell Structured C/SnO ₂ Hollow Spheres as Anode Materials with Improved Lithium Storage Performance. Small, 2017, 13, 1701993.	5.2	66
6367	Pt nanocrystals electrodeposited on reduced graphene oxide/carbon fiber paper with efficient electrocatalytic properties. Progress in Natural Science: Materials International, 2017, 27, 452-459.	1.8	6
6368	Recent progress in solid-state electrolytes for alkali-ion batteries. Science Bulletin, 2017, 62, 1473-1490.	4.3	86
6369	Grain Boundary Contributions to Li-Ion Transport in the Solid Electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ (LLZO). Chemistry of Materials, 2017, 29, 9639-9647.	3.2	189
6370	One-step synthesis of novel poly(terephthalate- <i>alt</i> benzoquinone) with high specific capacity as a stable organic cathode for Li-ion batteries. New Journal of Chemistry, 2017, 41, 14539-14544.	1.4	18
6371	Smart Electrochemical Energy Storage Devices with Selfâ€Protection and Selfâ€Adaptation Abilities. Advanced Materials, 2017, 29, 1703040.	11.1	77
6372	Self-standing MgMoO4/Reduced Graphene Oxide Nanosheet Arrays for Lithium and Sodium Ion Storage. Electrochimica Acta, 2017, 252, 322-330.	2.6	34
6373	Metal–Organic-Framework-Derived Yolk–Shell-Structured Cobalt-Based Bimetallic Oxide Polyhedron with High Activity for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 31777-31785.	4.0	58
6374	Cr ₂ O ₃ /carbon nanosheet composite with enhanced performance for lithium ion batteries. RSC Advances, 2017, 7, 40243-40248.	1.7	23
6375	Quantification of ionic organo(fluoro)phosphates in decomposed lithium battery electrolytes. RSC Advances, 2017, 7, 39314-39324.	1.7	10
6376	Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery. AIP Advances, 2017, 7, 075115.	0.6	7
6377	Multiscale characterization of 13C-enriched fine-grained graphitic materials for chemical and electrochemical applications. Carbon, 2017, 124, 161-169.	5.4	13
6378	A low-temperature synthetic route to ternary iron-manganese metal fluorides nanoparticles. Journal of Solid State Chemistry, 2017, 256, 67-71.	1.4	2
6379	High-Rate Long-Life Pored Nanoribbon VNb ₉ O ₂₅ Built by Interconnected Ultrafine Nanoparticles as Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 30608-30616.	4.0	54
6380	Fabrication of multilayered-sandwich MoS 2 /c architectures with advanced lithium storage properties. Electrochimica Acta, 2017, 250, 238-243.	2.6	22
6381	Preparation, characterization and ionic conductivity studies of composite sulfide solid electrolyte. Journal of Alloys and Compounds, 2017, 727, 1136-1141.	2.8	13
6382	Flexible Electrodes for Sodiumâ€ion Batteries: Recent Progress and Perspectives. Advanced Materials, 2017, 29, 1703012.	11.1	156
6383	Acetonitrile mediated facile synthesis and self-assembly of silver vanadate nanowires into 3D spongy-like structure as a cathode material for lithium ion battery. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	9

#	Article	IF	CITATIONS
6384	Sliding chains keep particles together. Science, 2017, 357, 250-251.	6.0	11
6385	Stabilizing the Oxygen Ions and Alleviating the Surface Structure Evolution of Li-Excess Layered Cathode for Advanced Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2441-A2447.	1.3	6
6386	High Areal Capacity and Lithium Utilization in Anodes Made of Covalently Connected Graphite Microtubes. Advanced Materials, 2017, 29, 1700783.	11.1	148
6387	Allâ€Solidâ€State Flexible Fiberâ€Based MXene Supercapacitors. Advanced Materials Technologies, 2017, 2, 1700143.	3.0	156
6388	A Praline‣ike Flexible Interlayer with Highly Mounted Polysulfide Anchors for Lithium–Sulfur Batteries. Small, 2017, 13, 1700357.	5.2	37
6389	High-yield humic acid-based hard carbons as promising anode materials for sodium-ion batteries. Carbon, 2017, 123, 727-734.	5.4	77
6390	New 4V-Class and Zero-Strain Cathode Material for Na-Ion Batteries. Chemistry of Materials, 2017, 29, 7826-7832.	3.2	61
6391	3D hierarchical MnO ₂ microspheres: a prospective material for high performance supercapacitors and lithium-ion batteries. Sustainable Energy and Fuels, 2017, 1, 1795-1804.	2.5	39
6392	Macroscopic‣cale Threeâ€Dimensional Carbon Nanofiber Architectures for Electrochemical Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1700826.	10.2	152
6393	Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials. Electrochimica Acta, 2017, 252, 438-445.	2.6	31
6394	Investigation on polyethylene supported poly(butyl methacrylate-acrylonitrile-styrene) terpolymer based gel electrolyte reinforced by doping nano-SiO2 for high voltage lithium ion battery. Electrochimica Acta, 2017, 251, 145-154.	2.6	24
6395	Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom. Applied Energy, 2017, 206, 12-21.	5.1	143
6396	Enhanced lithium storage capability of Li3V2(PO4)3@C co-modified with graphene and Ce3+ doping as high-power cathode for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2017, 111, 349-354.	1.9	7
6397	Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 19738-19744.	5.2	105
6398	Oriented SnS nanoflakes bound on S-doped N-rich carbon nanosheets with a rapid pseudocapacitive response as high-rate anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 19745-19751.	5.2	108
6399	Insight into electrochemical and elastic properties in AFe1-M SO4F (A = Li, Na; M = Co, Ni, Mg) cathode materials: A first principle study. Electrochimica Acta, 2017, 251, 316-323.	2.6	10
6400	Potassium nickel hexacyanoferrate as a high-voltage cathode material for nonaqueous magnesium-ion batteries. Journal of Power Sources, 2017, 363, 269-276.	4.0	49
6401	Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries. Journal of Power Sources, 2017, 365, 76-82.	4.0	30

#	Article	IF	CITATIONS
6402	Noticeable Role of TFSI [–] Anion in the Carbon Cathode Degradation of Li–O ₂ Cells. ACS Applied Materials & Interfaces, 2017, 9, 31710-31720.	4.0	10
6403	Fracture Modeling of Lithium-Silicon Battery Based on Variable Elastic Moduli. Journal of the Electrochemical Society, 2017, 164, E3606-E3612.	1.3	15
6404	Numerical Modeling of Damage Evolution Phenomenon in Solid-State Lithium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A2573-A2589.	1.3	33
6405	Enhanced Structural Stability and Improved Electrochemical Performance of Layered Lithium-Rich Cathode Materials via Tellurium Doping. Journal of the Electrochemical Society, 2017, 164, A2594-A2602.	1.3	24
6406	Progress on Li ₃ VO ₄ as a Promising Anode Material for Liâ€ion Batteries. Chinese Journal of Chemistry, 2017, 35, 1789-1796.	2.6	15
6407	Recent advances in understanding of the mechanism and control of Li ₂ O ₂ formation in aprotic Li–O ₂ batteries. Chemical Society Reviews, 2017, 46, 6046-6072.	18.7	314
6408	A novel mixture of lithium bis(oxalato)borate, gamma-butyrolactone and non-flammable hydrofluoroether as a safe electrolyte for advanced lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 19982-19990.	5.2	39
6409	Graphene supercapacitor with both high power and energy density. Nanotechnology, 2017, 28, 445401.	1.3	137
6410	Hyperpolarized 129Xe nuclear magnetic resonance study of mesoporous silicon sponge materials. Journal of Materials Research, 2017, 32, 3038-3045.	1.2	3
6411	Flexible Composite Solid Electrolyte Facilitating Highly Stable "Soft Contacting―Li–Electrolyte Interface for Solid State Lithiumâ€ŀon Batteries. Advanced Energy Materials, 2017, 7, 1701437.	10.2	237
6412	3D flower-like MnCO3 microcrystals: evolution mechanisms of morphology and enhanced electrochemical performances. Electrochimica Acta, 2017, 251, 119-128.	2.6	58
6413	A facile microwave-assisted approach to the synthesis of flower-like ZnCo ₂ O ₄ anode materials for Li-ion batteries. RSC Advances, 2017, 7, 42476-42483.	1.7	9
6414	Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy. Environmental Science & Technology, 2017, 51, 11960-11966.	4.6	284
6415	Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M _{0.1} Ni _{0.9} Co ₂ O ₄ (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2017, 5, 21016-21026.	5.2	115
6416	MnO Conversion Reaction: TEM and EELS Investigation of the Instability under Electron Irradiation. Journal of the Electrochemical Society, 2017, 164, A1520-A1525.	1.3	1
6417	Twoâ€Step Synthesis of Hierarchical Dual Few‣ayered Fe ₃ O ₄ /MoS ₂ Nanosheets and Their Synergistic Effects on Lithiumâ€Storage Performance. Advanced Materials Interfaces, 2017, 4, 1700639.	1.9	20
6418	An enhanced electrochemical and cycling properties of novel boronic Ionic liquid based ternary gel polymer electrolytes for rechargeable Li/LiCoO2 cells. Scientific Reports, 2017, 7, 11103.	1.6	36
6419	A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a Highâ€Performance Anode for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2017, 23, 16586-16592.	1.7	12

#	Article	IF	CITATIONS
6420	Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nature Materials, 2017, 16, 1142-1148.	13.3	366
6421	Ultrathin Nafion-filled porous membrane for zinc/bromine redox flow batteries. Scientific Reports, 2017, 7, 10503.	1.6	38
6422	Trackable galvanostatic history in phase separation based electrodes for lithium-ion batteries: a mosaic sub-grouping intercalation model. Energy and Environmental Science, 2017, 10, 2352-2364.	15.6	5
6423	Synthesis and electrochemical performance of nano TiO ₂ (B)-coated Li[Li _{0.2} Mn _{0.54} Co _{0.13} Ni _{0.13}]O ₂ cathode materials for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 12962-12968.	1.4	21
6424	Synthesis and electrochemical properties of LiVP2O7/C as novel cathode material for lithium ion batteries. Ceramics International, 2017, 43, 17116-17120.	2.3	7
6425	Facile Synthesis of Unique Cellulose Triacetate Based Flexible and High Performance Gel Polymer Electrolyte for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 34773-34782.	4.0	62
6426	Hierarchical CoO microflower film with excellent electrochemical lithium/sodium storage performance. Journal of Materials Chemistry A, 2017, 5, 20892-20902.	5.2	67
6427	BiVO ₄ Fern Architectures: A Competitive Anode for Lithiumâ€lon Batteries. ChemSusChem, 2017, 10, 4163-4169.	3.6	31
6428	Functionalization of Silicon Nanostructures for Energyâ€Related Applications. Small, 2017, 13, 1701713.	5.2	49
6429	Achieving High-Performance Silicon Anodes of Lithium-Ion Batteries via Atomic and Molecular Layer Deposited Surface Coatings: an Overview. Electrochimica Acta, 2017, 251, 710-728.	2.6	58
6430	Channelized carbon nanofiber with uniform-dispersed GeO2 as anode for long-lifespan lithium-ion batteries. Journal of Alloys and Compounds, 2017, 729, 313-322.	2.8	16
6431	Electrochemical properties of Na MnFe(CN)6·zH2O synthesized in a Taylor-Couette reactor as a Na-ion battery cathode material. Journal of Alloys and Compounds, 2017, 729, 590-596.	2.8	33
6432	Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries. Joule, 2017, 1, 394-406.	11.7	202
6433	Mechanochemical assembly of 3D mesoporous conducting-polymer aerogels for high performance hybrid electrochemical energy storage. Nano Energy, 2017, 41, 193-200.	8.2	20
6434	Lithiation and Delithiation Dynamics of Different Li Sites in Li-Rich Battery Cathodes Studied by <i>Operando</i> Nuclear Magnetic Resonance. Chemistry of Materials, 2017, 29, 8282-8291.	3.2	41
6435	Combined Effect of Porosity and Surface Chemistry on the Electrochemical Reduction of Oxygen on Cellular Vitreous Carbon Foam Catalyst. ACS Catalysis, 2017, 7, 7466-7478.	5.5	42
6436	Long-lived electrodes for plastic batteries. Nature, 2017, 549, 339-340.	13.7	13
6437	Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Materials Horizons, 2017, 4, 1145-1150.	6.4	222

#	Article	IF	CITATIONS
6438	Half-metallic TiF ₃ : a potential anode material for Li-ion spin batteries. Journal of Materials Chemistry A, 2017, 5, 21486-21490.	5.2	16
6439	Atomicâ€Level Coupled Interfaces and Lattice Distortion on CuS/NiS ₂ Nanocrystals Boost Oxygen Catalysis for Flexible Znâ€Air Batteries. Advanced Functional Materials, 2017, 27, 1703779.	7.8	200
6440	Liquid Quinones for Solventâ€Free Redox Flow Batteries. Advanced Materials, 2017, 29, 1606592.	11.1	41
6441	Fast microwave synthesis of SnO2@graphene/N-doped carbons as anode materials in sodium ion batteries. Journal of Alloys and Compounds, 2017, 728, 1305-1314.	2.8	42
6442	On the key role of Dy 3+ in spinel LiMn 2 O 4 cathodes for Li-ion rechargeable batteries. Journal of Electroanalytical Chemistry, 2017, 802, 94-99.	1.9	12
6443	Multifunctional SnO2/3D graphene hybrid materials for sodium-ion and lithium-ion batteries with excellent rate capability and long cycle life. Nano Research, 2017, 10, 4398-4414.	5.8	63
6444	Enhanced Electrocatalytic Performance of Self-supported AuCuCo for Oxygen Reduction and Evolution Reactions. Electrochimica Acta, 2017, 252, 261-267.	2.6	14
6445	Synthesis and electrochemical performance of double shell SnO2@amorphous TiO2 spheres for lithium ion battery application. Powder Technology, 2017, 322, 84-91.	2.1	19
6446	Crystal Structure Modification Enhanced FeNb ₁₁ O ₂₉ Anodes for Lithiumâ€ion Batteries. ChemElectroChem, 2017, 4, 3171-3180.	1.7	139
6447	Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. Journal of Materials Chemistry A, 2017, 5, 22040-22094.	5.2	341
6448	Advanced sodium storage property in an exfoliated MoO3 anode: the stability and performance improvement by in situ impedance mapping. Journal of Materials Chemistry A, 2017, 5, 20491-20496.	5.2	14
6449	Microtubular SnO ₂ /V ₂ O ₅ Composites Derived from Cellulose Substance as Cathode Materials of Lithiumâ€ion Batteries. ChemistrySelect, 2017, 2, 7987-7995.	0.7	4
6450	Optical and Optoelectronic Property Analysis of Nanomaterials inside Transmission Electron Microscope. Small, 2017, 13, 1701564.	5.2	19
6451	Bio-inspired Self-Healing Electrolytes for Li-S Batteries. CheM, 2017, 3, 388-389.	5.8	13
6452	High electrochemical performances of solid nano-composite star polymer electrolytes enhanced by different carbon nanomaterials. Composites Science and Technology, 2017, 152, 68-75.	3.8	20
6453	Free-Standing Sandwich-Structured Flexible Film Electrode Composed of Na2Ti3O7 Nanowires@CNT and Reduced Graphene Oxide for Advanced Sodium-Ion Batteries. ACS Omega, 2017, 2, 5726-5736.	1.6	14
6454	Designed synthesis of SnO2–C hollow microspheres as an anode material for lithium-ion batteries. Chemical Communications, 2017, 53, 11189-11192.	2.2	63
6455	Hierarchical bilayered hybrid nanostructural arrays of NiCo ₂ O ₄ micro-urchins and nanowires as a free-standing electrode with high loading for high-performance lithium-ion batteries. Nanoscale, 2017, 9, 14979-14989.	2.8	35

	CITATION REI	CITATION REPORT	
#	Article	IF	CITATIONS
6456	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie, 2017, 129, 14295-14300.	1.6	21
6457	A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfideâ€Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance. Angewandte Chemie - International Edition, 2017, 56, 14107-14112.	7.2	113
6458	Effect of Silyl Etherâ€functinoalized Dimethoxydimethylsilane on Electrochemical Performance of a Niâ€rich NCM Cathode. ChemPhysChem, 2017, 18, 3402-3406.	1.0	39
6459	Challenges and Recent Progress in the Development of Si Anodes for Lithiumâ€lon Battery. Advanced Energy Materials, 2017, 7, 1700715.	10.2	709
6460	Ultrathin Cobaltâ€Based Metal–Organic Framework Nanosheets with Both Metal and Ligand Redox Activities for Superior Lithium Storage. Chemistry - A European Journal, 2017, 23, 15984-15990.	1.7	77
6461	Highâ€Energyâ€Density Aqueous Magnesiumâ€Ion Battery Based on a Carbonâ€Coated FeVO ₄ Ano and a Mgâ€OMSâ€1 Cathode. Chemistry - A European Journal, 2017, 23, 17118-17126.	de 1.7	80
6462	A compact process to prepare LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material from nickel-copper sulfide ore. Hydrometallurgy, 2017, 174, 1-9.	1.8	13
6463	One-Dimensional Zinc-Based Coordination Polymer as a Higher Capacity Anode Material for Lithium Ion Batteries. Inorganic Chemistry, 2017, 56, 11603-11609.	1.9	47
6464	Sb ₂ O ₃ Nanoparticles Anchored on Graphene Sheets via Alcohol Dissolution–Reprecipitation Method for Excellent Lithium-Storage Properties. ACS Applied Materials & Interfaces, 2017, 9, 34927-34936.	4.0	68
6465	In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO ₂ nanotubes as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 20651-20657.	5.2	45
6466	Superior Potassium Ion Storage via Vertical MoS ₂ "Nanoâ€Rose―with Expanded Interlayers on Graphene. Small, 2017, 13, 1701471.	5.2	221
6467	Unusual Spinel-to-Layered Transformation in LiMn ₂ O ₄ Cathode Explained by Electrochemical and Thermal Stability Investigation. ACS Applied Materials & Interfaces, 2017, 9, 35463-35475.	4.0	90
6468	Engineered Fabrication of Hierarchical Frameworks with Tuned Pore Structure and N,O-Co-Doping for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 31940-31949.	4.0	53
6469	Columnar Lithium Metal Anodes. Angewandte Chemie - International Edition, 2017, 56, 14207-14211.	7.2	199
6470	Synthesis and electrochemical performance of ZnO@MnO2 core–shell column arrays on Ni Foam as electrode for supercapacitors. Journal of Materials Science: Materials in Electronics, 2017, 28, 18262-18268.	1.1	2
6471	Enhanced energy density and electrochemical performance of all-solid-state lithium batteries through microstructural distribution of solid electrolyte. Ceramics International, 2017, 43, 15952-15958.	2.3	31
6472	Fabrication of porous Si/nitrogen doped carbon composite and its enhanced lithium storage capability. Materials Chemistry and Physics, 2017, 201, 302-310.	2.0	15
6473	Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature Communications, 2017, 8, 405.	5.8	1,224

#	Article	IF	Citations
 6474	Copper ferrites@reduced graphene oxide anode materials for advanced lithium storage applications. Scientific Reports, 2017, 7, 8903.	1.6	62
6475	Sodium–sulfur system: Phase diagram, thermodynamic properties, electrochemical studies, and use in chemical current sources in the molten and solid states. Russian Journal of Applied Chemistry, 2017, 90, 661-675.	0.1	7
6476	Columnar Lithium Metal Anodes. Angewandte Chemie, 2017, 129, 14395-14399.	1.6	51
6477	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi>Na</mml:mi><mml:mi>x</mml:mi></mml:msub> <mml:mi>Fe</mml:mi> < stretchy="false">(<mml:msub><mml:mi>SO</mml:mi><mml:mn>4</mml:mn></mml:msub> <mml:msub></mml:msub> <td>mml:mo ub><mml< td=""><td>:mð) Tj ETQ</td></mml<></td>	mml:mo ub> <mml< td=""><td>:mð) Tj ETQ</td></mml<>	:mð) Tj ETQ
6478	2012 8 Epitaxial Growth of Urchin‣ike CoSe ₂ Nanorods from Electrospun Coâ€Embedded Porous Carbon Nanofibers and Their Superior Lithium Storage Properties. Particle and Particle Systems Characterization, 2017, 34, 1700185.	1.2	49
6479	Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy, 2017, 40, 559-565.	8.2	83
6480	MOF-derived iron as an active energy storage material for intermediate-temperature solid oxide iron–air redox batteries. Chemical Communications, 2017, 53, 10564-10567.	2.2	22
6481	Study of extrusion process for pouch film manufacturing. International Journal of Precision Engineering and Manufacturing, 2017, 18, 1307-1311.	1.1	2
6482	Improved the lithium storage capability of Na 2 Li 2 Ti 6 O 14 by barium doping. Journal of Electroanalytical Chemistry, 2017, 802, 100-108.	1.9	14
6483	Construction of interconnected micropores in poly(arylene ether) based single ion conducting blend polymer membranes via vapor-induced phase separation. Journal of Membrane Science, 2017, 544, 47-57.	4.1	36
6484	Facile Synthesis of Si@SiC Composite as an Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 32790-32800.	4.0	55
6485	Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. Nature Communications, 2017, 8, 462.	5.8	48
6486	An inorganic–organic nanocomposite calix[4]quinone (C4Q)/CMK-3 as a cathode material for high-capacity sodium batteries. Inorganic Chemistry Frontiers, 2017, 4, 1806-1812.	3.0	42
6487	Na-stabilized Ru-based lithium rich layered oxides with enhanced electrochemical performance for lithium ion batteries. Electrochimica Acta, 2017, 253, 31-38.	2.6	5
6488	Strongly coupled FeP@reduced graphene oxide nanocomposites with superior performance for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 728, 328-336.	2.8	41
6489	Structure, Ionic Conductivity, and Dielectric Properties of Li-Rich Garnet-type Li _{5+2<i>x</i>} La ₃ Ta _{2–<i>x</i>} Sm _{<i>x</i>} O ₁₂ (0 ≤i>x â‰ฃ.55) and Their Chemical Stability. Inorganic Chemistry, 2017, 56, 8865-8877.	1.9	28
6490	Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25941-25951.	4.0	35
6491	Electrostatic Selfâ€Assembly of the Composite La _{0.7} Sr _{0.3} MnO ₃ @Ce _{0.75} Zr _{0.25} O _{2as Electrocatalyst for the Oxygen Reduction Reaction in Aluminum–Air Batteries. Energy Technology, 2017. 5. 2226-2233.})> 1.8	6

#	Article	IF	Citations
6492	Ultrathin Li ₄ Ti ₅ O ₁₂ Nanosheet Based Hierarchical Microspheres for Highâ€Rate and Longâ€Cycle Life Liâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700950.	10.2	108
6493	Optimized Design Principles for Silicon oated Nanostructured Electrode Materials and their Application in High apacity Lithiumâ€ion Batteries. Energy Technology, 2017, 5, 2253-2264.	1.8	8
6494	Advances in Lithium-Containing Anodes of Aprotic Li-O ₂ Batteries: Challenges and Strategies for Improvements. Small Methods, 2017, 1, 1700135.	4.6	78
6495	Novel silicon nanoparticles with nitrogen-doped carbon shell dispersed in nitrogen-doped graphene and CNTs hybrid electrode for lithium ion battery. Applied Surface Science, 2017, 425, 742-749.	3.1	36
6496	Porous anode of lithium–oxygen battery based on double-gas-path structure. International Journal of Hydrogen Energy, 2017, 42, 29944-29948.	3.8	14
6497	Highly reversible lithium storage in cobalt 2,5-dioxido-1,4-benzenedicarboxylate metal-organic frameworks boosted by pseudocapacitance. Journal of Colloid and Interface Science, 2017, 506, 365-372.	5.0	31
6498	Adaptive control of a PFC batteries charger. , 2017, , .		0
6499	Surface and Interface Engineering of Siliconâ€Based Anode Materials for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1701083.	10.2	354
6500	Stabilizing the Performance of Highâ€Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration. ChemSusChem, 2017, 10, 3490-3496.	3.6	20
6501	Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries. Applied Surface Science, 2017, 425, 1082-1088.	3.1	44
6502	Ti 2 Nb 10 O 29–x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. Journal of Power Sources, 2017, 362, 250-257.	4.0	80
6503	Highly stable aromatic poly (ether sulfone) composite ion exchange membrane for vanadium flow battery. Journal of Membrane Science, 2017, 541, 465-473.	4.1	50
6504	Ultrafast Ionic Liquid-Assisted Microwave Synthesis of SnO Microflowers and Their Superior Sodium-Ion Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 26797-26804.	4.0	29
6505	Synthesis of embossing Si nanomesh and its application as an anode for lithium ion batteries. Journal of Power Sources, 2017, 362, 270-277.	4.0	25
6506	3-D vertically aligned few layer graphene – partially reduced graphene oxide/sulfur electrodes for high performance lithium–sulfur batteries. Sustainable Energy and Fuels, 2017, 1, 1516-1523.	2.5	12
6507	Ultraâ€High Pyridinic Nâ€Doped Porous Carbon Monolith Enabling Highâ€Capacity Kâ€Ion Battery Anodes for Both Halfâ€Cell and Fullâ€Cell Applications. Advanced Materials, 2017, 29, 1702268.	11.1	348
6508	Rational Design of Three‣ayered TiO ₂ @Carbon@MoS ₂ Hierarchical Nanotubes for Enhanced Lithium Storage. Advanced Materials, 2017, 29, 1702724.	11.1	300
6509	A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy, 2017, 39, 489-498.	8.2	172

#	Article	IF	CITATIONS
6510	Harnessing the Power of Plastics: Nanostructured Polymer Systems in Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 1919-1936.	8.8	77
6511	Review—Recent Research Progress in Surface Modification of LiFePO ₄ Cathode Materials. Journal of the Electrochemical Society, 2017, 164, A2138-A2150.	1.3	55
6512	Nanosilicon anodes for high performance rechargeable batteries. Progress in Materials Science, 2017, 90, 1-44.	16.0	172
6513	High-Performance Cathode Based on Microporous Mo–V–Bi Oxide for Li Battery and Investigation by <i>Operando</i> X-ray Absorption Fine Structure. ACS Applied Materials & Interfaces, 2017, 9, 26052-26059.	4.0	6
6514	Improved Performance in FeF ₂ Conversion Cathodes through Use of a Conductive 3D Scaffold and Al ₂ O ₃ ALD Coating. Advanced Functional Materials, 2017, 27, 1702783.	7.8	55
6515	Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.	11.1	596
6516	Activation of Passive Nanofillers in Composite Polymer Electrolyte for Higher Performance Lithiumâ€lon Batteries. Advanced Sustainable Systems, 2017, 1, 1700043.	2.7	26
6517	Enhancement of thermal transport in Gel Polymer Electrolytes with embedded BN/Al2O3 nano- and micro-particles. Journal of Power Sources, 2017, 362, 219-227.	4.0	32
6518	A.C. impedance, XRD, DSC, SEM and charge/discharge studies on Al2O3, TiO2, SiO2 dispersoid LiPF6/PVC/PVdF-co-HFP composite polymer electrolytes by phase inversion. AlP Conference Proceedings, 2017, , .	0.3	0
6519	Utilizing Co ²⁺ /Co ³⁺ Redox Couple in P2‣ayered Na _{0.66} Co _{0.22} Mn _{0.44} Ti _{0.34} O ₂ Cathode for Sodium″on Batteries. Advanced Science, 2017, 4, 1700219.	5.6	85
6520	Binder free 2D aligned efficient MnO ₂ micro flowers as stable electrodes for symmetric supercapacitor applications. RSC Advances, 2017, 7, 36886-36894.	1.7	21
6521	Recent developments of cellulose materials for lithium-ion battery separators. Cellulose, 2017, 24, 4103-4122.	2.4	148
6522	Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon, 2017, 123, 433-439.	5.4	35
6523	Defects-rich graphene/carbon quantum dot composites as highly efficient electrocatalysts forÂaqueous zinc/air batteries. International Journal of Hydrogen Energy, 2017, 42, 21305-21310.	3.8	34
6524	2D Frameworks of C ₂ N and C ₃ N as New Anode Materials for Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1702007.	11.1	282
6525	Hierarchical VS ₂ Nanosheet Assemblies: A Universal Host Material for the Reversible Storage of Alkali Metal Ions. Advanced Materials, 2017, 29, 1702061.	11.1	320
6526	The Proton Trap Technology—Toward High Potential Quinoneâ€Based Organic Energy Storage. Advanced Energy Materials, 2017, 7, 1700259.	10.2	20
6527	Application of Synchrotron Radiation Technologies to Electrode Materials for Li―and Naâ€ŀon Batteries. Advanced Energy Materials, 2017, 7, 1700460.	10.2	39

#	Article	IF	CITATIONS
6528	Recent Progress in the Applications of Vanadiumâ€Based Oxides on Energy Storage: from Lowâ€Dimensional Nanomaterials Synthesis to 3D Micro/Nanoâ€Structures and Freeâ€Standing Electrodes Fabrication. Advanced Energy Materials, 2017, 7, 1700547.	10.2	151
6529	MoS ₂ Nanosheets Grown on CMK-3 with Enhanced Sodium Storage Properties. ChemistrySelect, 2017, 2, 5283-5287.	0.7	8
6530	Iodineâ€Doped Graphene with Opportune Interlayer Spacing as Superior Anode Materials for Highâ€Performance Lithiumâ€Ion Batteries. ChemistrySelect, 2017, 2, 5518-5523.	0.7	15
6531	Rechargeable Aluminumâ€ion Batteries Based on an Openâ€Tunnel Framework. Small, 2017, 13, 1701296.	5.2	59
6532	Aluminum-based materials for advanced battery systems. Science China Materials, 2017, 60, 577-607.	3.5	5
6533	Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite. CheM, 2017, 3, 152-163.	5.8	228
6534	Oxygen redox reactions in Li ion battery electrodes studied by resonant inelastic X-ray scattering. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 79-87.	0.8	7
6535	Assembled graphene nanotubes decorated by hierarchical MoS2 structures: Enhanced lithium storage and in situ TEM lithiation study. Energy Storage Materials, 2017, 9, 188-194.	9.5	21
6536	Electrochemical lithium intercalation chemistry of condensed molybdenum metal cluster oxide: LiMo 4 O 6. Journal of Solid State Chemistry, 2017, 254, 90-95.	1.4	4
6537	Insight into the Role of Metal–Oxygen Bond and O 2p Hole in High-Voltage Cathode LiNi _{<i>x</i>} Mn _{2–<i>x</i>} O ₄ . Journal of Physical Chemistry C, 2017, 121, 16079-16087.	1.5	50
6538	Rapid preparation of SnO ₂ /C nanospheres by using organotin as building blocks and their application in lithium-ion batteries. RSC Advances, 2017, 7, 34442-34447.	1.7	8
6539	Twisted Perylene Diimides with Tunable Redox Properties for Organic Sodiumâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1701316.	10.2	101
6540	Numerical optimization of the spatial conductivity distribution within cathode microstructures of lithium-ion batteries considering the cell performance. International Journal of Energy Research, 2017, 41, 2282-2296.	2.2	12
6541	Rechargeable organic batteries using chloro-substituted naphthazarin derivatives as positive electrode materials. Journal of Materials Science, 2017, 52, 12401-12408.	1.7	16
6542	Intrinsic electrochemical characteristics of one LiNi0.5Mn1.5O4 spinel particle. Journal of Electroanalytical Chemistry, 2017, 799, 468-472.	1.9	20
6543	Irreversible lithium storage during lithiation of amorphous silicon thinÂfilm electrodes studied by in-situ neutron reflectometry. Journal of Power Sources, 2017, 359, 415-421.	4.0	37
6544	Layer-type palladium phosphosulphide and its reduced graphene oxide composite as electrode materials for metal-ion batteries. Journal of Power Sources, 2017, 362, 80-85.	4.0	12
6545	Silver copper fluoride: A novel perovskite cathode for lithium batteries. Journal of Power Sources, 2017, 362, 86-91.	4.0	15

#	Article	IF	CITATIONS
6546	Mg-ion conducting gel polymer electrolyte membranes containing biodegradable chitosan: Preparation, structural, electrical and electrochemical properties. Polymer Testing, 2017, 62, 278-286.	2.3	40
6547	Renewableâ€Biomoleculeâ€Based Electrochemical Energyâ€Storage Materials. Advanced Energy Materials, 2017, 7, 1700663.	10.2	85
6548	Chemical Synthesis of 3D Grapheneâ€Like Cages for Sodiumâ€lon Batteries Applications. Advanced Energy Materials, 2017, 7, 1700797.	10.2	113
6549	Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Advanced Energy Materials, 2017, 7, 1701003.	10.2	780
6550	An Effective Lithium Sulfide Encapsulation Strategy for Stable Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1701122.	10.2	47
6551	Novel Co ₂ VO ₄ Anodes Using Ultralight 3D Metallic Current Collector and Carbon Sandwiched Structures for Highâ€Performance Liâ€ion Batteries. Small, 2017, 13, 1701260.	5.2	49
6552	Superior Li storage anode based on novel Fe-Sn-P alloy prepared by electroplating. Electrochimica Acta, 2017, 247, 314-320.	2.6	16
6553	Design and synthesis of Cr2O3@C@G composites with yolk-shell structure for Li+ storage. Journal of Alloys and Compounds, 2017, 724, 406-412.	2.8	19
6554	Enhanced cyclic performance of Cu2V2O7/ reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery. Journal of Alloys and Compounds, 2017, 724, 421-426.	2.8	25
6555	High-capacity silicon electrodes obtained from the hydrogen production process by aluminum alloy hydrolysis. Journal of Electroanalytical Chemistry, 2017, 799, 424-430.	1.9	3
6556	Nanomaterials and Smart Nanodevices for Modular Dry Constructions: The Project "Easy Houseâ€. Procedia Engineering, 2017, 180, 704-714.	1.2	8
6557	Facile and Scalable Synthesis of Zn ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O Microflowers as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 27707-27714.	4.0	48
6558	Amorphous GaN@Cu Freestanding Electrode for Highâ€Performance Liâ€Ion Batteries. Advanced Functional Materials, 2017, 27, 1701808.	7.8	47
6559	One Dimensional Silverâ€based Nanomaterials: Preparations and Electrochemical Applications. Small, 2017, 13, 1701091.	5.2	56
6560	Engineering Applications. Experimental Methods in the Physical Sciences, 2017, , 683-737.	0.1	3
6561	Stabilization of Lithium Transition Metal Silicates in the Olivine Structure. Inorganic Chemistry, 2017, 56, 9931-9937.	1.9	4
6562	Thermal Cycling Cascade Biocatalysis of <i>myo</i> -Inositol Synthesis from Sucrose. ACS Catalysis, 2017, 7, 5992-5999.	5.5	39
6563	High Specific Energy Density Aqueous Lithium-Metal Chloride Rechargeable Batteries. Journal of the Electrochemical Society, 2017, 164, A1958-A1964.	1.3	9

#	Article	IF	CITATIONS
6564	An acid-treated reduced graphene oxide/Mn ₃ O ₄ nanorod nanocomposite as an enhanced anode material for lithium ion batteries. RSC Advances, 2017, 7, 37502-37507.	1.7	21
6565	Recent advancement of SiOx based anodes for lithium-ion batteries. Journal of Power Sources, 2017, 363, 126-144.	4.0	288
6566	Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries. Journal of Power Sources, 2017, 363, 161-167.	4.0	66
6567	Water Soluble Binder, an Electrochemical Performance Booster for Electrode Materials with High Energy Density. Advanced Energy Materials, 2017, 7, 1701185.	10.2	248
6568	A cathode material based on the iron fluoride with an ultra-thin Li3FeF6 protective layer for high-capacity Li-ion batteries. Journal of Power Sources, 2017, 363, 244-250.	4.0	28
6569	Optogenerapy: When bio-electronic implant enters the modern syringe era. Porto Biomedical Journal, 2017, 2, 145-149.	0.4	7
6570	A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy, 2017, 2, .	19.8	864
6571	Full picture discovery for mixed-fluorine anion effects on high-voltage spinel lithium nickel manganese oxide cathodes. NPG Asia Materials, 2017, 9, e398-e398.	3.8	22
6572	Route to sustainable lithium-sulfur batteries with high practical capacity through a fluorine free polysulfide catholyte and self-standing Carbon Nanofiber membranes. Scientific Reports, 2017, 7, 6327.	1.6	18
6573	Heterogeneous TiO2@Nb2O5 composite as a high-performance anode for lithium-ion batteries. Scientific Reports, 2017, 7, 7204.	1.6	10
6574	Electrochemical properties of a silicon nanoparticle/hollow graphite fiber/carbon coating composite as an anode for lithium-ion batteries. RSC Advances, 2017, 7, 36735-36743.	1.7	10
6575	Two-step ball-milling synthesis of a Si/SiO _x /C composite electrode for lithium ion batteries with excellent long-term cycling stability. RSC Advances, 2017, 7, 36697-36704.	1.7	43
6576	Few-layer MoS ₂ anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance. Journal of Materials Chemistry A, 2017, 5, 17963-17972.	5.2	93
6577	Cobalt–Manganese Mixedâ€Sulfide Nanocages Encapsulated by Reduced Graphene Oxide: In Situ Sacrificial Template Synthesis and Superior Lithium Storage Properties. Chemistry - an Asian Journal, 2017, 12, 2284-2290.	1.7	7
6578	Nitrogen doped carbon nanofiber derived from polypyrrole functionalized polyacrylonitrile for applications in lithium-ion batteries and oxygen reduction reaction. Journal of Colloid and Interface Science, 2017, 507, 154-161.	5.0	47
6579	Yolk@Shell or Concave Cubic NiO–Co ₃ O ₄ @C Nanocomposites Derived from Metal–Organic Frameworks for Advanced Lithium-Ion Battery Anodes. Inorganic Chemistry, 2017, 56, 9794-9801.	1.9	45
6580	A CMK-5-encapsulated MoSe ₂ composite for rechargeable lithium-ion batteries with improved electrochemical performance. Journal of Materials Chemistry A, 2017, 5, 19632-19638.	5.2	85
6581	Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from ï€â€"Ï€ interactions. Energy and Environmental Science, 2017, 10, 2334-2341.	15.6	194

# 6582	ARTICLE A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy and Environmental Science, 2017, 10, 1854-1861.	IF 15.6	CITATIONS 219
6583	A practical Li ion battery anode material with high gravimetric/volumetric capacities based on T-Nb2O5/graphite composite. Chemical Engineering Journal, 2017, 328, 844-852.	6.6	33
6584	Orientated graphene oxide/Nafion ultra-thin layer coated composite membranes for vanadium redox flow battery. International Journal of Hydrogen Energy, 2017, 42, 21806-21816.	3.8	81
6585	High throughput materials research and development for lithium ion batteries. Journal of Materiomics, 2017, 3, 202-208.	2.8	20
6586	High-throughput characterization methods for lithium batteries. Journal of Materiomics, 2017, 3, 221-229.	2.8	17
6587	Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains. Nano Energy, 2017, 39, 662-672.	8.2	143
6588	Nanoporous UHMWPE Membrane Separators for Safer and Highâ€Powerâ€Density Rechargeable Batteries. Global Challenges, 2017, 1, 1700020.	1.8	20
6589	Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries. Nano Energy, 2017, 40, 9-19.	8.2	72
6590	Investigations on Li4Ti5O12/Ti3O5 Composite as an Anode Material for Lithium–Ion Batteries. Jom, 2017, 69, 1503-1508.	0.9	3
6591	Synthesis and characterization of Al-substituted LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ cathode materials by a modified co-precipitation method. RSC Advances, 2017, 7, 37588-37595.	1.7	24
6592	Enhanced Performance of P2â€Na _{0.66} (Mn _{0.54} Co _{0.13} Ni _{0.13})O ₂ Cathode for Sodiumâ€ion Batteries by Ultrathin Metal Oxide Coatings via Atomic Layer Deposition. Advanced Functional Materials, 2017, 27, 1701870.	7.8	128
6593	Structural characterization of layered Na0.5Co0.5Mn0.5O2 material as a promising cathode for sodium-ion batteries. Journal of Power Sources, 2017, 363, 442-449.	4.0	31
6594	Stabilizing the Electrode/Electrolyte Interface of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 29643-29653.	4.0	133
6595	Direct Studies on the Lithium-Storage Mechanism of Molybdenum Disulfide. Scientific Reports, 2017, 7, 7275.	1.6	49
6596	Optimal sizing of a lithium battery energy storage system for grid-connected photovoltaic systems. , 2017, , .		27
6597	An Insoluble Benzoquinoneâ€Based Organic Cathode for Use in Rechargeable Lithiumâ€lon Batteries. Angewandte Chemie, 2017, 129, 12735-12739.	1.6	36
6598	Flower-like WO3/CoWO4/Co nanostructures as high performance anode for lithium ion batteries. Journal of Alloys and Compounds, 2017, 727, 107-113.	2.8	28
6599	Structure-engineered electrocatalyst enables highly active and stable oxygen evolution reaction over layered perovskite LaSr3Co1.5Fe1.5O10-Î′. Nano Energy, 2017, 40, 115-121.	8.2	67

#	Article	IF	CITATIONS
6600	Inhibiting grain coarsening and inducing oxygen vacancies: the roles of Mn in achieving a highly reversible conversion reaction and a long life SnO ₂ –Mn–graphite ternary anode. Energy and Environmental Science, 2017, 10, 2017-2029.	15.6	152
6601	Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy and Environmental Science, 2017, 10, 1936-1941.	15.6	65
6602	Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chemistry, 2017, 19, 4423-4434.	4.6	57
6603	Effect of Carbon Supports on Enhancing Mass Kinetic Current Density of Feâ€N/C Electrocatalysts. Chemistry - A European Journal, 2017, 23, 14597-14603.	1.7	18
6604	Simple and low cost electrode material based on Ca2V2O7/PANI nanoplatelets for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 17354-17362.	1.1	21
6605	Multi-functional Flexible Aqueous Sodium-Ion Batteries with High Safety. CheM, 2017, 3, 348-362.	5.8	194
6606	Improving Electrochemical Stability by Transition Metal Cation Doping for Manganese in Lithium-rich Layered Cathode, Li 1.2 Ni 0.13 Co 0.13 Mn 0.54-x M x O 2 (M = Co, Cr and Fe). Electrochimica Acta, 2017, 249, 377-386.	2.6	35
6607	Nanoparticles of complex oxides Li1 + x (Ni y Mn z Co1 – y – z)1 – x O2 – Î′ (0 ≤ ≤0.2, 0.2 ≤ á Electrochemistry, 2017, 53, 769-776.	≤0.6, 0. 0.3	2 â‰瑢) Tj E 1
6608	Metal-organic frameworks derived (Cu 0.30 Co 0.7)Co 2 O 4 /CuO composite rectangular pyramid grass as high performance anode materials for lithium ion battery. Electrochimica Acta, 2017, 250, 35-41.	2.6	8
6609	Interfacial Insight from Operando XAS/TEM for Magnesium Metal Deposition with Borohydride Electrolytes. Chemistry of Materials, 2017, 29, 7183-7188.	3.2	36
6610	Facile fabrication of Fe3O4 octahedra with bimodal conductive network of nanoporous Cu and graphene nanosheets for high-performance anode in Li-ion batteries. Journal of Alloys and Compounds, 2017, 727, 34-42.	2.8	16
6611	Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li ₇ La ₃ Zr ₂ O ₁₂ –polyethylene oxide–tetraethylene glycol dimethyl ether. Journal of Materials Chemistry A, 2017, 5, 18457-18463.	5.2	109
6612	Surface graphited carbon scaffold enables simple and scalable fabrication of 3D composite lithium metal anode. Journal of Materials Chemistry A, 2017, 5, 19168-19174.	5.2	55
6613	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie - International Edition, 2017, 56, 13070-13077.	7.2	151
6614	Synthesis, characterization and electrical properties of mesoporous nanocrystalline CoFe2O4 as a negative electrode material for lithium battery applications. Journal of Materials Science: Materials in Electronics, 2017, 28, 17208-17214.	1.1	12
6615	Robust electrical "highway―network for high mass loading sulfur cathode. Nano Energy, 2017, 40, 390-398.	8.2	68
6616	Syndiotactic Polystyrene-Based Ionogel Membranes for High Temperature Electrochemical Applications. ACS Applied Materials & amp; Interfaces, 2017, 9, 30933-30942.	4.0	48
6617	Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochimica Acta, 2017, 250, 327-334.	2.6	94

#	Article	IF	CITATIONS
6618	Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries. Journal of Power Sources, 2017, 364, 288-298.	4.0	45
6619	Functionality Selection Principle for High Voltage Lithium-ion Battery Electrolyte Additives. ACS Applied Materials & Interfaces, 2017, 9, 30686-30695.	4.0	73
6620	Iron oxyfluorides as lithium-free cathode materials for solid-state Li metal batteries. Journal of Materials Chemistry A, 2017, 5, 18464-18468.	5.2	16
6621	Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport. Angewandte Chemie, 2017, 129, 13250-13257.	1.6	11
6622	Self-supported mesoporous FeCo2O4 nanosheets as high capacity anode material for sodium-ion battery. Chemical Engineering Journal, 2017, 330, 764-773.	6.6	50
6623	Role of L-Ascorbic Acid-Based Treatment toward Improving the Electrochemical Performance of Li-Rich Layered Oxide. Journal of the Electrochemical Society, 2017, 164, A2348-A2354.	1.3	18
6624	Kinetically-Driven Phase Transformation during Lithiation in Copper Sulfide Nanoflakes. Nano Letters, 2017, 17, 5726-5733.	4.5	67
6625	Formation of graphene-encapsulated CoS ₂ hybrid composites with hierarchical structures for high-performance lithium-ion batteries. RSC Advances, 2017, 7, 39427-39433.	1.7	26
6626	Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes. Journal of Physical Chemistry Letters, 2017, 8, 4009-4016.	2.1	70
6627	One-step ultrasonic spray route for rapid preparation of hollow Fe3O4/C microspheres anode for lithium-ion batteries. Chemical Engineering Journal, 2017, 330, 995-1001.	6.6	62
6628	Recycling oil-extracted microalgal biomass residues into nano/micro hierarchical Sn/C composite anode materials for lithium-ion batteries. Electrochimica Acta, 2017, 250, 59-67.	2.6	35
6629	Role of Solvent Bulkiness on Lithium-Ion Solvation in Fluorinated Alkyl Phosphate-Based Electrolytes: Structural Study for Designing Nonflammable Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 19112-19119.	1.5	31
6630	Construction of MoO ₂ Quantum Dot–Graphene and MoS ₂ Nanoparticle–Graphene Nanoarchitectures toward Ultrahigh Lithium Storage Capability. ACS Applied Materials & Interfaces, 2017, 9, 28441-28450.	4.0	38
6631	Achieving highly stable Li–O ₂ battery operation by designing a carbon nitride-based cathode towards a stable reaction interface. Journal of Materials Chemistry A, 2017, 5, 18207-18213.	5.2	14
6632	Carbon sphere@Co ₉ S ₈ yolk-shell structure with good morphology stability for improved lithium storage performance. Nanotechnology, 2017, 28, 375402.	1.3	17
6633	Verification of Delayed Permanent Lithium Intercalation into Graphite Interlayers by Surface Treatment of Lithium-Ion Battery Anodes. Journal of the Electrochemical Society, 2017, 164, A2290-A2294.	1.3	5
6634	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
6635	Poly(5-alkyl-thieno[3,4-c]pyrrole-4,6-dione): a study of π-conjugated redox polymers as anode materials in lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18088-18094.	5.2	27

ARTICLE IF CITATIONS A SEI Modeling Approach Distinguishing between Capacity and Power Fade. Journal of the 6636 1.3 55 Electrochemical Society, 2017, 164, E287-E294. High Energy and High Power Lithiumâ€Ion Capacitors Based on Boron and Nitrogen Dualâ€Doped 3D 10.2 Carbon Nanofibers as Both Cathode and Anode. Advanced Energy Materials, 2017, 7, 1701336. An Insoluble Benzoquinoneâ€Based Organic Cathode for Use in Rechargeable Lithiumâ€Ion Batteries. 6638 7.2 177 Angewandte Chemie - International Edition, 2017, 56, 12561-12565. Nanostructured 3D porous hybrid network of N-doped carbon, graphene and Si nanoparticles as an 6639 1.4 anode material for Li-ion batteries. New Journal of Chemistry, 2017, 41, 10555-10560. Ternary lithium molybdenum oxide, Li2Mo4O13: A new potential anode material for high-performance 6640 2.6 16 rechargeable lithium-ion batteries. Electrochimica Acta, 2017, 258, 1445-1452. Designing flexible 2D transition metal carbides with strain-controllable lithium storage. Proceedings 6641 3.3 of the National Academy of Sciences of the United States of America, 2017, 114, EI1082-E11091. Mitigating Cation Diffusion Limitations and Intercalation-Induced Framework Transitions in a 1D 6642 Tunnel-Structured Polymorph of V₂O₅. Chemistry of Materials, 2017, 29, 3.2 24 10386-10397. Coupling between oxygen redox and cation migration explains unusual electrochemistry in 6643 5.8 469 lithium-rich layered oxides. Nature Communications, 2017, 8, 2091. Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes 6644 1.6 69 for All-Solid-State Lithium Batteries. Scientific Reports, 2017, 7, 17482. Porous Si/C composite as anode materials for high-performance rechargeable lithium-ion battery. 6645 4.8 Chinese Chemical Letters, 2017, 28, 2281-2284 Effect of solid electrolyte interphase on the reactivity of polysulfide over lithium-metal anode. 6646 2.6 13 Electrochimica Acta, 2017, 258, 1320-1328. Facile Synthesis of Flowerlike LiFe₅O₈ Microspheres for Electrochemical 6647 26 Supercapacitors. Inorganic Chemistry, 2017, 56, 14960-14967. Decomposition of Ionic Liquids at Lithium Interfaces. 1. <i>Ab Initio</i> 6648 1.5 68 Simulations. Journal of Physical Chemistry C, 2017, 121, 28214-28234. A facile <i>in situ</i> approach to ion gel based polymer electrolytes for flexible lithium batteries. RSC Advances, 2017, 7, 54391-54398. 6649 1.7 23 Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries. International 6650 2 0.1 Journal of Materials Research, 2017, 108, 904-919. Hard Carbon Wrapped Na₃V₂(PO₄)₃@C Porous Composite Extending Cycling Lifespan for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 44485-44493. Solid polymer electrolyte based on ionic bond or covalent bond functionalized silica nanoparticles. 6652 1.7 26 RSC Advances, 2017, 7, 54986-54994. LiFePO4 quantum-dots composite synthesized by a general microreactor strategy for ultra-high-rate 8.2 lithium ion batteries. Nano Energy, 2017, 42, 363-372.

CITATION REPORT

#	Article	IF	CITATIONS
6654	Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 44542-44549.	4.0	58
6655	Si nanorod arrays modified with metal–organic segments as anodes in lithium ion batteries. RSC Advances, 2017, 7, 53680-53685.	1.7	14
6656	A DFT study on graphene, SiC, BN, and AlN nanosheets as anodes in Na-ion batteries. Journal of Molecular Modeling, 2017, 23, 354.	0.8	50
6657	OH-substituted 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone as highly stable organic electrode for lithium ion battery. Electrochimica Acta, 2017, 258, 677-683.	2.6	29
6658	Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochimica Acta, 2017, 258, 1106-1114.	2.6	193
6659	Mechanistic Analysis of Mechano-Electrochemical Interaction in Silicon Electrodes with Surface Film. Journal of the Electrochemical Society, 2017, 164, A3570-A3581.	1.3	22
6660	Amorphous MoS ₃ as the sulfur-equivalent cathode material for room-temperature Li–S and Na–S batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13091-13096.	3.3	170
6661	Evidence for Considerable Metal Cation Concentrations from Lithium Intercalation Compounds in the Nano–Bio Interface Gap. Journal of Physical Chemistry C, 2017, 121, 27473-27482.	1.5	13
6662	Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nature Communications, 2017, 8, 1561.	5.8	151
6663	An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy and Environmental Science, 2017, 10, 2616-2625.	15.6	227
6664	A nano-LiNbO ₃ coating layer and diffusion-induced surface control towards high-performance 5ÂV spinel cathodes for rechargeable batteries. Journal of Materials Chemistry A, 2017, 5, 25077-25089.	5.2	67
6665	Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries. Small Methods, 2017, 1, 1700209.	4.6	183
6666	Manganese silicate hollow spheres enclosed in reduced graphene oxide as anode for lithium-ion batteries. Electrochimica Acta, 2017, 258, 535-543.	2.6	46
6667	Ion Pairing and Diffusion in Magnesium Electrolytes Based on Magnesium Borohydride. ACS Applied Materials & Interfaces, 2017, 9, 43755-43766.	4.0	34
6668	High performance Sb2S3/carbon composite with tailored artificial interface as an anode material for sodium ion batteries. Metals and Materials International, 2017, 23, 1241-1249.	1.8	21
6669	Dual-phase spinel Li ₄ Ti ₅ O ₁₂ /anatase TiO ₂ nanosheet anchored 3D reduced graphene oxide aerogel scaffolds as self-supporting electrodes for high-performance Na- and Li-ion batteries. RSC Advances, 2017, 7, 52702-52711.	1.7	11
6670	Highâ€Performance Aqueous Zinc–Ion Battery Based on Layered H ₂ V ₃ O ₈ Nanowire Cathode. Small, 2017, 13, 1702551.	5.2	455
6671	Silicon anode materials with ultra-low resistivity from the inside out for lithium ion batteries. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	6

#	Article	IF	CITATIONS
6672	Surface engineering of graphite anode material with black TiO2-x for fast chargeable lithium ion battery. Electrochimica Acta, 2017, 258, 336-342.	2.6	44
6673	Influence of polymerisation on the reversibility of low-energy proton exchange reactions by Para-Aminothiolphenol. Scientific Reports, 2017, 7, 15401.	1.6	8
6674	Engineering SnS ₂ nanosheet assemblies for enhanced electrochemical lithium and sodium ion storage. Journal of Materials Chemistry A, 2017, 5, 25618-25624.	5.2	79
6675	Encapsulating porous SnO ₂ into a hybrid nanocarbon matrix for long lifetime Li storage. Journal of Materials Chemistry A, 2017, 5, 25609-25617.	5.2	57
6676	Preparation and characterization of nano-sized FeTaO 4 /graphite for lithium-ion batteries. Solid State lonics, 2017, 313, 45-51.	1.3	5
6677	Estimation of electric field effects on the adsorption of molecular superoxide species on Au based on density functional theory. Physical Chemistry Chemical Physics, 2017, 19, 32626-32635.	1.3	8
6678	Bicontinuous Spider Network Architecture of Free-Standing MnCoO <i>_X</i> @NCNF Anode for Li-Ion Battery. ACS Omega, 2017, 2, 7672-7681.	1.6	10
6679	A Convenient Synthesis Route for Co ₃ O ₄ Hollow Microspheres and Their Application as a High Performing Anode in Li-Ion Batteries. ACS Omega, 2017, 2, 7647-7657.	1.6	16
6680	Mechanisms of the decrease in low-temperature electrochemical performance of Li4Ti5O12-based anode materials. Scientific Reports, 2017, 7, 15292.	1.6	25
6681	Improving the Performance of Graphite/LiNi _{0.5} Mn _{1.5} O ₄ Cells with Added N,N-dimethylformamide Sulfur Trioxide Complex. Journal of the Electrochemical Society, 2017, 164, A3182-A3190.	1.3	8
6682	Interphase engineering of reactive metal surfaces using ionic liquids and deep eutectic solvents—from corrosion control to next-generation batteries. Npj Materials Degradation, 2017, 1, .	2.6	16
6683	First-Principles Analysis of Li Intercalation in VO ₂ (B). Chemistry of Materials, 2017, 29, 10075-10087.	3.2	28
6684	Enhanced Li Ion Conductivity in LiBH ₄ –Al ₂ O ₃ Mixture via Interface Engineering. Journal of Physical Chemistry C, 2017, 121, 26209-26215.	1.5	57
6685	The synthesis of 1 × 1 magnesium octahedral molecular sieve with controllable size and shape for aqueous magnesium ion battery cathode material. Journal of Electroanalytical Chemistry, 2017, 807, 37-44.	1.9	15
6686	Decoupling Mechanical and Conductive Dynamics of Polymeric Ionic Liquids via a Trivalent Anion Additive. Macromolecules, 2017, 50, 8979-8987.	2.2	18
6687	Sustainable polysaccharide-derived mesoporous carbons (Starbon®) as additives in lithium-ion batteries negative electrodes. Journal of Materials Chemistry A, 2017, 5, 24380-24387.	5.2	17
6688	Two-dimensional porous Co ₃ O ₄ nanosheets for high-performance lithium ion batteries. New Journal of Chemistry, 2017, 41, 15283-15288.	1.4	25
6689	Crystallization kinetics and the fine morphological evolution of poly(ethylene oxide)/ionic liquid mixtures. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1402-1414.	2.0	8

#	Article	IF	CITATIONS
6690	Co/Ti co-substituted layered LiNiO2 prepared using a concentration gradient method as an effective cathode material for Li-ion batteries. Journal of Power Sources, 2017, 372, 107-115.	4.0	32
6691	Composite electrolytes of polyethylene oxides/garnets interfacially wetted by ionic liquid for room-temperature solid-state lithium battery. Journal of Power Sources, 2017, 372, 1-7.	4.0	125
6692	Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale, 2017, 9, 18552-18560.	2.8	41
6693	Fabrication of CoFe ₂ O ₄ and NiFe ₂ O ₄ nanoporous spheres as promising anodes for high performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 15501-15507.	1.4	24
6694	Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. Nanoscale, 2017, 9, 18216-18222.	2.8	150
6695	Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 hollow spherical as cathode material for Li-ion battery. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	9
6696	Synthesis of Li-Rich NMC: A Comprehensive Study. Chemistry of Materials, 2017, 29, 9923-9936.	3.2	111
6697	Highly Ordered Mesoporous Sulfurized Polyacrylonitrile Cathode Material for High-Rate Lithium Sulfur Batteries. Journal of Physical Chemistry C, 2017, 121, 26172-26179.	1.5	52
6698	An insight into intrinsic interfacial properties between Li metals and Li ₁₀ GeP ₂ S ₁₂ solid electrolytes. Physical Chemistry Chemical Physics, 2017, 19, 31436-31442.	1.3	49
6699	Microwave-assisted synthesis of novel nanostructured Zn ₃ (OH) ₂ V ₂ O ₇ ·2H ₂ O and Zn ₂ V ₂ O ₇ as electrode materials for supercapacitors. New lournal of Chemistry, 2017, 41, 15298-15304.	1.4	39
6700	The unique chemistry of thiuram polysulfides enables energy dense lithium batteries. Journal of Materials Chemistry A, 2017, 5, 25005-25013.	5.2	71
6701	Galvanostatic Intermittent Titration and Performance Based Analysis of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode. Journal of the Electrochemical Society, 2017, 164, A3380-A3392.	1.3	102
6702	Structural Evolution of Li _{<i>x</i>} Ni _{<i>y</i>} Mn _{<i>z</i>} Co _{1-y-z} O ₂ Cathode Materials during High-Rate Charge and Discharge. Journal of Physical Chemistry Letters, 2017, 8, 5758-5763.	2.1	27
6703	Perovskites in catalysis and electrocatalysis. Science, 2017, 358, 751-756.	6.0	1,138
6704	Structural-electrochemical relations in the aqueous copper hexacyanoferrate-zinc system examined by synchrotron X-ray diffraction. Journal of Power Sources, 2017, 369, 146-153.	4.0	69
6705	Buffer layer enhanced stability of sodium-ion storage. Journal of Power Sources, 2017, 369, 138-145.	4.0	28
6706	Preliminary study of dysprosium doped LiMn 2 O 4 spinel cathode materials. Materials Today: Proceedings, 2017, 4, 9365-9370.	0.9	7
6707	Rate mechanism of vanadium oxide coated tin dioxide nanowire electrode for lithium ion battery. Nano Energy, 2017, 42, 294-299.	8.2	18

#	Article	IF	CITATIONS
6708	Sacrificial Template Strategy toward a Hollow LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Nanosphere Cathode for Advanced Lithium-Ion Batteries. ACS Omega, 2017, 2, 7593-7599.	1.6	24
6709	Transition from Deceleration to Acceleration of Lithiation Front Movement in Hollow Phase Transformation Electrodes. Journal of the Electrochemical Society, 2017, 164, A3371-A3379.	1.3	4
6710	Polyoxometalate-Incorporated Metallapillararene/Metallacalixarene Metal-Organic Frameworks as Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2017, 56, 8311-8318.	1.9	79
6711	Li atom adsorption on graphene with various defects for large-capacity Li ion batteries: First-principles calculations. Japanese Journal of Applied Physics, 2017, 56, 06GE11.	0.8	12
6712	Anchoring iron oxide nanoparticles on polypyrrole/rGO derived nitrogen-doped carbon as lithium-ion battery anode. Journal of Alloys and Compounds, 2017, 723, 729-735.	2.8	14
6713	A computation study on the interplay between surface morphology and electrochemical performance of patterned thin film electrodes for Li-ion batteries. Journal of Power Sources, 2017, 360, 504-515.	4.0	2
6714	Unraveling the Magnesium-Ion Intercalation Mechanism in Vanadium Pentoxide in a Wet Organic Electrolyte by Structural Determination. Inorganic Chemistry, 2017, 56, 7668-7678.	1.9	63
6715	GeO ultra-dispersed in microporous carbon nanofibers: a binder-free anode for high performance lithium-ion battery. Electrochimica Acta, 2017, 246, 981-989.	2.6	14
6716	The effects of morphology and size on performances of Li2FeSiO4/C cathode materials. Journal of Alloys and Compounds, 2017, 721, 683-690.	2.8	18
6717	NiMn ₂ O ₄ as an efficient cathode catalyst for rechargeable lithium–air batteries. Chemical Communications, 2017, 53, 8164-8167.	2.2	33
6718	A solid state energy storage device with supercapacitor–battery hybrid design. Journal of Materials Chemistry A, 2017, 5, 15266-15272.	5.2	31
6719	Determination of Tortuosity Using Impedance Spectra Analysis of Symmetric Cell. Journal of the Electrochemical Society, 2017, 164, E3329-E3334.	1.3	57
6720	Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes. Advanced Materials, 2017, 29, 1700389.	11.1	495
6721	A Highâ€Performance Li–O ₂ Battery with a Strongly Solvating Hexamethylphosphoramide Electrolyte and a LiPONâ€Protected Lithium Anode. Advanced Materials, 2017, 29, 1701568.	11.1	146
6722	Construction of S@TiO ₂ @râ€GO Composites for Highâ€Performance Lithium–Sulfur Batteries. European Journal of Inorganic Chemistry, 2017, 2017, 3248-3252.	1.0	12
6723	Fabrication of Metal Molybdate Micro/Nanomaterials for Electrochemical Energy Storage. Small, 2017, 13, 1700917.	5.2	110
6724	Facile synthesis SnO2 nanoparticle-modified Ti3C2 MXene nanocomposites for enhanced lithium storage application. Journal of Materials Science, 2017, 52, 3556-3565.	1.7	78
6725	Lithium barrier materials for on-chip Si-based microbatteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 14605-14614.	1.1	10

#	Article	IF	CITATIONS
6726	Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage. Journal of Power Sources, 2017, 360, 470-479.	4.0	85
6727	High performed composites of LiFePO4/3DC/C based on FePO4 by hydrothermal method. Electrochimica Acta, 2017, 246, 322-328.	2.6	42
6728	New nanocomposite material as supercapacitor electrode prepared via restacking of Ni-Mn LDH and MnO2 nanosheets. Electrochimica Acta, 2017, 247, 1072-1079.	2.6	75
6729	Suppressing the formation of Fe2P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis. Energy, 2017, 134, 962-967.	4.5	10
6730	Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries. Journal of Power Sources, 2017, 361, 243-248.	4.0	39
6731	Reduction of Electrolyte Components on a Coated Si Anode of Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2017, 8, 3404-3408.	2.1	13
6732	Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nature Nanotechnology, 2017, 12, 993-999.	15.6	376
6733	Enhanced the electrochemical performance of Li4Ti5O12 anode materials by high conductive graphene nanosheets. Journal of Materials Science: Materials in Electronics, 2017, 28, 15135-15141.	1.1	4
6734	Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS2 nanosheets decorated Ni3S2 hybrid structure through annealing treatment. Applied Surface Science, 2017, 425, 879-888.	3.1	41
6735	Hybrid ionogel electrolytes with POSS epoxy networks for high temperature lithium ion capacitors. Solid State Ionics, 2017, 309, 27-32.	1.3	31
6736	Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25317-25322.	4.0	75
6737	Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. ACS Nano, 2017, 11, 7476-7484.	7.3	132
6738	Monolayer germanium monochalcogenides (GeS/GeSe) as cathode catalysts in nonaqueous Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2017, 19, 20457-20462.	1.3	36
6739	A titanium-based metal–organic framework as an ultralong cycle-life anode for PIBs. Chemical Communications, 2017, 53, 8360-8363.	2.2	94
6740	Ultra-high proton/vanadium selectivity of a modified sulfonated poly(arylene ether ketone) composite membrane for all vanadium redox flow batteries. Journal of Materials Chemistry A, 2017, 5, 16663-16671.	5.2	65
6741	Synthesis of Mesoporous Co ²⁺ -Doped TiO ₂ Nanodisks Derived from Metal Organic Frameworks with Improved Sodium Storage Performance. ACS Applied Materials & amp; Interfaces, 2017, 9, 32071-32079.	4.0	64
6742	On the improved electrochemistry of hybrid conducting-redox polymer electrodes. Scientific Reports, 2017, 7, 4847.	1.6	12
6743	Investigation of polyacrylamide based hydroxide ion-conducting electrolyte and its application in all-solid electrochemical capacitors. Sustainable Energy and Fuels, 2017, 1, 1580-1587.	2.5	16

ARTICLE IF CITATIONS Poly(vinyl chloride) Ionic Liquid Polymer Electrolyte Based on Bis(fluorosulfonyl)Amide for Sodium 6744 1.3 17 Secondary Batteries. Journal of the Electrochemical Society, 2017, 164, H5031-H5035. Polymer-Rich Composite Electrolytes for All-Solid-State Li–S Cells. Journal of Physical Chemistry 6745 2.1 106 Letters, 2017, 8, 3473-3477. Transportation Safety of Lithium Iron Phosphate Batteries - A Feasibility Study of Storing at Very Low 6746 1.6 19 States of Charge. Scientific Reports, 2017, 7, 5128. Facile synthesis of Co₉S₈ nanosheets for lithium ion batteries with enhanced 6747 24 rate capability and cycling stability. New Journal of Chemistry, 2017, 41, 9184-9191. A Safe Electrolyte Based on Propylene Carbonate and Non-Flammable Hydrofluoroether for 6748 1.333 High-Performance Lithium Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A1991-A1999. The Role of Solvating 12-Crown-4 Plasticizer on Dielectric Constant and Ion Conduction of Poly(ethylene oxide) Single-Ion Conductors. Macromolecules, 2017, 50, 5582-5591. 6749 2.2 Improvement of the Cathode Electrolyte Interphase on 6750 P2-Na_{2/3}Ni_{1/3}Mn_{2/3}O₂ by Atomic Layer Deposition. ACS 4.0 154 Applied Materials & amp; Interfaces, 2017, 9, 26518-26530. Hollow and microporous triphenylamine networks post-modified with TCNE for enhanced 37 organocathode performance. Chemical Communications, 2017, 53, 8778-8781. 3D graphene-encapsulated Li3V2(PO4)3 microspheres as a high-performance cathode material for 6752 2.8 26 energy storage. Journal of Alloys and Compounds, 2017, 723, 873-879. Achieving high capacity and rate capability in layered lithium transition metal oxide cathodes for lithium-ion batteries. Journal of Power Sources, 2017, 360, 575-584. Enhanced electrochemical performance of MoO3-coated LiMn2O4 cathode for rechargeable 6754 17 2.0 lithium-ion batteries. Materials Chemistry and Physics, 2017, 199, 203-208. Probing Lithium Storage Mechanism of MoO₂ Nanoflowers with Rich Oxygen-Vacancy 1.5 Grown on Graphene Sheets. Journal of Physical Chemistry C, 2017, 121, 15589-15596 Graphene enhanced anchoring of nanosized Co3O4 particles on carbon fiber cloth as free-standing 6756 2.6 44 anode for lithium-ion batteries with superior cycling stability. Electrochimica Acta, 2017, 247, 125-131. In-situ self-polymerization restriction to form core-shell LiFePO4/C nanocomposite with ultrafast 8.2 58 rate capability for high-power Li-ion batteries. Nano Energy, 2017, 39, 346-354. Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state 6758 37 1.3 lithium ion batteries. Solid State Ionics, 2017, 309, 15-21. Metal-organic chemical vapor deposition enabling all-solid-state Li-ion microbatteries: A short review. 24 Journal of Electroceramics, 2017, 38, 230-247. Facile synthesis of Cu2O nanorod arrays on Cu foam as a self-supporting anode material for lithium 6760 2.8 33 ion batteries. Journal of Alloys and Compounds, 2017, 723, 172-178. 6761 Phase Transformations During Li-Insertion into V2O5 at Elevated Temperature. Jom, 2017, 69, 1509-1512.

CITATION REPORT

#	Article	IF	CITATIONS
6762	\$\$hbox {Mn}_{3}hbox {O}_{4}\$\$ Mn 3 O 4 Nanosheet and GNS– \$\$hbox {Mn}_{3}. Arabian Journal for Science and Engineering, 2017, 42, 4281-4289.	1.7	1
6763	Lithium ion Conductor and Electronic Conductor Co-coating Modified Layered Cathode Material LiNi1/3Mn1/3Co1/3O2. Electrochimica Acta, 2017, 247, 443-450.	2.6	18
6764	The formation and electrochemical property of lithium-excess cathode material Li1.2Ni0.13Co0.13Mn0.54O2 with petal-like nanoplate microstructure. Ionics, 2017, 23, 2285-2291.	1.2	2
6765	Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Metals, 2017, 36, 321-338.	3.6	59
6766	Molybdenum disulfide grafted titania nanotube arrays as high capacity retention anode material for lithium ion batteries. Applied Nanoscience (Switzerland), 2017, 7, 67-73.	1.6	4
6767	3D graphene-encapsulated hierarchical urchin-like Fe 3 O 4 porous particles with enhanced lithium storage properties. Chemical Engineering Journal, 2017, 327, 678-685.	6.6	35
6768	Why will dominant alternative transportation fuels be liquid fuels, not electricity or hydrogen?. Energy Policy, 2017, 108, 712-714.	4.2	27
6769	A comprehensive review on recent progress in aluminum–air batteries. Green Energy and Environment, 2017, 2, 246-277.	4.7	280
6770	Electrochemical performance of AlV3O9 nanoflowers for lithium ion batteries application. Journal of Alloys and Compounds, 2017, 723, 92-99.	2.8	17
6771	Coupled Carbonization Strategy toward Advanced Hard Carbon for High-Energy Sodium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 23766-23774.	4.0	108
6772	Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nature Energy, 2017, 2, .	19.8	355
6773	One-pot mass preparation of MoS ₂ /C aerogels for high-performance supercapacitors and lithium-ion batteries. Nanoscale, 2017, 9, 10059-10066.	2.8	60
6774	Na ₃ V ₂ (PO ₄) ₃ coated by N-doped carbon from ionic liquid as cathode materials for high rate and long-life Na-ion batteries. Nanoscale, 2017, 9, 10880-10885.	2.8	57
6775	Dendrite-Free Lithium Deposition for Lithium Metal Anodes with Interconnected Microsphere Protection. Chemistry of Materials, 2017, 29, 5906-5914.	3.2	48
6776	Dual Stabilization and Sacrificial Effect of Na ₂ CO ₃ for Increasing Capacities of Na-Ion Cells Based on P2-Na _{<i>x</i>} MO ₂ Electrodes. Chemistry of Materials, 2017, 29, 5948-5956.	3.2	95
6777	Comparative study of the electrochemical properties of LiNi0.5Mn1.5O4 doped by bivalent ions (Cu2+,) Tj ETQq1	1,0.78431 1.2	14.rgBT /Ov
6778	Si-FeSi2/C nanocomposite anode materials produced by two-stage high-energy mechanical milling. Metals and Materials International, 2017, 23, 610-617.	1.8	14
6779	Bio-inspired sandwich-structured carbon/silicon/titanium-oxide nanofibers composite as an anode material for lithium-ion batteries. Composites Part A: Applied Science and Manufacturing, 2017, 101, 273-282.	3.8	29

#	Article	IF	CITATIONS
6780	<i>In Situ</i> Observation and Electrochemical Study of Encapsulated Sulfur Nanoparticles by MoS ₂ Flakes. Journal of the American Chemical Society, 2017, 139, 10133-10141.	6.6	126
6781	FTIR spectroscopic study of Li+ solvation in the solutions of LiBF4 in propylene carbonate, dimethyl sulfoxide, and their mixtures. Russian Journal of Physical Chemistry A, 2017, 91, 1292-1300.	0.1	6
6782	Characterization of Thermal Behavior of Commercial NCR 18650B Batteries under Varying Cycling Conditions. MRS Advances, 2017, 2, 3329-3334.	0.5	3
6783	Silver Nanowires@Mn ₃ O ₄ Core–Shell Nanocables as Advanced Electrode Materials for Aqueous Asymmetric Supercapacitors. Energy Technology, 2017, 5, 2275-2282.	1.8	10
6784	Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batteries. Electrochimica Acta, 2017, 246, 1088-1096.	2.6	99
6785	Better performing composite cathode encompassing graphene and magnesium aluminate for Li–S batteries. Nano Structures Nano Objects, 2017, 11, 46-55.	1.9	18
6786	Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries. Thermochimica Acta, 2017, 655, 176-180.	1.2	53
6787	Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 23782-23791.	4.0	148
6788	Relaxation-Induced Memory Effect of LiFePO ₄ Electrodes in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 24561-24567.	4.0	23
6789	Li ₂ O ₂ as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chemical Communications, 2017, 53, 8324-8327.	2.2	65
6790	Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 18612-18618.	1.3	4
6791	Enhanced Interface Stability of Polymer Electrolytes Using Organic Cage-Type Cucurbit[6]uril for Lithium Metal Batteries. Journal of the Electrochemical Society, 2017, 164, A1834-A1840.	1.3	17
6792	Preparation of carbon nanosheets from petroleum asphalt via recyclable molten-salt method for superior lithium and sodium storage. Carbon, 2017, 122, 344-351.	5.4	99
6793	Nanostructured cathode materials synthesis for lithium-ion batteries. Materials Today Energy, 2017, 5, 138-157.	2.5	50
6794	Porous spherical Na3V2 (PO4)3/C composites synthesized via a spray drying -assisted process with high-rate performance as cathode materials for sodium-ion batteries. Solid State Ionics, 2017, 308, 161-166.	1.3	35
6795	Observing Framework Expansion of Ordered Mesoporous Hard Carbon Anodes with Ionic Liquid Electrolytes via in Situ Small-Angle Neutron Scattering. ACS Energy Letters, 2017, 2, 1698-1704.	8.8	16
6796	Tetra-Î ² -nitro-substituted phthalocyanines: a new organic electrode material for lithium batteries. Journal of Solid State Electrochemistry, 2017, 21, 947-954.	1.2	17
6797	Facile preparation of hexagonal WO 3 ·0.33H 2 O/C nanostructures and its electrochemical properties for lithium-ion batteries. Applied Surface Science, 2017, 394, 70-77.	3.1	41

#	Article	IF	CITATIONS
6798	Nitrogen Doped/Carbon Tuning Yolk‣ike TiO ₂ and Its Remarkable Impact on Sodium Storage Performances. Advanced Energy Materials, 2017, 7, 1600173.	10.2	159
6799	In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. Small, 2017, 13, 1601530.	5.2	58
6800	Selenium containing Tube-in-Tube carbon: A one dimensional carbon frame work for selenium cathode in Li-Se battery. Carbon, 2017, 112, 79-90.	5.4	43
6801	Biotemplated synthesis of three-dimensional porous MnO/C-N nanocomposites from renewable rapeseed pollen: An anode material for lithium-ion batteries. Nano Research, 2017, 10, 1-11.	5.8	208
6802	Synthesis and Electrochemical Properties of Molybdenum Disulfide/Carbon Microsphere Composite. Journal of Electronic Materials, 2017, 46, 1079-1087.	1.0	9
6803	Boron-doped microporous nano carbon as cathode material for high-performance Li-S batteries. Nano Research, 2017, 10, 426-436.	5.8	42
6804	Synthesis of nanosheet-structured Na3V2(PO4)3/C as high-performance cathode material for sodium ion batteries using anthracite as carbon source. Ceramics International, 2017, 43, 2333-2337.	2.3	35
6805	Graphene Nanoribbons on Highly Porous 3D Graphene for Highâ€Capacity and Ultrastable Alâ€lon Batteries. Advanced Materials, 2017, 29, 1604118.	11.1	293
6806	Hierarchically porous nitrogen-doped graphene aerogels as efficient metal-free oxygen reduction catalysts. Journal of Colloid and Interface Science, 2017, 488, 317-321.	5.0	27
6807	High-Performance Li-Ion Battery Anodes Based on Silicon-Graphene Self-Assemblies. Journal of the Electrochemical Society, 2017, 164, A6075-A6083.	1.3	37
6808	A review of atomic layer deposition providing high performance lithium sulfur batteries. Journal of Power Sources, 2017, 338, 34-48.	4.0	115
6809	Organic electrolyte-based rechargeable zinc-ion batteries using potassium nickel hexacyanoferrate as a cathode material. Journal of Power Sources, 2017, 337, 204-211.	4.0	214
6810	Free-standing electrodes composed of carbon-coated Li 4 Ti 5 O 12 nanosheets and reduced graphene oxide for advanced sodium ion batteries. Journal of Power Sources, 2017, 337, 180-188.	4.0	61
6811	Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy, 2017, 31, 1-8.	8.2	109
6812	Designing Sandwiched and Crystallized NiMn ₂ O ₄ /C Arrays for Enhanced Sustainable Electrochemical Energy Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 196-205.	3.2	31
6813	Enhancing Electrochemical Performance of LiMn ₂ O ₄ Cathode Material at Elevated Temperature by Uniform Nanosized TiO ₂ Coating. ACS Sustainable Chemistry and Engineering, 2017, 5, 640-647.	3.2	54
6814	Nitrogenâ€Doped Mesoporous Carbonâ€Encapsulated MoO ₂ Nanobelts as a Highâ€Capacity and Stable Host for Lithiumâ€Ion Storage. Chemistry - an Asian Journal, 2017, 12, 36-40.	1.7	20
6815	Design of Flexible and Selfâ€&tanding Electrodes for Liâ€Ion Batteries. Chinese Journal of Chemistry, 2017, 35, 41-47.	2.6	14

#	Article	IF	CITATIONS
6816	An efficient way to achieve high ionic conductivity and electrochemical stability of safer nonaflate anion-based ionic liquid gel polymer electrolytes (ILGPEs) for rechargeable lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 1145-1155.	1.2	35
6817	Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 2017, 4, 54-70.	4.6	128
6818	Substrate dependent morphological and electrochemical properties of V2O5 thin films prepared by spray pyrolysis. Journal of Materials Science: Materials in Electronics, 2017, 28, 2385-2391.	1.1	7
6819	Self-assembled porous microsized composite of nano-Co1â^'xS/biomass derived activated carbon by a facile solvothermal method as anode material of lithium ion battery. Journal of Alloys and Compounds, 2017, 695, 2173-2179.	2.8	21
6820	Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries. Nano Energy, 2017, 31, 64-73.	8.2	70
6821	Insights into Electrochemical Oxidation of NaO ₂ in Na–O ₂ Batteries via Rotating Ring Disk and Spectroscopic Measurements. ACS Applied Materials & Interfaces, 2017, 9, 4374-4381.	4.0	26
6822	Rational design and synthesis of LiTi ₂ (PO ₄) _{3â^'x} F _x anode materials for high-performance aqueous lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 593-599.	5.2	53
6823	Electrochemical studies on composite gel polymer electrolytes for lithium sulfurâ€batteries. Journal of Applied Polymer Science, 2017, 134, .	1.3	43
6824	A sliced orange-shaped ZnCo 2 O 4 material as anode for high-performance lithium ion battery. Energy Storage Materials, 2017, 6, 61-69.	9.5	71
6825	Composite of nonexpansion reduced graphite oxide and carbon derived from pitch as anodes of Na-ion batteries with high coulombic efficiency. Chemical Engineering Journal, 2017, 309, 674-681.	6.6	40
6826	Long life anode material sodium titanate synthesized by a moderate method. Materials Letters, 2017, 186, 326-329.	1.3	3
6827	Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment. Environmental Science and Pollution Research, 2017, 24, 1251-1260.	2.7	26
6828	A Coldâ€Flow Process for Fabricating a Highâ€Volumetricâ€Energyâ€Density Anode for Lithiumâ€lon Batteries. Advanced Materials Technologies, 2017, 2, 1600156.	3.0	8
6829	Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for Highâ€Performance Lithiumâ€Metal Battery Anodes. Advanced Materials, 2017, 29, 1603755.	11.1	454
6830	Flexible Bismuth Selenide /Graphene composite paper for lithium-ion batteries. Ceramics International, 2017, 43, 1437-1442.	2.3	41
6831	Evolution of Useless Iron Rust into Uniform α-Fe ₂ O ₃ Nanospheres: A Smart Way to Make Sustainable Anodes for Hybrid Ni–Fe Cell Devices. ACS Sustainable Chemistry and Engineering, 2017, 5, 269-276.	3.2	38
6832	Graphene foam supported multilevel network-like NiCo2S4 nanoarchitectures for robust lithium storage and efficient ORR catalysis. New Journal of Chemistry, 2017, 41, 115-125.	1.4	25
6833	Materials' Methods: NMR in Battery Research. Chemistry of Materials, 2017, 29, 213-242.	3.2	279

#	Article	IF	CITATIONS
6834	Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Advanced Materials, 2017, 29, 1603436.	11.1	872
6835	Redoxâ€Flow Batteries: From Metals to Organic Redoxâ€Active Materials. Angewandte Chemie - International Edition, 2017, 56, 686-711.	7.2	744
6836	VS 4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Materials, 2017, 6, 149-156.	9.5	126
6837	Carbon-Coated Silicon Nanowires on Carbon Fabric as Self-Supported Electrodes for Flexible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 9551-9558.	4.0	101
6838	Efficient method for determination of methylene blue dye in water samples based on a combined dispersive solid phase and cloud point extraction using Cu(OH)2 nanoflakes: central composite design optimization. Analytical and Bioanalytical Chemistry, 2017, 409, 1079-1092.	1.9	26
6839	Preparation of Mg1.1Mn6O12·4.5H2O with nanobelt structure and its application in aqueous magnesium-ion battery. Journal of Power Sources, 2017, 338, 136-144.	4.0	75
6840	Synthesis and electrochemical properties of ZnMn2O4 microspheres for lithium-ion battery application. Journal of Alloys and Compounds, 2017, 690, 72-79.	2.8	36
6841	In situ electron holography of electric potentials inside a solid-state electrolyte: Effect of electric-field leakage. Ultramicroscopy, 2017, 178, 20-26.	0.8	36
6842	Manganese Cobalt Oxide (MnCo ₂ O ₄) Hollow Spheres as High Capacity Anode Materials for Lithiumâ€Ion Batteries. Energy Technology, 2017, 5, 293-299.	1.8	41
6843	A high-performance BaTiO ₃ -grafted-GO-laden poly(ethylene oxide)-based membrane as an electrolyte for all-solid lithium-batteries. Materials Chemistry Frontiers, 2017, 1, 269-277.	3.2	22
6844	Recent Advances in Multidimensional Electrode Nanoarchitecturing for Lithium-Ion and Sodium-Ion Batteries. , 2017, , 365-415.		0
6845	Observation on the electrochemical reactions of Li3-xNaxV2(PO4)3 (0Ââ‰ÂxÂâ‰Â3) as cathode materials for rechargeable batteries. Journal of Alloys and Compounds, 2017, 690, 31-41.	2.8	16
6846	Silver-Containing α-MnO ₂ Nanorods: Electrochemistry in Na-Based Battery Systems. ACS Applied Materials & Interfaces, 2017, 9, 4333-4342.	4.0	39
6847	Misfit dislocations induced by lithium-ion diffusion in a thin film anode. Journal of Solid State Electrochemistry, 2017, 21, 419-427.	1.2	4
6848	Lithium Storage in Carbonâ€coated Zinc Iron Oxides as Anode Materials for Lithiumâ€lon Batteries. Energy Technology, 2017, 5, 611-615.	1.8	8
6849	Confirming reversible Al 3+ storage mechanism through intercalation of Al 3+ into V 2 O 5 nanowires in a rechargeable aluminum battery. Energy Storage Materials, 2017, 6, 9-17.	9.5	241
6850	Sulfurâ€Based Polymer Composites from Vegetable Oils and Elemental Sulfur: A Sustainable Active Material for Li–S Batteries. Macromolecular Chemistry and Physics, 2017, 218, 1600303.	1.1	116
6851	Disordered mesoporous polyacenes/sulfur nanocomposites: Superior cathode materials for lithium-sulfur batteries. Journal of Alloys and Compounds, 2017, 693, 1045-1051.	2.8	6

#	Article	IF	CITATIONS
6852	Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities. Applied Surface Science, 2017, 392, 297-304.	3.1	27
6853	Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy and Environmental Science, 2017, 10, 153-165.	15.6	184
6854	Hollow mesoporous hetero-NiCo ₂ S ₄ /Co ₉ S ₈ submicro-spindles: unusual formation and excellent pseudocapacitance towards hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 133-144.	5.2	249
6855	High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing. Chemical Engineering Journal, 2017, 307, 999-1007.	6.6	42
6856	Potassium Secondary Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 4404-4419.	4.0	721
6857	A Design Approach to Lithium-Ion Battery Electrolyte Based on Diluted Solvate Ionic Liquids. Journal of the Electrochemical Society, 2017, 164, A6088-A6094.	1.3	45
6858	A low-cost attempt to improve electrochemical performances of pitch-based hard carbon anodes in lithium-ion batteries by oxidative stabilization. Journal of Solid State Electrochemistry, 2017, 21, 555-562.	1.2	23
6859	Improvement of the electrochemical properties of a LiNi0.5Mn1.5O4 cathode material formed by a new solid-state synthesis method. Journal of Solid State Electrochemistry, 2017, 21, 495-501.	1.2	6
6860	Synthesis and modification of FeVO4 as novel anode for lithium-ion batteries. Applied Surface Science, 2017, 394, 183-189.	3.1	54
6861	Enhanced cycle stability of polypyrrole-derived nitrogen-doped carbon-coated tin oxide hollow nanofibers for lithium battery anodes. Carbon, 2017, 111, 28-37.	5.4	63
6863	Cobalt oxyhydroxide/graphene oxide nanocomposite for amelioration of electrochemical performance of lithium/sulfur batteries. Journal of Solid State Electrochemistry, 2017, 21, 649-656.	1.2	19
6864	Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nature Materials, 2017, 16, 121-126.	13.3	149
6865	Materials for Electrodes of Li-Ion Batteries: Issues Related to Stress Development. Critical Reviews in Solid State and Materials Sciences, 2017, 42, 218-238.	6.8	17
6866	Enhanced overall electrochemical performance of silicon/carbon anode for lithium-ion batteries using fluoroethylene carbonate as an electrolyte additive. Journal of Alloys and Compounds, 2017, 695, 3249-3255.	2.8	45
6867	Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy, 2017, 31, 113-143.	8.2	1,122
6868	Porous, Hyper-cross-linked, Three-Dimensional Polymer as Stable, High Rate Capability Electrode for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2017, 9, 19446-19454.	4.0	57
6869	Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance. Journal of Solid State Electrochemistry, 2017, 21, 1203-1210.	1.2	22
6870	Electrochemical properties of sulfurized poly-acrylonitrile (SPAN) cathode containing carbon fiber current collectors. Surface and Coatings Technology, 2017, 326, 443-449.	2.2	8

#	Article	IF	CITATIONS
6871	Capacitive vs Faradaic Energy Storage in a Hybrid Cell with LiFePO ₄ /RGO Positive Electrode and Nanocarbon Negative Electrode. Journal of the Electrochemical Society, 2017, 164, A6140-A6146.	1.3	3
6872	Iron-Doped ZnO for Lithium-Ion Anodes: Impact of the Dopant Ratio and Carbon Coating Content. Journal of the Electrochemical Society, 2017, 164, A6123-A6130.	1.3	19
6873	Extending the Life of Lithiumâ€Based Rechargeable Batteries by Reaction of Lithium Dendrites with a Novel Silica Nanoparticle Sandwiched Separator. Advanced Materials, 2017, 29, 1603987.	11.1	202
6874	An enhanced poly(vinylidene fluoride) matrix separator with high density polyethylene for good performance lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 919-925.	1.2	19
6875	Electrocatalytic performance of CuO/graphene nanocomposites for Li–O 2 batteries. Journal of Alloys and Compounds, 2017, 707, 275-280.	2.8	14
6876	In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose. Metabolic Engineering, 2017, 39, 110-116.	3.6	69
6877	Etched current collector-guided creation of wrinkles in steel-mesh-supported V ₆ O ₁₃ cathode for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 756-764.	5.2	26
6878	Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chemical Engineering Journal, 2017, 313, 1623-1632.	6.6	181
6879	Turning Hazardous Diesel Soot into High Performance Carbon/MnO ₂ Supercapacitive Energy Storage Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 450-459.	3.2	43
6880	Annealing atmosphere dependant properties of biosynthesized TiO2 anode for lithium ion battery application. Journal of Materials Science: Materials in Electronics, 2017, 28, 1472-1479.	1.1	13
6881	Application of dielectric barrier discharge plasma-assisted milling in energy storage materials – A review. Journal of Alloys and Compounds, 2017, 691, 422-435.	2.8	301
6882	Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. Journal of Industrial and Engineering Chemistry, 2017, 45, 15-21.	2.9	84
6883	Synthesis of Nitrogenâ€Rich Nanotubes with Internal Compartments having Open Mesoporous Channels and Utilization to Hybrid Fullâ€Cell Capacitors Enabling High Energy and Power Densities over Robust Cycle Life. Advanced Energy Materials, 2017, 7, 1601355.	10.2	54
6884	On parameter identification of an equivalent circuit model for lithium-ion batteries. , 2017, , .		23
6885	Finite Element Thermal Model and Simulation for a Cylindrical Li-Ion Battery. IEEE Access, 2017, 5, 15372-15379.	2.6	90
6886	Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chemistry, 2017, 19, 4132-4140.	4.6	861
6887	The origin of potential rise during charging of Li-O2 batteries. Science China Chemistry, 2017, 60, 1527-1532.	4.2	17
6888	Theoretical study of V20050 oxovanadate cluster compounds with alkali metal atoms. Russian Journal of Inorganic Chemistry, 2017, 62, 1604-1613.	0.3	0

#	Article	IF	CITATIONS
6889	C/Sn/RGO Nanocomposites as Higher Initial Coulombic Efficiency Anode for Sodiumâ€lon Batteries. ChemistrySelect, 2017, 2, 11739-11746.	0.7	12
6890	Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co ₃ O ₄ mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution. Nanoscale, 2017, 9, 14431-14441.	2.8	77
6891	Cost–benefit analysis for using the Li-ion batteries in low-voltage network for decreasing the outage time experienced by customers. CIRED - Open Access Proceedings Journal, 2017, 2017, 2201-2204.	0.1	2
6892	Li-ion conductivity and crystal structure of garnet-type Li _{6.5} La ₃ <i>M</i> _{1.5} Ta <sub& (<i>M</i> = Hf, Sn) oxides. Journal of the Ceramic Society of Japan, 2017, 125, 272-275.</sub& 	gt 0 5</	sub>O&
6893	Visualization of Structures and Li-Ion Conduction Pathways in the Li ₂ S-P ₂ S ₅ System Using Neutron Scattering. Nihon Kessho Gakkaishi, 2017, 59, 230-237.	0.0	0
6894	Raman Imaging Analysis of Local Crystal Structures in LiCoO2 Thin Films Calcined at Different Temperatures. Analytical Sciences, 2017, 33, 853-858.	0.8	14
6895	Intrinsic Electrochemical Characteristics in the Individual Needle-like LiCoO ₂ Crystals Synthesized by Flux Growth. Electrochemistry, 2017, 85, 72-76.	0.6	8
6896	A review of solid electrolytes for safe lithium-sulfur batteries. Science China Chemistry, 2017, 60, 1508-1526.	4.2	105
6897	Snowflake Like ZnCo ₂ O _{4â€x} F _{2x} /Polypyrrole Composites as High Performance Anode for Lithium Ion Batteries. Crystal Research and Technology, 2017, 52, 1700111.	0.6	5
6898	Danieli cell investigation for energy storage. , 2017, , .		0
6899	Studying the Inhomogeneous Aging Behavior in Commercial Li-Ion Batteries. , 2017, , .		0
6900	HEV recharge battery algorithm using a fuzzy controller. , 2017, , .		2
6901	Post Iron Decoration of Mesoporous Nitrogenâ€Đoped Carbon Spheres for Efficient Electrochemical Oxygen Reduction. Advanced Energy Materials, 2017, 7, 1701154.	10.2	65
6902	Recent Progress on the Development of Metalâ€Air Batteries. Advanced Sustainable Systems, 2017, 1, 1700036.	2.7	83
6903	Conversion of Wastes to Bioelectricity, Bioethanol, and Fertilizer. Water Environment Research, 2017, 89, 676-686.	1.3	7
6904	TiO2-Modified Spinel Lithium Manganate for Suppressing Mn Ion Dissolution in Lithium Ion Batteries. International Journal of Electrochemical Science, 2017, 12, 7817-7828.	0.5	5
6905	Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage. Energies, 2017, 10, 1645.	1.6	152
6906	Optimal Temperature Trajectory for Maximum Lithium Ion Battery Charge Acceptance. , 0, , .		0

#	Article	IF	CITATIONS
6907	Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery. , 2017, , .		4
6908	Study of Cathode Materials for Lithium-Ion Batteries: Recent Progress and New Challenges. Inorganics, 2017, 5, 32.	1.2	68
6909	Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process. Materials, 2017, 10, 934.	1.3	59
6910	Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries. Materials, 2017, 10, 1102.	1.3	12
6911	High-Yield One-Pot Recovery and Characterization of Nanostructured Cobalt Oxalate from Spent Lithium-Ion Batteries and Successive Re-Synthesis of LiCoO2. Metals, 2017, 7, 303.	1.0	22
6912	Revisiting Mg–Mg2Ni System from Electronic Perspective. Metals, 2017, 7, 489.	1.0	5
6913	Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries. Nanomaterials, 2017, 7, 126.	1.9	9
6914	Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries. Polymers, 2017, 9, 657.	2.0	16
6915	Improving Energy Efficiency of an Autonomous Bicycle with Adaptive Controller Design. Sustainability, 2017, 9, 866.	1.6	7
6916	Further Cost Reduction of Battery Manufacturing. Batteries, 2017, 3, 17.	2.1	32
6917	Capacity Decay Mechanism of the LCO + NMC532/Graphite Cells Combined with Post-Mortem Technique. Energies, 2017, 10, 1147.	1.6	17
6918	Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter. Energies, 2017, 10, 1284.	1.6	75
6919	Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries. Energies, 2017, 10, 1844.	1.6	8
6920	Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery. Journal of Nanomaterials, 2017, 2017, 1-15.	1.5	12
6921	Polymer Electrolytes Based on Borane/Poly(ethylene glycol) Methyl Ether for Lithium Batteries. Journal of Chemistry, 2017, 2017, 1-6.	0.9	2
6922	Nanostructured Networks for Energy Storage: Vertically Aligned Carbon Nanotubes (VACNT) as Current Collectors for High-Power Li4Ti5O12(LTO)//LiMn2O4(LMO) Lithium-Ion Batteries. Batteries, 2017, 3, 37.	2.1	9
6923	Energy and Carbon Intensities of Stored Wind Energy. , 2017, , 377-387.		0
6924	Synthesis and Evaluation of Polybetaine-Type Ion Gel Electrolytes. Kobunshi Ronbunshu, 2017, 74, 542-548.	0.2	4

#	Article	IF	Citations
6925	Preliminary study on aluminum-air battery applying disposable soft drink cans and Arabic gum polymer. IOP Conference Series: Materials Science and Engineering, 2017, 237, 012039.	0.3	6
6926	Electrochemical Sodiation-desodiation of Maricite NaFePO ₄ in Ionic Liquid Electrolyte. Electrochemistry, 2017, 85, 675-679.	0.6	18
6927	Electrocatalytic Properties of La1-xCuxCoO3 (0 ≤ ≤0.8) Film Electrodes Prepared by Malic Acid Sol -Gel Method at pH = 3.75. International Journal of Electrochemical Science, 2017, , 7128-7141.	0.5	8
6928	Preparation of TiO2/Co3O4 Nanostructured Materials by a Two-Step Hydrothermal Method and their Electrode Performance in Lithium Ion Batteries. International Journal of Electrochemical Science, 2017, 12, 11987-11996.	0.5	6
6929	Structural Modification, Synthesis Mechanism and Properties Analysis of Li4Ti5O12 Anode Materials. International Journal of Electrochemical Science, 2017, 12, 9914-9924.	0.5	3
6930	Electrochemical and Mechanical Properties of Sodium-Ion Conducting Cross-Linked Polymer Gel Electrolyte. International Journal of Electrochemical Science, 2017, 12, 10674-10686.	0.5	8
6931	Energy transmission and storage. , 2017, , 569-646.		3
6932	Silicon-Carbon Composite Electrode Materials Prepared by Pyrolysis of a Mixture of Manila Hemp, Silicon Powder, and Flake Artificial Graphite for Lithium Batteries. Energies, 2017, 10, 1803.	1.6	8
6933	Hydrothermal Synthesis and Electrochemical Performance of Al-doped VO2(B) as Cathode Materials for Lithium-Ion Battery. International Journal of Electrochemical Science, 2017, 12, 4979-4989.	0.5	15
6934	Ti <inf>2</inf> (HPO <inf>3</inf>)3, a New Active Material for Lithium Ion Batteries. , 2017, , .		0
6935	A Method for Improving the Electrochemical Properties of a Li1.2Ni0.15Co0.1Mn0.55O2 Cathode Material. International Journal of Electrochemical Science, 2017, , 3782-3794.	0.5	1
6936	Anode material NbO for Li-ion battery and its electrochemical properties. Rare Metals, 2018, 37, 118-122.	3.6	35
6937	Oxygen and Nitrogen Coâ€enriched Sustainable Porous Carbon Hollow Microspheres from Sodium Lignosulfonate for Supercapacitors with High Volumetric Energy Densities. ChemElectroChem, 2018, 5, 1306-1320.	1.7	47
6938	Multifunctional Cross-Linked Polymeric Membranes for Safe, High-Performance Lithium Batteries. Chemistry of Materials, 2018, 30, 2058-2066.	3.2	49
6939	Enhanced Rate Performance of Al-Doped Li-Rich Layered Cathode Material via Nucleation and Post-solvothermal Method. ACS Sustainable Chemistry and Engineering, 2018, 6, 4625-4632.	3.2	64
6940	Tuning mobility and stability of lithium ion conductors based on lattice dynamics. Energy and Environmental Science, 2018, 11, 850-859.	15.6	158
6941	Facile synthesis of amorphous Cr ₂ O ₃ /Nâ€doped carbon nanosheets and its excellent lithium storage property. Journal of the American Ceramic Society, 2018, 101, 3234-3243.	1.9	8
6942	Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie - International Edition, 2018, 57, 5301-5305.	7.2	601

#	Article	IF	CITATIONS
6943	Enhanced Li Storage Stability Induced by Locating Sn in Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 6330-6333.	1.7	11
6944	The Future of Lithium Availability for Electric Vehicle Batteries. Green Energy and Technology, 2018, , 35-57.	0.4	9
6945	Hierarchical sodium-rich Prussian blue hollow nanospheres as high-performance cathode for sodium-ion batteries. Nano Research, 2018, 11, 3979-3990.	5.8	90
6946	Effects of Residual Lithium in the precursors of Li[Ni 1/3 Co 1/3 Mn 1/3]O 2 on their lithium-ion battery performance. Journal of Physics and Chemistry of Solids, 2018, 118, 47-52.	1.9	30
6947	Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries. Solid State Ionics, 2018, 320, 1-6.	1.3	30
6948	Quantifying Lithium Salt and Polymer Density Distributions in Nanostructured Ion-Conducting Block Polymers. Macromolecules, 2018, 51, 1917-1926.	2.2	39
6949	An alternative route to single ion conductivity using multi-ionic salts. Materials Horizons, 2018, 5, 461-473.	6.4	24
6950	Facile synthesis of nickel-doped Co ₉ S ₈ hollow nanoparticles with large surface-controlled pseudocapacitive and fast sodium storage. Nanotechnology, 2018, 29, 195201.	1.3	19
6951	Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-rate cathode material for lithium ion batteries. Nano Research, 2018, 11, 4038-4048.	5.8	34
6952	Stacked-graphene layers as engineered solid-electrolyte interphase (SEI) grown by chemical vapour deposition for lithium-ion batteries. Carbon, 2018, 132, 678-690.	5.4	16
6953	VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties. Nano Energy, 2018, 47, 340-352.	8.2	113
6954	Enhanced cycling performance for all-solid-state lithium ion battery with LiFePO4 composite cathode encapsulated by poly (ethylene glycol) (PEG) based polymer electrolyte. Solid State Ionics, 2018, 320, 92-99.	1.3	41
6955	Synthesis, Structural Characterization, and Growth Mechanism of Li _{1+<i>x</i>} V ₃ O ₈ Submicron Fibers for Lithium-Ion Batteries. Crystal Growth and Design, 2018, 18, 2055-2066.	1.4	13
6956	Sandwich-Like Poly(propylene carbonate)-Based Electrolyte for Ambient-Temperature Solid-State Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 268-274.	3.2	56
6957	Embedding ultrafine ZnSnO ₃ nanoparticles into reduced graphene oxide composites as high-performance electrodes for lithium ion batteries. Nanotechnology, 2018, 29, 195401.	1.3	11
6958	Structural stabilities and electrochemistry of Na2FeSiO4 polymorphs: first-principles calculations. Journal of Solid State Electrochemistry, 2018, 22, 2237-2245.	1.2	13
6959	Graphene hybridization for energy storage applications. Chemical Society Reviews, 2018, 47, 3189-3216.	18.7	297
6960	Progress of the Interface Design in All‣olid‣tate Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707533.	7.8	182

#	Article	IF	CITATIONS
6961	Advanced Characterization Techniques in Promoting Mechanism Understanding for Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1707543.	7.8	81
6962	Sn-C binary nanocomposites for lithium ion batteries: Core-shell vs. multilayer structure. Electrochimica Acta, 2018, 267, 1-7.	2.6	27
6963	A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries. Journal of Power Sources, 2018, 384, 207-213.	4.0	87
6964	lron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy, 2018, 47, 519-526.	8.2	111
6965	Rigid Polyimide Buffering Layer Enabling Silicon Nanoparticles Prolonged Cycling Life for Lithium Storage. ACS Applied Energy Materials, 2018, 1, 948-955.	2.5	12
6966	A separator-based lithium polysulfide recirculator for high-loading and high-performance Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 5862-5869.	5.2	68
6967	Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie, 2018, 130, 5399-5403.	1.6	116
6968	Reaching Highly Stable Specific Capacity with Integrated 0.6Li ₂ MnO ₃ : 0.4LiNi _{0.6} Co _{0.2} Mn _{0.2} O Cathode Materials. ChemElectroChem, 2018, 5, 1137-1146.	< sa b>2 </td <td>sı212></td>	sı 212 >
6969	Nitrogenâ€Enriched Carbon/CNT Composites Based on Schiffâ€Base Networks: Ultrahigh N Content and Enhanced Lithium Storage Properties. Small, 2018, 14, e1703569.	5.2	31
6970	Changes in Electronic Structure upon Li Deintercalation from LiCoPO ₄ Derivatives. Chemistry of Materials, 2018, 30, 1898-1906.	3.2	26
6971	Compact-Nanobox Engineering of Transition Metal Oxides with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2018, 10, 8955-8964.	4.0	38
6972	Coralloid Carbon Fiber-Based Composite Lithium Anode for Robust Lithium Metal Batteries. Joule, 2018, 2, 764-777.	11.7	609
6973	High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. Journal of Power Sources, 2018, 383, 102-109.	4.0	108
6974	Reutilization of the expired tetracycline for lithium ion battery anode. Science of the Total Environment, 2018, 630, 495-501.	3.9	37
6975	Influence of Atmosphere on Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Electrodes for Li-Ion Batteries. IOP Conference Series: Materials Science and Engineering, 2018, 301, 012039.	0.3	7
6976	Titania and nitrogen-doped carbon co-modification: Their synergic effects on the electrochemical performance of LiFePO4. Journal of Alloys and Compounds, 2018, 750, 139-146.	2.8	17
6977	Facile Synthesis of A 3D Flower‣ike Mesoporous Ni@C Composite Material for Highâ€Energy Aqueous Asymmetric Supercapacitors. Chemistry - an Asian Journal, 2018, 13, 1005-1011.	1.7	4
6978	Artificial Composite Anode Comprising High apacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithium″on Batteries. Batteries and Supercaps, 2018, 1, 27-32.	2.4	8

#	Article	IF	CITATIONS
6979	Synthesis of porous Co3O4/C nanoparticles as anode for Li-ion battery application. Applied Surface Science, 2018, 443, 401-406.	3.1	36
6980	Exceptional Lithium Storage in a Co(OH) ₂ Anode: Hydride Formation. ACS Nano, 2018, 12, 2909-2921.	7.3	64
6981	Negative effective Li transference numbers in Li salt/ionic liquid mixtures: does Li drift in the "Wrong― direction?. Physical Chemistry Chemical Physics, 2018, 20, 7470-7478.	1.3	128
6982	Complimentary effects of annealing temperature on optimal tuning of functionalized carbon–V ₂ O ₅ hybrid nanobelts for targeted dual applications in electrochromic and supercapacitor devices. RSC Advances, 2018, 8, 8596-8606.	1.7	22
6983	Impact of the charging conditions on the discharge performance of rechargeable iron-anodes for alkaline iron–air batteries. Journal of Applied Electrochemistry, 2018, 48, 451-462.	1.5	14
6984	Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries. Jom, 2018, 70, 1387-1391.	0.9	18
6985	Exploring the Capacity Limit: A Layered Hexacarboxylate-Based Metal–Organic Framework for Advanced Lithium Storage. Inorganic Chemistry, 2018, 57, 3126-3132.	1.9	41
6986	High-Rate and High-Areal-Capacity Air Cathodes with Enhanced Cycle Life Based on RuO ₂ /MnO ₂ Bifunctional Electrocatalysts Supported on CNT for Pragmatic Li–O ₂ Batteries. ACS Catalysis, 2018, 8, 2923-2934.	5.5	57
6987	Adsorption of Li on single-layer silicene for anodes of Li-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 8887-8896.	1.3	62
6988	X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell. Journal of Synchrotron Radiation, 2018, 25, 537-542.	1.0	20
6989	Cr-doped Fe2F5·H2O with open framework structure as a high performance cathode material of sodium-ion batteries. Electrochimica Acta, 2018, 269, 479-489.	2.6	31
6990	Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes. Journal of Power Sources, 2018, 383, 144-149.	4.0	113
6991	Fabrication of N-doped carbon-coated Li4Ti5â^'xCoxO12 anode for lithium-ion batteries. Solid State Ionics, 2018, 320, 113-117.	1.3	10
6992	Na ⁺ /vacancy disordering promises high-rate Na-ion batteries. Science Advances, 2018, 4, eaar6018.	4.7	341
6993	The effect of electric field on the cell voltage of inorganic AlN nanosheet based Na–ion batteries. Inorganic Chemistry Communication, 2018, 91, 29-34.	1.8	11
6994	Electrochemical performance and thermal stability analysis of LiNi Co Mn O2 cathode based on a composite safety electrolyte. Journal of Hazardous Materials, 2018, 351, 260-269.	6.5	66
6995	SWNT Anchored with Carboxylated Polythiophene "Links―on High-Capacity Li-Ion Battery Anode Materials. Journal of the American Chemical Society, 2018, 140, 5666-5669.	6.6	80
6996	Unveiling BiVO ₄ nanorods as a novel anode material for high performance lithium ion capacitors: beyond intercalation strategies. Journal of Materials Chemistry A, 2018, 6, 6096-6106.	5.2	78

#	Article	IF	CITATIONS
6997	Effect of Sn-Doping on Behavior of Li-Intercalation in V ₂ O ₅ Cathode Materials of Li-Ion Batteries: A Computational Perspective. Journal of Physical Chemistry C, 2018, 122, 5896-5907.	1.5	24
6998	Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors. ACS Nano, 2018, 12, 2753-2763.	7.3	129
6999	Laser Sintering of Printed Anodes for Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, A584-A592.	1.3	45
7000	Peapod-like one-dimensional (1D) CoP hollow nanorods embedded into graphene networks as an anode material for lithium-ion batteries. Journal of Materials Science, 2018, 53, 8445-8459.	1.7	26
7001	Flexible high energy density capacitors using La-doped PbZrO3 anti-ferroelectric thin films. Applied Physics Letters, 2018, 112, .	1.5	63
7002	High performing magnesium aluminate-coated separator for lithium batteries. Ionics, 2018, 24, 3451-3457.	1.2	11
7003	Facilitating high-capacity V2O5 cathodes with stable two and three Li+ insertion using a hybrid membrane structure consisting of amorphous V2O5 shells coaxially deposited on electrospun carbon nanofibers. Electrochimica Acta, 2018, 269, 144-154.	2.6	16
7004	Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. Journal of Power Sources, 2018, 382, 176-178.	4.0	184
7005	Understanding the Improved Kinetics and Cyclability of a Li ₂ MnSiO ₄ Cathode with Calcium Substitution. Inorganic Chemistry, 2018, 57, 3223-3231.	1.9	14
7006	High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 35-53.	13.1	514
7007	Improvement on high rate performance of LiFePO4 cathodes using graphene as a conductive agent. Applied Surface Science, 2018, 440, 748-754.	3.1	57
7008	Systematic comparison of hollow and solid Co 3 V 2 O 8 micro-pencils as advanced anode materials for lithium ion batteries. Electrochimica Acta, 2018, 264, 358-366.	2.6	49
7009	Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks. Electrochimica Acta, 2018, 269, 250-261.	2.6	56
7010	Sheet-like Li1.2Mn0.54Ni0.16Co0.10O2 prepared by glucose-urea bubbling and post-annealing process as high capacity cathode of Li-ion batteries. Electrochimica Acta, 2018, 269, 196-203.	2.6	8
7011	High-rate, long cycle-life Li-ion battery anodes enabled by ultrasmall tin-based nanoparticles encapsulation. Energy Storage Materials, 2018, 14, 169-178.	9.5	47
7012	Nano tin dioxide anchored onto carbon nanotube/graphene skeleton as anode material with superior lithium-ion storage capability. Journal of Electroanalytical Chemistry, 2018, 815, 30-39.	1.9	23
7013	Outstanding Li-storage performance of LiFePO4@MWCNTs cathode material with 3D network structure for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2018, 116, 216-221.	1.9	18
7014	Flexible phosphorus doped carbon nanosheets/nanofibers: Electrospun preparation and enhanced		

		CITATION REPORT		
#	Article		IF	Citations
7015	Fast ion transport at solidâ \in solid interfaces in hybrid battery anodes. Nature Energy, Σ	2018, 3, 310-316.	19.8	413
7016	Local Structure and Lithium Diffusion Pathways in Li ₄ Mn ₂ O High Capacity Cathode Probed by Total Scattering and XANES. Chemistry of Materials 3060-3070.		3.2	19
7017	Toward a Highâ€Performance Allâ€Plastic Full Battery with a'Single Organic Polymer a Anode. Advanced Energy Materials, 2018, 8, 1703509.	s Both Cathode and	10.2	189
7018	Multiscale Engineered Si/SiO <i>_x</i> Nanocomposite Electrodes for Lithi Using Layer-by-Layer Spray Deposition. ACS Applied Materials & Interfaces, 2018,	um-lon Batteries 10, 15624-15633.	4.0	44
7019	Directionally assembled MoS ₂ with significantly expanded interlayer spaci anode material for high-rate lithium-ion batteries. Materials Chemistry Frontiers, 2018,	ng: a superior 2, 1441-1448.	3.2	12
7020	Iron-nitrogen-carbon species boosting fast conversion kinetics of Fe1-xS@C nanorods anodes for lithium ion batteries. Chemical Engineering Journal, 2018, 338, 726-733.	as high rate	6.6	67
7021	CoP3@PPy microcubes as anode for lithium-ion batteries with improved cycling and ra Chemical Engineering Journal, 2018, 347, 455-461.	te performance.	6.6	49
7022	Polymeric ionic liquid enhanced all-solid-state electrolyte membrane for high-performa lithium-ion batteries. Electrochimica Acta, 2018, 276, 184-193.	nce	2.6	43
7023	Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O. Journ Sources, 2018, 389, 240-248.	al of Power	4.0	44
7024	Bio-based nanostructured carbons toward sustainable technologies. Current Opinion i Sustainable Chemistry, 2018, 12, 22-26.	n Green and	3.2	20
7025	Facile synthesis of N-doped carbon-coated nickel oxide nanoparticles embedded in N-d sheets for reversible lithium storage. Journal of Alloys and Compounds, 2018, 745, 147	oped carbon 7-154.	2.8	10
7026	A bifunctional electrolyte additive for H ₂ O/HF scavenging and enhanced graphite/LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ c high voltage. Sustainable Energy and Fuels, 2018, 2, 1481-1490.	ell performance at a	2.5	36
7027	Enhancement of electrochemical performance of lithium-ion battery by single-ion conc addition in ceramic-coated separator. Journal of Materials Science, 2018, 53, 11038-1	ucting polymer 1049.	1.7	30
7028	Effect of LiFSI Concentrations To Form Thickness- and Modulus-Controlled SEI Layers of Metal Anodes. Journal of Physical Chemistry C, 2018, 122, 9825-9834.	n Lithium	1.5	131
7029	New P2-Type Honeycomb-Layered Sodium-Ion Conductor: Na ₂ Mg ₂ TeO ₆ . ACS Applied Materials & In 15760-15766.	terfaces, 2018, 10,	4.0	44
7030	A facile one-step hydrothermal approach to synthesize hierarchical core–shell NiFe ₂ O ₄ @NiFe ₂ O ₄ nanosheet ar large specific capacitance for supercapacitors. RSC Advances, 2018, 8, 15222-15228.	rays on Ni foam with	1.7	40
7031	Performance of EMIMFSI ionic liquid based gel polymer electrolyte in rechargeable lithi batteries. Journal of Industrial and Engineering Chemistry, 2018, 65, 137-145.	um metal	2.9	38
7032	Dual Carbon-Confined SnO ₂ Hollow Nanospheres Enabling High Performa Reversible Storage of Alkali Metal Ions. ACS Applied Materials & Interfaces, 2018,		4.0	87

#	Article	lF	CITATIONS
7033	Rapid Amorphization in Metastable CoSeO ₃ ·H ₂ O Nanosheets for Ultrafast Lithiation Kinetics. ACS Nano, 2018, 12, 5011-5020.	7.3	53
7034	Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nature Communications, 2018, 9, 1656.	5.8	1,162
7035	Room-temperature rechargeable Na–SO ₂ batteries containing a gel-polymer electrolyte. Chemical Communications, 2018, 54, 5315-5318.	2.2	9
7036	High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method. Diamond and Related Materials, 2018, 86, 139-145.	1.8	69
7037	Synergistic electrocatalytic oxygen reduction reactions of Pd/B4C for ultra-stable Zn-air batteries. Energy Storage Materials, 2018, 15, 226-233.	9.5	45
7038	Lithium diffusion in Li5FeO4. Scientific Reports, 2018, 8, 5832.	1.6	36
7039	Nanoporous and lyophilic battery separator from regenerated eggshell membrane with effective suppression of dendritic lithium growth. Energy Storage Materials, 2018, 14, 258-266.	9.5	69
7040	Tellurium-tin based electrodes enabling liquid metal batteries for high specific energy storage applications. Energy Storage Materials, 2018, 14, 267-271.	9.5	52
7041	Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials. Nano Energy, 2018, 49, 77-85.	8.2	99
7042	Electrochemistry-Mechanics Coupling in Intercalation Electrodes. Journal of the Electrochemical Society, 2018, 165, A1064-A1083.	1.3	32
7043	Impact of High Valence State Cation Ti/Ta Surface Doping on the Stabilization of Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials: A Systematic Density Functional Theory Investigation. Advanced Materials Interfaces, 2018, 5, 1800077.	1.9	25
7044	Selected Review of the Degradation of Pt and Pdâ€based Carbonâ€supported Electrocatalysts for Alkaline Fuel Cells: Towards Mechanisms of Degradation. Fuel Cells, 2018, 18, 229-238.	1.5	70
7045	Nano-micro structure VO2/CNTs composite as a potential anode material for lithium ion batteries. Ceramics International, 2018, 44, 13113-13121.	2.3	46
7046	High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. Journal of Power Sources, 2018, 389, 140-147.	4.0	90
7047	Poly(benzyl methacrylate)-poly[(oligo ethylene glycol) methyl ether methacrylate] triblock-copolymers as solid electrolyte for lithium batteries. Solid State Ionics, 2018, 321, 55-61.	1.3	24
7048	The structure–electrochemical property relationship of quinone electrodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 13478-13484.	1.3	59
7049	Electrochemical Oscillation in Li-Ion Batteries. Joule, 2018, 2, 1265-1277.	11.7	44
7050	Analysis of Lithium Insertion/Desorption Reaction at Interfaces between Graphite Electrodes and Electrolyte Solution Using Density Functional + Implicit Solvation Theory. Journal of Physical Chemistry C, 2018, 122, 9804-9810.	1.5	41

#	Article	IF	CITATIONS
7051	Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials. Nano Letters, 2018, 18, 3241-3249.	4.5	237
7052	A Novel Highâ€Capacity Anode Material Derived from Aromatic Imides for Lithiumâ€lon Batteries. Small, 2018, 14, e1704094.	5.2	26
7053	Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage. IScience, 2018, 3, 149-160.	1.9	45
7054	In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors. Journal of Energy Storage, 2018, 17, 318-326.	3.9	50
7055	Examining the validity of Stoney-equation for in-situ stress measurements in thin film electrodes using a large-deformation finite-element procedure. Journal of Power Sources, 2018, 387, 126-134.	4.0	13
7056	Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Materials Horizons, 2018, 5, 394-407.	6.4	452
7057	Preparation of a truncated octahedron LiNi0.5Mn1.5O4 by a solid-state method with high electrochemical performance. AIP Conference Proceedings, 2018, , .	0.3	0
7058	Efficient Sodium Storage in Rolledâ€Up Amorphous Si Nanomembranes. Advanced Materials, 2018, 30, e1706637.	11.1	87
7059	Selfâ€Activating, Capacitive Anion Intercalation Enables Highâ€Power Graphite Cathodes. Advanced Materials, 2018, 30, e1800533.	11.1	121
7060	Flexible, Scalable, and Highly Conductive Garnetâ€Polymer Solid Electrolyte Templated by Bacterial Cellulose. Advanced Energy Materials, 2018, 8, 1703474.	10.2	189
7061	Unravelling the Enhanced Highâ€Temperature Performance of Lithiumâ€Rich Oxide Cathode with Methyl Diphenylphosphinite as Electrolyte Additive. ChemElectroChem, 2018, 5, 1569-1575.	1.7	29
7062	Pyrolytic Carbon Nanosheets for Ultrafast and Ultrastable Sodiumâ€ion Storage. Small, 2018, 14, 1703043.	5.2	21
7063	Understanding Capacity Fading of MgH ₂ Conversion-Type Anodes via Structural Morphology Changes and Electrochemical Impedance. Journal of Physical Chemistry C, 2018, 122, 8750-8759.	1.5	12
7064	Electrodeposited Na ₂ Ni[Fe(CN) ₆] Thin-Film Cathodes Exposed to Simulated Aqueous Na-Ion Battery Conditions. Journal of Physical Chemistry C, 2018, 122, 8760-8768.	1.5	37
7065	A Kind of Coordination Complex Cement for the Self-Assembly of Superstructure. ACS Nano, 2018, 12, 4002-4009.	7.3	36
7066	From Checkerboardâ€Like Sand Barriers to 3D Cu@CNF Composite Current Collectors for Highâ€Performance Batteries. Advanced Science, 2018, 5, 1800031.	5.6	18
7067	Advancing Lithium Metal Batteries. Joule, 2018, 2, 833-845.	11.7	1,052
7068	One-Dimensional Hetero-Nanostructures for Rechargeable Batteries. Accounts of Chemical Research, 2018, 51, 950-959.	7.6	87

#	Article	IF	CITATIONS
7069	Elucidating the Polymeric Binder Distribution within Lithiumâ€lon Battery Electrodes Using SAICAS. ChemPhysChem, 2018, 19, 1627-1634.	1.0	18
7070	Redox flow batteries—Concepts and chemistries for cost-effective energy storage. Frontiers in Energy, 2018, 12, 198-224.	1.2	28
7071	Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. Nano Research, 2018, 11, 4673-4685.	5.8	50
7072	Nanoconfined SnS in 3D interconnected macroporous carbon as durable anodes for lithium/sodium ion batteries. Carbon, 2018, 134, 222-231.	5.4	115
7073	LiBH4 as solid electrolyte for Li-ion batteries with Bi2Te3 nanostructured anode. International Journal of Hydrogen Energy, 2018, 43, 21709-21714.	3.8	20
7074	The application of synchrotron X-ray techniques to the study of rechargeable batteries. Journal of Energy Chemistry, 2018, 27, 1566-1583.	7.1	55
7075	Application of materials based on group VB elements in sodium-ion batteries: A review. Journal of Materials Science and Technology, 2018, 34, 1969-1976.	5.6	20
7076	High-Crystallinity Urchin-like VS ₄ Anode for High-Performance Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2018, 10, 14727-14734.	4.0	74
7077	Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy and Environmental Science, 2018, 11, 1552-1562.	15.6	154
7078	One-step fabrication of in situ carbon-coated NiCo2O4@C bilayered hybrid nanostructural arrays as free-standing anode for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 273, 1-9.	2.6	39
7079	Potassium vanadate K0.23V2O5 as anode materials for lithium-ion and potassium-ion batteries. Journal of Power Sources, 2018, 389, 77-83.	4.0	50
7080	A High Performance Air Cathode with the Hydrophobic Pores Distributed Continuously and in Gradient for Zincâ€Air Fuel Cells. Energy Technology, 2018, 6, 1860-1864.	1.8	4
7081	Improved cycle performance of nitrogen and phosphorus co-doped carbon coatings on lithium nickel cobalt aluminum oxide battery material. Journal of Materials Science, 2018, 53, 9662-9673.	1.7	17
7082	Polymer-assisted chemical solution synthesis of La0.8Sr0.2MnO3-based perovskite with A-site deficiency and cobalt-doping for bifunctional oxygen catalyst in alkaline media. Electrochimica Acta, 2018, 273, 80-87.	2.6	45
7083	High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode. Energy Storage Materials, 2018, 14, 246-252.	9.5	120
7084	Vortex generators for active thermal management in lithium-ion battery systems. International Journal of Heat and Mass Transfer, 2018, 124, 800-815.	2.5	39
7085	Lithiation and Delithiation Processes in Lithium–Sulfur Batteries from Ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2018, 122, 8769-8779.	1.5	28
7086	Electrochemically Activated Iridium Oxide Black as Promising Electrocatalyst Having High Activity and Stability for Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 1110-1115.	8.8	48

	C	CITATION REPORT	
#	Article	IF	CITATIONS
7087	Multishelled Si@Cu Microparticles Supported on 3D Cu Current Collectors for Stable and Binder-free Anodes of Lithium-Ion Batteries. ACS Nano, 2018, 12, 3587-3599.	7.3	74
7088	Revealing the role of NH ₄ VO ₃ treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries. Nanoscale, 2018, 10, 8820-8831.	2.8	77
7089	A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. Journal of Materials Chemistry A, 2018, 6, 8374-8381.	5.2	27
7090	Phosphorylated graphene monoliths with high mixed proton/electron conductivity. Journal of Materials Chemistry A, 2018, 6, 8499-8506.	5.2	12
7091	Ferromagnetic Nanoparticle–Assisted Polysulfide Trapping for Enhanced Lithium–Sulfur Batterie Advanced Functional Materials, 2018, 28, 1800563.	25. 7.8	109
7092	Synthesis of highly crystalline octahedron 3D-Zn2SnO4 as an advanced high-performance anode material for lithium ion batteries. Applied Surface Science, 2018, 449, 514-520.	3.1	17
7093	Synthesis and application of iron-based nanomaterials as anodes of lithium-ion batteries and supercapacitors. Journal of Materials Chemistry A, 2018, 6, 9332-9367.	5.2	159
7094	Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An <i>AbÂlnitio</i> Str Physical Review Applied, 2018, 9, .	udy. 1.5	7
7095	Intercalated Water and Organic Molecules for Electrode Materials of Rechargeable Batteries. Advanced Materials, 2018, 30, e1705851.	11.1	64
7096	Nitrogenâ€Ðoped Porous Carbon Structure from Melamineâ€Assisted Polyimide Sheets for Superca Electrodes. Advanced Sustainable Systems, 2018, 2, 1800007.	pacitor 2.7	16
7097	Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage. ACS Nano, 2018, 12, 3406-3416.	7.3	149
7098	Solid polymer electrolytes from a fluorinated copolymer bearing cyclic carbonate pendant groups. Journal of Materials Chemistry A, 2018, 6, 8514-8522.	5.2	30
7099	Chitosan-Confined Synthesis of N-Doped and Carbon-Coated Li ₄ Ti ₅ O ₁₂ Nanoparticles with Enhanced Lithium Storage for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1046-A1053.	1.3	32
7100	Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 2018, 389, 198-213.	4.0	964
7101	Particle Morphology and Lithium Segregation to Surfaces of the Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte. Chemistry of Materials, 2018, 30, 3019-3027.	3.2	80
7102	A self-cooling and flame-retardant electrolyte for safer lithium ion batteries. Sustainable Energy and Fuels, 2018, 2, 1323-1331.	2.5	39
7103	Structured Titanium Nitride Nanotube Arrays/Sulfur Composite as Cathode Materials for Advanced Lithium Sulfur Battery. Journal of the Electrochemical Society, 2018, 165, A1011-A1018.	1.3	20
7104	Electricity storage needs for the energy transition: An EROI based analysis illustrated by the case of Belgium. Energy, 2018, 152, 960-973.	4.5	28

#	Article	IF	CITATIONS
7105	Conformal vapor deposition of iron phosphate onto carbon nanotubes for flexible high-rate cathodes. Materials Today Energy, 2018, 8, 143-150.	2.5	5
7106	Using core–shell interlinked polymer@C–iodine hollow spheres to synergistically depress polyiodide shuttle and boost kinetics for iodine-based batteries. Journal of Materials Chemistry A, 2018, 6, 9019-9031.	5.2	45
7107	Theoretical evaluation of ethylene carbonate anion transport and its impact on solid electrolyte interphase formation. Electrochimica Acta, 2018, 266, 326-331.	2.6	9
7108	A binder-free composite anode composed of CuO nanosheets and multi-wall carbon nanotubes for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 267, 150-160.	2.6	62
7109	Developing lithiated polyvinyl formal based single-ion conductor membrane with a significantly improved ionic conductivity as solid-state electrolyte for batteries. Journal of Membrane Science, 2018, 552, 349-356.	4.1	35
7110	Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Nature Communications, 2018, 9, 576.	5.8	497
7111	Formation, Microstructure, and Conductivity of a Novel Ga2S3-Sb2S3-AgI Chalcogenide System. Scientific Reports, 2018, 8, 1699.	1.6	11
7112	Oxocarbon-functionalized graphene as a lithium-ion battery cathode: a first-principles investigation. Physical Chemistry Chemical Physics, 2018, 20, 7447-7456.	1.3	15
7115	Red phosphorus encapsulated in porous carbon derived from cigarette filter solid waste as a promising anode material for lithium-ion batteries. Ionics, 2018, 24, 3393-3403.	1.2	11
7116	An Automotive Onboard AC Heater Without External Power Supplies for Lithium-Ion Batteries at Low Temperatures. IEEE Transactions on Power Electronics, 2018, 33, 7759-7769.	5.4	60
7117	Advanced Characterization Techniques for Sodiumâ€lon Battery Studies. Advanced Energy Materials, 2018, 8, 1702588.	10.2	122
7118	Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 2018, 21, 419-436.	8.3	335
7119	Exceeding 6500 cycles for LiFePO ₄ /Li metal batteries through understanding pulsed charging protocols. Journal of Materials Chemistry A, 2018, 6, 4746-4751.	5.2	38
7120	Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chemical Engineering Journal, 2018, 345, 604-610.	6.6	50
7121	Effect of annealing process on the properties of undoped and manganese2+-doped co-binary copper telluride and tin telluride thin films. Ceramics International, 2018, 44, 7186-7201.	2.3	11
7122	Electrochemical properties of stanene as an efficient anode material for Na-ion batteries. Computational Condensed Matter, 2018, 14, 84-88.	0.9	9
7123	High oxygen reduction reaction activity of Pt5Pr electrodes in acidic media. Electrochemistry Communications, 2018, 88, 10-14.	2.3	26
7124	Mesoporous perforated Co 3 O 4 nanoparticles with a thin carbon layer for high performance Li-ion battery anodes. Electrochimica Acta, 2018, 264, 376-385.	2.6	26

#	Article	IF	CITATIONS
7125	Polypropylene/polyethylene multilayer separators with enhanced thermal stability for lithium-ion battery via multilayer coextrusion. Electrochimica Acta, 2018, 264, 140-149.	2.6	56
7126	Correlating electrocatalytic oxygen reduction activity with d-band centers of metallic nanoparticles. Energy Storage Materials, 2018, 13, 189-198.	9.5	40
7127	Facile synthesis of \hat{l}_{\pm} -Fe2O3@C hollow spheres as ultra-long cycle performance anode materials for lithium ion battery. Journal of Alloys and Compounds, 2018, 742, 490-496.	2.8	29
7128	Facile preparation of three-dimensional Co1-xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction. Journal of Power Sources, 2018, 378, 699-706.	4.0	47
7129	A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy, 2018, 45, 413-419.	8.2	475
7130	Facile precipitation of tin oxide nanoparticles on graphene sheet by liquid phase plasma method for enhanced electrochemical properties. Korean Journal of Chemical Engineering, 2018, 35, 750-756.	1.2	13
7131	Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces. Journal of Power Sources, 2018, 380, 115-125.	4.0	40
7132	From Microparticles to Nanowires and Back: Radical Transformations in Plated Li Metal Morphology Revealed via <i>in Situ</i> Scanning Electron Microscopy. Nano Letters, 2018, 18, 1644-1650.	4.5	47
7133	Improving the elevated-temperature behaviors of LiNi1/3Co1/3Mn1/3O2 by surface modification with Nano-La2O3. Journal of Alloys and Compounds, 2018, 742, 549-554.	2.8	23
7134	Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries. Chemical Engineering Journal, 2018, 341, 280-288.	6.6	72
7135	Core-shell structured Si@Ni nanoparticles encapsulated in graphene nanosheet for lithium ion battery anodes with enhanced reversible capacity and cyclic performance. Electrochimica Acta, 2018, 265, 348-354.	2.6	27
7136	Alginate derived Co3O4/Co nanoparticles decorated in N-doped porous carbon as an efficient bifunctional catalyst for oxygen evolution and reduction reactions. Electrochimica Acta, 2018, 265, 681-689.	2.6	40
7137	Conductive Nb25O62 and Nb12O29 anode materials for use in high-performance lithium-ion storage. Electrochimica Acta, 2018, 266, 202-211.	2.6	39
7138	Heterostructured Bi ₂ S ₃ –Bi ₂ O ₃ Nanosheets with a Built-In Electric Field for Improved Sodium Storage. ACS Applied Materials & Interfaces, 2018, 10, 7201-7207.	4.0	153
7139	Dendrite formation in silicon anodes of lithium-ion batteries. RSC Advances, 2018, 8, 5255-5267.	1.7	55
7140	Enhanced electrochemical performance of lithium ion batteries using Sb ₂ S ₃ nanorods wrapped in graphene nanosheets as anode materials. Nanoscale, 2018, 10, 3159-3165.	2.8	65
7141	Structural design of anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6183-6205.	5.2	127
7142	Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions. Annual Review of Physical Chemistry, 2018, 69, 125-149.	4.8	51

#	Article	IF	CITATIONS
7143	Stabilization of a High-Capacity and High-Power Nickel-Based Cathode for Li-Ion Batteries. CheM, 2018, 4, 690-704.	5.8	128
7144	Freestanding 3D single-wall carbon nanotubes/WS2 nanosheets foams as ultra-long-life anodes for rechargeable lithium ion batteries. Electrochimica Acta, 2018, 267, 133-140.	2.6	58
7145	Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Materials, 2018, 13, 274-282.	9.5	129
7146	Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 744, 7-14.	2.8	42
7147	All boron-based 2D material as anode material in Li-ion batteries. Journal of Energy Chemistry, 2018, 27, 1651-1654.	7.1	35
7148	Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles. Journal of Materials Science and Technology, 2018, 34, 1902-1911.	5.6	44
7149	Improved Rate and Cycling Performances of Electrodes Based on BiFeO ₃ Nanoflakes by Compositing with Organic Pectin for Advanced Rechargeable Na-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 1291-1299.	2.4	34
7150	Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy. Nature Communications, 2018, 9, 661.	5.8	100
7151	<i>Ab initio</i> investigation of the thermodynamics of cation distribution and of the electronic and magnetic structures in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>LiMn</mml:mi><mm mathvariant="normal">O<mml:mn>4</mml:mn></mm </mml:msub></mml:mrow></mml:math 	nl:mini>2 <td>11771711111111111111111111111111111111</td>	11771711111111111111111111111111111111
7152	spinel. Physical Review B, 2018, 97, . Elektrolytadditive für Lithiummetallanoden und wiederaufladbare Lithiummetallbatterien: Fortschritte und Perspektiven. Angewandte Chemie, 2018, 130, 15220-15246.	1.6	54
7153	Carbon Nanorodâ^'MoS ₂ Coreâ^'Sheath Heterostructure and Its Electrochemical Properties over Various Electrochemical Windows. ChemElectroChem, 2018, 5, 1288-1296.	1.7	7
7154	Flexible interfaces between Si anodes and composite electrolytes consisting of poly(propylene) Tj ETQq1 1 0.78	4314 rgBT 4.0	Oyerlock 10
7155	Recent Progress of the Solidâ€State Electrolytes for Highâ€Energy Metalâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1702657.	10.2	851
7156	Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability. Journal of Materials Chemistry A, 2018, 6, 3022-3027.	5.2	113
7157	V ₂ O ₅ -Based nanomaterials: synthesis and their applications. RSC Advances, 2018, 8, 4014-4031.	1.7	141
7159	Investigation of carbon coating approach on electrochemical performance of Li4Ti5O12/C composite anodes for high-rate lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 1851-1861.	1.2	18
7160	Beyond Insertion for Naâ€ion Batteries: Nanostructured Alloying and Conversion Anode Materials. Advanced Energy Materials, 2018, 8, 1702582.	10.2	231

		CITATION REPORT		
#	Article		IF	CITATIONS
7162	Orbital Physics of Perovskites for the Oxygen Evolution Reaction. Topics in Catalysis, 201	3, 61, 267-275.	1.3	16
7163	Molecular Design of Phenanthrenequinone Derivatives as Organic Cathode Materials. Che 2018, 11, 1215-1222.	mSusChem,	3.6	21
7164	Layered P2–O3 sodium-ion cathodes derived from earth abundant elements. Journal of Chemistry A, 2018, 6, 3552-3559.	Materials	5.2	73
7165	Sulfur-containing bimetallic metal organic frameworks with multi-fold helix as anode of lit batteries. Dalton Transactions, 2018, 47, 4827-4832.	hium ion	1.6	30
7166	Configuring PS <i>x</i> tetrahedral clusters in Li-excess Li7P3S11 solid electrolyte. APL Ma 6, .	ıterials, 2018,	2.2	9
7167	One-dimensional nanomaterials for energy storage. Journal Physics D: Applied Physics, 20	18, 51, 113002.	1.3	48
7168	3D Flexible Carbon Felt Host for Highly Stable Sodium Metal Anodes. Advanced Energy Ma 8, 1702764.	aterials, 2018,	10.2	274
7169	Thermally Resistive Electrospun Composite Membranes for Lowâ€Grade Thermal Energy H Macromolecular Materials and Engineering, 2018, 303, 1700482.	larvesting.	1.7	6
7170	Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Applicati Perspectives. Minerals, Metals and Materials Series, 2018, , 3-14.	on	0.3	8
7171	Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li–S Ba High Sulfur Mass Loading. ACS Applied Materials & Interfaces, 2018, 10, 7043-7051.	atteries with	4.0	66
7172	Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles E Carbon for Ultrafast Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 6	mbedded in 5235-6244.	4.0	74
7173	Anomalous Li Storage Capability in Atomically Thin Two-Dimensional Sheets of Nonlayered MoO ₂ . Nano Letters, 2018, 18, 1506-1515.	ł	4.5	74
7174	Stressâ€Relieved Nanowires by Silicon Substitution for Highâ€Capacity and Stable Lithiur Advanced Energy Materials, 2018, 8, 1702805.	1 Storage.	10.2	29
7175	Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced elec properties for lithium storage. Rare Metals, 2018, 37, 107-117.	trochemical	3.6	25
7176	Microstructure Evolution and Conversion Mechanism of Mn ₃ O _{4Electrochemical Cyclings. Journal of Physical Chemistry C, 2018, 122, 2475-2480.}	> under	1.5	11
7177	Carbon Nanotube Web with Carboxylated Polythiophene "Assist―for High-Performar Electrodes. ACS Nano, 2018, 12, 3126-3139.	nce Battery	7.3	51
7178	A Highly Stretchable Crossâ€Linked Polyacrylamide Hydrogel as an Effective Binder for Sil Sulfur Electrodes toward Durable Lithiumâ€Ion Storage. Advanced Functional Materials, 2 1705015.		7.8	148
7179	Cerium ion intercalated MnO2 nanospheres with high catalytic activity toward oxygen rec reaction for aluminum-air batteries. Electrochimica Acta, 2018, 263, 544-554.	luction	2.6	52

#	Article	IF	CITATIONS
7180	Pseudocapacitive charge storage induced by self-enhanced electrical conductivity and Li-ion diffusion in high performance Li3VO4@LiVO2 anode for Li-ion batteries. Journal of Alloys and Compounds, 2018, 741, 442-448.	2.8	11
7181	Functionalization of graphene oxide with naphthalenediimide diamine for high-performance cathode materials of lithium-ion batteries. Sustainable Energy and Fuels, 2018, 2, 803-810.	2.5	23
7182	Triptycene-based quinone molecules showing multi-electron redox reactions for large capacity and high energy organic cathode materials in Li-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3134-3140.	5.2	80
7183	A first-principles investigation of the ScO ₂ monolayer as the cathode material for alkali metal-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3171-3180.	5.2	20
7184	Analysis on the Fault Features for Internal Short Circuit Detection Using an Electrochemical-Thermal Coupled Model. Journal of the Electrochemical Society, 2018, 165, A155-A167.	1.3	75
7185	An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. Journal of Energy Storage, 2018, 15, 304-328.	3.9	290
7186	High-Performance Ga ₂ O ₃ Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5519-5526.	4.0	60
7187	A Tunable Molten-Salt Route for Scalable Synthesis of Ultrathin Amorphous Carbon Nanosheets as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5577-5585.	4.0	84
7188	Low-Cost Room-Temperature Synthesis of NaV ₃ O ₈ ·1.69H ₂ O Nanobelts for Mg Batteries. ACS Applied Materials & Interfaces, 2018, 10, 4757-4766.	4.0	48
7189	Waste Windshield-Derived Silicon/Carbon Nanocomposites as High-Performance Lithium-Ion Battery Anodes. Scientific Reports, 2018, 8, 960.	1.6	38
7190	The Na ₃ V ₂ (PO ₄) ₂ F ₃ /Carbon Na-Ion Battery: Its Performance Understanding as Deduced from Differential Voltage Analysis. Journal of the Electrochemical Society, 2018, 165, A220-A227.	1.3	34
7191	Polyimides as cathodic materials in lithium batteries: Effect of the chemical structure of the diamine monomer. Journal of Polymer Science Part A, 2018, 56, 714-723.	2.5	25
7192	Wearable energy sources based on 2D materials. Chemical Society Reviews, 2018, 47, 3152-3188.	18.7	226
7193	Critically Examining the Role of Nanocatalysts in Li–O ₂ Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. ACS Energy Letters, 2018, 3, 592-597.	8.8	82
7194	Room temperature solid state dual-ion batteries based on gel electrolytes. Journal of Materials Chemistry A, 2018, 6, 4313-4323.	5.2	40
7195	Advances in Manganeseâ€Based Oxides Cathodic Electrocatalysts for Li–Air Batteries. Advanced Functional Materials, 2018, 28, 1704973.	7.8	120
7196	Solvation-controlled lithium-ion complexes in a nonflammable solvent containing ethylene carbonate: structural and electrochemical aspects. Physical Chemistry Chemical Physics, 2018, 20, 6480-6486.	1.3	18
7197	Ultralongâ€Dischargeâ€Time Biobattery Based on Immobilized Enzymes in Bilayer Rolledâ€Up Enzymatic Nanomembranes. Small, 2018, 14, e1704221.	5.2	11

		CITATION RE	PORT	
#	Article		IF	CITATIONS
7198	High rate capability by sulfur-doping into LiFePO ₄ matrix. RSC Advances,	2018, 8, 5848-5853.	1.7	38
7199	Enabling a highly reversible conversion reaction in a lithiated nano-SnO ₂ with Al ₂ O ₃ by atomic layer deposition. Journal of Materials (6, 4374-4385.		5.2	26
7200	Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702403.	d and Advance	10.2	221
7201	Porous MoS ₂ /Carbon Spheres Anchored on 3D Interconnected Multiwall Nanotube Networks forÂUltrafast Na Storage. Advanced Energy Materials, 2018, 8, 17		10.2	190
7202	Ionically Conductive Selfâ€Healing Binder for Low Cost Si Microparticles Anodes in Liâ∙ Advanced Energy Materials, 2018, 8, 1703138.	€ l on Batteries.	10.2	224
7203	Pyromellitic dianhydride-based polyimide anodes for sodium-ion batteries. Electrochimi 265, 702-708.	ca Acta, 2018,	2.6	43
7204	Sodium dodecyl sulfate-assisted synthesis of flower-like NiCo2O4 microspheres with la surface area for supercapacitors. Journal of Alloys and Compounds, 2018, 744, 187-19	irge specific 5.	2.8	29
7205	Coupled Ion Conduction Mechanism and Dielectric Relaxation Phenomenon in PEO ₂₀ –LiCF ₃ SO ₃ -Based Ion Conducting Pol Electrolytes. Journal of Physical Chemistry C, 2018, 122, 4133-4143.	ymer Nanocomposite	1.5	22
7206	Carbon and Carbon Hybrid Materials as Anodes for Sodiumâ€ion Batteries. Chemistry - 2018, 13, 1248-1265.	an Asian Journal,	1.7	42
7207	Direct synthesis of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 cathode materials for lithi Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 97-101.	um ion batteries.	0.4	3
7208	A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3-activated Li1.2M for Li-ion batteries. Electrochimica Acta, 2018, 265, 391-399.	Ni0.2Mn0.6O2 shell	2.6	42
7209	A computational investigation of thermal effect on lithium dendrite growth. Energy Co Management, 2018, 161, 193-204.	nversion and	4.4	61
7210	UV curable organic-inorganic hybrid coatings on microporous polyethylene separator f mechanical and electrochemical performance. Journal of Alloys and Compounds, 2018		2.8	19
7211	The influence of different Si : C ratios on the electrochemical performance of film anodes for lithium-ion batteries. RSC Advances, 2018, 8, 6660-6666.	silicon/carbon layered	1.7	38
7212	Enhanced Stability of Coated Carbon Electrode for Liâ€O ₂ Batteries and I Advanced Energy Materials, 2018, 8, 1702661.	ts Limitations.	10.2	57
7213	Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteri and Perspectives. Angewandte Chemie - International Edition, 2018, 57, 15002-15027	es: Progress	7.2	551
7214	Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOI additives. Applied Surface Science, 2018, 441, 265-271.	3 electrolyte	3.1	73
7215	Self-Contained Fragmentation and Interfacial Stability in Crude Micron-Silicon Anodes. Electrochemical Society, 2018, 165, A244-A250.	Journal of the	1.3	10

#	Article	IF	CITATIONS
7216	Continuous-porous N-doped carbon network as high-performance electrode for lithium-ion batteries. Journal of Materials Science, 2018, 53, 6135-6146.	1.7	10
7217	Nickel treatment of biomass-derived nanocarbon for energy devices. Carbon, 2018, 130, 724-729.	5.4	7
7218	Hollow spherical lithium-rich layered oxide cathode material with suppressed voltage fading. Electrochimica Acta, 2018, 264, 260-268.	2.6	25
7219	A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method. Journal of Solid State Electrochemistry, 2018, 22, 1771-1783.	1.2	14
7220	Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Scientific Reports, 2018, 8, 1212.	1.6	97
7221	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	5.6	645
7222	Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Naâ€lon Batteries. Small, 2018, 14, e1703338.	5.2	86
7223	Nitrogen-rich graphene hollow microspheres as anode materials for sodium-ion batteries with super-high cycling and rate performance. Carbon, 2018, 130, 574-583.	5.4	63
7224	Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 5594-5602.	4.0	83
7225	Highâ€Voltage Li ₂ SiO ₃ â~'LiNi _{0.5} Mn _{1.5} O ₄ Hollow Spheres Prepared through In Situ Aerosol Spray Pyrolysis towards Highâ€Energy Liâ€Ion Batteries. ChemElectroChem, 2018, 5, 1212-1218.	1.7	19
7226	Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Scientific Reports, 2018, 8, 1307.	1.6	91
7227	Composite poly(ethylene carbonate) electrolytes with electrospun silica nanofibers. Polymers for Advanced Technologies, 2018, 29, 820-824.	1.6	12
7228	Graphene-like Carbon–Nitride Monolayer: A Potential Anode Material for Na- and K-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 2481-2489.	1.5	150
7229	Rational Design of Fe _{1â^'} <i>_x</i> S/Fe ₃ O ₄ /Nitrogen and Sulfurâ€Doped Porous Carbon with Enhanced Oxygen Reduction Reaction Catalytic Activity. Advanced Materials Interfaces, 2018, 5, 1701641.	1.9	14
7230	Unusual Formation of CoO@C "Dandelions―Derived from 2D Kagóme MOLs for Efficient Lithium Storage. Advanced Energy Materials, 2018, 8, 1703242.	10.2	122
7231	A self-assembled silicon/phenolic resin-based carbon core–shell nanocomposite as an anode material for lithium-ion batteries. RSC Advances, 2018, 8, 3477-3482.	1.7	23
7232	Hybrid biopolymer electrodes for lithium- and sodium-ion batteries in organic electrolytes. Sustainable Energy and Fuels, 2018, 2, 836-842.	2.5	23
7233	Two-dimensional nanostructures for sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 3284-3303.	5.2	224

#	Article	IF	CITATIONS
7234	Trapping Lithium into Hollow Silica Microspheres with a Carbon Nanotube Core for Dendrite-Free Lithium Metal Anodes. Nano Letters, 2018, 18, 297-301.	4.5	130
7235	Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries. ACS Applied Materials & Interfaces, 2018, 10, 2185-2190.	4.0	54
7236	A cross-disciplinary overview of naturally derived materials for electrochemical energy storage. Materials Today Energy, 2018, 7, 58-79.	2.5	58
7237	An easy and scalable approach to synthesize three-dimensional sandwich-like Si/Polyaniline/Graphene nanoarchitecture anode for lithium ion batteries. Ceramics International, 2018, 44, 4282-4286.	2.3	22
7238	In-situ sulfuration synthesis of sandwiched spherical tin sulfide/sulfur-doped graphene composite with ultra-low sulfur content. Journal of Power Sources, 2018, 378, 81-89.	4.0	35
7239	Binder-free anode with porous Si/Cu architecture for lithium-ion batteries. Scripta Materialia, 2018, 146, 304-307.	2.6	15
7240	Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. Solid State Ionics, 2018, 315, 65-70.	1.3	37
7241	Revealing Pseudocapacitive Mechanisms of Metal Dichalcogenide SnS ₂ /Graphene NT Aerogels for Highâ€Energy Na Hybrid Capacitors. Advanced Energy Materials, 2018, 8, 1702488.	10.2	135
7242	Issues and Challenges Facing Flexible Lithiumâ€lon Batteries for Practical Application. Small, 2018, 14, e1702989.	5.2	152
7243	Design Principles of Functional Polymer Separators for Highâ€Energy, Metalâ€Based Batteries. Small, 2018, 14, e1703001.	5.2	155
7244	Solutionâ€Processed Metal Coating to Nonwoven Fabrics forÂWearable Rechargeable Batteries. Small, 2018, 14, e1703028.	5.2	14
7245	3D Graphene Encapsulated Hollow CoSnO ₃ Nanoboxes as a High Initial Coulombic Efficiency and Lithium Storage Capacity Anode. Small, 2018, 14, 1703513.	5.2	60
7246	Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics, 2018, 24, 2295-2319.	1.2	83
7247	Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries. Applied Surface Science, 2018, 437, 136-143.	3.1	69
7248	Charge-driven self-assembly synthesis of straw-sheaf-like Co3O4 with superior cyclability and rate capability for lithium-ion batteries. Chemical Engineering Journal, 2018, 338, 278-286.	6.6	42
7248 7249		6.6 2.6	42 31
	capability for lithium-ion battéries. Chemical Engineering Journal, 2018, 338, 278-286.		

		CITATION R	EPORT	
#	Article		IF	CITATIONS
7252	Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. CheM, 2018, 4,	174-185.	5.8	682
7253	A high-performance hybrid Mg2+/Li+ battery based on hierarchical copper sulfide micro conversion cathode. Electrochimica Acta, 2018, 263, 168-175.	oflowers	2.6	28
7254	Ion–Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Meta Angewandte Chemie, 2018, 130, 742-745.	l Anode.	1.6	35
7255	Alloying in an Intercalation Host: Metal Titanium Niobates as Anodes for Rechargeable Batteries. Chemistry - an Asian Journal, 2018, 13, 299-310.	Alkaliâ€lon	1.7	4
7256	Nanostructural Uniformity of Ordered Mesoporous Materials: Governing Lithium Stora Small, 2018, 14, e1702985.	ige Behaviors.	5.2	17
7257	Novel scalable synthesis of porous silicon/carbon composite as anode material for sup lithium-ion batteries. Journal of Alloys and Compounds, 2018, 739, 510-517.	erior	2.8	31
7258	Recent advances in direct ink writing of electronic components and functional devices Additive Manufacturing, 2018, 3, 65-86.	. Progress in	2.5	67
7259	Commercial expanded graphite as a low–cost, long-cycling life anode for potassium with conventional carbonate electrolyte. Journal of Power Sources, 2018, 378, 66-72.	–ion batteries	4.0	299
7260	Insights into the Electrochemical Reaction Mechanism of a Novel Cathode Material CuNi ₂ (PO ₄) ₂ /C for Li-Ion Batteries. ACS Applie Interfaces, 2018, 10, 3522-3529.	d Materials &	4.0	7
7261	<i>In Situ</i> Self-Template Synthesis of Fe–N-Doped Double-Shelled Hollow Carbor Oxygen Reduction Reaction. ACS Nano, 2018, 12, 208-216.	n Microspheres for	7.3	231
7262	Power supplies and equipment for military field research: lessons from the British Servi Research Expedition 2016. Journal of the Royal Army Medical Corps, 2018, 164, 41-45		0.8	1
7263	Improved electrochemical performance of bagasse and starch-modified LiNi0.5Mn0.3C for lithium-ion batteries. Journal of Materials Science, 2018, 53, 5242-5254.	co0.2O2 materials	1.7	27
7264	Electrochemical intercalation of fullerene and hydrofullerene with sodium. Carbon, 202	18, 130, 11-18.	5.4	23
7265	Electrochemically tuned cobalt hydroxide carbonate with abundant grain boundaries for efficient electro-oxidation of hydrazine. Materials Chemistry Frontiers, 2018, 2, 369-37		3.2	10
7266	Nanowires of spinel cathode material for improved lithium-ion storage. Ionics, 2018, 2	4, 2523-2532.	1.2	1
7267	Lithium storage behaviors of KNb3O8 nanowires for rechargeable batteries. Ceramics 2018, 44, 5699-5704.	International,	2.3	9
7268	A combined approach for high-performance Li–O2 batteries: A binder-free carbon ele layer deposition of RuO2 as an inhibitor–promoter. APL Materials, 2018, 6, .	ectrode and atomic	2.2	12
7269	Doping of Ni and Zn Elements in MnCO ₃ : Highâ€Power Anode Material fo Batteries. Small, 2018, 14, 1702574.	pr Lithium–lon	5.2	25

#	Article	IF	CITATIONS
7270	Ball-in-ball hierarchical design of P2-type layered oxide as high performance Na-ion battery cathodes. Electrochimica Acta, 2018, 265, 284-291.	2.6	12
7271	Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes. Energy Storage Materials, 2018, 12, 204-215.	9.5	72
7272	Influence of the manganese and cobalt content on the electrochemical performance of P2-Na _{0.67} Mn _x Co _{1â~x} O ₂ cathodes for sodium-ion batteries. Dalton Transactions, 2018, 47, 1223-1232.	1.6	36
7273	Facile Synthesis of Blocky SiO <i>_x</i> /C with Graphiteâ€Like Structure for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Functional Materials, 2018, 28, 1705235.	7.8	260
7274	Redoxâ€Active Separators for Lithiumâ€lon Batteries. Advanced Science, 2018, 5, 1700663.	5.6	48
7275	Reticular V ₂ O ₅ ·0.6H ₂ O Xerogel as Cathode for Rechargeable Potassium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 642-650.	4.0	70
7276	Electrochemical behavior of Bi ₄ B ₂ O ₉ towards lithium-reversible conversion reactions without nanosizing. Physical Chemistry Chemical Physics, 2018, 20, 2330-2338.	1.3	9
7277	Synthesis of open helmet-like carbon skeletons for application in lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 3877-3883.	5.2	28
7278	Ni-doping to improve the performance of LiFeBO3/C cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 740, 382-388.	2.8	9
7279	Recent Progress in Porous Graphene and Reduced Graphene Oxideâ€Based Nanomaterials for Electrochemical Energy Storage Devices. Advanced Materials Interfaces, 2018, 5, 1701212.	1.9	95
7280	Tuning Redox Transitions via Inductive Effect in Metal Oxides and Complexes, and Implications in Oxygen Electrocatalysis. Joule, 2018, 2, 225-244.	11.7	283
7281	A Conductive Binder for High-Performance Sn Electrodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 1672-1677.	4.0	40
7282	Embedding MnO@Mn ₃ O ₄ Nanoparticles in an Nâ€Dopedâ€Carbon Framework Derived from Mnâ€Organic Clusters for Efficient Lithium Storage. Advanced Materials, 2018, 30, 1704244.	11.1	374
7283	Spray-Drying-Induced Assembly of Skeleton-Structured SnO ₂ /Graphene Composite Spheres as Superior Anode Materials for High-Performance Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 2515-2525.	4.0	85
7284	Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano Today, 2018, 18, 35-64.	6.2	110
7285	Microwave-assisted synthesis of palladium nanoparticles intercalated nitrogen doped reduced graphene oxide and their electrocatalytic activity for direct-ethanol fuel cells. Journal of Colloid and Interface Science, 2018, 515, 160-171.	5.0	91
7286	Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 6317-6326.	4.0	120
7287	Do imaging techniques add real value to the development of better post-Li-ion batteries?. Journal of Materials Chemistry A, 2018, 6, 3304-3327.	5.2	36

#	Article	IF	CITATIONS
7288	ZnO/rGO/C composites derived from metal–organic framework as advanced anode materials for Li-ion and Na-ion batteries. Journal of Materials Science, 2018, 53, 6785-6795.	1.7	44
7289	Synthesis of Si nanosheets by using Sodium Chloride as template for high-performance lithium-ion battery anode material. Journal of Power Sources, 2018, 379, 20-25.	4.0	51
7290	Highâ€Capacity Cathode Material with High Voltage for Liâ€lon Batteries. Advanced Materials, 2018, 30, 1705575.	11.1	333
7291	Ion Conduction and Viscoelastic Response of Epoxyâ€Based Solid Polymer Electrolytes Containing Solvating Plastic Crystal Plasticizer. Macromolecular Chemistry and Physics, 2018, 219, 1700514.	1.1	23
7292	Nickel-foam-supported ruthenium oxide/graphene sandwich composite constructed via one-step electrodeposition route for high-performance aqueous supercapacitors. Applied Surface Science, 2018, 439, 612-622.	3.1	24
7293	A yolk–shell V ₂ O ₅ structure assembled from ultrathin nanosheets and coralline-shaped carbon as advanced electrodes for a high-performance asymmetric supercapacitor. Dalton Transactions, 2018, 47, 2256-2265.	1.6	44
7294	Structural evolution and stability of Sc ₂ (WO ₄) ₃ after discharge in a sodium-based electrochemical cell. Dalton Transactions, 2018, 47, 1251-1260.	1.6	12
7295	Mixed Ionic and Electronic Conductor for Liâ€Metal Anode Protection. Advanced Materials, 2018, 30, 1705105.	11.1	92
7296	Battery electric vehicles: Looking behind to move forward. Energy Policy, 2018, 115, 54-65.	4.2	74
7297	A high-performance tin dioxide@carbon anode with a super high initial coulombic efficiency via a primary cell prelithiation process. Journal of Alloys and Compounds, 2018, 740, 830-835.	2.8	14
7298	Carbon embedded SnSb composite tailored by carbothermal reduction process as high performance anode for sodium-ion batteries. Journal of Industrial and Engineering Chemistry, 2018, 60, 451-457.	2.9	18
7299	Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation. Water Research, 2018, 132, 200-210.	5.3	71
7300	Cobalt Nanoparticles Chemically Bonded to Porous Carbon Nanosheets: A Stable High-Capacity Anode for Fast-Charging Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 4652-4661.	4.0	40
7301	High-Purity Lithium Metal Films from Aqueous Mineral Solutions. ACS Omega, 2018, 3, 181-187.	1.6	24
7302	Surface Chemistry in Cobalt Phosphide-Stabilized Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2018, 140, 1455-1459.	6.6	393
7303	Monodisperse and homogeneous SiO /C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Materials, 2018, 13, 112-118.	9.5	222
7304	An aqueous all-organic redox-flow battery employing a (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-containing polymer as catholyte and dimethyl viologen dichloride as anolyte. Journal of Power Sources, 2018, 378, 546-554.	4.0	65
7305	Multifunctional NiTiO ₃ nanocoating fabrication based on the dual-Kirkendall effect enabling a stable cathode/electrolyte interface for nickel-rich layered oxides. Journal of Materials Chemistry A, 2018, 6, 2643-2652.	5.2	16

#	Article	IF	CITATIONS
7306	High performance Li–CO ₂ batteries with NiO–CNT cathodes. Journal of Materials Chemistry A, 2018, 6, 2792-2796.	5.2	146
7307	Electrode–electrolyte interfaces in lithium-based batteries. Energy and Environmental Science, 2018, 11, 527-543.	15.6	474
7308	Dual Functions of Potassium Antimony(III)â€Tartrate in Tuning Antimony/Carbon Composites for Longâ€Life Naâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1705744.	7.8	42
7309	Phase Transformation Mechanism of Li-Ion Storage in Iron(III) Hydroxide Phosphates. Journal of Physical Chemistry C, 2018, 122, 1930-1938.	1.5	7
7310	Self-supporting S@GO–FWCNTs composite films as positive electrodes for high-performance lithium–sulfur batteries. RSC Advances, 2018, 8, 2260-2266.	1.7	11
7311	Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na,) Tj ETQq1	1,0,7843 8,2	14rgBT /Ov
7312	GaNb ₁₁ O ₂₉ Nanowebs as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 183-190.	2.4	50
7313	Breathing and oscillating growth of solid-electrolyte-interphase upon electrochemical cycling. Chemical Communications, 2018, 54, 814-817.	2.2	47
7314	High-capacity and long-life lithium storage boosted by pseudocapacitance in three-dimensional MnO–Cu–CNT/graphene anodes. Nanoscale, 2018, 10, 2944-2954.	2.8	28
7315	Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	1.1	26
7316	Selfâ€Assembled Biomolecular 1D Nanostructures for Aqueous Sodiumâ€Ion Battery. Advanced Science, 2018, 5, 1700634.	5.6	107
7317	Miniaturized-electroneurostimulators and self-powered/rechargeable implanted devices for electrical-stimulation therapy. Biomedical Signal Processing and Control, 2018, 41, 255-263.	3.5	14
7318	Mechanism of Formation of Li ₇ P ₃ S ₁₁ Solid Electrolytes through Liquid Phase Synthesis. Chemistry of Materials, 2018, 30, 990-997.	3.2	118
7319	Fe–N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2018, 10, 2423-2429.	4.0	95
7320	Si/Ag/C Nanohybrids with <i>in Situ</i> Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact. ACS Nano, 2018, 12, 861-875.	7.3	67
7321	Facile synthesis of hierarchical porous ZnMn2O4 rugby-balls on Ni foam for lithium-ion batteries with enhanced electrochemical properties. Journal of Alloys and Compounds, 2018, 740, 28-35.	2.8	20
7322	Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 3470-3478.	4.0	77
7323	Na ⁺ /Vacancy Disordered P2-Na _{0.67} Co _{1–<i>x</i>} Ti <i>_x</i> O ₂ : High-Energy and High-Power Cathode Materials for Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10. 3562-3570.	4.0	78

#	Article	IF	CITATIONS
7324	A common tattoo chemical for energy storage: henna plant-derived naphthoquinone dimer as a green and sustainable cathode material for Li-ion batteries. RSC Advances, 2018, 8, 1576-1582.	1.7	33
7325	Computational screening and first-principles investigations of NASICON-type Li _x M ₂ (PO ₄) ₃ as solid electrolytes for Li batteries. Journal of Materials Chemistry A, 2018, 6, 2625-2631.	5.2	46
7326	The Role of LiTDI Additive in LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ /Graphite Lithium-Ion Batteries at Elevated Temperatures. Journal of the Electrochemical Society, 2018, 165, A40-A46.	1.3	16
7327	Carbon black dispersions in surfactant-based microemulsion. Journal of Materials Research, 2018, 33, 1301-1307.	1.2	4
7328	Hierarchically Nanostructured Transition Metal Oxides for Lithiumâ€lon Batteries. Advanced Science, 2018, 5, 1700592.	5.6	440
7329	Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Storage Materials, 2018, 13, 103-111.	9.5	81
7330	Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Materials, 2018, 13, 96-102.	9.5	568
7331	Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries. Journal of Power Sources, 2018, 378, 516-521.	4.0	24
7332	Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. Journal of Power Sources, 2018, 378, 322-330.	4.0	120
7333	Bi-metal organic framework derived nickel manganese oxide spinel for lithium-ion battery anode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 229, 27-36.	1.7	50
7334	Porous carbon-coated NaTi ₂ (PO ₄) ₃ with superior rate and low-temperature properties. Journal of Materials Chemistry A, 2018, 6, 2365-2370.	5.2	51
7335	A review: Conventional and supercritical hydro/solvothermal synthesis of ultrafine particles as cathode in lithium battery. Ceramics International, 2018, 44, 4521-4537.	2.3	54
7336	A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries. Journal of Power Sources, 2018, 378, 418-422.	4.0	11
7337	A new binder-free and conductive-additive-free TiO2/WO3-W integrative anode material produced by laser ablation. Journal of Power Sources, 2018, 378, 362-368.	4.0	12
7338	Unveiling critical size of coarsened Sn nanograins for achieving high round-trip efficiency of reversible conversion reaction in lithiated SnO2 nanocrystals. Nano Energy, 2018, 45, 255-265.	8.2	80
7339	Phase Transformation and Diffusion Kinetics of V ₂ O ₅ Electrode in Rechargeable Li and Mg Batteries: A First-Principle Study. Journal of Physical Chemistry C, 2018, 122, 1513-1521.	1.5	43
7340	Surface redox on Li[Ni1/3Mn1/3Co1/3]O2 characterized by in situ X-ray photoelectron spectroscopy and in situ Auger electron spectroscopy. Electrochimica Acta, 2018, 277, 197-204.	2.6	15
7341	Insight into the effect of lithium-dendrite suppression by lithium bis(fluorosulfony)imide/1,2-dimethoxyethane electrolytes. Electrochimica Acta, 2018, 277, 116-126.	2.6	9

#	Article	IF	CITATIONS
7342	A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 60.	3.1	23
7343	Recent Advances in Designing Highâ€Capacity Anode Nanomaterials for Liâ€Ion Batteries and Their Atomicâ€5cale Storage Mechanism Studies. Advanced Science, 2018, 5, 1700902.	5.6	63
7344	Poly(ionic liquid) iongels for all-solid rechargeable zinc/PEDOT batteries. Electrochimica Acta, 2018, 278, 271-278.	2.6	47
7345	Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. Journal of Energy Storage, 2018, 18, 26-39.	3.9	166
7346	LiFePO 4 /C cathode material prepared with sphere mesoporous-FePO 4 as precursors for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 820, 18-23.	1.9	14
7347	A smart, anti-piercing and eliminating-dendrite lithium metal battery. Nano Energy, 2018, 49, 403-410.	8.2	57
7348	Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Progress in Polymer Science, 2018, 82, 34-91.	11.8	159
7349	Poly(ionic liquid) binders as ionic conductors and polymer electrolyte interfaces for enhanced electrochemical performance of water splitting electrodes. Sustainable Energy and Fuels, 2018, 2, 1446-1451.	2.5	15
7350	Rational design of a synthetic strategy, carburizing approach and pore-forming pattern to unlock the cycle reversibility and rate capability of micro-agglomerated LiMn _{0.8} Fe _{0.2} PO ₄ cathode materials. Journal of Materials Chemistry A, 2018, 6, 10395-10403.	5.2	27
7351	Progress and prospect on failure mechanisms of solid-state lithium batteries. Journal of Power Sources, 2018, 392, 94-115.	4.0	151
7352	Nanostructured LiMn2O4 composite as high-rate cathode for high performance aqueous Li-ion hybrid supercapacitors. Journal of Power Sources, 2018, 392, 116-122.	4.0	46
7353	"Bubble-in-nanorod―hierarchical hybrid fiber: A highly-efficient design for pyrophosphate-based freestanding cathodes towards fast sodium/lithium intercalation. Nano Energy, 2018, 49, 419-433.	8.2	37
7354	Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. Nano Letters, 2018, 18, 3829-3838.	4.5	268
7355	A High-Temperature <i>β</i> -Phase NaMnO ₂ Stabilized by Cu Doping and Its Na Storage Properties. Chinese Physics Letters, 2018, 35, 048801.	1.3	18
7356	lonic Liquids and Organic Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies. Advanced Energy Materials, 2018, 8, 1703491.	10.2	109
7357	Sulfur ontaining Molecules Grafted on Carbon Nanotubes as Highly Cyclable Cathodes for Lithium/Organic Batteries. ChemElectroChem, 2018, 5, 1732-1737.	1.7	5
7358	Tributyl borate as a novel electrolyte additive to improve high voltage stability of lithium cobalt oxide in carbonate-based electrolyte. Electrochimica Acta, 2018, 276, 412-416.	2.6	26
7359	Superior initial coulombic efficiency through graphene quantum dot decorated on MoS2. FlatChem, 2018, 9, 8-14.	2.8	9

ARTICLE IF CITATIONS Density Functional Theory Modeling-Assisted Investigation of Thermodynamics and Redox Properties 7360 of Boron-Doped Corannulenes for Cathodes in Lithium-Ion Batteries. Journal of Physical Chemistry C, 20 1.5 2018, 122, 10675-10681. Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li 8.8 321 Batteries. ACS Energy Letters, 2018, 3, 1212-1218. lodine and Nitrogen-Codoped Carbon Microspheres for Ultrahigh Volumetric Capacity of Li-Ion 7362 3.2 19 Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7339-7345. Self-assembled Mn-doped MoS₂ hollow nanotubes with significantly enhanced sodium 3.0 storage for high-performance sodium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 1587-1593. Isothermal sulfur condensation into carbon nanotube/nitrogen-doped graphene composite for high 7364 performance lithium–sulfur batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 1.1 7 10071-10081. Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: High throughput screening. Journal of Power Sources, 2018, 392, 60-68. 7365 4.0 Lithiation Products of a Silicon Anode Based on Soft X-ray Emission Spectroscopy: A Theoretical 7366 1.58 Study. Journal of Physical Chemistry C, 2018, 122, 11096-11108. Enhanced Lithium Storage Capacity of a Tetralithium 1,2,4,5-Benzenetetracarboxylate (Li₄C₁₀H₂O₈) Salt Through Crystal Structure 7367 4.0 10 Transformation. ACS Applied Materials & amp; Interfaces, 2018, 10, 17183-17194. Significant Improvement on Electrochemical Performance of LiMn₂0₄ at 7368 Elevated Temperature by Atomic Layer Deposition of TiO₂ Nanocoating. ACS Sustainable 3.2 47 Chemistry and Engineering, 2018, 6, 7890-7901. Engineering Graphenes from the Nano- to the Macroscale for Electrochemical Energy Storage. 13.1 Electrochemical Energy Reviews, 2018, 1, 139-168. Comparative Analysis of Aqueous Binders for High-Energy Li-Rich NMC as a Lithium-Ion Cathode and 7370 4.052 the Impact of Adding Phosphoric Acid. ACS Applied Materials & amp; Interfaces, 2018, 10, 17214-17222. Effect of lithium-site doping on enhancing the lithium storage performance of SrLi2Ti6O14. 7371 2.6 Electrochimica Acta, 2018, 265, 437-447 Graphene-embedded LiMn0.8Fe0.2PO4 composites with promoted electrochemical performance for 7372 2.6 18 lithium ion batteries. Electrochimica Acta, 2018, 276, 134-141. Improved electrochemical performance of LiMn2O4 cathode material by Ce doping. Electrochimica 7373 2.6 Acta, 2018, 276, 37-46. Investigation of electrochemical calcium-ion energy storage mechanism in potassium birnessite. 7374 4.0 45 Journal of Power Sources, 2018, 390, 127-133. Electrochemical properties of poly(anthraquinonyl imide)s as high-capacity organic cathode materials 2.0 23 for Li-ion batteries. Materials Chemistry and Physics, 2018, 214, 120-125. Pyrosynthesis of Na₃V₂(PO₄)₃@C Cathodes for Safe 7376 3.6 47 and Lowâ€Cost Aqueous Hybrid Batteries. ChemSusChem, 2018, 11, 2239-2247. Direct insights into the electrochemical processes at anode/electrolyte interfaces in 8.2 magnesium-sulfur batteries. Nano Energy, 2018, 49, 453-459.

#	Article	IF	CITATIONS
7378	α-MoO3- by plasma etching with improved capacity and stabilized structure for lithium storage. Nano Energy, 2018, 49, 555-563.	8.2	133
7379	In Situ High-Level Nitrogen Doping into Carbon Nanospheres and Boosting of Capacitive Charge Storage in Both Anode and Cathode for a High-Energy 4.5 V Full-Carbon Lithium-Ion Capacitor. Nano Letters, 2018, 18, 3368-3376.	4.5	163
7380	Uniform Li deposition regulated <i>via</i> three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes. Nanoscale, 2018, 10, 10018-10024.	2.8	46
7381	Stabilizing Si/graphite composites with Cu and <i>in situ</i> synthesized carbon nanotubes for high-performance Li-ion battery anodes. Inorganic Chemistry Frontiers, 2018, 5, 1463-1469.	3.0	38
7382	Ti ₂ Nb _{2x} O _{4+5x} anode materials for lithium-ion batteries: a comprehensive review. Journal of Materials Chemistry A, 2018, 6, 9799-9815.	5.2	101
7383	Creating Lithiumâ€lon Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1707476.	11.1	230
7384	Conductive TiN thin layer-coated nitrogen-doped anatase TiO2 as high-performance anode materials for sodium-ion batteries. Ionics, 2018, 24, 3771-3779.	1.2	6
7385	Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chinese Chemical Letters, 2018, 29, 1313-1316.	4.8	45
7386	Optimum Morphology of Mixed-Olivine Mesocrystals for a Li-Ion Battery. Inorganic Chemistry, 2018, 57, 5999-6009.	1.9	10
7387	Electrochemical Performance and Mechanisms of NaSn2(PO4)3/C Composites as Anode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 11194-11203.	1.5	9
7388	Synchronous synthesis of Kirkendall effect induced hollow FeSe ₂ /C nanospheres as anodes for high performance sodium ion batteries. Chemical Communications, 2018, 54, 5704-5707.	2.2	89
7389	High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. Journal of Materials Chemistry A, 2018, 6, 9723-9736.	5.2	212
7390	QUOKKA, the pinhole small-angle neutron scattering instrument at the OPAL Research Reactor, Australia: design, performance, operation and scientific highlights. Journal of Applied Crystallography, 2018, 51, 294-314.	1.9	156
7391	State of Charge Dependent Constitutive Model of the Jellyroll of Cylindrical Lithium-Ion Cells. IEEE Access, 2018, 6, 26358-26366.	2.6	10
7392	Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces. Journal of Physical Chemistry C, 2018, 122, 10442-10449.	1.5	60
7393	Rigid TiO _{2â^'x} coated mesoporous hollow Si nanospheres with high structure stability for lithium-ion battery anodes. RSC Advances, 2018, 8, 15094-15101.	1.7	10
7394	Assessment of the Electrochemical Stability of Carbonate-Based Electrolytes in Na-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1222-A1230.	1.3	58
7395	Monodisperse CoSn ₂ and FeSn ₂ nanocrystals as high-performance anode materials for lithium-ion batteries. Nanoscale, 2018, 10, 6827-6831.	2.8	52

#	Article	IF	CITATIONS
7396	Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 7794-7806.	5.2	186
7397	Densification by Compaction as an Effective Lowâ€Cost Method to Attain a High Areal Lithium Storage Capacity in a CNT@Co ₃ O ₄ Sponge. Advanced Energy Materials, 2018, 8, 1702981.	10.2	69
7398	LiFePO4/C ultra-thin nano-flakes with ultra-high rate capability and ultra-long cycling life for lithium ion batteries. Journal of Alloys and Compounds, 2018, 749, 1063-1070.	2.8	46
7399	Construction of NiCo2O4@MnO2 nanosheet arrays for high-performance supercapacitor: Highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. Journal of Alloys and Compounds, 2018, 749, 900-908.	2.8	50
7400	Prussian blue nanocubes supported on graphene foam as superior binder-free anode of lithium-ion batteries. Journal of Alloys and Compounds, 2018, 749, 811-817.	2.8	60
7401	F-Doped carbon nano-onion films as scaffold for highly efficient and stable Li metal anodes: a novel laser direct-write process. Nanoscale, 2018, 10, 7630-7638.	2.8	20
7402	A high energy density asymmetric supercapacitor utilizing a nickel phosphate/graphene foam composite as the cathode and carbonized iron cations adsorbed onto polyaniline as the anode. RSC Advances, 2018, 8, 11608-11621.	1.7	90
7403	Capitalization of interfacial AlON interactions to achieve stable binder-free porous silicon/carbon anodes. Journal of Materials Chemistry A, 2018, 6, 7449-7456.	5.2	15
7404	Design and synthesis of graphene/SnO ₂ /polyacrylamide nanocomposites as anode material for lithium-ion batteries. RSC Advances, 2018, 8, 11744-11748.	1.7	15
7405	Sequential entrapping of Li and S in a conductivity cage of N-doped reduced graphene oxide supercapacitor derived from silk cocoon: a hybrid Li–S-silk supercapacitor. Applied Nanoscience (Switzerland), 2018, 8, 379-393.	1.6	15
7406	Mesoporous LiTi2(PO4)3/C composite with trace amount of carbon as high-performance electrode materials for lithium ion batteries. Journal of Alloys and Compounds, 2018, 749, 1019-1027.	2.8	9
7407	Realizing a highly stable sodium battery with dendrite-free sodium metal composite anodes and O3-type cathodes. Nano Energy, 2018, 48, 369-376.	8.2	99
7408	3D yolk–shell Si@void@CNF nanostructured electrodes with improved electrochemical performance for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2018, 64, 344-351.	2.9	23
7409	Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-M]O2 (x) Tj ETQq1	1_0_78431 4.0	L4 _{gg} gBT /O
7410	Metal–Organic Framework Derived Core–Shell Co/Co ₃ O ₄ @N-C Nanocomposites as High Performance Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2018, 57, 4620-4628.	1.9	86
7411	Free-Standing Nitrogen-Doped Cup-Stacked Carbon Nanotube Mats for Potassium-Ion Battery Anodes. ACS Applied Energy Materials, 2018, 1, 1703-1707.	2.5	90
7412	Free-Standing Mn ₃ O ₄ @CNF/S Paper Cathodes with High Sulfur Loading for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13406-13412.	4.0	68
7413	3Dâ€Printed, Carbonâ€Nanotubeâ€Wrapped, Thermoresponsive Polymer Spheres for Safer Lithiumâ€Ion Batteries. Energy Technology, 2018, 6, 1715-1722.	1.8	16

#	Article	IF	CITATIONS
7414	High-performance of sodium carboxylate-derived materials for electrochemical energy storage. Science China Materials, 2018, 61, 707-718.	3.5	25
7415	Engineered Si@alginate microcapsule-graphite composite electrode for next generation high-performance lithium-ion batteries. Electrochimica Acta, 2018, 270, 480-489.	2.6	24
7416	Hollow porous bowl-shaped lithium-rich cathode material for lithium-ion batteries with exceptional rate capability and stability. Journal of Power Sources, 2018, 380, 164-173.	4.0	35
7417	Silicon-Based Composite Negative Electrode Prepared from Recycled Silicon-Slicing Slurries and Lignin/Lignocellulose for Li-Ion Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 4759-4766.	3.2	49
7418	Dynamics of associative polymers. Soft Matter, 2018, 14, 2961-2977.	1.2	184
7419	Bottomâ€Up Confined Synthesis of Nanorodâ€inâ€Nanotube Structured Sb@Nâ€C for Durable Lithium and Sodium Storage. Advanced Energy Materials, 2018, 8, 1703237.	10.2	192
7420	A Review on the Features and Progress of Dualâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703320.	10.2	281
7421	Organic vanadium oxy-acetylacetonate as electro-active anode material with high capacity and rate performance for lithium-ion batteries. Journal of Materials Science, 2018, 53, 9701-9709.	1.7	3
7422	A study on blend polymer electrolyte based on poly(vinyl alcohol)-poly (acrylonitrile) with magnesium nitrate for magnesium battery. Ionics, 2018, 24, 3493-3506.	1.2	42
7423	Aerosol-assisted chemical vapor deposition of V2O5 cathodes with high rate capabilities for magnesium-ion batteries. Journal of Power Sources, 2018, 384, 355-359.	4.0	48
7424	Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery. Journal of Power Sources, 2018, 384, 379-386.	4.0	87
7425	Portfolio Optimization of Nanomaterial Use in Clean Energy Technologies. Environmental Science & Technology, 2018, 52, 4440-4448.	4.6	14
7426	Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries. Energy and Environmental Science, 2018, 11, 1218-1225.	15.6	212
7427	Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Research, 2018, 11, 4614-4626.	5.8	92
7428	All nanocarbon Li-Ion capacitor with high energy and high power density. Materials Today Energy, 2018, 8, 109-117.	2.5	52
7429	Failure mechanisms of 2D silicon film anodes: <i>in situ</i> observations and simulations on crack evolution. Chemical Communications, 2018, 54, 3997-4000.	2.2	47
7430	Triphenylphosphine Oxide as Highly Effective Electrolyte Additive for Graphite/NMC811 Lithium Ion Cells. Chemistry of Materials, 2018, 30, 2726-2741.	3.2	110
7431	Thermal Lithiated-TiO ₂ : A Robust and Electron-Conducting Protection Layer for Li–Si Alloy Anode. ACS Applied Materials & Interfaces, 2018, 10, 12750-12758.	4.0	45

# 7432	ARTICLE A bottom-up synthetic hierarchical buffer structure of copper silicon nanowire hybrids as ultra-stable and high-rate lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 7877-7886.	IF 5.2	CITATIONS
7433	In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. Journal of Power Sources, 2018, 387, 72-80.	4.0	95
7434	Implanted neural network potentials: Application to Li-Si alloys. Physical Review B, 2018, 97, .	1.1	60
7435	Stability of Li2MSiO4 (M = Mn, Co) in the carbon coating process. Solid State Ionics, 2018, 320, 221-225.	1.3	4
7436	Demonstration of in Situ Formed Li ₂ NaV ₂ (PO ₄) ₃ as a Strain-Free Lithium Battery Anode. Journal of Physical Chemistry C, 2018, 122, 7061-7066.	1.5	6
7437	Facile Synthesis of Nitrogen-Doped Double-Shelled Hollow Mesoporous Carbon Nanospheres as High-Performance Anode Materials for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 5999-6007.	3.2	61
7438	Multiroom-structured multicomponent metal selenide–graphitic carbon–carbon nanotube hybrid microspheres as efficient anode materials for sodium-ion batteries. Nanoscale, 2018, 10, 8125-8132.	2.8	35
7439	A scalable ternary SnO ₂ –Co–C composite as a high initial coulombic efficiency, large capacity and long lifetime anode for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 7206-7220.	5.2	74
7440	Superior Electrochemical Performance of Amorphous Titanium Niobium Oxide Thin Films for Li-Ion Thin Film Batteries. Journal of the Electrochemical Society, 2018, 165, A764-A772.	1.3	12
7441	Flower-shaped TiO2/C microspheres embedded with fish-scale-like MoS2 as anodes for lithium-ion batteries. Ceramics International, 2018, 44, 8550-8555.	2.3	21
7442	Epitaxial growth of NiCo2S4/Co9S8@Graphene heterogenous nanocomposites with high-rate lithium storage performance. Journal of Alloys and Compounds, 2018, 747, 926-933.	2.8	14
7443	Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale, 2018, 10, 7851-7859.	2.8	56
7444	High-temperature solvent-free sulfidation of MoO ₃ confined in a polypyrrole shell: MoS ₂ nanosheets encapsulated in a nitrogen, sulfur dual-doped carbon nanoprism for efficient lithium storage. Nanoscale, 2018, 10, 7536-7543.	2.8	35
7445	A rational microstructure design of SnS2–carbon composites for superior sodium storage performance. Nanoscale, 2018, 10, 7999-8008.	2.8	35
7446	Uniform core–shell nanobiscuits of Fe ₇ S ₈ @C for lithium-ion and sodium-ion batteries with excellent performance. Journal of Materials Chemistry A, 2018, 6, 7967-7976.	5.2	104
7447	State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations. IEEE Access, 2018, 6, 19362-19378.	2.6	576
7448	Crystal Structures, Local Atomic Environments, and Ion Diffusion Mechanisms of Scandium-Substituted Sodium Superionic Conductor (NASICON) Solid Electrolytes. Chemistry of Materials, 2018, 30, 2618-2630.	3.2	109
7449	In Situ Plating of Porous Mg Network Layer to Reinforce Anode Dendrite Suppression in Li-Metal Batteries. ACS Applied Materials & Interfaces, 2018, 10, 12678-12689.	4.0	88

#	Article	IF	CITATIONS
7450	Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Materials, 2018, 15, 53-64.	9.5	131
7451	A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell. Journal of Power Sources, 2018, 384, 328-333.	4.0	51
7452	Role of polymeric binders on mechanical behavior and cracking resistance of silicon composite electrodes during electrochemical cycling. Journal of Power Sources, 2018, 387, 9-15.	4.0	55
7453	Microstructure of high battery-performance Li2FeSiO4/C composite powder synthesized by combining different carbon sources in spray-freezing/freeze-drying process. Ceramics International, 2018, 44, 11211-11217.	2.3	13
7454	The origin of cycling enhanced capacity of Ni/NiO species confined on nitrogen doped carbon nanotubes for lithium-ion battery anodes. Journal of Alloys and Compounds, 2018, 750, 17-22.	2.8	12
7455	High-Performance All-Solid-State Na–S Battery Enabled by Casting–Annealing Technology. ACS Nano, 2018, 12, 3360-3368.	7.3	102
7456	Encapsulating SnS2 nanosheets into hollow carbon sphere: A yolk-shell SnS2@C composite with enhanced sodium storage performance. Electrochimica Acta, 2018, 270, 1-8.	2.6	37
7457	Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries. Experimental Mechanics, 2018, 58, 633-643.	1.1	66
7458	Activating AlN thin film by introducing Co nanoparticles as a new anode material for thin-film lithium batteries. Rare Metals, 2018, 37, 625-632.	3.6	13
7459	Metal-organic framework-derived hollow CoS nanobox for high performance electrochemical energy storage. Chemical Engineering Journal, 2018, 341, 618-627.	6.6	94
7460	Exploring pristine and Li-doped Mg2NiH4 compounds with potential lithium-storage properties: Ab initio insight. Journal of Alloys and Compounds, 2018, 746, 140-146.	2.8	8
7461	Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy, 2018, 47, 503-511.	8.2	221
7462	Lithium adsorption and migration in group IV–VI compounds and GeS/graphene heterostructures: a comparative study. Physical Chemistry Chemical Physics, 2018, 20, 9865-9871.	1.3	14
7463	Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	12
7464	Interfacial lithiation induced leapfrog phase transformation in carbon coated Se cathode observed by in-situ TEM. Nano Energy, 2018, 48, 441-447.	8.2	23
7465	Innovative Application of Acid Leaching to Regenerate Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ Cathodes from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 5959-5968.	3.2	140
7466	Optimization of Structure and Porosity of Nitrogen Containing Mesoporous Carbon Spheres for Effective Selenium Confinement in Futuristic Lithium–Selenium Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7064-7077.	3.2	18
7467	Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 6959-6966.	5.2	68

#	Article	IF	CITATIONS
7468	High-capacity cathodes for magnesium lithium chlorine tri-ion batteries through chloride intercalation in layered MoS ₂ : a computational study. Journal of Materials Chemistry A, 2018, 6, 6830-6839.	5.2	33
7469	A New Anode for Lithiumâ€lon Batteries Based on Singleâ€Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design. Chemistry - an Asian Journal, 2018, 13, 1223-1227.	1.7	13
7470	Oriented MoS ₂ Nanoflakes on Nâ€Doped Carbon Nanosheets Derived from Dodecylamineâ€Intercalated MoO ₃ for Highâ€Performance Lithiumâ€Ion Battery Anodes. ChemElectroChem, 2018, 5, 1350-1356.	1.7	21
7471	Ultrathin W9Nb8O47 nanofibers modified with thermal NH3 for superior electrochemical energy storage Materials, 2018, 14, 159-168.	9.5	55
7472	Electrode Materials, Electrolytes, and Challenges in Nonaqueous Lithiumâ€lon Capacitors. Advanced Materials, 2018, 30, e1705670.	11.1	334
7473	A Robust Approach for Efficient Sodium Storage of GeS ₂ Hybrid Anode by Electrochemically Driven Amorphization. Advanced Energy Materials, 2018, 8, 1703499.	10.2	39
7474	Healable Structure Triggered by Thermal/Electrochemical Force in Layered GeSe ₂ for High Performance Liâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1703635.	10.2	59
7475	Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for Highâ€Performance Potassiumâ€ŀon Batteries. Advanced Energy Materials, 2018, 8, 1800171.	10.2	363
7476	Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte. Journal of Electroceramics, 2018, 40, 293-299.	0.8	22
7477	Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Research, 2018, 11, 4302-4312.	5.8	81
7478	Permeability and storage ability of inorganic X12Y12 fullerenes for lithium atom and ion. Chemical Physics Letters, 2018, 698, 51-59.	1.2	19
7479	Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode. Electrochimica Acta, 2018, 269, 724-732.	2.6	18
7480	Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating. Energy Storage Materials, 2018, 14, 143-148.	9.5	99
7481	Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. Joule, 2018, 2, 184-193.	11.7	300
7482	Hybrid Aqueous/Non-aqueous Electrolyte for Safe and High-Energy Li-Ion Batteries. Joule, 2018, 2, 927-937.	11.7	303
7483	Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule, 2018, 2, 950-961.	11.7	316
7484	Morphology- and Porosity-Tunable Synthesis of 3D Nanoporous SiGe Alloy as a High-Performance Lithium-Ion Battery Anode. ACS Nano, 2018, 12, 2900-2908.	7.3	133
7485	Biomimetic Synthesis of Polydopamine Coated ZnFe ₂ O ₄ Composites as Anode Materials for Lithium-Ion Batteries. ACS Omega, 2018, 3, 2699-2705.	1.6	31

IF

CITATIONS

Impact of Electrical Conductivity on the Electrochemical Performances of Layered Structure Lithium Trivanadate (LiV_{3–<i>x</i>}M_{<i>x</i>}O₈, M=) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,742 Td (Zr 7486 3, 3036-3044. A cost and resource analysis of sodium-ion batteries. Nature Reviews Materials, 2018, 3, . 7487 23.3 1,463 An inorganic–organic hybrid supramolecular framework as a high-performance anode for lithium-ion 7488 1.6 22 batteries. Dalton Transactions, 2018, 47, 5166-5170. Li₂S/carbon nanocomposite strips from a low-temperature conversion of Li₂SO₄ as high-performance lithiuma€"sulfur cathodes. Journal of Materials 7489 Chemistry A, 2018, 6, 6617-6624. Synthesis of lithium superionic conductor by growth of a nanoglass within mesoporous silica SBA-15 7490 1.3 9 témplate. Journal Physics D: Applied Physics, 2018, 51, 135301. Naphthaleneâ€based polyimide electrolytes for lithiumâ€ion battery applications. Advances in Polymer Technology, 2018, 37, 1356-1365. 0.8 Metal-organic framework-derived porous shuttle-like vanadium oxides for sodium-ion battery 7492 5.8 108 application. Nano Research, 2018, 11, 449-463. Improvement of cycling and thermal stability of LiNi0.8Mn0.1Co0.1O2 cathode material by secondly 1.2 treating process. lonics, 2018, 24, 61-71. Modification research of LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium-ion 7494 1.2 42 battery. lonics, 2018, 24, 91-98. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage 7495 1,939 Materials, 2018, 10, 246-267 Photoassisted oxygen reduction reaction on mpg-C 3 N 4 : The effects of elements doping on the 7496 3.1 24 performance of ÓRR. Applied Surface Science, 2018, 430, 325-334. A spray-freezing approach to reduced graphene oxide/MoS2 hybrids for superior energy storage. 9.5 Energy Storage Materials, 2018, 10, 282-290. Preparation and electrochemical properties of Li4Ti5O12/Ti4O7 composite for lithium-ion batteries. 7498 1.2 10 lonics, 2018, 24, 379-384. Three-dimensional spongy nanographene-functionalized silicon anodes for lithium ion batteries with superior cycling stability. Nano Research, 2018, 11, 233-245 7499 5.8 40

7500	One dimensional and coaxial polyaniline@tin dioxide@multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chemical Engineering Journal, 2018, 334, 162-171.	6.6	63
7501	Understanding the structural evolution and Na+ kinetics in honeycomb-ordered O′3-Na3Ni2SbO6 cathodes. Nano Research, 2018, 11, 3258-3271.	5.8	35
7502	Durian-like NiS2@rGO nanocomposites and their enhanced rate performance. Chemical Engineering Journal, 2018, 335, 275-281.	6.6	43
7503	Design and fabrication of N-doped graphene decorated LiFePO4@C composite as a potential cathode for electrochemical energy storage. Ceramics International, 2018, 44, 464-470.	2.3	18

ARTICLE

#

ARTICLE IF CITATIONS Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as 7504 2.6 103 electrodes. Electrochimica Acta, 2018, 259, 752-761. Selective lithium ion recognition in self-assembled columnar liquid crystals based on a lithium 3.7 receptor. Chemical Science, 2018, 9, 608-616. Binderâ€Free Hybrid Titanium–Niobium Oxide/Carbon Nanofiber Mats for Lithiumâ€Ion Battery Electrodes. 7506 3.6 30 ChemSusChem, 2018, 11, 159-170. Synthesis of ternary NiCo-MnO2 nanocomposite and its application as a novel high energy 64 súpercapattery device. Chemical Engineering Journal, 2018, 335, 416-433. The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of 7508 2.3 68 Li7La3Zr2O12 ceramic. Ceramics International, 2018, 44, 1538-1544. ZnO/carbon framework derived from metal-organic frameworks as a stable host for lithium metal anodes. Energy Storage Materials, 2018, 11, 191-196. Two-dimensional siligraphenes as cathode catalysts for nonaqueous lithium-oxygen batteries. Carbon, 7510 5.4 40 2018, 126, 580-587. TiCr0.5Nb10.5O29/CNTs nanocomposite as an advanced anode material for high-performance Li+-ion 7511 2.8 storage. Journal of Alloys and Compounds, 2018, 732, 116-123. Svnthesis of Na Mn0.54Ni0.13Fe0.13O2 with P2-type hexagonal phase as high-performance cathode 7512 2.8 11 materials for sodium-ion batteries. Journal of Alloys and Compounds, 2018, 732, 88-94. First-Principles Study of MoO 3 /Graphene Composite as Cathode Material for High-Performance 3.1 Lithium-Ion Batteries. Applied Surface Science, 2018, 433, 1083-1093. Three-dimensional graphene network supported ultrathin CeO2 nanoflakes for oxygen reduction 7514 2.6 26 reaction and rechargeable metal-air batteries. Electrochimica Acta, 2018, 263, 561-569. Acetylene black coated V2O5 nanocomposite with stable cyclability for lithium-ion batteries cathode. Journal of Alloys and Compounds, 2018, 732, 518-523. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. 7516 9.5 221 Energy Storage Materials, 2018, 11, 205-259. Pore size-controlled synthesis of 3D hierarchical porous carbon materials for lithium-ion batteries. Journal of Porous Materials, 2018, 25, 1047-1056. 1.3 Effect of doping functionalized MWCNTs on the electrochemical performances of Li2CoSiO4 for 7518 1.2 11 lithium-ion batteries. lonics, 2018, 24, 1339-1347. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral 269 aqueous rechargeable zinc battery. Electrochimica Acta, 2018, 259, 170-178. A supercritical ethanol route for one-pot synthesis of tin sulfide–reduced graphene oxides and their 7520 anode performance for lithium ion batteries. Journal of Industrial and Engineering Chemistry, 2018, 2.9 28 59, 160-168. Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 1.3 4,4â€²-methylenedianiline. Materials Letters, 2018, 211, 323-327.

#	Article	IF	CITATIONS
7522	Carbon-coated cobalt oxide porous spheres with improved kinetics and good structural stability for long-life lithium-ion batteries. Journal of Colloid and Interface Science, 2018, 510, 368-375.	5.0	25
7523	Fabrication and application of hierarchical mesoporous MoO2/Mo2C/C microspheres. Journal of Energy Chemistry, 2018, 27, 940-948.	7.1	27
7524	Recent development in hybrid conducting polymers: Synthesis, applications and future prospects. Journal of Industrial and Engineering Chemistry, 2018, 60, 53-84.	2.9	120
7525	Nano-sized over-lithiated oxide by a mechano-chemical activation-assisted microwave technique as cathode material for lithium ion batteries and its electrochemical performance. Ceramics International, 2018, 44, 1425-1431.	2.3	11
7526	Graphene-based materials for flexible energy storage devices. Journal of Energy Chemistry, 2018, 27, 12-24.	7.1	129
7527	Toward a Fourâ€Electron Redox Quinone Polymer for High Capacity Lithium Ion Storage. Advanced Energy Materials, 2018, 8, 1700960.	10.2	60
7528	New Insight into Niâ€Rich Layered Structure for Nextâ€Generation Li Rechargeable Batteries. Advanced Energy Materials, 2018, 8, 1701788.	10.2	169
7529	Graphite modified AlNbO 4 with enhanced lithium — Ion storage behaviors and its electrochemical mechanism. Materials Research Bulletin, 2018, 97, 405-410.	2.7	14
7530	Nâ€Đoped Carbon Nanofibrous Network Derived from Bacterial Cellulose for the Loading of Pt Nanoparticles for Methanol Oxidation Reaction. Chemistry - A European Journal, 2018, 24, 1844-1852.	1.7	20
7531	Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries. Chemical Engineering Journal, 2018, 334, 497-507.	6.6	83
7532	Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes. Green Energy and Environment, 2018, 3, 63-70.	4.7	20
7533	Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. Journal of Membrane Science, 2018, 547, 1-10.	4.1	178
7534	Experimental examination of large capacity liFePO ₄ battery pack at high temperature and rapid discharge using novel liquid cooling strategy. International Journal of Energy Research, 2018, 42, 1172-1182.	2.2	63
7535	In situ synthesis of Fe(1â^'x)Co x F3/MWCNT nanocomposites with excellent electrochemical performance for lithium-ion batteries. Journal of Materials Science, 2018, 53, 2697-2708.	1.7	11
7536	Onâ€Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics. Advanced Materials, 2018, 30, 1702770.	11.1	152
7537	A 4 V Na ⁺ Intercalation Material in a New Naâ€ion Cathode Family. Advanced Energy Materials, 2018, 8, 1701729.	10.2	18
7538	Review—Solid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges. Journal of the Electrochemical Society, 2018, 165, A6008-A6016.	1.3	146
7539	Flexible/shape-versatile, bipolar all-solid-state lithium-ion batteries prepared by multistage printing. Energy and Environmental Science, 2018, 11, 321-330.	15.6	141

#	Article	IF	CITATIONS
7540	Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogel supercapacitors. Carbon, 2018, 126, 456-463.	5.4	30
7541	Hybrid Lithium Iron Phosphate Battery and Lithium Titanate Battery Systems for Electric Buses. IEEE Transactions on Vehicular Technology, 2018, 67, 956-965.	3.9	42
7542	Intrinsic Nanodomains in Triplite LiFeSO ₄ F and Its Implication in Lithiumâ€lon Diffusion. Advanced Energy Materials, 2018, 8, 1701408.	10.2	16
7543	Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries. Journal of Materials Science, 2018, 53, 1356-1364.	1.7	18
7544	Rechargeable Solid‧tate Li–Air and Li–S Batteries: Materials, Construction, and Challenges. Advanced Energy Materials, 2018, 8, 1701602.	10.2	229
7545	Fe7Se8 nanoparticles encapsulated by nitrogen-doped carbon with high sodium storage performance and evolving redox reactions. Energy Storage Materials, 2018, 10, 114-121.	9.5	106
7546	Carbonyl polymeric electrode materials for metal-ion batteries. Chinese Chemical Letters, 2018, 29, 232-244.	4.8	85
7547	Effect of sodium salts on the cycling performance of tin anode in sodium ion batteries. Ionics, 2018, 24, 753-761.	1.2	21
7548	Optimal concentration of electrolyte additive for cyclic stability improvement of high-voltage cathode of lithium-ion battery. Ionics, 2018, 24, 661-670.	1.2	10
7549	Graphene oxide-decorated Fe2(MoO4)3 microflowers as a promising anode for lithium and sodium storage. Nano Research, 2018, 11, 1285-1293.	5.8	25
7550	SnSe2 Quantum Dot/rGO composite as high performing lithium anode. Energy Storage Materials, 2018, 10, 92-101.	9.5	72
7551	Mussel-Inspired Coating and Adhesion for Rechargeable Batteries: A Review. ACS Applied Materials & Interfaces, 2018, 10, 7562-7573.	4.0	84
7552	Facile synthesis of LiMn _{0·75} Fe _{0·25} PO ₄ /C composite cathode material and electronic conductivity of carbon coating. Materials Technology, 2018, 33, 16-21.	1.5	5
7553	Nanomaterials for Sustainable Energy Production and Storage: Present Day Applications and Possible Developments. , 2018, , 31-72.		2
7554	Evaluation of lithium-ion batteries through the simultaneous consideration of environmental, economic and electrochemical performance indicators. Journal of Cleaner Production, 2018, 170, 915-923.	4.6	39
7555	Synthesis and Performance of Tungsten Disulfide/Carbon (WS2/C) Composite as Anode Material. Journal of Electronic Materials, 2018, 47, 251-260.	1.0	20
7556	Formation of multiporous MnO/N-doped carbon configuration via carbonthermal reduction for superior electrochemical properties. Chemical Engineering Journal, 2018, 331, 570-577.	6.6	51
7557	Improved Thermal Stability of Lithiumâ€Rich Layered Oxide by Fluorine Doping. ChemPhysChem, 2018, 19, 116-122.	1.0	14

#	Article	IF	CITATIONS
7558	Sodium storage mechanism of N, S co-doped nanoporous carbon: Experimental design and theoretical evaluation. Energy Storage Materials, 2018, 11, 274-281.	9.5	112
7559	Surface-functionalized graphene-based quasi-solid-state Na-ion hybrid capacitors with excellent performance. Energy Storage Materials, 2018, 11, 8-15.	9.5	60
7560	Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Applied Catalysis B: Environmental, 2018, 224, 518-532.	10.8	83
7561	Zinc/Nickelâ€Doped Hollow Core–Shell Co ₃ O ₄ Derived from a Metal–Organic Framework with High Capacity, Stability, and Rate Performance in Lithium/Sodiumâ€ion Batteries. Chemistry - A European Journal, 2018, 24, 1651-1656.	1.7	40
7562	Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries. Carbon, 2018, 127, 588-595.	5.4	50
7563	Excellent Energy Storage of Sandwich-Structured PVDF-Based Composite at Low Electric Field by Introduction of the Hybrid CoFe ₂ 0 ₄ @BZT–BCT Nanofibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 403-412.	3.2	110
7564	Construction of Complex Co ₃ O ₄ @Co ₃ V ₂ O ₈ Hollow Structures from Metal–Organic Frameworks with Enhanced Lithium Storage Properties. Advanced Materials, 2018, 30, 1702875.	11.1	262
7565	Enhancing the Sequential Conversionâ€Alloying Reaction of Mixed Sn–S Hybrid Anode for Efficient Sodium Storage by a Carbon Healed Graphene Oxide. Small, 2018, 14, 1702605.	5.2	25
7566	Extremely Small Pyrrhotite Fe ₇ S ₈ Nanocrystals with Simultaneous Carbonâ€Encapsulation for Highâ€Performance Na–Ion Batteries. Small, 2018, 14, 1702816.	5.2	62
7567	Mechanical and electrochemical properties of cubic and tetragonal Li La0.557TiO3 perovskite oxide electrolytes. Ceramics International, 2018, 44, 1902-1908.	2.3	40
7568	Bismuth oxyfluoride @ CMK-3 nanocomposite as cathode for lithium ion batteries. Journal of Power Sources, 2018, 374, 166-174.	4.0	23
7569	Nanoconfined Oxidation Synthesis of Nâ€Doped Carbon Hollow Spheres and MnO ₂ Encapsulated Sulfur Cathode for Superior Liâ€S Batteries. Chemistry - A European Journal, 2018, 24, 4573-4582.	1.7	34
7570	A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature. Ionics, 2018, 24, 1545-1551.	1.2	18
7571	A comparative study of the structures and electronic properties of graphene fragments: A DFT and MP2 survey. Chemical Physics Letters, 2018, 691, 291-297.	1.2	5
7572	Ultra-low cost and highly stable hydrated FePO 4 anodes for aqueous sodium-ion battery. Journal of Power Sources, 2018, 374, 211-216.	4.0	44
7573	Ultra-long life of TiO2 nanotube array microelectrode for Li-ion microbatteries. Ionics, 2018, 24, 2227-2232.	1.2	1
7574	Improving the structure stability and electrochemical performance of Li2MnSiO4/C cathode materials by Ti-doping and porous microstructure. Journal of Alloys and Compounds, 2018, 735, 1158-1166.	2.8	15
7575	Electrospun Ti 2 Nb 10 O 29 hollow nanofibers as high-performance anode materials for lithium-ion batteries. Materials Letters, 2018, 214, 60-63.	1.3	38

#	Article	IF	CITATIONS
7576	Dynamic imaging of metastable reaction pathways in lithiated cobalt oxide electrodes. Nano Energy, 2018, 44, 15-22.	8.2	24
7577	Design and synthesis of macroporous (Mn1/3Co2/3)O-carbon nanotubes composite microspheres as efficient catalysts for rechargeable Li-O2 batteries. Carbon, 2018, 128, 125-133.	5.4	24
7578	Mixed ether-based solvents provide a long cycle life with high rate capability to graphite anodes for Na-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 2188-2195.	1.3	16
7579	Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li–O ₂ Batteries. ACS Nano, 2018, 12, 128-139.	7.3	230
7580	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
7581	Porous Media Applications: Electrochemical Systems. Mechanical Engineering Series, 2018, , 93-122.	0.1	1
7582	A P2â€Type Layered Superionic Conductor Gaâ€Doped Na ₂ Zn ₂ TeO ₆ for Allâ€Solidâ€State Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24, 1057-1061.	1.7	42
7583	Highâ€Capacity and Highâ€Rate Discharging of a Coenzyme Q ₁₀ atalyzed Li–O ₂ Battery. Advanced Materials, 2018, 30, 1705571.	11.1	100
7584	Rechargeable Aqueous Zincâ€lon Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode. Advanced Materials, 2018, 30, 1705580.	11.1	738
7585	Aprotic Lithium–Air Batteries Tested in Ambient Air with a Highâ€Performance and Lowâ€Cost Bifunctional Perovskite Catalyst. ChemCatChem, 2018, 10, 1635-1642.	1.8	5
7586	A Single‣tep Hydrothermal Route to 3D Hierarchical Cu ₂ O/CuO/rGO Nanosheets as Highâ€Performance Anode of Lithiumâ€Ion Batteries. Small, 2018, 14, 1702667.	5.2	84
7587	NS codoped carbon nanorods as anode materials for high-performance lithium and sodium ion batteries. Journal of Energy Chemistry, 2018, 27, 203-208.	7.1	36
7588	High-performance Si Mn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries. Electrochimica Acta, 2018, 260, 830-837.	2.6	26
7589	Molecular insights into ether-based electrolytes for Li-FeS2 batteries. Energy Storage Materials, 2018, 12, 85-93.	9.5	12
7590	In-situ deposition of sodium titanate thin film as anode for sodium-ion micro-batteries developed by pulsed laser deposition. Journal of Colloid and Interface Science, 2018, 514, 117-121.	5.0	13
7591	FUNDAMENTALS OF RECHARGEABLE BATTERIES AND ELECTROCHEMICAL POTENTIALS OF ELECTRODE MATERIALS. , 2018, , 397-451.		3
7592	Probing Solid–Solid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations. Chemistry of Materials, 2018, 30, 163-173.	3.2	150
7593	Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid. Nano Letters, 2018, 18, 336-346.	4.5	40

#	Article	IF	CITATIONS
7594	A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. Journal of Materials Chemistry A, 2018, 6, 1244-1254.	5.2	360
7595	Multiple redox couples cathode material for Li-ion battery: Lithium chromium phosphate. Journal of Energy Storage, 2018, 15, 266-273.	3.9	2
7596	Suppression of Dendritic Lithium Growth by in Situ Formation of a Chemically Stable and Mechanically Strong Solid Electrolyte Interphase. ACS Applied Materials & Interfaces, 2018, 10, 593-601.	4.0	116
7597	Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 1513-1522.	5.2	198
7598	<i>In situ</i> encapsulation of core–shell-structured Co@Co ₃ O ₄ into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 1443-1453.	5.2	178
7599	One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability. Nano-Micro Letters, 2018, 10, 19.	14.4	33
7600	Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Storage Materials, 2018, 12, 232-240.	9.5	66
7601	Effect of surface coating on the electrochemical performance of cathode made of sulfur–loaded TiO2 nanotube arrays. Journal of Alloys and Compounds, 2018, 737, 248-254.	2.8	6
7602	Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries. Journal of Membrane Science, 2018, 549, 321-331.	4.1	88
7603	Novel silicon–tungsten oxide–carbon composite as advanced negative electrode for lithium-ion batteries. Solid State Ionics, 2018, 314, 41-45.	1.3	8
7604	Hierarchical NiCo2O4 nanosheets grown on hollow carbon microspheres composites for advanced lithium-ion half and full batteries. Journal of Colloid and Interface Science, 2018, 513, 797-808.	5.0	19
7605	Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance. Journal of Materials Science, 2018, 53, 3927-3938.	1.7	58
7606	NiFe LDH-CoPc/CNTs as novel bifunctional electrocatalyst complex for zinc–air battery. Ionics, 2018, 24, 1709-1714.	1.2	25
7607	From spent graphite to amorphous sp 2 +sp 3 carbon-coated sp 2 graphite for high-performance lithium ion batteries. Journal of Power Sources, 2018, 376, 91-99.	4.0	137
7608	High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy, 2018, 44, 345-352.	8.2	264
7609	2D Dualâ€Metal Zeoliticâ€Imidazolateâ€Frameworkâ€(ZIF)â€Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2018, 28, 1705048.	7.8	361
7610	Woodâ€Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453.	11.1	359
7611	Different synthesis of Mn x Co y Ni z CO3 microspheres as new anode material for lithium ion battery. Journal of Materials Science: Materials in Electronics, 2018, 29, 3992-3998.	1.1	Ο

# 7612	ARTICLE Toward Solid-State 3D-Microbatteries Using Functionalized Polycarbonate-Based Polymer Electrolytes. ACS Applied Materials & amp; Interfaces, 2018, 10, 2407-2413.	IF 4.0	Citations 25
7613	Alkaline Benzoquinone Aqueous Flow Battery for Largeâ€Scale Storage of Electrical Energy. Advanced Energy Materials, 2018, 8, 1702056.	10.2	161
7614	An Asymmetricâ€Electrolyte Znâ~'Air Battery with Ultrahigh Power Density and Energy Density. ChemElectroChem, 2018, 5, 589-592.	1.7	50
7615	VS ₄ Nanoparticles Anchored on Graphene Sheets as a Highâ€Rate and Stable Electrode Material for Sodium Ion Batteries. ChemSusChem, 2018, 11, 735-742.	3.6	93
7616	A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes. Chemical Engineering Journal, 2018, 334, 2383-2391.	6.6	47
7617	Protecting Al foils for high-voltage lithium-ion chemistries. Materials Today Energy, 2018, 7, 18-26.	2.5	24
7618	From zeolite-type metal organic framework to porous nano-sheet carbon: High activity positive electrode material for bromine-based flow batteries. Nano Energy, 2018, 44, 240-247.	8.2	44
7619	Robust Pinhole-free Li ₃ N Solid Electrolyte Grown from Molten Lithium. ACS Central Science, 2018, 4, 97-104.	5.3	197
7620	Auto-generated iron chalcogenide microcapsules ensure high-rate and high-capacity sodium-ion storage. Nanoscale, 2018, 10, 800-806.	2.8	25
7621	CuGaS ₂ nanoplates: a robust and self-healing anode for Li/Na ion batteries in a wide temperature range of 268–318 K. Journal of Materials Chemistry A, 2018, 6, 1086-1093.	5.2	44
7622	Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode. Carbon, 2018, 129, 85-94.	5.4	84
7623	Encapsulating nanoparticulate Sb/MoOx into porous carbon nanofibers via electrospinning for efficient lithium storage. Chemical Engineering Journal, 2018, 336, 701-709.	6.6	50
7624	Optimizing solid electrolyte interphase on graphite anode by adjusting the electrolyte solution structure with ionic liquid. Electrochimica Acta, 2018, 260, 640-647.	2.6	6
7625	Importance of the constant voltage charging step during lithium-ion cell formation. Journal of Energy Storage, 2018, 15, 256-265.	3.9	16
7626	Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries. Carbon, 2018, 127, 149-157.	5.4	204
7627	Mesoporous graphitic carbon-TiO2 composite microspheres produced by a pilot-scale spray-drying process as an efficient sulfur host material for Li-S batteries. Chemical Engineering Journal, 2018, 335, 600-611.	6.6	59
7628	Effect of differentiated textural properties of tin oxide aerogels on anode performance in lithium-ion batteries. Journal of Alloys and Compounds, 2018, 732, 511-517.	2.8	9
7629	Syntheses, structure and properties of a new Fillowite-type compound Na0.48Mn1.22PO4. Journal of Alloys and Compounds, 2018, 734, 229-234.	2.8	3

#	Article	IF	CITATIONS
7630	Recent progress in 2D materials for flexible supercapacitors. Journal of Energy Chemistry, 2018, 27, 57-72.	7.1	179
7631	Triphase electrode performance adjustment for rechargeable ion batteries. Nano Energy, 2018, 43, 1-10.	8.2	34
7632	Bi-functional composite electrocatalysts consisting of nanoscale (La, Ca) oxides and carbon nanotubes for long-term zinc–air fuel cells and rechargeable batteries. Sustainable Energy and Fuels, 2018, 2, 91-95.	2.5	7
7633	Macroporous Catalytic Carbon Nanotemplates for Sodium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701261.	10.2	79
7634	Prospect and Reality of Niâ€Rich Cathode for Commercialization. Advanced Energy Materials, 2018, 8, 1702028.	10.2	574
7635	Sol-gel synthesized carbon-coated vanadium borate as anode material for rechargeable Li and Na batteries. Journal of Alloys and Compounds, 2018, 732, 506-510.	2.8	18
7636	Charge and Discharge Processes and Sodium Storage in Disodium Pyridineâ€2,5â€Dicarboxylate Anode—Insights from Experiments and Theory. Advanced Energy Materials, 2018, 8, 1701572.	10.2	40
7637	Metal-organic framework nanosheets-guided uniform lithium deposition for metallic lithium batteries. Energy Storage Materials, 2018, 11, 267-273.	9.5	80
7638	Amorphous red phosphorus anchored on carbon nanotubes as high performance electrodes for lithium ion batteries. Nano Research, 2018, 11, 2733-2745.	5.8	46
7639	High-performance MoS2-based nanocomposite anode prepared by high-energy mechanical milling: The effect of carbonaceous matrix on MoS2. Electrochimica Acta, 2018, 260, 129-138.	2.6	31
7640	Preparation of MoS ₂ /TiO ₂ based nanocomposites for photocatalysis and rechargeable batteries: progress, challenges, and perspective. Nanoscale, 2018, 10, 34-68.	2.8	247
7641	Electrochemical performance of plasticized PEO-LiTf complex-based composite gel polymer electrolytes with the addition of barium titanate. Ionics, 2018, 24, 1407-1414.	1.2	15
7642	Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation. Applied Surface Science, 2018, 435, 210-215.	3.1	51
7643	Thioindigo: A novel cathode material of sodium ion battery predicted through dispersion-corrected density functional theory. Computational Materials Science, 2018, 143, 255-261.	1.4	3
7644	Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochimica Acta, 2018, 260, 65-72.	2.6	257
7645	Two-dimensional organic cathode materials for alkali-metal-ion batteries. Journal of Energy Chemistry, 2018, 27, 86-98.	7.1	56
7646	Modeling Transport Phenomena in Porous Media with Applications. Mechanical Engineering Series, 2018, , .	0.1	28
7647	A Binderâ€Free and Freeâ€Standing Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminumâ€Ion Batteries. Advanced Materials, 2018, 30, 1703824.	11.1	250

#	Article	IF	CITATIONS
7648	Layered Oxide Cathodes for Sodiumâ€ion Batteries: Phase Transition, Air Stability, and Performance. Advanced Energy Materials, 2018, 8, 1701912.	10.2	519
7649	Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. Journal of Materials Chemistry A, 2018, 6, 4649-4657.	5.2	98
7650	Mesoporous LaMnO3+l̃´ perovskite from sprayâ^'pyrolysis with superior performance for oxygen reduction reaction and Znâ~'air battery. Nano Energy, 2018, 43, 81-90.	8.2	71
7651	From anti-perovskite to double anti-perovskite: tuning lattice chemistry to achieve super-fast Li ⁺ transport in cubic solid lithium halogen–chalcogenides. Journal of Materials Chemistry A, 2018, 6, 73-83.	5.2	77
7652	Hierarchical Fe3O4@NC composites: ultra-long cycle life anode materials for lithium ion batteries. Journal of Materials Science, 2018, 53, 2127-2136.	1.7	29
7653	High-performance supercapacitors based on flower-like FexCo3-xO4 electrodes. Journal of Alloys and Compounds, 2018, 735, 184-192.	2.8	17
7654	In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 735, 1079-1087.	2.8	34
7655	Exceptional effect of glassy lithium fluorophosphate on Mn-rich olivine cathode material for high-performance Li ion batteries. Journal of Power Sources, 2018, 374, 55-60.	4.0	4
7656	In Operando Small-Angle Neutron Scattering Study of Single-Ion Copolymer Electrolyte for Li-Metal Batteries. ACS Energy Letters, 2018, 3, 1-6.	8.8	25
7657	Nitrogen-doped porous carbons derived from a natural polysaccharide for multiple energy storage devices. Sustainable Energy and Fuels, 2018, 2, 381-391.	2.5	43
7658	Highly [010]-oriented self-assembled LiCoPO4/C nanoflakes as high-performance cathode for lithium ion batteries. Nano Research, 2018, 11, 2424-2435.	5.8	11
7659	Enhanced electrochemical performance of LiCoBO3 cathode material for next generation Lithium-ion batteries. Applied Surface Science, 2018, 449, 421-425.	3.1	8
7660	Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer. Journal of Power Sources, 2018, 373, 184-192.	4.0	69
7661	A Double Core-shell Structure Silicon Carbon Composite Anode Material for a Lithium Ion Battery. Silicon, 2018, 10, 1443-1450.	1.8	12
7662	Continuous Carbon Hollow Shell with Zinc Oxide Nanoparticles Embedded as an Anode Material with Excellent Lithium Storage Capability. Energy Technology, 2018, 6, 188-195.	1.8	12
7663	Fast solution combustion synthesis of porous NaFeTi3O8 with superior sodium storage properties. Electronic Materials Letters, 2018, 14, 23-29.	1.0	3
7664	Lead acid battery recycling and material flow analysis of lead in Korea. Journal of Material Cycles and Waste Management, 2018, 20, 1348-1354.	1.6	12
7665	In2O3 nanocrystal–Ĩ€ conjugated molecule hybrid materials for high-capacity anode in lithium ion battery. Journal of Industrial and Engineering Chemistry, 2018, 57, 22-27.	2.9	8

		CITATION REPORT		
#	Article		IF	Citations
7666	Integrated investigation of the Li4Ti5O12 phase stability. Ionics, 2018, 24, 707-713.		1.2	9
7667	Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes v bis (fluorosulfonyl)imide. Solid State Ionics, 2018, 318, 95-101.	vith lithium	1.3	44
7668	Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercap Surface Science, 2018, 427, 174-181.	acitors. Applied	3.1	125
7669	Welding characteristics of Cu and Al plates using planar vibration by a dumbbell-shape complex vibration source. Japanese Journal of Applied Physics, 2018, 57, 07LE12.	d ultrasonic	0.8	11
7670	Prediction of the Heat Transfer Coefficient in Direct Oil Cooling of Lithium-Ion Batterie	s., 2018,,.		1
7671	Geo2-Coated MCMB Composite as Anode Material for Lithium Ion Battery in PC-Based Conference Series: Materials Science and Engineering, 2018, 452, 022142.	Electrolyte. IOP	0.3	1
7672	Development of Electroorganic Reactions Utilizing Stabilized Reactive Species and Its Organic Energy Storage Materials. Electrochemistry, 2018, 86, 298-302.	Application to	0.6	1
7673	A Comprehensive Review on Controlling Surface Composition of Ptâ€Based Bimetallic Advanced Energy Materials, 2018, 8, 1703597.	Electrocatalysts.	10.2	123
7674	Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e180	1368.	11.1	445
7675	Preparation of MoP2 nanoparticles as a novel anode material for sodium ion batteries. Ferroelectrics, 2018, 192, 88-93.	Integrated	0.3	2
7676	Preparation and performance study of a PVDF–LATP ceramic composite polymer electron for solid-state batteries. RSC Advances, 2018, 8, 40498-40504.	strolyte membrane	1.7	58
7677	Self-assembled 3D flower-like Fe ₃ O ₄ /C architecture with sup storage performance. Journal of Materials Chemistry A, 2018, 6, 24940-24948.	berior lithium ion	5.2	88
7678	Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-str microporous carbon for advanced rechargeable Na–Se batteries. Journal of Materials 2018, 6, 22790-22797.		5.2	62
7679	Impact of trace extrinsic defect formation on the local symmetry transition in spinel LiNi _{0.5} Mn _{1.5} O _{4â^îl} systems and their electroc characteristics. Journal of Materials Chemistry A, 2018, 6, 22749-22757.	hemical	5.2	10
7680	A convenient route to internally phosphane-stabilized aryltriborane(7) compounds. Ch Communications, 2018, 54, 12606-12609.	emical	2.2	6
7681	Crystallinity-dependent capacity of a LiBC anode material in Li-ion batteries. Physical C Chemical Physics, 2018, 20, 28176-28184.	hemistry	1.3	4
7682	A critical review of cathodes for rechargeable Mg batteries. Chemical Society Reviews, 8804-8841.	2018, 47,	18.7	420
7683	Enhanced ionic conductivity in halloysite nanotube-poly(vinylidene fluoride) electrolyte solid-state lithium-ion batteries. RSC Advances, 2018, 8, 34232-34240.	es for	1.7	34

#	Article	IF	CITATIONS
7684	Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries. Journal of Materials Chemistry A, 2018, 6, 21859-21884.	5.2	139
7685	Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities. Journal of Materials Chemistry A, 2018, 6, 21098-21103.	5.2	52
7686	General and facile synthesis of hollow metal oxide nanoparticles coupled with graphene nanomesh architectures for highly efficient lithium storage. Journal of Materials Chemistry A, 2018, 6, 23856-23864.	5.2	17
7687	A high-rate aqueous rechargeable zinc ion battery based on the VS ₄ @rGO nanocomposite. Journal of Materials Chemistry A, 2018, 6, 23757-23765.	5.2	196
7688	Synthesis of porous carbon-coated NaTi ₂ (PO ₄) ₃ nanocubes with a high-yield and superior rate properties. Journal of Materials Chemistry A, 2018, 6, 24503-24508.	5.2	15
7689	A rechargeable aqueous Zn ²⁺ -battery with high power density and a long cycle-life. Energy and Environmental Science, 2018, 11, 3168-3175.	15.6	258
7690	The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for " <i>Water-in-Salt</i> ―electrolytes. Energy and Environmental Science, 2018, 11, 3491-3499.	15.6	224
7691	Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: two-dimensional metal–organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction. Nanoscale, 2018, 10, 19774-19780.	2.8	31
7692	Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO ₄ F nanoplates for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 24201-24209.	5.2	39
7693	Mesoporous single-crystalline MnO _x nanofibers@graphene for ultra-high rate and long-life lithium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 24756-24766.	5.2	24
7694	Synthesis and Performance of Fusiform and Sphere Hierarchical Layered Li-Rich Materials Li1.2Mn0.54Ni0.13Co0.13O2 for Lithium-Ion Batteries. IOP Conference Series: Materials Science and Engineering, 2018, 394, 042032.	0.3	0
7695	Preparation of SiO ₂ nanowire arrays as anode material with enhanced lithium storage performance. RSC Advances, 2018, 8, 33652-33658.	1.7	17
7696	Self-assembled hierarchical porous NiMn2O4 microspheres as high performance Li-ion battery anodes. RSC Advances, 2018, 8, 41749-41755.	1.7	18
7697	Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium–air batteries. Journal of Materials Chemistry A, 2018, 6, 21248-21254.	5.2	76
7698	PNTCDA: a promising versatile organic electrode material for alkali-metal ion batteries. Journal of Materials Chemistry A, 2018, 6, 24869-24876.	5.2	11
7699	Polymer Electrode Materials for Sodium-ion Batteries. Materials, 2018, 11, 2567.	1.3	45
7700	Modification of nanosized LiFePO _{4 via nickel doping and graphene coating. International Journal of Nanotechnology, 2018, 15, 914.}	0.1	0
7701	Optimal Design and Operation Management of Battery-Based Energy Storage Systems (BESS) in Microgrids. , 2018, , .		2

#	Article	IF	CITATIONS
7702	Synthesis and Investigation of CuGeO3 Nanowires as Anode Materials for Advanced Sodium-Ion Batteries. Nanoscale Research Letters, 2018, 13, 193.	3.1	18
7703	Layer-structured Ti doped O3-Na1â^'xCr1â^'xTixO2(x=0, 0.03, 0.05) with excellent electrochemical performance as cathode materials for sodium ion batteries. Chinese Journal of Chemical Physics, 2018, 31, 673-676.	0.6	7
7704	Innovative electrochromic devices: Energy savings and visual comfort effects. Energy Procedia, 2018, 148, 900-907.	1.8	13
7705	Investigation of particulate emissions during handling of electrodes in lithium-ion battery assembly. Procedia CIRP, 2018, 78, 341-346.	1.0	8
7706	Structural and electrochemical behavior of Li 1.2 Mn 0 . 54 Ni 0.13 Co 0.13-x Al x O 2 (x = 0.05) positive electrode material for lithium ion battery. Materials Today: Proceedings, 2018, 5, 10479-10487.	0.9	6
7708	4. Battery Materials. , 2018, , 75-260.		0
7709	Construction of yolk–shell Fe3O4@C nanocubes for highly stable and efficient lithium-ion storage. Frontiers of Materials Science, 2018, 12, 361-367.	1.1	3
7710	Toward Mechanically Stable Silicon-Based Anodes Using Si/SiO _{<i>x</i>} @C Hierarchical Structures with Well-Controlled Internal Buffer Voids. ACS Applied Materials & Interfaces, 2018, 10, 41422-41430.	4.0	25
7711	Thin Film RuO ₂ Lithiation: Fast Lithiumâ€lon Diffusion along the Interface. Advanced Functional Materials, 2018, 28, 1805723.	7.8	11
7712	Strain Engineered Band Gaps and Electronic Properties in PbPdO2 and PbPd0.75Co0.25O2 Slabs. Materials, 2018, 11, 2002.	1.3	4
7713	Computer Simulation of Cathode Materials for Lithium Ion and Lithium Batteries: A Review. Energy and Environmental Materials, 2018, 1, 148-173.	7.3	56
7714	Effect of Synthetic Parameters on Defects, Structure, and Electrochemical Properties of Layered Oxide LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ . Journal of the Electrochemical Society, 2018, 165, A3537-A3543.	1.3	7
7715	Solubilities of Five Lithium Salts in 1-Butyl-3-methylimidazolium Dicyanamide and in 1-Butyl-3-methylimidazolium Tetrafluoroborate from 298.15 to 343.15 K. Journal of Chemical & Engineering Data, 0, , .	1.0	3
7716	NiCo ₂ S ₄ Nanosheet with Hexagonal Architectures as an Advanced Cathode for Al-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A3504-A3509.	1.3	21
7717	Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries. Journal of Central South University, 2018, 25, 2320-2331.	1.2	16
7718	Yolk-Shell Germanium@Polypyrrole Architecture with Precision Expansion Void Control for Lithium Ion Batteries. IScience, 2018, 9, 521-531.	1.9	22
7719	Effect of Defects on Diffusion Behaviors of Lithium-Ion Battery Electrodes: In Situ Optical Observation and Simulation. ACS Applied Materials & Interfaces, 2018, 10, 43623-43630.	4.0	16
7720	High-Conductivity Argyrodite Li ₆ PS ₅ Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42279-42285.	4.0	170

#	Article	IF	CITATIONS
7721	Potassium Dual-Ion Hybrid Batteries with Ultrahigh Rate Performance and Excellent Cycling Stability. ACS Applied Materials & Interfaces, 2018, 10, 42294-42300.	4.0	52
7722	Honeycomb-like Hard Carbon Derived from Pine Pollen as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42796-42803.	4.0	129
7723	Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements. ACS Applied Materials & Interfaces, 2018, 10, 43631-43640.	4.0	15
7724	Oxygen containing Si–H nanoparticles: a potential electrode for Li–ion battery. EPJ Applied Physics, 2018, 83, 10401.	0.3	0
7725	Electrochemical Performance of Layered FeSe for Sodium Ion Batteries Using Ether-Based Solvents. Journal of the Electrochemical Society, 2018, 165, A3582-A3585.	1.3	14
7726	Defect process and lithium diffusion in Li2TiO3. Solid State Ionics, 2018, 327, 93-98.	1.3	43
7727	Self-Supported NiSe/Ni Foam: An Efficient 3D Electrode for High-Performance Supercapacitors. Nano, 2018, 13, 1850136.	0.5	4
7728	Detrimental Effects of Chemical Crossover from the Lithium Anode to Cathode in Rechargeable Lithium Metal Batteries. ACS Energy Letters, 2018, 3, 2921-2930.	8.8	89
7729	Two-Dimensional MnO2/reduced Graphene Oxide Nanosheet as a High-Capacity and High-Rate Cathode for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2018, 13, 8575-8588.	0.5	13
7730	Perylene Polyimide-Polyether Anodes for Aqueous All-Organic Polymer Batteries. ACS Applied Energy Materials, 2018, 1, 7199-7205.	2.5	54
7731	Effect of SiO2 Nanoparticles on the Performance of PVdF-HFP/Ionic Liquid Separator for Lithium-Ion Batteries. Nanomaterials, 2018, 8, 926.	1.9	25
7732	Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes. Journal of the Electrochemical Society, 2018, 165, E725-E736.	1.3	95
7733	The Electrochemical Properties of Porous Carbon Derived from the Prawn as Anode for Lithium Ion Batteries. International Journal of Electrochemical Science, 2018, 13, 2474-2482.	0.5	10
7734	Direct Visualization of Li Dendrite Effect on LiCoO ₂ Cathode by In Situ TEM. Small, 2018, 14, e1803108.	5.2	34
7735	Simultaneous oxygen and boron trifluoride functionalization of hexagonal boron nitride: a designer cathode material for energy storage. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	7
7736	Mechanistic Origin of the High Performance of Yolk@Shell Bi ₂ S ₃ @N-Doped Carbon Nanowire Electrodes. ACS Nano, 2018, 12, 12597-12611.	7.3	213
7737	Size-Dependent Memory Effect of the LiFePO ₄ Electrode in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 41407-41414.	4.0	17
7738	Green synthesis of high-performance LiFePO ₄ nanocrystals in pure water. Green Chemistry, 2018, 20, 5215-5223.	4.6	25

#	Article	IF	CITATIONS
7739	Synthesis, Characterization and Electrochemical Properties of α-MnO2 Nanowires as Electrode Material for Supercapacitors. International Journal of Electrochemical Science, 2018, 13, 6426-6435.	0.5	29
7740	Combination Effect of Bulk Structure Change and Surface Rearrangement on the Electrochemical Kinetics of LiNi _{0.80} Co _{0.15} Al _{0.05} O ₂ During Initial Charging Processes. ACS Applied Materials & amp; Interfaces, 2018, 10, 41370-41379.	4.0	27
7741	All-Solid-State Lithium Battery Working without an Additional Separator in a Polymeric Electrolyte. Polymers, 2018, 10, 1364.	2.0	17
7742	Preventing Thermal Runaway Propagation of 3.2 Ah Lithium-Ion Cell Battery Packs with Phase Change Composite Material: Investigating a Cell-Air-PCC (Air-Gap) Design. , 2018, , .		1
7743	2D Coordination Polymer Derived Co3O4Nanocrystals as High Performance Anode Material of Lithium-Ion Batteries. Nano, 2018, 13, 1850139.	0.5	5
7744	Determination of Nickel, Cobalt and Manganese in cathode material of Lithium ion Batteries. International Journal of Electrochemical Science, 2018, 13, 11568-11579.	0.5	3
7745	Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification. Journal of Materials Chemistry A, 2018, 6, 21018-21028.	5.2	71
7746	In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode. ACS Nano, 2018, 13, 1490-1498.	7.3	49
7747	Purification of Lithium Carbonate from Sulphate Solutions through Hydrogenation Using the Dowex G26 Resin. Applied Sciences (Switzerland), 2018, 8, 2252.	1.3	11
7748	Revisiting Scientific Issues for Industrial Applications of Lithium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 196-208.	7.3	158
7749	Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano, 2018, 4, 1-16.	2.3	201
7750	Synergic Titanium Nitride Coating and Titanium Doping by Atomic Layer Deposition for Stable- and High-Performance Li-Ion Battery. Journal of the Electrochemical Society, 2018, 165, A3871-A3877.	1.3	16
7751	Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion. Small, 2019, 15, e1804371.	5.2	202
7752	Electrolyteâ€Regulated Solidâ€Electrolyte Interphase Enables Long Cycle Life Performance in Organic Cathodes for Potassiumâ€ion Batteries. Advanced Functional Materials, 2019, 29, 1807137.	7.8	120
7753	Exploring Effective Approach to Synthesize Graphene@sulfur Composites for High Performance Lithium-sulfur Batteries. Current Nanoscience, 2018, 14, 335-342.	0.7	4
7754	Improving the Electrochemical Properties of the Manganese-Based P3 Phase by Multiphasic Intergrowth. Inorganic Chemistry, 2018, 57, 15584-15591.	1.9	19
7755	Titanosilicate Derived SiO ₂ /TiO ₂ @C Nanosheets with Highly Distributed TiO ₂ Nanoparticles in SiO ₂ Matrix as Robust Lithium Ion Battery Anode. ACS Applied Materials & Interfaces, 2018, 10, 44463-44471.	4.0	50
7756	Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes. Membranes, 2018, 8, 120.	1.4	30

#	Article	IF	CITATIONS
7757	A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems. Energies, 2018, 11, 3122.	1.6	18
7758	Separator Membranes for High Energyâ€Density Batteries. ChemBioEng Reviews, 2018, 5, 346-371.	2.6	29
7759	Cycle Life Prediction of Aged Lithium-Ion Batteries from the Fading Trajectory of a Four-Parameter Model. Journal of the Electrochemical Society, 2018, 165, A3634-A3641.	1.3	13
7760	Facile synthesis of cobalt ferrite nanoparticles (CFO-NPs) as anode material with enhanced lithium storage capability. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 236-237, 162-169.	1.7	12
7761	A Nano-Architectured Metal-Oxide/Perovskite Hybrid Material as Electrocatalyst for the Oxygen Reduction Reaction in Aluminum–Air Batteries. ACS Applied Nano Materials, 2018, 1, 6824-6833.	2.4	14
7762	Urchin-like MoP Nanocrystals Embedded in N-Doped Carbon as High Rate Lithium Ion Battery Anode. ACS Applied Energy Materials, 2018, 1, 7140-7145.	2.5	14
7763	Pressure Monitoring Cell for Constrained Battery Electrodes. Sensors, 2018, 18, 3808.	2.1	6
7764	Coalescence in Hybrid Materials: The Key to High-Capacity Electrodes. ACS Applied Energy Materials, 2018, 1, 7085-7092.	2.5	1
7765	Investigation of Fluorine and Nitrogen as Anionic Dopants in Nickel-Rich Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 44452-44462.	4.0	63
7766	Manganese Vanadium Oxide–N-Doped Reduced Graphene Oxide Composites as Oxygen Reduction and Oxygen Evolution Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 44511-44517.	4.0	62
7767	A Flexible All-in-One Lithium-Sulfur Battery. ACS Nano, 2018, 12, 12503-12511.	7.3	95
7768	Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications?. Journal of the Electrochemical Society, 2018, 165, A3714-A3722.	1.3	78
7769	Aligning academia and industry for unified battery performance metrics. Nature Communications, 2018, 9, 5262.	5.8	244
7770	Spore Carbon from <i>Aspergillus Oryzae</i> for Advanced Electrochemical Energy Storage. Advanced Materials, 2018, 30, e1805165.	11.1	122
7771	Highâ€Rate Performance and Ultralong Cycle Life Enabled by Hybrid Organic–Inorganic Vanadyl Ethylene Glycolate for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2018, 8, 1801978.	10.2	33
7772	Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase. Advanced Energy Materials, 2018, 8, 1802350.	10.2	147
7773	Constructing Universal Ionic Sieves via Alignment of Twoâ€Dimensional Covalent Organic Frameworks (COFs). Angewandte Chemie - International Edition, 2018, 57, 16072-16076.	7.2	115
7774	Graphene oxide supported tin dioxide: synthetic approaches and electrochemical characterization as anodes for lithium- and sodium-ion batteries. Russian Chemical Bulletin, 2018, 67, 1131-1141.	0.4	0

#	Article	IF	CITATIONS
7775	Constructing Universal Ionic Sieves via Alignment of Twoâ€Đimensional Covalent Organic Frameworks (COFs). Angewandte Chemie, 2018, 130, 16304-16308.	1.6	16
7776	Preparation of high-capacitance N,S co-doped carbon nanospheres with hierarchical pores as supercapacitors. Electrochimica Acta, 2018, 291, 168-176.	2.6	39
7777	Highly efficient lithium container based on non-Wadsley-Roth structure Nb18W16O93 nanowires for electrochemical energy storage. Electrochimica Acta, 2018, 292, 331-338.	2.6	49
7778	Three-Electron Redox Enabled Dithiocarboxylate Electrode for Superior Lithium Storage Performance. ACS Applied Materials & Interfaces, 2018, 10, 35469-35476.	4.0	24
7779	Investigation of grafted mesoporous silicon sponge using hyperpolarized ¹²⁹ Xe NMR spectroscopy. Journal of Materials Research, 2018, 33, 2637-2645.	1.2	3
7780	Three-dimensional hierarchical porous TiO2/graphene aerogels as promising anchoring materials for lithium‒sulfur batteries. Electrochimica Acta, 2018, 292, 568-574.	2.6	40
7781	Molecular dynamics simulation of polymer-coupled ion transport in the crystalline polymer electrolyte poly(ethylene oxide)3:NaI. Polymer, 2018, 155, 136-145.	1.8	6
7782	Poly(ethylene glycol) (PEC)-crosslinked poly(vinyl pyridine)–PEG–poly(vinyl pyridine)-based triblock copolymers prepared by RAFT polymerization as novel gel polymer electrolytes. Polymer Chemistry, 2018, 9, 5190-5199.	1.9	21
7783	In Situ Monitoring of the Growth of Nickel, Manganese, and Cobalt Hydroxide Precursors during Co-Precipitation Synthesis of Li-Ion Cathode Materials. Journal of the Electrochemical Society, 2018, 165, A3077-A3083.	1.3	18
7784	Interfaces in Solid-State Lithium Batteries. Joule, 2018, 2, 1991-2015.	11.7	444
7785	Opportunities for Rechargeable Solid-State Batteries Based on Li-Intercalation Cathodes. Joule, 2018, 2, 2208-2224.	11.7	153
7786	Ultrafine Li3V2(PO4)3 crystals adhered to P-doped graphene sheets for electrochemical lithium storage. Solid State Ionics, 2018, 326, 58-62.	1.3	4
7787	The Porous Carbon Nanotube-Cellulose Papers as Current Collector and Electrode for Lithium Ion Battery and Supercapacitor Applications. , 2018, , .		0
7788	Ta ₂ O ₅ Coating as an HF Barrier for Improving the Electrochemical Cycling Performance of High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ at Elevated Temperatures. ACS Applied Energy Materials, 0, , .	2.5	17
7789	Architecturally Robust Graphene-Encapsulated MXene Ti ₂ CT _{<i>x</i>} @Polyaniline Composite for High-Performance Pouch-Type Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 34212-34221.	4.0	168
7790	Recent Progresses and Prospects of Cathode Materials for Non-aqueous Potassium-Ion Batteries. Electrochemical Energy Reviews, 2018, 1, 548-566.	13.1	48
7791	Origin of the catalytic activity of phosphorus doped MoS2 for oxygen reduction reaction (ORR) in alkaline solution: a theoretical study. Scientific Reports, 2018, 8, 13292.	1.6	20
7792	2D Metal Carbides and Nitrides (MXenes) as Highâ€Performance Electrode Materials for Lithiumâ€Based Batteries. Advanced Energy Materials, 2018, 8, 1801897.	10.2	341

#	Article	IF	CITATIONS
7793	The Recycling of Spent Lithium-Ion Batteries: a Review of Current Processes and Technologies. Electrochemical Energy Reviews, 2018, 1, 461-482.	13.1	215
7794	Template synthesis of mesoporous Li2MnSiO4@C composite with improved lithium storage properties. Electrochimica Acta, 2018, 291, 124-131.	2.6	12
7795	Facile synthesis of Nb2O5/carbon nanocomposites as advanced anode materials for lithium-ion batteries. Electrochimica Acta, 2018, 292, 63-71.	2.6	77
7796	In-situ characterizations of chemo-mechanical behavior of free-standing vanadium pentoxide cathode for lithium-ion batteries during discharge-charge cycling using digital image correlation. Journal of Power Sources, 2018, 402, 272-280.	4.0	24
7797	Enhancement of Bromine Reversibility using Chemically Modified Electrodes and their Applications in Zinc Bromine Hybrid Redox Flow Batteries. ChemElectroChem, 2018, 5, 3411-3418.	1.7	24
7798	In situ grown Co3O4 nanocubes on N-doped graphene as a synergistic hybrid for applications in nickel metal hydride batteries. International Journal of Hydrogen Energy, 2018, 43, 18421-18435.	3.8	24
7799	Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. Journal of Power Sources, 2018, 402, 388-393.	4.0	25
7800	Achieving a high loading Si anode <i>via</i> employing a triblock copolymer elastomer binder, metal nanowires and a laminated conductive structure. Journal of Materials Chemistry A, 2018, 6, 20982-20991.	5.2	28
7801	High‣urfaceâ€Area Nitrogen/Phosphorus Dualâ€Doped Hierarchical Porous Carbon Derived from Biochar for Sulfur Holder. ChemistrySelect, 2018, 3, 10175-10181.	0.7	14
7802	Chitosan-Induced Synthesis of Hierarchical Flower Ridge-like MoS ₂ /N-Doped Carbon Composites with Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 35953-35962.	4.0	42
7803	Development, Challenges, and Prospects of Carbon-Based Electrode for Lithium-Air Batteries. , 2018, , 115-152.		12
7804	Realizing the Ultimate Thermal Stability of a Lithium-Ion Battery Using Two Zero-Strain Insertion Materials. ACS Applied Energy Materials, 0, , .	2.5	2
7805	Advanced sulfide solid electrolyte by core-shell structural design. Nature Communications, 2018, 9, 4037.	5.8	146
7806	Nanowires in Energy Storage Devices: Structures, Synthesis, and Applications. Advanced Energy Materials, 2018, 8, 1802369.	10.2	169
7807	Rate and Composition Dependence on the Structural–Electrochemical Relationships in P2–Na _{2/3} Fe _{1–<i>y</i>} Mn _{<i>y</i>} O ₂ Positive Electrodes for Sodium-Ion Batteries. Chemistry of Materials, 2018, 30, 7503-7510.	3.2	21
7808	Na1.68H0.32Ti2O3SiO4·1.76H2O as a Low-Potential Anode Material for Sodium-Ion Battery. ACS Applied Energy Materials, 2018, , .	2.5	4
7809	Synthesis and Electrochemical Properties of Flower-like Na-doped V6O13 Cathode Materials for Li-ion Batteries. International Journal of Electrochemical Science, 2018, 13, 6565-6576.	0.5	7
7810	A Review of Functional Binders in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1802107.	10.2	324

#	Article	IF	CITATIONS
7811	Fastâ€Charging and High Volumetric Capacity Anode Based on Co ₃ O ₄ /CuO@TiO ₂ Composites for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2018, 24, 19045-19052.	1.7	20
7812	SiO ₂ /C Composite Derived from Rice Husks with Enhanced Capacity as Anodes for Lithium″on Batteries. ChemistrySelect, 2018, 3, 10338-10344.	0.7	28
7813	Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nature Communications, 2018, 9, 4082.	5.8	305
7814	A Comparative Study of Synthesis Processes for LiNi0.5Mn1.5O4 Cathode Material. International Journal of Electrochemical Science, 2018, 13, 8170-8178.	0.5	3
7815	Improvement of Li-S battery electrochemical performance with 2D TiS2 additive. Electrochimica Acta, 2018, 292, 779-788.	2.6	29
7816	Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery. Journal of Power Sources, 2018, 403, 103-108.	4.0	20
7817	To Which Extent Is Paramagnetic Solid-State NMR Able To Address Polymorphism in Complex Transition-Metal Oxides?. Journal of Physical Chemistry Letters, 2018, 9, 6072-6076.	2.1	2
7818	WS ₂ –Graphite Dual-Ion Batteries. Nano Letters, 2018, 18, 7155-7164.	4.5	88
7819	Recent Progress of Electrode Materials for Zinc Bromide Flow Battery. International Journal of Electrochemical Science, 2018, 13, 5603-5611.	0.5	13
7820	Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nature Energy, 2018, 3, 889-898.	19.8	347
7821	Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 21550-21557.	5.2	38
7822	Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 20795-20803.	5.2	54
7823	Layered Bimetallic Metalâ€Organic Material Derived Cu ₂ SnS ₃ /SnS ₂ /C Composite for Anode Applications in Lithiumâ€Ion Batteries. ChemElectroChem, 2018, 5, 3764-3770.	1.7	10
7824	Two-step oxygen reduction on spinel NiFe2O4 catalyst: Rechargeable, aqueous solution- and gel-based, Zn-air batteries. Electrochimica Acta, 2018, 292, 268-275.	2.6	74
7825	Sodium intercalation/de-intercalation mechanism in Na4MnV(PO4)3 cathode materials. Electrochimica Acta, 2018, 292, 98-106.	2.6	61
7826	Self-Healing Lamellar Structure Boosts Highly Stable Zinc-Storage Property of Bilayered Vanadium Oxides. ACS Applied Materials & Interfaces, 2018, 10, 35079-35089.	4.0	169
7827	Superior High-Rate and Ultralong-Lifespan Na ₃ V ₂ (PO ₄) ₃ @C Cathode by Enhancing the Conductivity Both in Bulk and on Surface. ACS Applied Materials & Interfaces, 2018, 10, 35963-35971.	4.0	74
7829	An electron-deficient nanosized polycyclic aromatic hydrocarbon with enhanced anion–Ĩ€ interactions. Chemical Communications, 2018, 54, 11941-11944.	2.2	21

#	Article	IF	CITATIONS
7830	Conversion/alloying lithium-ion anodes – enhancing the energy density by transition metal doping. Sustainable Energy and Fuels, 2018, 2, 2601-2608.	2.5	41
7831	Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy, 2018, 54, 148-155.	8.2	106
7832	Low Interface Energies Tune the Electrochemical Reversibility of Tin Oxide Composite Nanoframes as Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2018, 10, 36892-36901.	4.0	19
7833	TiO2/MoO2 Nanocomposite as Anode Materials for High Power Li-ion Batteries with Exceptional Capacity. International Journal of Electrochemical Science, 2018, 13, 5120-5140.	0.5	6
7834	A Longâ€Cycleâ€Life Selfâ€Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Angewandte Chemie - International Edition, 2018, 57, 16359-16363.	7.2	346
7835	A Li ₂ Sâ€Based Sacrificial Layer for Stable Operation of Lithiumâ€Sulfur Batteries. Energy Technology, 2018, 6, 2210-2219.	1.8	4
7836	Selfâ€Adaptive Electrode with SWCNT Bundles as Elastic Substrate for Highâ€Rate and Longâ€Cycleâ€Life Lithium/Sodium Ion Batteries. Small, 2018, 14, e1802913.	5.2	32
7837	Electrochemical and Chemical Modifications of Electrode Surfaces and Interphases for Li–Ion Batteries. , 2018, , 680-693.		0
7838	X-ray and thermal analysis of high-capacity iron- and nickel-containing lithium-rich layered-oxide cathode treated by carbothermal reduction. Electrochimica Acta, 2018, 290, 577-585.	2.6	7
7839	Polymer-Laden Composite Lignin-Based Electrolyte Membrane for High-Performance Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 14460-14469.	3.2	57
7840	Solvent and Salt Effect on Lithium Ion Solvation and Contact Ion Pair Formation in Organic Carbonates: A Quantum Chemical Perspective. Journal of Physical Chemistry C, 2018, 122, 25930-25939.	1.5	31
7841	Nonstoichiometric Triazolium Protic Ionic Liquids for All-Organic Batteries. ACS Applied Energy Materials, 2018, 1, 6451-6462.	2.5	31
7842	Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte. Journal of the American Chemical Society, 2018, 140, 15661-15667.	6.6	144
7843	High Performance Poly(vinyl alcohol)-Based Li-Ion Conducting Gel Polymer Electrolyte Films for Electric Double-Layer Capacitors. Polymers, 2018, 10, 1179.	2.0	39
7844	Promise and Challenge of Phosphorus in Science, Technology, and Application. Advanced Functional Materials, 2018, 28, 1803471.	7.8	65
7845	2-formyl-3,6-bis(hydroxymethyl)phenyl benzoate in Electrochemical Dry Cell. Open Chemistry, 2018, 16, 912-917.	1.0	0
7846	Application of Operando X-ray Diffractometry in Various Aspects of the Investigations of Lithium/Sodium-Ion Batteries. Energies, 2018, 11, 2963.	1.6	19
7847	The anion effect in ternary electrolyte systems using poly(diallyldimethylammonium) and phosphonium-based ionic liquid with high lithium salt concentration. Solid State Ionics, 2018, 327, 83-92.	1.3	27

#	Article	IF	CITATIONS
7848	Electrothermal Conversion Phase Change Composites: The Case of Polyethylene Glycol Infiltrated Graphene Oxide/Carbon Nanotube Networks. Industrial & Engineering Chemistry Research, 2018, 57, 15697-15702.	1.8	40
7849	Self-Improving Na Ion Storage in Oxygen Deficient, Carbon Coated Self-Organized TiO ₂ Nanotubes. ACS Applied Energy Materials, 2018, 1, 6646-6653.	2.5	12
7850	Hydrothermal Synthesis of Fe ₃ O ₄ @C Spheres as Anode Material for Lithium-Ion Batteries. Solid State Phenomena, 2018, 281, 801-806.	0.3	2
7851	Biomass-Mediated Synthesis of Cu-Doped TiO ₂ Nanoparticles for Improved-Performance Lithium-Ion Batteries. ACS Omega, 2018, 3, 13676-13684.	1.6	25
7852	A Reversible Rocksalt to Amorphous Phase Transition Involving Anion Redox. Scientific Reports, 2018, 8, 15086.	1.6	21
7853	Binder–Free Nanotubular Heteroâ€Structured Anodes of α–Fe ₂ O ₃ (Hematite) and TiN for Li–Ion Battery. ChemistrySelect, 2018, 3, 11027-11034.	0.7	3
7854	A rational design of solid polymer electrolyte with high salt concentration for lithium battery. Journal of Power Sources, 2018, 407, 23-30.	4.0	50
7855	Ionic liquid based nanofluid electrolytes with higher lithium salt concentration for high-efficiency, safer, lithium metal batteries. Journal of Power Sources, 2018, 406, 176-184.	4.0	29
7856	Influence of Hydrothermally Synthesized Cubic-Structured BaTiO ₃ Ceramic Fillers on Ionic Conductivity, Mechanical Integrity, and Thermal Behavior of P(VDF–HFP)/PVAc-Based Composite Solid Polymer Electrolytes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 25741-25752.	1.5	51
7857	High Energy Density CNT/Nal Composite Cathodes for Sodiumâ€lon Batteries. Advanced Materials Interfaces, 2018, 5, 1801342.	1.9	9
7858	Facilitated Lithium Storage in Hierarchical Microsphere of Cu ₂ Sâ€MoS ₂ Ultrathin Nanosheets. ChemistrySelect, 2018, 3, 11020-11026.	0.7	7
7859	In situ constructed organic/inorganic hybrid interphase layers for high voltage Li-ion cells. Journal of Power Sources, 2018, 407, 132-136.	4.0	10
7860	Cracks Formation in Lithium-Rich Cathode Materials for Lithium-Ion Batteries during the Electrochemical Process. Energies, 2018, 11, 2712.	1.6	7
7862	<i>Bombyx mori</i> Silkworm Cocoon Separators for Lithiumâ€ion Batteries with Superior Safety and Sustainability. Advanced Sustainable Systems, 2018, 2, 1800098.	2.7	15
7863	Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. CheM, 2018, 4, 2786-2813.	5.8	517
7864	Reaction: Potential Impact of Cryo-EM Technique on Battery Industry. CheM, 2018, 4, 2254-2256.	5.8	4
7865	Synergistic stabilizing lithium sulfur battery via nanocoating polypyrrole on cobalt sulfide nanobox. Journal of Power Sources, 2018, 405, 51-60.	4.0	45
7866	A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano Energy, 2018, 54, 313-321.	8.2	126

#	Article	IF	Citations
7867	Insight into the Solvation Structure of Tetraglyme-Based Electrolytes via First-Principles Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 10014-10022.	1.2	12
7868	A Longâ€Cycleâ€Life Selfâ€Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries. Angewandte Chemie, 2018, 130, 16597-16601.	1.6	107
7869	Synthesis of a Structurally Controlled Polyacrylonitrile Gel for Energy-Storage Devices by an Organotellerium-Mediated Radical Copolymerization and Subsequent Cross-Linking Reaction. ACS Symposium Series, 2018, , 129-142.	0.5	1
7870	Unlocking Full Discharge Capacities of Poly(vinylphenothiazine) as Battery Cathode Material by Decreasing Polymer Mobility Through Cross‣inking. Advanced Energy Materials, 2018, 8, 1802151.	10.2	78
7871	Preparation of Encapsulated Sn-Cu@graphite Composite Anode Materials for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2018, 13, 7968-7988.	0.5	5
7872	A Simple Synthesis Route for High-Capacity SiO <i>_{<i>x</i>}</i> Anode Materials with Tunable Oxygen Content for Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 7418-7422.	3.2	46
7873	Aerosol-Assisted Synthesis of Spherical Sb/C Composites as Advanced Anodes for Lithium Ion and Sodium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6381-6387.	2.5	32
7874	Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38101-38108.	4.0	59
7875	Alginic acid-derived mesoporous carbonaceous materials (Starbon®) as negative electrodes for lithium ion batteries: Importance of porosity and electronic conductivity. Journal of Power Sources, 2018, 406, 18-25.	4.0	8
7876	In situ optical observations and simulations on defect induced failure of silicon island anodes. Journal of Power Sources, 2018, 405, 101-105.	4.0	20
7877	Electrocatalysis of Ruthenium Nanoparticles-Decorated Hollow Carbon Spheres for the Conversion of Li ₂ S ₂ /Li ₂ S in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38853-38861.	4.0	31
7878	The Origin of the Reduced Reductive Stability of Ion–Solvent Complexes on Alkali and Alkaline Earth Metal Anodes. Angewandte Chemie, 2018, 130, 16885-16889.	1.6	50
7879	The Origin of the Reduced Reductive Stability of Ion–Solvent Complexes on Alkali and Alkaline Earth Metal Anodes. Angewandte Chemie - International Edition, 2018, 57, 16643-16647.	7.2	124
7880	Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy, 2018, 54, 227-237.	8.2	96
7881	Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries. Journal of Power Sources, 2018, 406, 110-117.	4.0	90
7882	Atomicâ€5cale Observation of Electrochemically Reversible Phase Transformations in SnSe ₂ Single Crystals. Advanced Materials, 2018, 30, e1804925.	11.1	38
7883	Tracing the Impact of Hybrid Functional Additives on a High-Voltage (5 V-class) SiO _{<i>x</i>} -C/LiNi _{0.5} Mn _{1.5} O ₄ Li-Ion Battery System. Chemistry of Materials, 2018, 30, 8291-8302.	3.2	70
7884	Conversion Chemistry of Cobalt Oxalate for Sodium Storage. ACS Applied Materials & Interfaces, 2018, 10, 40523-40530.	4.0	10

#	Article	IF	CITATIONS
7885	Sprayâ€Dried Mesoporous Mixed Cuâ€Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Liâ€Ion Battery Anodes. Advanced Energy Materials, 2018, 8, 1802438.	10.2	70
7886	A Review of Advanced Energy Materials for Magnesium–Sulfur Batteries. Energy and Environmental Materials, 2018, 1, 100-112.	7.3	112
7887	Snâ€based Intermetallic Compounds for Liâ€ion Batteries: Structures, Lithiation Mechanism, and Electrochemical Performances. Energy and Environmental Materials, 2018, 1, 132-147.	7.3	68
7888	Transformed Akhtenskite MnO ₂ from Mn ₃ O ₄ as Cathode for a Rechargeable Aqueous Zinc Ion Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 16055-16063.	3.2	106
7889	Electrochemical performance of ZnO-coated Li ₄ Ti ₅ O ₁₂ composite electrodes for lithium-ion batteries with the voltage ranging from 3 to 0.01 V. Royal Society Open Science, 2018, 5, 180762.	1.1	11
7890	Cycling Stability of Li-ion Batteries at Elevated Temperature. International Journal of Electrochemical Science, 2018, , 8543-8550.	0.5	3
7891	Facile ball-milled synthesis of SnS2-carbon nanocomposites with superior lithium storage. Progress in Natural Science: Materials International, 2018, 28, 676-682.	1.8	11
7892	Precursor-template Strategy toward Hollow Nanostructured Li(Ni1/3Co1/3Mn1/3)O2 Microspheres Cathode with Enhanced Electrochemical Performance. International Journal of Electrochemical Science, 2018, , 6771-6778.	0.5	0
7893	Shell-Protective Secondary Silicon Nanostructures as Pressure-Resistant High-Volumetric-Capacity Anodes for Lithium-Ion Batteries. Nano Letters, 2018, 18, 7060-7065.	4.5	121
7894	Ir/g-C ₃ N ₄ /Nitrogen-Doped Graphene Nanocomposites as Bifunctional Electrocatalysts for Overall Water Splitting in Acidic Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 39161-39167.	4.0	80
7895	Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 38915-38921.	4.0	69
7896	Highâ€Rate and Ultralong Cycleâ€Life Potassium Ion Batteries Enabled by In Situ Engineering of Yolk–Shell FeS ₂ @C Structure on Graphene Matrix. Advanced Energy Materials, 2018, 8, 1802565.	10.2	207
7897	Nanoscale electrical resistance imaging of solid electrolyte interphases in lithium-ion battery anodes. Journal of Power Sources, 2018, 407, 1-5.	4.0	15
7898	Pseudocapacitance Induced Uniform Plating/Stripping of Li Metal Anode in Vertical Graphene Nanowalls. Advanced Functional Materials, 2018, 28, 1805638.	7.8	65
7899	Stable cycling of NaFePO4 cathodes in high salt concentration ionic liquid electrolytes. Journal of Power Sources, 2018, 406, 70-80.	4.0	28
7900	Temperature-Sensitive Structure Evolution of Lithium–Manganese-Rich Layered Oxides for Lithium-Ion Batteries. Journal of the American Chemical Society, 2018, 140, 15279-15289.	6.6	163
7901	MOF-derived carbon-encapsulated cobalt sulfides orostachys-like micro/nano-structures as advanced anode material for lithium ion batteries. Electrochimica Acta, 2018, 290, 193-202.	2.6	46
7902	Highly Stretchable Conductive Glue for Highâ€Performance Silicon Anodes in Advanced Lithiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1704858.	7.8	113

~			_	
$C1^{-}$	ΓΔΤΙ	ON	Repor	Т
	AL		INLPOR	

#	Article	IF	CITATIONS
7903	Origin of Degradation in Siâ€Based Allâ€Solidâ€State Liâ€Ion Microbatteries. Advanced Energy Materials, 2018, 8, 1801430.	10.2	29
7904	A Bottom-Up Formation Mechanism of Solid Electrolyte Interphase Revealed by Isotope-Assisted Time-of-Flight Secondary Ion Mass Spectrometry. Journal of Physical Chemistry Letters, 2018, 9, 5508-5514.	2.1	29
7905	Achieving a High-Performance Carbon Anode through the P–O Bond for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 34245-34253.	4.0	57
7906	<i>In situ</i> growth of copper rhodizonate complexes on reduced graphene oxide for high-performance organic lithium-ion batteries. Chemical Communications, 2018, 54, 11415-11418.	2.2	14
7907	Recent Progress of Hybrid Solid‣tate Electrolytes for Lithium Batteries. Chemistry - A European Journal, 2018, 24, 18293-18306.	1.7	127
7908	Nanoscale Resolution of Electric-field Induced Motion in Ionic Diblock Copolymer Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 32678-32687.	4.0	9
7909	Theoretical design of double anti-perovskite Na ₆ SOI ₂ as a super-fast ion conductor for solid Na ⁺ ion batteries. Journal of Materials Chemistry A, 2018, 6, 19843-19852.	5.2	36
7910	Reaction Mechanism of FePS ₃ Electrodes in All-Solid-State Lithium Secondary Batteries Using Sulfide-Based Solid Electrolytes. Journal of the Electrochemical Society, 2018, 165, A2948-A2954.	1.3	10
7911	On the Fundamental and Practical Aspects of Modeling Complex Electrochemical Kinetics and Transport. Journal of the Electrochemical Society, 2018, 165, E637-E658.	1.3	20
7912	Online Internal Resistance Measurement Application in Lithium Ion Battery Capacity and State of Charge Estimation. Energies, 2018, 11, 1073.	1.6	59
7913	Rational Design of Core–Shell-Structured Particles by a One-Step and Template-Free Process for High-Performance Lithium/Sodium-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 22232-22240.	1.5	10
7914	Formation, Structural Variety, and Impact of Antiphase Boundaries on Li Diffusion in LiCoO ₂ Thin-Film Cathodes. Journal of Physical Chemistry Letters, 2018, 9, 5515-5520.	2.1	17
7915	Morphology Processing by Encapsulating GeP ₅ Nanoparticles into Nanofibers toward Enhanced Thermo/Electrochemical Stability. ACS Applied Materials & Interfaces, 2018, 10, 32162-32170.	4.0	19
7916	Insights on the Proton Insertion Mechanism in the Electrode of Hexagonal Tungsten Oxide Hydrate. Journal of the American Chemical Society, 2018, 140, 11556-11559.	6.6	128
7917	Electrochemical and mechanical stability of Li _{<i>x</i>} La _{0.557} TiO _{3â€<i>δ</i>} perovskite electrolyte at various voltages. Journal of the American Ceramic Society, 2019, 102, 1953-1960.	1.9	24
7918	Role of structural hydroxyl groups in enhancing performance of electrochemically-synthesized bilayer V2O5. Nano Energy, 2018, 53, 449-457.	8.2	21
7919	Reversible Interacting-Particle Reaction Dynamics. Journal of Physical Chemistry B, 2018, 122, 11240-11250.	1.2	27
7920	Aegis of Lithium-Rich Cathode Materials via Heterostructured LiAlF ₄ Coating for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 33260-33268.	4.0	74

		CITATION RE	PORT	
#	Article		IF	Citations
7921	Redox Targeting-Based Aqueous Redox Flow Lithium Battery. ACS Energy Letters, 201	8, 3, 2314-2320.	8.8	64
7922	Chemical bath deposition of NiCo2S4 nanostructures supported on a conductive subs efficient quantum-dot-sensitized solar cells and methanol oxidation. New Journal of Ch 42, 18824-18836.		1.4	8
7923	Sandwich architecture of Sn SnSb alloy nanoparticles and N-doped reduced graphene a high rate capability anode for lithium-ion batteries. Journal of Power Sources, 2018, 4	oxide sheets as 401, 165-174.	4.0	26
7924	Correlation of Low-Index Facets to Active Sites in Micrometer-Sized Polyhedral Pyroch Electrocatalyst. ACS Catalysis, 2018, 8, 9647-9655.	ore	5.5	11
7925	Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2480-25	01.	8.8	1,553
7926	Storing electricity as chemical energy: beyond traditional electrochemistry and double compression. Energy and Environmental Science, 2018, 11, 3069-3074.	-layer	15.6	33
7927	Mechanism for Al2O3 Atomic Layer Deposition on LiMn2O4 from In Situ Measuremen Calculations. CheM, 2018, 4, 2418-2435.	ts and Ab Initio	5.8	47
7928	Chemically impregnated NiO catalyst for molten electrolyte based gas-tank-free Li O2 of Power Sources, 2018, 402, 68-74.	battery. Journal	4.0	11
7929	Adiponitrile as Lithium-Ion Battery Electrolyte Additive: A Positive and Peculiar Effect o Systems. ACS Applied Energy Materials, 0, , .	n High-Voltage	2.5	9
7930	Pressure-induced structural phase transition in Li4Ge. CrystEngComm, 2018, 20, 5949	-5954.	1.3	2
7931	Fabrication and electrochemical performance of delafossite CuFeO2 particles as a stat material for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 19454-19460.		1.1	5
7932	Thiophene-initiated polymeric artificial cathode-electrolyte interface for Ni-rich cathode Electrochimica Acta, 2018, 290, 465-473.	e material.	2.6	30
7933	N-Rich carbon-coated Co ₃ S ₄ ultrafine nanocrystals derived advanced anode for sodium-ion batteries. Nanoscale, 2018, 10, 18786-18794.	from ZIF-67 as an	2.8	101
7934	Ultrafast solid-state lithium ion conductor through alloying induced lattice softening c Li ₆ PS ₅ Cl. Journal of Materials Chemistry A, 2018, 6, 19231-	f 19240.	5.2	46
7935	Regenerating of LiNi0.5Co0.2Mn0.3O2 cathode materials from spent lithium-ion batte Materials Science: Materials in Electronics, 2018, 29, 17661-17669.	ries. Journal of	1.1	34
7936	Outstanding electrochemical performance of high-voltage LiNi1/3Co1/3Mn1/3O2 cath application of LiPO2F2 electrolyte additive. Electrochimica Acta, 2018, 290, 568-576.	ode achieved by	2.6	78
7937	Effect of diethylenetriamine as additive to stabilize the lithium metal anode. Electrochi 292, 742-748.	mica Acta, 2018,	2.6	7
7938	Electrochemical reactions of AgFeO2 as negative electrode in Li- and Na-ion batteries. Power Sources, 2018, 401, 386-396.	Journal of	4.0	24

#	Article	IF	CITATIONS
7939	Strain-Enhanced Li Storage and Diffusion on the Graphyne as the Anode Material in the Li-Ion Battery. Journal of Physical Chemistry C, 2018, 122, 22838-22848.	1.5	58
7940	Sn–Co Nanoalloys Encapsulated in N-Doped Carbon Hollow Cubes as a High-Performance Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 35216-35223.	4.0	60
7941	Chemical interactions between red P and functional groups in NiP3/CNT composite anodes for enhanced sodium storage. Journal of Materials Chemistry A, 2018, 6, 20184-20194.	5.2	44
7942	MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 18891-18897.	5.2	80
7943	Waterborne polyurethane as a carbon coating for micrometre-sized silicon-based lithium-ion battery anode material. Royal Society Open Science, 2018, 5, 180311.	1.1	3
7944	Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews, 2018, 118, 9233-9280.	23.0	2,379
7945	Potassium terephthalate/graphene nanocomposite as advanced anode for low-cost Na-ion batteries. Journal of Electroanalytical Chemistry, 2018, 827, 145-150.	1.9	13
7946	3D Copper Foam@FeO _{<i>x</i>} Nanoarrays as a High Areal Capacity and Stable Electrode for Lithium-Ion Batteries. ACS Applied Energy Materials, 0, , .	2.5	6
7947	Bifunctional electrolyte additive KI to improve the cycling performance of Li–O ₂ batteries. New Journal of Chemistry, 2018, 42, 17311-17316.	1.4	2
7948	Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 495-503.	2.3	33
7949	Porous Anatase-TiO ₂ (B) Dual-Phase Nanorods Prepared from <i>in Situ</i> Pyrolysis of a Single Molecule Precursor Offer High Performance Lithium-Ion Storage. Inorganic Chemistry, 2018, 57, 12245-12254.	1.9	17
7950	Perovskite Sr _{0.9} Y _{0.1} CoO _{3â^î^} Nanorods Modified with CoO Nanoparticles as a Bifunctional Catalyst for Rechargeable Li–O ₂ Batteries. ACS Applied Energy Materials, 0, , .	2.5	6
7951	Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nature Communications, 2018, 9, 3729.	5.8	331
7952	Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries. Nature Communications, 2018, 9, 3715.	5.8	77
7953	Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 19885-19911.	5.2	200
7954	Polydopamine-inspired nanomaterials for energy conversion and storage. Journal of Materials Chemistry A, 2018, 6, 21827-21846.	5.2	103
7955	Li-Ion Battery Fire Hazards and Safety Strategies. Energies, 2018, 11, 2191.	1.6	207
7956	Solid Halide Electrolytes with High Lithiumâ€ion Conductivity for Application in 4 V Class Bulkâ€Type Allâ€Solidâ€State Batteries. Advanced Materials, 2018, 30, e1803075.	11.1	566

	CITATION RE	CITATION REPORT		
Article		IF	Citations	
Robust Micron-Sized Silicon Secondary Particles Anchored by Polyimide as High-Capaci High-Stability Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2018, 10, 2		4.0	23	
Electrochemical Mechanism and Effect of Carbon Nanotubes on the Electrochemical Pe Fe _{1.19} (PO ₄)(OH) _{0.57} (H ₂ O) <sub Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 34202-</sub 	>0.43 Cathode	4.0	13	
Fibrous Bio-Carbon Foams: A New Material for Lithium-Ion Hybrid Supercapacitors with Integrated Energy/Power Density and Ultralong Cycle Life. ACS Sustainable Chemistry a 2018, 6, 14989-15000.		3.2	35	
Surface Modification of Li _{1.2} Mn _{0.56} Ni _{0.16} Co _{0.08} O _{ Material by Supercritical CO₂ for Lithium-Ion Batteries. Journal of the Elect Society. 2018. 165. A2880-A2888.}		1.3	14	
Towards a high-rate and long-life LiVPO4F/C cathode material for lithium ion batteries b and zirconium co-doping. Journal of Power Sources, 2018, 401, 142-148.	oy potassium	4.0	25	
Enhanced Electrochemical Kinetics and Polysulfide Traps of Indium Nitride for Highly St Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 9578-9586.	cable	7.3	217	
Improved Cycling Stability of Na-Doped Cathode Materials Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ via a Facile Sy Sustainable Chemistry and Engineering, 2018, 6, 13045-13055.	Inthesis. ACS	3.2	56	
An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone fo batteries. Journal of Materials Chemistry A, 2018, 6, 19182-19189.	or organic Li-ion	5.2	57	
Bioinspired Architectures and Heteroatom Doping To Construct Metalâ€Oxideâ€Based Highâ€Performance Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2018, 24,		1.7	20	
In situ synthesis of mesoporous Co3O4 nanorods anchored on reduced graphene oxide supercapacitor electrodes. Chemical Physics Letters, 2018, 710, 188-192.	e nanosheets as	1.2	22	
Analysis of Manufacturing-Induced Defects and Structural Deformations in Lithium-Ion Using Computed Tomography. Energies, 2018, 11, 925.	Batteries	1.6	68	
Surface and Subsurface Reactions of Lithium Transition Metal Oxide Cathode Materials of the Fundamental Origins and Remedying Approaches. Advanced Energy Materials, 20		10.2	207	
Improved Performance of Rechargeable Liâ€O ₂ Batteries with Plateâ€like Efficient Cathode Catalyst. ChemElectroChem, 2018, 5, 3373-3378.	SnS ₂ as	1.7	10	
Viable Synthesis of Porous MnCo ₂ O ₄ /Graphene Composite b Grafting: A Highâ€Rateâ€Capable Oxygen Cathode for Li–O ₂ Batteries. Journal, 2018, 24, 17303-17310.	by Sonochemical Chemistry - A European	1.7	16	
Hierarchical T-Nb ₂ O ₅ nanostructure with hybrid mechanisms intercalation and pseudocapacitance for potassium storage and high-performance pota batteries. Journal of Materials Chemistry A, 2018, 6, 17889-17895.	s of assium dual-ion	5.2	112	

7972	Polymer lithium-garnet interphase for an all-solid-state rechargeable battery. Nano Energy, 2018, 53, 926-931.	8.2	103
7973	PVdF-HFP and Ionic-Liquid-Based, Freestanding Thin Separator for Lithium-Ion Batteries. ACS Applied Energy Materials, 0, , .	2.5	19
7974	2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chemical Society Reviews, 2018, 47, 6964-6989.	18.7	100

#

7957

7959

7961

7963

7965

7966

7967

7969

7971

#	Article	IF	CITATIONS
7975	<i>In situ</i> synthesis and <i>in operando</i> NMR studies of a high-performance Ni ₅ P ₄ -nanosheet anode. Journal of Materials Chemistry A, 2018, 6, 22240-22247.	5.2	18
7976	Hydrothermal Synthesis of Mn-doped VO2 (B) as Cathode Material for Lithium-ion Battery. IOP Conference Series: Materials Science and Engineering, 2018, 382, 022059.	0.3	5
7977	Na ⁺ Intercalated Manganese Dioxide/MOF-Derived Nanoporous Carbon Hybrid Electrodes for Supercapacitors with High Rate Performance and Cyclic Stability. Journal of the Electrochemical Society, 2018, 165, A2815-A2823.	1.3	7
7978	Solution combustion synthesis of LaxSm1â^'xMn2O5 nanoparticles and their electrocatalytic performances for Al-air batteries. Materials Research Bulletin, 2018, 108, 16-22.	2.7	1
7979	Mechanism of Charge/Discharge of Poly(vinylphenothiazine)-Based Li–Organic Batteries. Chemistry of Materials, 2018, 30, 6307-6317.	3.2	57
7980	Compound-Hierarchical-Sphere LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ : Synthesis, Structure, and Electrochemical Characterization. ACS Applied Materials & Interfaces, 2018, 10, 32120-32127.	4.0	27
7981	Crystal structural design of exposed planes: express channels, high-rate capability cathodes for lithium-ion batteries. Nanoscale, 2018, 10, 17435-17455.	2.8	82
7982	All-carbon lithium capacitor based on salt crystal-templated, N-doped porous carbon electrodes with superior energy storage. Journal of Materials Chemistry A, 2018, 6, 18276-18285.	5.2	72
7983	Rigid–Flexible Coupling Polymer Electrolytes toward Highâ€Energy Lithium Batteries. Macromolecular Materials and Engineering, 2018, 303, 1800337.	1.7	43
7984	A sustainable approach for scalable production of α-Fe2O3 nanocrystals with 3D interconnected porous architectures on flexible carbon textiles as integrated electrodes for lithium-ion batteries. Journal of Power Sources, 2018, 401, 65-72.	4.0	22
7985	Understanding the effects of surface modification on improving the high-voltage performance of Ni-rich cathode materials. Materials Today Energy, 2018, 10, 40-47.	2.5	17
7986	Effect of Salt Concentration on Ion Clustering and Transport in Polymer Solid Electrolytes: A Molecular Dynamics Study of PEO–LiTFSI. Chemistry of Materials, 2018, 30, 6298-6306.	3.2	190
7987	New Class of 3.7 V Fe-Based Positive Electrode Materials for Na-Ion Battery Based on Cation-Disordered Polyanion Framework. Chemistry of Materials, 2018, 30, 6346-6352.	3.2	23
7988	Effect of Synthesis on Performance of MXene/Iron Oxide Anode Material for Lithium-Ion Batteries. Langmuir, 2018, 34, 11325-11334.	1.6	58
7989	Free-Standing 3D-Sponged Nanofiber Electrodes for Ultrahigh-Rate Energy-Storage Devices. ACS Applied Materials & Interfaces, 2018, 10, 34140-34146.	4.0	18
7990	MXene/Graphene Heterostructures as High-Performance Electrodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 32867-32873.	4.0	149
7991	The Roles of Sulfur-Containing Additives and Their Working Mechanism on the Temperature-Dependent Performances of Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A2792-A2800.	1.3	31
7992	Multiscale Parameter Identification Algorithm with Dynamic-Tracking for Distributed Electric Model of Lithium-Ion Battery. , 2018, , .		0

#	Article	IF	CITATIONS
7993	Thermal stability of solid electrolyte interphase of lithium-ion batteries. Applied Surface Science, 2018, 454, 61-67.	3.1	26
7994	Towards high-voltage Li-ion batteries: Reversible cycling of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes. Electrochimica Acta, 2018, 281, 299-311.	2.6	33
7995	Highly conductive carbon nanotube micro-spherical network for high-rate silicon anode. Journal of Power Sources, 2018, 394, 94-101.	4.0	60
7996	Carbon coated SnO 2 particles stabilized in the elastic network of carbon nanofibers and its improved electrochemical properties. Materials Chemistry and Physics, 2018, 215, 285-292.	2.0	9
7997	Defects, Dopants and Lithium Mobility in Li 9 V 3 (P 2 O 7) 3 (PO 4) 2. Scientific Reports, 2018, 8, 8140.	1.6	23
7998	Parametric Analysis of Electrode Materials on Thermal Performance of Lithium-Ion Battery: A Material Selection Approach. Journal of the Electrochemical Society, 2018, 165, A1587-A1594.	1.3	7
7999	Multiscale model reduction for pore-scale simulation of Li-ion batteries using GMsFEM. Journal of Computational and Applied Mathematics, 2018, 344, 73-88.	1.1	10
8000	Synthesis of homogeneously dispersed manganese oxide/ carbon 3D nanocomposites and their electrochemical performance in lithium-ion batteries. Ceramics International, 2018, 44, 14817-14823.	2.3	3
8001	A novel H2O2-assisted method to fabricate Li4Ti5O12/TiO2 materials for high-performance energy storage. Electrochimica Acta, 2018, 281, 142-151.	2.6	10
8002	Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochimica Acta, 2018, 281, 78-87.	2.6	87
8003	Rate-dependent electrochemical reaction mechanism of spinel metal oxide anode studied by in situ TEM. Journal of Alloys and Compounds, 2018, 763, 349-354.	2.8	7
8004	Six-arm star polymer based on discotic liquid crystal as high performance all-solid-state polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 2018, 395, 137-147.	4.0	50
8005	Unusual Activation of Cation Disordering by Li/Fe Rearrangement in Triplite LiFeSO ₄ F. Advanced Energy Materials, 2018, 8, 1800298.	10.2	6
8006	Preparation of a fusiform shape MnO/C composite as anode materials for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 11982-11990.	1.1	14
8007	Electrophoretic deposition of carbon nanofibers/silicon film with honeycomb structure as integrated anode electrode for lithium-ion batteries. Electrochimica Acta, 2018, 281, 312-322.	2.6	34
8008	Binder free Cu(OH)2/CuO electrodes fabricated directly on copper foils by facile large-scale production method. Journal of Alloys and Compounds, 2018, 762, 565-573.	2.8	15
8009	Constructing Unique Cathode Interface by Manipulating Functional Groups of Electrolyte Additive for Graphite/LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cells at High Voltage. Journal of Physical Chemistry Letters, 2018, 9, 3434-3445.	2.1	77
8010	Nanoengineered Ultralight Organic Cathode Based on Aromatic Carbonyl Compound/Graphene Aerogel for Green Lithium and Sodium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 8392-8399.	3.2	63

#	Article	IF	CITATIONS
8011	A study on the interfacial stability of the cathode/polycarbonate interface: implication of overcharge and transition metal redox. Journal of Materials Chemistry A, 2018, 6, 11846-11852.	5.2	42
8012	Formation of different shell structures in lithium-rich layered oxides and their influence on electrochemical properties. RSC Advances, 2018, 8, 18589-18596.	1.7	3
8013	Na ₃ V ₂ (PO ₄) ₃ /C Composite Prepared by Sol-Gel Method as Cathode for Sodium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1460-A1465.	1.3	27
8014	A hybridized solid-gel nonflammable Li-Battery. Journal of Power Sources, 2018, 394, 26-34.	4.0	15
8015	Local structures of titanium-ion complexes in redox flow battery electrolytes as revealed by X-ray scattering with difference analysis. Journal of Molecular Liquids, 2018, 261, 468-472.	2.3	5
8016	Synthesis of dandelion-like V2O3/C composite with bicontinuous 3D hierarchical structures as an anode for high performance lithium ion batteries. Ceramics International, 2018, 44, 14128-14135.	2.3	29
8017	Electrochemical stability of ether based salt-in-polymer based electrolytes: Computational investigation of the effect of substitution and the type of salt. Journal of Power Sources, 2018, 393, 204-210.	4.0	27
8018	Insights into the Li+ storage mechanism of TiC@C-TiO2 core-shell nanostructures as high performance anodes. Nano Energy, 2018, 50, 25-34.	8.2	53
8019	Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst. ACS Energy Letters, 2018, 3, 1373-1380.	8.8	206
8020	Recent Advancements in Polymer-Based Composite Electrolytes for Rechargeable Lithium Batteries. Electrochemical Energy Reviews, 2018, 1, 113-138.	13.1	290
8021	N-doped carbon coated LiTi2(PO4)3 as superior anode using PANi as carbon and nitrogen bi-sources for aqueous lithium ion battery. Electrochimica Acta, 2018, 279, 279-288.	2.6	72
8022	CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Materials, 2018, 14, 335-344.	9.5	164
8023	A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy, 2018, 50, 589-597.	8.2	191
8024	Advanced microheater for in situ transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability. Ultramicroscopy, 2018, 192, 14-20.	0.8	46
8025	Diglyme Based Electrolytes for Sodium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 2671-2680.	2.5	115
8026	Doped boron nitride surfaces: potential metal free bifunctional catalysts for non-aqueous Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2018, 20, 16485-16492.	1.3	10
8027	A fast-speed heater with internal and external heating for lithium-ion batteries at low temperatures. , 2018, , .		2
8028	Conformal Multifunctional Titania Shell on Iron Oxide Nanorod Conversion Electrode Enables High Stability Exceeding 30 000 Cycles in Aqueous Electrolyte. Advanced Functional Materials, 2018, 28, 1800497.	7.8	60

#	Article	IF	CITATIONS
8029	Conductive Hydrogels as Smart Materials for Flexible Electronic Devices. Chemistry - A European Journal, 2018, 24, 16930-16943.	1.7	215
8030	Iodine/β-cyclodextrin composite cathode for rechargeable lithium-iodine batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 11540-11545.	1.1	25
8031	Highly conducting fibrous carbon-coated silicon alloy anode for lithium ion batteries. Applied Surface Science, 2018, 454, 277-283.	3.1	18
8032	Role of asymmetry in the physiochemical and electrochemical behaviors of perfluorinated sulfonimide anions for lithium batteries: A DFT study. Electrochimica Acta, 2018, 280, 290-299.	2.6	26
8033	The Role of Geometric Sites in 2D Materials for Energy Storage. Joule, 2018, 2, 1075-1094.	11.7	108
8034	Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode. Nano Letters, 2018, 18, 3926-3933.	4.5	175
8035	Holey graphene-wrapped porous TiNb24O62 microparticles as high-performance intercalation pseudocapacitive anode materials for lithium-ion capacitors. NPG Asia Materials, 2018, 10, 406-416.	3.8	55
8036	Advanced composites of complex Ti-based oxides as anode materials for lithium-ion batteries. Advanced Composites and Hybrid Materials, 2018, 1, 440-459.	9.9	55
8037	Performance boost for primary magnesium cells using iron complexing agents as electrolyte additives. Scientific Reports, 2018, 8, 7578.	1.6	45
8038	MOF-driven ultra-small hollow Co ₉ S ₈ nanoparticles embedded in porous carbon for lithium-ion batteries. Journal of Materials Research, 2018, 33, 1496-1505.	1.2	19
8039	Controllable Design of MoS ₂ Nanosheets Anchored on Nitrogenâ€Doped Graphene: Toward Fast Sodium Storage by Tunable Pseudocapacitance. Advanced Materials, 2018, 30, e1800658.	11.1	275
8040	Superion Conductor Na _{11.1} Sn _{2.1} P _{0.9} Se ₁₂ : Lowering the Activation Barrier of Na ⁺ Conduction in Quaternary 1–4–5–6 Electrolytes. Chemistry of Materials, 2018, 30, 4134-4139.	3.2	73
8041	Improvement of Lithium-Ion Battery Performance at Low Temperature by Adopting Ionic Liquid-Decorated PMMA Nanoparticles as Electrolyte Component. ACS Applied Energy Materials, 2018, 1, 2664-2670.	2.5	44
8042	Highly Conductive and Robust Three-Dimensional Host with Excellent Alkali Metal Infiltration Boosts Ultrastable Lithium and Sodium Metal Anodes. ACS Applied Materials & Interfaces, 2018, 10, 21254-21261.	4.0	55
8043	Layered Potassium Vanadate K _{0.5} V ₂ O ₅ as a Cathode Material for Nonaqueous Potassium Ion Batteries. Advanced Functional Materials, 2018, 28, 1800670.	7.8	174
8044	Ultrathin Amorphous Iron–Nickel Boride Nanosheets for Highly Efficient Electrocatalytic Oxygen Production. Chemistry - A European Journal, 2018, 24, 18502-18511.	1.7	82
8045	Optimization of rechargeable zinc-air battery with Co3O4/MnO2/CNT bifunctional catalyst: effects of catalyst loading, binder content, and spraying area. Ionics, 2018, 24, 3877-3884.	1.2	13
8046	Electrolyte with Low Polysulfide Solubility for Li–S Batteries. ACS Applied Energy Materials, 2018, 1, 2608-2618.	2.5	41

#	Article	IF	CITATIONS
8047	Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. Journal of Materials Chemistry A, 2018, 6, 11147-11153.	5.2	77
8048	A Silicon Anode Material with Layered Structure for the Lithium-ion Battery. Journal of Physics: Conference Series, 2018, 986, 012024.	0.3	5
8049	Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery. Nano Energy, 2018, 50, 359-366.	8.2	89
8050	Facile fabrication of 3D porous MnO@GS/CNT architecture as advanced anode materials for high-performance lithium-ion battery. Nanotechnology, 2018, 29, 315403.	1.3	11
8052	Surface Functionalization of Carbon Architecture with Nanoâ€MnO ₂ for Effective Polysulfide Confinement in Lithium–Sulfur Batteries. ChemSusChem, 2018, 11, 2375-2381.	3.6	39
8053	Energy savings due to building integration of innovative solid-state electrochromic devices. Applied Energy, 2018, 225, 975-985.	5.1	59
8054	All-Solid-State Li-Ion Battery Using Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ As Electrolyte Without Polymer Interfacial Adhesion. Journal of Physical Chemistry C, 2018, 122, 14383-14389.	1.5	50
8055	Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. Journal of Materials Chemistry A, 2018, 6, 12098-12105.	5.2	76
8056	lon selective separators based on graphene oxide for stabilizing lithium organic batteries. Inorganic Chemistry Frontiers, 2018, 5, 1869-1875.	3.0	11
8057	Dendriteâ€Free Sodiumâ€Metal Anodes for Highâ€Energy Sodiumâ€Metal Batteries. Advanced Materials, 2018, 30, e1801334.	11.1	267
8058	Layer-by-layered SnS2/graphene hybrid nanosheets via ball-milling as promising anode materials for lithium ion batteries. Electrochimica Acta, 2018, 269, 452-461.	2.6	91
8059	Sea-Sponge-like Structure of Nano-Fe ₃ O ₄ on Skeleton-C with Long Cycle Life under High Rate for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19656-19663.	4.0	56
8060	Superior lithium/potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke. Journal of Materials Chemistry A, 2018, 6, 12551-12558.	5.2	79
8061	Morphological control of three-dimensional carbon nanotube anode for high-capacity lithium-ion battery. Japanese Journal of Applied Physics, 2018, 57, 05GC05.	0.8	1
8062	A study of the most condensed configuration of oxocarbon molecule adsorption on graphene surface: A first-principle investigation. Applied Surface Science, 2018, 455, 216-220.	3.1	3
8063	Two-dimensional β-cobalt hydroxide phase transition exfoliated to atom layers as efficient catalyst for lithium-oxygen batteries. Electrochimica Acta, 2018, 281, 420-428.	2.6	14
8064	A facile approach to preparation of silica double-shell hollow particles, and their application in gel composite electrolytes. Journal of Colloid and Interface Science, 2018, 529, 130-138.	5.0	6
8065	Reaction-Ball-Milling-Driven Surface Coating Strategy to Suppress Pulverization of Microparticle Si Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20591-20598.	4.0	34

#	Article	IF	Citations
8066	Efficient gel route to embed phosphorus into MOF-derived porous FePx as anodes for high performance lithium-ion batteries. Energy Storage Materials, 2018, 14, 367-375.	9.5	43
8067	Composition dependence of the short range order structures in 0.2Na2O + 0.8[xBO3/2 + (1-x)GeO2] n glass formers. Journal of Non-Crystalline Solids, 2018, 500, 61-69.	nixed 1.5	9
8068	Na ₃ V(PO ₄) ₂ : A New Layered-Type Cathode Material with High Water Stability and Power Capability for Na-Ion Batteries. Chemistry of Materials, 2018, 30, 3683-3689.	3.2	41
8069	Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. ACS Nano, 2018, 12, 5266-5273.	7.3	51
8070	Chemical Immobilization and Conversion of Active Polysulfides Directly by Copper Current Collector: A New Approach to Enabling Stable Roomâ€Temperature Liâ€S and Naâ€S Batteries. Advanced Energy Materials, 2018, 8, 1800624.	10.2	64
8071	Oneâ€Step Fabrication of Carbon Nanotubesâ€Decorated Sn ₄ P ₃ as a 3D Porous Intertwined Scaffold for Lithiumâ€ion Batteries. ChemElectroChem, 2018, 5, 2150-2156.	1.7	24
8072	Facile synthesis of hollow MnO microcubes as superior anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2018, 756, 93-102.	2.8	19
8073	Three-dimensional NaTi2(PO4)3@C microsphere as a high-performance anode material for advanced sodium-ion batteries. Solid State Ionics, 2018, 322, 79-84.	1.3	14
8074	Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications, 2018, 54, 6648-6661.	2.2	184
8075	First-principles study of dual-doped graphene: towards promising anode materials for Li/Na-ion batteries. New Journal of Chemistry, 2018, 42, 10842-10851.	1.4	44
8076	A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance. Nanoscale, 2018, 10, 10351-10356.	2.8	15
8077	Energy and Carbon Intensities of Stored Solar Photovoltaic Energy. , 2018, , 351-360.		2
8078	Metal-organic complex derived hierarchical porous carbon as host matrix for rechargeable Na-Se batteries. Electrochimica Acta, 2018, 276, 21-27.	2.6	28
8079	Synergistic double-shell coating of graphene and Li4SiO4 on silicon for high performance lithium-ion battery application. Diamond and Related Materials, 2018, 88, 60-66.	1.8	11
8080	High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries. Journal of Power Sources, 2018, 397, 87-94.	4.0	117
8081	Mg ₂ Nb ₃₄ O ₈₇ Porous Microspheres for Use in High-Energy, Safe, Fast-Charging, and Stable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 23711-23720.	4.0	58
8082	Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 14797-14804.	5.2	103
8083	High Volumetric Quasiâ€Solidâ€State Sodiumâ€Ion Capacitor under High Mass Loading Conditions. Advanced Materials Interfaces, 2018, 5, 1800472.	1.9	35

#	Article	IF	CITATIONS
8084	High Ionic Conductor Member of Garnetâ€Type Oxide Li _{6.5} La ₃ Zr _{1.5} Ta _{0.5} O ₁₂ . ChemElectroChem, 2018, 5, 2551-2557.	1.7	26
8085	Rechargeable Magnesium Batteries using Conversionâ€Type Cathodes: A Perspective and Minireview. Small Methods, 2018, 2, 1800020.	4.6	135
8086	Embedding MnO ₂ Ultrafine Nanoparticles within Grapheneâ€Based Hybrid Elastomer as an Anode for Enhanced Lithium Storage. ChemElectroChem, 2018, 5, 2310-2315.	1.7	8
8087	The way to improve the energy density of supercapacitors: Progress and perspective. Science China Materials, 2018, 61, 1517-1526.	3.5	102
8088	Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. Journal of Power Sources, 2018, 396, 675-682.	4.0	77
8089	An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nature Energy, 2018, 3, 732-738.	19.8	170
8090	Kinked silicon nanowires-enabled interweaving electrode configuration for lithium-ion batteries. Scientific Reports, 2018, 8, 9794.	1.6	20
8091	Prussian Blue Based Batteries. SpringerBriefs in Applied Sciences and Technology, 2018, , .	0.2	23
8092	Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Materials, 2018, 15, 361-367.	9.5	73
8093	A Superionic Conductive, Electrochemically Stable Dual-Salt Polymer Electrolyte. Joule, 2018, 2, 1838-1856.	11.7	140
8094	A coupled chemo-mechanical model to study the effects of adhesive strength on the electrochemical performance of silicon electrodes for advanced lithium ion batteries. Journal of Power Sources, 2018, 407, 153-161.	4.0	14
8095	Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: Reversible or not reversible?. Nano Energy, 2018, 51, 391-399.	8.2	55
8096	Nanoscale Electrical Degradation of Silicon–Carbon Composite Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 24549-24553.	4.0	47
8097	Boosting the Deep Discharging/Charging Lithium Storage Performances of Li ₃ VO ₄ through Double-Carbon Decoration. ACS Applied Materials & Interfaces, 2018, 10, 23938-23944.	4.0	45
8098	A robust 3D host for sodium metal anodes with excellent machinability and cycling stability. Chemical Communications, 2018, 54, 9406-9409.	2.2	47
8099	High Power Sodium-Ion Batteries and Hybrid Electrochemical Capacitors Using Mo or Nb-Doped Nano-Titania Anodes. Journal of the Electrochemical Society, 2018, 165, A1662-A1670.	1.3	23
8100	Review—Advent of TiO ₂ Nanotubes as Supercapacitor Electrode. Journal of the Electrochemical Society, 2018, 165, E345-E358.	1.3	65
8101	Electrochemical Mechanism and Structure Simulation of 2D Lithiumâ€Ion Battery. Advanced Theory and Simulations, 2018, 1, 1800023.	1.3	20

#	Article	IF	CITATIONS
8102	A facile synthesis of heteroatom-doped carbon framework anchored with TiO2 nanoparticles for high performance lithium ion battery anodes. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	9
8103	Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule, 2018, 2, 1857-1865.	11.7	132
8104	Porous CaFe ₂ O ₄ as a promising lithium ion battery anode: a trade-off between high capacity and long-term stability. Nanoscale, 2018, 10, 12963-12969.	2.8	33
8105	Novel spherical cobalt/nickel mixed-vanadates as high-capacity anodes in lithium ion batteries. Journal of Alloys and Compounds, 2018, 766, 442-449.	2.8	33
8106	A facile synthesis of sandwich-structured SnS2@reduced graphene oxide with high performance for lithium-ion battery anode. Journal of Alloys and Compounds, 2018, 765, 1061-1071.	2.8	48
8107	Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chemical Society Reviews, 2018, 47, 6505-6602.	18.7	407
8108	Progress in polymer-derived functional silicon-based ceramic composites for biomedical and engineering applications. Materials Research Express, 2018, 5, 062003.	0.8	27
8109	Single-crystalline α-Fe2O3 nanohexahedron as outstanding anode material for lithium-ion batteries. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
8110	Truncated Octahedral High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials for Lithium Ion Batteries: Positive Influences of Ni/Mn Disordering and Oxygen Vacancies. Journal of the Electrochemical Society, 2018, 165, A1886-A1896.	1.3	44
8111	Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Advanced Materials, 2018, 30, e1704682.	11.1	366
8112	Interlayerâ€Spacingâ€Regulated VOPO ₄ Nanosheets with Fast Kinetics for Highâ€Capacity and Durable Rechargeable Magnesium Batteries. Advanced Materials, 2018, 30, e1801984.	11.1	171
8113	A Silicaâ€Aerogelâ€Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus. Advanced Materials, 2018, 30, e1802661.	11.1	392
8114	Novel 2D Sb ₂ S ₃ Nanosheet/CNT Coupling Layer for Exceptional Polysulfide Recycling Performance. Advanced Energy Materials, 2018, 8, 1800710.	10.2	93
8115	Introduction to Batteries. SpringerBriefs in Applied Sciences and Technology, 2018, , 1-8.	0.2	7
8116	Lithium, sodium and potassium storage behaviors of Pb3Nb4O13 nanowires for rechargeable batteries. Ceramics International, 2018, 44, 17094-17101.	2.3	16
8117	Protecting lithium anode with LiNO3/Al2O3/PVDF-coated separator for lithium-sulfur batteries. Journal of Alloys and Compounds, 2018, 765, 544-550.	2.8	32
8118	Sodium superionic conduction in tetragonal Na3PS4. Journal of Solid State Chemistry, 2018, 265, 353-358.	1.4	52
8119	Fluorinated Copolymer Functionalized with Ethylene Oxide as Novel Water-Borne Binder for a High-Power Lithium Ion Battery: Synthesis, Mechanism, and Application. ACS Applied Energy Materials, 2018, 1, 3999-4008.	2.5	10

#	Article	IF	CITATIONS
8120	A versatile strategy for ultrathin SnS ₂ nanosheets confined in a N-doped graphene sheet composite for high performance lithium and sodium-ion batteries. Chemical Communications, 2018, 54, 8379-8382.	2.2	43
8121	Empowering multicomponent cathode materials for sodium ion batteries by exploring three-dimensional compositional heterogeneities. Energy and Environmental Science, 2018, 11, 2496-2508.	15.6	45
8122	A heterogenized Ni-doped zeolitic imidazolate framework to guide efficient trapping and catalytic conversion of polysulfides for greatly improved lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 13593-13598.	5.2	65
8123	Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodiumâ€lon Battery Anodes. ChemSusChem, 2018, 11, 3276-3285.	3.6	49
8124	The Application of Graphite in the Preparation of Cathode Material Li 3 V 2 (PO 4) 3 /C. ChemistrySelect, 2018, 3, 6328-6333.	0.7	1
8125	Lithium-ion conducting solid electrolytes of Li1.4Al0.4Ge0.2Ti1.4(PO4)3 and MOx (M = Al, Ti, and Zr) composites. Solid State Ionics, 2018, 324, 114-127.	1.3	23
8126	Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application. Scientific Reports, 2018, 8, 9965.	1.6	93
8127	In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research. NPG Asia Materials, 2018, 10, 563-580.	3.8	261
8128	Derivatives of coordination compounds for rechargeable batteries. Journal of Materials Chemistry A, 2018, 6, 13999-14024.	5.2	58
8129	Nitrogen-Doped Carbon Nanotubes Based on Ionic Liquid Precursors as Effective Cathode Catalysts for Li/SOCl ₂ Batteries. Journal of the Electrochemical Society, 2018, 165, A1955-A1960.	1.3	4
8130	Hierarchical Cobaltâ€Based Metal–Organic Framework for Highâ€Performance Lithiumâ€lon Batteries. Chemistry - A European Journal, 2018, 24, 13362-13367.	1.7	60
8131	Highly efficient hierarchical multiroom-structured molybdenum carbide/carbon composite microspheres grafted with nickel-nanoparticle-embedded nitrogen-doped carbon nanotubes as air electrode for lithium-oxygen batteries. Chemical Engineering Journal, 2018, 351, 886-896.	6.6	28
8132	Nano-structured GeNb18O47 as novel anode host with superior lithium storage performance. Electrochimica Acta, 2018, 282, 634-641.	2.6	19
8133	Molybdenum disulfide nanosheets embedded in hollow nitrogen-doped carbon spheres for efficient lithium/sodium storage with enhanced electrochemical kinetics. Electrochimica Acta, 2018, 283, 646-654.	2.6	24
8134	Maneuvering the Physical Properties and Spin States To Enhance the Activity of La–Sr–Co–Fe–O Perovskite Oxide Nanoparticles in Electrochemical Water Oxidation. ACS Applied Energy Materials, 2018, 1, 3342-3350.	2.5	29
8135	Construction of Uniform Cobalt-Based Nanoshells and Its Potential for Improving Li-Ion Battery Performance. ACS Applied Materials & amp; Interfaces, 2018, 10, 22896-22901.	4.0	16
8136	An effectively inhibiting lithium dendrite growth in-situ-polymerized gel polymer electrolyte. Electrochimica Acta, 2018, 283, 349-356.	2.6	26
8137	Wetting behavior of four polar organic solvents containing one of three lithium salts on a lithium-ion-battery separator. Journal of Colloid and Interface Science, 2018, 529, 582-587.	5.0	25

ARTICLE IF CITATIONS Few-atomic-layered hollow nanospheres constructed from alternate intercalation of carbon and 8138 8.2 98 MoS2 monolayers for sodium and lithium storage. Nano Energy, 2018, 51, 546-555. Catalyst Support in Oxygen Electrocatalysis: A Case Study with CoFe Alloy Electrocatalyst. Journal of 1.5 Physical Chemistry C, 2018, 122, 15843-15852. Hierarchical porous Li₄Ti₅O₁₂â€"TiO₂ composite 8140 anode materials with pseudocapacitive effect for high-rate and low-temperature applications. Journal 5.260 of Materials Chemistry A, 2018, 6, 14339-14351. High Tap Density Co and Ni Containing P2â€Na_{0.66}MnO₂ Buckyballs: A Promising High Voltage Cathode for Stable Sodiumâ€lon Batteries. Advanced Functional Materials, 2018, 28, 8141 1801898. Facile electrostatic self-assembly of silicon/reduced graphene oxide porous composite by silica assist 8142 3.1 58 as high performance anode for Li-ion battery. Applied Surface Science, 2018, 456, 379-389. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chemical Engineering Journal, 2018, 351, 441-461. 8143 6.6 Substituent effect on redox potential of terephthalate-based electrode materials for lithium 8144 2.321 batteries. Electrochemistry Communications, 2018, 93, 71-75. Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy 8145 9.5 211 Storage Materials, 2018, 15, 351-360. Influence of precursor phase on the structure and electrochemical properties of 8146 1.3 16 Li(Ni0.6Mn0.2Co0.2)O2 cathode materials. Solid State Ionics, 2018, 324, 49-58. Roles of Coherent Interfaces on Electrochemical Performance of Sodium Layered Oxide Cathodes. 8147 3.2 Chemistry of Materials, 2018, 30, 4728-4737. Materials for lithium-ion battery safety. Science Advances, 2018, 4, eaas9820. 8148 4.7958 Stable Bifunctional Perylene Imide Radicals for Highâ€Performance Organic–Lithium Redoxâ€Flow 8149 1.7 Batteries. Chemistry - Á European Journal, 2018, Ž4, 13188-13196. Inverse Capacity Growth and Pocket Effect in SnS₂ Semifilled Carbon Nanotube Anode. 8150 7.3 90 ACS Nano, 2018, 12, 8037-8047. Tackling Grand Challenges of the 21st Century with Electroanalytical Chemistry. Journal of the American Chemical Society, 2018, 140, 10629-10638. 6.6 High Capacity and High Efficiency Maple Tree-Biomass-Derived Hard Carbon as an Anode Material for 8152 1.3 34 Sodium-Ion Batteries. Materials, 2018, 11, 1294. Novel Nonâ€Carbon Sulfur Hosts Based on Strong Chemisorption for Lithiumâ€"Sulfur Batteries. Small, 5.2 68 2018, 14, e1801987. Good Lithium-Ion Insertion/Extraction Characteristics of a Novel Double Metal Doped Hexa-Vanadate 8154 2.519 Compounds Used in an Inorganic Aqueous Solution. Energy & amp; Fuels, 2018, 32, 10016-10023. One-pot synthesis of g-C₃N₄/MnO₂ and g-C₃N₄/SnO₂ hybrid nanocomposites for supercapacitor applications. Sustainable Energy and Fuels, 2018, 2, 2244-2251.

#	Article	IF	CITATIONS
8156	The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2018, 57, 12033-12036.	7.2	69
8157	Selfâ€Standing Highly Conductive Solid Electrolytes Based on Block Copolymers for Rechargeable Allâ€Solidâ€State Lithiumâ€Metal Batteries. Batteries and Supercaps, 2018, 1, 149-159.	2.4	41
8158	Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Applied Energy Materials, 2018, 1, 4341-4350.	2.5	45
8159	Ultrathin HfO2-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries. Carbon, 2018, 139, 896-905.	5.4	33
8160	Electrochemistry Coupled Mesoscale Complexations in Electrodes Lead to Thermo-Electrochemical Extremes. ACS Applied Materials & Interfaces, 2018, 10, 28644-28655.	4.0	49
8161	Aliphatic Polycarbonateâ€Based Solidâ€State Polymer Electrolytes for Advanced Lithium Batteries: Advances and Perspective. Small, 2018, 14, e1800821.	5.2	131
8162	Pseudocapacitive Ni oâ€Fe Hydroxides/Nâ€Doped Carbon Nanoplatesâ€Based Electrocatalyst for Efficient Oxygen Evolution. Small, 2018, 14, e1801878.	5.2	55
8163	Template-free synthesis of biomass-derived carbon coated Li4Ti5O12 microspheres as high performance anodes for lithium-ion batteries. Applied Surface Science, 2018, 459, 572-582.	3.1	28
8164	Enhanced Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode for Lithium-Ion Batteries by Precursor Preoxidation. ACS Applied Energy Materials, 2018, 1, 4374-4384.	2.5	28
8165	Minimizing the Electrolyte Volume in Li–S Batteries: A Step Forward to High Gravimetric Energy Density. Advanced Energy Materials, 2018, 8, 1801560.	10.2	68
8166	Scale-up production of high-tap-density carbon/MnOx/carbon nanotube microcomposites for Li-ion batteries with ultrahigh volumetric capacity. Chemical Engineering Journal, 2018, 354, 220-227.	6.6	40
8167	Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries. Journal of Industrial and Engineering Chemistry, 2018, 68, 180-186.	2.9	14
8168	Zero-strain K _{0.6} Mn ₁ F _{2.7} hollow nanocubes for ultrastable potassium ion storage. Energy and Environmental Science, 2018, 11, 3033-3042.	15.6	87
8169	Controlled scalable synthesis of yolk-shell structured large-size industrial silicon with interconnected carbon network for lithium storage. Electrochimica Acta, 2018, 283, 1702-1711.	2.6	18
8170	A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe ₂ O ₃ nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Materials Chemistry Frontiers, 2018, 2, 1811-1821.	3.2	65
8171	Porous carbon adsorption layer enabling highly reversible redox-reaction of a high potential organic electrode material for sodium ion batteries. RSC Advances, 2018, 8, 24900-24905.	1.7	11
8172	Electrical Conductivity and Electrochemical Characteristics of Na3V2(PO4)3-Based NASICON-Type Materials. Inorganic Materials, 2018, 54, 794-804.	0.2	26
8173	Identifying the Structural Evolution of the Sodium Ion Battery Na ₂ FePO ₄ F Cathode. Angewandte Chemie - International Edition, 2018, 57, 11918-11923.	7.2	79

	CITATION REF	CITATION REPORT	
#	Article	IF	CITATIONS
8174	Experimental and Computational Study on the Interaction of an Ionic Liquid Monolayer with Lithium on Pristine and Lithiated Graphite. Journal of Physical Chemistry C, 2018, 122, 18968-18981.	1.5	14
8175	Fabrication of Lithiophilic Copper Foam with Interfacial Modulation toward High-Rate Lithium Metal Anodes. ACS Applied Materials & 2018, 10, 27764-27770.	4.0	78
8176	Polymer nanocomposites for lithium battery applications. , 2018, , 283-313.		5
8177	Nitrogen doped carbon coating of PbLi2Ti6O14 as high electrochemical performance anode towards long-life lithium storage. Electrochimica Acta, 2018, 283, 1460-1467.	2.6	4
8178	Three-dimensional hierarchical NiCo2S4@MoS2 heterostructure arrays for high performance sodium ion battery. FlatChem, 2018, 10, 14-21.	2.8	15
8179	Porous polymer electrolyte based on poly(vinylidene fluoride)/comb-liked polystyrene via ionic band functionalization. Journal of Membrane Science, 2018, 564, 663-671.	4.1	32
8180	Olivine LiFePO4 nanocrystals grown on nitrogen-doped graphene sheets as high-rate cathode for lithium-ion batteries. Solid State Ionics, 2018, 325, 12-16.	1.3	23
8181	Poly(Ethylene Glycol)â€Crosslinked Poly(Vinyl Pyridine)â€based Gel Polymer Electrolytes. Bulletin of the Korean Chemical Society, 2018, 39, 1058-1065.	1.0	9
8182	Inâ€Situ Growth of Zeolitic Imidazolate Frameworkâ€67â€derived Nanoporous Carbon@K _{0.5} Mn ₂ O ₄ for Highâ€Performance 2.4â€V Aqueous Asymmetric Supercapacitors. ChemSusChem, 2018, 11, 3167-3174.	3.6	52
8183	Engineered Nanomaterials for Energy Applications. , 2018, , 751-767.		13
8184	Engineered Nanomaterials for Renewable Energy. , 2018, , 829-845.		2
8185	Elucidating mechanisms of Li plating on Li anodes of lithium-based batteries. Electrochimica Acta, 2018, 284, 485-494.	2.6	19
8186	Structure and LIBs Anode Material Application of Novel Wells–Dawson Polyoxometalate-Based Metal Organic Frameworks with Different Helical Channels. Crystal Growth and Design, 2018, 18, 5564-5572.	1.4	19
8187	Developing a "Waterâ€Defendable―and "Dendriteâ€Free―Lithiumâ€Metal Anode Using a Simple and Pr GeCl ₄ Pretreatment Method. Advanced Materials, 2018, 30, e1705711.	omising 11.1	186
8188	Decoupling the Ionic Conductivity and Elastic Modulus of Gel Electrolytes: Fully Zwitterionic Copolymer Scaffolds in Lithium Salt/Ionic Liquid Solutions. Advanced Energy Materials, 2018, 8, 1801646.	10.2	65
8189	Synthesis of 2â€{1Hâ€indolâ€2â€yl(1Hâ€indolâ€3â€yl)methyl]phenol and Its Application in Aqueous Rechargeab Lithiumâ€ion Batteries. ChemistrySelect, 2018, 3, 8363-8372.	e 0.7	5
8190	Nitrogen-doped carbon coated LiNi0.6Co0.2Mn0.2O2 cathode with enhanced electrochemical performance for Li-Ion batteries. Electrochimica Acta, 2018, 284, 526-533.	2.6	44
8191	Silyl-group functionalized organic additive for high voltage Ni-rich cathode material. Current Applied Physics, 2018, 18, 1345-1351.	1.1	33

#	Article	IF	CITATIONS
8192	Truncated cobalt hexacyanoferrate nanocubes threaded by carbon nanotubes as a high-capacity and high-rate cathode material for dual-ion rechargable aqueous batteries. Journal of Power Sources, 2018, 399, 1-7.	4.0	35
8193	Identifying the Structural Evolution of the Sodium Ion Battery Na ₂ FePO ₄ F Cathode. Angewandte Chemie, 2018, 130, 12094-12099.	1.6	22
8194	Electrolytes for Batteries with Earthâ€Abundant Metal Anodes. Chemistry - A European Journal, 2018, 24, 18220-18234.	1.7	50
8195	Multilayered, Bipolar, Allâ€Solidâ€State Battery Enabled by a Perovskiteâ€Based Biphasic Solid Electrolyte. ChemSusChem, 2018, 11, 3184-3190.	3.6	38
8196	Assembly of mesoporous SnO2 spheres and carbon nanotubes network as a high-performance anode for lithium-ion batteries. Journal of Materials Science, 2018, 53, 15621-15630.	1.7	17
8197	Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells. Electrochimica Acta, 2018, 283, 1291-1299.	2.6	60
8198	Enhanced electrochemical performance of carbon and aluminum oxide co-coated Na3V2(PO4)2F3 cathode material for sodium ion batteries. Electrochimica Acta, 2018, 283, 1441-1449.	2.6	41
8199	Interface Instability in LiFePO ₄ –Li _{3+<i>x</i>} P _{1–<i>x</i>} Si _{<i>x</i>} O _{4All-Solid-State Batteries. Chemistry of Materials, 2018, 30, 5886-5895.}	1 9 22	21
8200	Stabilizing Protic and Aprotic Liquid Electrolytes at High-Bandgap Oxide Interphases. Chemistry of Materials, 2018, 30, 5655-5662.	3.2	49
8201	Designing High-Performance Nanostructured P2-type Cathode Based on a Template-free Modified Pechini Method for Sodium-Ion Batteries. ACS Omega, 2018, 3, 8309-8316.	1.6	15
8202	Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 2018, 9, 2906.	5.8	1,036
8203	Hierarchical NiO nanobelt film array as an anode for lithium-ion batteries with enhanced electrochemical performance. RSC Advances, 2018, 8, 26589-26595.	1.7	21
8204	Magnetic field induced electrochemical performance enhancement in reduced graphene oxide anchored Fe ₃ O ₄ nanoparticle hybrid based supercapacitor. Journal Physics D: Applied Physics, 2018, 51, 375501.	1.3	50
8205	Controlling Nucleation in Lithium Metal Anodes. Small, 2018, 14, e1801423.	5.2	159
8206	Layered LiNi0.80Co0.15Al0.05O2 as cathode material for hybrid Li+/Na+ batteries. Journal of Solid State Electrochemistry, 2018, 22, 3431-3442.	1.2	10
8207	Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries. Chemical Engineering Journal, 2018, 353, 666-678.	6.6	66
8208	Separator Modification and Functionalization for Inhibiting the Shuttle Effect in Lithiumâ€Sulfur Batteries. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800249.	1.2	32
8209	Complementary analyses of aging in a commercial LiFePO4/graphite 26650 cell. Electrochimica Acta, 2018, 284, 454-468.	2.6	22

#	Article	IF	CITATIONS
8210	Ultrathin ReS2 nanosheets growing on ordered microporous carbon for high capacity lithium ion batteries. Journal of Alloys and Compounds, 2018, 767, 204-209.	2.8	11
8211	The Relationship between the Relative Solvating Power of Electrolytes and Shuttling Effect of Lithium Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie, 2018, 130, 12209-12212.	1.6	17
8212	Au-Doped Stable L1 ₀ Structured Platinum Cobalt Ordered Intermetallic Nanoparticle Catalysts for Enhanced Electrocatalysis. ACS Applied Energy Materials, 2018, 1, 3771-3777.	2.5	16
8213	Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy and Environmental Science, 2018, 11, 2696-2767.	15.6	1,467
8214	A Computationally Efficient Multi-Scale Model for Lithium-Ion Cells. Journal of the Electrochemical Society, 2018, 165, A2374-A2388.	1.3	27
8215	Mechano-Electrochemical Interaction and Degradation in Graphite Electrode with Surface Film. Journal of the Electrochemical Society, 2018, 165, A2397-A2408.	1.3	16
8216	Coin-Cell-Based In Situ Characterization Techniques for Li-Ion Batteries. Frontiers in Energy Research, 2018, 6, .	1.2	10
8217	A Dualâ€Salt Gel Polymer Electrolyte with 3D Crossâ€Linked Polymer Network for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2018, 5, 1800559.	5.6	204
8218	Enhanced lithium-storage performance of Li4Ti5O12 coated with boron-doped carbon layer for rechargeable Li-ion batteries. Solid State Ionics, 2018, 324, 191-195.	1.3	9
8219	Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion's Chemistry-Induced Anomalous Synergistic Effect. Journal of the American Chemical Society, 2018, 140, 9921-9933.	6.6	249
8220	Facile Synthesis of Two-Dimensional Porous MgCo2O4 Nanosheets as Anode for Lithium-Ion Batteries. Applied Sciences (Switzerland), 2018, 8, 22.	1.3	99
8221	Highly Graphitic Carbon Nanofibers Web as a Cathode Material for Lithium Oxygen Batteries. Applied Sciences (Switzerland), 2018, 8, 209.	1.3	7
8222	Formation and Stability of Interface between Garnet-Type Ta-doped Li7La3Zr2O12 Solid Electrolyte and Lithium Metal Electrode. Batteries, 2018, 4, 26.	2.1	53
8223	Clarifying the capacity deterioration mechanism sheds light on the design of ultra-long-life hydrogen storage alloys. Chemical Engineering Journal, 2018, 352, 325-332.	6.6	22
8224	(010) facets dominated LiFePO4 nano-flakes confined in 3D porous graphene network as a high-performance Li-ion battery cathode. Ceramics International, 2018, 44, 18181-18188.	2.3	24
8225	Direct observation of pseudocapacitive sodium storage behavior in molybdenum dioxide anodes. Journal of Power Sources, 2018, 397, 113-123.	4.0	10
8226	Superior long-term cyclability of a nanocrystalline NiO anode enabled by a mechanochemical reaction-induced amorphous protective layer for Li-ion batteries. Journal of Power Sources, 2018, 397, 134-142.	4.0	44
8228	Disordered Bilayered V ₂ O ₅ â< <i>n</i> H ₂ O Shells Deposited on Vertically Aligned Carbon Nanofiber Arrays as Stable Highâ€Capacity Sodium Ion Battery Cathodes â< Energy Technology, 2018, 6, 2438-2449.	1.8	10

#	Article	IF		CITATIONS
8229	The Modeling and Identification of Lithium-Ion Battery System. , 2018, , 99-140.			0
8230	Synergistic effect of Co3O4@C@MnO2 nanowire heterostructures for high-performance asymmetry supercapacitor with long cycle life. Electrochimica Acta, 2018, 283, 1087-1094.	2.	6	41
8231	MgH ₂ –CoO: a conversion-type composite electrode for LiBH ₄ -based all-solid-state lithium ion batteries. RSC Advances, 2018, 8, 23468-23474.	1.7	7	24
8232	2.20 Batteries. , 2018, , 629-662.			9
8233	Highly conductive CrNb11O29 nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries. Journal of Power Sources, 2018, 397, 231-239.	4.	0	48
8234	Lithium sulfonate-grafted poly(vinylidenefluoride-hexafluoro propylene) ionomer as binder for lithium-ion batteries. RSC Advances, 2018, 8, 20025-20031.	1.7	7	18
8235	Enhanced electrochemical performance of over-lithiated oxide via liquid nitrogen quenching technique for lithium ion battery. Ceramics International, 2018, 44, 19033-19037.	2.	3	4
8236	Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy, 2018, 51, 579-587.	8.	2	425
8237	Cross-Linking Hollow Carbon Sheet Encapsulated CuP ₂ Nanocomposites for High Energy Density Sodium-Ion Batteries. ACS Nano, 2018, 12, 7018-7027.	7.:	3	99
8238	Tuning anisotropic ion transport in mesocrystalline lithium orthosilicate nanostructures with preferentially exposed facets. NPG Asia Materials, 2018, 10, 606-617.	3.	8	18
8239	Structures of FEC-containing electrolytes and the stabilization mechanism at high voltage and elevated temperature. Physical Chemistry Chemical Physics, 2018, 20, 19885-19891.	1.	3	12
8240	On the Ageing of High Energy Lithium-Ion Batteries—Comprehensive Electrochemical Diffusivity Studies of Harvested Nickel Manganese Cobalt Electrodes. Materials, 2018, 11, 176.	1.:	3	35
8241	Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl3/EMIMCl Electrolyte. Materials, 2018, 11, 936.	1.3	3	19
8242	Redox Activity of Sodium Vanadium Oxides towards Oxidation in Na Ion Batteries. Materials, 2018, 11, 1021.	1.:	3	9
8243	Three-Dimensional SnS Decorated Carbon Nano-Networks as Anode Materials for Lithium and Sodium Ion Batteries. Nanomaterials, 2018, 8, 135.	1.9	9	27
8244	Facile Synthesis of Porous ZnCo2O4 Nanosheets and the Superior Electrochemical Properties for Sodium Ion Batteries. Nanomaterials, 2018, 8, 377.	1.9	9	18
8245	Organic Carbonyl Compounds for Sodiumâ€ion Batteries: Recent Progress and Future Perspectives. Chemistry - A European Journal, 2018, 24, 18235-18245.	1.7	7	65
8246	Flexible Grapheneâ€Wrapped Carbon Nanotube/Graphene@MnO ₂ 3D Multilevel Porous F for Highâ€Performance Lithiumâ€ion Batteries. Small, 2018, 14, e1801007.	Film 5.	2	63

#	Article	IF	CITATIONS
8247	Lithium Borocarbide LiBC as an Anode Material for Rechargeable Li-Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 18231-18236.	1.5	16
8248	Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018, 13, 715-722.	15.6	964
8249	Compositeâ€ S tructure Material Design for Highâ€Energy Lithium Storage. Small, 2018, 14, e1800887.	5.2	32
8250	Biogenic and Bio-inspired Syntheses of Hierarchically Structured Iron Compounds for Lithium-Ion Batteries. , 2018, , 157-173.		Ο
8251	Confining selenium disulfide in 3D sulfur-doped mesoporous carbon for rechargeable lithium batteries. Applied Surface Science, 2018, 457, 705-711.	3.1	24
8252	Electrospun nitrogen-doped carbon nanofibers with tuned microstructure and enhanced lithium storage properties. Carbon, 2018, 139, 716-724.	5.4	40
8253	High-performance phosphorus-modified SiO/C anode material for lithium ion batteries. Ceramics International, 2018, 44, 18509-18515.	2.3	34
8254	Thermodynamic and Kinetic Limitations for Peroxide and Superoxide Formation in Na–O ₂ Batteries. Journal of Physical Chemistry Letters, 2018, 9, 4413-4419.	2.1	16
8255	Carbon Nanotubes Derived from Yeast-Fermented Wheat Flour and Their Energy Storage Application. ACS Sustainable Chemistry and Engineering, 2018, 6, 11386-11396.	3.2	67
8256	Molecular self-assembly of a nanorod N-Li ₄ Ti ₅ O ₁₂ /TiO ₂ /C anode for superior lithium ion storage. Journal of Materials Chemistry A, 2018, 6, 15755-15761.	5.2	46
8257	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie, 2018, 130, 11911-11915.	1.6	151
8258	CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes. Frontiers of Materials Science, 2018, 12, 214-224.	1.1	12
8259	Highly efficient AuNi-Cu2O electrocatalysts for the oxygen reduction and evolution reactions: Important role of interaction between Au and Ni engineered by leaching of Cu2O. Electrochimica Acta, 2018, 283, 1411-1417.	2.6	17
8260	Preparation and application of energy materials from biomass. International Journal of Modern Physics B, 2018, 32, 1840081.	1.0	3
8261	Structural and Electrochemical Characterization of Zn1â^'xFexO—Effect of Aliovalent Doping on the Li+ Storage Mechanism. Materials, 2018, 11, 49.	1.3	25
8262	An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angewandte Chemie - International Edition, 2018, 57, 11737-11741.	7.2	425
8263	Calcination Temperature Effect on Citrateâ€Capped Iron Oxide Nanoparticles as Lithiumâ€Storage Anode Materials. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1701004.	0.8	5
8264	Extreme fast charging characteristics of zirconia modified LiNi0.5Mn1.5O4 cathode for lithium ion batteries. Journal of Power Sources, 2018, 396, 774-781.	4.0	63

#	Article	IF	CITATIONS
8265	In situ LiFePO4 nano-particles grown on few-layer graphene flakes as high-power cathode nanohybrids for lithium-ion batteries. Nano Energy, 2018, 51, 656-667.	8.2	50
8266	Enhanced electrochemical performance of Na3V2(PO4)3 with Ni2+ doping by a spray drying-assisted process for sodium ion batteries. Solid State Ionics, 2018, 324, 183-190.	1.3	31
8267	Efficient Photocatalytic Reduction Approach for Synthesizing Chemically Bonded N-Doped TiO ₂ /Reduced Graphene Oxide Hybrid as a Freestanding Electrode for High-Performance Lithium Storage. ACS Applied Energy Materials, 2018, 1, 4186-4195.	2.5	11
8268	The morphology-dependent electrocatalytic activities of spinel-cobalt oxide nanomaterials for direct hydrazine fuel cell application. New Journal of Chemistry, 2018, 42, 13087-13095.	1.4	9
8269	Three dimensional network Si–C composite coating constructed by porous skeletons as an integrated anode for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 15042-15051.	1.1	5
8270	Facile solid-state synthesis of eco-friendly sodium iron silicate with exceptional sodium storage behaviour. Electrochimica Acta, 2018, 283, 1384-1389.	2.6	28
8271	Enhancement of the interfacial reaction on mesoporous RuO2 for next generation Li batteries. Journal of Power Sources, 2018, 396, 749-753.	4.0	18
8272	In vitro synthetic enzymatic biosystems at the interface of the food-energy-water nexus: A conceptual framework and recent advances. Process Biochemistry, 2018, 74, 43-49.	1.8	2
8273	Hierarchical self-assembled Bi ₂ S ₃ hollow nanotubes coated with sulfur-doped amorphous carbon as advanced anode materials for lithium ion batteries. Nanoscale, 2018, 10, 13343-13350.	2.8	67
8274	A core–shell structured polyacrylonitrile@poly(vinylidene fluoride-hexafluoro propylene) microfiber complex membrane as a separator by co-axial electrospinning. RSC Advances, 2018, 8, 23390-23396.	1.7	30
8275	A comparative study on nanocrystalline layered and crystalline cubic TiP ₂ O ₇ for rechargeable Li/Na/K alkali metal batteries. Journal of Materials Chemistry A, 2018, 6, 15230-15236.	5.2	16
8276	Citric Acid Based Pre-SEI for Improvement of Silicon Electrodes in Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1991-A1996.	1.3	23
8277	Hierarchical NiCoO2 single-crystalline nanoflake arrays on Ni foam for supercapacitors and Li-ion batteries application. Journal of Alloys and Compounds, 2018, 766, 952-958.	2.8	17
8278	Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors. Journal of Power Sources, 2018, 396, 764-773.	4.0	80
8279	Oneâ€5tep Construction of N,Pâ€Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage. Advanced Materials, 2018, 30, e1802310.	11.1	376
8280	Molecular-level anchoring of polymer cathodes on carbon nanotubes towards rapid-rate and long-cycle sodium-ion storage. Materials Chemistry Frontiers, 2018, 2, 1805-1810.	3.2	24
8281	Na-ion battery cathode materials prepared by electrochemical ion exchange from alumina-coated Li _{1+x} Mn _{0.54} Co _{0.13} Ni _{0.1+y} O ₂ . Journal of Materials Chemistry A, 2018, 6, 14816-14827.	5.2	19
8282	Enhanced performance of LiFePO4 originating from the synergistic effect of graphene modification and carbon coating. Journal of Alloys and Compounds, 2018, 767, 528-537.	2.8	33

#	Article	IF	CITATIONS
8283	Electrochemical solid-state amorphization in the immiscible Cu-Li system. Science Bulletin, 2018, 63, 1208-1214.	4.3	8
8284	Na-Doped LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ with Excellent Stability of Both Capacity and Potential as Cathode Materials for Li-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3881-3889.	2.5	112
8285	Facile synthesis of MTaO4 (M = Al, Cr and Fe) metal oxides and their application as anodes for lithium-ion batteries. Ceramics International, 2018, 44, 8827-8831.	2.3	7
8286	Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy, 2018, 52, 279-291.	8.2	211
8287	Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 15102-15109.	5.2	67
8288	Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials, 2018, 15, 422-446.	9.5	292
8289	Unlocking the Energy Capabilities of Lithium Metal Electrode with Solid-State Electrolytes. Joule, 2018, 2, 1674-1689.	11.7	212
8290	A low-cost Mg ²⁺ /Na ⁺ hybrid aqueous battery. Journal of Materials Chemistry A, 2018, 6, 15762-15770.	5.2	23
8291	Sandwich-like NiO/rGO nanoarchitectures for 4â€V solid-state asymmetric-supercapacitors with high energy density. Electrochimica Acta, 2018, 283, 1401-1410.	2.6	28
8292	Conductivity spectra of lithium ion conducting glassy ceramics. Physica B: Condensed Matter, 2018, 546, 10-14.	1.3	12
8293	Heterogeneous/Homogeneous Mediators for Highâ€Energyâ€Density Lithium–Sulfur Batteries: Progress and Prospects. Advanced Functional Materials, 2018, 28, 1707536.	7.8	251
8294	Advanced Lithiumâ€ion Batteries for Practical Applications: Technology, Development, and Future Perspectives. Advanced Materials Technologies, 2018, 3, 1700376.	3.0	112
8295	A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chemical Engineering Journal, 2018, 353, 419-424.	6.6	108
8296	Transport biofuels technological paradigm based conversion approaches towards a bio-electric energy framework. Energy Conversion and Management, 2018, 172, 554-566.	4.4	28
8297	Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material. Journal of Power Sources, 2018, 398, 149-158.	4.0	22
8298	Insight into the capacity fading of layered lithium-rich oxides and its suppression <i>via</i> a film-forming electrolyte additive. RSC Advances, 2018, 8, 25794-25801.	1.7	23
8299	Screening Oxide Support Materials for OER Catalysts in Acid. Journal of the Electrochemical Society, 2018, 165, F813-F820.	1.3	40
8300	Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 21.	1.8	13

#	Article	IF	CITATIONS
8301	Effect of Nb and F Co-doping on Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material for High-Performance Lithium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 76.	1.8	47
8302	High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage. Frontiers in Chemistry, 2018, 6, 97.	1.8	8
8303	Comparative Investigation of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 Cathode Materials Synthesized by Using Different Lithium Sources. Frontiers in Chemistry, 2018, 6, 159.	1.8	12
8304	Electrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 195.	1.8	34
8305	Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres with improved performance for cathode of lithium-ion battery. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	16
8306	Low-Temperature-Annealed Reduced Graphene Oxide–Polyaniline Nanocomposites for Supercapacitor Applications. Journal of Electronic Materials, 2018, 47, 3861-3868.	1.0	13
8307	A facile N doping strategy to prepare mass-produced pyrrolic N-enriched carbon fibers with enhanced lithium storage properties. Electrochimica Acta, 2018, 278, 106-113.	2.6	31
8308	ε-Caprolactone-based solid polymer electrolytes for lithium-ion batteries: synthesis, electrochemical characterization and mechanical stabilization by block copolymerization. RSC Advances, 2018, 8, 16716-16725.	1.7	40
8309	Anisotropic mechanical properties of Si anodes in a lithiation process of lithium-ion batteries. Acta Mechanica, 2018, 229, 3293-3303.	1.1	12
8310	Synthesis of hierarchical free-standing NiMoO4/reduced graphene oxide membrane for high-performance lithium storage. Journal of Solid State Electrochemistry, 2018, 22, 2659-2669.	1.2	8
8311	Construction of vertically aligned PPy nanosheets networks anchored on MnCo2O4 nanobelts for high-performance asymmetric supercapacitor. Journal of Power Sources, 2018, 393, 169-176.	4.0	76
8312	Unraveling the capacity fading mechanisms of LiNi0.6Co0.2Mn0.2O2 at elevated temperatures. Journal of Power Sources, 2018, 393, 92-98.	4.0	62
8313	Designed synthesis of ultrafine NiO nanocrystals bonded on a three dimensional graphene framework for high-capacity lithium-ion batteries. New Journal of Chemistry, 2018, 42, 9901-9910.	1.4	24
8314	The In Situ Synthesis of Fe(OH) ₃ Film on Fe Foam as Efficient Anode of Alkaline Supercapacitor Based on a Promising Fe ³⁺ /Fe ⁰ Energy Storage Mechanism. Particle and Particle Systems Characterization, 2018, 35, 1700484.	1.2	18
8315	Scallopâ€Inspired Shell Engineering of Microparticles for Stable and High Volumetric Capacity Battery Anodes. Small, 2018, 14, e1800752.	5.2	27
8316	SiO <i>_x</i> Encapsulated in Graphene Bubble Film: An Ultrastable Liâ€lon Battery Anode. Advanced Materials, 2018, 30, e1707430.	11.1	243
8317	Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms. Science China Materials, 2018, 61, 1040-1048.	3.5	39
8318	Defects and lithium migration in Li2CuO2. Scientific Reports, 2018, 8, 6754.	1.6	30

#	Article	IF	CITATIONS
8319	Humate-assisted Synthesis of MoS2/C Nanocomposites via Co-Precipitation/Calcination Route for High Performance Lithium Ion Batteries. Nanoscale Research Letters, 2018, 13, 129.	3.1	21
8320	Effect of Ni content in Ni Mn1-CO3 (xÂ= 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries. Electrochimica Acta, 2018, 276, 333-342.	2.6	28
8321	Facile synthesis of TiP2O7/C nanoparticles as a competitive anode for aqueous lithium ion batteries. Electrochimica Acta, 2018, 278, 42-50.	2.6	21
8322	Ni-Sn-based hybrid composite anodes for high-performance lithium-ion batteries. Electrochimica Acta, 2018, 278, 25-32.	2.6	45
8323	Synthesis of an aliphatic hyper-branched polycarbonate and determination of its physical properties for solid polymer electrolyte use. Polymer, 2018, 145, 194-201.	1.8	13
8324	Rational Design and Synthesis of Li ₃ V ₂ (PO ₄) ₃ /C Nanocomposites As High-Performance Cathodes for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 7250-7256.	3.2	25
8325	Hierarchically Porous Carbon Nanofibers Encapsulating Carbonâ€Coated Mini Hollow FeP Nanoparticles for High Performance Lithium and Sodium Ion Batteries. ChemNanoMat, 2018, 4, 924-935.	1.5	21
8326	One-Step Fast-Synthesized Foamlike Amorphous Co(OH)2 Flexible Film on Ti Foil by Plasma-Assisted Electrolytic Deposition as a Binder-Free Anode of a High-Capacity Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 16943-16946.	4.0	31
8327	Advanced perspective on the synchronized bifunctional activities of P2-type materials to implement an interconnected voltage profile for seawater batteries. Journal of Materials Chemistry A, 2018, 6, 11012-11021.	5.2	25
8328	Based on Cu as framework constructed nanoporous CuO/Cu composites by a dealloy method for sodium-ion battery anode. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	4
8329	Porous core–shell CoMn2O4 microspheres as anode of lithium ion battery with excellent performances and their conversion reaction mechanism investigated by XAFS. Journal of Energy Chemistry, 2018, 27, 1637-1643.	7.1	25
8330	Ammonia, a Switch for Controlling High Ionic Conductivity in Lithium Borohydride Ammoniates. Joule, 2018, 2, 1522-1533.	11.7	87
8331	Ionic conductivity of sodium silicate glasses grown within confined volume of mesoporous silica template. AIP Conference Proceedings, 2018, , .	0.3	3
8332	Lithium ionic conduction in composites of Li(BH4)0.75I0.25 and amorphous 0.75Li2S·0.25P2S5 for battery applications. Electrochimica Acta, 2018, 278, 332-339.	2.6	35
8333	Mesocarbon microbead based dual-carbon batteries towards low cost energy storage devices. Journal of Power Sources, 2018, 393, 145-151.	4.0	44
8334	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	10.2	196
8335	Synthesis and characterization of polyaniline–zirconium dioxide and polyaniline–cerium dioxide composites with enhanced photocatalytic degradation of rhodamine B dye. Chemical Papers, 2018, 72, 2523-2538.	1.0	13
8336	Dispersion-strengthened microparticle silicon composite with high anti-pulverization capability for Li-ion batteries. Energy Storage Materials, 2018, 14, 279-288.	9.5	45

#	Article	IF	CITATIONS
8337	Co3O4 hollow nanospheres doped with ZnCo2O4 via thermal vapor mechanism for fast lithium storage. Energy Storage Materials, 2018, 14, 324-334.	9.5	23
8338	A novel hybrid positive electrode with liquid-solid redox couples having high-capacity for lithium battery. Journal of Power Sources, 2018, 390, 54-60.	4.0	1
8339	Polytriphenylamine Derivative and Carbon Nanotubes as Cathode Materials for High-Performance Polymer-Based Batteries. Journal of Physical Chemistry C, 2018, 122, 20057-20063.	1.5	14
8340	Effect of sulfur doping on structural reversibility and cycling stability of a Li ₂ MnSiO ₄ cathode material. Dalton Transactions, 2018, 47, 12337-12344.	1.6	10
8341	Unexpectedly high electrochemical performances of a monoclinic Na _{2.4} V ₂ (PO ₄) ₃ /conductive polymer composite for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17571-17578.	5.2	19
8342	Manganeseâ€Oxideâ€Based Electrode Materials for Energy Storage Applications: How Close Are We to the Theoretical Capacitance?. Advanced Materials, 2018, 30, e1802569.	11.1	94
8343	A new kind of single Li-ion polyelectrolyte based on triazolate in a polyurea matrix: syntheses and properties. Research on Chemical Intermediates, 2018, 44, 7187-7204.	1.3	5
8344	Complete hollow ZnFe2O4 nanospheres with huge internal space synthesized by a simple solvothermal method as anode for lithium ion batteries. Applied Surface Science, 2018, 462, 955-962.	3.1	37
8345	Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance. Nano Energy, 2018, 53, 11-16.	8.2	108
8346	CoFe Nanoalloys Encapsulated in N-Doped Graphene Layers as a Pt-Free Multifunctional Robust Catalyst: Elucidating the Role of Co-Alloying and N-Doping. ACS Sustainable Chemistry and Engineering, 2018, 6, 12736-12745.	3.2	50
8347	Controlled synthesis of hollow C@TiO ₂ @MoS ₂ hierarchical nanospheres for high-performance lithium-ion batteries. Nanoscale, 2018, 10, 17327-17334.	2.8	65
8348	Mesoscale Understanding of Lithium Electrodeposition for Intercalation Electrodes. Journal of Physical Chemistry C, 2018, 122, 21097-21107.	1.5	6
8349	Toward sustainable and systematic recycling of spent rechargeable batteries. Chemical Society Reviews, 2018, 47, 7239-7302.	18.7	624
8350	Na0.97KFe(SO4)2: an iron-based sulfate cathode material with outstanding cyclability and power capability for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 17095-17100.	5.2	16
8351	2D Nanospace Confined Synthesis of Pseudocapacitanceâ€Dominated MoS ₂ â€inâ€Ti ₃ C ₂ Superstructure for Ultrafast and Stable Li/Naâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1804306.	7.8	194
8352	Suppressed ionic contamination of LiNi0.5Mn1.5O4 with a Pt/ITO/stainless steel multilayer current collector. Ceramics International, 2018, 44, 20093-20104.	2.3	5
8353	Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack. Nano Energy, 2018, 52, 510-516.	8.2	78
8354	pNTQS: Easily Accessible High-Capacity Redox-Active Polymer for Organic Battery Electrodes. ACS Applied Energy Materials, 2018, 1, 3554-3559.	2.5	11

#	Article	IF	CITATIONS
8355	Theoretical prediction of LiScO ₂ nanosheets as a cathode material for Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2018, 20, 22351-22358.	1.3	7
8356	Polyimide Containing Tricarbonyl Moiety as an Active Cathode for Rechargeable Li-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A2476-A2482.	1.3	26
8357	An Adaptive Rapid Charging Method for Lithium-Ion Batteries with Compensating Cell Degradation Behavior. Applied Sciences (Switzerland), 2018, 8, 1251.	1.3	12
8358	Elevatedâ€Temperature 3D Printing of Hybrid Solidâ€State Electrolyte for Liâ€Ion Batteries. Advanced Materials, 2018, 30, e1800615.	11.1	159
8359	Electrochemical studies of MgFe2O4@TiO2 core–shell nanospheres as anode material for lithium battery applications. Journal of Materials Science: Materials in Electronics, 2018, 29, 17872-17880.	1.1	6
8360	CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies. Journal of Catalysis, 2018, 366, 139-149.	3.1	80
8361	Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries. Journal of Physical Chemistry Letters, 2018, 9, 5100-5104.	2.1	143
8362	Ni-Doped Cobalt Phosphite, Co ₁₁ (HPO ₃) ₈ (OH) ₆ , with Different Morphologies Grown on Ni Foam Hydro(solvo)thermally for High-Performance Supercapacitor. ACS Applied Materials & Interfaces, 2018, 10, 31340-31354.	4.0	37
8363	Morphological evolution and kinetic enhancement of Li2FexMn1-xSiO4/C cathodes for Li-ion battery. Progress in Natural Science: Materials International, 2018, 28, 535-541.	1.8	0
8364	Binder-Free Co ₄ N Nanoarray on Carbon Cloth as Flexible High-Performance Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 4432-4439.	2.5	13
8365	In situ synthesis of mesoporous NiO nanoplates embedded in a flexible graphene matrix for supercapacitor electrodes. Materials Letters, 2018, 232, 163-166.	1.3	27
8366	Constructing a Stable Lithium Metal–Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 30065-30070.	4.0	45
8367	Urea-assisted hydrothermal synthesis of a hollow hierarchical LiNi _{0.5} Mn _{1.5} O ₄ cathode material with tunable morphology characteristics. RSC Advances, 2018, 8, 30087-30097.	1.7	17
8368	Impedance Characterization of the Transport Properties of Electrolytes Contained within Porous Electrodes and Separators Useful for Li-S Batteries. Journal of the Electrochemical Society, 2018, 165, A2741-A2749.	1.3	37
8369	Nonlinear Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries: Experimental Approach, Analysis, and Initial Findings. Journal of the Electrochemical Society, 2018, 165, A2758-A2765.	1.3	47
8370	Polyoxometalate-Based Metal–Organic Framework on Carbon Cloth with a Hot-Pressing Method for High-Performance Lithium-Ion Batteries. Inorganic Chemistry, 2018, 57, 11726-11731.	1.9	48
8371	Controlling electric potential to inhibit solid-electrolyte interphase formation on nanowire anodes for ultrafast lithium-ion batteries. Nature Communications, 2018, 9, 3461.	5.8	27
8372	A heterobimetallic single-source precursor enabled layered oxide cathode for sodium-ion batteries. Chemical Communications, 2018, 54, 10714-10717.	2.2	7

#	Article	IF	CITATIONS
8373	A photochromic zinc-based coordination polymer for a Li-ion battery anode with high capacity and stable cycling stability. Dalton Transactions, 2018, 47, 13222-13228.	1.6	24
8374	Ultrafine Mo-doped SnO ₂ nanostructure and derivative Mo-doped Sn/C nanofibers for high-performance lithium-ion batteries. Nanoscale, 2018, 10, 17378-17387.	2.8	48
8375	Strong anchoring effect of ferric chloride-graphite intercalation compounds (FeCl ₃ -GICs) with tailored epoxy groups for high-capacity and stable lithium storage. Journal of Materials Chemistry A, 2018, 6, 17982-17993.	5.2	35
8376	Nitrogen-Doped Carbon Coated WS2 Nanosheets as Anode for High-Performance Sodium-Ion Batteries. Frontiers in Chemistry, 2018, 6, 236.	1.8	22
8377	Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. Journal of Materials Science: Materials in Electronics, 2018, 29, 17903-17920.	1.1	133
8378	Strategy for Boosting Li-Ion Current in Silicon Nanoparticles. ACS Energy Letters, 2018, 3, 2252-2258.	8.8	49
8379	Mechanical deformation effects on ion conduction in stretchable polymer electrolytes. Applied Physics Letters, 2018, 113, .	1.5	16
8380	Applications of Plasma in Energy Conversion and Storage Materials. Advanced Energy Materials, 2018, 8, 1801804.	10.2	77
8381	Self-templated transformation of MOFs into layered double hydroxide nanoarrays with selectively formed Co9S8 for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2018, 354, 716-726.	6.6	179
8382	Improved particle hardness of Ti-doped LiNi1/3Co1/3Mn1/3-xTixO2 as high-voltage cathode material for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2018, 123, 271-278.	1.9	22
8383	Anomalous Self-Assembly and Ion Transport in Nanostructured Organic–Inorganic Solid Electrolytes. ACS Macro Letters, 2018, 7, 1056-1061.	2.3	27
8384	An ionic liquid crystal-based solid polymer electrolyte with desirable ion-conducting channels for superior performance ambient-temperature lithium batteries. Polymer Chemistry, 2018, 9, 4674-4682.	1.9	34
8385	Covalently linked metal–organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries. Journal of Materials Chemistry A, 2018, 6, 17227-17234.	5.2	145
8386	Nest-like V ₃ O ₇ self-assembled by porous nanowires as an anode supercapacitor material and its performance optimization through bonding with N-doped carbon. Journal of Materials Chemistry A, 2018, 6, 16475-16484.	5.2	32
8387	Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries. IScience, 2018, 6, 151-198.	1.9	85
8388	(CH3)3Si-N[(FSO2)(n-C4F9SO2)]: An additive for dendrite-free lithium metal anode. Journal of Power Sources, 2018, 400, 225-231.	4.0	33
8389	Characterization of low-temperature solution-processed LiCoO2 thin-film cathode with molecular weight control of polyvinylpyrrolidone. Thin Solid Films, 2018, 661, 46-52.	0.8	4
8390	One-Dimensional Porous Silicon Nanowires with Large Surface Area for Fast Charge–Discharge Lithium-Ion Batteries. Nanomaterials, 2018, 8, 285.	1.9	42

#	Article	IF	CITATIONS
8391	An Electrospun Core–Shell Nanofiber Web as a Highâ€Performance Cathode for Iron Disulfideâ€Based Rechargeable Lithium Batteries. ChemSusChem, 2018, 11, 3625-3630.	3.6	13
8392	The effects of Fe@C nanoparticles on the lithium storage performance of VS4 anode. Journal of Alloys and Compounds, 2018, 768, 938-943.	2.8	11
8393	Achieving High Cycling Rates via In Situ Generation of Active Nanocomposite Metal Anodes. ACS Applied Energy Materials, 2018, 1, 4651-4661.	2.5	19
8394	Impact of the Temperature in the Evaluation of Battery Performances During Long-Term Cycling—Characterisation and Modelling. Applied Sciences (Switzerland), 2018, 8, 1364.	1.3	7
8395	MoSe ₂ /Nâ€Doped Carbon as Anodes for Potassiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1801477.	10.2	391
8396	Use of poly[ionic liquid] as a conductive binder in lithium ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 3589-3596.	1.2	11
8397	Fabrication of Hierarchical Potassium Titanium Phosphate Spheroids: A Host Material for Sodiumâ€lon and Potassiumâ€lon Storage. Advanced Energy Materials, 2018, 8, 1801102.	10.2	104
8398	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li ₁₀ GeP ₂ S ₁₂ Solid Electrolyte Interface. Angewandte Chemie - International Edition, 2018, 57, 13608-13612.	7.2	138
8399	Excavated carbon with embedded Si nanoparticles for ultrafast lithium storage. Journal of Industrial and Engineering Chemistry, 2018, 68, 146-152.	2.9	13
8400	Exotic solid state ion conductor from fluorinated titanium oxide and molten metallic lithium. Journal of Power Sources, 2018, 400, 16-22.	4.0	11
8401	Bistacked Titanium Carbide (MXene) Anodes for Hybrid Sodium-Ion Capacitors. ACS Energy Letters, 2018, 3, 2094-2100.	8.8	145
8402	Hexagonal Ti ₂ B ₂ monolayer: a promising anode material offering high rate capability for Li-ion and Na-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 22168-22178.	1.3	96
8403	Coaxial-nanostructured MnFe ₂ O ₄ nanoparticles on polydopamine-coated MWCNT for anode materials in rechargeable batteries. Nanoscale, 2018, 10, 18949-18960.	2.8	31
8404	Fast Diffusion of Multivalent Ions Facilitated by Concerted Interactions in Dualâ€Ion Battery Systems. Advanced Energy Materials, 2018, 8, 1801475.	10.2	59
8405	Mechanistic Insights of Zn ²⁺ Storage in Sodium Vanadates. Advanced Energy Materials, 2018, 8, 1801819.	10.2	225
8406	Highâ€Capacity Allâ€Solidâ€State Sodium Metal Battery with Hybrid Polymer Electrolytes. Advanced Energy Materials, 2018, 8, 1801885.	10.2	87
8407	Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie, 2018, 130, 14251-14255.	1.6	117
8408	Hierarchical Co2P microspheres assembled from nanorods grown on reduced graphene oxide as anode material for Lithium-ion batteries. Applied Surface Science, 2018, 459, 665-671.	3.1	25

#	Article	IF	CITATIONS
8409	Metal-organic framework derived porous ternary ZnCo2O4 nanoplate arrays grown on carbon cloth as binder-free electrodes for lithium-ion batteries. Chemical Engineering Journal, 2018, 354, 454-462.	6.6	84
8410	Fabrication of nanoplate Li-rich cathode material via surfactant-assisted hydrothermal method for lithium-ion batteries. Ceramics International, 2018, 44, 20514-20523.	2.3	15
8411	Recent advancements in supercapacitor technology. Nano Energy, 2018, 52, 441-473.	8.2	1,228
8412	Coprecipitation Reaction System Synthesis and Lithium-Ion Capacitor Energy Storage Application of the Porous Structural Bimetallic Sulfide CoMoS ₄ Nanoparticles. ACS Omega, 2018, 3, 8803-8812.	1.6	18
8413	Transient Nonlinear Response of Dynamically Decoupled Ionic Conductors. Physical Review Letters, 2018, 121, 064503.	2.9	13
8414	Application of Operando X-ray Diffraction and Raman Spectroscopies in Elucidating the Behavior of Cathode in Lithium-Ion Batteries. Frontiers in Energy Research, 2018, 6, .	1.2	31
8415	Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2018, 57, 14055-14059.	7.2	410
8416	Lowâ€Cost Aqueous Magnesiumâ€lon Battery Capacitor with Commercial Mn ₃ O ₄ and Activated Carbon. ChemElectroChem, 2018, 5, 2789-2794.	1.7	32
8417	Two-dimensional porous (Co, Ni)-based monometallic hydroxides and bimetallic layered double hydroxides thin sheets with honeycomb-like nanostructure as positive electrode for high-performance hybrid supercapacitors. Journal of Colloid and Interface Science, 2018, 532, 630-640.	5.0	108
8418	Chemical/morphological transition behavior of lithium phosphorus oxynitride solid-electrolyte in air: An analytical approach based on X-ray photoelectron spectroscopy and atomic force microscopy. Journal of Power Sources, 2018, 399, 231-237.	4.0	7
8419	Enhancing the Lithium Storage Capacities of Coordination Compounds for Advanced Lithium-Ion Battery Anodes via a Coordination Chemistry Approach. Inorganic Chemistry, 2018, 57, 10640-10648.	1.9	20
8420	Evolution of Waste Iron Rust into Magnetically Separable g-C ₃ N ₄ –Fe ₂ O ₃ Photocatalyst: An Efficient and Economical Waste Management Approach. ACS Applied Nano Materials, 2018, 1, 4682-4694.	2.4	73
8421	FeS ₂ nanosheets encapsulated in 3D porous carbon spheres for excellent Na storage in sodium-ion batteries. Inorganic Chemistry Frontiers, 2018, 5, 2462-2471.	3.0	47
8422	Enhanced polysulfide redox kinetics electro-catalyzed by cobalt phthalocyanine for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17132-17141.	5.2	50
8423	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface. Angewandte Chemie, 2018, 130, 13796-13800.	1.6	5
8424	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341.	5.8	60
8425	Ternary Sulfur/Polyacrylonitrile/SiO2 Composite Cathodes for High-Performance Sulfur/Lithium Ion Full Batteries. Polymers, 2018, 10, 930.	2.0	22
8426	Li2SnO3 as a Cathode Material for Lithium-ion Batteries: Defects, Lithium Ion Diffusion and Dopants. Scientific Reports, 2018, 8, 12621.	1.6	34

#	Article	IF	CITATIONS
8427	Sulfonated graphene oxide-decorated block copolymer as a proton-exchange membrane: improving the ion selectivity for all-vanadium redox flow batteries. Journal of Materials Chemistry A, 2018, 6, 17740-17750.	5.2	65
8428	Hierarchical Carbon-Coated Ball-Milled Silicon: Synthesis and Applications in Free-Standing Electrodes and High-Voltage Full Lithium-Ion Batteries. ACS Nano, 2018, 12, 6280-6291.	7.3	99
8429	Operando monitoring the lithium spatial distribution of lithium metal anodes. Nature Communications, 2018, 9, 2152.	5.8	96
8430	Metal–organic framework@SiO ₂ as permselective separator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 14623-14632.	5.2	116
8431	The progress of metal-free catalysts for the oxygen reduction reaction based on theoretical simulations. Journal of Materials Chemistry A, 2018, 6, 13489-13508.	5.2	82
8432	Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering. Journal of Visualized Experiments, 2018, , .	0.2	10
8433	A Microporous Covalent–Organic Framework with Abundant Accessible Carbonyl Groups for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 9443-9446.	7.2	431
8434	SWNT Networks with Polythiophene Carboxylate Links for High-Performance Silicon Monoxide Electrodes. ACS Applied Energy Materials, 2018, 1, 2417-2423.	2.5	12
8435	Facile Strategy to Low-Cost Synthesis of Hierarchically Porous, Active Carbon of High Graphitization for Energy Storage. ACS Applied Materials & amp; Interfaces, 2018, 10, 21573-21581.	4.0	38
8436	Double Perovskites as Model Bifunctional Catalysts toward Rational Design: The Correlation between Electrocatalytic Activity and Complex Spin Configuration. ACS Applied Materials & Interfaces, 2018, 10, 19746-19754.	4.0	41
8437	Self-Relaxant Superelastic Matrix Derived from C ₆₀ Incorporated Sn Nanoparticles for Ultra-High-Performance Li-Ion Batteries. ACS Nano, 2018, 12, 5588-5604.	7.3	67
8438	Copper sulfide nanoparticles as high-performance cathode materials for magnesium secondary batteries. Nanoscale, 2018, 10, 12526-12534.	2.8	95
8439	Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale, 2018, 10, 11241-11280.	2.8	258
8440	Phenyl Selenosulfides as Cathode Materials for Rechargeable Lithium Batteries. Advanced Functional Materials, 2018, 28, 1801791.	7.8	66
8441	Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Advanced Materials, 2018, 30, e1800005.	11.1	394
8442	Ultrafine SnO ₂ Nanocrystals Selfâ€Anchored in Carbon for Stable Lithium Storage. ChemElectroChem, 2018, 5, 2341-2347.	1.7	14
8443	Fabrication of Hollow Co ₃ O ₄ Nanospheres and Their Nanocomposites of CNT and rGO as Highâ€Performance Anodes for Lithiumâ€Ion Batteries. ChemistrySelect, 2018, 3, 5502-5511.	0.7	7
8444	Fundamental mechanisms of fracture and its suppression in Ni-rich layered cathodes: Mechanics-based multiscale approaches. Extreme Mechanics Letters, 2018, 22, 98-105.	2.0	17

#	Article	IF	CITATIONS
8445	A hybrid sodium-ion capacitor with polyimide as anode and polyimide-derived carbon as cathode. Journal of Power Sources, 2018, 396, 12-18.	4.0	51
8446	Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries. Nanoscale, 2018, 10, 12430-12435.	2.8	9
8447	Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes. Journal of Materials Chemistry A, 2018, 6, 12782-12793.	5.2	93
8448	A Microporous Covalent–Organic Framework with Abundant Accessible Carbonyl Groups for Lithiumâ€ion Batteries. Angewandte Chemie, 2018, 130, 9587-9590.	1.6	38
8449	Selfâ€Assembled Nanostructured CuCo ₂ O ₄ for Electrochemical Energy Storage and the Oxygen Evolution Reaction via Morphology Engineering. Small, 2018, 14, e1800742.	5.2	100
8450	Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries. Journal of Materials Science, 2018, 53, 12421-12431.	1.7	20
8451	Highly Active Surface Structure in Nanosized Spinel Cobalt-Based Oxides for Electrocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 14447-14458.	1.5	24
8452	In Operando Small-Angle X-ray Scattering Investigation of Nanostructured Polymer Electrolyte for Lithium-Ion Batteries. ACS Energy Letters, 2018, 3, 1525-1530.	8.8	31
8453	Influences of graphite electrode on degradation induced by accelerated charging–discharging cycling in lithium-ion battery. Molecular Crystals and Liquid Crystals, 2018, 663, 90-98.	0.4	1
8454	Surface Adsorption of Polyethylene Glycol to Suppress Dendrite Formation on Zinc Anodes in Rechargeable Aqueous Batteries. ChemElectroChem, 2018, 5, 2409-2418.	1.7	183
8455	Rational Design of Low Cost and High Energy Lithium Batteries through Tailored Fluorineâ€free Electrolyte and Nanostructured S/C Composite. ChemSusChem, 2018, 11, 2981-2986.	3.6	20
8456	Stable Metal Anode enabled by Porous Lithium Foam with Superior Ion Accessibility. Advanced Materials, 2018, 30, e1802156.	11.1	115
8457	A Novel Graphite–Graphite Dual Ion Battery Using an AlCl ₃ –[EMIm]Cl Liquid Electrolyte. Small, 2018, 14, e1800745.	5.2	73
8458	Molecular Electrostatic Potential: A New Tool to Predict the Lithiation Process of Organic Battery Materials. Journal of Physical Chemistry Letters, 2018, 9, 3573-3579.	2.1	131
8459	New anatase phase VTi _{2.6} O _{7.2} ultrafine nanocrystals for high-performance rechargeable magnesium-based batteries. Journal of Materials Chemistry A, 2018, 6, 13901-13907.	5.2	19
8460	Carbon coated mixed-metal selenide microrod: Bimetal-organic-framework derivation approach and applications for lithium-ion batteries. Chemical Engineering Journal, 2018, 351, 169-176.	6.6	71
8461	The development in aqueous lithium-ion batteries. Journal of Energy Chemistry, 2018, 27, 1521-1535.	7.1	114
8462	Internally Referenced DOSY-NMR: A Novel Analytical Method in Revealing the Solution Structure of Lithium-Ion Battery Electrolytes. Journal of Physical Chemistry Letters, 2018, 9, 3714-3719.	2.1	25

#	Article	IF	CITATIONS
8463	Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage. Chemical Engineering Journal, 2018, 350, 1066-1072.	6.6	31
8464	Nitrogen-doped hierarchically porous carbonaceous nanotubes for lithium ion batteries. Chemical Engineering Journal, 2018, 352, 964-971.	6.6	25
8465	Mono and bi-layer germanene as prospective anode material for Li-ion batteries: A first-principles study. Computational Condensed Matter, 2018, 16, e00314.	0.9	25
8466	Gelatin-polyethylenimine composite as a functional binder for highly stable lithium-sulfur batteries. Electrochimica Acta, 2018, 282, 758-766.	2.6	51
8467	Activation and degradation of electrospun LiFePO4 battery cathodes. Journal of Power Sources, 2018, 396, 386-394.	4.0	21
8468	Hierarchically porous carbon/red phosphorus composite for high-capacity sodium-ion battery anode. Science Bulletin, 2018, 63, 982-989.	4.3	31
8469	Electrochemistry and Solid‣tate Chemistry of NaMeO ₂ (Me = 3d Transition Metals). Advanced Energy Materials, 2018, 8, 1703415.	10.2	255
8470	Novel three dimensional hierarchical porous Sn-Ni alloys as anode for lithium ion batteries with long cycle life by pulse electrodeposition. Chemical Engineering Journal, 2018, 350, 791-798.	6.6	67
8471	Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. Journal of Power Sources, 2018, 396, 288-296.	4.0	105
8472	A stable hybrid anode of graphene/silicon nanowires array for high performance lithium-ion battery. Materials Letters, 2018, 228, 262-265.	1.3	16
8473	Stabilized structural and electrochemical properties of LiNi0.5Mn1.5O4 via ZrF4 nanolayer modification for Li-ion batteries. Solid State Ionics, 2018, 324, 7-12.	1.3	13
8474	Fabrication of high-energy hybrid capacitors by using carbon-sulfur composite as promising cathodes. Journal of Power Sources, 2018, 396, 102-108.	4.0	7
8475	Degree of Geometric Tilting Determines the Activity of FeO ₆ Octahedra for Water Oxidation. Chemistry of Materials, 2018, 30, 4313-4320.	3.2	54
8476	A Class of Organopolysulfides As Liquid Cathode Materials for High-Energy-Density Lithium Batteries. ACS Applied Materials & Interfaces, 2018, 10, 21084-21090.	4.0	68
8477	Hierarchically Porous N,S-Codoped Carbon-Embedded Dual Phase MnO/MnS Nanoparticles for Efficient Lithium Ion Storage. Inorganic Chemistry, 2018, 57, 7993-8001.	1.9	34
8478	A P2-type Na _{0.44} Mn _{0.6} Ni _{0.3} Cu _{0.1} O ₂ cathode material with high energy density for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12582-12588.	5.2	52
8479	Vitamin K as a high-performance organic anode material for rechargeable potassium ion batteries. Journal of Materials Chemistry A, 2018, 6, 12559-12564.	5.2	83
8480	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	15.6	894

ARTICLE IF CITATIONS Lithium ion battery separator with high performance and high safety enabled by tri-layered 8481 4.0 78 SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. Journal of Power Sources, 2018, 396, 265-275. Hierarchical MoO₃/SnS₂ coreâ€"shell nanowires with enhanced 8482 electrochemical performance for lithium-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 1.3 17171-17179. Superior performance of Na₇V₄(P₂O₇)₄PO₄ in sodium 8483 26 1.7 ion batteries. RSC Advances, 2018, 8, 21224-21228. Recent advances of bismuth based anode materials for sodium-ion batteries. Materials Technology, 8484 2018, 33, 563-573. Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic 8485 1.2 52 acid. Translational Materials Research, 2018, 5, 034001. Advanced Transmission Electron Microscopy for Electrode and Solidâ€Electrolyte Materials in Lithiumâ€Ion Batteries. Small Methods, 2018, 2, 1800006. 8486 4.6 Rational design of coaxial MWCNTs@Si/SiOx@C nanocomposites as extending-life anode materials for 8487 2.3 34 lithium-ion batteries. Ceramics International, 2018, 44, 16660-16667. Efficient lithium storage of concave graphitic anode embedded with nanoconfined silicon. Chemical 8488 1.2 Physics Letters, 2018, 706, 189-195. Design of ion-conductive core-shell nanoparticles via site-selective quaternization of 8489 2.6 11 triazole–triazolium salt block copolymers. European Polymer Journal, 2018, 105, 339-347. Predominant electronic conductivity of Li2ZnTi3O8 anode material prepared in nitrogen for 8490 1.9 rechargeable lithium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 823, 269-277. A Polyanion Host as a Prospective High Voltage Cathode Material for Sodium Ion Batteries. Journal of 8491 1.3 11 the Electrochemical Society, 2018, 165, A1822-A1828. Influences of oxygen content on the electrochemical performance of a-SiOx thin-film anodes. 8492 2.6 28 Electrochimica Ácta, 2018, 283, 183-189. Incorporation of Cu into Li[Ni1/3Co1/3Mn1/3]O2 cathode: Elucidating its electrochemical properties 8493 2.8 41 and stability. Journal of Alloys and Compounds, 2018, 764, 112-121. In Situ TEM Investigation of Electron Irradiation Induced Metastable States in Lithium-Ion Battery Cathodes: Li_ZFeSiO₄ versus LiFePO₄. ACS Applied Energy 8494 2.5 Materials, 2018, 1, 3180-3189. A newly developed lithium cobalt oxide super hydrophilic film for large area, thermally stable and 8495 5.226 highly efficient inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13751-13760. Initiating a mild aqueous electrolyte Co₃O₄/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(<scp>iii</scp>) rich-electrode. Energy and Environmental Science, 2018, 11, 2521-2530. 8496 414 Porous Fe₃O₄Nanospheres as Effective Sulfur Hosts for Li-S Batteries. 8497 1.323 Journal of the Electrochemical Society, 2018, 165, A1656-A1661. Ultrafast ionic diffusion of debossed carbon nanocomposites for lithium storage. Journal of Alloys 8498 2.8 and Compounds, 2018, 764, 416-423.

#	Article	IF	CITATIONS
8499	Hetero-nanostructured materials for high-power lithium ion batteries. Journal of Colloid and Interface Science, 2018, 529, 505-519.	5.0	18
8500	The multiple effects of potassium doping on LiVPO4F/C composite cathode material for lithium ion batteries. Journal of Power Sources, 2018, 396, 155-163.	4.0	20
8501	A novel approach for the quantification of inhomogeneous 3D current distribution in fuel cell electrodes. Journal of Power Sources, 2018, 396, 246-256.	4.0	15
8502	In-situ electrochemical activation designed hybrid electrocatalysts for water electrolysis. Science Bulletin, 2018, 63, 853-876.	4.3	107
8503	Cation Effects on the Reduction of Colloidal ZnO Nanocrystals. Journal of the American Chemical Society, 2018, 140, 8924-8933.	6.6	22
8504	A first-principles study on Si ₂₄ as an anode material for rechargeable batteries. RSC Advances, 2018, 8, 20228-20233.	1.7	8
8505	Fabrication of phosphorus-doped carbon-decorated Li4Ti5O12 anode and its lithium storage performance for Li-ion batteries. Ceramics International, 2018, 44, 17544-17547.	2.3	14
8506	Freestanding Electrode Pairs with High Areal Density Fabricated under High Pressure and High Temperature for Flexible Lithium Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3171-3179.	2.5	13
8507	Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature, 2018, 558, 425-429.	13.7	184
8508	A lightweight carbon nanofiber-based 3D structured matrix with high nitrogen-doping level for lithium metal anodes. Science China Materials, 2019, 62, 87-94.	3.5	53
8509	Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Materials, 2019, 16, 383-390.	9.5	79
8510	Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Storage Materials, 2019, 16, 364-373.	9.5	31
8511	Effectively enhance high voltage stability of LiNi1/3Co1/3Mn1/3O2 cathode material with excellent energy density via La2O3 surface modified. Ionics, 2019, 25, 2007-2016.	1.2	7
8512	A new Tin-based O3-Na0.9[Ni0.45â^'/2Mn Sn0.55â^'/2]O2 as sodium-ion battery cathode. Journal of Energy Chemistry, 2019, 31, 132-137.	7.1	39
8513	Effect of rich R-TiO2 on the rate and cycle properties of Li4Ti5O12 as anode for lithium ion batteries. Journal of Energy Chemistry, 2019, 32, 182-188.	7.1	18
8514	Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes. Journal of Energy Chemistry, 2019, 32, 124-130.	7.1	102
8515	A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Materials, 2019, 16, 597-606.	9.5	150
8516	Synthesis of dual-phase Li4Ti5O12-TiO2 nanowires as anode for lithium-ion battery. Ionics, 2019, 25, 1505-1511.	1.2	16

#	Article	IF	CITATIONS
8517	LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 111-117.	9.5	54
8518	Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries. Energy Storage Materials, 2019, 17, 78-87.	9.5	72
8519	Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy and Environmental Science, 2019, 12, 442-462.	15.6	433
8520	Constructing radially oriented macroporous spheres with central cavities as ultrastable lithium-ion battery anodes. Energy Storage Materials, 2019, 17, 242-252.	9.5	23
8521	Atomistic insights into the reaction mechanism of nanostructured Lil: Implications for rechargeable Li-12 batteries. Energy Storage Materials, 2019, 17, 211-219.	9.5	10
8522	Micropatterned arrays of vertically-aligned CNTs grown on aluminum as a new cathode platform for LiFePO4 integration in lithium-ion batteries. Ionics, 2019, 25, 421-427.	1.2	10
8523	A temperature-sensitive poly(3-octylpyrrole)/carbon composite as a conductive matrix of cathodes for building safer Li-ion batteries. Energy Storage Materials, 2019, 17, 275-283.	9.5	42
8524	Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. Journal of Energy Chemistry, 2019, 31, 54-78.	7.1	275
8525	Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives. Materials Today, 2019, 22, 142-158.	8.3	301
8526	Bimetallic metal-organic frameworks derived Ni-Co-Se@C hierarchical bundle-like nanostructures with high-rate pseudocapacitive lithium ion storage. Energy Storage Materials, 2019, 17, 374-384.	9.5	117
8527	BaNb3.6010 nanowires with superior electrochemical performance towards ultrafast and highly stable lithium storage. Energy Storage Materials, 2019, 16, 400-410.	9.5	43
8528	Rational design of graphitic-inorganic Bi-layer artificial SEI for stable lithium metal anode. Energy Storage Materials, 2019, 16, 426-433.	9.5	85
8529	Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Materials, 2019, 16, 411-418.	9.5	247
8530	Exploration of Advanced Electrode Materials for Rechargeable Sodiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1800212.	10.2	204
8531	The Application of Hollow Structured Anodes for Sodiumâ€Ion Batteries: From Simple to Complex Systems. Advanced Materials, 2019, 31, e1800492.	11.1	143
8532	Structure, dielectric, and temperature-dependent conductivity studies of the Li2FeSiO4/C nano cathode material for lithium-ion batteries. Ionics, 2019, 25, 2041-2056.	1.2	12
8533	Engineering 2D Architectures toward Highâ€Performance Micro‧upercapacitors. Advanced Materials, 2019, 31, e1802793.	11.1	202
8534	Silicon carbon nanohybrids with expandable space: A high-performance lithium battery anodes. Microporous and Mesoporous Materials, 2019, 275, 42-49.	2.2	34

#	Article	IF	CITATIONS
8535	Low-cost AlCl3/Et3NHCl electrolyte for high-performance aluminum-ion battery. Energy Storage Materials, 2019, 17, 38-45.	9.5	124
8536	An Integrated Heater Equalizer for Lithium-Ion Batteries of Electric Vehicles. IEEE Transactions on Industrial Electronics, 2019, 66, 4398-4405.	5.2	58
8537	Enabling room-temperature solid-state lithium-metal batteries with fluoroethylene carbonate-modified plastic crystal interlayers. Energy Storage Materials, 2019, 18, 311-319.	9.5	94
8538	Surface functionalization of nitrogen-doped carbon derived from protein as anode material for lithium storage. Applied Surface Science, 2019, 463, 18-26.	3.1	26
8539	Understanding the roles of Ti on the structure and electrochemical performances of Li2Ru1-Ti O3 cathode materials for Li-ion batteries. Journal of Energy Chemistry, 2019, 33, 9-16.	7.1	9
8540	Combustion synthesis of Fe3O4/mesorporous carbon composite for lithium ion battery anode. Materials Research Innovations, 2019, 23, 407-412.	1.0	1
8541	A Batteryless Energy Harvesting Storage System for Implantable Medical Devices Demonstrated In Situ. Circuits, Systems, and Signal Processing, 2019, 38, 1360-1373.	1.2	10
8542	Porous nanocomposite anodes of silicon/iron silicide/3D carbon network for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 770, 369-376.	2.8	16
8543	Wrinkling and ratcheting of a thin film on cyclically deforming plastic substrate: Mechanical instability of the solid-electrolyte interphase in Li–ion batteries. Journal of the Mechanics and Physics of Solids, 2019, 123, 103-118.	2.3	32
8544	Reconfiguring graphene for high-performance metal-ion battery anodes. Energy Storage Materials, 2019, 16, 619-624.	9.5	143
8545	Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy and Environmental Science, 2019, 12, 825-840.	15.6	205
8546	Poly(ethylene oxide)â€based block copolymer electrolytes for lithium metal batteries. Polymer International, 2019, 68, 7-13.	1.6	55
8547	High Coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery. Energy Storage Materials, 2019, 17, 260-265.	9.5	35
8548	Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Materials, 2019, 17, 253-259.	9.5	110
8549	An advanced zinc air battery with nanostructured superwetting electrodes. Energy Storage Materials, 2019, 17, 358-365.	9.5	25
8550	The Regulating Role of Carbon Nanotubes and Graphene in Lithiumâ€ion and Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1800863.	11.1	339
8551	Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Materials, 2019, 17, 309-316.	9.5	279
8552	Facile synthesis of boron-doped porous carbon as anode for lithium–ion batteries with excellent electrochemical performance. Ionics, 2019, 25, 2111-2119.	1.2	16

#	Article	IF	Citations
8553	A 3D free-standing thin film based on N, P-codoped hollow carbon fibers embedded with MoP quantum	 9.5	57
6333	dots as high efficient oxygen electrode for Li-O2 batteries. Energy Storage Materials, 2019, 17, 226-233.	9.0	57
8554	Morphological evolution of spinel disordered LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries by modified solid-state method. Ionics, 2019, 25, 1999-2006.	1.2	9
8555	Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: Theoretical modelling and experimental validation. Mechanical Systems and Signal Processing, 2019, 125, 229-244.	4.4	181
8556	Rational design of multi-walled carbon nanotube@hollow Fe ₃ O ₄ @C coaxial nanotubes as long-cycle-life lithium ion battery anodes. Nanotechnology, 2019, 30, 465402.	1.3	12
8557	Iron fumarate as large-capacity and long-life anode material for Li-ion battery boosted by conductive Fe2P decorating. Journal of Alloys and Compounds, 2019, 809, 151826.	2.8	16
8558	High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30793-30800.	4.0	21
8559	Highly Lithiophilic Cobalt Nitride Nanobrush as a Stable Host for High-Performance Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2019, 11, 30992-30998.	4.0	40
8560	Revealing magnetic ground state of a layered cathode material by muon spin relaxation and neutron scattering experiments. Applied Physics Letters, 2019, 114, 203901.	1.5	4
8561	Protic Imidazolium Polymer as Ion Conductor for Improved Oxygen Evolution Performance. Polymers, 2019, 11, 1268.	2.0	3
8562	Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries. Nano Research, 2019, 12, 2238-2249.	5.8	13
8563	Dynamic evolution of Cathodeâ^'Electrolyte interface of LiNi0.6Co0.2Mn0.2O2 during the initial Chargeâ^'Discharge process. Journal of Power Sources, 2019, 438, 226979.	4.0	37
8564	The cube-like porous ZnO/C composites derived from metal organic framework-5 as anodic material with high electrochemical performance for Ni–Zn rechargeable battery. Journal of Power Sources, 2019, 438, 226986.	4.0	40
8565	Carbon Nitride Transforms into a High Lithium Storage Capacity Nitrogen-Rich Carbon. ACS Nano, 2019, 13, 9279-9291.	7.3	58
8566	In Situ Analytical Electron Microscopy and Cryogenic Electron Microscopy for Characterizing Nanoscale Materials in Electrochemical Process. Microscopy and Microanalysis, 2019, 25, 1856-1857.	0.2	0
8567	Understanding the Role of Dopant Metal Atoms on the Structural and Electronic Properties of Lithium-Rich Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Material for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2019, 10, 4842-4850.	2.1	21
8568	Gel electrolytes with a wide potential window for high-rate Al-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20348-20356.	5.2	54
8569	Mechano-electrochemical and buckling analysis of composition-gradient nanowires electrodes in lithium-ion battery. Acta Mechanica, 2019, 230, 4145-4156.	1.1	10
8570	Image Segmentation for FIB-SEM Serial Sectioning of a Si/C–Graphite Composite Anode Microstructure Based on Preprocessing and Global Thresholding. Microscopy and Microanalysis, 2019, 25, 1139-1154.	0.2	17

#	Article	IF	CITATIONS
8571	Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14321-14340.	3.2	94
8572	Hierarchical non-woven fabric NiO/TiO2 film as an efficient anode material for lithium-ion batteries. RSC Advances, 2019, 9, 24682-24687.	1.7	17
8573	Quasi-solid-state electrolytes for lithium sulfur batteries: Advances and perspectives. Journal of Power Sources, 2019, 438, 226985.	4.0	73
8574	SEI Grown on MCMB-Electrode with Fluoroethylene Carbonate and Vinylene Carbonate Additives as Probed by In Situ DRIFTS. Journal of the Electrochemical Society, 2019, 166, A2741-A2748.	1.3	9
8575	Threeâ€Dimensional Hierarchical Constructs of MOFâ€onâ€Reduced Graphene Oxide for Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2019, 14, 3577-3582.	1.7	29
8576	Recent Progress in the Electrolytes of Aqueous Zincâ€ion Batteries. Chemistry - A European Journal, 2019, 25, 14480-14494.	1.7	312
8577	1D Carbonâ€Based Nanocomposites for Electrochemical Energy Storage. Small, 2019, 15, e1902348.	5.2	73
8578	Metal-organic-framework-derived hollow polyhedrons of prussian blue analogues for high power grid-scale energy storage. Electrochimica Acta, 2019, 321, 134671.	2.6	31
8579	Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood. , 2019, 1, 354-361.		72
8580	Design, synthesis and lithium-ion storage capability of Al _{0.5} Nb _{24.5} O ₆₂ . Journal of Materials Chemistry A, 2019, 7, 19862-19871.	5.2	96
8581	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	4.0	38
8582	Encapsulating MnSe Nanoparticles Inside 3D Hierarchical Carbon Frameworks with Lithium Storage Boosted by in Situ Electrochemical Phase Transformation. ACS Applied Materials & Interfaces, 2019, 11, 33022-33032.	4.0	40
8583	High performance lithium battery anode materials by coating SiO2 nanowire arrays with PEO. New Journal of Chemistry, 2019, 43, 14609-14615.	1.4	4
8584	Multifunctional Nano-Architecting of Si Electrode for High-Performance Lithium-Ion Battery Anode. Journal of the Electrochemical Society, 2019, 166, A2776-A2783.	1.3	6
8585	Structural and electronic properties of small lithium peroxide clusters in view of the charge process in Li–O ₂ batteries. Physical Chemistry Chemical Physics, 2019, 21, 19935-19943.	1.3	5
8586	Synergetic Protection Hollow Silicon by Nitrogen-Doped Carbon/Reduced Graphene Oxide to Improve the Electrochemical Stability as Lithium-Ion Battery Anode. International Journal of Electrochemical Science, 2019, , 5831-5845.	0.5	3
8587	A New View of Supercapacitors: Integrated Supercapacitors. Advanced Energy Materials, 2019, 9, 1901081.	10.2	315
8588	Exfoliated transition metal dichalcogenide nanosheets for supercapacitor and sodium ion battery applications. Royal Society Open Science, 2019, 6, 190437.	1.1	37

#	Article	IF	CITATIONS
8589	Nb ₂ O ₅ /RGO Nanocomposite Modified Separators with Robust Polysulfide Traps and Catalytic Centers for Boosting Performance of Lithium–Sulfur Batteries. Small, 2019, 15, e1902363.	5.2	83
8590	On the Lithiation Mechanism of Amorphous Silicon Electrodes in Li-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 22027-22039.	1.5	34
8591	Facile Synthesis of Ultraâ€&mall Fewâ€Layer Nanostructured MoSe ₂ Embedded on N, P Coâ€Doped Bioâ€Carbon for Highâ€Performance Half/Full Sodiumâ€Ion and Potassiumâ€Ion Batteries. Chemistry A European Journal, 2019, 25, 13411-13421.	-1.7	61
8592	A facile preparation of nano-Ag4Bi2O5/MnOx on wrinkled rGO as greatly enhanced ternary catalyst for oxygen reduction reaction in alkaline electrolyte. Journal of Solid State Electrochemistry, 2019, 23, 2737-2746.	1.2	1
8593	MXeneâ€Reduced Graphene Oxide Aerogel for Aqueous Zincâ€lon Hybrid Supercapacitor with Ultralong Cycle Life. Advanced Electronic Materials, 2019, 5, 1900537.	2.6	259
8594	Mixed molybdenum and vanadium oxide nanoparticles with excellent high-power performance as Li-ion battery negative electrodes. Electrochimica Acta, 2019, 322, 134695.	2.6	9
8595	Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices. ACS Applied Electronic Materials, 2019, 1, 1718-1734.	2.0	108
8596	Cobalt Hydroxide Carbonate/Reduced Graphene Oxide Anodes Enabled by a Confined Step-by-Step Electrochemical Catalytic Conversion Process for High Lithium Storage Capacity and Excellent Cyclability with a Low Variance Coefficient. ACS Applied Materials & Interfaces, 2019, 11, 33091-33101.	4.0	21
8597	Thermoplastic Polyurethane Elastomerâ€Based Gel Polymer Electrolytes for Sodiumâ€Metal Cells with Enhanced Cycling Performance. ChemSusChem, 2019, 12, 4645-4654.	3.6	42
8598	Designed Formation of Hybrid Nanobox Composed of Carbon Sheathed CoSe ₂ Anchored on Nitrogenâ€Doped Carbon Skeleton as Ultrastable Anode for Sodiumâ€ion Batteries. Small, 2019, 15, e1902881.	5.2	79
8599	Co-axial fibrous silicon asymmetric membranes for high-capacity lithium-ion battery anode. Journal of Applied Electrochemistry, 2019, 49, 1013-1025.	1.5	4
8600	Structural stability and ionic transport property of NaMPO4 (M = V, Cr, Mn, Fe, Co, Ni) as cathode material for Na-ion batteries. Journal of Power Sources, 2019, 438, 227016.	4.0	24
8601	Anisotropy of the mechanical properties of Li1·3Al0·3Ti1·7(PO4)3 solid electrolyte material. Journal of Power Sources, 2019, 437, 226940.	4.0	15
8602	Surface nano-ZnO doped LiNi1/3Co1/3Mn1/3O2 for an improved elevated temperature performance by a facile low-temperature solid-state process. Ionics, 2019, 25, 4523-4530.	1.2	3
8603	Spatially-controlled porous nanoflake arrays derived from MOFs: An efficiently long-life oxygen electrode. Nano Research, 2019, 12, 2528-2534.	5.8	16
8604	The good performance of bilayer β-antimoneneas an anode material for the Li-ion battery study. Applied Surface Science, 2019, 495, 143549.	3.1	17
8605	Electro-polymerized polypyrrole film for fabrication of flexible and slurry-free polypyrrole-sulfur-polypyrrole sandwich electrode for the lithium-sulfur battery. Journal of Power Sources, 2019, 437, 226925.	4.0	27
8606	"Topâ€Đown―Li Deposition Pathway Enabled by an Asymmetric Design for Li Composite Electrode. Advanced Energy Materials, 2019, 9, 1901491.	10.2	43

#	Article	IF	CITATIONS
8607	Carbon nanomaterials for rechargeable lithium–sulfur batteries. , 2019, , 279-309.		2
8608	Prospects of carbon nanomaterials for energy storage and conversion. , 2019, , 423-430.		2
8609	Exploring synergetic effects of vinylene carbonate and 1,3-propane sultone on LiNi0.6Mn0.2Co0.2O2/graphite cells with excellent high-temperature performance. Journal of Power Sources, 2019, 437, 226929.	4.0	21
8610	Preparation of cellulose-based lithium ion battery membrane enhanced with alkali-treated polysulfonamide fibers and cellulose nanofibers. Journal of Membrane Science, 2019, 591, 117346.	4.1	26
8611	A homogenous mixed coating enabled significant stability and capacity enhancement of iron oxide anodes for aqueous nickel–iron batteries. Chemical Communications, 2019, 55, 10308-10311.	2.2	17
8612	Porous diatomite-mixed 1,4,5,8-NTCDA nanowires as high-performance electrode materials for lithium-ion batteries. Nanoscale, 2019, 11, 15881-15891.	2.8	22
8613	Hierarchical multicarbonyl polyimide architectures as promising anode active materials for high-performance lithium/sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 19112-19119.	5.2	58
8614	Graphitic carbon nitride nanostructures: Catalysis. Applied Materials Today, 2019, 16, 388-424.	2.3	58
8615	The liquid ammoniate of sodium iodide as an alternative electrolyte for sodium ion batteries: The case of titanium dioxide nanotube electrodes. Energy Storage Materials, 2019, 22, 424-432.	9.5	8
8616	Mechanical deformation: A feasible route for reconfiguration of inner interfaces to modulate the high performance of three-dimensional porous carbon material anodes in stretchable lithium-Ion batteries. Journal of Colloid and Interface Science, 2019, 555, 431-437.	5.0	8
8617	Everlasting Living and Breathing Gyroid 3D Network in Si@SiOx/C Nanoarchitecture for Lithium Ion Battery. ACS Nano, 2019, 13, 9607-9619.	7.3	165
8618	<i>In situ</i> synthesis and electrochemical performance of MoO _{3â^x} nanobelts as anode materials for lithium-ion batteries. Dalton Transactions, 2019, 48, 12832-12838.	1.6	21
8619	<i>a</i> -MoS ₃ @CNT nanowire cathode for rechargeable Mg batteries: a pseudocapacitive approach for efficient Mg-storage. Nanoscale, 2019, 11, 16043-16051.	2.8	23
8620	Microcrystalline copper foil as a high performance collector for lithium-ion batteries. Journal of Power Sources, 2019, 438, 226973.	4.0	24
8621	Raman spectroscopy of nominally Ni-doped LiMn _{2â^'<i>x</i>} Ni _{<i>x</i>} O ₄ (0 ≤i>xâ‰ 0 .20). Materials Research Express, 2019, 6, 115550.	0.8	5
8622	The first-principle study on the performance of biaxial strained graphdiyne as the Li-ion battery anode. Applied Surface Science, 2019, 497, 143723.	3.1	24
8623	A single-ion conducting polymer electrolyte based on poly(lithium 4-styrenesulfonate) for high-performance lithium metal batteries. Solid State Ionics, 2019, 341, 115048.	1.3	24
8624	Template-Assisted Self-Sulfuration Formation of MoS2 Nanosheets Embedded in Ordered Mesoporous Carbon for Lithium Storage. ACS Applied Energy Materials, 2019, 2, 6158-6162.	2.5	12

#	Article	IF	CITATIONS
8625	In Situ Electrochemical Synthesis of Novel Lithium-Rich Organic Cathodes for All-Organic Li-Ion Full Batteries. ACS Applied Materials & Interfaces, 2019, 11, 32987-32993.	4.0	21
8626	Enhanced Cycling Performance of Ni-Rich Positive Electrodes (NMC) in Li-Ion Batteries by Reducing Electrolyte Free-Solvent Activity. ACS Applied Materials & Interfaces, 2019, 11, 34973-34988.	4.0	63
8627	Creating Sandwich-like Ti ₃ C ₂ /TiO ₂ /rGO as Anode Materials with High Energy and Power Density for Li-Ion Hybrid Capacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 15394-15403.	3.2	57
8628	Lithium-ion conductivity and crystal structure of garnet-type solid electrolyte Li _{7â``} <i>_x</i> La ₃ Zr _{2 using single-crystal. Journal of the Ceramic Society of Japan, 2019, 127, 521-526.}	à^t&st∕sub	& g0; <i&g
8629	Sulfideâ€Based Solidâ€&tate Electrolytes: Synthesis, Stability, and Potential for Allâ€&olidâ€&tate Batteries. Advanced Materials, 2019, 31, e1901131.	11.1	365
8630	A Longâ€Cycleâ€Life Lithium–CO ₂ Battery with Carbon Neutrality. Advanced Materials, 2019, 31, e1902518.	11.1	138
8631	Application of ac impedance as diagnostic tool – Low temperature electrolyte for a Li-ion battery. Electrochimica Acta, 2019, 322, 134755.	2.6	17
8632	Importance of Water Structure and Catalyst–Electrolyte Interface on the Design of Water Splitting Catalysts. Chemistry of Materials, 2019, 31, 8248-8259.	3.2	54
8633	Construction of Sb ₂ Se ₃ nanocrystals on Cu _{2â^'x} Se@C nanosheets for high performance lithium storage. New Journal of Chemistry, 2019, 43, 14066-14073.	1.4	6
8634	Synthesis and investigation of electrochemical performance of mixed valent Li4FeMoO6 as positive electrode material in rechargeable lithium ion batteries. Journal of Power Sources, 2019, 436, 226870.	4.0	13
8635	Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28801-28808.	4.0	64
8636	A versatile single-ion electrolyte with a Grotthuss-like Li conduction mechanism for dendrite-free Li metal batteries. Energy and Environmental Science, 2019, 12, 2741-2750.	15.6	89
8637	Fe/N-doped carbon nanofibers with Fe ₃ O ₄ /Fe ₂ C nanocrystals enchased as electrocatalysts for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 2296-2303.	3.0	15
8638	Natural Compounds Gallic Acid Derivatives for Longâ€Life Li/Na Organic Batteries. ChemElectroChem, 2019, 6, 4765-4772.	1.7	9
8639	Electrochemical properties of Na0.5Bi0.5TiO3 perovskite as an anode material for sodium ion batteries. Journal of Materials Science, 2019, 54, 13236-13246.	1.7	19
8640	Stabilizing a High-Voltage Lithium-Rich Layered Oxide Cathode with a Novel Electrolyte Additive. ACS Applied Materials & Interfaces, 2019, 11, 28841-28850.	4.0	54
8641	Ti-Doped Tunnel-Type Na ₄ Mn ₉ O ₁₈ Nanoparticles as Novel Anode Materials for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 28900-28908.	4.0	23
8642	Made From Henna! A Fast-Charging, High-Capacity, and Recyclable Tetrakislawsone Cathode Material for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 13836-13844.	3.2	36

# 8643	ARTICLE Highly Reversible Lithium Storage of Nitrogenâ€Đoped Carbon@MnO Hierarchical Hollow Spheres as Advanced Anode Materials. ChemElectroChem, 2019, 6, 3994-4001.	IF 1.7	CITATIONS
8644	Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries. Nature Communications, 2019, 10, 3249.	5.8	99
8645	Effect of morphological change of copper-oxide fillers on the performance of solid polymer electrolytes for lithium-metal polymer batteries. RSC Advances, 2019, 9, 21760-21770.	1.7	19
8646	Rechargeable aqueous hybrid ion batteries: developments and prospects. Journal of Materials Chemistry A, 2019, 7, 18708-18734.	5.2	128
8647	Processing of Printed Dye Sensitized Solar Cells on Woven Textiles. IEEE Journal of Photovoltaics, 2019, 9, 1020-1024.	1.5	21
8648	Domestic Food Waste Derived Porous Carbon for Energy Storage Applications. ChemistrySelect, 2019, 4, 8007-8014.	0.7	7
8649	Fullerene mixtures as negative electrodes in innovative Na-ion batteries. Chemical Physics Letters, 2019, 731, 136607.	1.2	9
8650	Ternary chalcogenide LiInSe2: A promising high-performance anode material for lithium ion batteries. Electrochimica Acta, 2019, 320, 134562.	2.6	8
8651	Dual Bond Enhanced Multidimensional Constructed Composite Silicon Anode for High-Performance Lithium Ion Batteries. ACS Nano, 2019, 13, 8854-8864.	7.3	91
8652	Surrogate Model Assisted Design of Silicon Anode Considering Lithiation Induced Stresses. , 2019, , .		2
8653	Superlithiophilic Amorphous SiO ₂ –TiO ₂ Distributed into Porous Carbon Skeleton Enabling Uniform Lithium Deposition for Stable Lithium Metal Batteries. Advanced Science, 2019, 6, 1900943.	5.6	96
8654	A Firstâ€Principles Study of Boronâ€Doped BC 2 N Sheet as Potential Anode Material for Li/Naâ€Ion Batteries. ChemElectroChem, 2019, 6, 3797-3805.	1.7	8
8655	Litchi-structural core–shell Si@C for high-performance lithium–ion battery anodes. Ionics, 2019, 25, 5809-5818.	1.2	6
8656	Three-dimensional hierarchical porous MnCo2O4@MnO2 network towards highly reversible lithium storage by unique structure. Chemical Engineering Journal, 2019, 378, 122207.	6.6	27
8657	A novel "holey-LFP / graphene / holey-LFP―sandwich nanostructure with significantly improved rate capability for lithium storage. Electrochimica Acta, 2019, 320, 134566.	2.6	6
8658	Functional composite polymer electrolytes with imidazole modified SiO2 nanoparticles for high-voltage cathode lithium ion batteries. Electrochimica Acta, 2019, 320, 134567.	2.6	36
8659	Enhanced Electrochemical Performance of Sb2O3 as an Anode for Lithium-Ion Batteries by a Stable Cross-Linked Binder. Applied Sciences (Switzerland), 2019, 9, 2677.	1.3	59
8660	Exploration of Li-Organic Batteries Using Hexaphyrin as an Active Cathode Material. Molecules, 2019, 24, 2433.	1.7	5

#	Article	IF	CITATIONS
8661	MOF-derived bimetal oxides NiO/NiCo2O4 with different morphologies as anodes for high-performance lithium-ion battery. Ionics, 2019, 25, 5787-5797.	1.2	22
8662	Quantification on Growing Mass of Solid Electrolyte Interphase and Deposited Mn(II) on the Silicon Anode of LiMn2O4 Full Lithium-Ion Cells. ACS Applied Materials & Interfaces, 2019, 11, 27839-27845.	4.0	8
8663	Polypropylene Carbonate-Based Adaptive Buffer Layer for Stable Interfaces of Solid Polymer Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 27906-27912.	4.0	24
8664	The stereo-microstructure of ZnO affects the lithium storage capacity of Li ₂ ZnTi ₃ O ₈ anode materials. Dalton Transactions, 2019, 48, 12303-12314.	1.6	5
8665	Poly(ionic liquid)s/Electrospun Nanofiber Composite Polymer Electrolytes for High Energy Density and Safe Li Metal Batteries. ACS Applied Energy Materials, 2019, 2, 6237-6245.	2.5	63
8666	Nitrogenâ€Doped Carbonâ€Coated Bimetal Selenides for Highâ€Performance Lithiumâ€lon Storage through the Selfâ€Accommodation of Volume Change. ChemElectroChem, 2019, 6, 3736-3741.	1.7	12
8667	A chemo-mechanical model for fully-coupled lithiation reaction and stress generation in viscoplastic lithiated silicon. Science China Technological Sciences, 2019, 62, 1365-1374.	2.0	8
8668	A review on transition metal nitrides as electrode materials for supercapacitors. Ceramics International, 2019, 45, 21062-21076.	2.3	108
8669	Porous carbon encapsulated Mn3O4 for stable lithium storage and its ex-situ XPS study. Electrochimica Acta, 2019, 319, 518-526.	2.6	49
8670	Chloroethoxy-terminated perfluoropolyether electrolytes with high lithium ion transference number for lithium battery applications. Polymer, 2019, 178, 121596.	1.8	5
8671	Preparation of MOF-derived NiCoP nanocages as anodes for lithium ion batteries. Powder Technology, 2019, 354, 834-841.	2.1	31
8672	Highly nanocrystalline interconnected La _{0.5} Ca _{0.5} CoO _{3â^´Î´} as an efficient bi-functional electrocatalyst for zinc–air batteries with structural and morphological evidence for ZnO mitigation. Sustainable Energy and Fuels, 2019, 3, 2657-2667.	2.5	9
8673	<i>In situ</i> formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery. Journal of Materials Chemistry A, 2019, 7, 17782-17789.	5.2	95
8674	Cationic shield mediated electrodeposition stability in metal electrodes. Journal of Materials Chemistry A, 2019, 7, 18442-18450.	5.2	7
8675	Surfactant induced formation of flower-like V2O5 microspheres as cathode materials for rechargeable magnesium batteries. Ionics, 2019, 25, 5889-5897.	1.2	8
8676	Boosting the performance of supercapacitors based hierarchically porous carbon from natural Juncus effuses by incorporation of MnO2. Journal of Alloys and Compounds, 2019, 805, 822-830.	2.8	30
8677	Hierarchical cobalt oxide@Nickel-vanadium layer double hydroxide core/shell nanowire arrays with enhanced areal specific capacity for nickel–zinc batteries. Journal of Power Sources, 2019, 436, 226867.	4.0	48
8678	Structural and vibrational properties of carbonophosphates: Na3MCO3PO4 (M = Mn, Fe, Co and Ni). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117298.	2.0	9

#	Article	IF	CITATIONS
8679	Cyclophosphazene-based hybrid polymer electrolytes obtained <i>via</i> epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18871-18879.	5.2	48
8680	Bio-derived N-doped porous carbon as sulfur hosts for high performance lithium sulfur batteries. Journal of Central South University, 2019, 26, 1426-1434.	1.2	6
8681	Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O–2B2O3. Journal of Alloys and Compounds, 2019, 805, 991-998.	2.8	39
8682	Understanding the structural changes in lithiated graphite through high-resolution operando powder X-ray diffraction. Carbon, 2019, 153, 347-354.	5.4	17
8683	Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordination Chemistry Reviews, 2019, 397, 138-167.	9.5	164
8684	A new strategy to improve the cyclic stability of high voltage lithium nickel manganese oxide cathode by poly(butyl methacrylate-acrylonitrile-styrene) terpolymer as co-binder in lithium ion batteries. Electrochimica Acta, 2019, 319, 527-540.	2.6	21
8685	Expanded lithiation of titanium disulfide: Reaction kinetics of multi-step conversion reaction. Nano Energy, 2019, 63, 103882.	8.2	21
8686	lon-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer–Tunnel Na _{0.6} MnO ₂ with Mg ²⁺ Doping at Na/Mn Site. ACS Applied Materials & Interfaces, 2019, 11, 26938-26945.	4.0	28
8687	Few-layer graphene coated current collectors for safe and powerful lithium ion batteries. Carbon, 2019, 153, 495-503.	5.4	36
8688	Joint Theoretical and Experimental Study on the Effects of the Salts in the Graphite-Based Dual-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 18132-18141.	1.5	9
8689	<i>In situ</i> synthesis of ultrasmall MnO nanoparticles encapsulated by a nitrogen-doped carbon matrix for high-performance lithium-ion batteries. Chemical Communications, 2019, 55, 9184-9187.	2.2	17
8690	Increased Cycling Performance of Li-Ion Batteries by Phosphoric Acid Modified LiNi _{0.5} Mn _{1.5} O ₄ Cathodes in the Presence of LiBOB. International Journal of Electrochemistry, 2019, 2019, 1-7.	2.4	17
8691	Silicon and Iron as Resource-Efficient Anode Materials for Ambient-Temperature Metal-Air Batteries: A Review. Materials, 2019, 12, 2134.	1.3	46
8692	Highâ€Performance Silicon Anodes Enabled By Nonflammable Localized High oncentration Electrolytes. Advanced Energy Materials, 2019, 9, 1900784.	10.2	175
8693	Excellent Rate Performance and Cycling Stability of TiP 2 O 7 @C/Carbon Nanotubes for the Aqueous Rechargeable Lithiumâ€ion Battery. Energy Technology, 2019, 7, 1900534.	1.8	7
8694	In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy, 2019, 63, 103895.	8.2	109
8695	NaCrO 2 /Coffee Waste–derived Nitrogenâ€doped Carbon Composite as Highâ€Performance Cathode Material for Sodium Ion Batteries. Bulletin of the Korean Chemical Society, 2019, 40, 857-862.	1.0	7
8696	Metal–Organic Frameworksâ€Derived Mesoporous Si/SiO _{<i>x</i>} @NC Nanospheres as a Longâ€Lifespan Anode Material for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2019, 25, 11991-11997.	1.7	48

#	Article	IF	Citations
8697	Lithium-polymer battery with ionic liquid tethered nanoparticles incorporated P(VDF-HFP) nanocomposite gel polymer electrolyte. Electrochimica Acta, 2019, 319, 753-765.	2.6	33
8698	Shape control of hierarchical lithium cobalt oxide using biotemplates for connected nanoparticles. Journal of Power Sources, 2019, 436, 226836.	4.0	11
8699	Mo3Nb2O14: A high-rate intercalation electrode material for Li-ion batteries with liquid and garnet based hybrid solid electrolytes. Journal of Power Sources, 2019, 436, 226850.	4.0	22
8700	Potential Applications of Heterostructures of TMDs with MXenes in Sodium-Ion and Na–O ₂ Batteries. Nano Letters, 2019, 19, 5577-5586.	4.5	69
8701	Polymer of intrinsic microporosity-based macroporous membrane with high thermal stability as a Li-ion battery separator. RSC Advances, 2019, 9, 21539-21543.	1.7	7
8702	In Situ Synthesis and Electrochemical Properties of Fe/Li2O as a High-Capacity Cathode Prelithiation Additive for Lithium Ion Batteries. International Journal of Electrochemical Science, 2019, 14, 5305-5316.	0.5	12
8703	Designed Construction of Hierarchical CuCo ₂ S ₄ @Co(OH) ₂ Core‧hell Nanoarrays as Electrode Materials for Highâ€Performance Supercapacitors. ChemistrySelect, 2019, 4, 7751-7758.	0.7	6
8704	Free-standing hybrid porous membranes integrated with transition metal nitride and carbide nanoparticles for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2019, 378, 122208.	6.6	35
8705	Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications - A review. Journal of Cleaner Production, 2019, 236, 117573.	4.6	169
8706	Solvent dependent relaxation dynamics in lithium ion battery electrolytes: Coupling to medium friction. Journal of Molecular Liquids, 2019, 290, 111225.	2.3	7
8707	A self-healing CuGa2 anode for high-performance Li ion batteries. Journal of Power Sources, 2019, 437, 226889.	4.0	38
8708	A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long ycle‣ife Batteries. Advanced Materials, 2019, 31, e1900668.	11.1	259
8709	A Highâ€Rate and Longâ€Life Aqueous Rechargeable Ammonium Zinc Hybrid Battery. ChemSusChem, 2019, 12, 3732-3736.	3.6	62
8710	Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon. Applied Surface Science, 2019, 494, 94-100.	3.1	44
8711	Synthesis and electrochemical characterization of Li2Fe1â^'xMnxP2O7/C (0 â‰ ≇ €¯x â‰ ≇ €¯1) composites as materials for lithium batteries. Solid State Ionics, 2019, 341, 115029.	s cathode 1.3	1
8712	Lithium Ion Conductivity in Double Antiperovskite Li _{6.5} OS _{1.5} I _{1.5} : Alloying and Boundary Effects. ACS Applied Energy Materials, 2019, 2, 6288-6294.	2.5	38
8713	Designing a Safe Electrolyte Enabling Long‣ife Li/S Batteries. ChemSusChem, 2019, 12, 4176-4184.	3.6	26
8714	Synthesis, luminescence, and electrical properties of Na6Mg(SO4)4:xEu vanthoffite ceramics as electrode materials for sodium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 247, 114384.	1.7	6

#	Article	IF	CITATIONS
8715	Systematic exploration of N, C configurational effects on the ORR performance of Fe–N doped graphene catalysts based on DFT calculations. RSC Advances, 2019, 9, 22656-22667.	1.7	40
8716	First-principles insight into Li and Na ion storage in graphene oxide*. Chinese Physics B, 2019, 28, 078201.	0.7	3
8717	The Synergistic Effect Accelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery. Frontiers in Chemistry, 2019, 7, 524.	1.8	25
8718	Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 16764-16769.	7.2	19
8719	Theoretical Insights into Li-Ion Transport in LiTa ₂ PO ₈ . Journal of Physical Chemistry C, 2019, 123, 19282-19287.	1.5	24
8720	Flexible Organic–Inorganic Composite Solid Electrolyte with Asymmetric Structure for Room Temperature Solid-State Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 15896-15903.	3.2	46
8721	A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nature Communications, 2019, 10, 3302.	5.8	173
8722	High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries. Advanced Fiber Materials, 2019, 1, 46-60.	7.9	59
8723	Boosting High Energy Density Lithium-Ion Storage via the Rational Design of an FeS-Incorporated Sulfurized Polyacrylonitrile Fiber Hybrid Cathode. ACS Applied Materials & Interfaces, 2019, 11, 29924-29933.	4.0	44
8724	Commercially available InSb as a high-performance anode for secondary batteries towards superior lithium storage. Sustainable Energy and Fuels, 2019, 3, 2668-2674.	2.5	13
8725	High-performance Li ₆ PS ₅ Cl-based all-solid-state lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18612-18618.	5.2	40
8726	Layered (NH ₄) ₂ V ₆ O ₁₆ ·1.5H ₂ O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 19130-19139.	5.2	121
8727	SnO 2 /Graphene Nanocomposite Coated by Carbonized Polyacrylic Acid Hydrogel as a Highâ€Performance Anode for Lithiumâ€ion Batteries. ChemistrySelect, 2019, 4, 8082-8088.	0.7	5
8728	<pre></pre>		

#	Article	IF	CITATIONS
8733	A high-performance lithium-ion capacitor with carbonized NiCo2O4 anode and vertically-aligned carbon nanoflakes cathode. Energy Storage Materials, 2019, 22, 265-274.	9.5	55
8734	Correlation study on temperature dependent conductivity and line profile along the LLTO/LFP-C cross section for all solid-state Lithium-ion batteries. Solid State Ionics, 2019, 341, 115032.	1.3	16
8735	Synergistic Effect on the Improved Electrochemical Performance in the Case of Fe _{1–<i>x</i>} Cd _{<i>x</i>} CO ₃ . Journal of Physical Chemistry C, 2019, 123, 19333-19339.	1.5	5
8736	Interconnected Ultrasmall V ₂ O ₃ and Li ₄ Ti ₅ O ₁₂ Particles Construct Robust Interfaces for Long-Cycling Anodes of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29993-30000.	4.0	12
8737	A new lithiumâ€rich layerâ€structured cathode material with improved electrochemical performance and voltage maintenance. International Journal of Energy Research, 2019, 43, 7547.	2.2	3
8738	Realization of room temperature lithium metal battery with high Li+ conductive lithium garnet solid electrolyte. Ceramics International, 2019, 45, 22610-22616.	2.3	24
8739	Mechanistic Understanding of Metal Phosphide Host for Sulfur Cathode in High-Energy-Density Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 8986-8996.	7.3	215
8740	Intercalating Anions between Terminated Anion Layers: Unusual Ionic S–Se Bonds and Hole-Doping Induced Superconductivity in S0.24(NH3)0.26Fe2Se2. Journal of the American Chemical Society, 2019, 141, 13849-13857.	6.6	22
8741	P-Doped NiMoO ₄ parallel arrays anchored on cobalt carbonate hydroxide with oxygen vacancies and mass transfer channels for supercapacitors and oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 19589-19596.	5.2	79
8742	Impurity removal with highly selective and efficient methods and the recycling of transition metals from spent lithium-ion batteries. RSC Advances, 2019, 9, 21922-21930.	1.7	48
8743	Oriented outperforms disorder: Thickness-independent mass transport for lithium-sulfur batteries. Carbon, 2019, 154, 90-97.	5.4	12
8744	Facile Synthesis of Sn/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites with Superb Lithium Storage Properties. Nanomaterials, 2019, 9, 1084.	1.9	13
8745	Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 2019, 25, 100852.	3.9	417
8746	Conjugated System of PEDOT:PSS-Induced Self-Doped PANI for Flexible Zinc-Ion Batteries with Enhanced Capacity and Cyclability. ACS Applied Materials & Interfaces, 2019, 11, 30943-30952.	4.0	89
8747	Hierarchical Sulfur-Doped Graphene Foam Embedded with Sn Nanoparticles for Superior Lithium Storage in LiFSI-Based Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 30500-30507.	4.0	27
8748	Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries. Nature Communications, 2019, 10, 3423.	5.8	119
8749	A facile <i>in situ</i> synthesis of SiC&Si@CNT composite 3D frameworks as an anode material for lithium-ion batteries. Dalton Transactions, 2019, 48, 12964-12973.	1.6	6
8750	Intercalation pseudocapacitance in a NASICON-structured Na ₂ CrTi(PO ₄) ₃ @carbon nanocomposite: towards high-rate and long-lifespan sodium-ion-based energy storage. Journal of Materials Chemistry A, 2019, 7, 20604-20613.	5.2	18

#	Article	IF	CITATIONS
8751	A solid-state dendrite-free lithium-metal battery with improved electrode interphase and ion conductivity enhanced by a bifunctional solid plasticizer. Journal of Materials Chemistry A, 2019, 7, 19565-19572.	5.2	32
8752	Electrochemical Characterization and Solid Electrolyte Interface Modeling of LiNi0.5Mn1.5O4-Graphite Cells. Journal of the Electrochemical Society, 2019, 166, A2255-A2263.	1.3	1
8753	Fabrication of diatomite/polyethylene terephthalate composite separator for lithium-ion battery. Ionics, 2019, 25, 5341-5351.	1.2	23
8754	Recent advances in the selective membrane for aqueous redox flow batteries. Materials Today Nano, 2019, 7, 100044.	2.3	23
8755	Mussel-Inspired Self-Healing Metallopolymers for Silicon Nanoparticle Anodes. ACS Nano, 2019, 13, 8364-8373.	7.3	101
8756	Controllable two-dimensional movement and redistribution of lithium ions in metal oxides. Nature Communications, 2019, 10, 2888.	5.8	17
8757	Recent progress and perspectives on dual-ion batteries. EnergyChem, 2019, 1, 100004.	10.1	93
8758	Dual Insurance Design Achieves Long-Life Cycling of Li-Metal Batteries under a Wide Temperature Range. ACS Applied Energy Materials, 2019, 2, 5292-5299.	2.5	7
8759	Linear Stability Analysis of Transient Electrodeposition in Charged Porous Media: Suppression of Dendritic Growth by Surface Conduction. Journal of the Electrochemical Society, 2019, 166, A2280-A2299.	1.3	20
8760	Conducting polyaniline/poly (acrylic acid)/phytic acid multifunctional binders for Si anodes in lithium ion batteries. Ionics, 2019, 25, 5323-5331.	1.2	24
8761	Surface modification of Li rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode particles. Ceramics International, 2019, 45, 20016-20021.	2.3	14
8762	Polydopamine-coated hierarchical tower-shaped carbon for high-performance lithium-sulfur batteries. Electrochimica Acta, 2019, 319, 359-365.	2.6	31
8763	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1, 100003.	10.1	146
8764	Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Etherâ€Functionalized Anion. Angewandte Chemie - International Edition, 2019, 58, 12070-12075.	7.2	61
8766	Hierarchical hollow dual Core–Shell carbon nanowall-encapsulated p–n SnO/SnO2 heterostructured anode for high-performance lithium-ion-based energy storage. Carbon, 2019, 153, 62-72.	5.4	42
8767	Insight into the evolution of precursor and electrochemical performance of Ni-rich cathode modulated by ammonia during hydroxide precipitation. Journal of Alloys and Compounds, 2019, 803, 538-545.	2.8	9
8768	Understanding of the Li-insertion process in a phosphate based electrode material for lithium ion batteries. Journal of Power Sources, 2019, 435, 226803.	4.0	12
8769	Organometallic-Derived Carbon (ODC)–Metal Nano-Oxide Composites as Improved Electrode Materials for Supercapacitors. Inorganic Chemistry, 2019, 58, 9175-9180.	1.9	2

#	Article	IF	CITATIONS
8770	Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core–Shell Materials by Adjusting the Interface for Metal–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25870-25881.	4.0	59
8771	Magnesium Storage Performance and Mechanism of 2Dâ€Ultrathin Nanosheetâ€Assembled Spinel Mgln ₂ S ₄ Cathode for Highâ€Temperature Mg Batteries. Small, 2019, 15, e1902236.	5.2	11
8772	Sewage sludge-derived porous hollow carbon nanospheres as high-performance anode material for lithium ion batteries. Electrochimica Acta, 2019, 319, 277-285.	2.6	37
8773	Silicon Carbide as a Protective Layer to Stabilize Si-Based Anodes by Inhibiting Chemical Reactions. Nano Letters, 2019, 19, 5124-5132.	4.5	91
8774	Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Etherâ€Functionalized Anion. Angewandte Chemie, 2019, 131, 12198-12203.	1.6	22
8775	A Coâ€Doped MnO ₂ Catalyst for Li O ₂ Batteries with Low Overpotential and Ultrahigh Cyclability. Small, 2019, 15, e1902220.	5.2	83
8776	Amine-functionalized graphene and its high discharge capacity for non-aqueous lithium–oxygen batteries. Carbon Letters, 2019, 29, 471-478.	3.3	2
8777	Double-shelled microscale porous Si anodes for stable lithium-ion batteries. Journal of Power Sources, 2019, 436, 226794.	4.0	24
8778	Printable Ta Substrate with High Stability and Enhanced Interface Adhesion for Flexible Supercapacitor Performance Improvement. Advanced Materials Technologies, 2019, 4, 1900338.	3.0	5
8779	Preparation of coaxial Sn-Co alloy/CNFs 3D freestanding membrane anode by electrochemical Co-deposition for lithium-ion batteries. Ionics, 2019, 25, 5735-5743.	1.2	7
8780	Effects of transition metal cation additives on the passivation of lithium metal anode in Li–S batteries. Electrochimica Acta, 2019, 319, 511-517.	2.6	21
8781	A simple spray assisted method to fabricate high performance layered graphene/silicon hybrid anodes for lithium-ion batteries. International Journal of Hydrogen Energy, 2019, 44, 20267-20277.	3.8	12
8782	Learning curve with input price for tracking technical change in the energy transition process. Journal of Cleaner Production, 2019, 235, 997-1005.	4.6	13
8783	A Semiliquid Lithium Metal Anode. Joule, 2019, 3, 1637-1646.	11.7	51
8784	High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule, 2019, 3, 1986-2000.	11.7	183
8785	Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte. Journal of Physics and Chemistry of Solids, 2019, 135, 109080.	1.9	40
8786	Characterization of PEDOT-Quinone conducting redox polymers in water-in-salt electrolytes for safe and high-energy Li-ion batteries. Electrochemistry Communications, 2019, 105, 106489.	2.3	30
8787	Designer Anion Enabling Solid-State Lithium-Sulfur Batteries. Joule, 2019, 3, 1689-1702.	11.7	108

#	Article	IF	CITATIONS
8788	An insoluble naphthalenediimide derivative as a highly stable cathode material for lithium-ion batteries. Materials Chemistry and Physics, 2019, 236, 121815.	2.0	13
8789	Theoretical Prediction of the Strong Solvent Effect on Reduced Ethylene Carbonate Ring-Opening and Its Impact on Solid Electrolyte Interphase Evolution. Journal of Physical Chemistry C, 2019, 123, 17695-17702.	1.5	11
8790	Electrospun VSe _{1.5} /CNF composite with excellent performance for alkali metal ion batteries. Nanoscale, 2019, 11, 16308-16316.	2.8	50
8791	Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. CheM, 2019, 5, 2326-2352.	5.8	801
8792	Developments and Perspectives on Emerging High-Energy-Density Sodium-Metal Batteries. CheM, 2019, 5, 2547-2570.	5.8	110
8793	Ligand-Dependent Energetics for Dehydrogenation: Implications in Li-Ion Battery Electrolyte Stability and Selective Oxidation Catalysis of Hydrogen-Containing Molecules. Chemistry of Materials, 2019, 31, 5464-5474.	3.2	28
8794	1T′â€ReS ₂ Confined in 2Dâ€Honeycombed Carbon Nanosheets as New Anode Materials for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1901146.	10.2	50
8795	Study on Crystal Growth Kinetics and Preferred Orientation for LiF Crystal in Dimethyl Sulfoxide/1,3-Dioxolane-based Electrolyte. Journal of Physical Chemistry C, 2019, 123, 28048-28057.	1.5	12
8796	A Zn(ClO ₄) ₂ Electrolyte Enabling Long-Life Zinc Metal Electrodes for Rechargeable Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2019, 11, 42000-42005.	4.0	111
8797	Understanding the Electrode/Electrolyte Interface Layer on the Li-Rich Nickel Manganese Cobalt Layered Oxide Cathode by XPS. ACS Applied Materials & Interfaces, 2019, 11, 43166-43179.	4.0	74
8798	Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries. ACS Energy Letters, 2019, 4, 2776-2781.	8.8	155
8799	Encapsulating V ₂ O ₃ Nanoparticles in Carbon Nanofibers with Internal Void Spaces for a Self-Supported Anode Material in Superior Lithium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 19483-19495.	3.2	41
8800	Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nature Communications, 2019, 10, 4721.	5.8	182
8801	Evolution mechanism of phase transformation of Li-rich cathode materials in cycling. Electrochimica Acta, 2019, 328, 135109.	2.6	43
8802	Alkali-Metal Anodes: From Lab to Market. Joule, 2019, 3, 2334-2363.	11.7	247
8803	Castleman Disease. Surgical Pathology Clinics, 2019, 12, 849-863.	0.7	28
8804	Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering. ACS Applied Energy Materials, 2019, 2, 1314-1318.	2.5	19
8805	Level the Conversion/Alloying Voltage Gap by Grafting the Endogenetic Sb ₂ Te ₃ Building Block into Layered GeTe to Build Ge ₂ Sb ₂ Te ₅ for Li-Ion Batteries. ACS Applied Materials & amp; Interfaces. 2019. 11. 41374-41382.	4.0	15

#	Article	IF	CITATIONS
8806	Dendriteâ€Free Lithium Deposition via a Superfilling Mechanism for Highâ€Performance Liâ€Metal Batteries. Advanced Materials, 2019, 31, e1903248.	11.1	106
8807	A TiN Nanorod Array 3D Hierarchical Composite Electrode for Ultrahighâ€Powerâ€Density Bromineâ€Based Flow Batteries. Advanced Materials, 2019, 31, e1904690.	11.1	46
8808	Efficient Synthesis of 3,6â€Dihydroâ€2Hâ€pyrans via [3+2+1] Annulation Based on the Heteroatomâ€free Triâ€atom Donor. Advanced Synthesis and Catalysis, 2019, 361, 5392-5399.	2.1	8
8809	Fast Redox Kinetics in Biâ€Heteroatom Doped 3D Porous Carbon Nanosheets for Highâ€Performance Hybrid Potassiumâ€Ion Battery Capacitors. Advanced Energy Materials, 2019, 9, 1901533.	10.2	186
8810	Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1901764.	10.2	108
8811	Plating/Stripping Behavior of Actual Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1902254.	10.2	168
8812	Novel Fabrication Of N/S Coâ€doped Hierarchically Porous Carbon For Potassium″on Batteries. ChemistrySelect, 2019, 4, 11488-11495.	0.7	29
8813	Solventâ€Exchange Strategy toward Aqueous Dispersible MoS ₂ Nanosheets and Their Nitrogenâ€Rich Carbon Sphere Nanocomposites for Efficient Lithium/Sodium Ion Storage. Small, 2019, 15, e1903816.	5.2	31
8814	Ultrafine Co ₃ O ₄ Nanoparticles within Nitrogenâ€Đoped Carbon Matrix Derived from Metal–Organic Complex for Boosting Lithium Storage and Oxygen Evolution Reaction. Small, 2019, 15, e1904260.	5.2	23
8815	Deciphering the Interface of a Highâ€Voltage (5 Vâ€Class) Liâ€Ion Battery Containing Additiveâ€Assisted Sulfolaneâ€Based Electrolyte. Small Methods, 2019, 3, 1900546.	4.6	33
8816	Encapsulating Carbonâ€Coated MoS ₂ Nanosheets within a Nitrogenâ€Doped Graphene Network for Highâ€Performance Potassiumâ€Ion Storage. Advanced Materials Interfaces, 2019, 6, 1901066.	1.9	36
8817	Simultaneously Boosting the Ionic Conductivity and Mechanical Strength of Polymer Gel Electrolyte Membranes by Confining Ionic Liquids into Hollow Silica Nanocavities. Batteries and Supercaps, 2019, 2, 985-991.	2.4	21
8818	Defect Chemistry, Sodium Diffusion and Doping Behaviour in NaFeO2 Polymorphs as Cathode Materials for Na-Ion Batteries: A Computational Study. Materials, 2019, 12, 3243.	1.3	11
8819	One-pot prepared silicon-silver-polydopamine ternary composite anode materials with high specific capacity and cycling stability. Journal of Alloys and Compounds, 2019, 810, 151820.	2.8	4
8820	A general strategy for in-situ fabrication of uniform carbon nanotubes on three-dimensional carbon architectures for electrochemical application. Applied Surface Science, 2019, 496, 143704.	3.1	13
8821	Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions. Nano Energy, 2019, 66, 104179.	8.2	45
8822	Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Research, 2019, 12, 2835-2841.	5.8	144
8823	Structure robustness and Li+ diffusion kinetics in amorphous and graphitized carbon based Sn/C composites for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 854, 113529.	1.9	16

#	Article	IF	CITATIONS
8824	Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. Journal of Power Sources, 2019, 441, 227175.	4.0	168
8825	Preparation and properties of amorphous TiO2 modified anion exchange membrane by impregnation-hydrolysis method. Reactive and Functional Polymers, 2019, 144, 104348.	2.0	7
8826	Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films. Results in Physics, 2019, 15, 102735.	2.0	50
8827	Enhanced rate capability and cycling stability of lithium-rich cathode material Li1.2Ni0.2Mn0.6O2 via H3PO4 pretreating and accompanying Li3PO4 coating. Journal of Materials Science: Materials in Electronics, 2019, 30, 19493-19504.	1.1	8
8828	Effect of the Pillar Size on the Electrochemical Performance of Laser-Induced Silicon Micropillars as Anodes for Lithium-Ion Batteries. Applied Sciences (Switzerland), 2019, 9, 3623.	1.3	6
8829	Suppressing the Unfavorable Surface Layer Growth on Na _{0.44} MnO ₂ Cathode by a NaTi ₂ (PO ₄) ₃ Coating To Improve Cycling Stability and Ultrahigh Rate Capability. ACS Applied Energy Materials, 2019, 2, 7497-7503.	2.5	18
8830	Construction of Structure-Tunable Si@Void@C Anode Materials for Lithium-Ion Batteries through Controlling the Growth Kinetics of Resin. ACS Nano, 2019, 13, 12219-12229.	7.3	119
8831	Anodic ZnO-Graphene Composite Materials in Lithium Batteries. , 2019, , .		0
8832	Enhanced performance of Li-S battery with polymer doped potassium functionalized graphene interlayers as effective polysulfide barrier. Journal of Electroanalytical Chemistry, 2019, 851, 113405.	1.9	20
8833	Dendritic cracking in solid electrolytes driven by lithium insertion. Journal of Power Sources, 2019, 442, 227226.	4.0	67
8834	Boosting the sodium storage behaviors of carbon materials in ether-based electrolyte through the artificial manipulation of microstructure. Nano Energy, 2019, 66, 104177.	8.2	20
8835	Na Superionic Conductor-Type TiNb(PO ₄) ₃ Anode with High Energy Density and Long Cycle Life Enables Aqueous Alkaline-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 39757-39764.	4.0	7
8836	Elucidation of Anionic and Cationic Redox Reactions in a Prototype Sodium-Layered Oxide Cathode. ACS Applied Materials & Interfaces, 2019, 11, 41304-41312.	4.0	43
8837	SnS Nanosheets Confined Growth by S and N Codoped Graphene with Enhanced Pseudocapacitance for Sodium-Ion Capacitors. ACS Applied Materials & amp; Interfaces, 2019, 11, 41363-41373.	4.0	63
8838	The Conversion Chemistry for High-Energy Cathodes of Rechargeable Sodium Batteries. ACS Nano, 2019, 13, 11707-11716.	7.3	13
8839	In situ-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment. NPG Asia Materials, 2019, 11, .	3.8	27
8840	Lithium Metal Anode Materials Design: Interphase and Host. Electrochemical Energy Reviews, 2019, 2, 509-517.	13.1	156
8841	Sodium ion storage performance of magnetron sputtered WO3 thin films. Electrochimica Acta, 2019, 321, 134669.	2.6	17

#	Article	IF	CITATIONS
8842	In situ cross-linked poly(ether urethane) elastomer as a binder for high-performance Si anodes of lithium-ion batteries. Electrochimica Acta, 2019, 327, 135011.	2.6	25
8843	F-doped Li1.15Ni0.275Ru0.575O2 cathode materials with long cycle life and improved rate performance. Electrochimica Acta, 2019, 326, 135015.	2.6	10
8844	Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage. Journal of Electroanalytical Chemistry, 2019, 851, 113411.	1.9	8
8845	α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries. Journal of Power Sources, 2019, 443, 227244.	4.0	95
8846	Interfacial Film Li _{1.3} Al _{0.3} Ti _{1.7} PO ₄ -Coated LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ for the Long Cycle Stability of Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7923-7932.	2.5	21
8847	Ultrahigh Rate Performance of a Robust Lithium Nickel Manganese Cobalt Oxide Cathode with Preferentially Orientated Li-Diffusing Channels. ACS Applied Materials & Interfaces, 2019, 11, 41178-41187.	4.0	20
8848	Silicon-Nanographite Aerogel-Based Anodes for High Performance Lithium Ion Batteries. Scientific Reports, 2019, 9, 14621.	1.6	21
8849	(001) Facet-Dominated Hierarchically Hollow Na ₂ Ti ₃ O ₇ as a High-Rate Anode Material for Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2019, 11, 42197-42205.	4.0	31
8850	Study on economy of flue gas ultra-low emission in coal-fired power. IOP Conference Series: Earth and Environmental Science, 2019, 349, 012017.	0.2	1
8852	Ultrafine Titanium Nitride Sheath Decorated Carbon Nanofiber Network Enabling Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1903229.	7.8	112
8853	A Highâ€Energy Aqueous Aluminumâ€Manganese Battery. Advanced Functional Materials, 2019, 29, 1905228.	7.8	122
8854	Ï€â€Conjugation Enables Ultraâ€High Rate Capabilities and Cycling Stabilities in Phenothiazine Copolymers as Cathodeâ€Active Battery Materials. Advanced Functional Materials, 2019, 29, 1906436.	7.8	88
8855	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie, 2019, 131, 16203-16207.	1.6	6
8856	Novel Conjugated Side Chain Fluorinated Polymers Based on Fluorene for Lightâ€Emitting and Ternary Flash Memory Devices. ChemistryOpen, 2019, 8, 1267-1275.	0.9	6
8857	Synthesis of Nickel Ferrite Nanoparticles Supported on Graphene Nanosheets as Composite Electrodes for High Performance Supercapacitor. ChemistrySelect, 2019, 4, 9952-9958.	0.7	33
8858	Pore Sizeâ€Engineered Threeâ€Dimensional Ordered Mesoporous Carbons with Improved Electrochemical Performance for Supercapacitor and Lithiumâ€ion Battery Applications. ChemistrySelect, 2019, 4, 10104-10112.	0.7	11
8859	Nanostructured Metal–Organic Conjugated Coordination Polymers with Ligand Tailoring for Superior Rechargeable Energy Storage. Small, 2019, 15, e1903188.	5.2	57
8860	FP613PRE-DIALYSIS LEFT ATRIAL FUNCTION ASSESSED BY TWO-DIMENSIONAL SPECKLE TRACKING ECHOCARDIOGRAPHY AS A PREDICTOR OF UPCOMING HEART FAILURE IN HEMODIALYSIS PATIENTS. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0

ARTICLE IF CITATIONS Short-Term Photovoltaic Generation Forecasting Based on LVQ-PSO-BP Neural Network and Markov 8861 0.3 1 Chain Method. Journal of Physics: Conference Series, 2019, 1267, 012083. Research on Damping Mode of Passenger Vehicle Air Suspension System. IOP Conference Series: Earth 8862 0.2 and Environmental Science, 2019, 267, 042171. A Novel Least-Mean Kurtosis Adaptive Filtering Algorithm Based on Geometric Algebra. IEEE Access, 8863 2.6 23 2019, 7, 78298-78310. The Printed-Circuit-Board Electroplating Parallel-Tank Scheduling With Hoist and Group Constraints 8864 Using a Hybrid Guided Tabu Search Algorithm. IEEE Access, 2019, 7, 61363-61377. Pharmacokinetics of ceftiofur sodium in cats following a single intravenous and subcutaneous 8865 0.6 2 injection. Journal of Veterinary Pharmacology and Therapeutics, 2019, 42, 602-608. Challenges of Fast Charging for Electric Vehicles and the Role of Red Phosphorous as Anode Material: Review. Energies, 2019, 12, 3897. 8866 24 1.6 Thermally Durable Lithiumâ€Ion Capacitors with High Energy Density from All Hydroxyapatite 8867 10.2 34 Nanowireâ€Enabled Fireâ€Resistant Electrodes and Separators. Advanced Energy Materials, 2019, 9, 1902497. Microwave Processed, Onionlike Carbon and Fluoropolymer Passivated Lithium Metal Electrode for 2.5 8868 Enhanced Li Stripping/Plating Performance. ACS Applied Energy Materials, 2019, 2, 7933-7941. Double-Shelled Co₃O₄/C Nanocages Enabling Polysulfides Adsorption for 8869 2.5 55 High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 8153-8162. Enhanced Electrochemical Performance of Electropolymerized Self-Organized TiO2 Nanotubes 8870 1.0 Fabricated by Anodization of Ti Grid. Frontiers in Physics, 2019, 7, . SnO2 Nanorod Arrays Grown on Carbon Cloth as a Flexible Binder-Free Electrode for 8871 1.0 6 High-Performance Lithium Batteries. Journal of Electronic Materials, 2019, 48, 8206-8211. Non-contrast-enhanced MR angiography of the foot with flow spoiled-fresh blood imaging (FS-FBI): feasibility study and comparison of different scanning parameters. Chinese Journal of Academic 0.4 Radiology, 2019, 1, 85-93 In Situ Ag Nanoparticles Reinforced Pseudoâ€Znâ€"Air Reaction Boosting Ag₂V₄O₁₁ as Highâ€Performance Cathode Material for Aqueous 8873 4.6 52 Zincâ€Ion Batteries. Small Methods, 2019, 3, 1900637. Going beyond Intercalation Capacity of Aqueous Batteries by Exploiting Conversion Reactions of Mn and Zn electrodes for Energyâ€Dense Applications. Advanced Energy Materials, 2019, 9, 1902270. 8874 10.2 59 A clean technique to fabricate the renewable and recyclable metal phosphate anode of the 8875 1.9 1 high-capacity lithium-ion battery. Journal of Electroanalytical Chemistry, 2019, 855, 113625. Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes. Biotechnology Journal, 2019, 14, e1900062. 8876 1.8 Artificial Solid Electrolyte Interphase Formation on Si Nanoparticles through Radiolysis: Importance 8877 1.54 of the Presence of an Additive. Journal of Physical Chemistry C, 2019, 123, 28550-28560. Thin Fiber-Based Separators for High-Rate Sodium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 8878 8369-8375.

#	Article	IF	CITATIONS
8879	3D Lithiophilic "Hairy―Si Nanowire Arrays @ Carbon Scaffold Favor a Flexible and Stable Lithium Composite Anode. ACS Applied Materials & Interfaces, 2019, 11, 44325-44332.	4.0	25
8882	Selfâ€&tanding Hybrid Film of SnO ₂ Nanotubes and MXene as A Highâ€Performance Anode Material for Thin Film Lithiumâ€Ion Batteries. ChemistrySelect, 2019, 4, 12099-12103.	0.7	14
8883	Unraveling the Cationic and Anionic Redox Reactions in a Conventional Layered Oxide Cathode. ACS Energy Letters, 2019, 4, 2836-2842.	8.8	111
8884	N-Doped Mesoporous Carbons: From Synthesis to Applications as Metal-Free Reduction Catalysts and Energy Storage Materials. Frontiers in Chemistry, 2019, 7, 761.	1.8	22
8885	Aluminum-Assisted Densification of Cosputtered Lithium Garnet Electrolyte Films for Solid-State Batteries. ACS Applied Energy Materials, 2019, 2, 8511-8524.	2.5	43
8886	Formation of a Solid Electrolyte Interphase in Hydrate-Melt Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 45554-45560.	4.0	42
8887	Nitrogenâ€Doped Grapheneâ€Buffered Mn ₂ O ₃ Nanocomposite Anodes for Fast Charging and High Discharge Capacity Lithiumâ€lon Batteries. Small, 2019, 15, e1903311.	5.2	44
8888	Ethylviologen Hexafluorophosphate as Electrolyte Additive for High-Voltage Nickel-Rich Layered Cathode. Journal of Physical Chemistry C, 2019, 123, 28604-28610.	1.5	11
8889	From Local to Diffusive Dynamics in Polymer Electrolytes: NMR Studies on Coupling of Polymer and Ion Dynamics across Length and Time Scales. Macromolecules, 2019, 52, 9128-9139.	2.2	15
8890	Hollow Boron-Doped Si/SiO _{<i>x</i>} Nanospheres Embedded in the Vanadium Nitride/Nanopore-Assisted Carbon Conductive Network for Superior Lithium Storage. ACS Applied Materials & Interfaces, 2019, 11, 45612-45620.	4.0	42
8891	Si/a-C Nanocomposites with a Multiple Buffer Structure via One-Step Magnetron Sputtering for Ultrahigh-Stability Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 45726-45736.	4.0	13
8892	Nanoscale Y-doped ZrO2 modified LiNi0.88Co0.09Al0.03O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. Solid State Ionics, 2019, 343, 115087.	1.3	12
8893	3D Hierarchical CNTâ€Based Host with High Sulfur Loading for Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 5698-5704.	1.7	6
8894	Red Phosphorus/Onionâ€like Mesoporous Carbon Composite as Highâ€Performance Anode for Sodiumâ€lon Battery. ChemElectroChem, 2019, 6, 5721-5727.	1.7	13
8895	Operando Fourier Transform Infrared Investigation of Cathode Electrolyte Interphase Dynamic Reversible Evolution on Li1.2Ni0.2Mn0.6O2. ACS Applied Materials & Interfaces, 2019, 11, 45108-45117.	4.0	25
8896	Dopant Segregation Boosting Highâ€Voltage Cyclability of Layered Cathode for Sodium Ion Batteries. Advanced Materials, 2019, 31, e1904816.	11.1	89
8897	Experimentâ€Oriented Materials Informatics for Efficient Exploration of Design Strategy and New Compounds for Highâ€Performance Organic Anode. Advanced Theory and Simulations, 2019, 2, 1900130.	1.3	18
8898	Successive Cationic and Anionic (De)â€Intercalation/ Incorporation into an Ionâ€Doped Radical Conducting Polymer. Batteries and Supercaps, 2019, 2, 979-984.	2.4	4

#	Article	IF	CITATIONS
8899	The critical role of carbon in marrying silicon and graphite anodes for highâ€energy lithiumâ€ion batteries. , 2019, 1, 57-76.		261
8900	Facile Synthesis of Flowerâ€Like MnCo 2 O 4 @PANiâ€rGO: A Highâ€Performance Anode Material for Lithiumâ€Ion Batteries. ChemPlusChem, 2019, 84, 1596-1603.	1.3	6
8901	Phosphonateâ€functionalized Ionic Liquid: A Novel Electrolyte Additive for Eenhanced Cyclic Stability and Rate Capability of LiCoO 2 Cathode at High Voltage. ChemistrySelect, 2019, 4, 9959-9965.	0.7	14
8902	Unveiling yavapaiite-type K Fe(SO4)2 as a new Fe-based cathode with outstanding electrochemical performance for potassium-ion batteries. Nano Energy, 2019, 66, 104184.	8.2	28
8903	Effect of different fuel combination on structure and properties of M type hexaferrite BaZn0.2Zr0.2Fe11.6O19. AIP Conference Proceedings, 2019, , .	0.3	0
8904	Diffusion-influenced reaction rates in the presence of pair interactions. Journal of Chemical Physics, 2019, 151, 164105.	1.2	14
8905	First Principle Material Genome Approach for All Solidâ€ S tate Batteries. Energy and Environmental Materials, 2019, 2, 234-250.	7.3	69
8906	Hierarchical NiCoP/C Hollow Nanoflowers for Enhanced Lithium Storage. ACS Applied Nano Materials, 2019, 2, 6880-6888.	2.4	16
8907	Evaluation of lithium cobalt oxide films deposited by radio frequency magnetron sputtering as thin-film battery cathodes. Japanese Journal of Applied Physics, 2019, 58, 085501.	0.8	5
8908	Layered P2â€Type K _{0.44} Ni _{0.22} Mn _{0.78} O ₂ as a Highâ€Performance Cathode for Potassiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1905679.	7.8	78
8909	Heterostructured TiO ₂ Spheres with Tunable Interiors and Shells toward Improved Packing Density and Pseudocapacitive Sodium Storage. Advanced Materials, 2019, 31, e1904589.	11.1	73
8910	Conductive Copper Niobate: Superior Li ⁺ â€Storage Capability and Novel Li ⁺ â€Transport Mechanism. Advanced Energy Materials, 2019, 9, 1902174.	10.2	99
8911	Synthesis and Operando Sodiation Mechanistic Study of Nitrogenâ€Đoped Porous Carbon Coated Bimetallic Sulfide Hollow Nanocubes as Advanced Sodium Ion Battery Anode. Advanced Energy Materials, 2019, 9, 1902312.	10.2	74
8912	Artificial Solidâ€Electrolyte Interphase Enabled Highâ€Capacity and Stable Cycling Potassium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902697.	10.2	81
8913	Inhibiting VOPO ₄ â< <i>x</i> H ₂ O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities. Angewandte Chemie - International Edition, 2019, 58, 16057-16061.	7.2	125
8914	Heightened Integration of POMâ€based Metal–Organic Frameworks with Functionalized Singleâ€Walled Carbon Nanotubes for Superior Energy Storage. Chemistry - an Asian Journal, 2019, 14, 3424-3430.	1.7	21
8915	Targeted Construction of Amorphous MoS _{<i>x</i>} with an Inherent Chain Molecular Structure for Improved Pseudocapacitive Lithiumâ€ion Response. Chemistry - A European Journal, 2019, 25, 15173-15181.	1.7	5
8916	Amorphous Sb 2 S 3 Anodes by Reactive Radio Frequency Magnetron Sputtering for Highâ€Performance Lithiumâ€ion Half/Full Cells. Energy Technology, 2019, 7, 1900928.	1.8	15

#	Article	IF	CITATIONS
8917	Rational Design of Fe 2 O 3 Nanocubeâ€Based Anodes for Highâ€Performance Li–Ion Batteries. ChemistrySelect, 2019, 4, 11103-11109.	0.7	6
8918	Mg ²⁺ and Ti ⁴⁺ Co–Doped Spinel LiMn ₂ O ₄ as Lithiumâ€lon Battery Cathode. ChemistrySelect, 2019, 4, 9583-9589.	0.7	25
8919	Metalâ€Organic Framework Derived Ge/TiO ₂ @C Nanotablets as Highâ€Performance Anode for Lithiumâ€Ion Batteries. ChemistrySelect, 2019, 4, 10576-10580.	0.7	14
8920	Facile Synthesis of FeS@C Particles Toward High-Performance Anodes for Lithium-Ion Batteries. Nanomaterials, 2019, 9, 1467.	1.9	5
8921	Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. Energy Storage Materials, 2019, 22, 147-153.	9.5	78
8922	Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10, 4930.	5.8	181
8923	Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. Accounts of Chemical Research, 2019, 52, 3223-3232.	7.6	322
8924	Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling Highâ€Rate Longâ€Life Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1905267.	7.8	140
8925	Flexible Na/Kâ€lon Full Batteries from the Renewable Cotton Cloth–Derived Stable, Lowâ€Cost, and Binderâ€Free Anode and Cathode. Advanced Energy Materials, 2019, 9, 1902056.	10.2	64
8926	Si film electrodes adopting a dual thermal effect of metal-induced crystallization (MIC) and Kirkendall effect. Journal of Alloys and Compounds, 2019, 809, 151810.	2.8	4
8927	PANI-Encapsulated Si Nanocomposites with a Chemical Bond Linkage in the Interface Exhibiting Higher Electrochemical Stability as Anode Materials for Lithium-Ion Batteries. Nano, 2019, 14, 1950078.	0.5	8
8928	Enhanced Electrochemical Performance of NiO Nanoflakes Assembled on ZnCl2-Activated Carbonized Filter Paper. Journal of Electronic Materials, 2019, 48, 7336-7344.	1.0	1
8929	Direct Observation of SEI Formation and Lithiation in Thin-Film Silicon Electrodes via <i>in Situ</i> Electrochemical Atomic Force Microscopy. ACS Applied Energy Materials, 2019, 2, 6761-6767.	2.5	31
8930	An in Situ-Formed Mosaic Li ₇ Sn ₃ /LiF Interface Layer for High-Rate and Long-Life Garnet-Based Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019, 11, 34939-34947.	4.0	66
8931	Determination of Electroactive Surface Area of Ni-, Co-, Fe-, and Ir-Based Oxide Electrocatalysts. ACS Catalysis, 2019, 9, 9222-9230.	5.5	80
8932	Integrated Thin Film Battery Design for Flexible Lithium Ion Storage: Optimizing the Compatibility of the Current Collectorâ€Free Electrodes. Advanced Functional Materials, 2019, 29, 1903542.	7.8	23
8933	Design Strategies for Vanadiumâ€based Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2019, 131, 16508-16517.	1.6	103
8934	Inâ€Situ Selfâ€Assembly of Core–Shell Multimetal Prussian Blue Analogues for Highâ€Performance Sodiumâ€Ion Batteries. ChemSusChem, 2019, 12, 4786-4790.	3.6	45

#	Article	IF	CITATIONS
8935	Ultra-High Mass-Loading Cathode for Aqueous Zinc-Ion Battery Based on Graphene-Wrapped Aluminum Vanadate Nanobelts. Nano-Micro Letters, 2019, 11, 69.	14.4	122
8936	Multimodal mesopore hierarchy in Li3VO4 boosts electrochemical anode performance of lithium-ion batteries. Microporous and Mesoporous Materials, 2019, 290, 109669.	2.2	4
8937	Rechargeable Mg–M (M = Li, Na and K) dual-metal–ion batteries based on a Berlin green cathode and a metallic Mg anode. Physical Chemistry Chemical Physics, 2019, 21, 20269-20275.	1.3	10
8938	Spherical graphite produced from waste semi-coke with enhanced properties as an anode material for Li-ion batteries. Sustainable Energy and Fuels, 2019, 3, 3116-3127.	2.5	16
8939	Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes. Journal of Materials Chemistry A, 2019, 7, 21244-21253.	5.2	37
8940	Inâ€situ growing graphitic nanotubes on carbon nanofibres as a 3D hierarchical binderâ€free anode for highâ€performance Liâ€ion battery. Micro and Nano Letters, 2019, 14, 698-700.	0.6	2
8941	Synthesis of Cubic Ni(OH)2 Nanocages Through Coordinating Etching and Precipitating Route for High-Performance Supercapacitors. Nanoscale Research Letters, 2019, 14, 264.	3.1	14
8942	Growth behavior, work function, and band gap tuning of nanocrystalline LiMn2O4 thin films. Applied Physics Letters, 2019, 115, 093901.	1.5	5
8943	Structure and electrochemical properties of C-coated Li ₂ O–V ₂ O ₅ –P ₂ O ₅ glass-ceramic as cathode material for lithium-ion batteries. Functional Materials Letters, 2019, 12, 1951002.	0.7	16
8944	Highlighting the Importance of Full-Cell Testing for High Performance Anode Materials Comprising Li Alloying Nanowires. Journal of the Electrochemical Society, 2019, 166, A2784-A2790.	1.3	4
8945	Ultra-high Areal Capacity Realized in Three-Dimensional Holey Graphene/SnO2 Composite Anodes. IScience, 2019, 19, 728-736.	1.9	40
8946	A bifunctional auxiliary electrode for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24807-24813.	5.2	4
8947	In Situ Coupling of Colloidal Silica and Li Salt Anion toward Stable Li Anode for Long-Cycle-Life Li-O2 Batteries. Matter, 2019, 1, 881-892.	5.0	33
8948	Silver Nanoparticles Encapsulated in an N-Doped Porous Carbon Matrix as High-Active Catalysts toward Oxygen Reduction Reaction via Electron Transfer to Outer Graphene Shells. ACS Sustainable Chemistry and Engineering, 2019, 7, 16511-16519.	3.2	17
8949	Pillar[5]quinone–Carbon Nanocomposites as High-Capacity Cathodes for Sodium-Ion Batteries. Chemistry of Materials, 2019, 31, 8069-8075.	3.2	95
8950	Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chemical Reviews, 2019, 119, 11352-11390.	23.0	46
8951	Computational Insights into the Working Mechanism of the LiPF ₆ –Graphite Dual-Ion Battery. Journal of Physical Chemistry C, 2019, 123, 23863-23871.	1.5	31
8952	Model-based internal short circuit detection of lithium-ion batteries using standard charge profiles. , 2019, , .		1

		CITATION REPORT		
#	Article	IF		Citations
8953	Defects, Diffusion, and Dopants in Li2Ti6O13: Atomistic Simulation Study. Materials, 2019, 12,	2851. 1.3		12
8954	One-step synthesis of few-layer niobium carbide MXene as a promising anode material for high- lithium ion batteries. Dalton Transactions, 2019, 48, 14433-14439.	rate 1.6		45
8955	Pb-Doped Lithium-Rich Cathode Material for High Energy Density Lithium-Ion Full Batteries. Jour the Electrochemical Society, 2019, 166, A2960-A2965.	nal of 1.3		16
8956	Ultrahigh-capacity tetrahydroxybenzoquinone grafted graphene material as a novel anode for lithium-ion batteries. Carbon, 2019, 155, 445-452.	5.4		33
8957	A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustainable Energy and Fuels, 2019, 3, 3279-3309.	2.5	;	83
8958	Blend Hybrid Solid Electrolytes Based on LiTFSI Doped Silica-Polyethylene Oxide for Lithium-Ion Batteries. Membranes, 2019, 9, 109.	1.4		13
8959	Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batter Journal of Solid State Electrochemistry, 2019, 23, 2785-2792.	ies. 1.2	:	15
8960	Influence of sintering aid on the microstructure and conductivity of the garnet-type W-doped Li7La3Zr2O12 ceramic electrolyte. Journal of Materials Science: Materials in Electronics, 2019, 3 17195-17201.	30, 1.1		14
8961	Na ₂ MnP ₂ O ₇ polymorphs as efficient bifunctional cataly oxygen reduction and oxygen evolution reactions. Chemical Communications, 2019, 55, 11595	vsts for 2.2		12
8962	Rechargeable Mg batteries based on a Ag ₂ S conversion cathode with fast solid-sta Mg ²⁺ diffusion kinetics. Dalton Transactions, 2019, 48, 14390-14397.	nte 1.6		13
8963	Probing and quantifying cathode charge heterogeneity in Li ion batteries. Journal of Materials Chemistry A, 2019, 7, 23628-23661.	5.2	:	55
8964	High-Performance Ni-Co Sulfide Nanosheet-Nanotubes Grown on Ni Foam as a Binder Free Elect for Supercapacitors. Applied Sciences (Switzerland), 2019, 9, 3082.	rode 1.3		14
8965	NbO2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution. Energies, 2019, 12, 2960.	1.6		15
8966	Lithium storage properties of NiO/reduced graphene oxide composites derived from different oxidation degrees of graphite oxide. Journal of Alloys and Compounds, 2019, 810, 151954.	2.8		31
8967	Aggregation-Morphology-Dependent Electrochemical Performance of Co3O4 Anode Materials f Lithium-Ion Batteries. Molecules, 2019, 24, 3149.	or 1.7		14
8968	Sucrose-Assisted Synthesis of Layered Lithium-Rich Oxide Li[Li0.2Mn0.56Ni0.16Co0.08]O2 as a of Lithium-Ion Battery. Crystals, 2019, 9, 436.	a Cathode 1.0		3
8969	Progress in Engineering Technology. Advanced Structured Materials, 2019, , .	0.3		0
8970	Local electronic structure modulation enhances operating voltage in Li-rich cathodes. Nano Ene 2019, 66, 104102.	rgy, 8.2		87

#	Article	IF	CITATIONS
8971	Electrochemical Analysis for Enhancing Interface Layer of Spinel LiNi0.5Mn1.5O4 Using p-Toluenesulfonyl Isocyanate as Electrolyte Additive. Frontiers in Chemistry, 2019, 7, 591.	1.8	18
8972	Physical Forces Inducing Thin Amorphous Carbon Nanotubes Derived from Polymer Nanotube/SiO ₂ Hybrids with Superior Rate Capability for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 36985-36990.	4.0	20
8973	Metal–Organic Frameworks Enabled High-Performance Separators for Safety-Reinforced Lithium Ion Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 16612-16619.	3.2	43
8974	SnO2 Nanoparticles Embedded Biochar as Anode Material in Lithium Ion Batteries. , 2019, , .		1
8975	Calcination effect on particle morphologies and electrochemical performances of Na3V2(PO4)3/C composites as cathode for sodium-ion batteries. Materials Today: Proceedings, 2019, 16, 1856-1863.	0.9	4
8976	Redox-active polymers (redoxmers) for electrochemical energy storage. MRS Communications, 2019, 9, 1151-1167.	0.8	9
8977	Synthesis and electrochemical properties of Li3V2 (PO4)3-V2O3/C as anode material for lithium-ion battery application. Ionics, 2019, 25, 5617-5623.	1.2	2
8978	Effect of N/P ratios on the performance of LiNi0.8Co0.15Al0.05O2 SiO /Graphite lithium-ion batteries. Journal of Power Sources, 2019, 439, 227056.	4.0	31
8979	Ab Initio Screening of Doped Mg(AlH4)2 Systems for Conversion-Type Lithium Storage. Materials, 2019, 12, 2599.	1.3	5
8980	High-Capacity Interstitial Mn-Incorporated Mn _{<i>x</i>} Fe _{3–<i>x</i>} O ₄ /Graphene Nanocomposite for Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 37812-37821.	4.0	40
8981	Electrochemical performance of lithium titanate anode fabricated using a water-based binder. Mendeleev Communications, 2019, 29, 105-107.	0.6	4
8982	Semianalytical study of the effect of realistic boundary conditions on diffusion induced stresses in cylindrical lithium ion electrode-binder system. International Journal of Mechanical Sciences, 2019, 163, 105141.	3.6	19
8983	Performance of Na0.44Mn1â^'xMxO2 (M = Ni, Mg; 0 ≤ ≤0.44) as a cathode for rechargeable sodium ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 2979-2988.	1.2	13
8984	Bimetallic metal-organic framework derived Sn-based nanocomposites for high-performance lithium storage. Electrochimica Acta, 2019, 323, 134855.	2.6	25
8985	An interfacial crosslinking strategy to fabricate an ultrathin two-dimensional composite of silicon oxycarbide-enwrapped silicon nanoparticles for high-performance lithium storage. Journal of Materials Chemistry A, 2019, 7, 22950-22957.	5.2	14
8986	A strategy to stabilize 4â€V-class cathode with ether-containing electrolytes in lithium metal batteries. Journal of Power Sources, 2019, 440, 227101.	4.0	5
8987	A concise review on the advancement of anode materials for Li-ion batteries. Materials Today: Proceedings, 2019, 19, 726-730.	0.9	6
8988	Controlled Synthesis of Na ₃ (VOPO ₄) ₂ F Cathodes with an Ultralong Cycling Performance. ACS Applied Energy Materials, 2019, 2, 7474-7482.	2.5	31

#	Article	IF	CITATIONS
8989	Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 22930-22938.	5.2	17
8990	A safe and sustainable bacterial cellulose nanofiber separator for lithium rechargeable batteries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19288-19293.	3.3	57
8991	Hollow Multihole Carbon Bowls: A Stress–Release Structure Design for High-Stability and High-Volumetric-Capacity Potassium-Ion Batteries. ACS Nano, 2019, 13, 11363-11371.	7.3	143
8992	Theoretical formulation of Na ₃ AO ₄ X (A = S/Se, X = F/Cl) as high-performance solid electrolytes for all-solid-state sodium batteries. Journal of Materials Chemistry A, 2019, 7, 21985-21996.	5.2	25
8993	The strategy of entire recovery: From spent cathode material with high nickel content to new LiNi0.5Co0.2Mn0.3O2 and Li2CO3 powders. Journal of Power Sources, 2019, 440, 227140.	4.0	14
8994	Prussian Blue [K ₂ FeFe(CN) ₆] Doped with Nickel as a Superior Cathode: An Efficient Strategy To Enhance Potassium Storage Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 16659-16667.	3.2	52
8995	Study of the influence of mechanical pressure on the performance and aging of Lithium-ion battery cells. Journal of Power Sources, 2019, 440, 227148.	4.0	95
8996	Importance of Capacity Balancing on The Electrochemical Performance of Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ (NCM811)/Silicon Full Cells. Journal of the Electrochemical Society, 2019, 166, A3265-A3271.	1.3	40
8997	Nanowires for Electrochemical Energy Storage. Chemical Reviews, 2019, 119, 11042-11109.	23.0	309
8998	A ZIF-67-derived–sulfur sandwich structure for high performance Li–S batteries. APL Materials, 2019, 7, 091115.	2.2	9
8999	Influence of molecular structure of Carboxymethyl Cellulose on High Performance Silicon Anode in Lithium-Ion Batteries. International Journal of Electrochemical Science, 2019, , 4799-4811.	0.5	6
9000	Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. Electrochimica Acta, 2019, 324, 134902.	2.6	64
9001	Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. Springer Theses, 2019, , .	0.0	4
9002	Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries. Electrochimica Acta, 2019, 322, 134763.	2.6	28
9003	Development of a compact all-solid-state lithium secondary battery using single-crystal electrolyte. Synthesiology, 2019, 12, 29-40.	0.2	4
9004	Solid-state polymer electrolytes for high-performance lithium metal batteries. Nature Communications, 2019, 10, 4398.	5.8	137
9005	Controlled synthesis of transition metal disulfides (MoS2 and WS2) on carbon fibers: Effects of phase and morphology toward lithium–sulfur battery performance. Applied Materials Today, 2019, 16, 529-537.	2.3	42
9006	Hetero-structure arrays of MnCo2O4 nanoflakes@nanowires grown onÂNi foam: Design, fabrication and applications in electrochemical energy storage. Journal of Alloys and Compounds, 2019, 811, 152084.	2.8	133

#	Article	IF	CITATIONS
9007	Effect of Solvation Shell Structure and Composition on Ion Pair Formation: The Case Study of LiTDI in Organic Carbonates. Journal of Physical Chemistry C, 2019, 123, 25102-25112.	1.5	12
9008	Multiscale Multiphase Lithiation and Delithiation Mechanisms in a Composite Electrode Unraveled by Simultaneous <i>Operando</i> Small-Angle and Wide-Angle X-Ray Scattering. ACS Nano, 2019, 13, 11538-11551.	7.3	40
9009	TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries. Applied Surface Science, 2019, 497, 143553.	3.1	46
9010	Rodlike FeSe2–C derived from metal organic gel wrapped with reduced graphene as an anode material with excellent performance for lithium-ion batteries. Electrochimica Acta, 2019, 323, 134817.	2.6	34
9011	Lithium ion storage behaviors of (100-x) V2O5-(x) P2O5 glass as novel anode materials for lithium ion battery. Journal of Alloys and Compounds, 2019, 810, 151938.	2.8	22
9012	Graphitic N-CMK3 pores filled with SnO2 nanoparticles as an ultrastable anode for rechargeable Li-ion batteries. Journal of Power Sources, 2019, 440, 227104.	4.0	21
9013	Li+ intercalcation pseudocapacitance in Sn-based metal-organic framework for high capacity and ultra-stable Li ion storage. Journal of Power Sources, 2019, 440, 227162.	4.0	35
9014	An advanced high energy-efficiency rechargeable aluminum-selenium battery. Nano Energy, 2019, 66, 104159.	8.2	39
9015	Adding Metal Carbides to Suppress the Crystalline Li15Si4 Formation: A Route toward Cycling Durable Si-Based Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38727-38736.	4.0	26
9016	Poly(amic acid) Lithium Salt as a Multi-Functional Binder for High Performance Lithium/Sulfur Battery Cathodes. International Journal of Electrochemical Science, 2019, 14, 8772-8780.	0.5	2
9017	Improved performance of CoS2 nanoparticles encapsulated in carbon micro-polyhedron for propelling redox reaction of polysulfide. Electrochimica Acta, 2019, 324, 134899.	2.6	3
9018	3D stable hosts with controllable lithiophilic architectures for high-rate and high-capacity lithium metal anodes. Journal of Power Sources, 2019, 442, 227214.	4.0	25
9019	Reversible dual-ion battery via mesoporous Cu2O cathode in SO2-in-salt non-flammable electrolyte. Nano Energy, 2019, 66, 104138.	8.2	14
9020	Resolving local dynamics of dual ions at the nanoscale in electrochemically active materials. Nano Energy, 2019, 66, 104160.	8.2	14
9021	Synthesis and electrochemical properties of poly(3,4-dihydroxystyrene) and its composites with conducting polymers. Synthetic Metals, 2019, 256, 116151.	2.1	8
9022	A Three-Dimensional Electrochemical-Mechanical Model at the Particle Level for Lithium-Ion Battery. Journal of the Electrochemical Society, 2019, 166, A3319-A3331.	1.3	23
9023	A Manganese-Based Coordination Polymer Containing No Solvent as a High Performance Anode in Li-Ion Batteries. Crystal Growth and Design, 2019, 19, 6503-6510.	1.4	19
9024	S-containing and Si-containing compounds as highly effective electrolyte additives for SiOx -based anodes/NCM 811 cathodes in lithium ion cells. Scientific Reports, 2019, 9, 14108.	1.6	41

#	Article	IF	CITATIONS
9025	Carbon-Coated SnO ₂ /Ti ₃ C ₂ Composites with Enhanced Lithium Storage Performance. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	1
9026	Tuning Conjugated Polymers for Binder Applications in High-Capacity Magnetite Anodes. ACS Applied Energy Materials, 2019, 2, 7584-7593.	2.5	18
9027	Preparation and performance of polypropylene separator modified by SiO2/PVA layer for lithium batteries. E-Polymers, 2019, 19, 470-476.	1.3	11
9028	"Induced Electron Transfer―in Silk Cocoon Derived N-Doped Reduced Graphene Oxide-Mo-Li-S Electrode. Frontiers in Materials, 2019, 6, .	1.2	0
9029	Defect, Diffusion and Dopant Properties of NaNiO2: Atomistic Simulation Study. Energies, 2019, 12, 3094.	1.6	15
9030	A high-energy sodium-ion capacitor enabled by a nitrogen/sulfur co-doped hollow carbon nanofiber anode and an activated carbon cathode. Nanoscale Advances, 2019, 1, 746-756.	2.2	24
9031	A multidimensional and hierarchical carbon-confined cobalt phosphide nanocomposite as an advanced anode for lithium and sodium storage. Nanoscale, 2019, 11, 968-985.	2.8	50
9032	Morphology-controlled synthesis of CoMoO ₄ nanoarchitectures anchored on carbon cloth for high-efficiency oxygen oxidation reaction. RSC Advances, 2019, 9, 1562-1569.	1.7	41
9033	Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. Journal of Materials Chemistry A, 2019, 7, 940-945.	5.2	291
9034	Boron additive passivated carbonate electrolytes for stable cycling of 5ÂV lithium–metal batteries. Journal of Materials Chemistry A, 2019, 7, 594-602.	5.2	48
9035	A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 1092-1098.	5.2	77
9036	Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li4Ti5O12 compact microspheres. Journal of Materials Chemistry A, 2019, 7, 1168-1176.	5.2	28
9037	A general synthetic methodology to access magnesium aluminate electrolyte systems for Mg batteries. Journal of Materials Chemistry A, 2019, 7, 2677-2685.	5.2	18
9038	Design and synthesis of room temperature stable Li-argyrodite superionic conductors <i>via</i> cation doping. Journal of Materials Chemistry A, 2019, 7, 2717-2722.	5.2	54
9039	Rechargeable Na/Ni batteries based on the Ni(OH) ₂ /NiOOH redox couple with high energy density and good cycling performance. Journal of Materials Chemistry A, 2019, 7, 1564-1573.	5.2	40
9040	Designing of hierarchical mesoporous/macroporous silicon-based composite anode material for low-cost high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 3874-3881.	5.2	54
9041	Ultrahigh apacity and Fireâ€Resistant LiFePO ₄ â€Based Composite Cathodes for Advanced Lithiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1802930.	10.2	114
9042	Plasma Treatment for Nitrogenâ€Đoped 3D Graphene Framework by a Conductive Matrix with Sulfur for Highâ€Performance Li–S Batteries. Small, 2019, 15, e1804347.	5.2	97

#	Article	IF	CITATIONS
9043	Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. Journal of Power Sources, 2019, 414, 435-443.	4.0	58
9044	Probing spatial coupling of resistive modes in porous intercalation electrodes through impedance spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 3805-3813.	1.3	25
9045	Polymeric ionic liquids for lithium-based rechargeable batteries. Molecular Systems Design and Engineering, 2019, 4, 294-309.	1.7	114
9046	Three-dimensional iron oxyfluoride/N-doped carbon hybrid nanocomposites as high-performance cathodes for rechargeable Li-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 465-472.	3.0	6
9047	N-doped porous hard-carbon derived from recycled separators for efficient lithium-ion and sodium-ion batteries. Sustainable Energy and Fuels, 2019, 3, 717-722.	2.5	41
9048	Highly effective fabrication of two dimensional metal oxides as high performance lithium storage anodes. Journal of Materials Chemistry A, 2019, 7, 3924-3932.	5.2	19
9049	Novel Na ₂ TiSiO ₅ anode material for lithium ion batteries. Chemical Communications, 2019, 55, 2234-2237.	2.2	24
9050	Theoretical characterization of hexagonal 2D Be ₃ N ₂ monolayers. New Journal of Chemistry, 2019, 43, 2933-2941.	1.4	20
9051	Fe _{1â^'x} S/nitrogen and sulfur Co-doped carbon composite derived from a nanosized metal–organic framework for high-performance lithium-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 50-56.	3.0	26
9052	Ultrathin carbon-coated FeS ₂ nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6, 459-464.	3.0	21
9053	A H-bond stabilized quinone electrode material for Li–organic batteries: the strength of weak bonds. Chemical Science, 2019, 10, 418-426.	3.7	108
9054	Green electrode processing using a seaweed-derived mesoporous carbon additive and binder for LiMn ₂ O ₄ and LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ lithium ion battery electrodes. Sustainable Energy and Fuels, 2019, 3, 450-456.	2.5	11
9055	High-performance lithium–organic batteries by achieving 16 lithium storage in poly(imine-anthraquinone). Journal of Materials Chemistry A, 2019, 7, 2368-2375.	5.2	96
9056	Two Dimensional WS ₂ /C Nanosheets as a Polysulfides Immobilizer for High Performance Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2019, 166, A5386-A5395.	1.3	29
9057	Hierarchical VS ₂ Nano-Flowers as Sulfur Host for Lithium Sulfur Battery Cathodes. Journal of the Electrochemical Society, 2019, 166, A188-A194.	1.3	33
9058	Nickel (II) Phthalocyanine-Tetrasulfonic Acid Tetrasodium Salt as a High-Performance Organic Anode for Ion Battery. Journal of the Electrochemical Society, 2019, 166, A201-A207.	1.3	6
9059	Well-defined cobalt sulfide nanoparticles locked in 3D hollow nitrogen-doped carbon shells for superior lithium and sodium storage. Energy Storage Materials, 2019, 18, 114-124.	9.5	62
9060	First-principles molecular dynamics study on ultrafast potassium ion transport in silicon anode. Journal of Power Sources, 2019, 415, 119-125.	4.0	36

ARTICLE IF CITATIONS MXene/Si@SiO_{<i>x</i>}@C Layer-by-Layer Superstructure with Autoadjustable Function 9061 7.3 154 for Superior Stable Lithium Storage. ACS Nano, 2019, 13, 2167-2175. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nature Energy, 9062 19.8 446 2019, 4, 123-130. Porous Al/Al2O3 two-phase nanonetwork to improve electrochemical properties of porous C/SiO2 as 9063 2.6 19 anode for Li-ion batteries. Electrochimica Acta, 2019, 300, 470-481. Highly Crystalized Co₂Mo₃O₈ Hexagonal Nanoplates Interconnected by Coal-Derived Carbon via the Molten-Salt-Assisted Method for Competitive Li-Ion 9064 4.0 Battery Anodes. ÁCS Applied Materials & amp; Interfaces, 2019, 11, 7006-7013. <i>In situ</i> catalytic formation of graphene-like graphitic layer decoration on Na₃V_{2â[°]x}Ga_x(PO₄)₃ (0 ≤i>x</i> ≤0.6) 9065 5.2 43 for ultrafast and high energy sodium storage. Journal of Materials Chemistry A, 2019, 7, 4660-4667. <i>In operando</i> thermal signature probe for lithium-ion batteries. Applied Physics Letters, 2019, 114, 9066 1.5 Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties 9067 6.6 65 for lithium/sodium-ion batteries. Chemical Engineering Journal, 2019, 364, 57-69. PEO-based electrolytes blended with star polymers with precisely imprinted polymeric pseudo-crown 9068 4.1 78 ether cavities for alkali metal ion batteries. Journal of Membrane Science, 2019, 576, 182-189. A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries. Nano 9069 8.2 222 Energy, 2019, 58, 786-796. Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano 8.2 Energy, 2019, 58, 596-603. Graphene/hBN Heterostructures as High-Capacity Cathodes with High Voltage for Next-Generation 9071 1.5 30 Aluminum Batteries. Journal of Physical Chemistry C, 2019, 123, 3959-3967. Rational Combination of an Alabandite MnS Laminated Pyrrhotite Fe_{1–<i>x</i>}S Nanocomposite as a Superior Anode Material for High Performance Sodium-Ion Battery. ACS 3.2 39 Sustainable Chemistry and Engineering, 2019, 7, 5921-5930. Ultrathin MoS₂ nanosheets homogenously embedded in aÂN,O-codoped carbon matrix for 9073 5.2 82 high-performance lithium and sodium storage. Journal of Materials Chemistry A, 2019, 7, 4804-4812. Poly(3,4-ethylenedioxythiophene) coated lead negative plates for hybrid energy storage systems. Electrochimica Acta, 2019, 301, 183-191. 9074 2.6 Ion Conductivity Enhancement in Anti‧pinel Li₃OBr with Intrinsic Vacancies. Advanced 9075 1.3 14 Theory and Simulations, 2019, 2, 1800138. Study of energy storage systems and environmental challenges of batteries. Renewable and 9076 479 Sustainable Energy Reviews, 2019, 104, 192-208. Nascent SEI-Surface Films on Single Crystalline Silicon Investigated by Scanning Electrochemical 9077 2.521 Microscopy. ACS Applied Energy Materials, 2019, 2, 1388-1392. Anion $\hat{a} \in \hat{i} \in \hat{i}$ interactions in lithium $\hat{a} \in \hat{i}$ organic redox flow batteries. Chemical Communications, 2019, 55, 9078 2.2 24 2364-2367.

#	Article	IF	CITATIONS
9079	Recent progress in flexible non-lithium based rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4353-4382.	5.2	91
9080	A New Type of Liâ€Rich Rockâ€Salt Oxide Li ₂ Ni _{1/3} Ru _{2/3} O ₃ with Reversible Anionic Redox Chemistry. Advanced Materials, 2019, 31, e1807825.	11.1	90
9081	Hierarchical void structured Si/PANi/C hybrid anode material for high-performance lithium-ion batteries. Electrochimica Acta, 2019, 300, 341-348.	2.6	34
9082	Upcycling of Electroplating Sludge into Ultrafine Sn@C Nanorods with Highly Stable Lithium Storage Performance. Nano Letters, 2019, 19, 1860-1866.	4.5	139
9083	Engineering NiO/NiFe LDH Intersection to Bypass Scaling Relationship for Oxygen Evolution Reaction via Dynamic Tridimensional Adsorption of Intermediates. Advanced Materials, 2019, 31, e1804769.	11.1	264
9084	Zwitterions for Organic/Perovskite Solar Cells, Lightâ€Emitting Devices, and Lithium Ion Batteries: Recent Progress and Perspectives. Advanced Energy Materials, 2019, 9, 1803354.	10.2	68
9085	The Microwaveâ€Assisted Hydrothermal Synthesis of CoV ₂ O ₆ and Co ₃ V ₂ O ₈ with Morphology Tuning by pH Adjustments for Supercapacitor Applications. ChemistrySelect, 2019, 4, 956-962.	0.7	24
9086	Understanding the Role of Fluorination on the Interaction of Electrolytic Carbonates with Li ⁺ through an Electronic Structure Approach. ChemistrySelect, 2019, 4, 1251-1258.	0.7	9
9087	High-throughput fabrication of 3D N-doped graphenic framework coupled with Fe3C@porous graphite carbon for ultrastable potassium ion storage. Energy Storage Materials, 2019, 22, 185-193.	9.5	91
9088	Biogenic Hematite from Bacteria: Facile Synthesis of Secondary Nanoclusters for Lithium Storage Capacity. ACS Applied Materials & Interfaces, 2019, 11, 6948-6957.	4.0	9
9089	Nanosheet-based Nb ₁₂ O ₂₉ hierarchical microspheres for enhanced lithium storage. Chemical Communications, 2019, 55, 2493-2496.	2.2	92
9090	Coreâ€5hell Structure of SnO ₂ @C/PEDOT : PSS Microspheres with Dual Protection Layers for Enhanced Lithium Storage Performance. ChemElectroChem, 2019, 6, 2182-2188.	1.7	10
9091	Facile Synthesis of Molybdenum Disulfide/Carbon Nanocomposites in Polyacrylic Acid Hydrogel as Anode for Lithiumâ€ion Batteries. Energy Technology, 2019, 7, 1801147.	1.8	7
9092	Composition-dependent lithium storage performances of SnS/SnO2 heterostructures sandwiching between spherical graphene. Electrochimica Acta, 2019, 300, 253-262.	2.6	35
9093	Effects of conductive binder on the electrochemical performance of lithium titanate anodes. Solid State Ionics, 2019, 333, 18-29.	1.3	30
9094	Nb-doped and Al ₂ O ₃ + B ₂ O ₃ -coated granular secondary LiMn ₂ O ₄ particles as cathode materials for lithium-ion batteries. RSC Advances, 2019, 9, 3436-3442.	1.7	5
9095	Recent Developments in the Effects of Different Dopants on the Structure and Property of Lithium Titanate Material. Nano, 2019, 14, 1930002.	0.5	2
9096	Lithium Magnesium Tungstate Solid as an Additive into Li(Ni _{1/3} Mn _{1/3} Co _{1/3})O ₂ Electrodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A5430-A5436.	1.3	9

#	Article	IF	CITATIONS
9097	NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery. Applied Surface Science, 2019, 478, 552-559.	3.1	123
9098	Unveiling the Reaction Mechanism during Li Uptake and Release of Nanosized "NiFeMnO ₄ â€ Operando X-ray Absorption, X-ray Diffraction, and Pair Distribution Function Investigations. ACS Omega, 2019, 4, 2398-2409.	1.6	9
9099	Defect Chemistry and Li-ion Diffusion in Li2RuO3. Scientific Reports, 2019, 9, 550.	1.6	28
9100	Electrospun Nanofibers for Lithium-Ion Batteries. , 2019, , 671-694.		6
9101	Zn2SnO4 particles coated with N-doped carbon as an anode material for lithium and sodium-ion batteries. Journal of Alloys and Compounds, 2019, 786, 346-355.	2.8	22
9102	Non-dimensional analysis of the criticality of Li-ion battery thermal runaway behavior. Journal of Hazardous Materials, 2019, 369, 268-278.	6.5	56
9103	Graphene oxide-grafted ferrocene moiety via ring opening polymerization (ROP) as a supercapacitor electrode material. Polymer, 2019, 167, 138-145.	1.8	37
9104	Performance of Ionic Transport Properties in Vegetable Oil-Based Polyurethane Acrylate Gel Polymer Electrolyte. ACS Omega, 2019, 4, 2554-2564.	1.6	21
9105	Engineering PPy decorated MnCo ₂ O ₄ urchins for quasi-solid-state hybrid capacitors. CrystEngComm, 2019, 21, 1600-1606.	1.3	48
9106	Use of Polyvinylpyrrolidone as a Chelating Agent to Reduce the Calcination Temperature of Li7La3Zr2O12 Synthesized by Using Solution-based Method. Journal of the Korean Physical Society, 2019, 74, 187-190.	0.3	0
9107	High-performance lithiumâ^'sulfur batteries fabricated from a three-dimensional porous reduced graphene oxide/La2O3 microboards/sulfur aerogel. Ceramics International, 2019, 45, 9017-9024.	2.3	24
9108	Enhanced performance of carbon-free intermetallic zinc titanium alloy (Zn-ZnxTiy) anode for lithium-ion batteries. Electrochimica Acta, 2019, 301, 229-239.	2.6	12
9109	Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy, 2019, 58, 673-679.	8.2	84
9110	Tiâ€Doped Ultraâ€Small CoO Nanoparticles Embedded in an Octahedral Carbon Matrix with Enhanced Lithium and Sodium Storage. ChemElectroChem, 2019, 6, 917-927.	1.7	21
9111	Two-dimensional materials for advanced Li-S batteries. Energy Storage Materials, 2019, 22, 284-310.	9.5	114
9112	Janus Electrocatalysts Containing MOF-Derived Carbon Networks and NiFe-LDH Nanoplates for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2019, 2, 1784-1792.	2.5	54
9113	Investigation of NaTiOPO ₄ as Anode for Sodium-Ion Batteries: A Solid Electrolyte Interphase Free Material?. ACS Applied Energy Materials, 2019, 2, 1923-1931.	2.5	18
9114	Bio-inspired self-breathable structure driven by the volumetric effect: an unusual driving force of metal sulfide for high alkaline ion storage capability. Journal of Materials Chemistry A, 2019, 7, 5677-5684.	5.2	17

#	Article	IF	CITATIONS
9115	MnO Nanoparticles Supported by Carbonized Cotton Fiber Foil as a Free tanding Anode for Highâ€Performance Lithium Ion Batteries. ChemPlusChem, 2019, 84, 166-174.	1.3	6
9116	Visualization of inhomogeneous current distribution on ZrO ₂ -coated LiCoO ₂ thin-film electrodes using scanning electrochemical cell microscopy. Chemical Communications, 2019, 55, 545-548.	2.2	35
9117	Memory-effect-induced electrochemical oscillation of an Al-doped Li ₄ Ti ₅ O ₁₂ composite in Li-ion batteries. Chemical Communications, 2019, 55, 1279-1282.	2.2	7
9118	Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews, 2019, 48, 285-309.	18.7	685
9119	N,P-Doped carbon with encapsulated Co nanoparticles as efficient electrocatalysts for oxygen reduction reactions. Dalton Transactions, 2019, 48, 2352-2358.	1.6	22
9120	CO ₂ -fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 2019, 21, 406-448.	4.6	574
9121	Understanding the formation of ultrathin mesoporous Li ₄ Ti ₅ O ₁₂ nanosheets and their application in high-rate, long-life lithium-ion anodes. Nanoscale, 2019, 11, 520-531.	2.8	33
9122	Universal description of heating-induced reshaping preference of core–shell bimetallic nanoparticles. Nanoscale, 2019, 11, 1386-1395.	2.8	4
9123	Sacrificial template induced interconnected bubble-like N-doped carbon nanofoam as a pH-universal electrocatalyst for an oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 621-629.	3.0	4
9124	Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chemical Science, 2019, 10, 1374-1379.	3.7	201
9125	Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. Journal of Materials Chemistry A, 2019, 7, 1917-1935.	5.2	103
9126	MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. Journal of Materials Chemistry A, 2019, 7, 2653-2659.	5.2	160
9127	Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A, 2019, 7, 2942-2964.	5.2	1,266
9128	The top-down synthesis of sequentially controlled architectures for honeycomb-layered Na ₃ Ni ₂ BiO ₆ towards high-voltage and superior performance cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 1797-1809.	5.2	23
9129	A 3D flower-like VO ₂ /MXene hybrid architecture with superior anode performance for sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 1315-1322.	5.2	112
9130	New high-energy-density GeTe-based anodes for Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 3278-3288.	5.2	50
9131	CuO-Coated and Cu ²⁺ -doped Co-modified P2-type Na _{2/3} [Ni _{1/3} Mn _{2/3}]O ₂ for sodium-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 314-321.	1.3	56
9132	Spatially resolved ultrasound diagnostics of Li-ion battery electrodes. Physical Chemistry Chemical Physics, 2019, 21, 6354-6361.	1.3	59

#	Article	IF	CITATIONS
9133	A Bipolar and Selfâ€Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dualâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 10204-10208.	7.2	78
9134	Garnet-doped composite polymer electrolyte with high ionic conductivity for dendrite-free lithium batteries. Journal of Energy Storage, 2019, 24, 100767.	3.9	33
9135	Energy Density Assessment of Organic Batteries. ACS Applied Energy Materials, 2019, 2, 4008-4015.	2.5	26
9136	Electrochemical Impedance Spectroscopy and X-ray Photoelectron Spectroscopy Study of Lithium Metal Surface Aging in Imidazolium-Based Ionic Liquid Electrolytes Performed at Open-Circuit Voltage. ACS Applied Materials & Interfaces, 2019, 11, 21955-21964.	4.0	29
9137	Methylsulfonylmethane-Based Deep Eutectic Solvent as a New Type of Green Electrolyte for a High-Energy-Density Aqueous Lithium-Ion Battery. ACS Energy Letters, 2019, 4, 1419-1426.	8.8	87
9138	Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 2273-2285.	15.6	512
9139	Rational construction of MoS ₂ /Mo ₂ N/C hierarchical porous tubular nanostructures for enhanced lithium storage. Journal of Materials Chemistry A, 2019, 7, 23886-23894.	5.2	43
9140	Nanosheet-assembled hierarchical Li4Ti5O12 microspheres for high-volumetric-density and high-rate Li-ion battery anode. Energy Storage Materials, 2019, 21, 361-371.	9.5	57
9141	Development of Na2FePO4F/Conducting-Polymer composite as an exceptionally high performance cathode material for Na-ion batteries. Journal of Power Sources, 2019, 432, 1-7.	4.0	29
9142	UV-Initiated Soft–Tough Multifunctional Gel Polymer Electrolyte Achieves Stable-Cycling Li-Metal Battery. ACS Applied Energy Materials, 2019, 2, 4513-4520.	2.5	20
9143	Revealing the Effect of Ti Doping on Significantly Enhancing Cyclic Performance at a High Cutoff Voltage for Ni-Rich LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 10661-10669.	3.2	79
9144	Nanosized titanium niobium oxide/carbon electrodes for lithium-ion energy storage applications. Sustainable Energy and Fuels, 2019, 3, 1776-1789.	2.5	7
9145	A Bipolar and Selfâ€Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dualâ€Ion Batteries. Angewandte Chemie, 2019, 131, 10310-10314.	1.6	24
9146	Facile Sprayâ€Drying Synthesis of Dualâ€Shell Structure Si@SiO _{<i>x</i>} @Graphite/Graphene as Stable Anode for Liâ€Ion Batteries. Energy Technology, 2019, 7, 1900464.	1.8	12
9147	An easy synthesis of Ni-Co doped hollow C-N tubular nanocomposites as excellent cathodic catalysts of alkaline and neutral zinc-air batteries. Science China Materials, 2019, 62, 1251-1264.	3.5	37
9148	Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na-ion batteries. Applied Surface Science, 2019, 487, 1159-1166.	3.1	61
9149	Electrochemical performance of Li2O-V2O5-SiO2-B2O3 glass as cathode material for lithium ion batteries. Journal of Materiomics, 2019, 5, 663-669.	2.8	17
9150	An air-stable and waterproof lithium metal anode enabled by wax composite packaging. Science Bulletin, 2019, 64, 910-917.	4.3	58

#	Article	IF	CITATIONS
9151	Facile preparation of porefilled membranes based on poly(ionic liquid) with quaternary ammonium and tertiary amine head groups for AEMFCs. Solid State Ionics, 2019, 338, 58-65.	1.3	8
9152	La _{1.5} Sr _{0.5} NiMn _{0.5} Ru _{0.5} O ₆ Double Perovskite with Enhanced ORR/OER Bifunctional Catalytic Activity. ACS Applied Materials & Interfaces, 2019, 11, 21454-21464.	4.0	129
9153	Nano-spatially confined and interface-controlled lithiation–delithiation in an <i>in situ</i> formed (SnS–SnS ₂ –S)/FLG composite: a route to an ultrafast and cycle-stable anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 15320-15332.	5.2	32
9154	Fluorineâ€Free Noble Salt Anion for Highâ€Performance Allâ€Solidâ€State Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900763.	10.2	66
9155	A Robust Route to Co ₂ (OH) ₂ CO ₃ Ultrathin Nanosheets with Superior Lithium Storage Capability Templated by Aspartic Acidâ€Functionalized Graphene Oxide. Advanced Energy Materials, 2019, 9, 1901093.	10.2	94
9156	A mild process for the synthesis of Na2Ti3O7 as an anode material for sodium-ion batteries in deep eutectic solvent. Journal of Materials Science: Materials in Electronics, 2019, 30, 8422-8427.	1.1	8
9157	The impact of vertical ï€-extension on redox mechanisms of aromatic diimide dyes. Chinese Chemical Letters, 2019, 30, 2254-2258.	4.8	15
9158	Fabrication of scandium-doped lithium manganese oxide as a high-rate capability cathode material for lithium energy storage. Solid State Ionics, 2019, 338, 20-24.	1.3	10
9159	Realizing High Voltage Lithium Cobalt Oxide in Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2019, 58, 10119-10139.	1.8	57
9160	In situ Investigations of a Proton Trap Material: A PEDOT-Based Copolymer with Hydroquinone and Pyridine Side Groups Having Robust Cyclability in Organic Electrolytes and Ionic Liquids. ACS Applied Energy Materials, 2019, 2, 4486-4495.	2.5	15
9161	Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14, 705-711.	15.6	773
9162	Hierarchically porous structured carbon derived from peanut shell as an enhanced high rate anode for lithium ion batteries. Applied Surface Science, 2019, 492, 464-472.	3.1	35
9163	In-situ fabrication of heterostructured SnOx@C/rGO composite with durable cycling life for improved lithium storage. Ceramics International, 2019, 45, 18743-18750.	2.3	11
9164	The influence of Li2O incorporation on the electrochemical properties of Li4Ti5O12 thin film electrodes. Journal of Alloys and Compounds, 2019, 801, 550-557.	2.8	9
9165	Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance. Nano Energy, 2019, 63, 103815.	8.2	60
9166	Wood cellulose-based thin gel electrolyte with enhanced ionic conductivity. MRS Communications, 2019, 9, 1015-1021.	0.8	11
9167	RuO ₂ â€coated MoS ₂ Nanosheets as Cathode Catalysts for High Efficiency Lïī£¿O ₂ Batteries. Bulletin of the Korean Chemical Society, 2019, 40, 642-649.	1.0	11
9168	Simple solvent-free synthesis of rod-like Cu-doped V2O5 for high storage capacity cathode materials of lithium ion batteries. Journal of Alloys and Compounds, 2019, 802, 139-145.	2.8	20

#	Article	IF	CITATIONS
9169	Electrochemical properties of nonstoichiometric silicon suboxide anode materials with controlled oxygen concentration. Composites Part B: Engineering, 2019, 174, 107024.	5.9	25
9170	Hollow nanostructure of sea-sponge-C/SiC@SiC/C for stable Li+-storage capability. Science Bulletin, 2019, 64, 1152-1157.	4.3	9
9171	Electrochemical Performance of Large-Grained NaCrO ₂ Cathode Materials for Na-Ion Batteries Synthesized by Decomposition of Na ₂ Cr ₂ O ₇ ·2H ₂ O. Chemistry of Materials, 2019, 31, 5214-5223.	3.2	34
9172	Gyroid structured aqua-sheets with sub-nanometer thickness enabling 3D fast proton relay conduction. Chemical Science, 2019, 10, 6245-6253.	3.7	32
9173	Carbon coated porous silicon flakes with high initial coulombic efficiency and long-term cycling stability for lithium ion batteries. Sustainable Energy and Fuels, 2019, 3, 2361-2365.	2.5	7
9174	Biphasic silicon oxide nanocomposites as high-performance lithium storage materials. Journal of Materials Chemistry A, 2019, 7, 15621-15626.	5.2	13
9175	Electrochemical properties of niobium and niobium compounds modified AISI430 stainless steel as bipolar plates for DFAFC. Surface Engineering, 2019, 35, 1003-1011.	1.1	10
9176	Lithiation Induced Stress Concentration for 3D Metal Scaffold Structured Silicon Anodes. Journal of the Electrochemical Society, 2019, 166, A2083-A2090.	1.3	15
9177	Sandwich-Type Si@C/rGO Composite Stabilized by Polyetherimide-Derived Interface with Efficient Lithium Storage and High Rate Performance. Journal of the Electrochemical Society, 2019, 166, A2096-A2104.	1.3	2
9178	Fabrication of Lamellar Nanosphere Structure for Effective Stressâ€Management in Largeâ€Volumeâ€Variation Anodes of Highâ€Energy Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1900970.	11.1	52
9179	Computational Insights into Mg l Complex Electrolytes for Rechargeable Magnesium Batteries. Batteries and Supercaps, 2019, 2, 792-800.	2.4	16
9180	Understanding Challenges of Cathode Materials for Sodiumâ€lon Batteries using Synchrotronâ€Based Xâ€Ray Absorption Spectroscopy. Batteries and Supercaps, 2019, 2, 842-851.	2.4	23
9181	Threeâ€Dimensional Mesoporous Strawâ€like Co 3 O 4 Anode with Enhanced Electrochemical Performance for Lithiumâ€lon Batteries. ChemistrySelect, 2019, 4, 6879-6885.	0.7	7
9182	In Situ Transmission Electron Microscopy Studies of Electrochemical Reaction Mechanisms in Rechargeable Batteries. Electrochemical Energy Reviews, 2019, 2, 467-491.	13.1	30
9183	Biomass derivative-based fibrous perovskite electrocatalysts with a hierarchical porous structure for oxygen reduction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 18019-18027.	3.8	8
9184	Role of Superexchange Interactions on the Arrangement of Fe and Mn in LiMn _{<i>x</i>} Fe _{1–<i>x</i>} PO ₄ . Journal of Physical Chemistry C, 2019, 123, 17002-17009.	1.5	6
9185	Facile <i>in situ</i> growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries. RSC Advances, 2019, 9, 19253-19260.	1.7	17
9186	The Effect of Electrode Potential on the Conductivity of Polymer Complexes of Nickel with Salen Ligands. Russian Journal of Electrochemistry, 2019, 55, 339-345.	0.3	21

#	Article	IF	CITATIONS
9187	In Operando Impedance Based Diagnostics of Electrode Kinetics in Li-Ion Pouch Cells. Journal of the Electrochemical Society, 2019, 166, A2131-A2141.	1.3	28
9188	A General Oneâ€Pot Synthesis Strategy of 3D Porous Hierarchical Networks Crosslinked by Monolayered Nanoparticles Interconnected Nanoplates for Lithium Ion Batteries. Advanced Functional Materials, 2019, 29, 1903003.	7.8	16
9189	Supramolecular selfâ€assembly of compound β nucleating agent and effect on polypropylene microporous membrane. Polymer Crystallization, 2019, 2, e10080.	0.5	3
9190	Porous-hollow nanorods constructed from alternate intercalation of carbon and MoS2 monolayers for lithium and sodium storage. Nano Research, 2019, 12, 1912-1920.	5.8	39
9191	A 2D/2D graphitic carbon nitride/N-doped graphene hybrid as an effective polysulfide mediator in lithium–sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 1807-1815.	3.2	19
9192	Microalgae-derived hollow carbon-MoS2 composite as anode for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 79, 106-114.	2.9	25
9193	Modeling of separator failure in lithium-ion pouch cells under compression. Journal of Power Sources, 2019, 435, 226756.	4.0	21
9194	A bridge between battery and supercapacitor for power/energy gap by using dual redox-active ions electrolyte. Chemical Engineering Journal, 2019, 375, 122054.	6.6	28
9195	Imidazolium-functionalized carbon nanotubes crosslinked with imidazole poly(ether ether ketone) for fabricating anion exchange membranes with high hydroxide conductivity and dimension stability. Electrochimica Acta, 2019, 318, 572-580.	2.6	18
9196	Operando X-ray absorption spectroscopy applied to battery materials at ICGM: The challenging case of BiSb's sodiation. Energy Storage Materials, 2019, 21, 1-13.	9.5	12
9197	Structure and Electrical Performance of Na ₂ C ₆ O ₆ under High Pressure. Journal of Physical Chemistry C, 2019, 123, 17163-17169.	1.5	3
9198	Exploiting Lithiumâ€Depleted Cathode Materials for Solidâ€State Li Metal Batteries. Advanced Energy Materials, 2019, 9, 1901335.	10.2	14
9199	Yolkâ~'shell Prussian blue analogues hierarchical microboxes: Controllably exposing active sites toward enhanced cathode performance for lithium ion batteries. Electrochimica Acta, 2019, 319, 237-244.	2.6	21
9200	Preparation of Ge/N, S co-doped ordered mesoporous carbon composite and its long-term cycling performance of lithium-ion batteries. Electrochimica Acta, 2019, 318, 737-745.	2.6	26
9201	Twoâ€Ðimensional Arrays of Transition Metal Nitride Nanocrystals. Advanced Materials, 2019, 31, e1902393.	11.1	93
9202	Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chemical Engineering Journal, 2019, 375, 122058.	6.6	46
9203	A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics. Energy Storage Materials, 2019, 21, 246-252.	9.5	70
9204	Enhancing the electrochemical performance of an O3–NaCrO2 cathode in sodium-ion batteries by cation substitution. Journal of Power Sources, 2019, 435, 226760.	4.0	24

#	Article	IF	CITATIONS
9205	Nickel(II) and Copper(II) Coordination Polymers Derived from 1,2,4,5-Tetraaminobenzene for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 5197-5205.	3.2	52
9206	Metal–Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li–S Battery Electrodes. Nano Letters, 2019, 19, 4391-4399.	4.5	115
9207	Effect of trace hydrofluoric acid in a LiPF ₆ electrolyte on the performance of a Li–organic battery with an N-heterocycle based conjugated microporous polymer as the cathode. Journal of Materials Chemistry A, 2019, 7, 16347-16355.	5.2	31
9208	Electrochemical Properties of Silicon/C Composite with Porous Carbon Designed Using α-Cyclodextrin and Surfactant. Electrochemistry, 2019, 87, 229-233.	0.6	0
9209	A Novel Dendriteâ€Free Mn ²⁺ /Zn ²⁺ Hybrid Battery with 2.3 V Voltage Window and 11000 ycle Lifespan. Advanced Energy Materials, 2019, 9, 1901469.	10.2	175
9210	Solidâ€State Lithium Batteries: Bipolar Design, Fabrication, and Electrochemistry. ChemElectroChem, 2019, 6, 3842-3859.	1.7	80
9211	Facile Synthesis of Peapodâ€Like Cu ₃ Ge/Ge@C as a Highâ€Capacity and Longâ€Life Anode for Liâ€k Batteries. Chemistry - A European Journal, 2019, 25, 11486-11493.	2n 1.7	12
9212	Smart Materials and Design toward Safe and Durable Lithium Ion Batteries. Small Methods, 2019, 3, 1900323.	4.6	47
9213	A simple method to enhance the lifetime of Ni-rich cathode by using low-temperature dehydratable molecular sieve as water scavenger. Journal of Power Sources, 2019, 435, 226773.	4.0	16
9214	Effects of Particle Size on Mg ²⁺ Ion Intercalation into λ-MnO ₂ Cathode Materials. Nano Letters, 2019, 19, 4712-4720.	4.5	41
9215	Towards high energy density lithium battery anodes: silicon and lithium. Chemical Science, 2019, 10, 7132-7148.	3.7	134
9216	CuO ultrathin nanosheets decorated reduced graphene oxide as a high performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 805, 355-362.	2.8	27
9217	Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode by reducing lithium residue with low-temperature fluorination treatment. Solid State Ionics, 2019, 339, 114998.	1.3	14
9218	Phosphorus-doped graphene nanosheets anchored with cerium oxide nanocrystals as effective sulfur hosts for high performance lithium–sulfur batteries. Nanoscale, 2019, 11, 13758-13766.	2.8	41
9219	Lithium Benzenedithiolate Catholytes for Rechargeable Lithium Batteries. Advanced Functional Materials, 2019, 29, 1902223.	7.8	44
9220	Langmuir–Blodgett Nanowire Devices for In Situ Probing of Zincâ€ion Batteries. Small, 2019, 15, e1902141.	5.2	25
9221	Nonflammable Fluorinated Carbonate Electrolyte with High Salt-to-Solvent Ratios Enables Stable Silicon-Based Anode for Next-Generation Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 23229-23235.	4.0	57
9222	Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping. Materials Today Energy, 2019, 13, 145-151.	2.5	79

#	Article	IF	CITATIONS
9223	Nature Plant Polyphenol Coating Silicon Submicroparticle Conjugated with Polyacrylic Acid for Achieving a High-Performance Anode of Lithium-Ion Battery. ACS Applied Energy Materials, 2019, 2, 5066-5073.	2.5	36
9224	Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating. Journal of Electroanalytical Chemistry, 2019, 847, 113197.	1.9	67
9225	Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery. Journal of Membrane Science, 2019, 588, 117169.	4.1	82
9226	The preparation of NASICON-type solid electrolyte lithium-ion Li _{1+x} Al _x Ge _{0.2} Ti _{1.8-x} (PO ₄) ₃ by conventional solid-state method. IOP Conference Series: Materials Science and Engineering, 0, 504, 012045.	0.3	3
9227	Heterostructured SnO2-SnS2@C Embedded in Nitrogen-Doped Graphene as a Robust Anode Material for Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 339.	1.8	27
9228	Continuous Composition Spread and Electrochemical Studies of Low Cobalt Content Li(Ni,Mn,Co)O2 Cathode Materials. Coatings, 2019, 9, 366.	1.2	3
9229	Improving the performance of sulphur doped LiMn2O4 by carbon coating. Journal of Power Sources, 2019, 434, 226725.	4.0	37
9230	Structure, charge transfer, and kinetic properties of NaVPO4F with Na+ extraction: a comprehensive first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 14612-14619.	1.3	11
9231	Heterostructured SnS/TiO ₂ @C hollow nanospheres for superior lithium and sodium storage. Nanoscale, 2019, 11, 12846-12852.	2.8	52
9232	Hydrothermal synthesis of a lamellar zinc dimolybdate hydroxide with application as the anode for lithium-ion batteries. Instrumentation Science and Technology, 2019, 47, 627-639.	0.9	1
9233	Spent Lead–Acid Battery Recycling by Hydraulic Fluidized Bed Sorting. Environmental Engineering Science, 2019, 36, 1156-1161.	0.8	1
9234	The Discharge Mechanism for Solid-State Lithium-Sulfur Batteries. MRS Advances, 2019, 4, 2627-2634.	0.5	18
9235	Organic Semiconductor Cocrystal for Highly Conductive Lithium Host Electrode. Advanced Functional Materials, 2019, 29, 1902888.	7.8	19
9236	In Situ Transmission Electron Microscopy for Energy Materials and Devices. Advanced Materials, 2019, 31, e1900608.	11.1	95
9237	A Highâ€Rate Rechargeable Mg Battery Based on AgCl Conversion Cathode with Fast Solidâ€State Mg ²⁺ Diffusion Kinetics. Energy Technology, 2019, 7, 1900454.	1.8	11
9238	Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries. Frontiers of Chemical Science and Engineering, 2019, 13, 493-500.	2.3	8
9239	Pomegranate-like multicore–shell Mn ₃ O ₄ encapsulated mesoporous N-doped carbon nanospheres with an internal void space for high-performance lithium-ion batteries. Chemical Communications, 2019, 55, 8064-8067.	2.2	33
9240	Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. Journal of Power Sources, 2019, 430, 157-168.	4.0	59

#	Article	IF	CITATIONS
9241	Synergistic high-voltage lithium ion battery performance by dual anode and cathode stabilizer additives. Journal of Power Sources, 2019, 441, 126668.	4.0	23
9242	Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V ₁₀ 0 ₂₄ ·12H ₂ 0 Cathode Materials. ACS Applied Materials & Interfaces, 2019, 11, 20888-20894.	4.0	106
9243	Synthesis of silver nanoparticles assisted by chitosan and its application to catalyze the reduction of 4-nitroaniline. International Journal of Biological Macromolecules, 2019, 135, 752-759.	3.6	32
9244	Superior electrochemical performance of TiO2 sodium-ion battery anodes in diglyme-based electrolyte solution. Journal of Power Sources, 2019, 432, 82-91.	4.0	37
9245	Dual-Ligand Fe-Metal Organic Framework Based Robust High Capacity Li Ion Battery Anode and Its Use in a Flexible Battery Format for Electro-Thermal Heating. ACS Applied Energy Materials, 2019, 2, 4450-4457.	2.5	35
9246	Single-cluster Au as an usher for deeply cyclable Li metal anodes. Journal of Materials Chemistry A, 2019, 7, 14496-14503.	5.2	51
9247	Nanoporous Cu@Cu ₂ O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. Journal of Materials Chemistry A, 2019, 7, 15691-15697.	5.2	66
9248	Novel α-FeOOH corner-truncated tetragonal prisms: crystal structure, growth mechanism and lithium storage properties. Journal of Applied Electrochemistry, 2019, 49, 657-669.	1.5	15
9249	Turning biomass waste to a valuable nitrogen and boron dual-doped carbon aerogel for high performance lithium-sulfur batteries. Applied Surface Science, 2019, 489, 154-164.	3.1	59
9250	Green principles for responsible battery management in mobile applications. Journal of Energy Storage, 2019, 24, 100779.	3.9	15
9251	The effect of deposition cycles on intrinsic and electrochemical properties of metallic cobalt sulfide by Simple chemical route. Materials Science in Semiconductor Processing, 2019, 101, 16-27.	1.9	7
9252	Ironing Controllable Lithium into Lithiotropic Carbon Fiber Fabric: A Novel Li-Metal Anode with Improved Cyclability and Dendrite Suppression. ACS Applied Materials & Interfaces, 2019, 11, 21584-21592.	4.0	14
9253	Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chemical Engineering Journal, 2019, 374, 937-946.	6.6	37
9254	Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ Polymerization Coating. ACS Applied Materials & Interfaces, 2019, 11, 22339-22345.	4.0	75
9255	Thermal transport in monocrystalline and polycrystalline lithium cobalt oxide. Physical Chemistry Chemical Physics, 2019, 21, 12192-12200.	1.3	19
9256	Ca _{1â^'x} Sr _x RuO ₃ perovskite at the metal–insulator boundary as a highly active oxygen evolution catalyst. Journal of Materials Chemistry A, 2019, 7, 15387-15394.	5.2	32
9257	Decorating ZnO nanoflakes on carbon cloth: Free-standing, highly stable lithium-ion battery anodes. Ceramics International, 2019, 45, 15906-15912.	2.3	18
9258	Tracking electrochemical reactions inside organic electrodes by operando IR spectroscopy. Energy Storage Materials, 2019, 21, 347-353.	9.5	32

#	Article	IF	CITATIONS
9259	A self-etched template method to prepare CHS@MoS2 hollow microspheres for lithium-ion storage. Journal of Alloys and Compounds, 2019, 801, 367-374.	2.8	7
9260	Multiplex compounds of Ni, Cu, Co-based oxyphosphide nanowire arrays grown on Ni foam: A well-designed free-standing anode for high-capacity lithium storage. Journal of Alloys and Compounds, 2019, 799, 406-414.	2.8	4
9261	Symmetric All-Quinone Aqueous Battery. ACS Applied Energy Materials, 2019, 2, 4016-4021.	2.5	80
9262	Hetero-layered MoS2/C composites enabling ultrafast and durable Na storage. Energy Storage Materials, 2019, 21, 115-123.	9.5	46
9263	Facile situ synthesis of C@SnO2/Sn@rGO hybrid nanosheets as high performance anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 801, 402-408.	2.8	22
9264	A new choice for the anode of nickel metal hydride batteries with long cycling life: A Ce2Ni7-type single-phase Nd0.80Mg0.20Ni3.58 hydrogen storage alloy. Journal of Power Sources, 2019, 433, 126687.	4.0	19
9265	Degradation Mechanisms in Li ₂ VO ₂ F Li-Rich Disordered Rock-Salt Cathodes. Chemistry of Materials, 2019, 31, 6084-6096.	3.2	31
9266	Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries. Chemical Communications, 2019, 55, 7703-7706.	2.2	41
9267	A novel Zr-MOF-based and polyaniline-coated UIO-67@Se@PANI composite cathode for lithium–selenium batteries. Dalton Transactions, 2019, 48, 10191-10198.	1.6	17
9268	Enhanced Electrocatalytic Oxygen Evolution Activity by Tuning Both the Oxygen Vacancy and Orbital Occupancy of B‧ite Metal Cation in NdNiO ₃ . Advanced Functional Materials, 2019, 29, 1902449.	7.8	72
9269	FeS2 hollow nanospheres as high-performance anode for sodium ion battery and their surface pseudocapacitive properties. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	13
9270	Fractal granular BiVO4 microspheres as high performance anode material for Li-ion battery. Materials Letters, 2019, 252, 235-238.	1.3	16
9271	A New sp2–sp3-Hybridized Metallic Carbon Network for Lithium-Ion Battery Anode with Enhanced Safety and Lithium-Ion Diffusion Rate. Journal of Physical Chemistry C, 2019, 123, 15412-15418.	1.5	14
9272	An Effective Electrolyte Strategy To Improve the High-Voltage Performance of LiCoO ₂ Cathode Materials. ACS Applied Energy Materials, 2019, 2, 4683-4691.	2.5	22
9273	Nucleation and Conversion Transformations of the Transition Metal Polysulfide VS ₄ in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22307-22313.	4.0	21
9274	Facile citrate gel synthesis of an antimony–carbon nanosponge with enhanced lithium storage. New Journal of Chemistry, 2019, 43, 10716-10725.	1.4	10
9275	Recent Progress on Organic Electrodes Materials for Rechargeable Batteries and Supercapacitors. Materials, 2019, 12, 1770.	1.3	97
9276	Fluorine-free Ti3C2Tx as anode materials for Li-ion batteries. Electrochemistry Communications, 2019, 104, 106472.	2.3	46

#	Article	IF	CITATIONS
9277	Single-ion conducting polymer electrolytes with alternating ionic mesogen-like moieties interconnected by poly(ethylene oxide) segments. Polymer, 2019, 177, 231-240.	1.8	12
9278	Monolayer, Bilayer, and Heterostructure Arsenene as Potential Anode Materials for Magnesium-Ion Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2019, 123, 15777-15786.	1.5	53
9279	Woodâ€Derived Materials for Advanced Electrochemical Energy Storage Devices. Advanced Functional Materials, 2019, 29, 1902255.	7.8	157
9280	A highly stable glass fiber host for lithium metal anode behaving enhanced coulombic efficiency. Electrochimica Acta, 2019, 317, 333-340.	2.6	10
9281	Recent Advances in Electrode Fabrication for Flexible Energyâ€Storage Devices. Advanced Materials Technologies, 2019, 4, 1900083.	3.0	54
9282	Improving the Electrochemical Performance and Structural Stability of the LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode Material at High-Voltage Charging through Ti Substitution. ACS Applied Materials & amp; Interfaces, 2019, 11, 23213-23221.	4.0	57
9283	Doping behavior of Br in Li4Ti5O12 anode materials and their electrochemical performance for Li-ion batteries. Ceramics International, 2019, 45, 17574-17579.	2.3	19
9284	Carbon coated halloysite nanotubes as efficient sulfur host materials for lithium sulfur batteries. Applied Clay Science, 2019, 179, 105172.	2.6	29
9285	Porous MXenes enable high performance potassium ion capacitors. Nano Energy, 2019, 62, 853-860.	8.2	190
9286	Enhancing the performance of germanium nanowire anodes for Li-ion batteries by direct growth on textured copper. Chemical Communications, 2019, 55, 7780-7783.	2.2	23
9287	Fully reversible lithium storage of tin oxide enabled by self-doping and partial amorphization. Nanoscale, 2019, 11, 12915-12923.	2.8	12
9288	Iron–zinc sulfide Fe ₂ Zn ₃ S ₅ /Fe _{1â^'x} S@C derived from a metal–organic framework as a high performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 16479-16487.	5.2	51
9289	In Situ Synthesis of Reduced Graphite Oxide-Li ₂ ZnTi ₃ O ₈ Composite as a High Rate Anode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A2002-A2012.	1.3	13
9290	Li/Na Ion Intercalation Process into Sodium Titanosilicate as Anode Material. Batteries and Supercaps, 2019, 2, 867-873.	2.4	12
9291	Double Coating of Micronâ€5ized Silicon by TiN@NC for Highâ€Performance Anode in Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1900487.	1.8	12
9292	DFT-Assisted Solid-State NMR Characterization of Defects in Li ₂ MnO ₃ . Inorganic Chemistry, 2019, 58, 8347-8356.	1.9	21
9293	Synthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2019, 801, 82-89.	2.8	56
9294	High-performance silicon diphosphide/nanocarbon composite anode for Li-ion batteries: Role of chemical bonding and interfaces in the establishment of cycling stability. Journal of Power Sources, 2019, 434, 226759.	4.0	17

#	Article	IF	CITATIONS
9295	Improving the electrochemical performance of Si-based anode via gradient Si concentration. Materials and Design, 2019, 177, 107851.	3.3	24
9296	Structure and ionic conductivity of new Ga2S3-Sb2S3-Nal chalcogenide glass system. Physica B: Condensed Matter, 2019, 570, 53-57.	1.3	4
9297	Atomistic Modeling of Various Doped Mg2NiH4 as Conversion Electrode Materials for Lithium Storage. Crystals, 2019, 9, 254.	1.0	5
9298	A Flexible Film toward Highâ€Performance Lithium Storage: Designing Nanosheetâ€Assembled Hollow Singleâ€Hole Ni–Co–Mn–O Spheres with Oxygen Vacancy Embedded in 3D Carbon Nanotube/Graphene Network. Small, 2019, 15, e1901343.	5.2	22
9299	Bioprocess-inspired fabrication of materials with new structures and functions. Progress in Materials Science, 2019, 105, 100571.	16.0	76
9300	Electrochemical Characteristics of Li4Ti5O12/Ag Composite Nanobelts Prepared via Electrospinning. Russian Journal of Physical Chemistry A, 2019, 93, 144-150.	0.1	6
9301	Sustainable Separators for Highâ€Performance Lithium Ion Batteries Enabled by Chemical Modifications. Advanced Functional Materials, 2019, 29, 1902023.	7.8	50
9302	Oxygen Vacancy Diffusion and Condensation in Lithiumâ€lon Battery Cathode Materials. Angewandte Chemie, 2019, 131, 10588-10595.	1.6	45
9303	Oxygen Vacancy Diffusion and Condensation in Lithiumâ€lon Battery Cathode Materials. Angewandte Chemie - International Edition, 2019, 58, 10478-10485.	7.2	97
9304	Introduction to Electrochemical Energy Storage. , 2019, , 1-28.		0
9305	Conclusions and Perspectives on New Opportunities of Nanostrucutres and Nanomaterials in Batteries. , 2019, , 359-379.		0
9306	One-step hydrothermal synthesis of 2D WO3 nanoplates@ graphene nanocomposite with superior anode performance for lithium ion battery. Electrochimica Acta, 2019, 313, 99-108.	2.6	42
9307	Li and Mn-rich Li4Mn5O12–Li2MnO3 composite cathode for next generation lithium-ion batteries. Journal of Energy Storage, 2019, 24, 100754.	3.9	15
9308	Tavorite LiFePO4OH hydroxyphosphate as an anode for aqueous lithium-ion batteries. Journal of Power Sources, 2019, 429, 17-21.	4.0	18
9309	Highly dense perovskite electrolyte with a high Li+ conductivity for Li–ion batteries. Journal of Power Sources, 2019, 429, 75-79.	4.0	15
9310	Synthesis by Thermal Decomposition of Two Iron Hydroxyfluorides: Structural Effects of Li Insertion. Chemistry of Materials, 2019, 31, 4246-4257.	3.2	16
9311	Tailoring Three-Dimensional Composite Architecture for Advanced Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 19191-19199.	4.0	83
9312	Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 9654-9660.	2.8	53

#	Article	IF	CITATIONS
9313	All-region-applicable, continuous power supply of graphene oxide composite. Energy and Environmental Science, 2019, 12, 1848-1856.	15.6	150
9314	A New Finding on the Enhancement of the Ability of Polysulfide Adsorption of V ₂ O ₅ by Doping Tungsten in Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900405.	1.8	9
9315	Hexagonal hollow mesoporous TiO2/carbon composite as an advanced anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 1779-1785.	1.2	7
9316	Rod-like NaV3O8 as cathode materials with high capacity and stability for sodium storage. Chemical Engineering Journal, 2019, 372, 1056-1065.	6.6	56
9317	Rapid discharge process of polythiophene cast film as cathode material. Journal of Electroanalytical Chemistry, 2019, 839, 210-213.	1.9	2
9318	Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes. Nano Energy, 2019, 62, 55-63.	8.2	127
9319	Non-destructive characterization of lithium deposition at the Li/separator and Li/carbon matrix interregion by synchrotron X-ray tomography. Nano Energy, 2019, 62, 11-19.	8.2	26
9320	Template Fabrication of Amorphous Co ₂ SiO ₄ Nanobelts/Graphene Oxide Composites with Enhanced Electrochemical Performances for Hybrid Supercapacitors. ACS Applied Energy Materials, 2019, 2, 3830-3839.	2.5	96
9321	Reconstructing the Surface Structure of Li-Rich Cathodes for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 19950-19958.	4.0	37
9322	Defect Process, Dopant Behaviour and Li Ion Mobility in the Li2MnO3 Cathode Material. Energies, 2019, 12, 1329.	1.6	12
9323	Manganeseâ€Based Naâ€Rich Materials Boost Anionic Redox in Highâ€Performance Layered Cathodes for Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807770.	11.1	113
9324	Effect of Collector Roughness on Properties of Amorphous Silicon Thinâ€Film Anodes. ChemElectroChem, 2019, 6, 3039-3042.	1.7	5
9325	Benzoic acid-assisted substrate-free synthesis of ultrathin nanosheets assembled two-dimensional porous Co3O4 thin sheets with 3D hierarchical micro-/nano-structures and enhanced performance as battery-type materials for supercapacitors. Electrochimica Acta, 2019, 313, 194-204.	2.6	93
9326	Atomic layer deposition of vanadium oxides: process and application review. Materials Today Chemistry, 2019, 12, 396-423.	1.7	46
9327	Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy, 2019, 62, 30-37.	8.2	115
9328	Uniform Na ⁺ Dopingâ€Induced Defects in Li―and Mnâ€Rich Cathodes for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Science, 2019, 6, 1802114.	5.6	78
9329	Na2SnO3 as a novel anode for high performance lithium storage and its electrochemical reaction mechanism. Electrochimica Acta, 2019, 315, 48-57.	2.6	9
9330	3D Porous NaTi 2 (PO 4) 3 with Long Life, Superior Rate, and Lowâ€Temperature Properties. Energy Technology, 2019, 7, 1900386.	1.8	8

#	Article	IF	CITATIONS
9331	Flexible high Li+ conductive lithium garnet–based dry solid polymer electrolyte membrane with enhanced electrochemical performance for lithium metal batteries. Jonics, 2019, 25, 4703-4711.	1.2	13
9332	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e211" altimg="si31.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub> N <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e219"</mml:math 	1.9	19
9333	Phase evolution of conversion-type electrode for lithium ion batteries. Nature Communications, 2019, 10, 2224.	5.8	99
9334	Morphology control in semicrystalline solid polymer electrolytes for lithium batteries. Molecular Systems Design and Engineering, 2019, 4, 793-803.	1.7	18
9335	3D nitrogen-doped hierarchical porous carbon framework for protecting sulfur cathode in lithium–sulfur batteries. New Journal of Chemistry, 2019, 43, 9641-9651.	1.4	22
9336	Topological semimetal porous carbon as a high-performance anode for Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14253-14259.	5.2	36
9337	Ultrasmall MoS ₃ Loaded GO Nanocomposites as Highâ€Rate and Longâ€Cycleâ€Life Anode Materials for Lithium―and Sodiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 3113-3119.	1.7	27
9338	Honeycombâ€Inspired Surfaceâ€Patterned Cu@CuO Composite Current Collector for Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1900445.	1.8	12
9339	Theoretical screening of novel electrode materials for lithium–ion batteries from industrial polymers. Ionics, 2019, 25, 4161-4170.	1.2	6
9340	Graphene-like carbon-nitrogen materials as anode materials for Li-ion and mg-ion batteries. Applied Surface Science, 2019, 487, 1026-1032.	3.1	85
9341	Revealing the impacts of metastable structure on the electrochemical properties: The case of MnS. Journal of Power Sources, 2019, 431, 75-83.	4.0	27
9342	Enhanced cycling performance and rate capacity of SiO anode material by compositing with monoclinic TiO2 (B). Applied Surface Science, 2019, 486, 292-302.	3.1	26
9343	Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries. Nanoscale, 2019, 11, 10984-10991.	2.8	55
9344	Low-temperature pseudomorphic transformation of polyhedral MIL-88A to lithium ferrite (LiFe ₃ O ₅) in aqueous LiOH medium toward high Li storage. Nanoscale, 2019, 11, 11892-11901.	2.8	5
9345	A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Freeâ€Energy Relationship in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 10701-10705.	1.6	12
9346	A Selection Rule for Hydrofluoroether Electrolyte Cosolvent: Establishing a Linear Freeâ€Energy Relationship in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 10591-10595.	7.2	36
9347	Inâ€situ Grown SnO ₂ Nanospheres on Reduced GO Nanosheets as Advanced Anodes for Lithiumâ€ion Batteries. ChemistryOpen, 2019, 8, 712-718.	0.9	16
9348	Monolayer boronâ€arsenide as a perfect anode for alkaliâ€based batteries with large storage capacities and fast mobilities. International Journal of Quantum Chemistry, 2019, 119, e25975.	1.0	15

#	Article	IF	CITATIONS
9349	High Lithiumâ€ion Storage Performance of Ti ₃ SiC ₂ MAX by Oxygen Doping. ChemistrySelect, 2019, 4, 5319-5321.	0.7	12
9350	Synthesis, characterization and electrical properties of Na6M(SO4)4 (M = Co, Ni, Cu) vanthoffite materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 244, 56-64.	1.7	9
9351	Novel hybrid Si film/highly branched graphene nanosheets for anode materials in lithium-ion batteries. Journal Physics D: Applied Physics, 2019, 52, 345201.	1.3	6
9352	Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Composites Communications, 2019, 14, 7-14.	3.3	63
9353	Hydrothermal synthesis of uniform tin oxide nanoparticles on reduced activated graphene oxide as anode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 845, 6-12.	1.9	7
9354	Impact of Structural Transformation on Electrochemical Performances of Li-Rich Cathode Materials: The Case of Li ₂ RuO ₃ . Journal of Physical Chemistry C, 2019, 123, 13491-13499.	1.5	29
9355	Yolk–shell-structured manganese oxide/nitride composite powders comprising cobalt-nanoparticle-embedded nitrogen-doped carbon nanotubes as cathode catalysts for long-life-cycle lithium–oxygen batteries. Chemical Engineering Journal, 2019, 373, 86-94.	6.6	22
9356	Charge-transfer complexes for high-power organic rechargeable batteries. Energy Storage Materials, 2019, 20, 462-469.	9.5	70
9357	Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Materials, 2019, 23, 261-268.	9.5	149
9358	Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling. Journal of the Mechanics and Physics of Solids, 2019, 129, 160-183.	2.3	164
9359	Two-Dimensional Infrared Spectroscopy and Molecular Dynamics Simulation Studies of Nonaqueous Lithium Ion Battery Electrolytes. Journal of Physical Chemistry B, 2019, 123, 6651-6663.	1.2	37
9360	A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical. CheM, 2019, 5, 1861-1870.	5.8	196
9361	A nanoarchitectured Na ₆ Fe ₅ (SO ₄) ₈ /CNTs cathode for building a low-cost 3.6ÂV sodium-ion full battery with superior sodium storage. Journal of Materials Chemistry A, 2019, 7, 14656-14669.	5.2	51
9362	Electrical energy storage with engineered biological systems. Journal of Biological Engineering, 2019, 13, 38.	2.0	25
9363	Sizeâ€Independent Fast Ion Intercalation in Twoâ€Dimensional Titania Nanosheets for Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie, 2019, 131, 8832-8837.	1.6	13
9364	Advances in nanostructures fabricated <i>via</i> spray pyrolysis and their applications in energy storage and conversion. Chemical Society Reviews, 2019, 48, 3015-3072.	18.7	260
9365	Nanostructures and Nanomaterials for Batteries. , 2019, , .		12
9366	Interlayers for lithium-based batteries. Energy Storage Materials, 2019, 23, 112-136.	9.5	37

#	Article	IF	CITATIONS
9367	Atomic layer deposition of V2O5 on nitrogen-doped graphene as an anode for lithium-ion batteries. Materials Letters, 2019, 252, 215-218.	1.3	12
9368	Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Niâ€Rich NCM and Liâ€Rich HEâ€NCM Cathode Materials in Liâ€Ion Batteries. Advanced Materials, 2019, 31, e1900985.	11.1	319
9369	An electrodeposition strategy for the controllable and cost-effective fabrication of Sb-Fe-P anodes for Li ion batteries. Electrochimica Acta, 2019, 309, 469-476.	2.6	11
9370	Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20, 410-437.	9.5	525
9371	Pseudocapacitive T-Nb2O5/N-doped carbon nanosheets anode enable high performance lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2019, 842, 82-88.	1.9	33
9372	Re-assessing the European lithium resource potential – A review of hard-rock resources and metallogeny. Ore Geology Reviews, 2019, 109, 494-519.	1.1	81
9373	1,4-Dicyanobutane as a film-forming additive for high-voltage in lithium-ion batteries. Solid State Ionics, 2019, 337, 63-69.	1.3	21
9374	High Rate and Stable Solid-State Lithium Metal Batteries Enabled by Electronic and Ionic Mixed Conducting Network Interlayers. ACS Applied Materials & Interfaces, 2019, 11, 16578-16585.	4.0	17
9375	Polydiaminoanthraquinones with tunable redox properties as high performance organic cathodes for K-ion batteries. Chemical Communications, 2019, 55, 6054-6057.	2.2	31
9376	Facile and scalable preparation of 3D SnO ₂ /holey graphene composite frameworks for stable lithium storage at a high mass loading level. Inorganic Chemistry Frontiers, 2019, 6, 1367-1373.	3.0	19
9377	High Li ⁺ transference gel interface between solid-oxide electrolyte and cathode for quasi-solid lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12244-12252.	5.2	35
9378	The use of two-dimensional materials in high-temperature rechargeable batteries: current issues and preventative measures. Materials Research Express, 2019, 6, 092003.	0.8	2
9379	Highly Cation Permselective Metal–Organic Framework Membranes with Leaf‣ike Morphology. ChemSusChem, 2019, 12, 2593-2597.	3.6	61
9380	Hydrogenated nanowire-constructed TiO2 microspheres transformed from hollow TiO2 microspheres as an advanced Li-ion battery anode. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	8
9381	Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1.3Al0.3Ti1.7(PO4)3 particles. Ceramics International, 2019, 45, 14469-14473.	2.3	46
9382	Dual onfined SiO Embedded in TiO ₂ Shell and 3D Carbon Nanofiber Web as Stable Anode Material for Superior Lithium Storage. Advanced Materials Interfaces, 2019, 6, 1801800.	1.9	27
9383	Preparation and Performance of Porous Polyetherimide/Al ₂ O ₃ Separator for Enhanced Lithium‣ulfur Batteries. ChemElectroChem, 2019, 6, 2883-2890.	1.7	34
9384	Precise Surface Engineering of Cathode Materials for Improved Stability of Lithiumâ€lon Batteries. Small, 2019, 15, e1901019.	5.2	43

#	Article	IF	CITATIONS
9385	Structure and Thermodynamics of Hybrid Organic–Inorganic Diblock Copolymers with Salt. Macromolecules, 2019, 52, 3165-3175.	2.2	18
9386	The versatility of copper tin sulfide. Journal of Materials Chemistry A, 2019, 7, 17118-17182.	5.2	42
9387	Ordered 1D and 3D mesoporous Co3O4 structures: Effect of morphology on Li-ion storage and high rate performance. Electrochimica Acta, 2019, 310, 184-194.	2.6	14
9388	Low-Cost Rapid Template-Free Synthesis of Nanoscale Zinc Spinels for Energy Storage and Electrocatalytic Applications. ACS Applied Energy Materials, 2019, 2, 3211-3219.	2.5	17
9389	Controlled formation of BNb3O9 nanobelts as superior host material for high performance electrochemical energy storage. Journal of Power Sources, 2019, 426, 250-258.	4.0	10
9390	Improving lithium storage capability of ternary Sn-based sulfides by enhancing inactive/active element ratio. Solid State Ionics, 2019, 337, 47-55.	1.3	10
9391	Preparation of ternary hierarchical silicon/reduced graphene oxide/carbon composites as anodes for lithium–ion batteries. Journal of Alloys and Compounds, 2019, 793, 433-445.	2.8	10
9392	Rational Design of Environmental Benign Organic–Inorganic Hybrid as a Prospective Cathode for Stable High-Voltage Sodium Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 11464-11475.	1.5	6
9393	In Situ Generated Li ₂ S–C Nanocomposite for High-Capacity and Long-Life All-Solid-State Lithium Sulfur Batteries with Ultrahigh Areal Mass Loading. Nano Letters, 2019, 19, 3280-3287.	4.5	98
9394	Rational Design of the Robust Janus Shell on Silicon Anodes for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 17375-17383.	4.0	49
9395	Rational Design of a Multifunctional Binder for High-Capacity Silicon-Based Anodes. ACS Energy Letters, 2019, 4, 1171-1180.	8.8	108
9396	The Explosive Nature of Tab Burrs in Li-Ion Batteries. IEEE Access, 2019, 7, 45978-45982.	2.6	11
9397	Strategies Toward Stable Nonaqueous Alkali Metal–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1900464.	10.2	35
9398	Twoâ€Ðimensional Ti ₃ C ₂ T _X /Polyaniline Nanocomposite from the Decoration of Smallâ€Sized Graphene Nanosheets: Promoted Pseudocapacitive Electrode Performance for Supercapacitors. ChemElectroChem, 2019, 6, 2748-2754.	1.7	20
9399	Electrodeposition stability of metal electrodes. Energy Storage Materials, 2019, 20, 1-6.	9.5	68
9400	Microwave-assisted hydrothermal synthesis of MOFs-derived bimetallic CuCo-N/C electrocatalyst for efficient oxygen reduction reaction. Journal of Alloys and Compounds, 2019, 795, 462-470.	2.8	31
9401	The potential of electrolyte filled MOF membranes as ionic sieves in rechargeable batteries. Energy and Environmental Science, 2019, 12, 2327-2344.	15.6	125
9402	Effect of eutectic accelerator in selenium-doped sulfurized polyacrylonitrile for high performance room temperature sodium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 12732-12739.	5.2	78

ARTICLE IF CITATIONS Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes. 9403 1.7 129 Molecular Systems Design and Engineering, 2019, 4, 779-792. Design Strategies for Vanadiumâ€based Aqueous Zincâ€lon Batteries. Angewandte Chemie - International 9404 7.2 Edition, 2019, 58, 16358-16367. Cathode Framework of Nanostructured Titanium Nitride/Graphene for Advanced Lithium–Sulfur 9405 1.7 12 Batteries. ChemElectroChem, 2019, 6, 2796-2804. Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to 9406 enhance performance for lithium-ion battery anode. Electrochimica Acta, 2019, 312, 242-250. Preinserted Li metal porous carbon nanotubes with high Coulombic efficiency for lithium-ion battery 9407 6.6 19 anodes. Chemical Engineering Journal, 2019, 373, 78-85. Synthesis of lithium rich layered oxides with controllable structures through a MnO2 template strategy as advanced cathode materials for lithium ion batteries. Ceramics International, 2019, 45, 2.3 13011-13018. Enhanced electrochemical performance of hollow heterostructured carbon encapsulated znic 9409 metastanate microcube composite for lithium-ion and sodium-ion batteries. Electrochimica Acta, 2019, 2.6 12 312, 31-44. Solid Garnet Batteries. Joule, 2019, 3, 1190-1199. 11.7 9410 Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with 9411 8.2 340 broad temperature adaptability. Nano Energy, 2019, 61, 617-625. Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na-9412 1.1 and K-ion secondary batteries. Royal Society Open Science, 2019, 6, 181978. Sizeâ€Independent Fast Ion Intercalation in Twoâ€Dimensional Titania Nanosheets for Alkaliâ€Metalâ€Ion 9414 7.2 53 Batteries. Angewandte Chemie - International Edition, 2019, 58, 8740-8745. Development of AHP Framework of Sustainable Product Design and Manufacturing of Electric Vehicle. 9415 Lecture Notes in Mechanical Engineering, 2019, , 415-422. Self-assembled Prussian blueâ€"polypyrrole nanocomposites for energy storage application. Journal of 9416 1.5 5 Applied Electrochemistry, 2019, 49, 631-638. Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated 9417 5.4 49 Si@C channels for enhanced lithium storage. Carbon, 2019, 149, 664-671. Role of Al-doping with different sites upon the structure and electrochemical performance of 9418 spherical LiNi_{0.5}Mn_{1.5}O₄ cathode materials for lithium-ion 1.7 16 batteries. RSC Advances, 2019, 9, 12656-12666. Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. 9419 333 Advanced Energy Materials, 2019, 9, 1900858. Spherical nano Sb@HCMs as high-rate and superior cycle performance anode material for sodium-ion 9420 2.8 18 batteries. Journal of Alloys and Compounds, 2019, 795, 141-150. Mitigating Structural Instability of High-Energy Lithium- and Manganese-Rich 9421 LiNi_{<i>x</i>}Mn_{<i>y</i>}Co_{<i>z</i>}Oxide by Interfacial Atomic 3.2 Surface Reduction. Chemistry of Materials, 2019, 31, 3840-3847.

#	Article	IF	CITATIONS
9422	Dendrite-Free Composite Li Anode Assisted by Ag Nanoparticles in a Wood-Derived Carbon Frame. ACS Applied Materials & Interfaces, 2019, 11, 18361-18367.	4.0	33
9423	Polymers Bearing Catechol Pendants as Universal Hosts for Aqueous Rechargeable H ⁺ , Li-Ion, and Post-Li-ion (Mono-, Di-, and Trivalent) Batteries. ACS Applied Energy Materials, 2019, 2, 3035-3041.	2.5	55
9424	Quantifying the factors limiting rateÂperformance in battery electrodes. Nature Communications, 2019, 10, 1933.	5.8	185
9425	Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries. Annual Review of Analytical Chemistry, 2019, 12, 323-346.	2.8	39
9426	Three-dimensional MoS2/Graphene Aerogel as Binder-free Electrode for Li-ion Battery. Nanoscale Research Letters, 2019, 14, 85.	3.1	33
9427	Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries. Journal of Alloys and Compounds, 2019, 795, 54-59.	2.8	18
9428	Polymer electrolytes based on Poly(VdF-co-HFP)/ionic liquid/carbonate membranes for high-performance lithium-ion batteries. Polymer, 2019, 173, 110-118.	1.8	13
9429	Tuning Anionic Chemistry To Improve Kinetics of Mg Intercalation. Chemistry of Materials, 2019, 31, 3183-3191.	3.2	91
9430	A stable 2D nano-columnar sandwich layered phthalocyanine negative electrode for lithium-ion batteries. Journal of Power Sources, 2019, 426, 169-177.	4.0	30
9431	Density Functional Theory Descriptors for Ionic Liquids and the Introduction of a Coulomb Correction. Journal of Physical Chemistry A, 2019, 123, 4188-4200.	1.1	16
9432	Li ₂ MnO ₃ Thin Films with Tilted Domain Structure as Cathode for Li-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 3461-3468.	2.5	11
9433	Stabilizing LiCoO ₂ /Graphite at High Voltages with an Electrolyte Additive. ACS Applied Materials & Interfaces, 2019, 11, 17940-17951.	4.0	83
9434	Superior Li-ion storage of VS ₄ nanowires anchored on reduced graphene. Nanoscale, 2019, 11, 9556-9562.	2.8	35
9435	Stabilizing electrochemical Li–O ₂ batteries with a metal-based cathode of PdNi on Ni nonwoven fabric. Nanoscale, 2019, 11, 11513-11520.	2.8	7
9436	Eliminating Tip Dendrite Growth by Lorentz Force for Stable Lithium Metal Anodes. Advanced Functional Materials, 2019, 29, 1902630.	7.8	85
9437	Kilogramâ€Scale Fabrication of Si/C Beanâ€Structured Materials as Stable Anodes for Liâ€Ion Storage. Energy Technology, 2019, 7, 1900037.	1.8	3
9438	Engineering Ultrathin MoS ₂ Nanosheets Anchored on Nâ€Doped Carbon Microspheres with Pseudocapacitive Properties for Highâ€Performance Lithiumâ€Ion Capacitors. Small Methods, 2019, 3, 1900081.	4.6	96
9439	MoS ₂ /Ti ₂ CT ₂ (T = F, O) Heterostructures as Promising Flexible Anodes for Lithium/Sodium Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 11493-11499.	1.5	62

ARTICLE IF CITATIONS Progress in the Design of Polyoxovanadate-Alkoxides as Charge Carriers for Nonaqueous Redox Flow 9440 3.0 17 Batteries. Comments on Inorganic Chemistry, 2019, 39, 51-89. Study on the Fading Mechanism of SiO-based Anodes Using Styrene Butadiene Rubber and Carboxymethyl Cellulose as Binders for Lithium-ion Batteries. IOP Conference Series: Earth and 9441 0.2 Environmental Science, 0, 242, 042014. The spatial distribution of lithium in aged V₂O₅ cathode particles. Materials 9442 0.8 0 Research Express, 2019, 6, 075515. Porous carbon derived from loofah sponge/flower-like CoO nanocomposites for lithium-ion 9443 2.8 24 batteries. Journal of Alloys and Compounds, 2019, 793, 533-540. Investigation of the self-discharge behaviors of the LiMn₂O₄ cathode at 9444 elevated temperatures: <i>in situ</i> X-ray diffraction analysis and a co-doping mitigation strategy. 5.2 40 Journal of Materials Chemistry A, 2019, 7, 13364-13371. Electrolyte Evolution Propelling the Development of Nonlithium Metal–Sulfur Batteries. Energy Technology, 2019, 7, 1900164. 9445 1.8 Freestanding Nâ€Doped Carbon Coated CuO Array Anode for Lithiumâ€Ion and Sodiumâ€Ion Batteries. Energy 9446 1.8 13 Technology, 2019, 7, 1900252. Influence of sintering temperature on conductivity and mechanical behavior of the solid electrolyte 9447 2.3 LATP. Ceramics International, 2019, 45, 14697-14703. LiNi0.8Co0.15Al0.05O2 cathodes exhibiting improved capacity retention and thermal stability due to a 9448 2.6 50 lithium iron phosphate coating. Electrochimica Acta, 2019, 312, 179-187. Enhanced electrochemical performance of SiO anode material via nitrogen-doped carbon coating in a 9449 1.9 facile and green route. Journal of Electroanalytical Chemistry, 2019, 841, 79-85. Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for 9450 8.2 134 lithium-ion batteries. Nano Energy, 2019, 61, 404-410. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy and Environmental Science, 15.6 230 2019, 12, 1780-1804. A graphite intercalation compound associated with liquid Na–K towards ultra-stable and 9452 15.6 90 high-capacity alkali metal anodes. Energy and Environmental Science, 2019, 12, 1989-1998. Flexible freestanding 3D Si/C composite nanofiber film fabricated using the electrospinning technique 9453 1.3 for lithium-ion batteries anode. Solid State Ionics, 2019, 337, 70-75. Morphology inheritance synthesis of carbon-coated Li3VO4 rods as anode for lithium-ion battery. 9454 3.5 16 Science China Materials, 2019, 62, 1105-1114. In situ characterization of LiY(WO4)2 nanotubes for electrochemical energy storage. Ceramics 9455 2.3 International, 2019, 45, 11812-11818. Ab-initio design of novel cathode material LiFeP1-Si O4 for rechargeable Li-ion batteries. 9456 2.6 2 Electrochimica Acta, 2019, 313, 70-78. Hierarchical flower-like Fe2O3 mesoporous nanosheets with superior electrochemical lithium 9457 storage performance. Journal of Energy Storage, 2019, 23, 363-370.

#	Article	IF	CITATIONS
9458	B ₃ S monolayer: prediction of a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 12706-12712.	5.2	59
9459	Electrochemical Performances on Both poly(Phenylenediamine) Derivatives as Anode of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A1363-A1369.	1.3	9
9460	Materials by Design: Tailored Morphology and Structures of Carbon Anodes for Enhanced Battery Safety. ACS Applied Materials & Interfaces, 2019, 11, 13334-13342.	4.0	16
9461	The rational design of hierarchical MoS ₂ nanosheet hollow spheres sandwiched between carbon and TiO ₂ @graphite as an improved anode for lithium-ion batteries. Nanoscale Advances, 2019, 1, 1957-1964.	2.2	4
9462	Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 9997-10003.	5.2	102
9463	Revisiting the Electrochemical Lithiation Mechanism of Aluminum and the Role of Liâ€rich Phases (Li _{1+<i>x</i>} Al) on Capacity Fading. ChemSusChem, 2019, 12, 2609-2619.	3.6	39
9464	Lithium Speciation in the LiPF ₆ /PC Electrolyte Studied by Two-Dimensional Heteronuclear Overhauser Enhancement and Pulse-Field Gradient Diffusometry NMR. Journal of Physical Chemistry C, 2019, 123, 9661-9672.	1.5	20
9465	Sn-encapsulated N-doped porous carbon fibers for enhancing lithium-ion battery performance. RSC Advances, 2019, 9, 8753-8758.	1.7	20
9466	Electrolytes for advanced lithium ion batteries using silicon-based anodes. Journal of Materials Chemistry A, 2019, 7, 9432-9446.	5.2	101
9467	Recent Research on Strategies to Improve Ion Conduction in Alkali Metalâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 403-427.	2.4	32
9468	V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode. Nano-Micro Letters, 2019, 11, 25.	14.4	274
9469	Understanding the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando X-ray Absorption Spectroscopy. Arabian Journal for Science and Engineering, 2019, 44, 6217-6229.	1.7	6
9470	High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery. Electrochimica Acta, 2019, 306, 489-497.	2.6	41
9471	Metallic two-dimensional Cu2Si monolayer as promising anode materials for lithium and sodium ion batteries, a first principles study. Journal of Solid State Chemistry, 2019, 274, 265-269.	1.4	14
9472	Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy, 2019, 60, 305-311.	8.2	106
9473	Development of solid-state electrolytes for sodium-ion battery–A short review. Nano Materials Science, 2019, 1, 91-100.	3.9	188
9474	Data mining new energy materials from structure databases. Renewable and Sustainable Energy Reviews, 2019, 107, 554-567.	8.2	38
9475	Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: status, challenges and countermeasures. Journal of Materials Chemistry A, 2019, 7, 10138-10158.	5.2	123

		CITATION REPORT		
# 9476	ARTICLE Two-dimensional amorphous nanomaterials: synthesis and applications. 2D Materials, 2	2019. 6. 032002.	IF 2.0	Citations
9477	Alloyed Cu/Si core-shell nanoflowers on the three-dimensional graphene foam as an and lithium-ion batteries. Electrochimica Acta, 2019, 306, 45-53.		2.6	24
9478	Liquid electrolyte immobilized in compact polymer matrix for stable sodium metal anoo Storage Materials, 2019, 23, 610-616.	les. Energy	9.5	40
9479	Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanopal composite electrolyte. Nano Energy, 2019, 60, 205-212.	ticle/polymer	8.2	259
9480	On the study of mixing and drying on electrochemical performance of spinel LiMn2O4 Journal of Renewable and Sustainable Energy, 2019, 11, 014104.	cathodes.	0.8	3
9481	N-functionalized graphene quantum dots: Charge transporting layer for high-rate and c Li4Ti5O12-based Li-ion battery. Chemical Engineering Journal, 2019, 369, 1024-1033.	urable	6.6	55
9482	A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electroly all-solid-state Li battery. Polymer Journal, 2019, 51, 753-760.	:e for	1.3	18
9483	The formation mechanism of Li4Ti5O12â [~] 'y solid solutions prepared by carbothermal re effect of Ti3+ on electrochemical performance. Scientific Reports, 2019, 9, 4774.	duction and the	1.6	15
9484	A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe ₂ nanosheets and their application as an anode for high-energy lithic capacitors. Nanoscale, 2019, 11, 7263-7276.	ım-ion hybrid	2.8	57
9485	Construction of 3D carbon networks with well-dispersed SiO _x nanodomai gelable building blocks for lithium-ion batteries. RSC Advances, 2019, 9, 9086-9092.	ns from	1.7	11
9486	Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiatic Materials Chemistry A, 2019, 7, 15113-15122.	n. Journal of	5.2	41
9487	CO ₂ -sourced polycarbonates as solid electrolytes for room temperature o lithium batteries. Journal of Materials Chemistry A, 2019, 7, 9844-9853.	perating	5.2	29
9488	Solvating power series of electrolyte solvents for lithium batteries. Energy and Environ Science, 2019, 12, 1249-1254.	nental	15.6	138
9489	Influence of excess lithium and sintering on the conductivity of Li1.3Al0.3Ti1.7(PO ₄) ₃ . Functional Materials Letters, 2019, 1	2, 1950047.	0.7	20
9490	Simulation-driven Selection of Electrode Materials Based on Mechanical Performance for Battery. Materials, 2019, 12, 831.	or Lithium-Ion	1.3	11
9491	Wettable carbon felt framework for high loading Li-metal composite anode. Nano Ener 257-266.	gy, 2019, 60,	8.2	118
9492	Role of Nickel Nanoparticles in Highâ€Performance TiO ₂ /Ni/Carbon Nanoł Lithium/Sodium″on Battery Anodes. Chemistry - an Asian Journal, 2019, 14, 1557-15		1.7	13
9493	Rational Design of a Composite Electrode to Realize a Highâ€Performance Allâ€Solidâ€ ChemSusChem, 2019, 12, 2637-2643.	State Battery.	3.6	20

#	Article	IF	CITATIONS
9494	Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	0
9495	Bimetal-organic frameworks derived ternary metal sulphide nanoparticles embedded in porous carbon spheres/carbon nanotubes as high-performance lithium storage materials. Chemical Engineering Journal, 2019, 370, 89-97.	6.6	22
9496	Tuning the interface by a soldering method for high performance garnet-type solid-state Li metal battery. Ceramics International, 2019, 45, 11955-11962.	2.3	11
9497	<i>In-Situ</i> Construction of Iron Sulfide Nanoparticle Loaded Graphitic Carbon Capsules from Waste Biomass for Sustainable Lithium-Ion Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 6870-6879.	3.2	16
9498	Editors' Choice—Review—Innovative Polymeric Materials for Better Rechargeable Batteries: Strategies from CIC Energigune. Journal of the Electrochemical Society, 2019, 166, A679-A686.	1.3	36
9499	Allâ€Solidâ€State Onâ€Chip Supercapacitors Based on Freeâ€Standing 4 <i>H</i> â€SiC Nanowire Arrays. Advance Energy Materials, 2019, 9, 1900073.	ed 10.2	32
9500	Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries. Nano Research, 2019, 12, 897-904.	5.8	26
9501	Development of conversion coatings on iron via corrosion in LiPF6 solution. Electrochimica Acta, 2019, 304, 428-436.	2.6	15
9502	Defects, dopants and Li-ion diffusion in Li2SiO3. Solid State Ionics, 2019, 335, 61-66.	1.3	28
9503	Nitrogen-Doped Carbon-Encapsulated Antimony Sulfide Nanowires Enable High Rate Capability and Cyclic Stability for Sodium-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 1457-1465.	2.4	40
9504	Nanocrystal Conversion-Assisted Design of Sn–Fe Alloy with a Core–Shell Structure as High-Performance Anodes for Lithium-Ion Batteries. ACS Omega, 2019, 4, 4888-4895.	1.6	25
9505	Rational synthesis and electrochemical performance of LiVOPO ₄ polymorphs. Journal of Materials Chemistry A, 2019, 7, 8423-8432.	5.2	20
9506	MOF-derived nitrogen-doped core–shell hierarchical porous carbon confining selenium for advanced lithium–selenium batteries. Nanoscale, 2019, 11, 6970-6981.	2.8	83
9507	Rational Design of Hierarchical "Ceramicâ€inâ€Polymer―and "Polymerâ€inâ€Ceramic―Electrolytes for Dendriteâ€Free Solidâ€State Batteries. Advanced Energy Materials, 2019, 9, 1804004.	10.2	422
9508	Monolayer Zr2B2: A promising two-dimensional anode material for Li-ion batteries. Applied Surface Science, 2019, 480, 448-453.	3.1	63
9509	Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors. Materials and Design, 2019, 169, 107688.	3.3	117
9510	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	16.0	166
9511	Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metalâ€ l on Rechargeable Batteries with Organic Materials as Promising Electrodes. Small, 2019, 15, e1805061.	5.2	320

#	Article	IF	CITATIONS
9512	3D Graphene Networks Encapsulated with Ultrathin SnS Nanosheets@Hollow Mesoporous Carbon Spheres Nanocomposite with Pseudocapacitanceâ€Enhanced Lithium and Sodium Storage Kinetics. Small, 2019, 15, e1900565.	5.2	62
9513	Chemical and mechanical degradation and mitigation strategies for Si anodes. Journal of Power Sources, 2019, 419, 208-218.	4.0	32
9514	Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. Nano Energy, 2019, 60, 153-161.	8.2	103
9515	Synthesis and characterization of vanadium-doped LiFePO4@C electrode with excellent rate capability for lithium-ion batteries. Solid State Ionics, 2019, 335, 97-102.	1.3	25
9516	Effects of Dimethyl Disulfide Cosolvent on Li–S Battery Chemistry and Performance. Chemistry of Materials, 2019, 31, 2377-2389.	3.2	11
9517	ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 8460-8471.	5.2	66
9518	Synthesis of nanostructured P2-Na _{2/3} MnO ₂ for high performance sodium-ion batteries. Chemical Communications, 2019, 55, 4757-4760.	2.2	12
9519	An architecture of dandelion-type Ni-Co3O4 microspheres on carbon nanotube films toward an efficient catalyst for oxygen reduction in zinc-air batteries. Applied Surface Science, 2019, 481, 40-51.	3.1	20
9520	Investigation of the swelling failure of lithium-ion battery packs at low temperatures using 2D/3D X-ray computed tomography. Electrochimica Acta, 2019, 305, 65-71.	2.6	28
9521	Synthesis and Electrochemical Characterization of α-NaMnOi as a Cathode Material for Hybrid Na/Li-Ion Batteries. International Journal of Electrochemical Science, 2019, 14, 2422-2429.	0.5	2
9522	Low-cost and robust production of multi-doped 2D carbon nanosheets for high-performance lithium-ion capacitors. Chemical Engineering Journal, 2019, 370, 508-517.	6.6	22
9523	Enhanced Silicon Diphosphide-Carbon Composite Anode for Long-Cycle, High-Efficient Sodium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 2223-2229.	2.5	22
9524	Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery. Chemical Engineering Journal, 2019, 369, 422-431.	6.6	75
9525	Ether-compatible sulfurized polyacrylonitrile cathode with excellent performance enabled by fast kinetics via selenium doping. Nature Communications, 2019, 10, 1021.	5.8	211
9526	Tuning the electrochemical behavior of organodisulfides in rechargeable lithium batteries using N-containing heterocycles. Journal of Materials Chemistry A, 2019, 7, 7423-7429.	5.2	55
9527	Pressureâ€Induced Vapor Synthesis of Carbonâ€Encapsulated SiO _{<i>x</i>} /C Composite Spheres with Optimized Composition for Longâ€Life, Highâ€Rate, and Highâ€Arealâ€Capacity Lithiumâ€Ion Battery Anode Energy Technology, 2019, 7, 1900084.	251.8	16
9528	Graphene/Carbon Nanotubes Composite as a Polysulfide Trap for Lithium-Sulfur Batteries. International Journal of Electrochemical Science, 2019, 14, 3301-3314.	0.5	8
9531	Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie - International Edition, 2019, 58, 8330-8335.	7.2	60

#	Article	IF	CITATIONS
9532	Amorphous phosphorus-carbon nanotube hybrid anode with ultralong cycle life and high-rate capability for lithium-ion batteries. Carbon, 2019, 148, 518-524.	5.4	65
9533	Compositing SrLi2Ti6O14 with chemical deposited silver for enhancing lithium ion storage. Ceramics International, 2019, 45, 6885-6890.	2.3	3
9534	Novel GaNb49O124 microspheres with intercalation pseudocapacitance for ultrastable lithium-ion storage. Ceramics International, 2019, 45, 12211-12217.	2.3	20
9535	Intercalation of Mg2+ into electrodeposited Prussian Blue Analogue thin films from aqueous electrolytes. Electrochimica Acta, 2019, 307, 157-163.	2.6	17
9536	Lithiated Nanoparticles Doped with Ionic Liquids as Quasi-Solid Electrolytes for Lithium Batteries. Electrochimica Acta, 2019, 307, 51-63.	2.6	13
9537	Flowable polymer electrolytes for lithium metal batteries. Journal of Power Sources, 2019, 423, 218-226.	4.0	50
9538	NH4V4O10 micro-flowers as cathode material for high performance hybrid magnesium-lithium-ion batteries. Materials Letters, 2019, 247, 178-181.	1.3	12
9539	Poly(p-phenylene terephthalamide) modified PE separators for lithium ion batteries. Journal of Membrane Science, 2019, 581, 355-361.	4.1	55
9540	Reducing the volume deformation of high capacity SiOx/G/C anode toward industrial application in high energy density lithium-ion batteries. Nano Energy, 2019, 60, 485-492.	8.2	156
9541	Atomic pair distribution function research on Li2MnO3 electrode structure evolution. Science Bulletin, 2019, 64, 553-561.	4.3	20
9542	Improved electrochemical cycling performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials by coating with spinel MgAl2O4. Solid State Ionics, 2019, 336, 19-25.	1.3	20
9543	Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustainable Materials and Technologies, 2019, 21, e00098.	1.7	43
9544	In Situ Formed Li–B–H Complex with High Li-Ion Conductivity as a Potential Solid Electrolyte for Li Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14136-14141.	4.0	40
9545	Biotemplate-Based Engineering of High-Temperature Stable Anatase TiO ₂ Nanofiber Bundles with Impregnated CeO ₂ Nanocrystals for Enhanced Lithium Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 7823-7832.	3.2	22
9546	Reviving bulky MoS ₂ as an advanced anode for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 10988-10997.	5.2	36
9547	Metal Electrode Surfaces Can Roughen Despite the Constraint of a Stiff Electrolyte. Journal of the Electrochemical Society, 2019, 166, A984-A995.	1.3	23
9548	Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie, 2019, 131, 8418-8423.	1.6	1
9549	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	2.4	45

#	Article	IF	CITATIONS
9550	Free-standing polydimethylsiloxane-based cross-linked network solid polymer electrolytes for future lithium ion battery applications. Electrochimica Acta, 2019, 307, 148-156.	2.6	35
9551	In-situ growth of nitrogen-doped mesoporous carbon nanostructure supported nickel metal nanoparticles for oxygen evolution reaction in an alkaline electrolyte. Electrochimica Acta, 2019, 306, 617-626.	2.6	7
9552	Catalytic Synthesis of Hard/Soft Carbon Hybrids with Heteroatom Doping for Enhanced Sodium Storage. ChemistrySelect, 2019, 4, 3551-3558.	0.7	9
9553	Controlled synthesis of porous 3D interconnected MnO /C composite aerogel and their excellent lithium-storage properties. Electrochimica Acta, 2019, 306, 143-150.	2.6	24
9554	The synergistic effect of poly(ethylene glycol)-borate ester on the electrochemical performance of all solid state Si doped-poly(ethylene glycol) hybrid polymer electrolyte for lithium ion battery. Journal of Power Sources, 2019, 423, 349-357.	4.0	24
9555	Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano Research, 2019, 12, 911-917.	5.8	38
9556	<i>110th Anniversary</i> : Unleashing the Full Potential of Quinones for High Performance Aqueous Organic Flow Battery. Industrial & Engineering Chemistry Research, 2019, 58, 3994-3999.	1.8	25
9557	Sodium Storage and Electrode Dynamics of Tin–Carbon Composite Electrodes from Bulk Precursors for Sodiumâ€ion Batteries. Advanced Functional Materials, 2019, 29, 1900790.	7.8	107
9558	In-operando deformation studies on the mechano-electrochemical mechanism in free-standing MWCNTs/V2O5 lithium ion battery electrode. Electrochimica Acta, 2019, 305, 101-115.	2.6	24
9559	A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Materials, 2019, 19, 401-407.	9.5	124
9560	Improving Ionic Conductivity with Bimodal-Sized Li ₇ La ₃ Zr ₂ O ₁₂ Fillers for Composite Polymer Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 12467-12475.	4.0	100
9561	Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4, 365-373.	19.8	681
9562	Mechano-Electrochemical Analysis in Cylindrical Composition-Gradient Electrodes with Varying Young's Modulus of Lithium-Ion Battery. Journal of the Electrochemical Society, 2019, 166, A762-A770.	1.3	5
9563	Insights into the Effects of Electrolyte Composition on the Performance and Stability of FeF ₂ Conversionâ€Type Cathodes. Advanced Energy Materials, 2019, 9, 1803323.	10.2	56
9564	Meshâ€Like Carbon Nanosheets with Highâ€Level Nitrogen Doping for Highâ€Energy Dualâ€Carbon Lithiumâ€lon Capacitors. Small, 2019, 15, e1805173.	5.2	68
9565	Cu ₃ P as a novel cathode material for rechargeable aluminum-ion batteries. Journal of Materials Chemistry A, 2019, 7, 8368-8375.	5.2	85
9566	The Study of How the Amount of Adiponitrile Impacts on the Performance of LiNi0.5Mn1.5O4 Battery. Journal of the Electrochemical Society, 2019, 166, A802-A809.	1.3	1
9567	Optimal Condition of Solid-Electrolyte-Interphase Prepared by Controlled Prelithiation for High Performance Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A787-A792.	1.3	13

#	Article	IF	CITATIONS
9568	The potential of Li-ion batteries in ECOWAS solar home systems. Journal of Energy Storage, 2019, 22, 295-301.	3.9	33
9569	Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?. Chemical Reviews, 2019, 119, 4569-4627.	23.0	204
9570	Roles of Ti in Electrode Materials for Sodium-Ion Batteries. Frontiers in Energy Research, 2019, 7, .	1.2	20
9571	In Situ Wrapping SiO with Carbon Nanotubes as Anode Material for Highâ€Performance Li–Ion Batteries. ChemistrySelect, 2019, 4, 2918-2925.	0.7	13
9572	V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochimica Acta, 2019, 306, 307-316.	2.6	167
9573	Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook. Journal of Materials Chemistry A, 2019, 7, 8700-8722.	5.2	135
9574	Honeycombâ€Inspired Heterogeneous Bimetallic Co–Mo Oxide Nanoarchitectures for Highâ€Rate Electrochemical Lithium Storage. Small Methods, 2019, 3, 1900055.	4.6	40
9575	Te0.045S0.955PAN composite with high average discharge voltage for Li–S battery. Journal of Energy Chemistry, 2019, 39, 249-255.	7.1	24
9576	Design of Red Phosphorus Nanostructured Electrode for Fast-Charging Lithium-Ion Batteries with High Energy Density. Joule, 2019, 3, 1080-1093.	11.7	168
9577	Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries. Journal of Power Sources, 2019, 422, 18-24.	4.0	115
9580	Polyimide capping layer on improving electrochemical stability of silicon thin-film for Li-ion batteries. Materials Today Energy, 2019, 12, 297-302.	2.5	20
9581	Rational design of few-layer MoSe ₂ confined within ZnSe–C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries. Nanoscale, 2019, 11, 6766-6775.	2.8	143
9582	Mechanism of Gases Generation during Lithium-Ion Batteries Cycling. Journal of the Electrochemical Society, 2019, 166, A897-A908.	1.3	86
9583	High-Energy Nickel-Rich Layered Cathode Stabilized by Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2019, 166, A873-A879.	1.3	27
9585	Identification of Phase Control of Carbon onfined Nb ₂ O ₅ Nanoparticles toward Highâ€Performance Lithium Storage. Advanced Energy Materials, 2019, 9, 1802695.	10.2	161
9586	Deciphering the Reaction Mechanism of Lithium–Sulfur Batteries by In Situ/Operando Synchrotronâ€Based Characterization Techniques. Advanced Energy Materials, 2019, 9, 1900148.	10.2	96
9587	Electrochemical Performance of 1-Ethyl-3-Methylimidazolium Bis(Trifluoromethylsulfonyl)Imide Ionic Liquid as Electrolyte for Primary Mg-Air Batteries. Journal of the Electrochemical Society, 2019, 166, A1103-A1106.	1.3	11
9588	Selenium Nanocomposite Cathode with Long Cycle Life for Rechargeable Lithiumâ€5elenium Batteries. Batteries and Supercaps, 2019, 2, 784-791.	2.4	31

#	Article	IF	CITATIONS
9589	Rationally design of 2D branched Ni(OH)2/MnO2 hybrid hierarchical architecture on Ni foam for high performance supercapacitors. Electrochimica Acta, 2019, 307, 310-317.	2.6	50
9590	Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Materials, 2019, 19, 163-178.	9.5	90
9591	Theoretical tuning of Ruddlesden–Popper type anti-perovskite phases as superb ion conductors and cathodes for solid sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 10483-10493.	5.2	27
9592	Gyroidal Niobium Sulfide/Carbon Hybrid Monoliths for Electrochemical Energy Storage. Batteries and Supercaps, 2019, 2, 668-672.	2.4	8
9593	Cross-linked porous polymer separator using vinyl-modified aluminum oxide nanoparticles as cross-linker for lithium-ion batteries. Electrochimica Acta, 2019, 307, 495-502.	2.6	42
9594	Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries. Journal of Membrane Science, 2019, 582, 132-139.	4.1	56
9595	Effect of the Particle-Size Distribution on the Electrochemical Performance of a Red Phosphorus–Carbon Composite Anode for Sodium-Ion Batteries. Energy & Fuels, 2019, 33, 4651-4658.	2.5	33
9596	Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries. Energy and Environmental Science, 2019, 12, 1550-1557.	15.6	167
9597	Maximization of sodium storage capacity of pure carbon material used in sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 16149-16160.	5.2	41
9598	First-principles calculations for Li adatom diffusion on a graphene surface through a V ₆ defect partly terminated by hydrogen atoms. Japanese Journal of Applied Physics, 2019, 58, SBBH07.	0.8	1
9599	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie, 2019, 131, 7884-7889.	1.6	47
9600	Nitridingâ€Interfaceâ€Regulated Lithium Plating Enables Flameâ€Retardant Electrolytes for Highâ€Voltage Lithium Metal Batteries. Angewandte Chemie - International Edition, 2019, 58, 7802-7807.	7.2	161
9601	Carbonylâ€Based Ï€â€Conjugated Materials: From Synthesis to Applications in Lithiumâ€Ion Batteries. ChemPlusChem, 2019, 84, 1179-1214.	1.3	43
9602	Rice Husk Ligninâ€Derived Porous Carbon Anode Material for Lithiumâ€Ion Batteries. ChemistrySelect, 2019, 4, 4178-4184.	0.7	14
9603	Enhanced electrochemical performance and mechanism study of AgLi1/3Sn2/3O2 for lithium storage. Chinese Chemical Letters, 2019, 30, 2017-2020.	4.8	1
9604	A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Materials, 2019, 23, 514-521.	9.5	97
9605	Facile preparation of MnO/nitrogen-doped porous carbon nanotubes composites and their application in energy storage. Journal of Power Sources, 2019, 426, 33-39.	4.0	28
9606	Safety optimization enabled by tris(2,2,2-trifluoroethyl)phosphite additive for advanced pouch lithium ion batteries. Solid State Ionics, 2019, 337, 7-11.	1.3	6

ARTICLE IF CITATIONS Superior Electrochemical Performance of Thin-Film Thermoplastic Elastomer-Coated SnSb as an Anode 9607 8 1.6 for Li-ion Batteries. Scientific Reports, 2019, 9, 4301. Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement 5.2 147 strategies. Journal of Materials Chemistry A, 2019, 7, 12381-12413. Superior thermal conductivity of poly (ethylene oxide) for solid-state electrolytes: A molecular 9609 2.543 dynamics study. International Journal of Heat and Mass Transfer, 2019, 137, 1241-1246. Mesoporous carbon nanotube microspheres supported microporous pyrolytic carbon for 9610 1.9 high-performance supercapacitors. Journal of Electroanalytical Chemistry, 2019, 840, 423-429. Failure mechanism of Au@Co9S8 yolk-shell anode in Li-ion batteries unveiled by <i>in-situ</i> 9611 1.530 transmission electron microscopy. Applied Physics Letters, 2019, 114, . Spinel NiCo₂S₄ as Excellent Bi-Functional Cathode Catalysts for Rechargeable Li-O₂ Batteries. Journal of the Electrochemical Society, 2019, 166, F406-F413. 1.3 Micron-sized secondary Si/C composite with in situ crosslinked polymeric binder for 9613 2.6 29 high-energy-density lithium-ion battery anode. Electrochimica Acta, 2019, 309, 157-165. Mitigating storage-induced degradation of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by surface 9614 2.3 40 tuning with phosphate. Ceramics International, 2019, 45, 13942-13950. An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated 9615 4.0 53 SiO lithium-ion battery anodes. Journal of Power Sources, 2019, 426, 116-123. NiCo2O4 bricks as anode materials with high lithium storage property. MRS Advances, 2019, 4, 1861-1868. Nano-scale hollow structure carbon-coated LiFePO4 as cathode material for lithium ion battery. 9617 1.2 12 lonics, 2019, 25, 4075-4082. Multi-carbonyl molecules immobilized on high surface area carbon by diazonium chemistry for energy 9618 2.6 storage applications. Electrochimica Acta, 2019, 308, 99-114. High conductivity polymer electrolyte with comb-like structure via a solvent-free UV-cured method 9619 2.8 16 for large-area ambient all-solid-sate lithium batteries. Journal of Materiomics, 2019, 5, 195-203. Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano 8.2 Energy, 2019, 61, 47-53. Monitoring the Electrochemical Energy Storage Processes of an Organic Full Rechargeable Battery 9621 3.2 39 via Operando Raman Spectroscopy: A Mechanistic Study. Chemistry of Materials, 2019, 31, 3239-3247. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery 5.8 494 anodes. Nature Communications, 2019, 10, 1447. Design of multifunctional supercapacitor electrodes using an informatics approach. Molecular 9623 1.7 17 Systems Design and Engineering, 2019, 4, 654-663. 9624 Tracking sodium migration in TiS₂using<i>in situ</i>TEM. Nanoscale, 2019, 11, 7474-7480. 2.8

#	Article	IF	CITATIONS
9625	Development of a compact all-solid-state lithium secondary battery using single-crystal electrolyte. Synthesiology, 2019, 12, 28-38.	0.2	3
9626	Dual synergistic immobilization effect on lithium polysulfides for lithium–sulfur batteries. Journal of Electroanalytical Chemistry, 2019, 840, 125-133.	1.9	6
9627	Sandwich-type nanoporous CoO/N-doped carbon multi-layers with ultrahigh lithium storage and long-life stability. Journal of Materials Chemistry A, 2019, 7, 10610-10618.	5.2	22
9628	Nitrogen-enriched carbon-coated flower-like bismuth sulfide architectures towards high-performance lithium-ion battery anodes. Inorganic Chemistry Frontiers, 2019, 6, 1275-1281.	3.0	21
9629	Lightweight complex metal hydrides for Li-, Na-, and Mg-based batteries. Journal of Materials Research, 2019, 34, 877-904.	1.2	17
9630	Enhanced High-Rate and Low-Temperature Electrochemical Properties of LiFePO4/Polypyrrole Cathode Materials for Lithium-ion Batteries. International Journal of Electrochemical Science, 2019, 14, 3408-3417.	0.5	20
9631	Phosphorus and Boron Coâ€Doped Carbon Coating of LiNi 0.5 Mn 1.5 O 4 Cathodes for Advanced Lithiumâ€ion Batteries. ChemElectroChem, 2019, 6, 2224-2230.	1.7	14
9632	A new design for Si wears double jackets used as a high-performance lithium-ion battery anode. Chemical Engineering Journal, 2019, 370, 565-572.	6.6	54
9633	Improving the electrochemical cycling performance of anode materials via facile in situ surface deposition of a solid electrolyte layer. Journal of Power Sources, 2019, 424, 150-157.	4.0	24
9634	Relieving the "Sudden Death―of Li–O ₂ Batteries by Grafting an Antifouling Film on Cathode Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 14753-14758.	4.0	15
9635	NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nature Communications, 2019, 10, 1480.	5.8	260
9636	Hollow TiO ₂ submicrospheres assembled by tiny nanocrystals as superior anode for lithium ion battery. Journal of Materials Chemistry A, 2019, 7, 23733-23738.	5.2	15
9637	One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Research, 2019, 12, 1193-1197.	5.8	56
9638	Li3VO4 nanoparticles in N-doped carbon with porous structure as an advanced anode material for lithium-ion batteries. Chemical Engineering Journal, 2019, 370, 606-613.	6.6	54
9639	Investigating electron transport in a PEDOT/Quinone conducting redox polymer with in situ methods. Electrochimica Acta, 2019, 308, 277-284.	2.6	28
9640	High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. Energy Storage Materials, 2019, 19, 352-359.	9.5	82
9641	Suppressed the High-Voltage Phase Transition of P2-Type Oxide Cathode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14848-14853.	4.0	60
9642	Hierarchical Ni(HCO ₃) ₂ Nanosheets Anchored on Carbon Nanofibers as Binderâ€Free Anodes for Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1900094.	1.8	10

#	Article	IF	Citations
9643	Effect of silver coating on electrochemical performance of 0.5Li2MnO3.0.5 LiMn1/3Ni1/3Co1/3O2 cathode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 1593-1604.	1.2	8
9644	The dendrite growth in 3D structured lithium metal anodes: Electron or ion transfer limitation?. Energy Storage Materials, 2019, 23, 556-565.	9.5	126
9645	Facile solvothermal preparation of nanostructured MnF2 as outstanding anode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 840, 237-241.	1.9	5
9646	Cobalt-doped carbon nitride supported on ordered mesoporous carbon as noble metal-free oxygen reduction electrocatalysts. Journal of Physics and Chemistry of Solids, 2019, 131, 111-118.	1.9	11
9647	Using and recycling V2O5 as high performance anode materials for sustainable lithium ion battery. Journal of Power Sources, 2019, 424, 158-164.	4.0	42
9648	Lithium redistribution around the crack tip of lithium-ion battery electrodes. Scripta Materialia, 2019, 167, 11-15.	2.6	21
9649	Capturing Reversible Cation Migration in Layered Structure Materials for Naâ€ i on Batteries. Advanced Energy Materials, 2019, 9, 1900189.	10.2	41
9650	Enhanced electrochemical performances of Li2MnO3 cathode materials via adjusting oxygen vacancies content for lithium-ion batteries. Applied Surface Science, 2019, 483, 270-277.	3.1	40
9651	Highly smooth, stable and reflective Ag-paper electrode enabled by silver mirror reaction for organic optoelectronics. Chemical Engineering Journal, 2019, 370, 1048-1056.	6.6	33
9652	Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chemical Reviews, 2019, 119, 5416-5460.	23.0	572
9653	Tunable photophysical properties of thiophene based chromophores: a conjoined experimental and theoretical investigation. New Journal of Chemistry, 2019, 43, 6728-6736.	1.4	5
9654	The role of substituents in determining the redox potential of organic electrode materials in Li and Na rechargeable batteries: electronic effects <i>vs.</i> substituent-Li/Na ionic interaction. Journal of Materials Chemistry A, 2019, 7, 11438-11443.	5.2	33
9655	Intercalated Electrolyte with High Transference Number for Dendriteâ€Free Solid‣tate Lithium Batteries. Advanced Functional Materials, 2019, 29, 1901047.	7.8	266
9656	In Situ Focused Ion Beam-Scanning Electron Microscope Study of Crack and Nanopore Formation in Germanium Particle During (De)lithiation. ACS Applied Energy Materials, 2019, 2, 2441-2446.	2.5	16
9657	A safe and fast-charging lithium-ion battery anode using MXene supported Li ₃ VO ₄ . Journal of Materials Chemistry A, 2019, 7, 11250-11256.	5.2	106
9658	Dehydration of Alginic Acid Cryogel by TiCl 4 vapor: Direct Access to Mesoporous TiO 2 @C Nanocomposites and Their Performance in Lithiumâ€lon Batteries. ChemSusChem, 2019, 12, 2660-2670.	3.6	6
9659	Lithium sulfide-based cathode for lithium-ion/sulfur battery: Recent progress and challenges. Energy Storage Materials, 2019, 19, 1-15.	9.5	64
9660	A study of novel hydrophobic P(TFE) particles dispersed electrospun gel polymer electrolyte fibrous membranes. Ionics, 2019, 25, 3683-3693.	1.2	2

#	Article	IF	CITATIONS
9661	Highly porous MnO/C@rGO nanocomposite derived from Mn-BDC@rGO as high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds, 2019, 792, 487-495.	2.8	23
9662	V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy, 2019, 60, 752-759.	8.2	272
9663	Chemical reduction-induced oxygen deficiency in Co3O4 nanocubes as advanced anodes for lithium ion batteries. Solid State Ionics, 2019, 334, 117-124.	1.3	25
9664	Phase structure and electrical and mechanical properties of PLLA/ionic conductive polyether blends prepared by melt mixing. Polymer Journal, 2019, 51, 649-656.	1.3	2
9665	Stable and ultrafast lithium storage for LiFePO4/C nanocomposites enabled by instantaneously carbonized acetylenic carbon-rich polymer. Carbon, 2019, 147, 19-26.	5.4	31
9666	Stabilizing the reversible capacity of SnO2/graphene composites by Cu nanoparticles. Chemical Engineering Journal, 2019, 367, 45-54.	6.6	49
9667	Ni0.5TiOPO4 phosphate: Sodium insertion mechanism and electrochemical performance in sodium-ion batteries. Journal of Power Sources, 2019, 418, 211-217.	4.0	12
9668	Electrophoretic deposition of LiFePO4 onto 3-D current collectors for high areal loading battery cathodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 241, 42-47.	1.7	21
9669	Unveiling the Origin of Superior Electrochemical Performance in Polycrystalline Dense SnO ₂ Nanospheres as Anodes for Lithium-ion Batteries. ACS Applied Energy Materials, 2019, 2, 2004-2012.	2.5	14
9670	Recent Advances in Rational Electrode Designs for Highâ€Performance Alkaline Rechargeable Batteries. Advanced Functional Materials, 2019, 29, 1807847.	7.8	152
9671	Nip the Sodium Dendrites in the Bud on Planar Doped Graphene in Liquid/Gel Electrolytes. Advanced Functional Materials, 2019, 29, 1807974.	7.8	45
9672	Yolk–Shell Structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable Lithiumâ€∤Potassiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1808291.	7.8	232
9673	Understanding the Reaction Chemistry during Charging in Aprotic Lithium–Oxygen Batteries: Existing Problems and Solutions. Advanced Materials, 2019, 31, e1804587.	11.1	254
9674	Smallâ€Sized CuS Nanoparticles/N, S Coâ€Doped rGO Composites as the Anode Materials for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2019, 6, 1900038.	1.9	25
9675	Vanadateâ€Based Materials for Liâ€Ion Batteries: The Search for Anodes for Practical Applications. Advanced Energy Materials, 2019, 9, 1803324.	10.2	168
9676	Highâ€Abundance and Lowâ€Cost Metalâ€Based Cathode Materials for Sodiumâ€Ion Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials, 2019, 9, 1803609.	10.2	176
9677	Recent Progress of Layered Transition Metal Oxide Cathodes for Sodiumâ€Ion Batteries. Small, 2019, 15, e1805381.	5.2	246
9678	Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged Highâ€Energyâ€Density and Durable Aqueous Zincâ€Ion Battery. Advanced Functional Materials, 2019, 29, 1808375.	7.8	568

#	Article	IF	CITATIONS
9679	Multicore–Shell Bi@Nâ€doped Carbon Nanospheres for High Power Density and Long Cycle Life Sodium― and Potassiumâ€Ion Anodes. Advanced Functional Materials, 2019, 29, 1809195.	7.8	268
9680	Surface-fluorinated Li4Ti5O12 nanowires/reduced graphene oxide composite as a high-rate anode material for Lithium ion batteries. Applied Surface Science, 2019, 479, 158-166.	3.1	12
9681	Aqueous emulsion of conductive polymer binders for Si anode materials in lithium ion batteries. European Polymer Journal, 2019, 114, 265-270.	2.6	24
9682	Interfacial modification of Li/Carnet electrolyte by a lithiophilic and breathing interlayer. Journal of Power Sources, 2019, 419, 91-98.	4.0	108
9683	Nanostructured SiO2@NiO heterostructure derived from laboratory glass waste as anode material for lithium-ion battery. lonics, 2019, 25, 1015-1023.	1.2	5
9684	Covalent organic frameworks converted N, B co-doped carbon spheres with excellent lithium ion storage performance at high current density. Journal of Colloid and Interface Science, 2019, 542, 213-221.	5.0	53
9685	Rayleigh-Instability-Induced Bismuth Nanorod@Nitrogen-Doped Carbon Nanotubes as A Long Cycling and High Rate Anode for Sodium-Ion Batteries. Nano Letters, 2019, 19, 1998-2004.	4.5	142
9686	Cellulose hydrogel as a flexible gel electrolyte layer. MRS Communications, 2019, 9, 122-128.	0.8	25
9687	FeS@tubular mesoporous carbon as high capacity and long cycle life anode materials for lithium- and sodium-ions batteries. Journal of Alloys and Compounds, 2019, 786, 523-529.	2.8	24
9688	Tetragonal and trigonal Mo ₂ B ₂ monolayers: two new low-dimensional materials for Li-ion and Na-ion batteries. Physical Chemistry Chemical Physics, 2019, 21, 5178-5188.	1.3	72
9689	Zirconiumâ€Based Materials for Electrochemical Energy Storage. ChemElectroChem, 2019, 6, 1949-1968.	1.7	5
9690	Evaluating the electrochemical properties of PEOâ€based nanofibrous electrolytes incorporated with TiO ₂ nanofiller applicable in lithiumâ€ion batteries. Polymers for Advanced Technologies, 2019, 30, 1234-1242.	1.6	31
9691	Aluminumâ€Tailored Energy Level and Morphology of Co _{3â^²} <i>_x</i> Al <i>_x</i> O ₄ Porous Nanosheets toward Highly Efficient Electrocatalysts for Water Oxidation. Small, 2019, 15, e1804886.	5.2	30
9692	Na0.9Ni0.45Ti0.55O2 as novel bipolar material for sodium ion batteries. Solid State Ionics, 2019, 334, 14-20.	1.3	14
9693	Overcoming the High-Voltage Limitations of Li-Ion Batteries Using a Titanium Nitride Current Collector. ACS Applied Energy Materials, 2019, 2, 974-978.	2.5	17
9694	Charging toward improved lithium-ion polymer electrolytes: exploiting synergistic experimental and computational approaches to facilitate materials design. Molecular Systems Design and Engineering, 2019, 4, 223-238.	1.7	41
9695	Rapid construction of TiO2/SiO2 composite film on Ti foil as lithium-ion battery anode by plasma discharge in solution. Applied Physics Letters, 2019, 114, 043903.	1.5	11
9696	An Efficient Electrocatalyst by Electroless Cobalt–Nickel–Phosphorus Alloy Plating on Three-Dimensional Graphene for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2019, 166, D69-D76.	1.3	11

#	Article	IF	CITATIONS
9697	Ni-stabilizing additives for completion of Ni-rich layered cathode systems in lithium-ion batteries: An Ab initio study. Journal of Power Sources, 2019, 418, 74-83.	4.0	18
9698	Mechanochemical synthesis of solid-state electrolyte Sm1â^'xCaxF3â^'x for batteries and other electrochemical devices. Materials Letters, 2019, 244, 22-26.	1.3	13
9699	A Layered Lithiumâ€Rich Li(Li _{0.2} Ni _{0.15} Mn _{0.55} Co _{0.1})O ₂ Cathode Material: Surface Phase Modification and Enhanced Electrochemical Properties for Lithiumâ€lon Batteries. ChemElectroChem, 2019, 6, 1542-1551.	1.7	10
9700	Efficiency of 3Dâ€Ordered Macroporous La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O ₃ as an Electrocatalyst for Aprotic Liâ€O ₂ Batteries. ChemistryOpen, 2019, 8, 206-209.	0.9	9
9701	Cycling-induced structure refinement of MnO nanorods wrapped by N-doped carbon with internal void space for advanced lithium-ion anodes. Applied Surface Science, 2019, 479, 386-394.	3.1	13
9702	Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances. Chemical Engineering Journal, 2019, 366, 622-630.	6.6	86
9703	Sodium ion conducting gel polymer electrolyte using poly(vinylidene fluoride hexafluoropropylene). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 241, 27-35.	1.7	23
9704	A Highâ€Performance Li–B–H Electrolyte for Allâ€Solidâ€State Li Batteries. Advanced Functional Materials, 2019, 29, 1809219.	7.8	88
9705	Elucidating the Mechanism Involved in the Performance Improvement of Lithiumâ€ion Transition Metal Oxide Battery by Conducting Polymer. Advanced Materials Interfaces, 2019, 6, 1801785.	1.9	18
9706	An Upgraded Lithium Ion Battery Based on a Polymeric Separator Incorporated with Anode Active Materials. Advanced Energy Materials, 2019, 9, 1803627.	10.2	53
9707	Anthraquinoneâ€Based Oligomer as a Long Cycleâ€Life Organic Electrode Material for Use in Rechargeable Batteries. ChemPhysChem, 2019, 20, 967-971.	1.0	22
9708	An end-capped poly(ethylene carbonate)-based concentrated electrolyte for stable cyclability of lithium battery. Electrochimica Acta, 2019, 302, 286-290.	2.6	20
9709	Enhancing the capacity of activated carbon electrodes by a redox mediator pair for the fabrication of flexible asymmetric solid-state supercapacitors. Journal of Power Sources, 2019, 418, 24-32.	4.0	29
9710	One-pot synthesis of LiEuTiO4 as an anode material for lithium-ion batteries operating at 0.8†V. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96, 223-228.	2.7	6
9711	Disordered surface formation of WS ₂ <i>via</i> hydrogen plasma with enhanced anode performances for lithium and sodium ion batteries. Sustainable Energy and Fuels, 2019, 3, 865-874.	2.5	19
9712	An Economic-Environmental Analysis of Lithium Ion Batteries Based on Process Design and a Manufacturing Equipment Database. Journal of Chemical Engineering of Japan, 2019, 52, 111-120.	0.3	1
9713	Scalable Production of Graphene Inks via Wetâ€Jet Milling Exfoliation for Screenâ€Printed Micro‣upercapacitors. Advanced Functional Materials, 2019, 29, 1807659.	7.8	174
9714	Viscoelastic and Nonflammable Interface Design–Enabled Dendriteâ€Free and Safe Solid Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1803854.	10.2	93

#	Article	IF	Citations
9715	Water as an Effective Additive for Highâ€Energyâ€Density Na Metal Batteries? Studies in a Superconcentrated Ionic Liquid Electrolyte. ChemSusChem, 2019, 12, 1700-1711.	3.6	36
9716	Carbon Nanomaterials in Renewable Energy Production and Storage Applications. Environmental Chemistry for A Sustainable World, 2019, , 51-104.	0.3	14
9717	Advanced carbon electrode for electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 1061-1081.	1.2	43
9718	High Rate Li-Ion Batteries with Cation-Disordered Cathodes. Joule, 2019, 3, 1064-1079.	11.7	12
9719	Seaweed-Derived Nitrogen-Rich Porous Biomass Carbon as Bifunctional Materials for Effective Electrocatalytic Oxygen Reduction and High-Performance Gaseous Toluene Absorbent. ACS Sustainable Chemistry and Engineering, 2019, 7, 5057-5064.	3.2	43
9720	Diffusion Control of Organic Cathode Materials in Lithium Metal Battery. Scientific Reports, 2019, 9, 1213.	1.6	18
9721	Tailored high cycling performance in a solid polymer electrolyte with perovskite-type Li _{0.33} La _{0.557} TiO ₃ nanofibers for all-solid-state lithium ion batteries. Dalton Transactions, 2019, 48, 3263-3269.	1.6	52
9722	Operando Investigation into Dynamic Evolution of Cathode–Electrolyte Interfaces in a Li-Ion Battery. Nano Letters, 2019, 19, 2037-2043.	4.5	85
9723	Robust Polyimide Nanofibrous Membrane with Bonding Microstructures Fabricated via Dipping Process for Lithiumâ€lon Battery Separators. Energy Technology, 2019, 7, 1801072.	1.8	23
9724	Single Additive with Dual Functional-Ions for Stabilizing Lithium Anodes. ACS Applied Materials & Interfaces, 2019, 11, 11360-11368.	4.0	49
9725	Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale, 2019, 11, 5330-5335.	2.8	131
9726	Defects, Lithium Mobility and Tetravalent Dopants in the Li3NbO4 Cathode Material. Scientific Reports, 2019, 9, 2192.	1.6	28
9727	Toward Smart Polymeric Binders for Battery Electrodes. , 2019, , 651-669.		1
9728	A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries. Energy Storage Materials, 2019, 23, 678-683.	9.5	163
9729	2, 3-Dicyano-5, 6-dichloro-1, 4-benzoquinone as a novel organic anode for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 837, 226-229.	1.9	8
9730	Carbon-Coated MoSe ₂ /MXene Hybrid Nanosheets for Superior Potassium Storage. ACS Nano, 2019, 13, 3448-3456.	7.3	372
9731	MoNb ₁₂ O ₃₃ as a new anode material for high-capacity, safe, rapid and durable Li ⁺ storage: structural characteristics, electrochemical properties and working mechanisms. Journal of Materials Chemistry A, 2019, 7, 6522-6532.	5.2	157
9732	Effect of Ni and Cu Substitution on the Crystal Structure, Morphology and Electrochemical Performance of Spinel LiMn2O4. International Journal of Electrochemical Science, 2019, , 929-942.	0.5	13

IF

CITATIONS

Full Dissolution of the Whole Lithium Sulfide Family (Li₂S₈ to) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 747 Td (Li 9733 1.6 11 Chemie, 2019, 131, 5613-5617. Full Dissolution of the Whole Lithium Sulfide Family (Li₂S₈ to) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5 9734 7.2 93 Chemie - International Edition, 2019, 58, 5557-5561. High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Composites Part B: 9735 5.9 84 Engineering, 2019, 164, 576-582. Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries. 4.0 241 ACS Applied Materials & amp; Interfaces, 2019, 11, 10004-10011. Rational Design of Preintercalated Electrodes for Rechargeable Batteries. ACS Energy Letters, 2019, 4, 9737 77 8.8 771-778. Hierarchical Co₃O₄ Nanofiber–Carbon Sheet Skeleton with Superior Na/Liâ€Philic Property Enabling Highly Stable Alkali Metal Batteries. Advanced Functional Materials, 7.8 2019, 29, 1808847. Size-Dependent Charge Storage Behavior of Mesoporous Hollow Carbon Spheres for 9739 1.58 High-Performance Li–Se Batteries. Journal of Physical Chemistry C, 2019, 123, 5881-5889. Highâ€Performance Solid Polymer Electrolytes Filled with Vertically Aligned 2D Materials. Advanced 9740 7.8 140 Functional Materials, 2019, 29, 1900648. Fluorolytic Sol–Gel Route and Electrochemical Properties of Polyanionic Transitionâ€Metal Phosphate 9741 1.7 8 Fluorides. Chemistry - A European Journal, 2019, 25, 6189-6195. Highly ordered mesoporous carbons with high specific surface area from carbonated soft drink for 2.2 supercapacitor application. Microporous and Mesoporous Materials, 2019, 280, 337-346. Locally Concentrated LiPF₆ in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & amp; Interfaces, 9743 4.0141 2019, 11, 9955-9963. Solid-state polymer electrolytes stabilized by task-specific salt additives. Journal of Materials 9744 5.2 Chemistry Å, 2019, 7, 7823-7830. UV-cross-linked poly(ethylene oxide carbonate) as free standing solid polymer electrolyte for lithium 9745 2.6 50 batteries. Electrochimica Acta, 2019, 302, 414-421. Heteromat-framed metal-organic coordination polymer anodes for high-performance lithium-ion batteries. Energy Storage Materials, 2019, 19, 130-136. 9746 Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate 9747 5.2112 capability at high voltage. Journal of Materials Chemistry A, 2019, 7, 6080-6089. Ionic association analysis of LiTDI, LiFSI and LiPF₆in EC/DMC for better Li-ion battery 9748 58 performances. RSC Advances, 2019, 9, 4599-4608. Implanting CNT Forest onto Carbon Nanosheets as Multifunctional Hosts for Highâ€Performance 9749 4.6 34 Lithium Metal Batteries. Small Methods, 2019, 3, 1800546. Paving the Path toward Reliable Cathode Materials for Aluminumâ€ion Batteries. Advanced Materials, 11.1 214 2019, 31, e1806510.

ARTICLE

#	Article	IF	CITATIONS
9751	Surface defectâ€enhanced conductivity of calcium fluoride for electrochemical applications. Material Design and Processing Communications, 2019, 1, e44.	0.5	13
9752	Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 5874-5880.	1.1	21
9753	Graphene oxide linked with N, N′-diamino-1,4,5,8-naphthalenetetracarboxylic bisimide as a stable cathode material for lithium-ion batteries. Ionics, 2019, 25, 2987-2995.	1.2	11
9754	Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries. Electrochemical Energy Reviews, 2019, 2, 149-198.	13.1	205
9755	Asymmetric supercapacitor based on carbon nanofibers as the anode and two-dimensional copper cobalt oxide nanosheets as the cathode. Chemical Engineering Journal, 2019, 366, 390-403.	6.6	113
9756	Chemically monodisperse tin nanoparticles on monolithic 3D nanoporous copper for lithium ion battery anodes with ultralong cycle life and stable lithium storage properties. Nanoscale, 2019, 11, 4885-4894.	2.8	22
9757	A Facile Synthesis of A Novel Cu2Se@CMK-3 Nanocomposite for Rechargeable Sodium Batteries. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012147.	0.3	2
9758	Gas evolution and the effects on ionic transport inside the lithium-ion battery. Engineering Computations, 2019, 37, 1195-1211.	0.7	3
9759	Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction*. Chinese Physics Letters, 2019, 36, 080501.	1.3	0
9760	Excellent Electrochemical Performance of Multilayer Graphite Nanosheets as an Anode Material for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2019, 14, 10270-10280.	0.5	4
9761	Density Functional Theory-Assisted ³¹ P and ²³ Na Magic-Angle Spinning Nuclear Magnetic Resonance Study of the Na ₃ V ₂ (PO ₄) ₂ F ₃ –Na ₃ V _{2< Solid Solution: Unraveling Its Local and Electronic Structures. Chemistry of Materials, 2019, 31,}	:/s&ubz>(PO	<s∎ab>4</s∎ab>
9762	9759-9768. Zinc Sulfide Decorated on Nitrogenâ€Doped Carbon Derived from Metalâ€Organic Framework Composites for Highly Reversible Lithiumâ€Ion Battery Anode. ChemElectroChem, 2019, 6, 5617-5626.	1.7	16
9763	Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes. Science Advances, 2019, 5, eaax0651.	4.7	122
9764	Mechanistic Elucidation of Si Particle Morphology on Electrode Performance. Journal of the Electrochemical Society, 2019, 166, A3852-A3860.	1.3	7
9765	Thinâ€Film Lithium Niobites and Their Chemical Properties for Lithiumâ€Ion Storage and Diffusion. ChemElectroChem, 2019, 6, 5109-5115.	1.7	6
9766	CNT-Intertwined Polymer Electrode toward the Practical Application of Wearable Devices. ACS Applied Materials & amp; Interfaces, 2019, 11, 46726-46734.	4.0	18
9767	Fluorinated Ether Based Electrolyte Enabling Sodium-Metal Batteries with Exceptional Cycling Stability. ACS Applied Materials & amp; Interfaces, 2019, 11, 46965-46972.	4.0	48
9768	Reduced Graphene Oxides Decorated NiSe Nanoparticles as High Performance Electrodes for Na/Li Storage. Materials, 2019, 12, 3709.	1.3	30

#	Article	IF	Citations
9769	Size induced structural changes in maricite-NaFePO ₄ : an in-depth study by experiment and simulations. Physical Chemistry Chemical Physics, 2019, 21, 25206-25214.	1.3	4
9770	Surfacing amorphous Ni–B nanoflakes on NiCo ₂ O ₄ nanospheres as multifunctional bridges for promoting lithium storage behaviors. Nanoscale, 2019, 11, 22550-22558.	2.8	20
9771	Copper surface doping to improve the structure and surface properties of manganese-rich cathode materials for sodium ion batteries. Materials Chemistry Frontiers, 2019, 3, 2374-2379.	3.2	8
9772	Establishing the criteria and strategies to achieve high power during discharge of a Li–air battery. Journal of Materials Chemistry A, 2019, 7, 23199-23207.	5.2	24
9773	Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms. Journal of Materials Chemistry A, 2019, 7, 25537-25547.	5.2	63
9774	Compact Si/C anodes fabricated by simultaneously regulating the size and oxidation degree of Si for Li-ion batteries. Journal of Materials Chemistry A, 2019, 7, 24356-24365.	5.2	42
9775	A self-healing interface on lithium metal with lithium difluoro (bisoxalato) phosphate for enhanced lithium electrochemistry. Journal of Materials Chemistry A, 2019, 7, 26002-26010.	5.2	24
9776	Unveiling the mechanism of improved capacity retention in <i>Pmn</i> 2 ₁ Li ₂ FeSiO ₄ cathode by cobalt substitution. Journal of Materials Chemistry A, 2019, 7, 25399-25414.	5.2	11
9777	Single crystal polyoxoniobate derived NbO/Cu nanocrystalline@N-doped carbon loaded onto reduced graphene oxide enabling high rate and high capacity Li/Na storage. Journal of Materials Chemistry A, 2019, 7, 26513-26523.	5.2	10
9778	A lithium carboxylate grafted dendrite-free polymer electrolyte for an all-solid-state lithium-ion battery. Journal of Materials Chemistry A, 2019, 7, 25818-25823.	5.2	21
9779	Dual-doped hierarchical porous carbon derived from biomass for advanced supercapacitors and lithium ion batteries. RSC Advances, 2019, 9, 32382-32394.	1.7	32
9780	ℌFeF3 as a cathode material in lithium ion batteries working in spacecraft conditions― , 2019, , .		0
9781	A promising water-in-salt electrolyte for aqueous based electrochemical energy storage cells with a wide potential window: highly concentrated HCOOK. Chemical Communications, 2019, 55, 12817-12820.	2.2	35
9782	Pd-coated Ru nanocrystals supported on N-doped graphene as HER and ORR electrocatalysts. Chemical Communications, 2019, 55, 13928-13931.	2.2	51
9783	Binder-free V ₂ O ₅ /CNT paper electrode for high rate performance zinc ion battery. Nanoscale, 2019, 11, 19723-19728.	2.8	68
9784	CoSe ₂ hollow microspheres, nano-polyhedra and nanorods as pseudocapacitive Mg-storage materials with fast solid-state Mg ²⁺ diffusion kinetics. Nanoscale, 2019, 11, 23173-23181.	2.8	26
9785	A hierarchical layering design for stable, self-restrained and high volumetric binder-free lithium storage. Nanoscale, 2019, 11, 21728-21732.	2.8	8
9786	Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 22596-22603.	5.2	80

#	Article	IF	CITATIONS
9787	Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. Journal of Materials Chemistry A, 2019, 7, 24857-24867.	5.2	48
9788	High cathode utilization efficiency through interface engineering in all-solid-state lithium-metal batteries. Journal of Materials Chemistry A, 2019, 7, 25915-25924.	5.2	28
9789	Metallic state two-dimensional holey-structured Co ₃ FeN nanosheets as stable and bifunctional electrocatalysts for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 26549-26556.	5.2	30
9790	Employing a T-shirt template and variant of Schweizer's reagent for constructing a low-weight, flexible, hierarchically porous and textile-structured copper current collector for dendrite-suppressed Li metal. Journal of Materials Chemistry A, 2019, 7, 27066-27073.	5.2	7
9791	Promoting Redox Reduction of Lithium-Sulfur Battery by Tris(2-carboxyl)phosphine Shearing S-S Bond. Journal of the Electrochemical Society, 2019, 166, A3869-A3873.	1.3	0
9792	Co-CoO/MnO Heterostructured Nanocrystals Anchored on N/P-Doped 3D Porous Graphene for High-Performance Pseudocapacitive Lithium Storage. Journal of the Electrochemical Society, 2019, 166, A3820-A3829.	1.3	9
9793	A New Metallic In ₃ O ₄ Sheet as an Anode Material for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 30213-30220.	1.5	11
9794	Artificial SEI Transplantation: A Pathway to Enabling Lithium Metal Cycling in Water-Containing Electrolytes. ACS Applied Energy Materials, 2019, 2, 8912-8918.	2.5	6
9795	Corrosion/Passivation Behavior of Concentrated Ionic Liquid Electrolytes and Its Impact on the Li-Ion Battery Performance. Journal of the Electrochemical Society, 2019, 166, A3959-A3964.	1.3	27
9796	Facile Synthesis of Antimony Tungstate Nanosheets as Anodes for Lithium-Ion Batteries. Nanomaterials, 2019, 9, 1689.	1.9	28
9797	Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. , 2019, 1, 219-245.		94
9798	Carbon‣upported Organic Electrode Materials for Aqueous Rechargeable Lithiumâ€Ion Batteries. ChemistrySelect, 2019, 4, 12942-12949.	0.7	1
9799	Thermo-Electrochemical Stability Analytics of Electrode Materials. Journal of Physical Chemistry C, 2019, 123, 30106-30120.	1.5	11
9800	Two-Dimensional Covalent Triazine Framework as a Promising Anode Material for Li-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 30155-30164.	1.5	34
9801	"Allâ€inâ€One―integrated ultrathin SnS ₂ @3D multichannel carbon matrix power highâ€areal–capacity lithium battery anode. , 2019, 1, 276-288.		47
9802	Stepwise Electrocatalysis as a Strategy against Polysulfide Shuttling in Li–S Batteries. ACS Nano, 2019, 13, 14208-14216.	7.3	171
9803	Tailoring Coral-Like Fe ₇ Se ₈ @C for Superior Low-Temperature Li/Na-Ion Half/Full Batteries: Synthesis, Structure, and DFT Studies. ACS Applied Materials & Interfaces, 2019, 11, 47886-47893.	4.0	35
9804	Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nature Communications, 2019, 10, 5586.	5.8	80

~	_
CITAT	Report
CITAL	NEFORT

#	Article	IF	CITATIONS
9805	B-Doped Si@C Nanorod Anodes for High-Performance Lithium-Ion Batteries. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	7
9806	Synthesis and Characterization of LiFePO4 By Variation Addition Of (Li3PO4)0.5(Agl)0.25(Lil)0.25 as Cathode Material For All-Solid-State Li-ion Battery. IOP Conference Series: Materials Science and Engineering, 2019, 553, 012059.	0.3	0
9807	Atomistic insights into the screening and role of oxygen in enhancing the Li+ conductivity of Li7P3S11â^'xOx solid-state electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 26358-26367.	1.3	9
9808	Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox. Nature Chemistry, 2019, 11, 1133-1138.	6.6	31
9809	All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy, 2019, 4, 882-890.	19.8	557
9810	A Nitrogenâ€Doped Manganese Oxide Nanoparticles/Porous Carbon Nanosheets Hybrid Material: A Highâ€Performance Anode for Lithium Ion Batteries. ChemPlusChem, 2019, 84, 1805-1815.	1.3	4
9811	Solid Electrolytes for Advanced Applications. , 2019, , .		8
9812	The Temperature Effect on the Electrochemical Performance of Sulfur-Doped LiMn2O4 in Li-Ion Cells. Nanomaterials, 2019, 9, 1722.	1.9	11
9813	Enhanced Conductivity via Homopolymer-Rich Pathways in Block Polymer-Blended Electrolytes. Macromolecules, 2019, 52, 9682-9692.	2.2	26
9814	Designs of Experiments for Beginners—A Quick Start Guide for Application to Electrode Formulation. Batteries, 2019, 5, 72.	2.1	30
9815	Evaluating lithium diffusion mechanisms in the complex spinel Li2NiGe3O8. Physical Chemistry Chemical Physics, 2019, 21, 23111-23118.	1.3	11
9816	Molecular dynamics investigation of reduced ethylene carbonate aggregation at the onset of solid electrolyte interphase formation. Physical Chemistry Chemical Physics, 2019, 21, 22449-22455.	1.3	5
9817	Electrochemical phase transformation accompanied with Mg extraction and insertion in a spinel MgMn ₂ O ₄ cathode material. Physical Chemistry Chemical Physics, 2019, 21, 23749-23757.	1.3	39
9818	Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy and Environmental Science, 2019, 12, 3247-3287.	15.6	129
9819	Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy and Environmental Science, 2019, 12, 3508-3514.	15.6	278
9820	MOF-derived NiO–NiCo ₂ O ₄ @PPy hollow polyhedron as a sulfur immobilizer for lithium–sulfur batteries. New Journal of Chemistry, 2019, 43, 18294-18303.	1.4	26
9821	Nanomechanical elasticity and fracture studies of lithium phosphate (LPO) and lithium tantalate (LTO) solid-state electrolytes. Nanoscale, 2019, 11, 18730-18738.	2.8	17
9822	Towards fast-charging technologies in Li ⁺ /Na ⁺ storage: from the perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors. Nanoscale, 2019, 11, 19225-19240.	2.8	44

#	Article	IF	CITATIONS
9823	X-ray absorption near edge structure simulation of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ <i>via</i> first-principles calculation. RSC Advances, 2019, 9, 35655-35661.	1.7	6
9824	Structure and conductivity enhanced treble-shelled porous silicon as an anode for high-performance lithium-ion batteries. RSC Advances, 2019, 9, 35392-35400.	1.7	7
9825	Investigation of the leaching mechanism of NMC 811 (LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂) by hydrochloric acid for recycling lithium ion battery cathodes. RSC Advances, 2019, 9, 38612-38618.	1.7	45
9826	Uniform gallium oxyhydroxide nanorod anodes with superior lithium-ion storage. RSC Advances, 2019, 9, 34896-34901.	1.7	7
9827	The design of a multifunctional separator regulating the lithium ion flux for advanced lithium-ion batteries. RSC Advances, 2019, 9, 40084-40091.	1.7	16
9828	Influence of cobalt concentration on CuO nanoplates morphology and its superior performance as Li–ion battery anode. Materials Research Express, 2019, 6, 125543.	0.8	3
9829	Hybrid polymer electrolyte for Li–O2 batteries. Green Energy and Environment, 2019, 4, 3-19.	4.7	31
9830	Effects of raw materials on the electrochemical performance of Na-doped Li-rich cathode materials Li[Li0.2Ni0.2Mn0.6]O2. Ionics, 2019, 25, 959-968.	1.2	16
9831	Facile synthesis of hierarchical lychee-like Zn3V3O8@C/rGO nanospheres as high-performance anodes for lithium ion batteries. Journal of Colloid and Interface Science, 2019, 533, 627-635.	5.0	33
9832	Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries. Journal of Power Sources, 2019, 409, 148-158.	4.0	59
9833	Potential application of AlN nanostructures in sodium ion batteries: a DFT study. Molecular Physics, 2019, 117, 359-367.	0.8	6
9834	Synthesis and characterization of nanoflaky maghemite (γ-Fe2O3) as a versatile anode for Li-ion batteries. Ceramics International, 2019, 45, 131-136.	2.3	14
9835	Heterostructured SnS-ZnS@C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries. Chemical Engineering Journal, 2019, 356, 1042-1051.	6.6	181
9836	Binary transition metal oxides (BTMO) (Co-Zn, Co-Cu) synthesis and high supercapacitor performance. Journal of Alloys and Compounds, 2019, 772, 359-365.	2.8	47
9837	Graphitic Carbon Materials for Advanced Sodiumâ€ion Batteries. Small Methods, 2019, 3, 1800227.	4.6	81
9838	Cornlike ordered N-doped carbon coated hollow Fe3O4 by magnetic self-assembly for the application of Li-ion battery. Chemical Engineering Journal, 2019, 356, 746-755.	6.6	76
9839	Adaptation and improvement of an elemental mapping method for lithium ion battery electrodes and separators by means of laser ablation-inductively coupled plasma-mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 581-589.	1.9	17
9840	Electrically conductive hydrogels for flexible energy storage systems. Progress in Polymer Science, 2019, 88, 220-240.	11.8	260

#	Article	IF	CITATIONS
9841	Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries. Chemical Engineering Journal, 2019, 356, 53-59.	6.6	99
9842	Improving the rate capability and decelerating the voltage decay of Li-rich layered oxide cathodes by constructing a surface-modified microrod structure. Journal of Alloys and Compounds, 2019, 772, 230-239.	2.8	24
9843	Protecting lithium metal anode by magnetron sputtering a copper coating. lonics, 2019, 25, 2525-2533.	1.2	10
9844	Utilization of nutrient rich duckweed to create N, P Co-doped porous carbons for high performance supercapacitors. Journal of Alloys and Compounds, 2019, 771, 1009-1017.	2.8	31
9845	Synthesis of K0.25V2O5 hierarchical microspheres as a high-rate and long-cycle cathode for lithium metal batteries. Journal of Alloys and Compounds, 2019, 772, 852-860.	2.8	14
9846	Constructing flexible coaxial-cable structured sulfur cathode with carbon nanomaterials on textile. Carbon, 2019, 144, 525-531.	5.4	5
9847	Oxygen vacancies enhance lithium storage performance in ultralong vanadium pentoxide nanobelt cathodes. Journal of Colloid and Interface Science, 2019, 539, 118-125.	5.0	15
9848	Ultrafast fabrication of thermally stable protein-coated silver iodide nanoparticles for solid-state superionic conductors. Colloids and Surfaces B: Biointerfaces, 2019, 176, 47-54.	2.5	5
9849	Comparative study of bulk and nano-structured mesoporous SnO2 electrodes on the electrochemical performances for next generation Li rechargeable batteries. Journal of Power Sources, 2019, 413, 241-249.	4.0	37
9850	Novel High-Rate Performance of Dual Carbon-Coated Li ₃ V ₂ (PO ₄) ₃ Materials Used in an Aqueous Electrolyte. Industrial & Engineering Chemistry Research, 2019, 58, 790-797.	1.8	15
9851	Understanding the Lithium Storage Mechanism of Ti ₃ C ₂ T _{<i>x</i>} MXene. Journal of Physical Chemistry C, 2019, 123, 1099-1109.	1.5	115
9852	PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Materials, 2019, 22, 29-39.	9.5	65
9853	Li3SbO4 lithium-ion battery material: Defects, lithium ion diffusion and tetravalent dopants. Materials Chemistry and Physics, 2019, 225, 34-41.	2.0	22
9854	ZIF-67@Se@MnO ₂ : A Novel Co-MOF-Based Composite Cathode for Lithium–Selenium Batteries. Journal of Physical Chemistry C, 2019, 123, 2048-2055.	1.5	35
9855	On the use of a naturally-sourced CuFeS2 mineral concentrate for energy storage. Electrochimica Acta, 2019, 297, 1079-1093.	2.6	16
9856	Soft-Templated Tellurium-Doped Mesoporous Carbon as a Pt-Free Electrocatalyst for High-Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 2093-2102.	4.0	37
9857	Flexible Hybrid Zn–Ag/Air Battery with Long Cycle Life. ACS Sustainable Chemistry and Engineering, 2019, 7, 2860-2866.	3.2	28
9858	Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective. Frontiers in Chemistry, 2018, 6, 656.	1.8	83

#	Article	IF	CITATIONS
9859	An Interconnected Channelâ€Like Framework as Host for Lithium Metal Composite Anodes. Advanced Energy Materials, 2019, 9, 1802720.	10.2	83
9860	Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie - International Edition, 2019, 58, 2093-2097.	7.2	89
9861	Singleâ€Phase Cu ₃ SnS ₄ Nanoparticles for Robust High Capacity Lithiumâ€lon Battery Anodes. ChemElectroChem, 2019, 6, 1371-1375.	1.7	16
9862	Nanocellulose for Energy Storage Systems: Beyond the Limits of Synthetic Materials. Advanced Materials, 2019, 31, e1804826.	11.1	181
9863	Interaction of Ultrathin Films of Ethylene Carbonate with Oxidized and Reduced Lithium Cobalt Oxide—A Model Study of the Cathode Electrolyte Interface in Liâ€lon Batteries. Advanced Materials Interfaces, 2019, 6, 1801650.	1.9	12
9864	Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method. Energy, 2019, 169, 868-880.	4.5	121
9865	Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries. Journal of the American Chemical Society, 2019, 141, 840-848.	6.6	255
9866	Retarding Phase Transformation During Cycling in a Lithium―and Manganeseâ€Rich Cathode Material by Optimizing Synthesis Conditions. ChemElectroChem, 2019, 6, 1385-1392.	1.7	8
9867	A lanthanide-based coordination polymer as lithium ion battery anode with high cyclic stability. Materials Letters, 2019, 238, 171-174.	1.3	14
9868	Co(OH)2@Co electrode for efficient alkaline anode based on Co2+/Co° redox mechanism. Energy Storage Materials, 2019, 21, 372-377.	9.5	13
9869	Blended cathode materials for all-solid-state Li-ion batteries. Journal of Alloys and Compounds, 2019, 781, 553-559.	2.8	12
9870	Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy, 2019, 57, 157-165.	8.2	162
9871	Hierarchical MnO@C Hollow Nanospheres for Advanced Lithium-Ion Battery Anodes. ACS Applied Nano Materials, 2019, 2, 429-439.	2.4	40
9872	One-pot synthesis of Fe/N/S-doped porous carbon nanotubes for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1607-1615.	5.2	84
9873	Coaxial-cable hierarchical tubular MnO ₂ @Fe ₃ O ₄ @C heterostructures as advanced anodes for lithium-ion batteries. Nanotechnology, 2019, 30, 094002.	1.3	5
9874	Biological Redox Mediation in Electron Transport Chain of Bacteria for Oxygen Reduction Reaction Catalysts in Lithium–Oxygen Batteries. Advanced Functional Materials, 2019, 29, 1805623.	7.8	50
9875	Synthesis of Li ₄ Ti ₅ O ₁₂ with Tunable Morphology Using <scp>l</scp> â€Cysteine and Its Enhanced Lithium Storage Properties. ChemPlusChem, 2019, 84, 123-129.	1.3	4
9876	Thiophene containing conjugated microporous polymers derived sulfur-enriched porous carbon supported Fe3O4 nanoparticles with superior lithium storage properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 1425-1433.	1.1	6

#	Article	IF	CITATIONS
9877	Preparation and electrochemical properties of Li0.33Sr La0.56–2/3TiO3-based solid-state ionic supercapacitor. Ceramics International, 2019, 45, 2584-2590.	2.3	9
9878	Regulating Lithium Nucleation via CNTs Modifying Carbon Cloth Film for Stable Li Metal Anode. Small, 2019, 15, e1803734.	5.2	108
9879	Novel solid polymer electrolyte based on PMMA:CH3COOLi effect of salt concentration on optical and conductivity studies. Polymer Bulletin, 2019, 76, 5463-5481.	1.7	32
9880	Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 1-28.	13.1	745
9881	Synthesis and electrochemical properties of Zn3V3O8 as novel anode material. Chinese Chemical Letters, 2019, 30, 806-808.	4.8	8
9882	Design and property investigations of manganese-based cathode material Lil Ni0.25-zMn0.75-zCo2zOy (0 â‰ÞTj	ETQq1 1 2.8	0.784314 rg
9883	High-performance LiFe0.98V0.02PO4/3DC/C synthesized by hydrothermal route using FePO4 as precursor. Journal of Alloys and Compounds, 2019, 782, 176-182.	2.8	12
9884	Unique oblate-like ZnWO4 nanostructures for electrochemical energy storage performances. Materials Letters, 2019, 240, 103-107.	1.3	11
9885	Nitrogen-doped graphene/palladium nanoparticles/porous polyaniline ternary composite as an efficient electrode material for high performance supercapacitor. Materials Science for Energy Technologies, 2019, 2, 246-257.	1.0	22
9886	Sintering temperature, excess sodium, and phosphorous dependencies on morphology and ionic conductivity of NASICON Na3Zr2Si2PO12. Solid State Ionics, 2019, 331, 22-29.	1.3	68
9887	NASICON-structured solid-state electrolyte Li _{1.5} Al _{0.5-x} Ga _x Ge _{1.5} (PO ₄) ₃ prepared by microwave sintering. Materials Technology, 2019, 34, 356-360.	1.5	12
9888	Recycled Cobalt from Spent Li-ion Batteries as a Superhydrophobic Coating for Corrosion Protection of Plain Carbon Steel. Materials, 2019, 12, 90.	1.3	9
9889	Binder-less chemical grafting of SiO2 nanoparticles onto polyethylene separators for lithium-ion batteries. Journal of Membrane Science, 2019, 573, 621-627.	4.1	83
9890	Ca-doped Na2Zn2TeO6 layered sodium conductor for all-solid-state sodium-ion batteries. Electrochimica Acta, 2019, 298, 121-126.	2.6	40
9891	Facile synthesis of Li2S@C composites as cathode for Li–S batteries. Journal of Energy Chemistry, 2019, 37, 111-116.	7.1	33
9892	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
9893	Lithiophilic 3D Nanoporous Nitrogenâ€Doped Graphene for Dendriteâ€Free and Ultrahighâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1805334.	11.1	254
9894	Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries. Journal of Power Sources, 2019, 409, 31-37.	4.0	76

#	Article	IF	CITATIONS
9895	Optimized Porous Si/SiC Composite Spheres as Highâ€Performance Anode Material for Lithiumâ€lon Batteries. ChemElectroChem, 2019, 6, 450-455.	1.7	22
9896	Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable Li Metal Anodes. Advanced Energy Materials, 2019, 9, 1802777.	10.2	109
9897	Selective synthesis of CuO/C nanocomposites and porous CuO based on polyacrylic acid hydrogel system as high-performance anode for lithium-ion batteries. Chemical Physics, 2019, 518, 1-7.	0.9	14
9898	Bio-inspired low-tortuosity carbon host for high-performance lithium-metal anode. National Science Review, 2019, 6, 247-256.	4.6	57
9899	Water in Rechargeable Multivalentâ€ion Batteries: An Electrochemical Pandora's Box. ChemSusChem, 2019, 12, 379-396.	3.6	62
9900	Use of Ce to Reinforce the Interface of Niâ€Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for Lithiumâ€Ion Batteries under High Operating Voltage. ChemSusChem, 2019, 12, 935-943.	3.6	113
9901	Pillared MXene with Ultralarge Interlayer Spacing as a Stable Matrix for High Performance Sodium Metal Anodes. Advanced Functional Materials, 2019, 29, 1805946.	7.8	242
9902	Dimensionally Designed Carbon–Silicon Hybrids for Lithium Storage. Advanced Functional Materials, 2019, 29, 1806061.	7.8	140
9903	Fabrication of Lowâ€Tortuosity Ultrahighâ€Areaâ€Capacity Battery Electrodes through Magnetic Alignment of Emulsionâ€Based Slurries. Advanced Energy Materials, 2019, 9, 1802472.	10.2	100
9904	Oxygen Electroreduction on Nanoporous Carbons: Textural Features vs Nitrogen and Boron Catalytic Centers. ChemCatChem, 2019, 11, 851-860.	1.8	28
9905	Enhanced lithium storage capability of FeF3·0.33H2O single crystal with active insertion site exposed. Nano Energy, 2019, 56, 884-892.	8.2	55
9906	Conformal carbon coating on WS2 nanotubes for excellent electrochemical performance of lithium-ion batteries. Nanotechnology, 2019, 30, 035401.	1.3	5
9907	Scavenging Materials to Stabilize LiPF ₆ â€Containing Carbonateâ€Based Electrolytes for Liâ€Ion Batteries. Advanced Materials, 2019, 31, e1804822.	11.1	175
9908	Toward high-rate supercapacitor: Preparation of hierarchical porous carbon binder-free electrode with controllable texture. Applied Surface Science, 2019, 470, 573-580.	3.1	21
9909	A facile and surfactant-free synthesis of porous hollow λ-MnO2 3D nanoarchitectures for lithium ion batteries with superior performance. Journal of Alloys and Compounds, 2019, 778, 37-46.	2.8	44
9910	State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis. Journal of Power Sources, 2019, 410-411, 106-114.	4.0	255
9911	Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices. Materials and Design, 2019, 162, 45-51.	3.3	53
9912	Na ₂ FePO ₄ F Fluorophosphate as Positive Insertion Material for Aqueous Sodiumâ€ion Batteries. ChemElectroChem, 2019, 6, 444-449.	1.7	27

#	Article	IF	CITATIONS
9913	Thermal, optical and electrical properties of UV-curing screen-printed glass substrates. Polymer Bulletin, 2019, 76, 4355-4368.	1.7	11
9914	Facile synthesis of hydrated magnesium vanadium bronze σ-Mg0.25V2O5·H2O as a novel cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 777, 931-938.	2.8	7
9915	Carbon fiber@ pore-ZnO composite as anode materials for structural lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 833, 39-46.	1.9	27
9916	One step synthesized hierarchical spherical porous carbon as an efficient electrode material for lithium ion battery. Materials Letters, 2019, 237, 156-160.	1.3	15
9917	Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56, 426-433.	8.2	111
9918	A highly reversible Co3S4 microsphere cathode material for aluminum-ion batteries. Nano Energy, 2019, 56, 100-108.	8.2	179
9919	Microwave-irradiated reduced graphene oxide nanosheets for highly reversible and ultrafast sodium storage. Journal of Alloys and Compounds, 2019, 778, 382-390.	2.8	9
9920	Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering Reports, 2019, 136, 27-46.	14.8	311
9921	Anion Coordination Characteristics of Ion-pair Complexes in Highly Concentrated Aqueous Lithium Bis(trifluoromethane- sulfonyl)amide Electrolytes. Analytical Sciences, 2019, 35, 289-294.	0.8	15
9922	Investigation of electrochemical reaction mechanism for antimony selenide nanocomposite for sodium-ion battery electrodes. Journal of Applied Electrochemistry, 2019, 49, 207-216.	1.5	14
9923	Exploring SnS nanoparticles interpenetrated with high concentration nitrogen-doped-carbon as anodes for sodium ion batteries. Electrochimica Acta, 2019, 296, 806-813.	2.6	27
9924	Scalable TiO2 embedded sulfur bulks@MnO2 nanosheets composite cathode for long-cyclic lithium-sulfur batteries. Journal of Solid State Chemistry, 2019, 270, 304-310.	1.4	13
9925	Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy, 2019, 56, 138-150.	8.2	289
9926	Multilayer iron oxalate with a mesoporous nanostructure as a high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 779, 91-99.	2.8	19
9927	A theoretical study on the stability and ionic conductivity of the Na11M2PS12 (M = Sn, Ge) superionic conductors. Journal of Power Sources, 2019, 409, 94-101.	4.0	27
9928	Sulfur, Nitrogen and Fluorine Tripleâ€Doped Metalâ€Free Carbon Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 741-747.	1.7	33
9929	Redoxâ€Mediatorâ€Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives. ChemSusChem, 2019, 12, 1118-1132.	3.6	67
9930	Layer by Layer Assemble of Colloid Nanomaterial and Functional Multilayer Films for Energy Storage and Conversion. , 2019, , 255-278.		4

#	Article	IF	CITATIONS
9931	Ultrafine CuO nanoparticles decorated activated tube-like carbon as advanced anode for lithium-ion batteries. Electrochimica Acta, 2019, 296, 206-213.	2.6	33
9932	Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage. Energy Storage Materials, 2019, 20, 36-45.	9.5	51
9933	Flexible Stable Solidâ€State Alâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1806799.	7.8	177
9934	Solidâ€State Lithium/Selenium–Sulfur Chemistry Enabled via a Robust Solidâ€Electrolyte Interphase. Advanced Energy Materials, 2019, 9, 1802235.	10.2	63
9935	Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Materials, 2019, 17, 284-292.	9.5	115
9936	High-performance LiVPO4F/C cathode constructed by using polyvinylidene fluoride as carbon source and the influencing mechanism for lithium ion batteries. Journal of Alloys and Compounds, 2019, 778, 345-358.	2.8	10
9937	Pencilâ€Drawing Skinâ€Mountable Microâ€Supercapacitors. Small, 2019, 15, e1804037.	5.2	42
9938	Ti-doped NaCrO2 as cathode materials for sodium-ion batteries with excellent long cycle life. Journal of Alloys and Compounds, 2019, 779, 147-155.	2.8	38
9939	Self-assembled mesoporous Nb ₂ O ₅ as a high performance anode material for rechargeable lithium ion batteries. Materials Research Express, 2019, 6, 035502.	0.8	8
9940	Enhanced Interfacial Stability of Hybridâ€Electrolyte Lithiumâ€Sulfur Batteries with a Layer of Multifunctional Polymer with Intrinsic Nanoporosity. Advanced Functional Materials, 2019, 29, 1805996.	7.8	47
9941	K+ storage in porous red blood cell-like hollow carbon. Journal of Alloys and Compounds, 2019, 779, 505-510.	2.8	7
9942	Cross-linked polymer electrolyte and its application to lithium polymer battery. Electrochimica Acta, 2019, 296, 1018-1026.	2.6	31
9943	Small things make big deal: Powerful binders of lithium batteries and post-lithium batteries. Energy Storage Materials, 2019, 20, 146-175.	9.5	118
9944	Surface-Activated Graphite Paper for High-Performance Lithium-Polysulfide Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 276-284.	3.2	6
9945	A review on porous polymer composite materials for multifunctional electronic applications. Polymer-Plastics Technology and Materials, 2019, 58, 1253-1294.	0.6	19
9946	Preparation of Flexible Selfâ€5upporting 3D SiO x â€Based Membrane Anodes with Stabilized Electrochemical Performances for Lithiumâ€ion Batteries. Energy Technology, 2019, 7, 1800635.	1.8	8
9947	Bifunctional poly(ethylene glycol) based crosslinked network polymers as electrolytes for allâ€solidâ€state lithium ion batteries. Polymer International, 2019, 68, 684-693.	1.6	32
9948	Synthesis and Characterization of Alginate-Based Sol–Gel Synthesis of Lithium Nickel Phosphate with Surface Area Control. Industrial & Engineering Chemistry Research, 2019, 58, 625-631.	1.8	4

#	Article	IF	CITATIONS
9949	Vanadium Doping Enhanced Electrochemical Performance of Molybdenum Oxide in Lithiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1805227.	7.8	79
9950	Direct Growth of MoO ₂ /Reduced Graphene Oxide Hollow Sphere Composites as Advanced Anode Materials for Potassium″on Batteries. ChemSusChem, 2019, 12, 873-880.	3.6	100
9951	LiFePO4/Carbon/Reduced Graphene Oxide Nanostructured Composite as a High Capacity and Fast Rate Cathode Material for Rechargeable Lithium Ion Battery. Catalysis Letters, 2019, 149, 7-18.	1.4	7
9952	Phase transition induced synthesis of one dimensional In1â^xZnxOy heterogeneous nanofibers for superior lithium ion storage. Applied Surface Science, 2019, 470, 340-347.	3.1	11
9953	Enhanced Lithiumâ€lon Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. Angewandte Chemie - International Edition, 2019, 58, 7829-7834.	7.2	59
9954	Vanadium (III) Oxide/Carbon Core/Shell Hybrids as an Anode for Lithiumâ€lon Batteries. Batteries and Supercaps, 2019, 2, 74-82.	2.4	10
9955	A Simple and Lowâ€Cost Method to Synthesize Crâ€Doped αâ€Fe ₂ O ₃ Electrode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 856-864.	1.7	30
9956	Fading Mechanisms and Voltage Hysteresis in FeF ₂ –NiF ₂ Solid Solution Cathodes for Lithium and Lithiumâ€lon Batteries. Small, 2019, 15, e1804670.	5.2	62
9957	Exploiting oleic acid to prepare two-dimensional assembly of Si@graphitic carbon yolk-shell nanoparticles for lithium-ion battery anodes. Nano Research, 2019, 12, 631-636.	5.8	21
9958	Heterogeneous carbon/N-doped reduced graphene oxide wrapping LiMn0.8Fe0.2PO4 composite for higher performance of lithium ion batteries. Applied Surface Science, 2019, 476, 513-520.	3.1	22
9959	Porous Ni3(PO4)2 thin film as a binder-free and low-cost anode of a high-capacity lithium-ion battery. Journal of Electroanalytical Chemistry, 2019, 835, 81-85.	1.9	9
9960	A crosslinked nonwoven separator based on an organosoluble polyimide for high-performance lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 72, 390-399.	2.9	36
9961	Alkali ions pre-intercalated layered vanadium oxide nanowires for stable magnesium ions storage. Nano Energy, 2019, 58, 347-354.	8.2	72
9962	Improved Transport Properties and Novel Li Diffusion Dynamics in van der Waals C ₂ N/Graphene Heterostructure as Anode Materials for Lithium-Ion Batteries: A First-Principles Investigation. Journal of Physical Chemistry C, 2019, 123, 3353-3367.	1.5	43
9963	Mitigating the Interfacial Degradation in Cathodes for High-Performance Oxide-Based Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4954-4961.	4.0	83
9964	Revealing the Reaction Mechanism of Sodium Selenide Confined within a Single-Walled Carbon Nanotube: Implications for Na–Se Batteries. ACS Applied Materials & Interfaces, 2019, 11, 4995-5002.	4.0	27
9965	Improvement of Li-Sulfur Cell Cycling Performance by Use of Fe _{1-x} S@NC as a Functional Additive for Chemical Confinement of Lithium Polysulfides. Journal of the Electrochemical Society, 2019, 166, A5201-A5209.	1.3	18
9966	Ag Embedded Li ₃ VO ₄ as Superior Anode for Li-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A5295-A5300.	1.3	22

# 9967	ARTICLE Anchoring an Artificial Solid–Electrolyte Interphase Layer on a 3D Current Collector for Highâ€Performance Lithium Anodes. Angewandte Chemie, 2019, 131, 2115-2119.	IF 1.6	Citations
9968	The effects of the size and content of BaTiO3 nanoparticles on solid polymer electrolytes for all-solid-state lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 749-758.	1.2	24
9969	Wettability in electrodes and its impact on the performance of lithium-ion batteries. Energy Storage Materials, 2019, 18, 139-147.	9.5	110
9970	WS2-decorated graphene foam@CNTs hybrid anode for enhanced lithium-ion storage. Journal of Alloys and Compounds, 2019, 784, 697-703.	2.8	18
9971	Carbon@carbon double hollow spheres as efficient cathode host for high rate Li S battery. Materials Chemistry and Physics, 2019, 225, 309-315.	2.0	8
9972	Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy, 2019, 57, 771-782.	8.2	104
9973	B4C nanoskeleton enabled, flexible lithium-sulfur batteries. Nano Energy, 2019, 58, 30-39.	8.2	82
9974	Energy autonomous electronic skin. Npj Flexible Electronics, 2019, 3, .	5.1	245
9975	A Platinum Reference Electrode for Ion-Sensitive Field-Effect Transistor. IEEE Sensors Journal, 2019, 19, 2003-2008.	2.4	3
9976	Sb2S3 added bio-carbon: Demonstration of potential anode in lithium and sodium-ion batteries. Carbon, 2019, 144, 772-780.	5.4	47
9977	Al-Doped Li[Ni0.78Co0.1Mn0.1Al0.02]O2 for High Performance of Lithium Ion Batteries. Ceramics International, 2019, 45, 6972-6977.	2.3	78
9978	Design of polydopamine-encapsulation multiporous MnO cross-linked with polyacrylic acid binder for superior lithium ion battery anode. Journal of Alloys and Compounds, 2019, 783, 341-348.	2.8	14
9979	Silicon-Based Anodes with Long Cycle Life for Lithium-Ion Batteries Achieved by Significant Suppression of Their Volume Expansion in Ionic-Liquid Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 2950-2960.	4.0	68
9980	Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nature Communications, 2019, 10, 73.	5.8	291
9981	Nanoparticle Emissions From Metal-Assisted Chemical Etching of Silicon Nanowires for Lithium Ion Batteries. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.8	3
9982	Enhanced Lithiumâ€lon Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. Angewandte Chemie, 2019, 131, 7911-7916.	1.6	51
9983	Mesoporous Ce ₂ Zr ₂ O ₇ /PbS Nanocomposite with an Excellent Supercapacitor Electrode Performance and Cyclic Stability. ChemistrySelect, 2019, 4, 655-661.	0.7	17
9984	Synthesis of hierarchical Mn3O4 microsphere composed of ultrathin nanosheets and its excellent long-term cycling performance for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2019, 30, 3055-3060.	1.1	3

#	Article	IF	CITATIONS
9985	Poly(ethylene oxide)-based composite polymer electrolytes embedding with ionic bond modified nanoparticles for all-solid-state lithium-ion battery. Journal of Membrane Science, 2019, 575, 200-208.	4.1	102
9986	Enhanced Electrochemical Performance of Lithium–Sulfur Batteries with Surface Copolymerization of Cathode. Journal of the Electrochemical Society, 2019, 166, A5349-A5353.	1.3	13
9987	Flexible Sub-Micro Carbon Fiber@CNTs as Anodes for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5015-5021.	4.0	69
9988	Improvement of the Cationic Transport in Polymer Electrolytes with (Difluoromethanesulfonyl)(trifluoromethanesulfonyl)imide Salts. ChemElectroChem, 2019, 6, 1019-1022.	1.7	29
9989	Vertically Grown Fewâ€Layer MoS ₂ Nanosheets on Hierarchical Carbon Nanocages for Pseudocapacitive Lithium Storage with Ultrahighâ€Rate Capability and Longâ€Term Recyclability. Chemistry - A European Journal, 2019, 25, 3843-3848.	1.7	11
9990	Amideâ€Functionalized Porous Carbonaceous Anode Materials for Lithiumâ€Ion Batteries. ChemPhysChem, 2019, 20, 752-756.	1.0	3
9991	Role of alloying in Cu2O conversion anode for Li-ion batteries. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	2
9993	Functional Electrocatalysts Derived from Prussian Blue and its Analogues for Metalâ€Air Batteries: Progress and Prospects. Batteries and Supercaps, 2019, 2, 290-310.	2.4	36
9994	Sodiumâ€Ion Hybrid Battery Combining an Anionâ€Intercalation Cathode with an Adsorptionâ€Type Anode for Enhanced Rate and Cycling Performance. Batteries and Supercaps, 2019, 2, 440-447.	2.4	46
9995	Adsorption and diffusion of alkaliâ€atoms (Li, Na, and K) on BeN dual doped graphene. International Journal of Quantum Chemistry, 2019, 119, e25900.	1.0	16
9996	An investigation on strength distribution, subcritical crack growth and lifetime of the lithium-ion conductor Li7La3Zr2O12. Journal of Materials Science, 2019, 54, 5671-5681.	1.7	27
9997	Effect of PPR on the pore formation behavior and pore performances of \hat{l}^2 -iPP microporous membrane used for Lithium-ion battery separator. Journal of Polymer Research, 2019, 26, 1.	1.2	9
9998	Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries. Nano-Micro Letters, 2019, 11, 5.	14.4	56
9999	Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries. Applied Surface Science, 2019, 476, 28-35.	3.1	20
10000	Ru nanosheet catalyst supported by three-dimensional nickel foam as a binder-free cathode for Li–CO2 batteries. Electrochimica Acta, 2019, 299, 592-599.	2.6	55
1000	Suppressing Li dendrite by a protective biopolymeric film from tamarind seed polysaccharide for high-performance Li metal anode. Electrochimica Acta, 2019, 299, 636-644.	2.6	34
10002	Thermal stability of ternary compounds in the Cu-Li-Sn system and phase transition of the Cu6Sn5 2 electrode: First-principles calculations and experiment. Journal of Alloys and Compounds, 2019, 783, 44-54.	2.8	2
1000	Decoupling of heat generated from ejected and non-ejected contents of 18650-format lithium-ion cells using statistical methods. Journal of Power Sources, 2019, 415, 207-218.	4.0	67

# Article	IF	Citations
10004 Chemical and Electrochemical Alkali Cations Intercalation/Release in an Ionic Hydrogen Bonded Network. Inorganic Chemistry, 2019, 58, 1541-1547.	1.9	1
Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an 10005 Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5373-5379.	4.0	78
¹⁰⁰⁰⁶ Ti ₃ C ₂ T <i>_x </i> MXene decorated with Sb nanoparticles as anodes material for sodium-ion batteries. Nanotechnology, 2019, 30, 134001.	1.3	42
CoFe2O4 nanoparticles directly grown on carbon nanotube with coralline structure as anodes for lithium ion battery. Journal of Materials Science: Materials in Electronics, 2019, 30, 4174-4183.	1.1	15
10008 High-performance rechargeable Li-CO2/O2 battery with Ru/N-doped CNT catalyst. Chemical Engineering Journal, 2019, 363, 224-233.	6.6	58
A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic 10009 Efficiency: Free-standing porous carbon nanofiber film derived from bacterial cellulose. Energy Storage Materials, 2019, 22, 105-112.	9.5	87
Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	7.1	104
Facile Synthesis of quantum dots SnO2/Fe3O4 hybrid composites for superior reversible lithium-ion storage. Journal of Industrial and Engineering Chemistry, 2019, 72, 504-511.	2.9	26
Characterization of Cu3N/CuO thin films derived from annealed Cu3N for electrode application in Li-ion batteries. Thin Solid Films, 2019, 672, 157-164.	0.8	18
Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nature Communications, 2019, 10, 188.	5.8	203
Scalable synthesis of Sn nanoparticles encapsulated in hierarchical porous carbon networks for high-rate reversible lithium storage. International Journal of Nanomanufacturing, 2019, 15, 105.	0.3	0
10015 Fingerprint Oxygen Redox Reactions in Batteries through High-Efficiency Mapping of Resonant Inelastic X-ray Scattering. Condensed Matter, 2019, 4, 5.	0.8	44
Concentration dependent properties lead to plastic ratcheting in thin island electrodes on substrate under cyclic charging and discharging. Acta Materialia, 2019, 164, 261-271.	3.8	15
10017 Effect of MgO and TiO ₂ Coating on the Electrochemical Performance of Liâ€Rich Cathode Materials for Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1800829.	1.8	36
High-rate and long-cycle life performance of nano-porous nano-silicon derived from mesoporous MCM-41 as an anode for lithium-ion battery. Electrochimica Acta, 2019, 294, 357-364.	2.6	38
10019 Investigation on polyvinyl alcohol and sodium alginate as aqueous binders for lithium-titanium oxide anode in lithium-ion batteries. Ionics, 2019, 25, 2549-2561.	1.2	27
Recent advances in Li1+xAlxTi2â^'x(PO4)3 solid-state electrolyte for safe lithium batteries. Energy Storage Materials, 2019, 19, 379-400.	9.5	210
10021 Renewable-lawsone-based sustainable and high-voltage aqueous flow battery. Energy Storage Materials, 2019, 19, 62-68.	9.5	30

# Article		IF	CITATIONS
10022 Progress 2019, 55	of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, , 93-114.	8.2	533
10023 Porous P Materials	olymers as Multifunctional Material Platforms toward Taskâ€5pecific Applications. Advanced s, 2019, 31, e1802922.	11.1	315
10024 Rational 2019, 31	Design of Carbonâ€Rich Materials for Energy Storage and Conversion. Advanced Materials, , e1804973.	11.1	74
10025 Unlockin mechanic	g the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic cal loading. Energy, 2019, 166, 951-960.	4.5	80
10026 Crafting	Inorganic Materials for Use in Energy Capture and Storage. Langmuir, 2019, 35, 9101-9114.	1.6	7
10027 Novel Pro 243-267.	opulsion Systems for Micro Aerial Vehicles. Journal of Propulsion and Power, 2019, 35,	1.3	3
10028 Facile syr Materials	nthesis of SiO2/C anode using PVC as carbon source for lithium-ion batteries. Journal of Science: Materials in Electronics, 2019, 30, 69-78.	1.1	8
10029 The effec material	ct of Fe as an impurity element for sustainable resynthesis of Li[Ni1/3Co1/3Mn1/3]O2 cathode from spent lithium-ion batteries. Electrochimica Acta, 2019, 296, 814-822.	2.6	66
10030 Ultrafine for efficie	FeSe nanoparticles embedded into 3D carbon nanofiber aerogels with FeSe/Carbon interface ent and long-life sodium storage. Carbon, 2019, 143, 106-115.	5.4	78
10031 Hydrothe Chemical	ermal crystallization of Pmn21 Li2FeSiO4 hollow mesocrystals for Li-ion cathode application. l Engineering Journal, 2019, 359, 1592-1602.	6.6	26
10032 all-solid-s	lense LiCoO2 microcrystalline buffer layer on a cathode-electrolyte interface for state lithium batteries prepared by the magnetron sputtering method. Electrochimica Acta, 15, 677-683.	2.6	8
	onductive C-Si@G nanocomposite as a high-performance anode material for Li-ion batteries. nimica Acta, 2019, 295, 719-725.	2.6	41
10034 Preparati and its ap	ion of dual layers N-doped Carbon@Mesoporous Carbon@Fe3O4 nanoparticle superlattice pplication in lithium-ion battery. Journal of Alloys and Compounds, 2019, 775, 776-783.	2.8	36
	CoP/C@MCNTs hybrid composite derived from metal–organic frameworks for Formance lithium-ion batteries. Journal of Materials Science, 2019, 54, 3273-3283.	1.7	29
	cal construction of phosphorus and carbon composite and its application in energy storage. torage Materials, 2019, 20, 343-372.	9.5	43
10037 Bundled lithium-ic	and dispersed carbon nanotube assemblies on graphite superstructures as free-standing on battery anodes. Carbon, 2019, 142, 238-244.	5.4	40
10038 Yolk@Sh surfaces	ell SiO /C microspheres with semi-graphitic carbon coating on the exterior and interior for durable lithium storage. Energy Storage Materials, 2019, 19, 299-305.	9.5	167
10039 Highâ€Va	oltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	1.7	133

# Article	IF	CITATIONS
A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2019, 358, 1047-1053.	6.6	116
Concentrated electrolytes unlock the full energy potential of potassium-sulfur battery chemistry. Energy Storage Materials, 2019, 18, 470-475.	9.5	72
Nanostructured sodium vanadate arrays as an advanced cathode material in high-performance sodium-ion batteries. Materials Letters, 2019, 237, 122-125.	1.3	4
10043 Highly efficient extraction of lithium from salt lake brine by LiAl-layered double hydroxides as lithium-ion-selective capturing material. Journal of Energy Chemistry, 2019, 34, 80-87.	7.1	68
Fe-MOF derived jujube pit like Fe3O4/C composite as sulfur host for lithium-sulfur battery. Electrochimica Acta, 2019, 295, 444-451.	2.6	101
10045 Electro-deposition preparation of self-standing Cu-Sn alloy anode electrode for lithium ion battery. Journal of Alloys and Compounds, 2019, 775, 818-825.	2.8	26
10046 Magnesium Anodes with Extended Cycling Stability for Lithiumâ€lon Batteries. Advanced Functional Materials, 2019, 29, 1806400.	7.8	12
10047 Constructing Heterointerface of Metal Atomic Layer and Amorphous Anode Material for High-Capacity and Fast Lithium Storage. ACS Nano, 2019, 13, 830-838.	7.3	74
10048 Electrochemical exfoliation of graphene-like two-dimensional nanomaterials. Nanoscale, 2019, 11, 16-33.	. 2.8	184
10049 Novel Cerium Hexacyanoferrate(II) as Cathode Material for Sodium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 187-191.	2.5	26
10050 Understanding the Effect of Atomic-Scale Surface Migration of Bridging lons in Binding Li3PO4 to the Surface of Spinel Cathode Materials. ACS Applied Materials & amp; Interfaces, 2019, 11, 6937-6947.	4.0	21
Understanding Interactions between Lead Iodide Perovskite Surfaces and Lithium Polysulfide toward 10051 New-Generation Integrated Solar-Powered Lithium Battery: An ab Initio Investigation. Journal of Physical Chemistry C, 2019, 123, 82-90.	1.5	10
Silicon rods as a negative electrode material for lithium-ion cells: Quantum chemical modeling. Chemical Physics, 2019, 519, 45-51.	0.9	2
Adsorption of Na on silicene for potential anode for Na-ion batteries. Electrochimica Acta, 2019, 297, 497-503.	2.6	35
LiY(MoO4)2 nanotubes: Novel zero-strain anode for electrochemical energy storage. Energy Storage Materials, 2019, 21, 297-307.	9.5	27
Partial self-sacrificing templates synthesis of sandwich-like mesoporous C N@Fe3O4@C N hollow 10055 spheres for high-performance Li-ion batteries. International Journal of Hydrogen Energy, 2019, 44, 1816-1826.	3.8	16
Fused Aromatic Network Structures as a Platform for Efficient Electrocatalysis. Advanced Materials, 2019, 31, e1805062.	11.1	31
Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries. Springer Theses. 2019	0.0	0

#	Article	IF	CITATIONS
10058	Three-dimensional porous composite framework assembled with CuO microspheres as anode current collector for lithium-ion batteries. Science China Technological Sciences, 2019, 62, 70-79.	2.0	9
10059	Recent Advances in 3D Graphene Architectures and Their Composites for Energy Storage Applications. Small, 2019, 15, e1803858.	5.2	99
10060	Structure and Interaction of Ionic Liquid Monolayer on Graphite from First-Principles. Journal of Physical Chemistry C, 2019, 123, 618-624.	1.5	8
10061	TiO2-modified red phosphorus nanosheets entangled in carbon nanotubes for high performance lithium ion batteries. Electrochimica Acta, 2019, 297, 319-327.	2.6	26
10062	CTAB-assisted synthesis of ZnCo2O4 nanoparticles embedded in N-doped carbon as superior anode materials for lithium-ion battery. Journal of Alloys and Compounds, 2019, 780, 897-906.	2.8	29
10068	Lithium Plating and Stripping on Carbon Nanotube Sponge. Nano Letters, 2019, 19, 494-499.	4.5	101
10064	Rechargeable aluminium organic batteries. Nature Energy, 2019, 4, 51-59.	19.8	283
10065	, Effect of Organic Solvents on the Electrochemical Performance of Sodiumâ€ion Hybrid Capacitors. ChemElectroChem, 2019, 6, 653-660.	1.7	10
10066	A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene) - poly(propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta, 2019, 296, 1064-1069.	2.6	54
10067	, Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Materials, 2019, 20, 118-138.	9.5	104
10068	, Understanding the role of conductive polymer in thermal lithiation and battery performance of Li-Sn alloy anode. Energy Storage Materials, 2019, 20, 7-13.	9.5	32
10069	Brownian-snowball-mechanism-induced hierarchical cobalt sulfide for supercapacitors. Journal of Power Sources, 2019, 412, 321-330.	4.0	31
10070	Doubleâ€Layer Polymer Electrolyte for Highâ€Voltage Allâ€Solidâ€State Rechargeable Batteries. Advanced Materials, 2019, 31, e1805574.	11.1	321
10071	Hexagonal boron phosphide as a potential anode nominee for alkali-based batteries: A multi-flavor DFT study. Applied Surface Science, 2019, 471, 134-141.	3.1	49
10072	Core-shell Si@c-PAN particles deposited on graphite as promising anode for lithium-ion batteries. Electrochimica Acta, 2019, 297, 355-364.	2.6	42
10073	Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball milling induced phase transition. Journal of Power Sources, 2019, 412, 189-196.	4.0	36
10074	Designed Nanoarchitectures by Electrostatic Spray Deposition for Energy Storage. Advanced Materials, 2019, 31, e1803408.	11.1	48
10075	An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials, 2019, 18, 68-91.	9.5	113

 # ARTICLE 10076 Ultrasonic-assisted synthesis of LiFePO4/C composite for lithium-ion batteries using iron powder as the reactant. Journal of Alloys and Compounds, 2019, 773, 1165-1171. 	IF 2.8	CITATIONS
Effects of carbon coating on LiNi0.5Mn1.5O4 cathode material for lithium ion batteries using an atmospheric microwave plasma torch. Surface and Coatings Technology, 2019, 376, 25-30.	2.2	13
An all-vanadium aqueous lithium ion battery with high energy density and long lifespan. Energy Storage Materials, 2019, 18, 92-99.	9.5	44
Lithiation and Delithiation Reactions of Binary Silicide Electrodes in an Ionic Liquid Electrolyte as Novel Anodes for Lithiumâ€ion Batteries. ChemElectroChem, 2019, 6, 581-589.	1.7	24
10080 Ionic liquids for electrochemical energy storage devices applications. Journal of Materials Science and Technology, 2019, 35, 674-686.	5.6	161
3D hierarchical structure of MoS2@G-CNT combined with post-film annealing for enhanced lithium-ion storage. Journal of Industrial and Engineering Chemistry, 2019, 69, 116-126.	2.9	13
A corrosion-resistant current collector for lithium metal anodes. Energy Storage Materials, 2019, 18, 199-204.	9.5	48
10083 Polymers for high performance Li-S batteries: Material selection and structure design. Progress in Polymer Science, 2019, 89, 19-60.	11.8	103
Tin sulfide modified separator as an efficient polysulfide trapper for stable cycling performance in Li–S batteries. Nanoscale Horizons, 2019, 4, 214-222.	4.1	92
Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Research, 2019, 12, 217-223.	5.8	61
10086 Inâ€situ and Operando Tracking of Microstructure and Volume Evolution of Silicon Electrodes by using Synchrotron Xâ€ray Imaging. ChemSusChem, 2019, 12, 261-269.	3.6	20
10087 Cu ₉ S ₅ Nanoflower Cathode for Mg Secondary Batteries: High Performance and Reaction Mechanism. Energy Technology, 2019, 7, 1800777.	1.8	15
10088 Ultrafine CoSe nano-crystallites confined in leaf-like N-doped carbon for long-cyclic and fast sodium ion storage. Electrochimica Acta, 2019, 294, 173-182.	2.6	63
10089 Sprayâ€Assisted Synthesis of MnO@C/Graphene Composites as Electrode Materials for Supercapacitors. Energy Technology, 2019, 7, 1800625.	1.8	6
Design of porous Co3O4 nanosheets via one-step synthesis as high-performance anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 1-7.	1.2	16
Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries. Ionics, 2019, 25, 1471-1480.	1.2	34
Facile preparation of N-doped MnO/rGO composite as an anode material for high-performance lithium-ion batteries. Applied Surface Science, 2019, 465, 470-477.	3.1	28
10093 Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon, 2019, 141, 400-416.	5.4	268

#	Article	IF	CITATIONS
10094	Flexible free-standing SnS2/carbon nanofibers anode for high performance sodium-ion batteries. Materials Letters, 2019, 234, 121-124.	1.3	30
10095	Computational analysis and identification of battery materials. Physical Sciences Reviews, 2019, 4, .	0.8	8
10096	Ultraâ€Thin Coating and Threeâ€Dimensional Electrode Structures to Boosted Thick Electrode Lithiumâ€Ion Battery Performance. Batteries and Supercaps, 2019, 2, 139-143.	2.4	11
10097	Enabling Reversible (De)Lithiation of Aluminum by using Bis(fluorosulfonyl)imideâ€Based Electrolytes. ChemSusChem, 2019, 12, 208-212.	3.6	19
10098	A robust strategy for engineering Li4Ti5O12 hollow micro-cube as superior rate anode for lithium ion batteries. Electrochimica Acta, 2019, 293, 141-148.	2.6	20
10099	Biomass-derived, activated carbon-sulfur composite cathode with a bifunctional interlayer of functionalized carbon nanotubes for lithium-sulfur cells. Journal of Colloid and Interface Science, 2019, 535, 287-299.	5.0	40
10100	Nano-Mg0.6Ni0.4O and mesoporous carbon composites for cycle-stability enhancement of lithium-sulfur batteries. Materials Letters, 2019, 235, 61-65.	1.3	3
10101	Semiconducting borophene as a promising anode material for Li-ion and Na-ion batteries. Materials Science in Semiconductor Processing, 2019, 89, 250-255.	1.9	38
10102	A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Metals, 2019, 38, 199-205.	3.6	53
10103	Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries. Applied Surface Science, 2019, 472, 135-142.	3.1	48
10104	Potential applications of nanotechnology in transportation: A review. Journal of King Saud University - Science, 2019, 31, 586-594.	1.6	91
10105	A dislocation-based solution for stress introduced by arbitrary volume expansion in cylinders. Mathematics and Mechanics of Solids, 2019, 24, 598-615.	1.5	1
10106	Rechargeable batteries based on anion intercalation graphite cathodes. Energy Storage Materials, 2019, 16, 65-84.	9.5	183
10107	Flame-retardant properties of in situ sol-gel synthesized inorganic borosilicate/silicate polymer scaffold matrix comprising ionic liquid. Frontiers in Energy, 2019, 13, 163-171.	1.2	1
10108	Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Materials, 2019, 16, 6-23.	9.5	243
10109	Nature of extra capacity in MoS2 electrodes: Molybdenum atoms accommodate with lithium. Energy Storage Materials, 2019, 16, 37-45.	9.5	218
10110	Experimental study on combustion behavior of mixed carbonate solvents and separator used in lithium-ion batteries. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1255-1264.	2.0	8
10111	Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode. Energy Storage Materials, 2020, 24, 635-643.	9.5	139

	CITATION REF	ORT	
# 10112	ARTICLE Investigation of the Influence of Deposition Accuracy of Electrodes on the Electrochemical Properties of Lithiumâ€lon Batteries. Energy Technology, 2020, 8, 1900129.	IF 1.8	Citations
10113	Graphene for Energy Storage and Conversion: Synthesis and Interdisciplinary Applications. Electrochemical Energy Reviews, 2020, 3, 395-430.	13.1	59
10114	Synergetic Coupling of Lithiophilic Sites and Conductive Scaffolds for Dendriteâ€Free Lithium Metal Anodes. Small Methods, 2020, 4, 1900177.	4.6	31
10115	Nanomaterials. , 2020, , 515-539.		3
10116	Kathodenmaterialien für wiederaufladbare Lithiumbatterien. Angewandte Chemie, 2020, 132, 2598-2626.	1.6	21
10117	Advances in the Cathode Materials for Lithium Rechargeable Batteries. Angewandte Chemie - International Edition, 2020, 59, 2578-2605.	7.2	357
10118	Integration of Graphite and Silicon Anodes for the Commercialization of Highâ€Energy Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 110-135.	7.2	460
10119	Graphit―undâ€Siliciumâ€Anoden für Lithiumionen―Hochenergiebatterien. Angewandte Chemie, 2020, 132, 112-138.	1.6	23
10120	Metal-organic-framework-derived formation of Co–N-doped carbon materials for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2020, 40, 137-143.	7.1	74
10121	Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage Materials, 2020, 25, 858-865.	9.5	289
10122	Oxygen vacancy boosted the electrochemistry performance of Ti4+ doped Nb2O5 toward lithium ion battery. Applied Surface Science, 2020, 499, 143905.	3.1	38
10123	Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Materials, 2020, 25, 644-678.	9.5	207
10124	A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. Journal of Energy Chemistry, 2020, 44, 33-40.	7.1	59
10125	lon dynamics in Al-Stabilized Li7La3Zr2O12 single crystals – Macroscopic transport and the elementary steps of ion hopping. Energy Storage Materials, 2020, 24, 220-228.	9.5	37
10126	Mixed-metal borate FeVBO4 of tunnel structure: Synthesis and electrochemical properties in lithium and sodium ion batteries. Journal of Alloys and Compounds, 2020, 812, 152165.	2.8	10
10127	Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics, 2020, 26, 745-766.	1.2	36
10128	Rearrangement on surface structures by boride to enhanced cycle stability for LiNi0.80Co0.15Al0.05O2 cathode in lithium ion batteries. Journal of Energy Chemistry, 2020, 45, 110-118.	7.1	42
10129	Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020, 33, 56-74.	8.3	404

#	Article	IF	CITATIONS
10130	Uncovering the underlying science behind dimensionality in the potassium battery regime. Energy Storage Materials, 2020, 25, 416-425.	9.5	30
10131	3D graphene-encapsulated nearly monodisperse Fe3O4 nanoparticles as high-performance lithium-ion battery anodes. Journal of Alloys and Compounds, 2020, 815, 152337.	2.8	52
10132	High ionic conductivities of composites of Li4(BH4)3I with two-dimensional MoS2 at room temperature. Journal of Alloys and Compounds, 2020, 815, 152353.	2.8	6
10133	Preparation and lithium storage properties of C@TiO2/3D carbon hollow sphere skeleton composites. Journal of Alloys and Compounds, 2020, 815, 152511.	2.8	8
10134	N plasma treatment on graphene oxide-MoS2 composites for improved performance in lithium ion batteries. Materials Chemistry and Physics, 2020, 240, 122169.	2.0	29
10135	Identification of a better charge redox mediator for lithium–oxygen batteries. Energy Storage Materials, 2020, 25, 795-800.	9.5	17
10136	Volume-Averaged Electrochemical Performance Modeling of 3D Interpenetrating Battery Electrode Architectures. Journal of the Electrochemical Society, 2020, 167, 013507.	1.3	7
10137	Enhancement of cycling stability and capacity of lithium secondary battery by engineering highly porous AlV3O9. Journal of Materials Science, 2020, 55, 1648-1658.	1.7	6
10138	Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohydrate Polymers, 2020, 227, 115346.	5.1	81
10139	In situ welding: Superb strength, good wettability and fire resistance tri-layer separator with shutdown function for high-safety lithium ion battery. Journal of Membrane Science, 2020, 595, 117509.	4.1	44
10140	NiO/Ni nanocomposites embedded in 3D porous carbon with high performance for lithium-ion storage. Journal of Materials Science, 2020, 55, 1659-1672.	1.7	18
10141	Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode. Chemical Engineering Journal, 2020, 382, 122946.	6.6	61
10142	A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Storage Materials, 2020, 25, 224-250.	9.5	139
10143	Correlation of the empirical polarity parameters of solvate ionic liquids (SILs) with molecular structure. Journal of Molecular Liquids, 2020, 297, 111882.	2.3	7
10144	Binder-free flexible Li2ZnTi3O8@MWCNTs stereoscopic network as lightweight and superior rate performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 816, 152580.	2.8	12
10145	High C-rate performance of LiFePO4/carbon nanofibers composite cathode for Li-ion batteries. Current Applied Physics, 2020, 20, 1-4.	1.1	26
10146	Effect of surface amphiphilic property of azobenzene self-assembled electrode materials on properties of supercapacitors. Ionics, 2020, 26, 523-529.	1.2	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
10148	Thermodynamic and transport properties of ionic liquids, 1-alkyl-3-methylimidazolium the aqueous lithium halides solutions. Journal of Chemical Thermodynamics, 2020, 141	niocyanate in , 105953.	1.0	24
10149	A green-synthetic spiderweb-like Si@Graphene-oxide anode material with multifunction binder for high energy-density Li-ion batteries. Carbon, 2020, 157, 330-339.	al citric acid	5.4	90
10150	Urchin-like NiCo2O4 microsphere by hydrothermal route: Structural, electrochemical, o magnetic properties. Ceramics International, 2020, 46, 3818-3826.	ptical and	2.3	23
10151	Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electr realizing thermally stable lithium-ion batteries. Journal of Membrane Science, 2020, 595		4.1	32
10152	Layered Transition Metal Dichalcogenideâ€Based Nanomaterials for Electrochemical En Advanced Materials, 2020, 32, e1903826.	ergy Storage.	11.1	329
10153	Lithiumâ€Schwefelâ€Batterien mit Magerelektrolyt: Herausforderungen und Perspektiv Chemie, 2020, 132, 12736-12753.	en. Angewandte	1.6	33
10154	Metalâ€Organic Frameworkâ€Templated Hollow Co ₃ O ₄ /C w Oxygen Vacancies for Efficient Oxygen Evolution Reaction. ChemNanoMat, 2020, 6, 10	ith Controllable 7-112.	1.5	13
10155	Macroscopic Carbon Nanotube Structures for Lithium Batteries. Small, 2020, 16, e1902	2719.	5.2	35
10156	Composition Modulation and Structure Design of Inorganicâ€inâ€Polymer Composite S for Advanced Lithium Batteries. Small, 2020, 16, e1902813.	Solid Electrolytes	5.2	87
10157	Efficacy, safety, and biomarker analysis of ensartinib in crizotinib-resistant, ALK-positive non-small-cell lung cancer: a multicentre, phase 2 trial. Lancet Respiratory Medicine,the		5.2	105
10158	Molecular Dynamics Simulations of Polymer–Ionic Liquid (1-Ethyl-3-methylimidazoliun Information and Modeling, 2020, 60, 485-499.	n) Tj ETQq0 0 0 rgBT /Ove	erlock 10 Tf 2.5	f 50 347 Td 23
10159	Three-dimensional porous graphene anodes for sodium-ion batteries. Functional Materi 2020, 13, 1951009.	als Letters,	0.7	11
10160	Inâ€Depth TEM Investigation on Structural Inhomogeneity within a Primary Li _{<i>x</i>} Ni _{0.835} Co _{0.15} Al _{0.015} O Particle: Origin of Capacity Decay during Highâ€Rate Discharge. Angewandte Chemie - Edition, 2020, 59, 2385-2391.		7.2	16
10161	Heatâ€Resistant Trilayer Separators for Highâ€Performance Lithiumâ€Ion Batteries. Phy Rapid Research Letters, 2020, 14, 1900504.	vsica Status Solidi -	1.2	6
10162	Toward better electrode/electrolyte interfaces in the ionic-liquid-based rechargeable alu batteries. Journal of Energy Chemistry, 2020, 45, 98-102.	minum	7.1	45
10163	Inâ€Đepth TEM Investigation on Structural Inhomogeneity within a Primary Li x Ni 0.83 2 Particle: Origin of Capacity Decay during Highâ€Rate Discharge. Angewandte Chemie 2406-2412.		1.6	4
10164	Recent progress in grapheneâ€based electrodes for flexible batteries. InformaÄnÃ-Mate 509-526.	riály, 2020, 2,	8.5	122
10165	Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction a Li-ion batteries. Electrochimica Acta, 2020, 329, 135141.	s anode for	2.6	34

\mathbf{C}		DEDO	DT
		Repo	ו או
0	/	ILLI U	TC L

#	Article	IF	CITATIONS
10166	Na-rich metal hexacyanoferrate with water-mediated room-temperature fast Na+-ion conductance. Microporous and Mesoporous Materials, 2020, 292, 109715.	2.2	6
10167	Constructing enhanced pseudocapacitive Li+ intercalation via multiple ionically bonded interfaces toward advanced lithium storage. Energy Storage Materials, 2020, 24, 138-146.	9.5	30
10168	Single-phase P2-type layered oxide with Cu-substitution for sodium ion batteries. Journal of Energy Chemistry, 2020, 43, 148-154.	7.1	45
10169	Construction of highly dispersed and electroconductive silver nanoparticles modified mesoporous Co3O4 hollow nanoboxes from Prussian blue analogues for boosting lithium storage performances. Journal of Alloys and Compounds, 2020, 814, 152305.	2.8	17
10170	Boosting oxygen reduction catalysis with tailorable active-N-dominated doped defective CNTs. Applied Surface Science, 2020, 499, 143844.	3.1	12
10171	Ultrafine MoO3 anchored in coal-based carbon nanofibers as anode for advanced lithium-ion batteries. Carbon, 2020, 156, 445-452.	5.4	84
10172	Synthesis of Bi2S3/C yolk-shell composite based on sulfur impregnation for efficient sodium storage. Chemical Engineering Journal, 2020, 383, 123094.	6.6	45
10173	Influence of hydrogen bonding on the crystallization behavior of poly(ethylene oxide)/ionic liquids mixtures. Applied Surface Science, 2020, 501, 144251.	3.1	9
10174	Na+/vacancies promise excellent electrochemical properties for sodium ion batteries. Chemical Engineering Journal, 2020, 383, 123087.	6.6	21
10175	Fluorophosphorus derivative forms a beneficial film on both electrodes of high voltage lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 559, 236-243.	5.0	6
10176	Synthesis of α-LiFeO2/Graphene nanocomposite via layer by layer self-assembly strategy for lithium-ion batteries with excellent electrochemical performance. Journal of Materials Science and Technology, 2020, 55, 173-181.	5.6	12
10177	Single lithium-ion channel polymer binder for stabilizing sulfur cathodes. National Science Review, 2020, 7, 315-323.	4.6	43
10178	Synthesis of self-healing polyurethane and its application in graphene/SnO ₂ -pillared carbon anode materials. Polymers and Polymer Composites, 2020, 28, 348-355.	1.0	3
10179	A high-performance layered Cr-Based cathode for sodium-ion batteries. Nano Energy, 2020, 67, 104215.	8.2	40
10180	In situ encapsulation of Co/Co3O4 nanoparticles in nitrogen-doped hierarchically ordered porous carbon as high performance anode for lithium-ion batteries. Chemical Engineering Journal, 2020, 380, 122545.	6.6	35
10181	A review on mechanistic understanding of MnO ₂ in aqueous electrolyte for electrical energy storage systems. International Materials Reviews, 2020, 65, 356-387.	9.4	121
10182	Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure. Energy Storage Materials, 2020, 24, 291-296.	9.5	51
10183	Continuous Hydrothermal Synthesis of Metal Germanates (M 2 GeO 4 ; M  = Co, Mn, Zn) for Highâ€Capacity Negative Electrodes in Liâ€ion Batteries. Energy Technology, 2020, 8, 1900692.	1.8	8

#	Article	IF	CITATIONS
10184	Graphene-based composites for electrochemical energy storage. Energy Storage Materials, 2020, 24, 22-51.	9.5	364
10185	A Sine-Wave Heating Circuit for Automotive Battery Self-Heating at Subzero Temperatures. IEEE Transactions on Industrial Informatics, 2020, 16, 3355-3365.	7.2	65
10186	Three-Dimensional Multilayered Interconnected Network of Conjugated Carbon Nanofibers Encapsulated Silicon/Graphene Oxide for Lithium Storage. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 801-807.	1.9	5
10187	Graphene based polymer electrolyte membranes for electro-chemical energy applications. International Journal of Hydrogen Energy, 2020, 45, 17029-17056.	3.8	37
10188	Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chemical Engineering Journal, 2020, 379, 122261.	6.6	90
10189	High performance all-solid-state sodium batteries actualized by polyethylene oxide/Na2Zn2TeO6 composite solid electrolytes. Energy Storage Materials, 2020, 24, 467-471.	9.5	50
10190	New conversion chemistry of CuSO4 as ultra-high-energy cathode material for rechargeable sodium battery. Energy Storage Materials, 2020, 24, 458-466.	9.5	20
10191	Enhanced active sulfur in soft carbon via synergistic doping effect for ultra–stable lithium–ion batteries. Energy Storage Materials, 2020, 24, 450-457.	9.5	46
10192	Recent advances in graphene based materials as anode materials in sodium-ion batteries. Journal of Energy Chemistry, 2020, 42, 91-107.	7.1	94
10193	Sodium storage property and mechanism of NaCr1/4Fe1/4Ni1/4Ti1/4O2 cathode at various cut-off voltages. Energy Storage Materials, 2020, 24, 417-425.	9.5	25
10194	A molten battery consisting of Li metal anode, AlCl3-LiCl cathode and solid electrolyte. Energy Storage Materials, 2020, 24, 412-416.	9.5	19
10195	Halogenidâ€basierte Materialien und Chemie für wiederaufladbare Batterien. Angewandte Chemie, 2020, 132, 5954-6004.	1.6	14
10196	Halideâ€Based Materials and Chemistry for Rechargeable Batteries. Angewandte Chemie - International Edition, 2020, 59, 5902-5949.	7.2	142
10197	Novel hierarchically branched CoC2O4@CoO/Co composite arrays with superior lithium storage performance. Energy Storage Materials, 2020, 24, 362-372.	9.5	31
10198	Facilely transforming bulk materials to SnO/pristine graphene 2D-2D heterostructures for stable and fast lithium storage. Journal of Alloys and Compounds, 2020, 812, 152114.	2.8	21
10199	A facile grinding approach to embed red phosphorus in N,P-codoped hierarchical porous carbon for superior lithium storage. Science China Materials, 2020, 63, 55-61.	3.5	16
10200	Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Materials, 2020, 25, 811-826.	9.5	114
10201	Development and application of self-healing materials in smart batteries and supercapacitors. Chemical Engineering Journal, 2020, 380, 122565.	6.6	127

#	Article	IF	CITATIONS
10202	Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry, 2020, 43, 58-70.	7.1	170
10203	Graphene-encapsulated ZnO composites as high-performance anode materials for lithium ion batteries. Ionics, 2020, 26, 565-577.	1.2	19
10204	Paraffin wax protecting 3D non-dendritic lithium for backside-plated lithium metal anode. Energy Storage Materials, 2020, 24, 153-159.	9.5	20
10205	Conjugacy of organic cathode materials for high-potential lithium-ion batteries: Carbonitriles versus quinones. Energy Storage Materials, 2020, 24, 237-246.	9.5	33
10206	Phase-tuned nanoporous vanadium pentoxide as binder-free cathode for lithium ion battery. Electrochimica Acta, 2020, 330, 135192.	2.6	17
10207	Feâ€Doped CoP Flower‣ike Microstructure on Carbon Membrane as Integrated Electrode with Enhanced Sodium Ion Storage. Chemistry - A European Journal, 2020, 26, 1298-1305.	1.7	42
10208	Phosphate ion functionalized Co3O4 nanosheets/RGO with improved electrochemical performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124232.	2.3	5
10209	In situ fabrication of ZnO–MoO2/C hetero-phase nanocomposite derived from MOFs with enhanced performance for lithium storage. Journal of Alloys and Compounds, 2020, 817, 152728.	2.8	14
10210	Impact of evolution of cathode electrolyte interface of Li(Ni0.8Co0.1Mn0.1)O2 on electrochemical performance during high voltage cycling process. Journal of Energy Chemistry, 2020, 47, 72-78.	7.1	20
10211	Assessment of 2H–SiC based intercalation compound for use as anode in lithium ion batteries. Ceramics International, 2020, 46, 5297-5305.	2.3	15
10212	Facile preparation of W5O14 nanosheet arrays with large crystal channels as high-performance negative electrode for supercapacitor. Electrochimica Acta, 2020, 330, 135209.	2.6	20
10213	Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Materials, 2020, 25, 1-32.	9.5	160
10214	Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 815, 152542.	2.8	22
10215	Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. Journal of Energy Chemistry, 2020, 46, 187-190.	7.1	25
10216	Formation of Nitrogenâ€Doped Carbonâ€Coated CoP Nanoparticles Embedded within Graphene Oxide for Lithiumâ€ion Batteries Anode. Energy Technology, 2020, 8, 1901089.	1.8	22
10217	Ferroferric oxide nanoclusters decorated Ti3C2Tx nanosheets as high performance anode materials for lithium ion batteries. Electrochimica Acta, 2020, 329, 135146.	2.6	41
10218	Enhanced mechanical behavior and electrochemical performance of composite separator by constructing crosslinked polymer electrolyte networks on polyphenylene sulfide nonwoven surface. Journal of Membrane Science, 2020, 597, 117622.	4.1	30
10219	High sulfur loading application with the assistance of an extremely light-weight multifunctional layer on the separator for lithium-sulfur batteries. Ionics, 2020, 26, 1139-1147.	1.2	2

#	Article	IF	CITATIONS
10220	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie - International Edition, 2020, 59, 3048-3052.	7.2	122
10221	2D Materials as Ionic Sieves for Inhibiting the Shuttle Effect in Batteries. Chemistry - an Asian Journal, 2020, 15, 2294-2302.	1.7	20
10222	Novel construction of nanostructured carbon materials as sulfur hosts for advanced lithiumâ€sulfur batteries. International Journal of Energy Research, 2020, 44, 70-91.	2.2	25
10223	Rational design of a PC3 monolayer: A high-capacity, rapidly charging anode material for sodium-ion batteries. Carbon, 2020, 157, 420-426.	5.4	49
10224	Design of house centipede-like MoC–Mo2C nanorods grafted with N-doped carbon nanotubes as bifunctional catalysts for high-performance Li–O2 batteries. Chemical Engineering Journal, 2020, 384, 123344.	6.6	27
10225	MOFs and COFs for Batteries and Supercapacitors. Electrochemical Energy Reviews, 2020, 3, 81-126.	13.1	98
10226	Metal Organic Framework (MOF)-Derived carbon-encapsulated cuprous sulfide cathode based on displacement reaction for Hybrid Mg2+/Li+ batteries. Journal of Power Sources, 2020, 445, 227325.	4.0	44
10227	The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte. Joule, 2020, 4, 101-108.	11.7	81
10228	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 2470-2477.	1.6	26
10229	Laserâ€Assisted Fabrication of Pseudohexagonal Phase Niobium Pentoxide Nanopillars for Lithium Ion Battery Anodes. ChemNanoMat, 2020, 6, 73-78.	1.5	11
10230	A 3D cross-linked graphene-based honeycomb carbon composite withÂexcellent confinement effect of organic cathode material for lithium-ion batteries. Carbon, 2020, 157, 656-662.	5.4	98
10231	Use of Gemini surfactant as emulsion interface microreactor for the synthesis of nitrogen-doped hollow carbon spheres for high-performance supercapacitors. Chemical Engineering Journal, 2020, 384, 123309.	6.6	52
10232	Modelling of antimonene as an anode material in sodium-ion battery: A first-principles study. Materials Chemistry and Physics, 2020, 241, 122381.	2.0	27
10233	New Anthraquinoneâ€Based Conjugated Microporous Polymer Cathode with Ultrahigh Specific Surface Area for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1908074.	7.8	91
10234	Inâ€Situ Precipitationâ€Induced Growth of Leafâ€Iike CuO Nanostructures on Cu–Ni Alloys for Binderâ€Free Anodes in Liâ€Ion Batteries. ChemSusChem, 2020, 13, 419-425.	3.6	13
10235	New Prelithiated V ₂ O ₅ Superstructure for Lithium-Ion Batteries with Long Cycle Life and High Power. ACS Energy Letters, 2020, 5, 31-38.	8.8	113
10236	Proton Intercalation/Deâ€Intercalation Dynamics in Vanadium Oxides for Aqueous Aluminum Electrochemical Cells. Angewandte Chemie, 2020, 132, 3072-3076.	1.6	13
10237	Rechargeable Mg metal batteries enabled by a protection layer formed in vivo. Energy Storage Materials, 2020, 26, 408-413.	9.5	91

#	Article	IF	CITATIONS
10238	Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries. Journal of Power Sources, 2020, 448, 227424.	4.0	34
10239	Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 12636-12652.	7.2	425
10240	Jeffamineâ€Based Polymers for Rechargeable Batteries. Batteries and Supercaps, 2020, 3, 30-46.	2.4	27
10241	An overview on efforts to enhance the Si electrode stability for lithium ion batteries. Energy Storage, 2020, 2, e94.	2.3	16
10242	Impact of human disturbance on the biogeochemical silicon cycle in a coastal sea revealed by silicon isotopes. Limnology and Oceanography, 2020, 65, 515-528.	1.6	7
10243	Calix[6]quinone as high-performance cathode for lithium-ion battery. Science China Materials, 2020, 63, 339-346.	3.5	34
10244	Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Applied Surface Science, 2020, 502, 144207.	3.1	66
10245	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 2449-2456.	7.2	101
10246	Twoâ€Dimensional Germanium Sulfide Nanosheets as an Ultraâ€Stable and High Capacity Anode for Lithium Ion Batteries. Chemistry - A European Journal, 2020, 26, 6554-6560.	1.7	13
10247	Microwave-assisted synthesis of a novel CuC2O4â [^] ™xH2O/Graphene composite as anode material for lithium ion batteries. Ceramics International, 2020, 46, 1018-1025.	2.3	14
10248	A convenient co-precipitation method to prepare high performance LiNi0.5Mn1.5O4 cathode for lithium ion batteries. Materials Chemistry and Physics, 2020, 240, 122137.	2.0	19
10249	Vanadiumâ€Based Nanomaterials: A Promising Family for Emerging Metalâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1904398.	7.8	262
10250	N/O Dualâ€Doped Environmentâ€Friendly Hard Carbon as Advanced Anode for Potassiumâ€Ion Batteries. Advanced Science, 2020, 7, 1902547.	5.6	208
10251	Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials. Electrochimica Acta, 2020, 337, 135687.	2.6	39
10252	Review—Energy Autonomous Wearable Sensors for Smart Healthcare: A Review. Journal of the Electrochemical Society, 2020, 167, 037516.	1.3	74
10253	Melt crystallization and segmental dynamics of poly(ethylene oxide) confined in a solid electrolyte composite. Journal of Polymer Science, 2020, 58, 466-477.	2.0	9
10254	Effect of dual local structures of amorphous Fe–Si films on the performance of anode of lithium-ion batteries. Materials Chemistry and Physics, 2020, 243, 122666.	2.0	10
10255	Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020, 26, 250-259.	9.5	34

#	Article	IF	CITATIONS
10256	Aluminium-poly(3,4-ethylenedioxythiophene) rechargeable battery with ionic liquid electrolyte. Journal of Energy Storage, 2020, 28, 101176.	3.9	24
10257	The influence of the voltage plateau on the coulombic efficiency and capacity degradation in LiNi0.5Mn1.5O4 materials. Journal of Alloys and Compounds, 2020, 820, 153443.	2.8	27
10258	Mechanically Robust Yet Highly Conductive Diblock Copolymer Solid Polymer Electrolyte for Ambient Temperature Battery Applications. ACS Applied Polymer Materials, 2020, 2, 939-948.	2.0	22
10259	Germanium-based high-performance dual-ion batteries. Nanoscale, 2020, 12, 79-84.	2.8	31
10260	Rod-shaped Cu _{1.81} Te as a novel cathode material for aluminum-ion batteries. Dalton Transactions, 2020, 49, 729-736.	1.6	14
10261	High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy and Environmental Science, 2020, 13, 562-570.	15.6	163
10262	A new design strategy for redox-active molecular assemblies with crystalline porous structures for lithium-ion batteries. Chemical Science, 2020, 11, 37-43.	3.7	35
10263	Intermolecular cyclic polysulfides as cathode materials for rechargeable lithium batteries. Journal of Materials Chemistry A, 2020, 8, 87-90.	5.2	27
10264	Exploring organo-palladium(II) complexes as novel organometallic materials for Li-ion batteries. Electrochimica Acta, 2020, 337, 135659.	2.6	6
10265	Fire-resistant, high-performance gel polymer electrolytes derived from poly(ionic liquid)/P(VDF-HFP) composite membranes for lithium ion batteries. Journal of Membrane Science, 2020, 599, 117827.	4.1	75
10266	Sandwich-Like C@SnS@TiO ₂ Anodes with High Power and Long Cycle for Li-Ion Storage. ACS Applied Materials & Interfaces, 2020, 12, 5857-5865.	4.0	25
10267	Covalent fixing of sulfur in metal–sulfur batteries. Energy and Environmental Science, 2020, 13, 432-471.	15.6	118
10268	Rutheniumâ€Doped Cobalt–Chromium Layered Double Hydroxides for Enhancing Oxygen Evolution through Regulating Charge Transfer. Small, 2020, 16, e1905328.	5.2	80
10269	Confining sulfur particles in clay nanotubes with improved cathode performance of lithium–sulfur batteries. Journal of Power Sources, 2020, 450, 227698.	4.0	33
10270	Realizing both high gravimetric and volumetric capacities in Li/3D carbon composite anode. Nano Energy, 2020, 69, 104471.	8.2	30
10271	Both cationic and anionic redox chemistry in a P2-type sodium layered oxide. Nano Energy, 2020, 69, 104474.	8.2	91
10272	Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. Journal of Colloid and Interface Science, 2020, 565, 494-502.	5.0	44
10273	Materials and electrode engineering of high capacity anodes in lithium ion batteries. Journal of Power Sources, 2020, 450, 227697.	4.0	55

# Article	IF	CITATIONS
10274 Enabling high-performance sodium metal anodes via A sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69, 104446.	8.2	43
10275 Two-dimensional composite of D-Ti ₃ C ₂ T _x @S@TiO ₂ (MXene) as the cathode material for aluminum-ion batteries. Nanoscale, 2020, 12, 3387-3399.	> 2.8	60
10276 Designing solar-cell absorber materials through computational high-throughput screening*. Chinese Physics B, 2020, 29, 028803.	0.7	6
Quantification of Anionic Redox Chemistry in a Prototype Na-Rich Layered Oxide. ACS Applied Materials & amp; Interfaces, 2020, 12, 3617-3623.	4.0	18
10278 A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie, 2020, 132, 5311-5315.	1.6	34
10279 A Redoxâ€Active 2D Metal–Organic Framework for Efficient Lithium Storage with Extraordinary High Capacity. Angewandte Chemie - International Edition, 2020, 59, 5273-5277.	7.2	189
10280 Conversion/Alloying Pseudocapacitanceâ€Dominated Perovskite KZnF ₃ Anode for Advance Lithiumâ€Based Dualâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 2798-2802.	ed 1.7	14
10281 Electrode Degradation in Lithium-Ion Batteries. ACS Nano, 2020, 14, 1243-1295.	7.3	484
Bioinspired hierarchical cross-linked graphene–silicon nanofilms <i>via</i> synergistic interfacial 10282 interactions as integrated negative electrodes for high-performance lithium storage. Physical Chemistry Chemical Physics, 2020, 22, 2105-2114.	1.3	8
10283 Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews, 2020, 49, 180-23	2. 18.7	522
10284 In situ formation of porous LiCuVO4/LiVO3/C nanotubes as a high-capacity anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 340-346.	3.0	19
10285 A durable VO ₂ (M)/Zn battery with ultrahigh rate capability enabled by pseudocapacitive proton insertion. Journal of Materials Chemistry A, 2020, 8, 1731-1740.	5.2	90
10286 Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 16061-16080.	5.2	37
10287 An Overview of Engineered Grapheneâ€Based Cathodes: Boosting Oxygen Reduction and Evolution Reactions in Lithium– and Sodium–Oxygen Batteries. ChemSusChem, 2020, 13, 1203-1225.	3.6	19
Succinonitrile as a highâ€voltage additive in the electrolyte of 10288 LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /graphite full batteries. Surfa and Interface Analysis, 2020, 52, 364-373.	ice 0.8	23
10289 Microsphereâ€Like SiO ₂ /MXene Hybrid Material Enabling High Performance Anode for Lithium Ion Batteries. Small, 2020, 16, e1905430.	5.2	90
Single-walled carbon nanotube as conductive additive for SiO/C composite electrodes in pouch-type lithium-ion batteries. Ionics, 2020, 26, 1721-1728.	1.2	19
10291 Controllable solid electrolyte interphase precursor for stabilizing natural graphite anode in lithium ion batteries. Carbon, 2020, 159, 390-400.	5.4	40

ARTICLE IF CITATIONS Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for 10292 5.4 115 ultrafast lithium/sodium storage. Carbon, 2020, 159, 366-377. Bco-C24: A new 3D Dirac nodal line semi-metallic carbon honeycomb for high performance metal-ion 10293 5.4 battery anodes. Carbon, 2020, 159, 542-548. Phosphorus-sulfur/graphene composites as flexible lithium-sulfur battery cathodes with super high 10294 6.6 23 volumetric capacity. Chemical Engineering Journal, 2020, 387, 123904. Attachable micropseudocapacitors using highly swollen laser-induced-graphene electrodes. Chemical 10295 Engineering Journal, 2020, 386, 123972. Nanowires embedded porous TiO2@C nanocomposite anodes for enhanced stable lithium and sodium 10296 2.3 34 ion battery performance. Ceramics International, 2020, 46, 9119-9128. Controllable synthesis of spherical precursor Ni0.8Co0.1Mn0.1(OH)2 for nickel-rich cathode material 10297 2.3 in Li-ion batteries. Ceramics International, 2020, 46, 9436-9445. In situ constructed (010)-oriented LiFePO4 nanocrystals/carbon nanofiber hybrid network: Facile 10298 2.6 24 synthesis of free-standing cathodes for lithium-ion batteries. Electrochimica Acta, 2020, 333, 135538. Template-assisted molten-salt synthesis of hierarchical lithium-rich layered oxide nanowires as 10299 2.6 20 high-rate and long-cycling cathode materials. Electrochimica Acta, 2020, 333, 135558. 10300 Flexible amorphous MoS2 nanoflakes/N-doped carbon microtubes/reduced graphite oxide composite 2.6 37 paper as binder free anode for full cell lithium ion batteries. Electrochimica Acta, 2020, 333, 135568. A separator based on cross-linked nano-SiO2 and cellulose acetate for lithium-ion batteries. 2.6 Electrochimica Acta, 2020, 334, 135585. \hat{I}^3 -Fe2O3 nanoparticles anchored in MWCNT hybrids as efficient sulfur hosts for high-performance 10302 21 1.9 lithiumâ€'sulfur battery cathode. Journal of Electroanalytical Chemistry, 2020, 858, 113806. Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes. Journal 4.0 of Power Sources, 2020, 450, 227593. Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite. Journal of Power Sources, 2020, 450, 227601. 4.0 58 Polymer electrolyte with dual functional groups designed via theoretical calculation for 4.0 all-solid-state lithium batteries. Journal of Power Sources, 2020, 450, 227614. Electrochemical behavior of polyaniline: A study by electrochemical impedance spectroscopy (EIS) in 10306 21 1.3 low-frequency. Solid State Ionics, 2020, 346, 115198. Effect of Zwitterionic Molecules on Ionic Transport under Electric Fields: A Molecular Simulation 1.0 Study. Journal of Chemical & amp; Engineering Data, 2020, 65, 385-395. 3D Hierarchically Structured CoS Nanosheets: Li⁺ Storage Mechanism and Application of 10308 the High-Performance Lithium-Ion Capacitors. ACS Applied Materials & amp; Interfaces, 2020, 12, 4.0 72 3709-3718. Effect of Sodium Content on the Electrochemical Performance of Li-Substituted, Manganese-Based, Sodium-Ion Layered Oxide Cathodes. ACS Applied Materials & Amp; Interfaces, 2020, 12, 2191-2198.

#	Article	IF	CITATIONS
10310	Reâ€Engineering Poly(Acrylic Acid) Binder toward Optimized Electrochemical Performance for Silicon Lithiumâ€Ion Batteries: Branching Architecture Leads to Balanced Properties of Polymeric Binders. Advanced Functional Materials, 2020, 30, 1908558.	7.8	60
10311	Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for Highâ€Performance Allâ€Solidâ€State Lithium Batteries. ChemElectroChem, 2020, 7, 1125-1134.	1.7	49
10313	Self-sacrificing template strategy to facilely prepare well-defined SnO2@C quasi-hollow nanocubes for lithium-ion battery anode. Applied Surface Science, 2020, 507, 145189.	3.1	20
10314	Phosphorus-Amine-Based Synthesis of Nanoscale Red Phosphorus for Application to Sodium-Ion Batteries. ACS Nano, 2020, 14, 974-984.	7.3	57
10315	Fabrication of red phosphorus anode for fast-charging lithium-ion batteries based on TiN/TiP2-enhanced interfacial kinetics. Energy Storage Materials, 2020, 26, 147-156.	9.5	29
10316	Surface and Interfacial Chemistry in the Nickelâ€Rich Cathode Materials. Batteries and Supercaps, 2020, 3, 309-322.	2.4	29
10317	Three-dimensional carbon nanotubes-encapsulated Li2FeSiO4 microspheres as advanced positive materials for lithium energy storage. Ceramics International, 2020, 46, 9729-9733.	2.3	40
10318	Pyrite-type cobalt phosphosulphide bifunctional catalyst for aqueous and gel-based rechargeable zinc-air batteries. Journal of Power Sources, 2020, 450, 227661.	4.0	23
10319	Flexible free-standing sulfurized polyacrylonitrile electrode for stable Li/Na storage. Electrochimica Acta, 2020, 333, 135493.	2.6	29
10320	Air‣table and Dendriteâ€Free Lithium Metal Anodes Enabled by a Hybrid Interphase of C ₆₀ and Mg. Advanced Energy Materials, 2020, 10, 1903292.	10.2	57
10321	The Compensation Effect Mechanism of Fe–Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminumâ€lon Batteries. ChemSusChem, 2020, 13, 732-740.	3.6	93
10322	Structural and electrochemical features of (Li2S) (SiS2)100– superionic glasses. Solid State Ionics, 2020, 344, 115141.	1.3	10
10323	Enhanced Li Ion Storage Performances of Carbon Black by Introducing Organosulfur Groups on Surface. Electrochemistry, 2020, 88, 8-13.	0.6	4
10324	Engineering LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /poly(propylene) Tj ETQq1 Storage, 2020, 2, e109.	1 0.7843 2.3	14 rgBT /0 24
10325	Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. Journal of Energy Storage, 2020, 27, 101056.	3.9	76
10326	Ultralongâ€Life Chloride Ion Batteries Achieved by the Synergistic Contribution of Intralayer Metals in Layered Double Hydroxides. Advanced Functional Materials, 2020, 30, 1907448.	7.8	47
10327	Stable and Highâ€Power Calciumâ€Ion Batteries Enabled by Calcium Intercalation into Graphite. Advanced Materials, 2020, 32, e1904411.	11.1	87
10328	Woodâ€Derived Carbon Fibers Embedded with SnO x Nanoparticles as Anode Material for Lithiumâ€ion Batteries. Global Challenges, 2020, 4, 1900048.	1.8	8

#	Article	IF	CITATIONS
10329	Nanomaterials application in Liâ \in "Se and Naâ \in "Se batteries. , 2020, , 69-114.		3
10330	MXene interlayer anchored Fe3O4 nanocrystals for ultrafast Li-ion batteries. Chemical Engineering Science, 2020, 212, 115342.	1.9	42
10331	Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy, 2020, 67, 104295.	8.2	83
10332	Constructing a Phosphating–Nitriding Interface for Practically Used Lithium Metal Anode. , 2020, 2, 1-8.		14
10333	Scalable syntheses of three-dimensional graphene nanoribbon aerogels from bacterial cellulose for supercapacitors. Nanotechnology, 2020, 31, 095403.	1.3	6
10334	Mechanistic investigation of silver vanadate as superior cathode for high rate and durable zinc-ion batteries. Journal of Colloid and Interface Science, 2020, 560, 659-666.	5.0	30
10335	Lower explosion limit of the vented gases from Li-ion batteries thermal runaway in high temperature condition. Journal of Loss Prevention in the Process Industries, 2020, 63, 103992.	1.7	65
10336	Effect of Electrolyte Additives on the LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ Surface Film Formation with Lithium and Graphite Negative Electrodes. Advanced Materials Interfaces, 2020, 7, 1901500.	1.9	34
10337	Recyclable Highâ€Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems. ChemSusChem, 2020, 13, 376-384.	3.6	16
10338	Production of a NiO/Al primary battery employing powderâ€based electrodes. Electrophoresis, 2020, 41, 131-136.	1.3	7
10339	WS ₂ /Graphene Composite as Cathode for Rechargeable Aluminum-Dual Ion Battery. Journal of the Electrochemical Society, 2020, 167, 070501.	1.3	32
10340	α-MoO3 sheets with high exposed plane reinforced by thermal plasma for stable Li-ion storage. Electrochimica Acta, 2020, 334, 135593.	2.6	16
10341	Good cycling stability and high initial efficiency demonstrated in full cells with limited lithium source for an advanced SnO2–Co–C composite anode. Electrochimica Acta, 2020, 334, 135640.	2.6	11
10342	Chitosan and chitosan oligosaccharide: Advanced carbon sources are used for preparation of N-doped carbon-coated Li2ZnTi3O8 anode material. Journal of Electroanalytical Chemistry, 2020, 858, 113789.	1.9	12
10343	Impact of Electrostatic Interactions on the Self-Assembly of Charge-Neutral Block Copolyelectrolytes. Macromolecules, 2020, 53, 548-557.	2.2	14
10344	Core–shell ZnO@C:N hybrids derived from MOFs as long-cycling anodes for lithium ion batteries. Chemical Communications, 2020, 56, 1980-1983.	2.2	29
10345	Coupling of a conductive Ni ₃ (2,3,6,7,10,11-hexaiminotriphenylene) ₂ metal–organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries. Nanoscale, 2020, 12, 1629-1642.	2.8	37
10346	Stabilization of Li–S batteries with a lean electrolyte <i>via</i> ion-exchange trapping of lithium polysulfides using a cationic, polybenzimidazolium binder. Sustainable Energy and Fuels, 2020, 4, 1180-1190.	2.5	15

#	Article	IF	CITATIONS
10347	Tribute to Michel Armand: from Rocking Chair – Li-ion to Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 070507.	1.3	74
10348	Single-step solid-state synthesis and characterization of Li ₄ Ti _{5â^²x} Fe _x O _{12â^²y} (0 ≤i>x ≤0.1) as an anode for lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 2627-2636.	5.2	28
10349	Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries. Nanotechnology, 2020, 31, 175401.	1.3	8
10350	Facile, economical and environment-friendly synthesis process of porous N-doped carbon/SiOx composite from rice husks as high-property anode for Li-ion batteries. Electrochimica Acta, 2020, 334, 135619.	2.6	36
10351	Fast lithium ionic conductivity observed in Lil-MoS2 composite. Inorganic Chemistry Communication, 2020, 112, 107761.	1.8	3
10352	Oxide single crystals with high lithium-ion conductivity as solid electrolytes for all-solid-state lithium secondary battery applications. Journal of the Ceramic Society of Japan, 2020, 128, 7-18.	0.5	12
10353	Fluorine-Doped Carbon Coated LiFePO3.938F0.062 Composites as Cathode Materials for High-Performance Lithium-Ion Batteries. Frontiers in Materials, 2020, 6, .	1.2	7
10354	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	2.8	518
10355	Facile Synthesis of Flockâ€Like V ₂ O ₃ /C with Improved Electrochemical Performance as an Anode Material for Liâ€lon Batteries. Energy Technology, 2020, 8, 1900986.	1.8	11
10356	Pressureâ€Induced Synthesis of Homogeneously Dispersed Sn/SnO ₂ /C Nanocomposites as Advanced Anodes for Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 1901202.	1.8	3
10357	A metal-free battery working at â"80Ââ€∢°C. Energy Storage Materials, 2020, 26, 585-592.	9.5	35
10358	Development of stable and conductive interface between garnet structured solid electrolyte and lithium metal anode for high performance solid-state battery. Electrochimica Acta, 2020, 332, 135511.	2.6	38
10359	Renovating the electrode-electrolyte interphase for layered lithium- & manganese-rich oxides. Energy Storage Materials, 2020, 28, 383-392.	9.5	40
10360	Two-Phase Reaction Mechanism for Fluorination and Defluorination in Fluoride-Shuttle Batteries: A First-Principles Study. ACS Applied Materials & Interfaces, 2020, 12, 428-435.	4.0	19
10361	Local Electricâ€Fieldâ€Driven Fast Li Diffusion Kinetics at the Piezoelectric LiTaO ₃ Modified Liâ€Rich Cathode–Electrolyte Interphase. Advanced Science, 2020, 7, 1902538.	5.6	103
10362	Li ⁺ Preâ€Insertion Leads to Formation of Solid Electrolyte Interface on TiO ₂ Nanotubes That Enables Highâ€Performance Anodes for Sodium Ion Batteries. Advanced Energy Materials, 2020, 10, 1903448.	10.2	35
10363	An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium-ion battery anode. Electrochimica Acta, 2020, 332, 135501.	2.6	24
10364	Electrochemical performance of Bi ₂ Te ₃ /GO composite anode for LIB application. International Journal of Applied Ceramic Technology, 2020, 17, 1422-1429.	1.1	8

#	Article	IF	CITATIONS
10365	In situ generated Li2S-LPS composite for all-solid-state lithium-sulfur battery. Ionics, 2020, 26, 2335-2342.	1.2	14
10366	Effects of different GO contents in GO@KB-S composite prepared by spray drying method for lithium-sulfur batteries. Ionics, 2020, 26, 2315-2324.	1.2	8
10367	A novel method for preparing α-LiFeO2 nanorods for high-performance lithium-ion batteries. Ionics, 2020, 26, 1057-1061.	1.2	5
10368	Electrochemical exfoliation of graphene as an anode material for ultra-long cycle lithium ion batteries. Journal of Physics and Chemistry of Solids, 2020, 139, 109301.	1.9	31
10369	Benzoquinone-Based Polyimide Derivatives as High-Capacity and Stable Organic Cathodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 807-817.	4.0	54
10370	Integrating Multiredox Centers into One Framework for High-Performance Organic Li-Ion Battery Cathodes. ACS Energy Letters, 2020, 5, 224-231.	8.8	59
10371	Topotactic Transformation Synthesis of 2D Ultrathin GeS ₂ Nanosheets toward High-Rate and High-Energy-Density Sodium-Ion Half/Full Batteries. ACS Nano, 2020, 14, 531-540.	7.3	71
10372	Challenges and perspectives for manganeseâ€based oxides for advanced aqueous zincâ€ion batteries. InformaĂnÃ-Materiály, 2020, 2, 237-260.	8.5	264
10373	Fe–P–S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes. Journal of Power Sources, 2020, 449, 227576.	4.0	11
10374	Polymer Electrolyte Film as Robust and Deformable Artificial Protective Layer for High-Performance Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 2285-2292.	4.0	24
10375	In Situ Preparation of Thin and Rigid COF Film on Li Anode as Artificial Solid Electrolyte Interphase Layer Resisting Li Dendrite Puncture. Advanced Functional Materials, 2020, 30, 1907717.	7.8	136
10376	Fast Lithium Ion Conduction in Lithium Phosphidoaluminates. Angewandte Chemie - International Edition, 2020, 59, 5665-5674.	7.2	28
10377	The Proportion of Feâ€N X , N Doping Species and Fe 3 C to Oxygen Catalytic Activity in Coreâ€Shell Feâ€N/C Electrocatalyst. Chemistry - an Asian Journal, 2020, 15, 310-318.	1.7	4
10378	Stable Lithium Anode of Li–O ₂ Batteries in a Wet Electrolyte Enabled by a High-Current Treatment. Journal of Physical Chemistry Letters, 2020, 11, 172-178.	2.1	16
10379	Q-Carbon: A New Carbon Allotrope with a Low Degree of s–p Orbital Hybridization and Its Nucleation Lithiation Process in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 619-626.	4.0	16
10380	A Heat-Resistant Poly(oxyphenylene benzimidazole)/Ethyl Cellulose Blended Polymer Membrane for Highly Safe Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 637-645.	4.0	25
10381	Co-guiding the dendrite-free plating of lithium on lithiophilic ZnO and fluoride modified 3D porous copper for stable Li metal anode. Journal of Materiomics, 2020, 6, 54-61.	2.8	16
10382	Energy storage performance of CuO as a cathode material for aqueous zinc ion battery. Materials Today Energy, 2020, 15, 100370.	2.5	41

#	Article	IF	CITATIONS
10383	Stabilizing Li-rich layered cathode materials by nanolayer-confined crystal growth for Li-ion batteries. Electrochimica Acta, 2020, 333, 135466.	2.6	19
10384	Mechanical robustness of composite electrode for lithium ion battery: Insight into entanglement & crystallinity of polymeric binder. Electrochimica Acta, 2020, 332, 135471.	2.6	23
10385	Aqueous lithium-ion batteries with niobium tungsten oxide anodes for superior volumetric and rate capability. Energy Storage Materials, 2020, 27, 506-513.	9.5	40
10386	Bisthiazolyl Quinones: Stabilizing Organic Electrode Materials with Sulfur-Rich Thiazyl Motifs. Chemistry of Materials, 2020, 32, 255-261.	3.2	21
10387	Atomic-Level Alloying of Sulfur and Selenium for Advanced Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 1005-1013.	4.0	14
10388	Freestanding, Hierarchical, and Porous Bilayered Na _{<i>x</i>} V ₂ O ₅ · <i>n</i> H ₂ O/rGO/CNT Composites as High-Performance Cathode Materials for Nonaqueous K-Ion Batteries and Aqueous Zinc-Ion Batteries. ACS Applied Materials & amp: Interfaces. 2020. 12, 706-716.	4.0	82
10389	Rheological phase reaction method synthesis and characterizations of xLiMn0.5Fe0.5PO4–yLi3V2(PO4)3/C composites as cathode materials for lithium ion batteries. Journal of Materials Research, 2020, 35, 2-11.	1.2	1
10390	4-Aminobenzoic acid as a novel electrolyte additive for improved electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathodes via in situ electrochemical polymerization. Electrochimica Acta, 2020, 331, 135465.	2.6	9
10391	Inducing the Formation of In Situ Li ₃ N-Rich SEI via Nanocomposite Plating of Mg ₃ N ₂ with Lithium Enables High-Performance 3D Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 627-636.	4.0	64
10392	A Dualâ€Functional Conductive Framework Embedded with TiNâ€VN Heterostructures for Highly Efficient Polysulfide and Lithium Regulation toward Stable Li–S Full Batteries. Advanced Materials, 2020, 32, e1905658.	11.1	276
10393	Fast Lithium Ion Conduction in Lithium Phosphidoaluminates. Angewandte Chemie, 2020, 132, 5714-5723.	1.6	10
10394	Reduced Lithium/Nickel Disorder Degree of Sodiumâ€Doped Lithiumâ€Rich Layered Oxides for Cathode Materials: Experiments and Calculations. ChemElectroChem, 2020, 7, 246-251.	1.7	17
10395	A novel poly(vinyl carbonate-co-butyl acrylate) quasi-solid-state electrolyte as a strong catcher for lithium polysulfide in Li–S batteries. Electrochimica Acta, 2020, 332, 135463.	2.6	13
10396	Semiconductor Material ZnO-Coated P2-Type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Cathode Materials for Sodium-Ion Batteries with Superior Electrochemical Performance. Journal of Physical Chemistry C, 2020, 124, 1780-1787.	1.5	41
10397	Unraveling the Relationship between Ti ⁴⁺ Doping and Li ⁺ Mobility Enhancement in Ti ⁴⁺ Doped Li ₃ V ₂ (PO ₄) ₃ . ACS Applied Energy Materials, 2020, 3, 715-722.	2.5	11
10398	Layer-by-Layer Assembly Strategy for Reinforcing the Mechanical Strength of an Ionogel Electrolyte without Affecting Ionic Conductivity. ACS Applied Energy Materials, 2020, 3, 1265-1270.	2.5	12
10399	Intrinsic Lithiophilicity of Li–Garnet Electrolytes Enabling Highâ€Rate Lithium Cycling. Advanced Functional Materials, 2020, 30, 1906189.	7.8	107
10400	Structural and electrochemical studies of Fe-doped Na3Mn2P3O11 cathode materials for sodium-ion batteries. Journal of Alloys and Compounds, 2020, 821, 153206.	2.8	12

#	Article	IF	CITATIONS
10401	Structural and Electronic Properties of Small Stoichiometric (Li2O2)n Clusters and Relevance to Li–O2 Batteries. Journal of Cluster Science, 2020, 31, 643-649.	1.7	1
10402	Selenium@Hollow mesoporous carbon composites for high-rate and long-cycling lithium/sodium-ion batteries. Chemical Engineering Journal, 2020, 392, 123676.	6.6	58
10403	A Black Phosphorus–Graphite Composite Anode for Liâ€∤Naâ€∤Kâ€Ion Batteries. Angewandte Chemie, 2020, 13 2338-2342.	² 1.6	21
10404	Toward Promising Cathode Catalysts for Nonlithium Metal–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1901997.	10.2	102
10405	Improving Electrochemical Stability and Lowâ€Temperature Performance with Water/Acetonitrile Hybrid Electrolytes. Advanced Energy Materials, 2020, 10, 1902654.	10.2	144
10406	A Black Phosphorus–Graphite Composite Anode for Liâ€/Naâ€/Kâ€Ion Batteries. Angewandte Chemie - ′International Edition, 2020, 59, 2318-2322.	7.2	84
10407	Regulating lithium nucleation and growth by zinc modified current collectors. Nano Research, 2020, 13, 45-51.	5.8	19
10408	Stability of conductive carbon additives in 5ÂV-class Li-ion batteries. Carbon, 2020, 158, 766-771.	5.4	15
10409	Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26, 448-456.	9.5	104
10410	Synthesis and application of Calix[6]quinone as a high-capacity organic cathode for plastic crystal electrolyte-based lithium-ion batteries. Energy Storage Materials, 2020, 26, 465-471.	9.5	63
10411	The keys for effective distribution of intergranular voids of peapod-like MnO@C core-shell for lithium ion batteries. Journal of Alloys and Compounds, 2020, 817, 152760.	2.8	6
10412	In-situ polymerization of hydroquinone-formaldehyde resin to construct 3D porous composite LiFePO4/carbon for remarkable performance of lithium-ion batteries. Journal of Alloys and Compounds, 2020, 818, 152858.	2.8	13
10413	Insight into the capacity decay of layered sodium nickel manganese oxide cathodes in sodium ion batteries. Journal of Alloys and Compounds, 2020, 820, 153093.	2.8	9
10414	Coupled cobalt silicate nanobelt-on-nanobelt hierarchy structure with reduced graphene oxide for enhanced supercapacitive performance. Journal of Power Sources, 2020, 448, 227407.	4.0	82
10415	AP as a flexible host to construct SnO2@Mn@GO/AP anode. Vacuum, 2020, 172, 109072.	1.6	3
10416	Power Ready for Driving Catalysis and Sensing: Nanomaterials Designed for Renewable Energy Storage. , 2020, , 307-346.		3
10417	Influence of cut-off voltage on the lithium storage performance of Nb12W11O63 anode. Electrochimica Acta, 2020, 332, 135380.	2.6	19
10418	From Solid olution Electrodes and the Rocking hair Concept to Today's Batteries. Angewandte Chemie, 2020, 132, 542-546.	1.6	28

:	#	Article	IF	CITATIONS
:	10419	High-performance ZnTe-TiO2-C nanocomposite with half-cell and full-cell applications as promising anode material for Li-Ion batteries. Applied Surface Science, 2020, 509, 144718.	3.1	11
	10420	A Multiâ€Wall Sn/SnO 2 @Carbon Hollow Nanofiber Anode Material for Highâ€Rate and Longâ€Life Lithiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 2486-2493.	1.6	35
	10421	MnO ₂ Nanosheetâ€Assembled Hollow Polyhedron Grown on Carbon Cloth for Flexible Aqueous Zincâ€Ion Batteries. ChemSusChem, 2020, 13, 1537-1545.	3.6	122
	10422	A potassium/chloride ion co-doped cathode material Li1.18K0.02Ni0.2Mn0.6O1.98Cl0.02 with enhanced electrochemical performance for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 572-580.	1.1	5
	10423	Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient. Carbon, 2020, 158, 102-109.	5.4	55
	10424	Intercalation pseudo-capacitance behavior of few-layered molybdenum sulfide in various electrolytes. Journal of Colloid and Interface Science, 2020, 561, 117-126.	5.0	14
:	10425	Li ⁺ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an All-Solid-State Battery via the First-Principles Structure Prediction Scheme. Chemistry of Materials, 2020, 32, 85-96.	3.2	52
:	10426	Shape-anisotropic cobalt-germanium-borate glass flakes as novel Li-ion battery anodes. Powder Technology, 2020, 363, 218-231.	2.1	14
	10427	Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews, 2020, 120, 6820-6877.	23.0	891
	10428	Graphite–Lithium Sulfide Battery with a Single-Phase Sparingly Solvating Electrolyte. ACS Energy Letters, 2020, 5, 1-7.	8.8	41
	10429	Rechargeable Zn–MnO ₂ batteries: advances, challenges and perspectives. Nanotechnology, 2020, 31, 122001.	1.3	76
	10430	Suppressed Shuttle via Inhibiting the Formation of Longâ€Chain Lithium Polysulfides and Functional Separator for Greatly Improved Lithium–Organosulfur Batteries Performance. Advanced Energy Materials, 2020, 10, 1902695.	10.2	30
	10431	Stable Li Metal Anode Enabled by Space Confinement and Uniform Curvature through Lithiophilic Nanotube Arrays. Advanced Energy Materials, 2020, 10, 1902819.	10.2	55
	10432	Dual Play of Chitinâ€Derived Nâ€Doped Carbon Nanosheets Enabling Highâ€Performance Naâ€SeS ₂ Half/Full Cells. Batteries and Supercaps, 2020, 3, 165-173.	2.4	16
	10433	Toward rational design of N-doped Li4Ti5O12@carbon anode materials for high-performance lithium-ion batteries. Ionics, 2020, 26, 1211-1220.	1.2	7
	10434	Three-dimensionally architectured tungsten trioxide/tungsten trioxide hydrate/carbon cloth composite as a binder-free anode for lithium-ion batteries. Instrumentation Science and Technology, 2020, 48, 242-253.	0.9	1
	10435	Internal failure of anode materials for lithium batteries — A critical review. Green Energy and Environment, 2020, 5, 22-36.	4.7	67
	10436	Manganese dioxide anchored on hierarchical carbon nanotubes/graphene/diatomite conductive architecture for high performance asymmetric supercapacitor. Applied Surface Science, 2020, 508, 144777	3.1	19

#	Article	IF	CITATIONS
10437	Electrode Engineering by Atomic Layer Deposition for Sodiumâ€Ion Batteries: From Traditional to Advanced Batteries. Advanced Functional Materials, 2020, 30, 1906890.	7.8	36
10438	A Multiâ€Wall Sn/SnO ₂ @Carbon Hollow Nanofiber Anode Material for Highâ€Rate and Longâ€Life Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 2465-2472.	7.2	199
10439	Li 4 Ti 5 O 12 â^'TiO 2 Composite Coated on Carbon Foam as Anode Material for Lithium Ion Capacitors: Evaluation of Rate Performance and Selfâ€Discharge. ChemNanoMat, 2020, 6, 280-284.	1.5	4
10440	Microscopic Properties of Na and Li—A First Principle Study of Metal Battery Anode Materials. ChemSusChem, 2020, 13, 771-783.	3.6	18
10441	A General Technoeconomic Model for Evaluating Emerging Electrolytic Processes. Energy Technology, 2020, 8, 1900994.	1.8	49
10442	NaClâ€Templated and Polyvinylpyrrolidoneâ€Assisted Fabrication of a MnO/Câ€rGO Composite as a Highâ€Capacity Anode Material for Liâ€Ion Batteries. Energy Technology, 2020, 8, 1901194.	1.8	9
10443	The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery. Journal of Materials Science: Materials in Electronics, 2020, 31, 848-856.	1.1	0
10444	Facile interfacial adhesion enabled LATP-based solid-state lithium metal battery. Chemical Engineering Journal, 2020, 392, 123650.	6.6	78
10445	Self-assembled NaV6O15 flower-like microstructures for high-capacity and long-life sodium-ion battery cathode. Nano Energy, 2020, 68, 104357.	8.2	37
10446	Copper decorated ultralight 3D carbon skeleton derived from soybean oil for dendrite-free Li metal anode. Chemical Engineering Journal, 2020, 391, 123516.	6.6	26
10447	A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. Journal of Power Sources, 2020, 449, 227472.	4.0	79
10448	Metal/LiF/Li ₂ 0 Nanocomposite for Battery Cathode Prelithiation: Trade-off between Capacity and Stability. Nano Letters, 2020, 20, 546-552.	4.5	72
10449	Printing of UV-curable transparent conductive polymer composite. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 139-144.	1.2	2
10450	Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach. Advanced Science, 2020, 7, 1901614.	5.6	133
10451	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	10.2	97
10452	From Solidâ€Solution Electrodes and the Rockingâ€Chair Concept to Today's Batteries. Angewandte Chemie - International Edition, 2020, 59, 534-538.	7.2	124
10453	Vanadium Doped Nickel Phosphide Nanosheets Selfâ€Assembled Microspheres as a Highâ€Efficiency Oxygen Evolution Catalyst. ChemCatChem, 2020, 12, 917-925.	1.8	22
10454	High-rate LiNi0.815Co0.15Al0.035O2 cathode material prepared by spray drying method for Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 1159-1167.	1.1	6

#	Article	IF	CITATIONS
10455	Nanointerface-driven pseudocapacitance tuning of TiO2 nanosheet anodes for high-rate, ultralong-life and enhanced capacity sodium-ion batteries. Chemical Engineering Journal, 2020, 391, 123598.	6.6	33
10456	High sulfur-containing organosulfur polymer composite cathode embedded by monoclinic S for 'lithium sulfur batteries. Energy Storage Materials, 2020, 26, 570-576.	9.5	62
10457	A novel Sn particles coated composite of SnO /ZnO and N-doped carbon nanofibers as high-capacity and cycle-stable anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 819, 153036.	2.8	34
10458	Effect of Different Composition on Voltage Attenuation of Li-Rich Cathode Material for Lithium-Ion Batteries. Materials, 2020, 13, 40.	1.3	23
10459	Hierarchical MOF-derived layered Fe3O4 QDs@C imbedded on graphene sheets as a high-performance anode for Lithium-ion storage. Applied Surface Science, 2020, 509, 144882.	3.1	33
10460	N, S codoped activated mesoporous carbon derived from the Datura metel seed pod as active electrodes for supercapacitors. Diamond and Related Materials, 2020, 102, 107687.	1.8	26
10461	Atomic layer deposition of Al2O3 on P2-Na0.5Mn0.5Co0.5O2 as interfacial layer for high power sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 564, 467-477.	5.0	25
10462	Facile and Scalable Modification of a Cu Current Collector toward Uniform Li Deposition of the Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 3681-3687.	4.0	28
10463	A quasi-solid composite electrolyte with dual salts for dendrite-free lithium metal batteries. New Journal of Chemistry, 2020, 44, 1817-1824.	1.4	54
10464	Mn-doped perovskite-type oxide LaFeO3 as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Frontiers of Materials Science, 2020, 14, 459-468.	1.1	9
10465	Intercalation-Induced Conversion Reactions Give High-Capacity Potassium Storage. ACS Nano, 2020, 14, 14026-14035.	7.3	42
10466	Mayenite Electrides and Their Doped Forms for Oxygen Reduction Reaction in Solid Oxide Fuel Cells. Energies, 2020, 13, 4978.	1.6	0
10467	Inâ€Plane Assembled Singleâ€Crystalline Tâ€Nb ₂ O ₅ Nanorods Derived from Fewâ€Layered Nb ₂ CT <i>_x</i> MXene Nanosheets for Advanced Liâ€Ion Capacitors. Small Methods, 2020, 4, 2000630.	4.6	87
10468	Highly Stable Porous Polyimide Sponge as a Separator for Lithium-Metal Secondary Batteries. Nanomaterials, 2020, 10, 1976.	1.9	6
10469	On the Sensitivity of the Ni-rich Layered Cathode Materials for Li-ion Batteries to the Different Calcination Conditions. Nanomaterials, 2020, 10, 2018.	1.9	33
10470	Building sandwich-like carbon coated Si@CNTs composites as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2020, 364, 137278.	2.6	33
10471	Redox Comediation with Organopolysulfides in Working Lithium-Sulfur Batteries. CheM, 2020, 6, 3297-3311.	5.8	177
10472	Lithium superionic conduction in α-Li10P4N10: A promising inorganic solid electrolyte candidate. Journal of Power Sources, 2020, 477, 228744.	4.0	3

#	Article	IF	CITATIONS
10473	Dual Carbon Potassium-Ion Capacitors: Biomass-Derived Graphene-like Carbon Nanosheet Cathodes. ACS Applied Materials & Interfaces, 2020, 12, 48518-48525.	4.0	47
10474	Tuning Rate-Limiting Factors to Achieve Ultrahigh-Rate Solid-State Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 48677-48683.	4.0	15
10475	Co-doped carbon materials synthesized with polymeric precursors as bifunctional electrocatalysts. RSC Advances, 2020, 10, 35966-35978.	1.7	6
10476	A Review of Functional Separators for Lithium Metal Battery Applications. Materials, 2020, 13, 4625.	1.3	84
10477	In situ growth of silicon carbide interface enhances the long life and high power of the mulberry-like Si-based anode for lithium-ion batteries. Journal of Energy Storage, 2020, 32, 101856.	3.9	11
10478	Microclusters of Kinked Silicon Nanowires Synthesized by a Recyclable Iodide Process for Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Energy Materials, 2020, 10, 2002108.	10.2	57
10479	A flame retardant sandwiched separator coated with ammonium polyphosphate wrapped by SiO2 on commercial polyolefin for high performance safety lithium metal batteries. Applied Materials Today, 2020, 21, 100793.	2.3	31
10480	Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Materials, 2020, 33, 188-215.	9.5	205
10481	Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Materials, 2020, 33, 216-229.	9.5	64
10482	An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Materials, 2020, 33, 283-289.	9.5	103
10483	Fabrication and multiphysics modeling of modified carbon fiber as structural anodes for lithium-ion batteries. Journal of Power Sources, 2020, 476, 228532.	4.0	21
10484	Butyl acrylate (BA) and ethylene carbonate (EC) electrolyte additives for low-temperature performance of lithium ion batteries. Journal of Power Sources, 2020, 476, 228697.	4.0	24
10485	Lithium-ion batteries – Current state of the art and anticipated developments. Journal of Power Sources, 2020, 479, 228708.	4.0	401
10486	Approaching the theoretical capacity limit of Na2FeSiO4-based cathodes with fully reversible two-electron redox reaction for sodium-ion battery. Materials Today Nano, 2020, 12, 100098.	2.3	8
10487	Topotactic phase transformations by concerted dual-ion migration of B-site cation and oxygen in multivalent cobaltite La–Sr–Co–Ox films. Nano Energy, 2020, 78, 105215.	8.2	17
10488	Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy, 2020, 78, 105345.	8.2	51
10489	Fe ₂ P-decorated N,P Codoped Carbon Synthesized via Direct Biological Recycling for Endurable Sulfur Encapsulation. ACS Central Science, 2020, 6, 1827-1834.	5.3	27
10490	ldentifying different states of lithiation of Li ₄ Ti ₅ O ₁₂ spinel by energy-dispersive inelastic X-ray scattering (EDIXS) spectroscopy. Journal of Analytical Atomic Spectrometry, 2020, 35, 2948-2955.	1.6	5

#	Article	IF	CITATIONS
10491	Different thermal degradation mechanisms: Role of aluminum in Ni-rich layered cathode materials. Nano Energy, 2020, 78, 105367.	8.2	27
10492	Oxygen Substitution for Li–Si–P–S–Cl Solid Electrolytes toward Purified Li ₁₀ GeP ₂ S ₁₂ -Type Phase with Enhanced Electrochemical Stabilities for All-Solid-State Batteries. Chemistry of Materials, 2020, 32, 8860-8867.	3.2	24
10493	Improved electrochemical performance of SiO2-coated Li-rich layered oxides-Li1.2Ni0.13Mn0.54Co0.13O2. Journal of Materials Science: Materials in Electronics, 2020, 31, 19475-19486.	1.1	5
10494	Efficient room-temperature solid-state lithium ion conductors enabled by mixed-graft block copolymer architectures. Giant, 2020, 3, 100027.	2.5	29
10495	Structural and Electrochemical Investigation of Zinc-Doped Lithiated MoO3 Cathode Materials for Lithium-Ion Batteries. International Journal of Electrochemical Science, 2020, , 9824-9837.	0.5	2
10496	Dual Stabilized Architecture of Si@SiO ₂ /N-Doped Carbon Composite Synthesized via Oxygen Plasma Method as Anode for High-performance LIBs. Chemistry Letters, 2020, 49, 423-427.	0.7	5
10497	Effects of a dual doping strategy on the structure and ionic conductivity of garnet-type electrolyte. Solid State Ionics, 2020, 356, 115427.	1.3	18
10498	Facile synthesis and performance of NASICON Li1+xAlxGe2-x(PO4)3 electrolytes for all solid state lithium-ion battery. Solid State Ionics, 2020, 356, 115454.	1.3	7
10499	Precise Synthesis of Fe-N ₂ Sites with High Activity and Stability for Long-Life Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 16105-16113.	7.3	120
10500	o Solid state polymer ionogel electrolyte for use in Liâ€ion batteries. SPE Polymers, 2020, 1, 55-65.	1.4	5
10501	Silicon anode design for Li ion batteries: Synergic effects of Ag nanoparticles and ionic liquid electrolytes. Chemical Engineering Journal Advances, 2020, 4, 100037.	2.4	4
10502	Understanding the high capacity contributions of Cu3PS4 towards lithium storage. Journal of Power Sources, 2020, 478, 229066.	4.0	7
10503	Toward the Origin of Magnetic Field-Dependent Storage Properties: A Case Study on the Supercapacitive Performance of FeCo ₂ O ₄ Nanofibers. ACS Applied Materials & Interfaces, 2020, 12, 49530-49540.	4.0	20
10504	High-Efficiency Electrolyte for Li-Rich Cathode Materials Achieving Enhanced Cycle Stability and Suppressed Voltage Fading Capable of Practical Applications on a Li-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 49666-49679.	4.0	15
10505	<i>In situ</i> formation of a Li–Sn alloy protected layer for inducing lateral growth of dendrites. Journal of Materials Chemistry A, 2020, 8, 23574-23579.	5.2	28
10506	Microalgae-Templated Spray Drying for Hierarchical and Porous Fe3O4/C Composite Microspheres as Li-ion Battery Anode Materials. Nanomaterials, 2020, 10, 2074.	1.9	8
10507	Challenges and Development of Tin-Based Anode with High Volumetric Capacity for Li-Ion Batteries. Electrochemical Energy Reviews, 2020, 3, 643-655.	13.1	123
10508	Stable lithium metal anode enabled by high-dimensional lithium deposition through a functional organic substrate. Energy Storage Materials, 2020, 33, 158-163.	9.5	19

#		Article	IF	CITATIONS
1	0509	Tantalum pentoxide-reduced graphene oxide nanocomposite as a new conversion type anode material having extrinsic pseudocapacitance for electrochemical lithium storage. Journal of Energy Storage, 2020, 32, 101991.	3.9	2
1	0510	What happens structurally and chemically during sodium uptake and release by Ni ₂ P ₂ S ₆ : a combined X-ray diffraction, X-ray absorption, pair distribution function and MAS NMR analysis. Journal of Materials Chemistry A, 2020, 8, 22401-22415.	5.2	11
1	0511	A composite cathode material encapsulated by amorphous garnet-type solid electrolyte and self-assembled La ₂ (Ni _{0.5} Li _{0.5})O ₄ nanoparticles for all-solid-state batteries. Journal of Materials Chemistry A, 2020, 8, 22893-22906.	5.2	17
1	0512	Highâ€Capacity, Dendriteâ€Free, and Ultrahighâ€Rate Lithiumâ€Metal Anodes Based on Monodisperse Nâ€Dopec Hollow Carbon Nanospheres. Small, 2020, 16, e2004770.	5.2	27
1	0513	Accelerating Redox Kinetics of Lithium-Sulfur Batteries. Trends in Chemistry, 2020, 2, 1020-1033.	4.4	46
1	0514	Pomegranate-Like Structured Si@SiOx Composites With High-Capacity for Lithium-Ion Batteries. Frontiers in Chemistry, 2020, 8, 666.	1.8	7
1	0515	Interface Between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes. ACS Applied Materials & amp; Interfaces, 2020, 12, 47181-47196.	4.0	62
1	0516	CuO–C modified glass fiber films with a mixed ion and electron-conducting scaffold for highly stable lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 21961-21967.	5.2	6
1	0517	Self-assembled materials for electrochemical energy storage. MRS Bulletin, 2020, 45, 815-822.	1.7	7
1	0518	Spatial Effects between Two 3D Selfâ€Supported Carbonâ€Nanotubeâ€Based Skeleton as Binderâ€Free Cathodes for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2020, 5, 11383-11390.	0.7	4
1	0519	Core@shell Sb@Sb ₂ O ₃ nanoparticles anchored on 3D nitrogen-doped carbon nanosheets as advanced anode materials for Li-ion batteries. Nanoscale Advances, 2020, 2, 5578-5583.	2.2	9
1	0520	Industrialization of Layered Oxide Cathodes for Lithiumâ€ion and Sodiumâ€ion Batteries: A Comparative Perspective. Energy Technology, 2020, 8, 2000723.	1.8	36
1	0521	Challenges, mitigation strategies and perspectives in development of Li metal anode. Nano Select, 2020, 1, 622-638.	1.9	4
1	0522	Effect of Li ⁺ Affinity on Ionic Conductivities in Melt-Blended Nitrile Rubber/Polyether. ACS Applied Polymer Materials, 2020, 2, 4943-4951.	2.0	18
1	0523	Improved gravimetric energy density and cycle life in organic lithium-ion batteries with naphthazarin-based electrode materials. Communications Materials, 2020, 1, .	2.9	12
1	0524	Poplar flower-like nitrogen-doped carbon nanotube@VS ₄ composites with excellent sodium storage performance. Inorganic Chemistry Frontiers, 2020, 7, 4883-4891.	3.0	21
1	0525	Metal-Based Electrocatalysts for High-Performance Lithium-Sulfur Batteries: A Review. Catalysts, 2020, 10, 1137.	1.6	14
1	0526	Metallic Monolayer Ta ₂ CS ₂ : An Anode Candidate for Li ⁺ , Na ⁺ , K ⁺ , and Ca ²⁺ Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10695-10701.	2.5	23

#	Article	IF	CITATIONS
10527	High-Performance Porous Silicon/Nanosilver Anodes from Industrial Low-Grade Silicon for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 49080-49089.	4.0	57
10528	Multi-scale quantification and modeling of aged nanostructured silicon-based composite anodes. Communications Chemistry, 2020, 3, .	2.0	30
10529	Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO ₂ batteries. Energy and Environmental Science, 2020, 13, 4322-4333.	15.6	72
10530	Massâ€Producible, Quasiâ€Zeroâ€Strain, Latticeâ€Waterâ€Rich Inorganic Openâ€Frameworks for Ultrafastâ€Charging and Longâ€Cycling Zincâ€Ion Batteries. Advanced Materials, 2020, 32, e2003592.	11.1	66
10531	Anomalous Sodium Storage Behavior in Al/F Dualâ€Doped P2â€Type Sodium Manganese Oxide Cathode for Sodiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2002205.	10.2	36
10532	Enhanced electrochemical performance by GeOx-Coated MXene nanosheet anode in lithium-ion batteries. Electrochimica Acta, 2020, 358, 136923.	2.6	9
10533	Enabling the ability of Li storage at high rate as anodes by utilizing natural rice husks-based hierarchically porous SiO2/N-doped carbon composites. Electrochimica Acta, 2020, 359, 136933.	2.6	30
10534	Dual crosslinked binders based on poly(2-hydroxyethyl methacrylate) and polyacrylic acid for silicon anode in lithium-ion battery. Electrochimica Acta, 2020, 359, 136967.	2.6	27
10535	Graphene bubble film encapsulated Si@C hollow spheres as a durable anode material for lithium storage. Electrochimica Acta, 2020, 361, 137074.	2.6	25
10536	Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1,3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochimica Acta, 2020, 363, 137198.	2.6	17
10537	In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Storage Materials, 2020, 33, 298-308.	9.5	40
10538	Nitrogen-doped carbon-wrapped porous FeMnO3 nanocages derived from etched prussian blue analogues as high-performance anode for lithium ion batteries. Journal of Power Sources, 2020, 475, 228683.	4.0	27
10539	Ionic liquid electrolytes for high-voltage, lithium-ion batteries. Journal of Power Sources, 2020, 479, 228791.	4.0	64
10540	Recent progress in aqueous monovalent-ion batteries with organic materials as promising electrodes. Materials Today Energy, 2020, 18, 100547.	2.5	48
10541	Correlating the phase evolution and anionic redox in Co-Free Ni-Rich layered oxide cathodes. Nano Energy, 2020, 78, 105365.	8.2	36
10542	Assessment methods of urban microclimate and its parameters: A critical review to take the research from lab to land. Urban Climate, 2020, 34, 100690.	2.4	40
10543	Electrolyte-Phobic Surface for the Next-Generation Nanostructured Battery Electrodes. Nano Letters, 2020, 20, 7455-7462.	4.5	25
10544	ReS ₂ : A High-Rate Pseudocapacitive Energy Storage Material. ACS Applied Energy Materials, 2020, 3, 10261-10269.	2.5	15

#	Article	IF	CITATIONS
10545	Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nature Communications, 2020, 11, 4973.	5.8	66
10546	Rational design of hierarchical FeSe ₂ encapsulated with bifunctional carbon cuboids as an advanced anode for sodium-ion batteries. Nanoscale, 2020, 12, 22210-22216.	2.8	26
10547	A single-ion conducting covalent organic framework for aqueous rechargeable Zn-ion batteries. Chemical Science, 2020, 11, 11692-11698.	3.7	51
10548	[BMIM]BF ₄ -modified PVDF-HFP composite polymer electrolyte for high-performance solid-state lithium metal battery. Journal of Materials Chemistry A, 2020, 8, 20593-20603.	5.2	47
10549	Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26053-26060.	3.3	82
10550	Fabrication and electrochemical performance of Sn–Ni–Cu alloy films anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 846, 156322.	2.8	15
10551	Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chemical Science, 2020, 11, 8686-8707.	3.7	82
10552	Phenanthrenequinone-Based Linear Polymers as Sustainable Cathode Materials for Rechargeable Li-Ion Batteries. International Journal of Electrochemical Science, 2020, 15, 7774-7787.	0.5	2
10553	Highâ€Temperature Shock Enabled Nanomanufacturing for Energyâ€Related Applications. Advanced Energy Materials, 2020, 10, 2001331.	10.2	86
10554	Hierarchical Hollow Bimetal Oxide Microspheres Synthesized through a Recrystallization Mechanism for Highâ€Performance Lithiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 3468-3477.	1.7	7
10555	Non-tubular-biomass-derived nitrogen-doped carbon microtubes for ultrahigh-area-capacity lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 580, 638-644.	5.0	22
10556	Pseudocapacitance-Induced High-Rate Potassium Storage in CoSe@NrGo Hybrid Nanosheets for Potassium-Ion Batteries. Energy & Fuels, 2020, 34, 10196-10202.	2.5	18
10557	Improvement of Lithium Metal Polymer Batteries through a Small Dose of Fluorinated Salt. Journal of Physical Chemistry Letters, 2020, 11, 6133-6138.	2.1	24
10558	Conductive polyaniline doped with phytic acid as a binder and conductive additive for a commercial silicon anode with enhanced lithium storage properties. Journal of Materials Chemistry A, 2020, 8, 16323-16331.	5.2	46
10559	Graphene encircled KFeSO ₄ F cathode composite for high energy density potassium-ion batteries. Chemical Communications, 2020, 56, 10050-10053.	2.2	16
10560	Co ₃ O ₄ Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angewandte Chemie - International Edition, 2020, 59, 19914-19918.	7.2	177
10561	Trifluoromethyl-free anion for highly stable lithium metal polymer batteries. Energy Storage Materials, 2020, 32, 225-233.	9.5	42
10562	Rational Design of Sandwich-Like "Gel–Liquid–Gel―Electrolytes for Dendrite-Free Lithium Metal Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 14207-14216.	1.8	8

$C = \cdot - \cdot$	- N -	Repor	
	()N		
CIIAII		KLI OK	

#	Article	IF	CITATIONS
10563	Assessing batteries supply chain networks for low impact vehicles. International Journal of Energy Sector Management, 2020, 14, 148-171.	1.2	6
10564	Sn-Decorated red P entangled in CNTs as anodes for advanced lithium ion batteries. Dalton Transactions, 2020, 49, 10909-10917.	1.6	8
10565	Controlled synthesis of N-doped carbon and TiO ₂ double-shelled nanospheres with encapsulated multi-layered MoO ₃ nanosheets as an anode for reversible lithium storage. Dalton Transactions, 2020, 49, 10928-10938.	1.6	6
10566	Preparation and properties of SnO2/nitrogen-doped foamed carbon as anode materials for lithium ion batteries. Ionics, 2020, 26, 5333-5341.	1.2	6
10567	A High-Performance Aqueous Zinc-Bromine Static Battery. IScience, 2020, 23, 101348.	1.9	71
10568	Understanding the Ionic Diffusivity in the (Meta)Stable (Un)doped Solid-State Electrolyte from First-Principles: A Case Study of LISICON. Journal of Physical Chemistry C, 2020, 124, 17485-17493.	1.5	6
10569	Applications of Long-Length Carbon Nano-Tube (L-CNT) as Conductive Materials in High Energy Density Pouch Type Lithium Ion Batteries. Polymers, 2020, 12, 1471.	2.0	5
10570	Quantifying the Effect of Electronic Conductivity on the Rate Performance of Nanocomposite Battery Electrodes. ACS Applied Energy Materials, 2020, 3, 2966-2974.	2.5	75
10571	Alleviating the shuttle effect via bifunctional MnFe2O4/AB modified separator for high performance lithium sulfur battery. Electrochimica Acta, 2020, 354, 136704.	2.6	24
10572	An experimental investigation of the degradation and combustion behaviors associated with lithium ion batteries after different aging treatments. Journal of Cleaner Production, 2020, 272, 122708.	4.6	18
10573	Present status of the functional advanced micro-, nano-printings – a mini review. Materials Today Chemistry, 2020, 17, 100328.	1.7	21
10574	Probing Mg Intercalation in the Tetragonal Tungsten Bronze Framework V ₄ Nb ₁₈ O ₅₅ . Inorganic Chemistry, 2020, 59, 9783-9797.	1.9	7
10575	TiO2 as a multifunction coating layer to enhance the electrochemical performance of SiOx@TiO2@C composite as anode material. Nano Energy, 2020, 77, 105082.	8.2	82
10576	Bipolar Electrodes for Nextâ€Generation Rechargeable Batteries. Advanced Science, 2020, 7, 2001207.	5.6	41
10577	Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydrate Polymers, 2020, 248, 116753.	5.1	30
10578	Origin of intergranular Li metal propagation in garnet-based solid electrolyte by direct electronic structure analysis and performance improvement by bandgap engineering. Journal of Materials Chemistry A, 2020, 8, 16892-16901.	5.2	24
10579	High-Ni cathode material improved with Zr for stable cycling of Li-ion rechargeable batteries. RSC Advances, 2020, 10, 26756-26764.	1.7	31
10580	Hyperbranched PCL/PS Copolymer-Based Solid Polymer Electrolytes Enable Long Cycle Life of Lithium Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 110532.	1.3	21

#	Article	IF	CITATIONS
10581	Phytic acid-derived Co2P/N-doped carbon nanofibers as flexible free-standing anode for high performance lithium/sodium ion batteries. Journal of Alloys and Compounds, 2020, 846, 156256.	2.8	15
10582	Anisotropic Elastic Properties of Battery Anodes. Journal of the Electrochemical Society, 2020, 167, 110550.	1.3	8
10583	Unique structural advances of graphdiyne for energy applications. EnergyChem, 2020, 2, 100041.	10.1	48
10584	Pyridinic-to-graphitic conformational change of nitrogen in graphitic carbon nitride by lithium coordination during lithium plating. Energy Storage Materials, 2020, 31, 505-514.	9.5	20
10585	Double–shell zinc manganate hollow microspheres embedded in carbon networks as cathode materials for high–performance aqueous zinc–ion batteries. Journal of Colloid and Interface Science, 2020, 580, 528-539.	5.0	18
10586	Microstructured Sulfur-Doped Carbon-Coated Fe ₇ S ₈ Composite for High-Performance Lithium and Sodium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 11783-11794.	3.2	38
10587	A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques. Electronics (Switzerland), 2020, 9, 1161.	1.8	111
10588	Selection of nitrogen source and PVP-assisted sol-gel method synthesis of LiFe0.65Mn0.35PO4/C as cathode material for lithium ion batteries. Ionics, 2020, 26, 5405-5415.	1.2	6
10589	Lithium lanthanum titanate perovskite as an anode for lithium ion batteries. Nature Communications, 2020, 11, 3490.	5.8	121
10590	Carbon layer on the surface of PNb9O25 nanowires offers lots of areas for charge transfer. Ceramics International, 2020, 46, 29073-29079.	2.3	0
10591	Nanoalloys for Energy Applications. , 2020, , 347-380.		3
10592	A facile method to synthesize 3D structured Sn anode material with excellent electrochemical performance for lithium-ion batteries. Progress in Natural Science: Materials International, 2020, 30, 456-460.	1.8	8
10593	X-ray photoelectron spectra and electronic structure of Mo doped V2O5. Thin Solid Films, 2020, 713, 138360.	0.8	4
10594	Composite Solid Electrolyte for Solid-State Lithium Batteries Workable at Room Temperature. ACS Applied Energy Materials, 2020, 3, 12127-12133.	2.5	15
10595	Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 26013-26022.	5.2	21
10596	Unraveling atomic-scale lithiation mechanisms in a NiO thin film electrode. Journal of Materials Chemistry A, 2020, 8, 25198-25207.	5.2	7
10597	Design Strategies of Safe Electrolytes for Preventing Thermal Runaway in Lithium Ion Batteries. Chemistry of Materials, 2020, 32, 9821-9848.	3.2	100
10598	A functionalized metal organic framework-laden nanoporous polymer electrolyte for exceptionally stable lithium electrodeposition. Chemical Communications, 2020, 56, 15533-15536.	2.2	20

# Article	IF	CITATIONS
A Flower-Shape NiO/Co3O4 Composite as Anode for Lithium Ion Battery Prepared by a Template-Free Hydrothermal Method. International Journal of Electrochemical Science, 2020, 15, 11522-11530.	0.5	1
10600 Lithium fluorinated sulfonimide-based solid polymer electrolytes for Li LiFePO4 cell: The impact of anionic structure. Solid State Ionics, 2020, 358, 115519.	1.3	16
Sb2MoO6 Decorated on Graphene as an Anode Material for Lithium/Sodium-Ion Batteries. Journal of Physics: Conference Series, 2020, 1605, 012176.	0.3	3
Electrochemical Performance of an Ultrathin Surface Oxide-Modulated Nano-Si Anode Confined in a 10602 Graphite Matrix for Highly Reversible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 54608-54618.	4.0	16
10603 Carbon aerogel/SnO ₂ as an advanced anode for sodium-ion batteries. Functional Materials Letters, 2020, 13, 2051026.	0.7	8
Heterostructured Titanium Oxynitride-Manganese Cobalt Oxide Nanorods as High-Performance 10604 Electrode Materials for Supercapacitor Devices. ACS Applied Materials & Interfaces, 2020, 12, 54524-54536.	4.0	20
A stable metallic 3D porous BPC ₂ as a universal anode material for Li, Na, and K ion batteries with high performance. Journal of Materials Chemistry A, 2020, 8, 25824-25830.	5.2	18
Evaluations of Discharge Capacity and Cycle Stability for a Graphene-added Li1.9Ni0.35Mn0.65O2 10606 Cathode Fabricated by using Carbonate Co-precipitation. Journal of the Korean Physical Society, 2020 77, 1035-1039.	0, 0.3	0
10607 Enhancement of Operating Voltage and Temperature Range by Adding Lithium bis(fluorosulfonyl)imid as Electrolyte Additive. ChemistrySelect, 2020, 5, 14008-14016.	de 0.7	7
Relationship between rate performance and electronic/structural changes during oxygen redox of lithium-rich 4d/3d transition metal oxides. Solid State Ionics, 2020, 357, 115459.	1.3	6
10609 The Si@Câ€Network Electrode Prepared by an Inâ€Situ Carbonization Strategy with Enhanced Cycl Performance. ChemElectroChem, 2020, 7, 4999-5004.	le 1.7	4
Carbon Free Nanostructured Plate like WS ₂ with Excellent Lithium Storage Properties. ChemistrySelect, 2020, 5, 14183-14189.	0.7	12
A Comprehensive Membrane Process for Preparing Lithium Carbonate from High Mg/Li Brine. Membranes, 2020, 10, 371.	1.4	30
Hierarchical Lamellarâ€Structured MnO ₂ @graphene for High Performance Li, Na and K i Batteries. ChemistrySelect, 2020, 5, 12481-12486.	ion 0.7	11
3D Coral-like LLZO/PVDF Composite Electrolytes with Enhanced Ionic Conductivity and Mechanical 10613 Flexibility for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52652-52659.	4.0	81
Synthesis of a three-dimensional cross-linked Ni–V2O5 nanomaterial in an ionic liquid for lithium-io batteries. RSC Advances, 2020, 10, 39137-39145.	on 1.7	5
10615 Sb ₂ Te ₃ Hexagonal Nanosheets as High-Capacity Positive Materials for Rechargeable Aluminum Batteries. ACS Applied Energy Materials, 2020, 3, 12635-12643.	2.5	7
10616 Dandelionâ€like CoO/Co ₃ O ₄ /Carbon Composites as Anode Materials for a Highâ€Performance Lithium Ion Battery. ChemistrySelect, 2020, 5, 12932-12939.	0.7	9

#	Article	IF	CITATIONS
10617	Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes. Applied Physics Reviews, 2020, 7, .	5.5	15
10618	In-Built Polymer-in-Solvent and Solvent-in-Polymer Electrolytes for High-Voltage Lithium Metal Batteries. Cell Reports Physical Science, 2020, 1, 100146.	2.8	10
10619	Boosting Tunnel-Type Manganese Oxide Cathodes by Lithium Nitrate for Practical Aqueous Na-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10744-10751.	2.5	4
10620	High Molecular Weight Poly(methyl methacrylate) Synthesis Using Recyclable and Reusable Zeolitic Imidazole Frameworkâ€8 Catalyst. Macromolecular Chemistry and Physics, 2020, 221, 2000271.	1.1	1
10621	Efficient suppression of the shuttle effect in Na–S batteries with an As ₂ S ₃ anchoring monolayer. Physical Chemistry Chemical Physics, 2020, 22, 27300-27307.	1.3	20
10622	3D Printing of a V ₈ C ₇ –VO ₂ Bifunctional Scaffold as an Effective Polysulfide Immobilizer and Lithium Stabilizer for Li–S Batteries. Advanced Materials, 2020, 32, e2005967.	11.1	140
10623	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	6.4	186
10624	Probing the Fast Lithium-Ion Transport in Small-Molecule Solid Polymer Electrolytes by Solid-State NMR. Macromolecules, 2020, 53, 10078-10085.	2.2	15
10625	Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb2Se3 with in situ transmission electron microscopy. Nano Energy, 2020, 77, 105299.	8.2	20
10626	Binary Iron Sulfide as a Low-Cost and High-Performance Anode for Lithium-/Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52888-52898.	4.0	38
10627	Aluminum ions speciation and transport in acidic deep eutectic AlCl3 amide electrolytes. Journal of Molecular Liquids, 2020, 319, 114118.	2.3	12
10628	Nitroxide-Mediated Polymerization: A Versatile Tool for the Engineering of Next Generation Materials. ACS Applied Polymer Materials, 2020, 2, 5327-5344.	2.0	58
10629	In Situ Deprotection of Polymeric Binders for Solutionâ€Processible Sulfideâ€Based Allâ€Solidâ€State Batteries. Advanced Materials, 2020, 32, e2001702.	11.1	43
10630	Shielding Polysulfide Intermediates by an Organosulfur ontaining Solid Electrolyte Interphase on the Lithium Anode in Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003012.	11.1	108
10631	MoS2/graphene composites: Fabrication and electrochemical energy storage. Energy Storage Materials, 2020, 33, 470-502.	9.5	85
10632	The improved performance of spinel LiMn2O4 cathode with micro-nanostructured sphere-interconnected-tube morphology and surface orientation at extreme conditions for lithium-ion batteries. Electrochimica Acta, 2020, 358, 136901.	2.6	35
10633	Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures. Energy Storage Materials, 2020, 33, 95-107.	9.5	40
10634	Fabrication of hollow bamboo-shaped NiCo2O4 with controllable shell morphologies for high performance hybrid supercapacitors. Journal of Alloys and Compounds, 2020, 849, 156317.	2.8	23

#	Article	IF	CITATIONS
10635	Increase in ionic conductivity of NASICON-type solid electrolyte Li1.5Al0.5Ti1.5(PO4)3 by Nb2O5 doping. Solid State Ionics, 2020, 354, 115399.	1.3	17
10636	Elucidation of the role of lithium iodide as an additive for the <scp>liquidâ€based</scp> synthesis of <scp> Li ₇ P ₂ S ₈ I </scp> solid electrolyte. International Journal of Energy Research, 2020, 44, 11542-11549.	2.2	3
10637	Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries. Ionics, 2020, 26, 5535-5542.	1.2	39
10638	3D-printed highly deformable electrodes for flexible lithium ion batteries. Energy Storage Materials, 2020, 33, 55-61.	9.5	64
10639	Synthesis of few-layer g-C3N4 nanosheets-coated MoS2/TiO2 heterojunction photocatalysts for photo-degradation of methyl orange (MO) and 4-nitrophenol (4-NP) pollutants. Inorganic Chemistry Communication, 2020, 120, 108146.	1.8	22
10640	Investigating the role of crystallographic orientation of single crystalline silicon on their electrochemical lithiation behavior: Surface chemistry of Si determines the bulk lithiation. Surfaces and Interfaces, 2020, 20, 100585.	1.5	0
10641	Rational Tuning of a Li ₄ SiO ₄ -Based Hybrid Interface with Unique Stepwise Prelithiation for Dendrite-Proof and High-Rate Lithium Anodes. ACS Applied Materials & Interfaces, 2020, 12, 39362-39371.	4.0	23
10642	Enhanced Conductivity via Extraction of Hydrocarbon Templates from Nanophase-Separated PEO–LiOTf Polymer Electrolyte Films. ACS Omega, 2020, 5, 20567-20574.	1.6	1
10643	Three dimensional Ti ₃ C ₂ MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes. Nanoscale Advances, 2020, 2, 4212-4219.	2.2	39
10644	Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance. Nanoscale, 2020, 12, 17925-17930.	2.8	25
10645	Electrochemical performance of Li ⁺ insertion/extraction in Ni-substituted ZnCo ₂ O ₄ as an emerging highly efficient anode material. RSC Advances, 2020, 10, 28550-28559.	1.7	7
10646	An all-weather Li/LiV ₂ (PO ₄) ₃ primary battery with improved shelf-life based on the <i>in situ</i> modification of the cathode/electrolyte interface. Journal of Materials Chemistry A, 2020, 8, 16951-16959.	5.2	8
10647	Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects. Journal of Materials Chemistry A, 2020, 8, 17848-17882.	5.2	85
10648	Superoxide formation in Li ₂ VO ₂ F cathode material – a combined computational and experimental investigation of anionic redox activity. Journal of Materials Chemistry A, 2020, 8, 16551-16559.	5.2	18
10649	Efficient synthesis of Cu3P nanoparticles confined in 3D nitrogen-doped carbon networks as high performance anode for lithium/sodium-ion batteries. Journal of Alloys and Compounds, 2020, 849, 156436.	2.8	35
10650	Synthesis of Ni–rich LiNi0.83Co0.12Mn0.05O2 cathode materials with low residual Lithium content without washing. Solid State Ionics, 2020, 355, 115418.	1.3	4
10651	Sulfur-Rich (NH ₄) ₂ Mo ₃ S ₁₃ as a Highly Reversible Anode for Sodium/Potassium-Ion Batteries. ACS Nano, 2020, 14, 9626-9636.	7.3	43
10652	Architecting a Stable High-Energy Aqueous Al-Ion Battery. Journal of the American Chemical Society, 2020, 142, 15295-15304.	6.6	188

#	ARTICLE The critical role of titanium cation in the enhanced performance of	IF	CITATIONS
10653	P2-Na _{0.5} Ni _{0.25} Mn _{0.60} Ti _{0.15} O ₂ cathode material for sodium-ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 19992-19998.	1.3	17
10654	Issues and solutions toward zinc anode in aqueous zincâ€ion batteries: A mini review. , 2020, 2, 540-560.		225
10655	Co ₃ O ₄ Hollow Nanoparticles Embedded in Mesoporous Walls of Carbon Nanoboxes for Efficient Lithium Storage. Angewandte Chemie, 2020, 132, 20086-20090.	1.6	29
10656	Design and green synthesis of 1â€(4â€ferrocenylbutyl)piperazine chemically grafted reduced graphene oxide for supercapacitor application. Applied Organometallic Chemistry, 2020, 34, e5946.	1.7	13
10657	Harnessing the unique features of MXenes for sulfur cathodes. Tungsten, 2020, 2, 162-175.	2.0	25
10658	Sulfur-based redox chemistry for electrochemical energy storage. Coordination Chemistry Reviews, 2020, 422, 213445.	9.5	28
10659	Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage. Nano Energy, 2020, 77, 105189.	8.2	31
10661	A Liquid Electrolyte with De-Solvated Lithium Ions for Lithium-Metal Battery. Joule, 2020, 4, 1776-1789.	11.7	146
10662	Two-dimensional B3P monolayer as a superior anode material for Li and Na ion batteries: a first-principles study. Materials Today Energy, 2020, 17, 100486.	2.5	15
10663	Standardless determination of nanometric thicknesses in stratified samples by electron probe microanalysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 171, 105932.	1.5	4
10664	Evaluation of chemical stability of conducting ceramics to protect metallic lithium in Li/S batteries. Solid State Ionics, 2020, 354, 115402.	1.3	1
10665	Scalable Synthesis of Few-Layered 2D Tungsten Diselenide (2H-WSe ₂) Nanosheets Directly Grown on Tungsten (W) Foil Using Ambient-Pressure Chemical Vapor Deposition for Reversible Li-Ion Storage. ACS Omega, 2020, 5, 19409-19421.	1.6	23
10666	Surface modification and carbon coating effect on a high-performance K and S doped LiMn2O4. Applied Surface Science, 2020, 531, 147138.	3.1	24
10667	The performance of highly active manganese oxide catalysts for ambient conditions carbon monoxide oxidation. Current Research in Green and Sustainable Chemistry, 2020, 3, 100012.	2.9	33
10668	Towards a high-performance garnet-based solid-state Li metal battery: A perspective on recent advances. Journal of Power Sources, 2020, 472, 228571.	4.0	12
10669	Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy, 2020, 77, 105200.	8.2	71
10670	Tuning the Morphology and Electronic Properties of Single-Crystal LiNi0.5Mn1.5O4â~'δ: Exploring the Influence of LiCl–KCl Molten Salt Flux Composition and Synthesis Temperature. Inorganic Chemistry, 2020, 59, 10591-10603.	1.9	23
10671	Development of KPF ₆ /KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34873-34881.	4.0	62

#	Article	IF	CITATIONS
10672	Engineering Surface Oxygenated Functionalities on Commercial Carbon toward Ultrafast Sodium Storage in Ether-Based Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 37116-37127.	4.0	13
10673	Electrode material–ionic liquid coupling for electrochemical energy storage. Nature Reviews Materials, 2020, 5, 787-808.	23.3	210
10674	The Electrochemical Impedance Spectroscopy Features of the Lithium Nickel Manganese Cobalt Oxide Based Lithium Ion Batteries During Cycling. IOP Conference Series: Earth and Environmental Science, 2020, 526, 012069.	0.2	0
10675	Influence of Cycling on the Electrochemical Impedance Spectroscopy for Lithium Iron Phosphate Batteries. IOP Conference Series: Earth and Environmental Science, 2020, 526, 012084.	0.2	1
10676	A waste newspaper/multi-walled carbon nanotube/TiO ₂ interlayer for improving the cycling stability of lithium–sulfur batteries by anchoring polysulfides. Dalton Transactions, 2020, 49, 11675-11681.	1.6	10
10677	High performance of boehmite/polyacrylonitrile composite nanofiber membrane for polymer lithium-ion battery. RSC Advances, 2020, 10, 27492-27501.	1.7	26
10678	Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density. National Science Review, 2020, 7, 1768-1775.	4.6	43
10679	The Characteristics of Laser Welding of a Thin Aluminum Tab and Steel Battery Case for Lithium-Ion Battery. Metals, 2020, 10, 842.	1.0	36
10680	Thiolâ€Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithiumâ€Metal Batteries. Advanced Materials, 2020, 32, e2001259.	11.1	139
10681	Cathode materials in non-aqueous aluminum-ion batteries: Progress and challenges. Ceramics International, 2020, 46, 26454-26465.	2.3	25
10682	Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries. CheM, 2020, 6, 2242-2256.	5.8	116
10683	High stable rate cycling performances of microporous carbon spheres/selenium composite (MPCS/Se) cathode as lithium–selenium battery. Journal of Power Sources, 2020, 473, 228611.	4.0	19
10684	Thickness gradient promotes the performance of Si-based anode material for lithium-ion battery. Materials and Design, 2020, 195, 108993.	3.3	6
10685	High-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 cathodes. Nano Energy, 2020, 77, 105129.	8.2	76
10686	Effect of Element Substitution on Electrochemical Performance of Silicide/Si Composite Electrodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 7438-7444.	2.5	8
10687	Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nature Communications, 2020, 11, 3826.	5.8	193
10688	Lithium oxidation and electrolyte decomposition at Li-metal/liquid electrolyte interfaces. Journal of Materials Chemistry A, 2020, 8, 17036-17055.	5.2	28
10689	A high rate and long cycling life lithium metal anode with a self-repairing alloy coating. Journal of Materials Chemistry A, 2020, 8, 17415-17419.	5.2	31

# Article		IF	Citations
10690 Comprehensive Investigation into Garnet Electrolytes Toward Application-Oriented Solid Batteries. Electrochemical Energy Reviews, 2020, 3, 656-689.	Lithium	13.1	99
10691 Reagent induced formation of NiCo2O4 with different morphologies with large surface at performance asymmetric supercapacitors. Chemical Physics Letters, 2020, 755, 137809.	rea for high	1.2	42
10692 Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and pro Energy Storage Materials, 2020, 33, 26-54.	ospects.	9.5	123
An atomistic perspective on lithiation kinetics and morphological evolution in void-involve silicon/carbon nanohybrid. Materials and Design, 2020, 195, 109037.	ed	3.3	11
10694 Improving the rate capability of a SiOx/graphite anode by adding LiNO3. Progress in Natu Materials International, 2020, 30, 321-327.	ral Science:	1.8	18
10695 Electrospun MnCo ₂ O ₄ Nanotubes as High-Performance Anode Lithium-Ion Batteries. Energy & Fuels, 2020, 34, 11574-11580.	Materials for	2.5	38
10696 Boosting Li-Ion Transport in Transition-Metal-Doped Li ₂ SnO ₃ . I Chemistry, 2020, 59, 11841-11846.	norganic	1.9	15
10697 A Highâ€Performing Asymmetric Supercapacitor of Molybdenum Nitride and Vanadium N as Binderâ€Free Electrode Grown through Reactive Sputtering. Energy Technology, 2020	itride Thin Films , 8, 2000466.	1.8	33
10698 Effect of relative humidity on the reaction kinetics in rubidium silver iodide based all-solid battery. Electrochimica Acta, 2020, 355, 136779.	-state	2.6	4
10699 Facile synthesis, structure and electrochemical performance of RbV3O8/ketjenblack as ca material for lithium-ion batteries. Electrochimica Acta, 2020, 355, 136799.	thode	2.6	5
10700 Revisiting the energy efficiency and (potential) full-cell performance of lithium-ion batteri employing conversion/alloying-type negative electrodes. Journal of Power Sources, 2020,	es 473, 228583.	4.0	23
Microwave-assisted preparation and improvement mechanism of carbon nanotube@NiM 10701 core-shell nanocomposite for high performance asymmetric supercapacitors. Journal of Po Sources, 2020, 473, 228609.	n2O4 ower	4.0	55
10703 Design Strategies for Polymer Electrolytes with Ether and Carbonate Groups for Solid-Sta Metal Batteries. Chemistry of Materials, 2020, 32, 6811-6830.	te Lithium	3.2	57
Modifying the Properties of Fast Lithium-Ion Conductors—The Lithium Phosphidotetrela 10704 Li ₁₄ SiP ₆ , Li ₁₄ GeP ₆ , and Li ₁₄ SnP ₆ . Chemistry of Materials, 2020, 32, 6925-6934.		3.2	21
10705 Nature-Inspired Purpurin Polymer for Li-Ion Batteries: Mechanistic Insights into Energy Sto Solid-State NMR and Computational Studies. Journal of Physical Chemistry C, 2020, 124,		1.5	6
10706 Convenient fabrication of a core–shell Sn@TiO ₂ anode for lithium storage electroplating sludge. Chemical Communications, 2020, 56, 10187-10190.	e from tinplate	2.2	16
10707 Clout of carbon in polyacrylonitrile/sulfur composite cathode via solution processing tech lithium-sulfur batteries. Journal of Porous Materials, 2020, 27, 1837-1845.	inique for	1.3	2
Nanomanufacturing of RGOâ€CNT Hybrid Film for Flexible Aqueous Alâ€Ion Batteries. Sm e2002856.	all, 2020, 16,	5.2	28

#	Article	IF	CITATIONS
10709	Zeolitic Imidazolate Frameworks-Derived Activated Carbon As Electrode Material for Lithium-Sulfur Batteries and Lithium-Ion Batteries. Journal of Electronic Materials, 2020, 49, 6156-6164.	1.0	5
10710	3D hierarchical porous N-doped carbon nanosheets/MgFe2O4 composite as anode material with excellent cycling stability and rate performance. Scripta Materialia, 2020, 189, 36-41.	2.6	10
10711	Transport Mechanisms Underlying Ionic Conductivity in Nanoparticle-Based Single-Ion Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 6970-6975.	2.1	10
10712	Designing Comb-Chain Crosslinker-Based Solid Polymer Electrolytes for Additive-Free All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 6914-6921.	4.5	35
10713	Graphitic porous carbon with multiple structural merits for high-performance organic supercapacitor. Journal of Power Sources, 2020, 477, 228759.	4.0	39
10714	Understanding the Electrochemical Stability Window of Polymer Electrolytes in Solid-State Batteries from Atomic-Scale Modeling: The Role of Li-Ion Salts. Chemistry of Materials, 2020, 32, 7237-7246.	3.2	101
10715	A combination of hierarchical pore and buffering layer construction for ultrastable nanocluster Si/SiOx anode. Nano Research, 2020, 13, 2987-2993.	5.8	23
10716	Anisotropic ion transport in 2D polymer single crystal-based solid polymer electrolytes. Giant, 2020, 2, 100021.	2.5	18
10717	An interconnected silver coated carbon cloth framework as a host to reduce lithium nucleation over-potential for dendrite-free lithium metal anodes. Journal of Electroanalytical Chemistry, 2020, 878, 114569.	1.9	21
10718	Lithiated bimetallic oxide, Li3Fe(MoO4)3, as a high-performance anode material for lithium-ion batteries and its multielectron reaction mechanism. Journal of Power Sources, 2020, 476, 228656.	4.0	13
10719	A graphene oxide and ionic liquid assisted anion-immobilized polymer electrolyte with high ionic conductivity for dendrite-free lithium metal batteries. Journal of Power Sources, 2020, 477, 228754.	4.0	41
10720	Optimizing the structure of layered cathode material for higher electrochemical performance by elucidating structural evolution during heat processing. Nano Energy, 2020, 78, 105194.	8.2	19
10721	In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy, 2020, 78, 105282.	8.2	93
10722	Improvement of the Battery Performance of Indigo, an Organic Electrode Material, Using PEDOT/PSS with <scp>d-</scp> Sorbitol. ACS Omega, 2020, 5, 18565-18572.	1.6	13
10723	Comparative Study on Sulfide and Oxide Electrolyte Interfaces with Cathodes in All-Solid-State Battery via First-Principles Calculations. ACS Applied Energy Materials, 2020, 3, 11061-11072.	2.5	19
10724	Stable Potassium Metal Anodes with an Allâ€Aluminum Current Collector through Improved Electrolyte Wetting. Advanced Materials, 2020, 32, e2002908.	11.1	70
10725	Efficient TiC-C hybrid conductive matrix for ZnTe anode in Lithium-ion storage. Applied Surface Science, 2020, 534, 147679.	3.1	13
10726	Enhanced Li-ion battery performance of TiO2 nanoparticle-loaded Li4Ti5O12 nanosheet anode using carbon coated copper as current collector. Journal of Power Sources, 2020, 479, 229090.	4.0	27

#	Article	IF	CITATIONS
10727	Investigation on the Effect of Different Mild Acidic Electrolyte on ZIBs Electrode/Electrolyte Interface and the Performance Improvements With the Optimized Cathode. Frontiers in Chemistry, 2020, 8, 827.	1.8	7
10728	Metal–Organic Framework Derived Fe ₇ S ₈ Nanoparticles Embedded in Heteroatomâ€Đoped Carbon with Lithium and Sodium Storage Capability. Small Methods, 2020, 4, 2000637.	4.6	46
10729	Enhanced photo-response of CdTe Thin film via Mo doping prepared using electron beam evaporation technique. Journal of Materials Science: Materials in Electronics, 2020, 31, 21059-21072.	1.1	10
10730	Hard SiOC Microbeads as a High-Performance Lithium-Ion Battery Anode. ACS Applied Energy Materials, 2020, 3, 10183-10191.	2.5	22
10731	Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture. ACS Applied Materials & Interfaces, 2020, 12, 49607-49616.	4.0	24
10732	Formation and stability of small polarons at the lithium-terminated Li4Ti5O12 (LTO) (111) surface. Journal of Chemical Physics, 2020, 153, 144701.	1.2	7
10733	Double modification to effectively improve electrochemical performance of Co3O4 as Li-ion batteries anode. Materials Letters, 2020, 280, 128558.	1.3	7
10734	<i>In situ</i> electrochemistry inside a TEM with controlled mass transport. Nanoscale, 2020, 12, 22192-22201.	2.8	29
10735	A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges. World Electric Vehicle Journal, 2020, 11, 66.	1.6	107
10736	7â€Hydroxycoumarin as a Novel Filmâ€Forming Additive for LiNi 0.5 Mn 1.5 O 4 Cathode at Elevated Temperature. ChemElectroChem, 2020, 7, 4655-4662.	1.7	3
10737	Diffusion of lithium ions in Lithium-argyrodite solid-state electrolytes. Npj Computational Materials, 2020, 6, .	3.5	30
10738	A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chemical Society Reviews, 2020, 49, 8790-8839.	18.7	461
10739	Microwave-Based Synthesis of Functional Morphological Variants and Carbon Nanotube-Based Composites of VS ₄ for Electrochemical Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 16397-16412.	3.2	9
10740	Branched conjugated polymers for fast capacitive storage of sodium ions. Journal of Materials Chemistry A, 2020, 8, 23851-23856.	5.2	32
10741	Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport. Materials Today, 2020, 41, 304-315.	8.3	181
10742	Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature. Energy & Fuels, 2020, 34, 13456-13472.	2.5	44
10743	Recent Advances in Nanostructured Transition Metal Carbide- and Nitride-Based Cathode Electrocatalysts for Li–O2 Batteries (LOBs): A Brief Review. Nanomaterials, 2020, 10, 2106.	1.9	14
10744	Selfâ€Assembly/Sacrificial Synthesis of Highly Capacitive Hierarchical Porous Carbon from Longan Pulp Biomass. ChemElectroChem, 2020, 7, 4606-4613.	1.7	11

# 10745	ARTICLE Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries. Korean Journal of Chemical Engineering, 2020, 37, 1795-1802.	IF 1.2	CITATIONS 28
10746	Zn3V3O8 nanostructures: Facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceramics International, 2020, 46, 28894-28902.	2.3	77
10747	Empirical law for lithium ion state of charge estimation for EV application. , 2020, , .		0
10748	Recent progress in organic electrodes for zinc-ion batteries. Journal of Semiconductors, 2020, 41, 091704.	2.0	31
10749	An "Etherâ€Inâ€Water―Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e2004017.	11.1	93
10750	Vacancyâ€Driven High Rate Capabilities in Calciumâ€Doped Na _{0.4} MnO ₂ Cathodes for Aqueous Sodiumâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2002077.	10.2	37
10751	A Highâ€Performance Na–Al Battery Based on Reversible NaAlCl ₄ Catholyte. Advanced Energy Materials, 2020, 10, 2001378.	10.2	18
10752	Defect Engineering in Metastable Phases of Transitionâ€Metal Dichalcogenides for Electrochemical Applications. Chemistry - an Asian Journal, 2020, 15, 3961-3972.	1.7	8
10753	Advanced Materials Prepared via Metallic Reduction Reactions for Electrochemical Energy Storage. Small Methods, 2020, 4, 2000613.	4.6	15
10754	Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes. Accounts of Chemical Research, 2020, 53, 1992-2002.	7.6	171
10755	A disordered rock salt anode for fast-charging lithium-ion batteries. Nature, 2020, 585, 63-67.	13.7	326
10756	Magnetron sputtering enabled synthesis of nanostructured materials for electrochemical energy storage. Journal of Materials Chemistry A, 2020, 8, 20260-20285.	5.2	25
10757	Nonmetal Current Collectors: The Key Component for Highâ€Energyâ€Density Aluminum Batteries. Advanced Materials, 2020, 32, e2001212.	11.1	26
10758	Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review. Chemical Record, 2020, 20, 1198-1219.	2.9	40
10759	Hierarchical Selfâ€Supported Carbon Nanostructure Enables Superior Stability of Highly Nitrogenâ€Doped anodes. ChemElectroChem, 2020, 7, 3883-3888.	1.7	1
10760	Hybrid Anodes of Lithium Titanium Oxide and Carbon Onions for Lithiumâ€lon and Sodiumâ€lon Energy Storage. Energy Technology, 2020, 8, 2000679.	1.8	3
10761	Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. Nano-Micro Letters, 2020, 12, 179.	14.4	82
10762	Water-Assisted Increase of Ionic Conductivity of Lithium Poly(acrylic acid)-Based Aqueous Polymer Electrolyte. ACS Applied Energy Materials, 2020, 3, 10119-10130.	2.5	19

#	Article	IF	CITATIONS
10763	Flexible and high ion conducting solid polymer electrolytes prepared via ring-opening polymerization. Molecular Crystals and Liquid Crystals, 2020, 705, 99-104.	0.4	2
10764	A green ligand-based copper–organic framework: a high-capacity lithium storage material and insight into its abnormal capacity-increase behavior. New Journal of Chemistry, 2020, 44, 17899-17905.	1.4	10
10765	Aqueous Rechargeable Li ⁺ /Na ⁺ Hybrid Ion Battery with High Energy Density and Long Cycle Life. Small, 2020, 16, e2003585.	5.2	16
10766	Porosity controlled carbon-based 3D anode for lithium metal batteries by a slurry based process. Chemical Communications, 2020, 56, 13040-13043.	2.2	16
10767	Advances in the Design of 3Dâ€Structured Electrode Materials for Lithiumâ€Metal Anodes. Advanced Materials, 2020, 32, e2002193.	11.1	165
10768	Sustainable Formation of Sulfur-Enriched Solid Electrolyte Interface on a Li Metal Electrode by Sulfur Chain-Containing Polymer Electrolyte Interfacial Layers. ACS Applied Energy Materials, 2020, 3, 10070-10079.	2.5	5
10769	Boron Carbonitride Lithium-Ion Capacitors with an Electrostatically Expanded Operating Voltage Window. ACS Applied Materials & Interfaces, 2020, 12, 47425-47434.	4.0	20
10770	Regulating the growth of aluminum electrodeposits: towards anode-free Al batteries. Journal of Materials Chemistry A, 2020, 8, 23231-23238.	5.2	29
10771	Applications of different nano-sized conductive materials in high energy density pouch type lithium ion batteries. Electrochimica Acta, 2020, 362, 137166.	2.6	4
10772	Safe, superionic conductive and flexible "polymer-in-plastic salts―electrolytes for dendrite-free lithium metal batteries. Energy Storage Materials, 2020, 33, 442-451.	9.5	22
10773	Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy, 2020, 78, 105366.	8.2	86
10774	Simultaneous Interphase Optimizations on the Large-Area Anode and Cathode of High-Energy-Density Lithium-Ion Pouch Cells by a Multiple Additives Strategy. ACS Applied Materials & Interfaces, 2020, 12, 46084-46094.	4.0	7
10775	Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. Journal of Materials Chemistry A, 2020, 8, 22100-22110.	5.2	82
10776	Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy and Environmental Science, 2020, 13, 4450-4497.	15.6	219
10777	Lithium electrodeposited on lithiophilic LTO/Ti ₃ C ₂ substrate as a dendrite-free lithium metal anode. Journal of Materials Chemistry A, 2020, 8, 20650-20657.	5.2	11
10778	IEEE NANO 2020 The 20th IEEE International Conference on Nanotechnology. , 2020, , .		0
10779	One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. Journal of Materials Science: Materials in Electronics, 2020, 31, 17332-17338.	1.1	70
10780	A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Scientific Reports, 2020, 10, 14966.	1.6	60

#	Article	IF	CITATIONS
10781	Beyond the concentrated electrolyte: further depleting solvent molecules within a Li ⁺ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy and Environmental Science, 2020, 13, 4122-4131.	15.6	122
10782	Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 22194-22201.	7.2	219
10783	Sustainable Encapsulation Strategy of Silicon Nanoparticles in Microcarbon Sphere for High-Performance Lithium-Ion Battery Anode. ACS Sustainable Chemistry and Engineering, 2020, 8, 14150-14158.	3.2	37
10784	Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nature Energy, 2020, 5, 674-683.	19.8	149
10785	Reaction Behavior of a Silicide Electrode with Lithium in an Ionic-Liquid Electrolyte. ACS Omega, 2020, 5, 22631-22636.	1.6	12
10786	Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 22378-22385.	1.6	60
10787	Recent advances in nanostructured metal phosphides as promising anode materials for rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 19113-19132.	5.2	61
10788	Hierarchically structured porous materials: synthesis strategies and applications in energy storage. National Science Review, 2020, 7, 1667-1701.	4.6	164
10789	A Low-Cost Preparation of Si@C Composite Anode from Si Photovoltaic Waste. International Journal of Electrochemical Science, 2020, 15, 6582-6595.	0.5	4
10790	Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 2004187.	7.8	80
10791	Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 7136-7143.	4.5	79
10792	Broadband dielectric spectroscopy of BMPTFSI ionic liquid doped solid-state polymer electrolytes: Coupled ion transport and dielectric relaxation mechanism. Journal of Applied Physics, 2020, 128, .	1.1	9
10793	In Situ Curing Technology for Dual Ceramic Composed by Organic–Inorganic Functional Polymer Gel Electrolyte for Dendriticâ€Free and Robust Lithium–Metal Batteries. Advanced Materials Interfaces, 2020, 7, 2000830.	1.9	14
10794	Integrated Structure of Tin-Based Anodes Enhancing High Power Density and Long Cycle Life for Lithium Ion Batteries. ACS Applied Energy Materials, 2020, 3, 9337-9347.	2.5	9
10795	Density Functional Theory Studies of Si ₂ BN Nanosheets as Anode Materials for Magnesium-Ion Batteries. ACS Applied Nano Materials, 2020, 3, 9055-9063.	2.4	40
10796	Understanding Charge Storage in Hydrated Layered Solids MOPO ₄ (M = V, Nb) with Tunable Interlayer Chemistry. ACS Nano, 2020, 14, 13824-13833.	7.3	6
10797	Ultrahigh Areal Capacity Hydrogenâ€lon Batteries with MoO ₃ Loading Over 90 mg cm ^{â^²2} . Advanced Functional Materials, 2020, 30, 2005477.	7.8	57
10798	Highly Packed Monodisperse Porous Carbon Microspheres for Energy Storage in Supercapacitors and Liâ^'S Batteries. ChemElectroChem, 2020, 7, 3798-3810.	1.7	10

#	Article	IF	CITATIONS
10799	Adsorption Mechanism and Highâ€Performance Metalâ€Ion Batteries Anode Material for Semimetal Carbon Honeycomb. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000433.	0.8	1
10800	Low-Cost Synthetic Honeycomb-like Carbon Derived from Cotton as a Sulfur Host for the Enhanced Electrochemical Performances of Lithium–Sulfur Batteries. Energy & Fuels, 2020, 34, 13096-13103.	2.5	8
10801	Organic 2,5-dihydroxy-1,4-benzoquinone potassium salt with ultrahigh initial coulombic efficiency for potassium-ion batteries. Chemical Communications, 2020, 56, 12234-12237.	2.2	25
10802	Matchmaker of Marriage between a Li Metal Anode and NASICON-Structured Solid-State Electrolyte: Plastic Crystal Electrolyte and Three-Dimensional Host Structure. ACS Applied Materials & Interfaces, 2020, 12, 44754-44761.	4.0	22
10803	On the Interface Design of Si and Multilayer Graphene for a High-Performance Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2020, 12, 44840-44849.	4.0	36
10804	Study on Mechanical Behaviors and Electrolyte Uptake of PVDF/PES/TiO2 Composite Fiber Separators. IOP Conference Series: Materials Science and Engineering, 2020, 768, 022052.	0.3	1
10805	In Situ Replenishment of Formation Cycle Lithiumâ€ŀon Loss for Enhancing Battery Life. Advanced Functional Materials, 2020, 30, 2003668.	7.8	29
10806	Tunable MXene-Derived 1D/2D Hybrid Nanoarchitectures as a Stable Matrix for Dendrite-Free and Ultrahigh Capacity Sodium Metal Anode. Nano Letters, 2020, 20, 7700-7708.	4.5	110
10807	Engineering One-Dimensional Bunched Ni–MoO ₂ @Co–CoO–NC Composite for Enhanced Lithium and Sodium Storage Performance. ACS Applied Energy Materials, 2020, 3, 9018-9027.	2.5	26
10808	In-Plane Amorphous Oxide Ionotronic Devices and Circuits with Photochemically Enabled Favorable Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 44288-44296.	4.0	3
10809	Electrocatalysis of sulfur and polysulfides in Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 19704-19728.	5.2	83
10810	Preparation of MOF Derived Zn-Co-C Composite as Anode for Lithium-ion Batteries. International Journal of Electrochemical Science, 2020, 15, 9543-9553.	0.5	5
10811	Vacancy-induced anion and cation redox chemistry in cation-deficient F-doped anatase TiO2. Journal of Materials Chemistry A, 2020, 8, 20393-20401.	5.2	8
10812	Homogeneous and Fast Ion Conduction of PEOâ€Based Solid‣tate Electrolyte at Low Temperature. Advanced Functional Materials, 2020, 30, 2007172.	7.8	246
10813	Highâ€Performance Li–O ₂ Batteries Based on Allâ€Graphene Backbone. Advanced Functional Materials, 2020, 30, 2007218.	7.8	36
10814	Interaction between Li, Ultrathin Adsorbed Ethylene Carbonate Films, and CoO(111) Thin Films: A Model Study of the Solid Electrolyte Interphase Formation at CoO Anodes. Journal of Physical Chemistry C, 2020, 124, 21476-21490.	1.5	2
10815	Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. Nanoscale, 2020, 12, 19007-19042.	2.8	78
10816	Vanadium sulfide based materials: synthesis, energy storage and conversion. Journal of Materials Chemistry A, 2020, 8, 20781-20802.	5.2	73

# Article	IF	CITATIONS
10817 Highly durable Li-ion battery anode from Fe3O4 nanoparticles embedded in nitrogen-doped porous carbon with improved rate capabilities. Journal of Materials Science, 2020, 55, 15667-15680.	1.7	9
Nanopile Interlocking Separator Coating toward Uniform Li Deposition of the Li Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 43543-43552.	4.0	22
 Ultrafast Co_{0.8}Al_{0.2}-Layered Double-Hydroxide Nanosheets Cathode for High-Performance Coâ€"Zn Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 14877-14885. 	3.2	13
Determination of the Volume Changes Occurring for Conversion/Alloying-Type Li-Ion Anodes upon Lithiation/Delithiation. Journal of Physical Chemistry Letters, 2020, 11, 8238-8245.	2.1	12
A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High-Energy Lithium Batteries. ACS Nano, 2020, 14, 12006-12015.	7.3	66
Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nature Communications, 2020, 11, 4463.	5.8	431
10823 Dislocation and oxygen-release driven delithiation in Li2MnO3. Nature Communications, 2020, 11, 4452.	5.8	41
Composites and Copolymers Containing Redox-Active Molecules and Intrinsically Conducting Polymers as Active Masses for Supercapacitor Electrodes—An Introduction. Polymers, 2020, 12, 1835.	2.0	17
10825 Coatingâ€Mediated Nanomechanical Behaviors of CuO Electrodes in Li―and Naâ€Ion Batteries. Advanced Materials Interfaces, 2020, 7, 2001161.	d 1.9	8
Progress and Prospects of Transition Metal Sulfides for Sodium Storage. Advanced Fiber Materials, 2020, 2, 314-337.	7.9	74
10827 BCN monolayer for high capacity Al-based dual-ion batteries. Materials Advances, 2020, 1, 2418-2425.	2.6	10
10828 Recent Advances of Emerging 2D MXene for Stable and Dendriteâ€Free Metal Anodes. Advanced Functional Materials, 2020, 30, 2004613.	7.8	140
10829 Study on Preparation and Performance of PEO-PVDF Composite Binder for Lithium ion Batteries. International Journal of Electrochemical Science, 2020, , 8471-8478.	0.5	2
A Stable Organo-Aluminum Analyte Enables Multielectron Storage for a Nonaqueous Redox Flow Battery. Journal of Physical Chemistry Letters, 2020, 11, 8202-8207.	2.1	4
Analysis of the Li Distribution in Si-Based Negative Electrodes for Lithium-Ion Batteries by Soft X-ray Emission Spectroscopy. ACS Applied Energy Materials, 2020, 3, 8619-8626.	2.5	18
10832 Effect of the heat treatment temperature on mechanical and electrochemical properties of polyimide separator for lithium ion batteries. Journal of Materials Science, 2020, 55, 16158-16170.	1.7	20
10833 Novel Sodium–Poly(tartaric acid)Borate-Based Single-Ion Conducting Polymer Electrolyte for Sodium–Metal Batteries. ACS Applied Energy Materials, 2020, 3, 10053-10060.	2.5	34
10834 Alkali Metal-Modified P2 NaxMnO2: Crystal Structure and Application in Sodium-Ion Batteries. Inorganic Chemistry, 2020, 59, 12143-12155.	1.9	9

#	Article	IF	CITATIONS
10835	Engineering Solvation Complex–Membrane Interaction to Suppress Cation Crossover in 3 V Cuâ€Al Battery. Small, 2020, 16, 2003438.	5.2	11
10836	Facile Fabrication of Polymer Electrolytes via Lithium Salt-Accelerated Thiol-Michael Addition for Lithium-Ion Batteries. Macromolecules, 2020, 53, 7450-7459.	2.2	19
10837	Oxygen Reduction and Evolution Reaction (ORR and OER) Bifunctional Electrocatalyst Operating in a Wide pH Range for Cathodic Application in Li–Air Batteries. ACS Applied Energy Materials, 2020, 3, 9417-9427.	2.5	42
10838	Simple Approach: Heat Treatment to Improve the Electrochemical Performance of Commonly Used Anode Electrodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41368-41380.	4.0	10
10839	Nanoporous Composites of CoO <i>_x</i> Quantum Dots and ZIF-Derived Carbon as High-Performance Anodes for Lithium-Ion Batteries. ACS Omega, 2020, 5, 21488-21496.	1.6	11
10840	A Comprehensive Review of the Advancement in Recycling the Anode and Electrolyte from Spent Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13527-13554.	3.2	179
10841	3D carbon-coated stannous sulfide-molybdenum disulfide anodes for advanced lithium-ion batteries. Materials Advances, 2020, 1, 2323-2331.	2.6	5
10842	Facile preparation of MoS2/maleic acid composite as high-performance anode for lithium ion batteries. New Journal of Chemistry, 2020, 44, 15887-15894.	1.4	1
10843	Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Crystal Growth and Design, 2020, 20, 7034-7064.	1.4	112
10844	Scalable and Highâ€Performance Graphene/Graphite Nanosheet Composite Anode for Lithium Ion Batteries via Jet Cavitation. Energy Technology, 2020, 8, 2000511.	1.8	0
10845	Hierarchical novel <scp> NiCo ₂ O ₄ </scp> / <scp> BiVO ₄ </scp> hybrid heterostructure as an advanced anode material for rechargeable lithium ion battery. International Journal of Energy Research, 2020, 44, 12126-12135.	2.2	8
10846	Structural and Electrochemical Properties of Tysonite Ce0.95A0.05F2.95 (A = Mg, Ca, Sr, and Ba): Fast-Fluoride-Ion-Conducting Solid Electrolytes. Journal of Physical Chemistry C, 2020, 124, 18452-18461.	1.5	12
10847	Effect of Hematite Doping with Aliovalent Impurities on the Electrochemical Performance of α-Fe2O3@rGO-Based Anodes in Sodium-Ion Batteries. Nanomaterials, 2020, 10, 1588.	1.9	10
10848	A theoretical study on the application of different carbonaceous nanostructures in K-ion batteries. Monatshefte Für Chemie, 2020, 151, 1329-1336.	0.9	7
10849	Wood nanotechnology: a more promising solution toward energy issues: a mini-review. Cellulose, 2020, 27, 8513-8526.	2.4	14
10850	Study of ac conductivity mechanism and impedance spectroscopy in CNT-added Cu5Se75Te10In10 chalcogenide system. Bulletin of Materials Science, 2020, 43, 1.	0.8	5
10850 10851	Study of ac conductivity mechanism and impedance spectroscopy in CNT-added Cu5Se75Te10In10 chalcogenide system. Bulletin of Materials Science, 2020, 43, 1. Silicon-Based Anode of Lithium Ion Battery Made of Nano Silicon Flakes Partially Encapsulated by Silicon Dioxide. Nanomaterials, 2020, 10, 2467.	0.8	5

ARTICLE IF CITATIONS Hydrothermal preparing agglomerate LiNi0.8Co0.1Mn0.1O2 cathode material with submicron primary 10853 4.0 34 particle for alleviating microcracks. Journal of Power Sources, 2020, 477, 228701. A new high-Li⁺-conductivity Mg-doped Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃ solid electrolyte 10854 5.2 with enhanced electrochemical performance for solid-state lithium metal batteries. Journal of Materials Chemistry A. 2020. 8. 26055-26065. CNT-Coated Quartz Woven Fabric Electrodes for Robust Lithium-ion Structural Batteries. Applied 10855 2 1.3 Sciences (Switzerland), 2020, 10, 8622. Blade-Type Reaction Front in Micrometer-Sized Germanium Particles during Lithiation. ACS Applied 4.0 Materials & amp; Interfaces, 2020, 12, 47574-47579. Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for 10857 1.9 19 High-Energy Lithium-Ion Batteries. Nanomaterials, 2020, 10, 2495. Zigzag and armchair AlN nanotubes as anode materials for Mg-ion batteries: Computational study. Solid State Sciences, 2020, 110, 106448. 1.5 Ultrafine Antimony Nanocrystals/Phosphorus Pitaya-Like Nanocomposites as Anodes for 10859 High-Performance Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 3.2 8 18535-18544. 10860 Fiber Electronics., 2020,,. Influence of the Fe-Si-O framework in crystal structure on the phase stability and electrochemical 10861 1.3 5 performance of Li2FeSiO4 cathode. Solid State Ionics, 2020, 356, 115436. Three-Dimensional CsPbCl3 Perovskite Anode for Ouasi-Solid-State Li -Ion and Dual-Ion Batteries: 1.5 Mechanism of Li+ Conversion Process in Perovskite. Physical Review Applied, 2020, 14, . The storage mechanism difference between amorphous and anatase as supercapacitors. Green Energy 10863 3 4.7and Environment, 2022, 7, 156-164. Construction of nitrogenâ€'sulfur co-doped porous carbon to boost, integrate Li/Na/K ion storage. 10864 1.3 Solid State Ionics, 2020, 356, 115451. <i>In Situ</i> Tuning Residual Lithium Compounds and Constructing TiO₂ Coating for 10865 Surface Modification of a Nickel-Rich Cathode toward High-Energy Lithium-Ion Batteries. ACS Applied 2.5 26 Energy Materials, 2020, 3, 12423-12432. High-Performance Sodium Metal Batteries with Sodium–Bismuth Alloy Anode. ACS Applied Energy 10866 2.5 Materials, 2020, 3, 12607-12612. Recent Advancements of N-Doped Graphene for Rechargeable Batteries: A Review. Crystals, 2020, 10, 10867 1.0 21 1080. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 10868 340 2020, 14, 16321-16347. Development of Cryogenic Techniques for Characterizing Energy Storage Materials in 10869 0.2 0 Electrochemical Process. Microscopy and Microanalysis, 2020, 26, 1826-1827. Formation Mechanism of Thiophosphate Anions in the Liquid-Phase Synthesis of Sulfide Solid 10870 3.2 Electrolytes Using Polar Aprotic Solvents. Chemistry of Materials, 2020, 32, 9627-9632.

CITATION REPORT

#	Article	IF	CITATIONS
10871	A High-Performance Ruddlesden–Popper Perovskite for Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2020, 10, 13437-13444.	5.5	39
10872	A Review of Lithium-Ion Battery Fire Suppression. Energies, 2020, 13, 5117.	1.6	69
10873	Hydrothermal synthesis of three-dimensional hydrangea-like MoSe2@N-doped carbon anode material for high performance lithium ion batteries. Journal of Electroanalytical Chemistry, 2020, 879, 114818.	1.9	5
10874	Carbonyl Functional Group Modified Metal–Organic Coordination Polymer with Improved Lithium-Storage Performance. ACS Applied Energy Materials, 2020, 3, 11378-11387.	2.5	25
10875	Enhanced charge storage of nanometric ζ-V ₂ O ₅ in Mg electrolytes. Nanoscale, 2020, 12, 22150-22160.	2.8	15
10876	Uninterrupted sustainable power generation at constant voltage using solar photovoltaic with pumped storage. Sustainable Energy Technologies and Assessments, 2020, 42, 100890.	1.7	6
10877	Fabrication of dandelion clock-inspired preparation of core-shell TiO2@MoS2 composites for unprecedented high visible light-driven photocatalytic performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 22252-22264.	1.1	6
10878	Design of quadruple-layered metal oxides/nitrogen, oxygen-doped carbon nanotube arrays as binder-free electrodes for flexible lithium-ion batteries. Electrochimica Acta, 2020, 363, 137201.	2.6	4
10879	Layered potassium vanadate K2V6O16 nanowires: A stable and high capacity cathode material for calcium-ion batteries. Journal of Power Sources, 2020, 479, 228793.	4.0	23
10882	3D Carbon Nanotube Network Bridged Heteroâ€Structured Niâ€Feâ€S Nanocubes toward Highâ€Performance Lithium, Sodium, and Potassium Storage. Advanced Functional Materials, 2020, 30, 2001592.	7.8	139
10883	Toward an Allâ€Ceramic Cathode–Electrolyte Interface with Lowâ€Temperature Pressed NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Electrolyte. Advanced Materials Interfaces, 2020, 7, 2000164.	1.9	17
10884	Side by Side Battery Technologies with Lithiumâ€lon Based Batteries. Advanced Energy Materials, 2020, 10, 2000089.	10.2	127
10885	Highâ€Voltageâ€Driven Surface Structuring and Electrochemical Stabilization of Niâ€Rich Layered Cathode Materials for Li Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2000521.	10.2	90
10886	Dense Sandwichâ€like Na ₂ Ti ₃ O ₇ @rGO Composite with Superior Performance for Sodium Storage. ChemElectroChem, 2020, 7, 2258-2264.	1.7	10
10887	Polypyrrole derived porous carbon for high-performance Li ion capactiors. Vacuum, 2020, 177, 109360.	1.6	11
10888	Controlled growth and ion intercalation mechanism of monocrystalline niobium pentoxide nanotubes for advanced rechargeable aluminum-ion batteries. Nanoscale, 2020, 12, 12531-12540.	2.8	17
10890	Facile synthesis of a mixed-conductive Li2S composites for all-solid-state lithium-sulfur batteries. Ionics, 2020, 26, 4257-4265.	1.2	10
10891	Advanced Current Collectors for Alkali Metal Anodes. Chemical Research in Chinese Universities, 2020, 36, 386-401.	1.3	24

#	Article	IF	CITATIONS
1089	Microwave assisted crystalline and morphology evolution of flower-like Fe2O3@ iron doped 2 K-birnessite composite and its application for lithium ion storage. Applied Surface Science, 2020, 525, 146513.	3.1	18
1089	³ Electrochemical characterization of LiMn2O4 nanowires fabricated by sol-gel for lithium-ion rechargeable batteries. Materials Letters, 2020, 273, 127923.	1.3	3
1089	Epitaxial array of Fe3O4 nanodots for high rate high capacity conversion type lithium ion batteries electrode with long cycling life. Nano Energy, 2020, 74, 104876.	8.2	51
1089	⁵ Improving the Interfacial Stability between Lithium and Solidâ€State Electrolyte via Dipoleâ€Structured ⁵ Lithium Layer Deposited on Graphene Oxide. Advanced Science, 2020, 7, 2000237.	5.6	36
1089	 Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995. 	8.8	72
1089	 Surfactant-Assisted Growth of a Conversion-Type Binary Metal Oxide-Based Composite Electrode for Boosting the Reversible Lithium Storage. ACS Omega, 2020, 5, 12476-12485. 	1.6	3
1089	A "boxes in fibers―strategy to construct a necklace-like conductive network for high-rate and ⁸ high-loading lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 11327-11336.	5.2	24
1089	9 Mapping and Metastability of Heterogeneity in LiMn ₂ O ₄ Battery Electrodes with High Energy Density. Journal of the Electrochemical Society, 2020, 167, 020526.	1.3	5
1090	o Concurrently Approaching Volumetric and Specific Capacity Limits of Lithium Battery Cathodes via Conformal Pickering Emulsion Graphene Coatings. Advanced Energy Materials, 2020, 10, 2001216.	10.2	33
1090	Aqueous Calciumâ€lon Battery Based on a Mesoporous Organic Anode and a Manganite Cathode with Long Cycling Performance. ChemSusChem, 2020, 13, 3911-3918.	3.6	30
1090	Conduction Mechanism in 70Li ₂ S-30P ₂ S ₅ Glass by Ab Initio 2 Molecular Dynamics Simulations: Comparison with Li ₇ P ₃ S ₁₁ Crystal. ACS Applied Materials & amp; Interfaces, 2020, 12, 25736-25747.	4.0	12
1090	³ Mechanisms for overcharging of carbon electrodes in lithium-ion/sodium-ion batteries analysed by <i>operando</i> solid-state NMR. Journal of Materials Chemistry A, 2020, 8, 14472-14481.	5.2	41
1090	⁴ Mass-zero constrained molecular dynamics for electrode charges in simulations of electrochemical systems. Journal of Chemical Physics, 2020, 152, 194701.	1.2	16
1090	5 Elastic, Conductive Coating Layer for Selfâ€Standing Sulfur Cathode Achieving Long Lifespan Li–S Batteries. Advanced Energy Materials, 2020, 10, 1904026.	10.2	12
1090	 Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion. Inorganic Chemistry, 2020, 59, 7408-7414. 	1.9	9
1090	7 Role of Electrolytes in the Stability and Safety of Lithium Titanate-Based Batteries. Frontiers in 7 Materials, 2020, 7, .	1.2	17
1090	Porous flower-like ZnCo2O4 and ZnCo2O4@C composite: a facile controllable synthesis and enhanced electrochemical performance. Ionics, 2020, 26, 4479-4487.	1.2	8
1090	9 Hierarchical Li-rich oxide microspheres assembled from {010} exposed primary grains for high-rate 9 lithium-ion batteries. New Journal of Chemistry, 2020, 44, 8486-8493.	1.4	9

	CITATION REPORT		
 # ARTICLE 10910 Selfâ€Phosphorization of MOFâ€Armored Microbes for Advanced Energy Storage. Smal 	ll, 2020, 16, e2000755.	IF 5.2	CITATIONS
Al–Sc dual-doped LiGe ₂ (PO ₄) ₃ – a NASICO with improved ionic conductivity. Journal of Materials Chemistry A, 2020, 8, 11302-113	N-type solid electrolyte 13.	5.2	36
10912 Ultrasonic-assisted fabrication of porous carbon materials derived from agricultural was solid-state supercapacitors. Journal of Materials Science, 2020, 55, 11512-11523.	te for	1.7	25
Interface-Amorphized Ti ₃ C ₂ @Si/SiO <i>_x</i> @Ti 10913 Anodes with Sandwiched Structures and Stable Lithium Storage. ACS Applied Materials Interfaces, 2020, 12, 24796-24805.		4.0	51
Pseudorotating hydride complexes with high hydrogen coordination: A class of rotatable in solid matter. Applied Physics Letters, 2020, 116, .	e polyanions	1.5	15
10915 Ionic Liquidâ€Assisted Anchoring SnO 2 Nanoparticles on Carbon Nanotubes as Highly Lithium Ion Batteries. Advanced Materials Interfaces, 2020, 7, 1901916.	Cyclable Anode of	1.9	17
10916 Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review. Chemical Re Chinese Universities, 2020, 36, 377-385.	search in	1.3	24
10917 High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy, 20	20, 74, 104928.	8.2	96
The success story of graphite as a lithium-ion anode material – fundamentals, remaini 10918 and recent developments including silicon (oxide) composites. Sustainable Energy and I 5387-5416.	ing challenges, Fuels, 2020, 4,	2.5	608
10919 Enhancement of Functional Properties of Liquid Electrolytes for Lithiumâ€lon Batteries Pyrrolidiniumâ€Based Ionic Liquids with Long Alkylâ€Chains. Batteries and Supercaps, 2	by Addition of 2020, 3, 1059-1068.	2.4	7
10920 Highly Stretchable Polymer Binder Engineered with Polysaccharides for Silicon Micropar Highâ€Performance Anodes. ChemSusChem, 2020, 13, 3887-3892.	ticles as	3.6	18
Facile and Controllable Synthesis of Co ₂ V ₂ O ₇ N 10921 Anchored on Graphene Layers toward Superior Li-Ion Battery Anodes. Energy & amp; Fue 7616-7621.		2.5	22
Achieving Fast and Stable Lithium/Potassium Storage by In Situ Decorating FeSe _{2 10922 into Three-Dimensional Hierarchical Porous Carbon Networks. Journal of Physical Chemi 124, 12185-12194.}	2 Nanodots stry C, 2020,	1.5	19
CO ₂ -Derived Synthesis of Hierarchical Porous Carbon Cathode and Free-St 10923 Carbon Interlayer Applied for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 5247-5259.	anding N-Rich 2020, 3,	2.5	20
10924 In Situ Formed LiZn Alloy Skeleton for Stable Lithium Anodes. ACS Applied Materials &a 2020, 12, 25818-25825.	mp; Interfaces,	4.0	32
10925 Exploiting cation aggregation in new magnesium amidohaloaluminate electrolytes for n batteries. Inorganic Chemistry Frontiers, 2020, 7, 2305-2312.	nagnesium	3.0	5
Interfacial effect of Co4S3–Co9S8 nanoparticles hosted on rGO sheets derived from 1 10926 precursor pyrolysis on enhancing electrochemical behaviour. Catalysis Science and Tech 10, 3622-3634.		2.1	11
Experimental and theoretical investigations of the effect of heteroatom-doped carbon n 10927 supports on the stability and storage capacity of nano-Co ₃ O _{4anodes for application in lithium-ion batteries. Nanoscale Advances, 2020, 2, 2914-2924}	> conversion	2.2	7

#	Article	IF	CITATIONS
10928	Composite sodium metal anodes for practical applications. Journal of Materials Chemistry A, 2020, 8, 15399-15416.	5.2	36
10929	Ultrathin δ-MnO ₂ nanoflakes with Na ⁺ intercalation as a high-capacity cathode for aqueous zinc-ion batteries. RSC Advances, 2020, 10, 17702-17712.	1.7	43
10930	Lithium-electrolyte solvation and reaction in the electrolyte of a lithium ion battery: A ReaxFF reactive force field study. Journal of Chemical Physics, 2020, 152, 184301.	1.2	27
10931	Ambient Air Operation Rechargeable Lithium-Air Battery with Acetic Acid Catholyte. Journal of the Electrochemical Society, 2020, 167, 090522.	1.3	8
10932	Multimodal Hybrid Piezoelectric-Electromagnetic Insole Energy Harvester Using PVDF Generators. Electronics (Switzerland), 2020, 9, 635.	1.8	34
10933	A Solid-State Thin-Film Electrolyte, Lithium Silicon Oxynitride, Deposited by using RF Sputtering for Thin-Film Batteries. Journal of the Korean Physical Society, 2020, 76, 855-859.	0.3	8
10934	A 4.8â€V Reversible Li ₂ CoPO ₄ F/Graphite Battery Enabled by Concentrated Electrolytes and Optimized Cell Design. Batteries and Supercaps, 2020, 3, 910-916.	2.4	20
10935	Coreâ€Shell Structured Biâ€Amorphous SiO ₂ @TiO ₂ Composite for Lithiumâ€lon Batteries Anode Material with Ultraâ€Stable Performance. ChemistrySelect, 2020, 5, 5198-5204.	0.7	12
10936	Enhancement of cycling stability of all-solid-state lithium-ion batteries with composite polymer electrolytes incorporating Li6.25La3Zr2Al0.25O12 nanofibers. Ionics, 2020, 26, 4239-4246.	1.2	12
10937	Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Materials, 2020, 30, 1-8.	9.5	57
10938	Ammine Lanthanum and Cerium Borohydrides, <i>M</i> (BH ₄) ₃ Â <i>n</i> NH ₃ ; Trends in Synthesis, Structures, and Thermal Properties. Inorganic Chemistry, 2020, 59, 7768-7778.	1.9	19
10939	Determining Factor on the Polarization Behavior of Magnesium Deposition for Magnesium Battery Anode. ACS Applied Materials & Interfaces, 2020, 12, 25775-25785.	4.0	31
10940	Stabilization of a mixed iron vanadium based hexagonal tungsten bronze hydroxyfluoride HTB–(Fe _{0.55} V _{0.45})F _{2.67} (OH) _{0.33} as a positive electrode for lithium-ion batteries. Dalton Transactions, 2020, 49, 8186-8193.	1.6	5
10941	High-Rate Performance Solid-State Lithium Batteries with Silica-Gel Solid Nanocomposite Electrolytes using Bis(fluorosulfonyl)imide-Based Ionic Liquid. Journal of the Electrochemical Society, 2020, 167, 070549.	1.3	7
10942	State of Charge Effects on the Parameters of Electrochemical Impedance Spectroscopy Equivalent Circuit Model for Lithium Ion Batteries. IOP Conference Series: Earth and Environmental Science, 2020, 474, 052038.	0.2	1
10943	Novel Polarization Voltage Model: Accurate Voltage and State of Power Prediction. IEEE Access, 2020, , 1-1.	2.6	5
10944	Improvement of cycling stability and high-temperature performance of Li[Ni0.80Co0.15Al0.05]O2 cathode by thin-layer AlF3 coating. Journal of Materials Science: Materials in Electronics, 2020, 31, 11141-11149.	1.1	1
10945	A novel Mg/Na hybrid battery based on Na2VTi(PO4)3 cathode: Enlightening the Na-intercalation cathodes by a metallic Mg anode and a dual-ion Mg2+/Na+ electrolyte. Chemical Engineering Journal, 2020, 399, 125689	6.6	13

#	Article	IF	CITATIONS
10946	Long term durability of solid-state supercapacitor based on reduced graphene oxide aerogel and carbon nanotubes composite electrodes. Electrochimica Acta, 2020, 353, 136540.	2.6	34
10947	The solid-state Li-ion conductor Li7TaO6: A combined computational and experimental study. Solid State Ionics, 2020, 347, 115226.	1.3	6
10948	Large single-crystal growth of tetragonal garnet-type Li7La3Zr2O12 by melting method. Solid State Ionics, 2020, 349, 115312.	1.3	10
10949	Evaluation of the effect of site substitution of Pr doping in the lithium garnet system Li ₅ La ₃ Nb ₂ Ncsub>1. Dalton Transactions, 2020, 49, 10349-10359.	1.6	10
10950	The PVP-assisted construction of a Co ₃ V ₂ O ₈ @NiCo LDH hierarchical structure for high-performance lithium-ion batteries. New Journal of Chemistry, 2020, 44, 10918-10923.	1.4	16
10951	The effect of solid content on the rheological properties and microstructures of a Li-ion battery cathode slurry. RSC Advances, 2020, 10, 19360-19370.	1.7	63
10952	Catalysis of silica-based anode (de-)lithiation: compositional design within a hollow structure for accelerated conversion reaction kinetics. Journal of Materials Chemistry A, 2020, 8, 12306-12313.	5.2	43
10953	Interaction-based virtual power plant operation methodology for distribution system operator's voltage management. Applied Energy, 2020, 271, 115222.	5.1	25
10954	Electrochemical properties of tricalcium aluminate hexahydrateÂâ~'Âreduced graphene oxide nanocomposites for supercapacitor device. Journal of Energy Storage, 2020, 30, 101474.	3.9	7
10955	Polyimide binder for a high-energy-density composite anode electrode with graphite and silicon. Journal of Electroanalytical Chemistry, 2020, 871, 114317.	1.9	22
10956	Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from â~'35 to +65 °C. ACS Applied Materials & Interfaces, 2020, 12, 29181-29193.	4.0	10
10957	Sn(salen)-derived SnS nanoparticles embedded in N-doped carbon for high performance lithium-ion battery anodes. Chemical Communications, 2020, 56, 8095-8098.	2.2	27
10960	Cu3Pt alloy-functionalized Cu mesh as current collector for dendritic-free anodes of potassium metal batteries. Nano Energy, 2020, 75, 104914.	8.2	49
10961	Free-standing 3D network-like cathode based on biomass-derived N-doped carbon/graphene/g-C3N4 hybrid ultrathin sheets as sulfur host for high-rate Li-S battery. Renewable Energy, 2020, 158, 509-519.	4.3	34
10962	Safety issues of defective lithium-ion batteries: identification and risk evaluation. Journal of Materials Chemistry A, 2020, 8, 12472-12484.	5.2	55
10963	La doping and coating enabled by one-step method for high performance Li1.2Mn0.54Ni0.13Co0.13O2 Li-rich cathode. Ionics, 2020, 26, 3737-3747.	1.2	12
10964	High-Performance Aqueous Zinc–Manganese Battery with Reversible Mn2+/Mn4+ Double Redox Achieved by Carbon Coated MnOx Nanoparticles. Nano-Micro Letters, 2020, 12, 110.	14.4	58
10965	Layer-by-Layer Stacked (NH ₄) ₂ V ₄ O ₉ ·0.5H ₂ O Nanosheet Assemblies with Intercalation Pseudocapacitance for High Rate Aqueous Zinc Ion Storage. ACS Applied Energy Materials. 2020. 3. 5343-5352.	2.5	28

#	Article	IF	CITATIONS
1096	Origin of extra capacity in the solid electrolyte interphase near high-capacity iron carbide anodes for Li ion batteries. Energy and Environmental Science, 2020, 13, 2924-2937.	15.6	68
1096'	Pseudo-ternary LiBH ₄ ·LiCl·P ₂ S ₅ system as structurally disordered bulk electrolyte for all-solid-state lithium batteries. Physical Chemistry Chemical Physics, 2020, 22, 13872-13879.	1.3	23
1096	, Synergistic Dualâ€Additive Electrolyte Enables Practical Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 15045-15051.	1.6	26
1096	Synergistic Dualâ€Additive Electrolyte Enables Practical Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 14935-14941.	7.2	210
10970	Facile synthesis of FeVO@C materials as high-performance composite cathode for lithium-ion hybrid capacitor. Journal of Alloys and Compounds, 2020, 835, 155398.	2.8	10
1097	A Stirred Self-Stratified Battery for Large-Scale Energy Storage. Joule, 2020, 4, 953-966.	11.7	41
10972	Vapor pressure-assisted synthesis of chemically bonded TiO2/C nanocomposites with highly mesoporous structure for lithium-ion battery anode with high capacity, ultralong cycling lifetime, and superior rate capability. Journal of Power Sources, 2020, 465, 228206.	4.0	32
10973	An integrated configuration with robust interfacial contact for durable and flexible zinc ion batteries. Nano Energy, 2020, 74, 104905.	8.2	54
10974	Controllable Synthesis of Co ³⁺ -Enriched Anisotropy Co ₃ O ₄ Hexagonal Prisms toward Enhanced Lithium Storage. ACS Applied Energy Materials, 2020, 3, 5856-5866.	2.5	12
1097	A novel 3D porous pseudographite/Si/Ni composite anode material fabricated by a facile method. Dalton Transactions, 2020, 49, 7166-7173.	1.6	4
10976	High cell voltage and storage capacity of graphyne as the anode of K-ion batteries: computational studies. Journal of Molecular Modeling, 2020, 26, 141.	0.8	5
10977	Atomic layer deposition of solid-state electrolytes for next-generation lithium-ion batteries and beyond: Opportunities and challenges. Energy Storage Materials, 2020, 30, 296-328.	9.5	49
10978	Facile simultaneous polymerization enabled in-situ confinement of size-tailored GeO2 nanocrystals in continuous S-Doped carbons for lithium storage. Materials Today Chemistry, 2020, 17, 100293.	1.7	5
10979	Hollow CoP nanoparticles embedded in Two–Dimensional N–doped carbon arrays enabling advanced Li–SeS2 batteries with rapid kinetics. Materials Today Energy, 2020, 17, 100423.	2.5	14
1098	Fast charging negative electrodes based on anatase titanium dioxide beads for highly stable Li-ion capacitors. Materials Today Energy, 2020, 16, 100424.	2.5	11
1098	Plasma-treated Bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries. Materials Today Sustainability, 2020, 9, 100041.	1.9	9
1098	, Highly safe and cyclable Li-metal batteries with vinylethylene carbonate electrolyte. Nano Energy, 2020, 74, 104860.	8.2	64
1098	Designing two-dimensional WS2 layered cathode for high-performance aluminum-ion batteries: From micro-assemblies to insertion mechanism. Nano Today, 2020, 32, 100870.	6.2	83

#	Article	IF	CITATIONS
10984	A review on Fe O -based materials for advanced lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2020, 127, 109884.	8.2	36
10985	High Energy Density Hybrid Solid-State Li-Ion Batteries Enabled by a Gel/Ceramic/Gel Sandwich Electrolyte. ACS Applied Energy Materials, 2020, 3, 5113-5119.	2.5	17
10986	Hollow MoS ₃ Nanospheres as Electrode Material for "Waterâ€inâ€Salt―Li–Ion Batteries. Batteries and Supercaps, 2020, 3, 747-756.	2.4	15
10987	Optimization of the Carbon Content in Copper Phosphide–Carbon Composites for High Performance Sodium Secondary Batteries Using Ionic Liquids. ChemElectroChem, 2020, 7, 2477-2484.	1.7	6
10988	Unraveling the Beneficial Microstructure Evolution in Pyrite for Boosted Lithium Storage Performance. Chemistry - A European Journal, 2020, 26, 11841-11850.	1.7	6
10989	Transitionâ€Metal Phosphorus Trisulfides and its Vacancy Defects: Emergence of a New Class of Anode Material for Liâ€ion Batteries. ChemSusChem, 2020, 13, 3855-3864.	3.6	30
10990	Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chemical Engineering Journal, 2020, 398, 125646.	6.6	49
10991	Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries. Chemical Engineering Journal, 2020, 398, 125679.	6.6	70
10992	Electrodeposited CuMnS and CoMnS electrodes for high-performance asymmetric supercapacitor devices. Ceramics International, 2020, 46, 21343-21350.	2.3	37
10993	Progress and trends in fault diagnosis for renewable and sustainable energy system based on infrared thermography: A review. Infrared Physics and Technology, 2020, 109, 103383.	1.3	28
10994	Commercial Prussian blue: A highly efficient host for sodium storage. Journal of Electroanalytical Chemistry, 2020, 870, 114263.	1.9	2
10995	Structural engineering of Fe2.8Sn0.2O4@C micro/nano composite as anode material for high-performance lithium ion batteries. Journal of Power Sources, 2020, 468, 228366.	4.0	11
10996	Interfacial kinetics induced phase separation enhancing low-temperature performance of lithium-ion batteries. Nano Energy, 2020, 75, 104977.	8.2	11
10997	Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Powder Technology, 2020, 371, 26-36.	2.1	27
10998	ZnMn bimetallic selenide for rechargeable aluminum batteries. New Journal of Chemistry, 2020, 44, 10203-10206.	1.4	5
10999	High-temperature storage deterioration behaviors of lithium-ion batteries using nickel-rich cathode and SiO–C composite anode. SN Applied Sciences, 2020, 2, 1.	1.5	6
11000	Comparing Computational Predictions and Experimental Results for Aluminum Triflate in Tetrahydrofuran. Journal of Physical Chemistry B, 2020, 124, 5002-5008.	1.2	5
11001	Probing the Extent of Polysulfide Confinement Using a CoNi ₂ S ₄ Additive Inside a Sulfur Cathode of a Na/Li–Sulfur Rechargeable Battery. ACS Applied Materials & Interfaces, 2020, 12, 28120-28128.	4.0	17

#	Article	IF	CITATIONS
11002	Emerging investigator series: first-principles and thermodynamics comparison of compositionally-tuned delafossites: cation release from the (001) surface of complex metal oxides. Environmental Science: Nano, 2020, 7, 1642-1651.	2.2	11
11003	A fluorine-substituted pyrrolidinium-based ionic liquid for high-voltage Li-ion batteries. Chemical Communications, 2020, 56, 7317-7320.	2.2	14
11004	Recent Progress in High Donor Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2001456.	10.2	112
11005	Synthesizing Highâ€Capacity Oxyfluoride Conversion Anodes by Direct Fluorination of Molybdenum Dioxide (MoO ₂). ChemSusChem, 2020, 13, 3825-3834.	3.6	12
11006	Metalâ€Chelated Biomimetic Polyelectrolyte as a Powerful Binder for Highâ€Performance Micron Silicon Anodes. Energy Technology, 2020, 8, 2000278.	1.8	15
11007	3D Vertical Graphene@SiO x /Bâ€Doped Carbon Composite Microspheres for Highâ€Energy Lithiumâ€lon Batteries. Energy Technology, 2020, 8, 2000351.	1.8	8
11008	The potential application of borazine (B3N3)-doped nanographene decorated with halides as anode materials for Li-ion batteries: a first-principles study. Journal of Molecular Modeling, 2020, 26, 157.	0.8	11
11009	Stable anchoring and uniform distribution of SiO2 nanotubes on reduced graphene oxide through electrostatic self-assembly for ultra-high lithium storage performance. Carbon, 2020, 167, 835-842.	5.4	27
11010	Concentration dependent properties and plastic deformation facilitate instability of the solid-electrolyte interphase in Li-ion batteries. International Journal of Solids and Structures, 2020, 198, 99-109.	1.3	18
11011	Large-scale carambola-like V2O5 nanoflowers arrays on microporous reed carbon as improved electrochemical performances lithium-ion batteries cathode. Journal of Energy Chemistry, 2020, 51, 388-395.	7.1	38
11012	Composites of nanodimensional glass in the system Na2O–SiO2/Mesoporous silica and their high ionic conductivity. Journal of Physics and Chemistry of Solids, 2020, 142, 109470.	1.9	11
11013	Hierarchically porous nitrogen, oxygen-rich carbons derived from filter paper for high-performance lithium ion battery anodes. Powder Technology, 2020, 371, 64-73.	2.1	12
11014	A novel morphology-controlled synthesis of Na+-doped Li- and Mn-rich cathodes by the self-assembly of amphiphilic spherical micelles. Sustainable Materials and Technologies, 2020, 25, e00171.	1.7	10
11015	Entropy Stabilization of TiO ₂ –Nb ₂ O ₅ Wadsley–Roth Shear Phases and Their Prospects for Lithium-Ion Battery Anode Materials. Chemistry of Materials, 2020, 32, 5301-5308.	3.2	44
11016	New Li ₁₀ GeP ₂ S ₁₂ Structure Ordering and Li-Ion Dynamics Unveiled in Li ₄ GeS ₄ –Li ₃ PS ₄ Superionic Conductors: A Solid-State Nuclear Magnetic Resonance Study. ACS Applied Materials & amp; Interfaces, 2020, 12, 27029-27036.	4.0	9
11017	Sulfur-Mediated Interface Engineering Enables Fast SnS Nanosheet Anodes for Advanced Lithium/Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 25786-25797.	4.0	53
11018	Visualization of Lithium Transfer Resistance in Secondary Particle Cathodes of Bulk-Type Solid-State Batteries. ACS Energy Letters, 2020, 5, 2098-2105.	8.8	38
11019	Enabling high electrochemical activity of a hollow SiO ₂ anode by decorating it with ultrafine cobalt nanoparticles and a carbon matrix for long-lifespan lithium ion batteries. Nanoscale, 2020, 12, 13442-13449.	2.8	25

#	Article	IF	CITATIONS
11020	Tiny amounts of fluorinated carbon nanotubes remove sodium dendrites for high-performance sodium–oxygen batteries. Sustainable Energy and Fuels, 2020, 4, 4108-4116.	2.5	3
11021	A square channel vanadium phosphite framework as a high voltage cathode for Li- and Na-ion batteries. Materials Advances, 2020, 1, 698-707.	2.6	6
11022	Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator*. Chinese Physics B, 2020, 29, 088201.	0.7	6
11023	Transplantable Carbonaceous Li ⁺ Filtrating Membrane for Lithium Metal Protection. ACS Applied Materials & Interfaces, 2020, 12, 30494-30502.	4.0	3
11024	3D Flexible, Conductive, and Recyclable Ti ₃ C ₂ T _{<i>x</i>} MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14, 8678-8688.	7.3	164
11025	Electrochemical Characteristics of Glycerolized PEO-Based Polymer Electrolytes. Membranes, 2020, 10, 116.	1.4	35
11026	Solid-state conversion of metal oleate precursors for the preparation of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries. Korean Journal of Chemical Engineering, 2020, 37, 1258-1265.	1.2	4
11027	How key characteristics of carbon materials influence the ORR activity of LaMnO3- and Mn3O4-carbon composites prepared by in situ autocombustion method. Electrochimica Acta, 2020, 353, 136557.	2.6	10
11028	A dendrite-suppressed flexible polymer-in-ceramic electrolyte membrane for advanced lithium batteries. Electrochimica Acta, 2020, 353, 136604.	2.6	12
11029	Optimization of carbon coating thickness to prevent crack generation in Sn nanoparticles during charge/discharge process and their electrochemical properties. Journal of Alloys and Compounds, 2020, 843, 155892.	2.8	3
11030	A facile synthesis of vanadium-doped SiOx composites for high-performance Li-ion battery anodes. Journal of Alloys and Compounds, 2020, 842, 155900.	2.8	12
11031	Design Rules for High-Valent Redox in Intercalation Electrodes. Joule, 2020, 4, 1369-1397.	11.7	80
11032	Engineering Electrolytic Silicon–Carbon Composites by Tuning the In Situ Magnesium Oxide Space Holder: Molten-Salt Electrolysis of Carbon-Encapsulated Magnesium Silicates for Preparing Lithium-Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 9866-9874.	3.2	22
11033	Oxygenâ€Deficient Birnessiteâ€MnO ₂ for Highâ€Performing Rechargeable Aqueous Zincâ€ŀon Batteries. ChemNanoMat, 2020, 6, 1357-1364.	1.5	22
11034	Boosting Transport Kinetics of Cobalt Sulfides Yolk–Shell Spheres by Anion Doping for Advanced Lithium and Sodium Storage. ChemSusChem, 2020, 13, 4078-4085.	3.6	106
11035	Large-scale synthesis of lithium- and manganese-rich materials with uniform thin-film Al2O3 coating for stable cathode cycling. Science China Materials, 2020, 63, 1683-1692.	3.5	23
11036	Improving the ionic conductivity of Li1+Al Ge2-(PO4)3 solid electrolyte for all-solid-state batteries using microstructural modifiers. Ceramics International, 2020, 46, 23200-23207.	2.3	28
11037	Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. Journal of Power Sources, 2020, 468, 228369.	4.0	54

#	Article	IF	CITATIONS
11038	A CO ₂ -Assisted Sodium–Phenanthrenequinone Battery. Journal of Physical Chemistry Letters, 2020, 11, 5350-5353.	2.1	3
11039	Synthesis, characterization and application of a non-flammable dicationic ionic liquid in lithium-ion battery as electrolyte additive. Scientific Reports, 2020, 10, 9606.	1.6	50
11040	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
11041	Redoxâ€Active Organic Compounds for Future Sustainable Energy Storage System. Advanced Energy Materials, 2020, 10, 2001445.	10.2	139
11042	Regulation of Cathodeâ€Electrolyte Interphase via Electrolyte Additives in Lithium Ion Batteries. Chemistry - an Asian Journal, 2020, 15, 2803-2814.	1.7	30
11043	A Simple Aqueous Battery with Potential for Scalable Energy Storage Based on MnO ₂ Deposition at the Cathode and a Quinoidâ€Modified Activated Carbon Anode. ChemElectroChem, 2020, 7, 2869-2876.	1.7	1
11044	Double carbon-embedded Na3V2(PO4)3 as a superior anode for sodium ion batteries. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	7
11045	Two-dimensional electrocatalysts for alcohol oxidation: A critical review. Chemical Engineering Journal, 2020, 400, 125744.	6.6	67
11046	Surface-orientation for boosting the high-rate and cyclability of spinel LiNi0.02Mn1.98O4 cathode material. Vacuum, 2020, 179, 109505.	1.6	19
11047	Assembly of 12-Tungstovanadate-Templated Nanocage and Nanocomposites with Single-Walled Carbon Nanotubes as Anodes in Lithium-Ion Batteries. Inorganic Chemistry, 2020, 59, 9244-9251.	1.9	12
11048	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	5.8	537
11049	Flexible Type Symmetric Supercapacitor Electrode Fabrication Using Phosphoric Acid-Activated Carbon Nanomaterials Derived from Cow Dung for Renewable Energy Applications. ACS Omega, 2020, 5, 15028-15038.	1.6	28
11050	Bi-MOF derived micro/meso-porous Bi@C nanoplates for high performance lithium-ion batteries. Nanoscale, 2020, 12, 15214-15221.	2.8	36
11051	Enveloping SiO _x in N-doped carbon for durable lithium storage <i>via</i> an eco-friendly solvent-free approach. Journal of Materials Chemistry A, 2020, 8, 13285-13291.	5.2	65
11052	A Garnetâ€Type Solidâ€Electrolyteâ€Based Molten Lithiumâ^'Molybdenumâ^'Iron(II) Chloride Battery with Advanced Reaction Mechanism. Advanced Materials, 2020, 32, e2000960.	11.1	14
11053	Atomic Layer Fluorination of 5â€V Class Positive Electrode Material LiCoPO 4 for Enhanced Electrochemical Performance. Batteries and Supercaps, 2020, 3, 1051-1058.	2.4	1
11054	Orthorhombic CaFe2O4 microrod anode for lithium–ion battery. International Journal of Hydrogen Energy, 2020, 45, 22160-22165.	3.8	12
11055	Functionalization of metal oxides with thiocyanate groups: A general strategy for boosting oxygen evolution reaction in neutral media. Nano Energy, 2020, 76, 105079.	8.2	16

#	Article	IF	CITATIONS
11056	Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: small structural reorganization for faster charging and narrow operating voltage. Energy and Environmental Science, 2020, 13, 4142-4156.	15.6	78
11057	Construct pseudo-capacitance of a flexible 3D-entangled carbon nanofiber film as freestanding anode for dual-ion full batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 10962-10969.	1.1	4
11058	Pristine MOF and COF materials for advanced batteries. Energy Storage Materials, 2020, 31, 115-134.	9.5	149
11059	Layer-by-layer stacked amorphous V2O5/Graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Materials, 2020, 31, 156-163.	9.5	99
11060	Recent advances in cathode materials of rechargeable aqueous zinc-ion batteries. Materials Today Advances, 2020, 7, 100078.	2.5	54
11061	Nonaqueous Aluminum Ion Batteries: Recent Progress and Prospects. , 2020, 2, 887-904.		57
11062	Electrochemistry and transport properties of electrolytes modified with ferrocene redox-active ionic liquid additives. Canadian Journal of Chemistry, 2020, 98, 554-563.	0.6	4
11063	Unravelling the Mechanism of Rechargeable Aqueous Zn–MnO ₂ Batteries: Implementation of Charging Process by Electrodeposition of MnO ₂ . ChemSusChem, 2020, 13, 4103-4110.	3.6	74
11064	SnO ₂ Quantum Dots: Rational Design to Achieve Highly Reversible Conversion Reaction and Stable Capacities for Lithium and Sodium Storage. Small, 2020, 16, e2000681.	5.2	87
11065	Microphase Separation of Ionic Liquid-Containing Diblock Copolymers: Effects of Dielectric Inhomogeneity and Asymmetry in the Molecular Volumes and Interactions between the Cation and Anion. Macromolecules, 2020, 53, 3891-3899.	2.2	10
11066	Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding. Nature Communications, 2020, 11, 2824.	5.8	49
11067	A compact silicon–carbon composite with an embedded structure for high cycling coulombic efficiency anode materials in lithium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 2487-2496.	3.0	29
11068	Realizing Complete Solidâ€Solution Reaction in High Sodium Content P2â€Type Cathode for Highâ€Performance Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 14511-14516.	7.2	142
11069	SnO2 nanoflower arrays on an amorphous buffer layer as binder-free electrodes for flexible lithium-ion batteries. Applied Surface Science, 2020, 527, 146910.	3.1	42
11070	Polyhedral TiO2 particle-based cathode for Li-S batteries with high volumetric capacity and high performance in lean electrolyte. Chemical Engineering Journal, 2020, 399, 125670.	6.6	21
11071	Bubble-sheet-like Ni0.85Co2.15V2O8 nanosheets for high-rate lithium storage. Ceramics International, 2020, 46, 14488-14495.	2.3	2
11072	Impact of Preoxidation Treatments on Performances of Pitch-Based Hard Carbons for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6501-6510.	2.5	24
11073	Effects of fluoroethylene carbonate addition to Li-glyme solvate ionic liquids on their ionic transport properties and Si composite electrode performance. Electrochimica Acta, 2020, 353, 136559.	2.6	6

# ARTICLE	IF	CITATIONS
Nickel catalyzed graphitized carbon coated LiFe1-xNixPO4 composites as cathode material for high-performance lithium-ion batteries. Electrochimica Acta, 2020, 353, 136565.	2.6	13
Binder less-integrated freestanding carbon film derived from pitch as light weight and high-power anode for sodium-ion battery. Electrochimica Acta, 2020, 353, 136566.	2.6	15
¹¹⁰⁷⁶ Using chronoamperometry to rapidly measure and quantitatively analyse rate-performance in battery electrodes. Journal of Power Sources, 2020, 468, 228220.	4.0	16
11077 Cucumber-Shaped Construction Combining Bismuth Nanoparticles with Carbon Nanofiber Networks as a Binder-Free and Freestanding Anode for Li-Ion Batteries. Energy & amp; Fuels, 2020, 34, 8987-8992	2. 2.5	17
Reversible Capacity Loss of LiCoO ₂ Thin Film Electrodes. ACS Applied Energy Materials, 2020, 3, 6065-6071.	2.5	7
11079 Toward Moisture-Stable and Dendrite-Free Garnet-Type Solid-State Electrolytes. ACS Applied Energy Materials, 2020, 3, 6775-6784.	2.5	23
Lithium-ion battery performance enhanced by the combination of Si thin flake anodes and binary ionic liquid systems. Materials Advances, 2020, 1, 625-631.	2.6	9
Mixed Anionic and Cationic Redox Chemistry in a Tetrathiomolybdate Amorphous Coordination Framework. Angewandte Chemie - International Edition, 2020, 59, 16579-16586.	7.2	15
11082 Highly reliable quinone-based cathodes and cellulose nanofiber separators: toward eco-friendly organic lithium batteries. Cellulose, 2020, 27, 6707-6717.	2.4	10
Enhancing the Electrochemical Performance of LiNi _{0.70} Co _{0.15} 0.15O _{0.2} Cathodes Using a Pract Solution-Based Al ₂ O ₃ Coating. ACS Applied Materials & amp; Interfaces, 202 12, 31392-31400.	tical 4.0 0, 4.0	57
Mixed Anionic and Cationic Redox Chemistry in a Tetrathiomolybdate Amorphous Coordination Framework. Angewandte Chemie, 2020, 132, 16722.	1.6	1
Hexaaminobenzene Derived Two-Dimensional Polymer Supercapacitor with High Specific Capacitance and Energy Density. ACS Applied Energy Materials, 2020, 3, 6352-6359.	2.5	7
Functionalized MXenes as effective polyselenide immobilizers for lithium–selenium batteries: a densi functional theory (DFT) study. Nanoscale, 2020, 12, 14087-14095.	ty 2.8	41
Bifunctional effect of laser-induced nucleation-preferable microchannels and <i>in situ</i> formed LIF SEI in MXenes for stable lithium-metal batteries. Journal of Materials Chemistry A, 2020, 8, 14114-14125.	5.2	33
11088 Oxygenâ€Đefective TiNb ₂ O _{7â€} <i>_x</i> Nanochains with Enlarg Lattice Spacing for Highâ€Rate Lithium Ion Capacitor. Advanced Materials Interfaces, 2020, 7, 200070	ged 1.9 5. 1.9	25
Oxidation State and Oxygen-Vacancy-Induced Work Function Controls Bifunctional Oxygen Electrocatalytic Activity. ACS Catalysis, 2020, 10, 7734-7746.	5.5	76
Pre-lithiated Li(NixMnyCoz)O2 nanoparticles with a double-layer lithium structure. Functional Materials Letters, 2020, 13, 2050020.	0.7	0
Emerging organic potassium-ion batteries: electrodes and electrolytes. Journal of Materials Chemistry A, 2020, 8, 15547-15574.	5.2	69

CITATION REPORT IF CITATIONS A novel approach to ligand-exchange rates applied to lithium-ion battery and sodium-ion battery 1.2 19 electrolytes. Journal of Chemical Physics, 2020, 152, 234104. TCNQ Confined in Porous Organic Structure as Cathode for Aqueous Zinc Battery. Journal of the 1.3 Electrochemical Society, 2020, 167, 100552. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges 1.8 50 of Molecular Design. Frontiers in Chemistry, 2020, 8, 451. A free-standing biomass-derived RuO2/N-doped porous carbon cathode towards highly performance lithium-oxygen batteries. Journal of Power Sources, 2020, 471, 228444. High-Toughness Inorganic Solid Electrolytes via the Use of Reduced Graphene Oxide. Matter, 2020, 3, 5.0 36 Effects of LiFSi and LMO-Coated NCM on Capacity and Cycle Characteristics of All-Solid Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 090551. 1.3 Investigation on the Carbonyl Redox of Polyimide Based on Bridged Dianhydride as Electrode in 1.3 1 Lithium-Ion Battery. Journal of the Electrochemical Society, 2020, 167, 110525. 11099 Modeling and Simulation of Flow Batteries. Advanced Energy Materials, 2020, 10, 2000758. 10.2 66 A Highâ€Rate Aqueous Proton Battery Delivering Power Below â°'78 °C via an Unfrozen Phosphoric Acid. 10.2 134 Advanced Energy Materials, 2020, 10, 2000968. Realizing Complete Solidâ€Solution Reaction in High Sodium Content P2â€Type Cathode for 1.6 Highâ€Performance Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 14619-14624. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for 4.063 battery/capacitor sodium ion storage. Journal of Power Sources, 2020, 469, 228414. A Sodium-Ion Battery Separator with Reversible Voltage Response Based on Water-Soluble Cellulose Derivatives. ACS Applied Materials & amp; Interfaces, 2020, 12, 29264-29274. Interfacial Engineering at Cathodell ATP Interface for High-Performance Solid-State Batteries, Journal

11104	of the Electrochemical Society, 2020, 167, 100528.	1.3	15
11105	Effect of Cycling Ion and Solvent on the Redox Chemistry of Substituted Quinones and Solvent-Induced Breakdown of the Correlation between Redox Potential and Electron-Withdrawing Power of Substituents. Journal of Physical Chemistry C, 2020, 124, 13609-13617.	1.5	22
11106	Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters, 2020, 20, 5496-5503.	4.5	30
11107	Synthesis and Applications of Aurin Tricarboxylic Acid-Copper Metal Organic Framework for Rechargeable Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 100533.	1.3	5
11108	Towards Synergy of rGO and Ni doped CeO ₂ in their copmposite as Efficient Catalyst for Oxygen Reduction Reaction. ChemistrySelect, 2020, 5, 6608-6616.	0.7	12
11109	In Situ TEM Observations of Discharging/Charging of Solidâ€State Lithiumâ€Sulfur Batteries at High Temperatures, Small, 2020, 16, e2001899	5.2	40

ARTICLE

11092

11093

11094

11096

11098

11100

11102

212-229.

#	Article	IF	CITATIONS
11110	Effect of KBF4 additive on high voltage cycling performance of lithium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 871, 114325.	1.9	2
11111	Suppressing the Side Reaction by a Selective Blocking Layer to Enhance the Performance of Si-Based Anodes. Nano Letters, 2020, 20, 5176-5184.	4.5	39
11112	Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 11637-11645.	1.1	15
11113	Fast Charging Materials for High Power Applications. Advanced Energy Materials, 2020, 10, 2001128.	10.2	136
11114	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
11115	Self-assembly formation of hierarchical mixed spinel MnCo2O4 porous nanospheres confined by polypyrrole pyrolytic carbon for high-performance lithium storage. Materials Today Energy, 2020, 17, 100451.	2.5	15
11116	Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Materials, 2020, 28, 205-215.	9.5	136
11117	Theoretical and experimental investigations of mesoporous C3N5/MoS2 hybrid for lithium and sodium ion batteries. Nano Energy, 2020, 72, 104702.	8.2	65
11118	Investigation of the cathodic interfacial stability of a nitrile electrolyte and its performance with a high-voltage LiCoO ₂ cathode. Chemical Communications, 2020, 56, 4998-5001.	2.2	26
11119	An Aqueous Conducting Redoxâ€Polymerâ€Based Proton Battery that Can Withstand Rapid Constantâ€Voltage Charging and Subâ€Zero Temperatures. Angewandte Chemie, 2020, 132, 9718-9725.	1.6	18
11120	An Aqueous Conducting Redoxâ€Polymerâ€Based Proton Battery that Can Withstand Rapid Constantâ€Voltage Charging and Subâ€Zero Temperatures. Angewandte Chemie - International Edition, 2020, 59, 9631-9638.	7.2	80
11121	Improvement of lithium anode deterioration for ameliorating cyclabilities of non-aqueous Li–CO ₂ batteries. Nanoscale, 2020, 12, 8385-8396.	2.8	29
11122	Reversible Anion Insertion in Molecular Phenothiazineâ€Based Redoxâ€Active Positive Material for Organic Ion Batteries. ChemSusChem, 2020, 13, 2364-2370.	3.6	23
11123	Selenium-Infused Ordered Mesoporous Carbon for Room-Temperature All-Solid-State Lithium–Selenium Batteries with Ultrastable Cyclability. ACS Applied Materials & Interfaces, 2020, 12, 16541-16547.	4.0	31
11124	Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nature Communications, 2020, 11, 1474.	5.8	298
11125	Codoped Holey Graphene Aerogel by Selective Etching for Highâ€Performance Sodiumâ€ion Storage. Advanced Energy Materials, 2020, 10, 2000099.	10.2	56
11126	Recent Progress in Calix[<i>n</i>]quinone (<i>n</i> =4, 6) and Pillar[5]quinone Electrodes for Secondary Rechargeable Batteries. Batteries and Supercaps, 2020, 3, 476-487.	2.4	33
11127	Interlayer Engineering of Layered Cathode Materials for Advanced Zn Storage. CheM, 2020, 6, 817-819.	5.8	7

#	Article	IF	CITATIONS
11128	Redox polymers for rechargeable metal-ion batteries. EnergyChem, 2020, 2, 100030.	10.1	120
11129	Structural Origins of the Enhancement in Ionic Conductivity of a Chalcogenide Compound by Adding Agl. ChemElectroChem, 2020, 7, 1567-1572.	1.7	2
11130	Structure evolution of azo-fused conjugated microporous polymers for high performance lithium-ion batteries anodes. Journal of Power Sources, 2020, 453, 227868.	4.0	30
11131	Amorphous LiEuTiO4 nanovesicles as a low-operating potential anode for rechargeable lithium ion batteries. SN Applied Sciences, 2020, 2, 1.	1.5	2
11132	Measurements of fracture properties of MWCNTs modified LiNi0.5Mn0.3Co0.2O2 electrodes by a modified shear lag model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 781, 139223.	2.6	2
11133	Optimized Al Doping Improves Both Interphase Stability and Bulk Structural Integrity of Ni-Rich NMC Cathode Materials. ACS Applied Energy Materials, 2020, 3, 3369-3377.	2.5	66
11134	A Simple Dual-Ion Doping Method for Stabilizing Li-Rich Materials and Suppressing Voltage Decay. ACS Applied Materials & Interfaces, 2020, 12, 13996-14004.	4.0	52
11135	Singleâ€Atom Catalytic Materials for Advanced Battery Systems. Advanced Materials, 2020, 32, e1906548.	11.1	156
11136	Molecular and Supramolecular Multiredox Systems. ChemistryOpen, 2020, 9, 304-324.	0.9	16
11137	A Tetrakis(terpyridine) Ligand–Based Cobalt(II) Complex Nanosheet as a Stable Dualâ€ion Battery Cathode Material. Small, 2020, 16, e1905204.	5.2	30
11138	Substantially Improved Na-Ion Storage Capability by Nanostructured Organic–Inorganic Polyaniline-TiO ₂ Composite Electrodes. ACS Applied Energy Materials, 2020, 3, 3477-3487.	2.5	13
11139	Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials. ACS Applied Materials & Interfaces, 2020, 12, 16243-16249.	4.0	19
11140	Enhanced Electrochemical and Thermal Stabilities of Li[Ni 0.88 Co 0.09 Al 0.03]O 2 Cathode Material by La 4 NiLiO 8 Coating for Li–Ion Batteries. ChemElectroChem, 2020, 7, 2042-2047.	1.7	12
11141	A high-power aqueous rechargeable Fe-12 battery. Energy Storage Materials, 2020, 28, 247-254.	9.5	63
11142	Mobile Small Polarons Qualitatively Explain Conductivity in Lithium Titanium Oxide Battery Electrodes. Journal of Physical Chemistry Letters, 2020, 11, 2535-2540.	2.1	11
11143	Spinel structured LiMn2O4 prepared by laser annealing. Materials Technology, 2020, 35, 606-611.	1.5	7
11144	Ideal two-dimensional solid electrolytes for fast ion transport: metal trihalides MX3 with intrinsic atomic pores. Nanoscale, 2020, 12, 7188-7195.	2.8	9
11145	Lithium Metal Battery Pouch Cell Assembly and Prototype Demonstration Using Tailored Polypropylene Separator. Energy Technology, 2020, 8, 2000094.	1.8	5

#	Article	IF	CITATIONS
11146	Facile Synthesis of FePS3 Nanosheets@MXene Composite as a High-Performance Anode Material for Sodium Storage. Nano-Micro Letters, 2020, 12, 54.	14.4	62
11147	Li–LiAl alloy composite with memory effect as high-performance lithium metal anode. Journal of Power Sources, 2020, 455, 227977.	4.0	30
11148	Solid polymer electrolyte supported by porous polymer membrane for all-solid-state lithium batteries. Journal of Membrane Science, 2020, 603, 117995.	4.1	37
11149	Can we find solution to eliminate Li penetration through solid garnet electrolytes?. Materials Today Nano, 2020, 10, 100075.	2.3	45
11150	Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy, 2020, 72, 104655.	8.2	68
11151	Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition. Nano Letters, 2020, 20, 2724-2732.	4.5	134
11152	High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy, 2020, 5, 299-308.	19.8	932
11153	Electronic structure, ion diffusion and cation doping in the Na ₄ VO(PO ₄) ₂ compound as a cathode material for Na-ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 6653-6659.	1.3	15
11154	AlN nanotubes and nanosheets as anode material for K-ion batteries: DFT studies. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126396.	0.9	11
11155	Reversible Al-Site Switching and Consequent Memory Effect of Al-Doped Li4Ti5O12 in Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17415-17423.	4.0	11
11156	Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived-MXene for microwave absorption and Li ion battery anode applications. Nanoscale, 2020, 12, 8466-8476.	2.8	86
11157	Facile fabrication of a hybrid polymer electrolyte <i>via</i> initiator-free thiol–ene photopolymerization for high-performance all-solid-state lithium metal batteries. Polymer Chemistry, 2020, 11, 2732-2739.	1.9	22
11158	DC and AC conductivity of some lithium ion conducting glassy nanocomposites. , 2020, , 223-232.		0
11159	An Ultrastable Na–Zn Solid-State Hybrid Battery Enabled by a Robust Dual-Cross-linked Polymer Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 17583-17591.	4.0	22
11160	Low-temperature paddlewheel effect in glassy solid electrolytes. Nature Communications, 2020, 11, 1483.	5.8	102
11161	Review—Interfaces: Key Issue to Be Solved for All Solid-State Lithium Battery Technologies. Journal of the Electrochemical Society, 2020, 167, 070541.	1.3	92
11162	Porous Si@C Composite Anode Material Prepared Using Dopamine as a Carbon Source for High-Performance Lithium- Ion Batteries. International Journal of Electrochemical Science, 2020, 15, 3479-3494.	0.5	3
11163	The influence of Stone-Wales defects in nanographene on the performance of Na-ion batteries. Journal of Molecular Graphics and Modelling, 2020, 98, 107578.	1.3	9

#	Article	IF	CITATIONS
11164	Electrode roughness dependent electrodeposition of sodium at the nanoscale. Nano Energy, 2020, 72, 104721.	8.2	54
11165	Highly stable Zn metal anodes enabled by atomic layer deposited Al ₂ O ₃ coating for aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 7836-7846.	5.2	323
11166	Atomic-scale identification of influencing factors of sodium dendrite growth on different current collectors. Journal of Materials Chemistry A, 2020, 8, 10199-10205.	5.2	20
11167	Interface Modification of lithium Metal Anode and Solid-state Electrolyte with Gel Electrolyte. Journal of the Electrochemical Society, 2020, 167, 070542.	1.3	15
11168	Sustainable Ligninâ€Derived Crossâ€Linked Graft Polymers as Electrolyte and Binder Materials for Lithium Metal Batteries. ChemSusChem, 2020, 13, 2642-2649.	3.6	32
11169	Sustainable Battery Materials from Biomass. ChemSusChem, 2020, 13, 2110-2141.	3.6	111
11170	Enhancing Bifunctional Electrocatalytic Activities via Metal d-Band Center Lift Induced by Oxygen Vacancy on the Subsurface of Perovskites. ACS Catalysis, 2020, 10, 4664-4670.	5.5	116
11171	Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. ACS Nano, 2020, 14, 4374-4382.	7.3	107
11172	A reflection on lithium-ion battery cathode chemistry. Nature Communications, 2020, 11, 1550.	5.8	1,398
11173	Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries. Frontiers of Chemical Science and Engineering, 2020, 14, 976-987.	2.3	11
11174	Boosting initial coulombic efficiency of Si-based anodes: a review. Emergent Materials, 2020, 3, 369-380.	3.2	21
11175	Graphene oxide-crowned poly(acrylonitrile)/sulfur as a lithium–sulfur battery cathode: performance and characterization. SN Applied Sciences, 2020, 2, 1.	1.5	2
11176	Preparation and electrochemical performance of binder-free sodium vanadium bronze thin film electrodes based on a low temperature liquid phase deposition method. Materials Chemistry and Physics, 2020, 249, 122935.	2.0	11
11177	Surface-Dependent Stability of the Interface between Garnet Li ₇ La ₃ Zr ₂ O ₁₂ and the Li Metal in the All-Solid-State Battery from First-Principles Calculations. ACS Applied Materials & Interfaces, 2020, 12, 16350-16358.	4.0	52
11178	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
11179	Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of <i>ex situ</i> anodic pretreatment and an in-built gel polymer electrolyte. Journal of Materials Chemistry A, 2020, 8, 7197-7204.	5.2	91
11180	Nanoscale Assembly of 2D Materials for Energy and Environmental Applications. Advanced Materials, 2020, 32, e1907006.	11.1	106
11181	Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 1904199.	10.2	425

#	Article	IF	CITATIONS
11182	A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie, 2020, 132, 12245-12251.	1.6	21
11183	A Twoâ€Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dualâ€Functional Ion Redistributor for Dendriteâ€Free Lithium Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 12147-12153.	7.2	115
11184	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential for Highâ€Power Sodiumâ€ion Batteries. Angewandte Chemie, 2020, 132, 12174-12181.	1.6	20
11185	Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes. Nano Letters, 2020, 20, 3403-3410.	4.5	77
11186	Magnesium Borohydride Ammonia Borane as a Magnesium Ionic Conductor. ACS Applied Energy Materials, 2020, 3, 3174-3179.	2.5	64
11187	Li _{0.5} Ni _{0.5} Ti _{1.5} Fe _{0.5} (PO ₄) ₃ /C Electrode Material for Lithium Ion Batteries Exhibiting Faster Kinetics and Enhanced Stability. ACS Applied Materials & amp; Interfaces, 2020, 12, 18496-18503.	4.0	7
11188	Mechanically Stable UVâ€Crosslinked Polyesterâ€Polycarbonate Solid Polymer Electrolyte for Highâ€Temperature Batteries. Batteries and Supercaps, 2020, 3, 527-533.	2.4	14
11189	Controlling reaction kinetics of layered zinc vanadate having brucite-like Zn–O layers supported by pyrovanadate pillars for use in supercapacitors. Journal of Alloys and Compounds, 2020, 829, 154479.	2.8	25
11190	Lifting the energy density of lithium ion batteries using graphite film current collectors. Journal of Power Sources, 2020, 455, 227991.	4.0	19
11191	Electrical conductivity and dielectric properties of solid polymer nanocomposite films: Effect of BaTiO3 nanofiller. Materials Today: Proceedings, 2020, 32, 476-482.	0.9	7
11192	Dendrite-free lithium metal solid battery with a novel polyester based triblock copolymer solid-state electrolyte. Nano Energy, 2020, 72, 104690.	8.2	76
11193	Metastability and Reversibility of Anionic Redox-Based Cathode for High-Energy Rechargeable Batteries. Cell Reports Physical Science, 2020, 1, 100028.	2.8	37
11194	Quantitative Resolution of Complex Stoichiometric Changes during Electrochemical Cycling by Density Functional Theory-Assisted Electrochemical Quartz Crystal Microbalance. ACS Applied Energy Materials, 2020, 3, 3347-3357.	2.5	14
11195	Preparation and Electrochemical Performance of Porous Si/SiOx/G Composite Anode for Lithium Ion Batteries. IOP Conference Series: Materials Science and Engineering, 2020, 735, 012015.	0.3	3
11196	Review—Polymer Electrolytes for Sodium Batteries. Journal of the Electrochemical Society, 2020, 167, 070534.	1.3	86
11197	High Performance Li-O ₂ Batteries Enabled with Manganese Sulfide as Cathode Catalyst. Journal of the Electrochemical Society, 2020, 167, 020520.	1.3	9
11198	High Rate Capability of All-Solid-State Lithium Batteries Using Quasi-Solid-State Electrolytes Containing Ionic Liquids. Journal of the Electrochemical Society, 2020, 167, 040511.	1.3	4
11199	Polymerized Ionic Liquid Block Copolymer Electrolytes for All-Solid-State Lithium-Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 070525.	1.3	22

CITATION	REPORT
CHAHON	REFORT

#	Article	IF	CITATIONS
11200	Review—Towards Efficient Energy Storage Materials: Lithium Intercalation/Organic Electrodes to Polymer Electrolytes—A Road Map (Tribute to Michel Armand). Journal of the Electrochemical Society, 2020, 167, 070530.	1.3	13
11201	3D-flower MoS2/Polyimide Heterostructures with Enhanced Electrochemical Properties for Lithium Storage. International Journal of Electrochemical Science, 2020, , 2354-2363.	0.5	0
11202	Sustainable and Environmentally Friendly Na and Mg Aqueous Hybrid Batteries Using Na and K Birnessites. Molecules, 2020, 25, 924.	1.7	5
11203	A Highâ€Performance Li–Mn–O Liâ€rich Cathode Material with Rhombohedral Symmetry via Intralayer Li/Mn Disordering. Advanced Materials, 2020, 32, e2000190.	11.1	83
11204	Exfoliated multi-layered graphene anode with the broadened delithiation voltage plateau below 0.5ÂV. Journal of Energy Chemistry, 2020, 49, 233-242.	7.1	12
11205	Anionic Redox Processes in Maricite- and Triphylite-NaFePO ₄ of Sodium-Ion Batteries. ACS Omega, 2020, 5, 5192-5201.	1.6	16
11206	Non-flammable Inorganic Liquid Electrolyte Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 070521.	1.3	11
11207	Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions:An experimental study. Journal of Power Sources, 2020, 455, 227939.	4.0	84
11208	A facile synthesis approach of Li2MnO3 cathode material for lithium-ion battery by one-step high-energy mechanical activation method. Materials Technology, 2020, 35, 600-605.	1.5	4
11209	Boosting Specific Energy and Power of Carbon-Ionic Liquid Supercapacitors by Engineering Carbon Pore Structures. Frontiers in Chemistry, 2020, 8, 6.	1.8	5
11210	TMDs beyond MoS ₂ for Electrochemical Energy Storage. Chemistry - A European Journal, 2020, 26, 6320-6341.	1.7	52
11211	TiO2 modified α-Fe2O3 pompon-like hollow sphere as the anode material for lithium-ion batteries with mixed lithiation mechanisms. Ionics, 2020, 26, 2781-2790.	1.2	3
11212	Facile In-Situ Synthesis of Freestanding 3D Nanoporous Cu@Cu2O Hierarchical Nanoplate Arrays as Binder-Free Integrated Anodes for High-Capacity, Long-Life Li-Ion Batteries. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2536-2548.	1.1	8
11213	Adiabatic motion and statistical mechanics <i>via</i> mass-zero constrained dynamics. Physical Chemistry Chemical Physics, 2020, 22, 10775-10785.	1.3	15
11214	Toward the Design of Highâ€performance Supercapacitors by Prussian Blue, its Analogues and their Derivatives. Energy and Environmental Materials, 2020, 3, 323-345.	7.3	29
11215	Stateâ€ofâ€health prediction for lithiumâ€ion batteries via electrochemical impedance spectroscopy and artificial neural networks. Energy Storage, 2020, 2, e186.	2.3	27
11216	Recent progresses, challenges and perspectives on rechargeable Liâ€O ₂ batteries. Nano Select, 2020, 1, 79-93.	1.9	9
11217	Spray drying–assisted recycling of spent LiFePO4 for synthesizing hollow spherical LiFePO4/C. Ionics, 2020, 26, 4949-4960.	1.2	7

#	Article	IF	Citations
11218	Metal-organic framework MIL-101(Fe)–NH2 as an efficient host for sulphur storage in long-cycle Li–S batteries. Electrochimica Acta, 2020, 354, 136640.	2.6	41
11219	Long-term cycling of core-shell Fe3O4-Polypyrrole composite electrodes via diffusive and capacitive lithiation. Journal of Alloys and Compounds, 2020, 835, 155192.	2.8	10
11220	Welding characteristics of coated twisted wire and copper plate by ultrasonic vibration source using a transmission rod with helical slits. Japanese Journal of Applied Physics, 2020, 59, SKKD11.	0.8	8
11221	Improving LiNi _x Co _y Mn _{1â~'xâ~'y} O ₂ cathode electrolyte interface under high voltage in lithium ion batteries. Nano Select, 2020, 1, 111-134.	1.9	36
11222	Manganeseâ€based layered oxide cathodes for sodium ion batteries. Nano Select, 2020, 1, 200-225.	1.9	25
11223	Waste Pd/Fish-Collagen as anode for energy storage. Renewable and Sustainable Energy Reviews, 2020, 131, 109968.	8.2	14
11224	Functional Localized High-Concentration Ether-Based Electrolyte for Stabilizing High-Voltage Lithium-Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 33710-33718.	4.0	59
11225	New Thiourea-Based Ionic Liquid as an Electrolyte Additive to Improve Cell Safety and Enhance Electrochemical Performance in Lithium-Ion Batteries. ACS Omega, 2020, 5, 16681-16689.	1.6	6
11226	Porous Ti ₂ Nb10O29â^'x Microspheres Wrapped by Holey-Reduced Graphene Oxide as Superior Anode Material for High-rate Performance Lithium-ion Storage. Nano, 2020, 15, 2050095.	0.5	9
11227	Preparation and electrochemical performance of LiNi0.5Mn1.5O4 spinels with different particle sizes and surface orientations as cathode materials for lithium-ion battery. Journal of Materials Science, 2020, 55, 13157-13176.	1.7	7
11228	Achieving Uniform Lithium Electrodeposition in Cross-Linked Poly(ethylene oxide) Networks: "Soft― Polymers Prevent Metal Dendrite Proliferation. Macromolecules, 2020, 53, 5445-5454.	2.2	22
11229	Synthesis of Thiazoles and Isothiazoles via Three-Component Reaction of Enaminoesters, Sulfur, and Bromodifluoroacetamides/Esters. Organic Letters, 2020, 22, 5284-5288.	2.4	54
11230	Ternary molybdenum sulfoselenide based hybrid nanotubes boost potassium-ion diffusion kinetics for high energy/power hybrid capacitors. Journal of Materials Chemistry A, 2020, 8, 13946-13954.	5.2	46
11231	Nanostructure and its effect on electrochemical properties of polyanionic Li ₂ CoSiO ₄ for lithium ion batteries. Nanotechnology, 2020, 31, 425602.	1.3	4
11232	Dendrites issues and advances in Zn anode for aqueous rechargeable Znâ€based batteries. EcoMat, 2020, 2, e12035.	6.8	135
11233	Theoretical Investigation of the Structure–Property Correlation of MXenes as Anode Materials for Alkali Metal Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 14978-14986.	1.5	26
11234	LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 33719-33728.	4.0	65
11235	Impact of dual-layer solid-electrolyte interphase inhomogeneities on early-stage defect formation in Si electrodes. Nature Communications, 2020, 11, 3283.	5.8	27

		CITATION RE	PORT	
#	Article		IF	CITATIONS
11236	Effect of FSI Based Ionic Liquid on High Voltage Li-Ion Batteries. Energies, 2020, 13, 287	79.	1.6	0
11237	A polymer-assisted strategy for hierarchical SnS@N-doped carbon microspheres with er lithium storage performance. Ionics, 2020, 26, 4921-4928.	hanced	1.2	1
11238	Synthesis of NiF ₂ and NiF ₂ ·4H ₂ O Nanoparticle and Their Self-Assembly. Langmuir, 2020, 36, 8461-8475.	s by Microemulsion	1.6	3
11239	Reversible Changes in the Grain Structure and Conductivity in a Block Copolymer Electr Macromolecules, 2020, 53, 5455-5464.	olyte.	2.2	11
11240	Cobalt nitride nanoparticle coated hollow carbon spheres with nitrogen vacancies as an electrocatalyst for lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8,	14498-14505.	5.2	66
11241	Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for lithium metal anode. Nano Energy, 2020, 76, 105046.	r stable	8.2	31
11242	Fundamental promise of anthraquinone functionalized graphene based next generation electrodes: a DFT study. Journal of Materials Chemistry A, 2020, 8, 14152-14161.	ı battery	5.2	11
11243	Large ionic conductivity and relaxation studies of lithium silicate nanoglasses grown int nanoparticles. Journal of Non-Crystalline Solids, 2020, 544, 120175.	o TiO2	1.5	1
11244	MOF-derived ultrasmall CoSe ₂ nanoparticles encapsulated by an N-doped and their superior lithium/sodium storage properties. Chemical Communications, 2020,		2.2	24
11245	Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithin Green Chemistry, 2020, 22, 4952-4961.	um batteries.	4.6	23
11246	Preparation of monodisperse ferrous nanoparticles embedded in carbon aerogels <i>via solid phase polymerization for electrocatalytic oxygen reduction. Nanoscale, 2020, 12,</i>	in situ15318-15324.	2.8	6
11247	Promoting lithium electrodeposition towards the bottom of 3-D copper meshes in lithic batteries. Journal of Power Sources, 2020, 472, 228495.	ım-based	4.0	9
11248	High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Ma High Specific Capacity for Rechargeable Lithium Batteries. ACS Applied Materials & amp 12, 33702-33709.		4.0	34
11249	2D Coordination Network of Trioxotriangulene with Multiple Redox Abilities and Its Rec Battery Performance. International Journal of Molecular Sciences, 2020, 21, 4723.	hargeable	1.8	10
11250	Siliconâ€Based Selfâ€Assemblies for High Volumetric Capacity Liâ€Ion Batteries via Effe Management. Advanced Functional Materials, 2020, 30, 2002980.	ctive Stress	7.8	76
11251	Yolk‧hell Structured C/Mn ₃ O ₄ Microspheres Derived from Frameworks with Enhanced Lithium Storage Performance. Energy Technology, 2020, 8,		1.8	4
11252	Study of a composite solid electrolyte made from a new pyrrolidone-containing polyme Journal of Colloid and Interface Science, 2020, 580, 389-398.	r and LLZTO.	5.0	20
11253	Direct Thermal Pyrolysis Enabling the Use of Cobalt Oxides Nanoparticles from Commer as High-Capacity Anodes for Lithium-Ion Batteries. Industrial & Engineering Chemis 2020, 59, 13564-13571.	rcial Acetates stry Research,	1.8	7

#	Article	IF	CITATIONS
11254	Nitrogen-Doped Hierarchical Porous Carbon-Promoted Adsorption of Anthraquinone for Long-Life Organic Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34910-34918.	4.0	9
11255	Next-Generation Liquid Metal Batteries Based on the Chemistry of Fusible Alloys. ACS Central Science, 2020, 6, 1355-1366.	5.3	67
11256	Engineering red phosphorus confined in TiO2-coated ultrathin carbon-bubble foam with enhanced Li+ storage capability. Applied Surface Science, 2020, 529, 147114.	3.1	7
11257	Core-shell nanostructured ZnO@CoS arrays as advanced electrode materials for high-performance supercapacitors. Electrochimica Acta, 2020, 354, 136711.	2.6	26
11258	MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries. ChemEngineering, 2020, 4, 42.	1.0	7
11259	Facilitating Interfacial Stability Via Bilayer Heterostructure Solid Electrolyte Toward Highâ€energy, Safe and Adaptable Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000709.	10.2	79
11260	Trielectrolyte aluminum-air cell with high stability and voltage beyond 2.2ÂV. Materials Today Physics, 2020, 14, 100242.	2.9	13
11261	Performance Enhancement of Polymer Electrode Materials for Lithium-Ion Batteries: From a Rigid Homopolymer to Soft Copolymers. ACS Applied Materials & Interfaces, 2020, 12, 32666-32672.	4.0	15
11262	Electrochemistry and Thermal Behavior of SiO _x Made by Reactive Gas Milling. Journal of the Electrochemical Society, 2020, 167, 110501.	1.3	12
11263	A Novel Strategy of In Situ Trimerization of Cyano Groups Between the Ti3C2Tx (MXene) Interlayers for High-Energy and High-Power Sodium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 135.	14.4	49
11264	Aluminum electrolysis derivative spent cathodic carbon for dendrite-free Li metal anode. Materials Today Energy, 2020, 17, 100465.	2.5	8
11265	Polymer Template Synthesis of Flexible SiO ₂ Nanofibers to Upgrade Composite Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 31439-31447.	4.0	58
11266	Microband-Array Electrode Technique for the Detection of Reaction Distributions in the Depth Direction of Composite Electrodes for the All-Solid-State Lithium-Ion Batteries. ACS Omega, 2020, 5, 16739-16743.	1.6	1
11267	Elimination of Fluorination: The Influence of Fluorine-Free Electrolytes on the Performance of LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ /Silicon–Graphite Li-Ion Battery Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 10041-10052.	3.2	35
11268	Tuning the electronic properties of SiC nanosheets decorated by Lin (n = 1–3) for the anode of lithium-ion batteries. Molecular Physics, 2020, 118, e1786182.	0.8	9
11269	Influence of Carbonate-Based Additives on the Electrochemical Performance of Si NW Anodes Cycled in an Ionic Liquid Electrolyte. Nano Letters, 2020, 20, 7011-7019.	4.5	18
11270	One-Step Processing of Soft Electrolyte/Metallic Lithium Interface for High-Performance Solid-State Lithium Batteries. ACS Applied Energy Materials, 2020, 3, 6139-6145.	2.5	13
11271	High Power Na ₃ V ₂ (PO ₄) ₃ @C/AC Bi-material Cathodes for Hybrid Battery-Capacitor Energy Storage Devices. Journal of the Electrochemical Society, 2020, 167, 110546.	1.3	7

#	Article	IF	CITATIONS
11272	Lithium Accommodation in a Redoxâ€Active Covalent Triazine Framework for High Areal Capacity and Fastâ€Charging Lithiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2003761.	7.8	86
11273	Excessâ€Li Localization Triggers Chemical Irreversibility in Li―and Mnâ€Rich Layered Oxides. Advanced Materials, 2020, 32, e2001944.	11.1	43
11274	Utilizing Latent Multiâ€Redox Activity of pâ€Type Organic Cathode Materials toward High Energy Density Lithiumâ€Organic Batteries. Advanced Energy Materials, 2020, 10, 2001635.	10.2	47
11275	Universal Access to Twoâ€Dimensional Mesoporous Heterostructures by Micelleâ€Directed Interfacial Assembly. Angewandte Chemie, 2020, 132, 19738-19743.	1.6	18
11276	Universal Access to Twoâ€Đimensional Mesoporous Heterostructures by Micelleâ€Đirected Interfacial Assembly. Angewandte Chemie - International Edition, 2020, 59, 19570-19575.	7.2	52
11277	Selfâ€Adhesive Polyimide (PI)@Reduced Graphene Oxide (RGO)/PI@Carbon Nanotube (CNT) Hierarchically Porous Electrodes: Maximizing the Utilization of Electroactive Materials for Organic Liâ€Ion Batteries. Energy Technology, 2020, 8, 2000397.	1.8	18
11278	Multi‣tep Phase Transitions of Mn ₃ O ₄ During Galvanostatic Lithiation: An In Situ Transmission Electron Microscopic Investigation. Small, 2020, 16, e1906499.	5.2	4
11279	Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries. Journal of Colloid and Interface Science, 2020, 580, 21-29.	5.0	33
11280	Supersaturated "water-in-salt―hybrid electrolyte towards building high voltage Na-ion capacitors with wide temperatures operation. Journal of Power Sources, 2020, 472, 228558.	4.0	26
11281	Unveiling nanoplates-assembled Bi2MoO6 microsphere as a novel anode material for high performance potassium-ion batteries. Nano Research, 2020, 13, 2650-2657.	5.8	39
11282	Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium–Sulfur Batteries. Electrochemical Energy Reviews, 2020, 3, 613-642.	13.1	75
11283	Binder-free coaxially grown V6O13 nanobelts on carbon cloth as cathodes for highly reversible aqueous zinc ion batteries. Applied Surface Science, 2020, 529, 147077.	3.1	51
11284	Surfactant-based selective assembly approach for Si-embedded silicon oxycarbide composite materials in lithium-ion batteries. Chemical Engineering Journal, 2020, 401, 126091.	6.6	37
11285	Rechargeable aluminum-ion battery with sheet-like MoSe2@C nanocomposites cathode. Electrochimica Acta, 2020, 354, 136677.	2.6	46
11286	Dipotassium terephthalate as promising potassium storing anode with DFT calculations. Materials Today Energy, 2020, 17, 100454.	2.5	12
11287	FeOF/TiO ₂ Hetero-Nanostructures for High-Areal-Capacity Fluoride Cathodes. ACS Applied Materials & Interfaces, 2020, 12, 33803-33809.	4.0	12
11288	Fabrication of Uniform Fe ₃ O ₄ Nanocubes Derived from Prussian Blue and Enhanced Performance for Lithium Storage Properties. Nano, 2020, 15, 2050108.	0.5	3
11289	Hybrid separator containing reactive, nanostructured alumina promoting in-situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety. Journal of Power Sources, 2020, 472, 228519.	4.0	34

#	Article	IF	CITATIONS
11290	Effectively stabilizing electrode/electrolyte interface of high-energy LiNi0.9Co0.1O2//Si–C system by simple cathode surface-coating. Nano Energy, 2020, 76, 105065.	8.2	23
11291	Impact of the Crystal Orientation of Positive Electrodes on the Interface Resistance across a Solid Electrolyte and Electrode. ACS Applied Energy Materials, 2020, 3, 6416-6421.	2.5	14
11292	Understanding the Reactivity of a Thin Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid‣tate Electrolyte toward Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001497.	10.2	49
11293	Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors. Angewandte Chemie - International Edition, 2020, 59, 18457-18462.	7.2	4
11294	Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. Energy Storage Materials, 2020, 31, 344-351.	9.5	48
11295	Laser sintering technique to fabricate nano-Sn/graphite anode for lithium ion batteries: Microstructures and electrochemical properties. Journal of Solid State Chemistry, 2020, 290, 121543.	1.4	4
11296	Ionic Conductive Thermoplastic Polymer Welding Layer for Low Electrode/Solid Electrolyte Interface Resistance. ACS Applied Energy Materials, 2020, 3, 7011-7019.	2.5	8
11297	Electrochemical Energy Storage Behavior of Na _{0.44} MnO ₂ in Aqueous Zinc-Ion Battery. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	11
11298	Nanoscale kinetic imaging of lithium ion secondary battery materials using scanning electrochemical cell microscopy. Chemical Communications, 2020, 56, 9324-9327.	2.2	49
11299	Affinity-engineered carbon nanofibers as a scaffold for Na metal anodes. Journal of Materials Chemistry A, 2020, 8, 14757-14768.	5.2	22
11300	An aromatic carbonyl compound-linked conjugated microporous polymer as an advanced cathode material for lithium-organic batteries. Materials Chemistry Frontiers, 2020, 4, 2697-2703.	3.2	34
11301	Preparation of Activated Carbon Derived from Water Hyacinth as Electrode Active Material for Li-Ion Supercapacitor. Materials Science Forum, 0, 1000, 50-57.	0.3	2
11302	Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors. Angewandte Chemie, 2020, 132, 18615-18620.	1.6	2
11303	Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 18386-18390.	1.6	10
11304	Solvation Rule for Solidâ€Electrolyte Interphase Enabler in Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 18229-18233.	7.2	45
11305	Stabilizing Metallic Iron Nanoparticles by Conformal Graphitic Carbon Coating for High-Rate Anode in Ni–Fe Batteries. Nano Letters, 2020, 20, 1700-1706.	4.5	40
11306	Metal–organic framework derived petal-like Co ₃ O ₄ @CoNi ₂ S ₄ hybrid on carbon cloth with enhanced performance for supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 1428-1436.	3.0	45
11307	Conducting polymer composites for unconventional solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 4677-4699.	5.2	111

#	Article	IF	CITATIONS
11308	A Highâ€Power Aqueous Zinc–Organic Radical Battery with Tunable Operating Voltage Triggered by Selected Anions. ChemSusChem, 2020, 13, 2239-2244.	3.6	59
11309	A facile strategy for recovering spent LiFePO4 and LiMn2O4 cathode materials to produce high performance LiMnxFe1-xPO4/C cathode materials. Ceramics International, 2020, 46, 11698-11704.	2.3	19
11310	Reversible Anionic Redox Activities in Conventional LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes. Angewandte Chemie, 2020, 132, 8759-8766.	1.6	15
11311	Achieving a high-performance P/C anode through P-O-C bond for sodium ion batteries. Ionics, 2020, 26, 3377-3385.	1.2	10
11312	Three-dimensional hierarchical graphene and CNT-coated spinel ZnMn2O4 as a high-stability anode for lithium-ion batteries. Electrochimica Acta, 2020, 338, 135853.	2.6	36
11313	Na- and K-Doped Li ₂ SiO ₃ as an Alternative Solid Electrolyte for Solid-State Lithium Batteries. Journal of Physical Chemistry C, 2020, 124, 4982-4988.	1.5	12
11314	Experimental Investigation and First-Principles Calculations of a Ni ₃ Se ₄ Cathode Material for Mg-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 9316-9321.	4.0	26
11315	Rational integration of spatial confinement and polysulfide conversion catalysts for high sulfur loading lithium–sulfur batteries. Nanoscale Horizons, 2020, 5, 720-729.	4.1	30
11316	Graphene encapsulated metallic state Ce ₂ Sn ₂ O ₇ as a novel anode material for superior lithium-ion batteries and capacitors. Journal of Materials Chemistry A, 2020, 8, 5517-5524.	5.2	31
11317	Chemical bowling-assisted synthesis of Fe ₃ O ₄ @starch-derived carbon composites as anode materials with superior cycling stability for lithium-ion batteries. New Journal of Chemistry, 2020, 44, 3004-3011.	1.4	3
11318	Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. Science Advances, 2020, 6, eaaw3871.	4.7	82
11319	Perspective—Outlook on Operando Photoelectron and Absorption Spectroscopy to Probe Catalysts at the Solid-Liquid Electrochemical Interface. Journal of the Electrochemical Society, 2020, 167, 054509.	1.3	31
11320	A Nanoâ€shield Design for Separators to Resist Dendrite Formation in Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 6623-6628.	1.6	14
11321	Interrelationship Between the Open Circuit Potential Curves in a Class of Ni-Rich Cathode Materials. Journal of the Electrochemical Society, 2020, 167, 040510.	1.3	2
11322	The Development of Vanadyl Phosphate Cathode Materials for Energy Storage Systems: A Review. Chemistry - A European Journal, 2020, 26, 8190-8204.	1.7	21
11323	Performance enhancement of Sn-Ti-C nanofibers anode for lithium-ion batteries via deep cryogenic treatment. Journal of Solid State Electrochemistry, 2020, 24, 781-793.	1.2	6
11324	Bio-inspired 3D porous carbon nanosheets composite materials for high-performance lithium-ion batteries. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	7
11325	Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Metals, 2020, 39, 205-217.	3.6	94

#	Article	IF	Citations
11326	Nitrogen, sulfur Co-doped porous graphene boosting Li4Ti5O12 anode performance for high-rate and long-life lithium ion batteries. Energy Storage Materials, 2020, 27, 387-395.	9.5	87
11327	Skin care design for lithium metal protection with cosmetics introduction. Journal of Energy Chemistry, 2020, 48, 383-389.	7.1	3
11328	Tin asymmetric membranes for high capacity sodium ion battery anodes. Materials Today Communications, 2020, 24, 100998.	0.9	1
11329	Quantitative Analyses of the Interfacial Properties of Current Collectors at the Mesoscopic Level in Lithium Ion Batteries by Using Hierarchical Graphene. Nano Letters, 2020, 20, 2175-2182.	4.5	18
11330	Nanoengineering to achieve high efficiency practical lithium–sulfur batteries. Nanoscale Horizons, 2020, 5, 808-831.	4.1	53
11331	Electrospinning-based construction of porous Mn ₃ O ₄ /CNFs as anodes for high-performance lithium-ion batteries. New Journal of Chemistry, 2020, 44, 3888-3895.	1.4	6
11332	Fast production of zinc–hexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 5062-5069.	5.2	14
11333	TiNb ₂ O ₇ microsphere anchored by polydopamineâ€modified graphene oxide as a superior anode material in lithiumâ€ion batteries. International Journal of Energy Research, 2020, 44, 4986-4996.	2.2	16
11334	Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges. Small Methods, 2020, 4, 1900823.	4.6	129
11335	LaNiO3 as a Novel Anode for Lithium-Ion Batteries. Transactions of Tianjin University, 2020, 26, 142-147.	3.3	10
11336	Experimental Visualization of Interstitialcy Diffusion Pathways in Fast-Fluoride-Ion-Conducting Solid Electrolyte Ba _{0.6} La _{0.4} F _{2.4} . ACS Applied Energy Materials, 2020, 3, 2873-2880.	2.5	22
11337	Construct an Ultrathin Bismuth Buffer for Stable Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12793-12800.	4.0	29
11338	Cathode materials for lithium–sulfur batteries based on sulfur covalently bound to a polymeric backbone. Journal of Materials Chemistry A, 2020, 8, 5379-5394.	5.2	39
11339	Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries. Molecules, 2020, 25, 891.	1.7	15
11340	Strengthening the Interface between Flower‣ike VS ₄ and Porous Carbon for Improving Its Lithium Storage Performance. Advanced Functional Materials, 2020, 30, 2000427.	7.8	47
11341	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Long‣ife Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 9134-9142.	7.2	292
11342	Fused Tetrathiafulvalene and Benzoquinone Triads: Organic Positiveâ€Electrode Materials Based on a Dual Redox System. ChemSusChem, 2020, 13, 2312-2320.	3.6	23
11343	Pseudocapacitance boosted N-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Research, 2020, 13, 691-700.	5.8	93

# 11344	ARTICLE Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries. Nano-Micro Letters, 2020, 12, 56.	lF 14.4	CITATIONS
11345	l-Tryptophan: Antioxidant as a Film-Forming Additive for a High-Voltage Cathode. Langmuir, 2020, 36, 2823-2828.	1.6	2
11346	A 63 <i>m</i> Superconcentrated Aqueous Electrolyte for High-Energy Li-Ion Batteries. ACS Energy Letters, 2020, 5, 968-974.	8.8	197
11347	K _{0.38} (H ₂ O) _{0.82} MoS ₂ as a universal host for rechargeable aqueous cation (K ⁺ , Na ⁺ , Li ⁺ ,) Tj ETQq1 1 0.784314 rgBT /O 2020, 49, 3488-3494.	verlock 10 1.6) Tf 50 622 1 24
11348	Significance of Electrolyte Additive Molecule Structure in Constructing Robust Interphases on High-Voltage Cathodes. ACS Applied Energy Materials, 2020, 3, 3049-3058.	2.5	34
11349	Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 19393-19401.	4.0	16
11350	Effect of Annealing Temperature of Ni-P/Si on its Lithiation and Delithiation Properties. Journal of the Electrochemical Society, 2020, 167, 040512.	1.3	5
11351	Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between â^'40 and 60 °C. Advanced Energy Materials, 2020, 10, 1904152.	10.2	200
11352	Deepâ€Eutecticâ€Solventâ€Based Selfâ€Healing Polymer Electrolyte for Safe and Longâ€Life Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 9219-9227.	1.6	42
11353	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using In‧itu Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 15314-15324.	7.2	22
11354	Mellitic Triimides Showing Three Oneâ€Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Liâ€Ion Batteries. ChemSusChem, 2020, 13, 2303-2311.	3.6	11
11355	A Biomimeticâ€Mineralizationâ€Inspired Hybrid Mesocrystal with Boosted Lithium Storage Properties. ChemistrySelect, 2020, 5, 2240-2246.	0.7	3
11356	3-cyano-5-fluorobenzenzboronic acid as an electrolyte additive for enhancing the cycling stability of Li1.2Mn0.54Ni0.13Co0.13O2 cathode at high voltage. Journal of Alloys and Compounds, 2020, 829, 154491.	2.8	24
11357	A cyclic phosphate-based battery electrolyte for high voltage and safe operation. Nature Energy, 2020, 5, 291-298.	19.8	250
11358	Toward Low-Cost All-Organic and Biodegradable Li-Ion Batteries. Scientific Reports, 2020, 10, 3812.	1.6	37
11359	High-purity electrolytic lithium obtained from low-purity sources using solid electrolyte. Nature Sustainability, 2020, 3, 386-390.	11.5	54
11360	Solar-driven all-solid-state lithium–air batteries operating at extreme low temperatures. Energy and Environmental Science, 2020, 13, 1205-1211.	15.6	48
11361	Bacterial cellulose-derived carbon nanofibers as both anode and cathode for hybrid sodium ion capacitor. RSC Advances, 2020, 10, 7780-7790.	1.7	25

#	Article	IF	CITATIONS
11362	Reduced graphene oxide promoted assembly of graphene@polyimide film as a flexible cathode for high-performance lithium-ion battery. RSC Advances, 2020, 10, 8729-8734.	1.7	11
11363	A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery. Nano Energy, 2020, 71, 104600.	8.2	54
11364	In Situ Construction of Spinel Coating on the Surface of a Lithium-Rich Manganese-Based Single Crystal for Inhibiting Voltage Fade. ACS Applied Materials & Interfaces, 2020, 12, 11579-11588.	4.0	46
11365	Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 4003-4025.	3.2	40
11366	Prospects of organic electrode materials for practical lithium batteries. Nature Reviews Chemistry, 2020, 4, 127-142.	13.8	772
11367	Low resistance at LiNi1/3Mn1/3Co1/3O2 and Li3PO4 interfaces. Applied Physics Letters, 2020, 116, .	1.5	18
11368	Na ₃ V ₂ (PO ₄) ₃ @NC composite derived from polyaniline as cathode material for highâ€rate and ultralongâ€life sodiumâ€ion batteries. International Journal of Energy Research, 2020, 44, 4586-4594.	2.2	39
11369	Ameliorating Interfacial Issues of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /Poly(propylene carbonate) by Introducing Graphene Interlayer for Allâ€Solidâ€State Lithium Batteries. ChemistrySelect, 2020, 5, 2291-2299.	0.7	22
11370	Strategies to limit degradation and maximize Li-ion battery service lifetime - Critical review and guidance for stakeholders. Journal of Energy Storage, 2020, 28, 101231.	3.9	114
11371	A computational study on the BN-yne sheet application in the Na-ion batteries. Journal of Molecular Graphics and Modelling, 2020, 97, 107567.	1.3	4
11372	Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Materials Today Communications, 2020, 24, 101003.	0.9	19
11373	Thin solid electrolyte interface on chemically bonded Sb2Te3/CNT composite anodes for high performance sodium ion full cells. Nano Energy, 2020, 71, 104613.	8.2	38
11374	Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode. Nano Energy, 2020, 71, 104614.	8.2	44
11375	Interface engineering in amorphous silicon thin-films using ultra-thin TiO2 interlayers and its effect on Li-ion storage. Surfaces and Interfaces, 2020, 19, 100462.	1.5	3
11376	Enhanced surface binding energy regulates uniform potassium deposition for stable potassium metal anodes. Journal of Materials Chemistry A, 2020, 8, 5671-5678.	5.2	54
11377	Hierarchical Microcables Constructed by CoP@CâŠ,Carbon Framework Intertwined with Carbon Nanotubes for Efficient Lithium Storage. Advanced Energy Materials, 2020, 10, 1902913.	10.2	112
11378	Formation and thermodynamic stability of oxygen vacancies in typical cathode materials for Li-ion batteries: Density functional theory study. Solid State Ionics, 2020, 347, 115257.	1.3	41
11379	Comparative calculation on Li ⁺ solvation in common organic electrolyte solvents for lithium ion batteries*. Chinese Physics B, 2020, 29, 048202.	0.7	13

		CITATION REPORT		
#	Article		IF	CITATIONS
11380	Porous Si u ₃ Si u Microsphere@C Core–Shell Composites with Enhanced Electrochemical Lithium Storage. Chemistry - A European Journal, 2020, 26, 6006-6016.		1.7	23
11381	An organic/inorganic electrode-based hydronium-ion battery. Nature Communications, 2020, 1	1, 959.	5.8	157
11382	Spark plasma sintering plus heat-treatment of Ta-doped Li ₇ La ₃ Zr ₂ O ₁₂ solid electrolyte and its ion conductivity. Materials Research Express, 2020, 7, 025518.	c	0.8	13
11383	Biomass-Derived Graphitic Carbon Encapsulated Fe/Fe3C Composite as an Anode Material for High-Performance Lithium Ion Batteries. Energies, 2020, 13, 827.		1.6	22
11384	Galvanically Replaced, Singleâ€Bodied Lithiumâ€ion Battery Fabric Electrodes. Advanced Funct Materials, 2020, 30, 1908633.	onal	7.8	11
11385	Accommodation of Silicon in an Interconnected Copper Network for Robust Liâ€lon Storage. A Functional Materials, 2020, 30, 1910249.	dvanced	7.8	46
11386	A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review. Journal of Materials Science, 2020, 55, 6242-6304.		1.7	68
11387	Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries. International Journal of Hydroge Energy, 2020, 45, 8186-8197.	n	3.8	41
11388	Preparation of organic poly material as anode in aqueous aluminum-ion battery. Journal of Electroanalytical Chemistry, 2020, 861, 113967.		1.9	25
11389	Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithiun battery in subcritical water. Journal of Hazardous Materials, 2020, 393, 122367.	n-ion	6.5	30
11390	A Fast Charge/Discharge and Wide-Temperature Battery with a Germanium Oxide Layer on a Ti ₃ C ₂ MXene Matrix as Anode. ACS Nano, 2020, 14, 3678-3686.		7.3	74
11391	Synthesis of cobalt-doped V ₂ O ₃ with a hierarchical yolk–shell struchigh-performance lithium-ion batteries. CrystEngComm, 2020, 22, 1705-1711.	ture for	1.3	19
11392	Molecular design principles for polymeric binders in silicon anodes. Molecular Systems Design a Engineering, 2020, 5, 709-724.	ınd	1.7	29
11393	The effect of CO2 contamination in rechargeable non-aqueous sodium–air batteries. Journal Chemical Physics, 2020, 152, 074711.	of	1.2	8
11394	Review—Polymer Electrolytes for Rechargeable Batteries: From Nanocomposite to Nanohybrid Journal of the Electrochemical Society, 2020, 167, 070524.	J.	1.3	135
11395	Polyacrylonitrile Hard Carbon as Anode of High Rate Capability for Lithium Ion Batteries. Frontie Energy Research, 2020, 8, .	ers in	1.2	34
11396	Biomimetic Synthesis of Earâ€ofâ€wheatâ€shaped Manganese Oxide Nanoparticles on Carbon Highâ€capacity Lithium Storage. Energy and Environmental Materials, 2021, 4, 399-406.	Nanotubes for	7.3	13
11397	Three-dimensional honeycomb-like MoSe2/rGO as high performance sodium ions storage mate with long cycle stability and high rate capability. Applied Surface Science, 2020, 513, 145826.	rials	3.1	26

#	Article	IF	CITATIONS
11398	A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes. Materials Today Communications, 2020, 24, 101004.	0.9	14
11399	Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries. Scientific Reports, 2020, 10, 2554.	1.6	23
11400	Uniformly Confined Germanium Quantum Dots in 3D Ordered Porous Carbon Framework for Highâ€Performance Liâ€ion Battery. Advanced Functional Materials, 2020, 30, 2000373.	7.8	60
11401	Unprecedented Improvement of Single Liâ€Ion Conductive Solid Polymer Electrolyte Through Salt Additive. Advanced Functional Materials, 2020, 30, 2000455.	7.8	63
11402	Structureâ€Controlled Li Metal Electrodes for Postâ€Liâ€lon Batteries: Recent Progress and Perspectives. Advanced Materials Interfaces, 2020, 7, 1902113.	1.9	33
11403	Solid Polymer Electrolytes Based on Copolymers of Cyclic Carbonate Acrylate and <i>n</i> â€Butylacrylate. Macromolecular Chemistry and Physics, 2020, 221, 1900556.	1.1	8
11404	Nanoâ€Architectured Composite Anode Enabling Longâ€Term Cycling Stability for Highâ€Capacity Lithiumâ€Ion Batteries. Small, 2020, 16, e1906812.	5.2	37
11405	Environmental and economical assessment for a sustainable Zn/air battery. Chemosphere, 2020, 250, 126273.	4.2	39
11406	Improved adhesion of cross-linked binder and SiO2-coating enhances structural and cyclic stability of silicon electrodes for lithium-ion batteries. Journal of Power Sources, 2020, 454, 227907.	4.0	56
11407	Microwave-assisted synthesis of porous nano-sized Na3V2(PO4)2F3@C nanospheres for sodium ion batteries with enhanced stability. Scripta Materialia, 2020, 181, 92-96.	2.6	16
11408	Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews, 2020, 120, 6558-6625.	23.0	356
11409	Higher Critical Current Density in Lithium Garnets at Room Temperature by Incorporation of an Li ₄ SiO ₄ -Related Glassy Phase and Hot Isostatic Pressing. ACS Applied Energy Materials, 2020, 3, 2737-2743.	2.5	16
11410	Multi-ion Modulated Single-Step Synthesis of a Nanocarbon Embedded with a Defect-Rich Nanoparticle Catalyst for a High Loading Sulfur Cathode. ACS Applied Materials & Interfaces, 2020, 12, 12727-12735.	4.0	27
11411	Wrapping Sb ₂ Te ₃ with a Graphite Layer toward High Volumetric Energy and Long Cycle Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16264-16275.	4.0	25
11412	Theoretical identification of layered MXene phase Na _x Ti ₄ C ₂ O ₄ as superb anodes for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 11177-11187.	5.2	20
11413	Intertwined Nanosponge Solid-State Polymer Electrolyte for Rollable and Foldable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 11657-11668.	4.0	22
11414	Chitosan- <i>grafted</i> -poly(aniline- <i>co</i> -anthranilic acid) as a water soluble binder to form 3D structures for Si anodes. RSC Advances, 2020, 10, 7643-7653.	1.7	11
11415	Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries. Molecules, 2020, 25, 1064.	1.7	14

#	Article	IF	CITATIONS
11417	Cyclic Aminosilaneâ€Based Additive Ensuring Stable Electrode–Electrolyte Interfaces in Liâ€lon Batteries. Advanced Energy Materials, 2020, 10, 2000012.	10.2	91
11418	A Boron Nitride Nanosheets Composite Membrane for a Longâ€Life Zincâ€Based Flow Battery. Angewandte Chemie, 2020, 132, 6781-6785.	1.6	4
11419	Highâ€Performance Gel Polymer Electrolyte Based on Chitosan–Lignocellulose for Lithiumâ€ l on Batteries. ChemElectroChem, 2020, 7, 1213-1224.	1.7	20
11420	Aminomethylâ€Functionalized Carbon Nanotubes as a Host of Small Sulfur Clusters for Highâ€Performance Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 2761-2768.	3.6	9
11421	Fabrication of nanocomposites by electric explosion of stainless steel capillaries filled with carbon nanotubes. Applied Surface Science, 2020, 513, 145824.	3.1	2
11422	Ultrathin Ta2O5-coated super P carbon black as a stable conducting additive for lithium batteries charged to 4.9Vat 55°C. Carbon, 2020, 162, 519-527.	5.4	11
11423	Dual-confined SeS2 cathode based on polyaniline-assisted double-layered micro/mesoporous carbon spheres for advanced Li–SeS2 battery. Journal of Power Sources, 2020, 455, 227955.	4.0	28
11424	Stone–Wales Defect Induced Performance Improvement of BC ₃ Monolayer for High Capacity Lithium-Ion Rechargeable Battery Anode Applications. Journal of Physical Chemistry C, 2020, 124, 5910-5919.	1.5	52
11425	Biodegradable Bacterial Cellulose-Supported Quasi-Solid Electrolyte for Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 13950-13958.	4.0	45
11426	Rechargeable Nickel Telluride/Aluminum Batteries with High Capacity and Enhanced Cycling Performance. ACS Nano, 2020, 14, 3469-3476.	7.3	70
11427	Amorphous MoSx embedded within edges of modified graphite as fast-charging anode material for rechargeable batteries. Applied Surface Science, 2020, 509, 145352.	3.1	13
11428	Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction. Carbon, 2020, 162, 431-437.	5.4	25
11429	Excellent Rate Capability and Cycling Stability of Novel H ₂ V ₃ O ₈ Doped with Graphene Materials Used in New Aqueous Zinc-Ion Batteries. Energy & Fuels, 2020, 34, 3877-3886.	2.5	26
11430	Allylimidazolium-Based Poly(ionic liquid) Anodic Binder for Lithium-Ion Batteries with Enhanced Cyclability. ACS Applied Energy Materials, 2020, 3, 3337-3346.	2.5	15
11431	Mechanism Study of Unsaturated Tripropargyl Phosphate as an Efficient Electrolyte Additive Forming Multifunctional Interphases in Lithium Ion and Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10443-10451.	4.0	47
11432	Designing All-Polymer Nanostructured Solid Electrolytes: Advances and Prospects. ACS Omega, 2020, 5, 2531-2540.	1.6	40
11433	Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 2020, 11, 829.	5.8	246
11434	Study of the discharge/charge process of lithium–sulfur batteries by electrochemical impedance spectroscopy. RSC Advances, 2020, 10, 5283-5293.	1.7	47

#	Article	IF	CITATIONS
11435	Atomic/molecular layer deposition and electrochemical performance of dilithium 2-aminoterephthalate. Dalton Transactions, 2020, 49, 1591-1599.	1.6	17
11436	Chitosan oligosaccharide derived polar host for lithium deposition in lithium metal batteries. Sustainable Materials and Technologies, 2020, 24, e00158.	1.7	10
11437	Rechargeable Lithium Metal Batteries with an Inâ€Built Solidâ€State Polymer Electrolyte and a High Voltage/Loading Niâ€Rich Layered Cathode. Advanced Materials, 2020, 32, e1905629.	11.1	140
11438	Water‧table Lithium Metal Anodes with Ultrahighâ€Rate Capability Enabled by a Hydrophobic Graphene Architecture. Advanced Materials, 2020, 32, e1908494.	11.1	77
11439	Redox Mechanisms in Li and Mg Batteries Containing Poly(phenanthrene quinone)/Graphene Cathodes using Operando ATRâ€IR Spectroscopy. ChemSusChem, 2020, 13, 2328-2336.	3.6	23
11440	A Highly Reversible, Dendriteâ€Free Lithium Metal Anode Enabled by a Lithiumâ€Fluorideâ€Enriched Interphase. Advanced Materials, 2020, 32, e1906427.	11.1	168
11441	Effect of Aromatic Rings and Substituent on the Performance of Lithium Batteries with Rylene Imide Cathodes. ChemElectroChem, 2020, 7, 1160-1165.	1.7	11
11442	Solid Additives for Improving the Performance of Sulfur Cathodes in Lithium–Sulfur Batteries—Adsorbents, Mediators, and Catalysts. Small Methods, 2020, 4, 1900864.	4.6	60
11443	ZnWO4/r-GO nanocomposite as high capacity anode for lithium-ion battery. lonics, 2020, 26, 2813-2823.	1.2	17
11444	An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode. Journal of Power Sources, 2020, 453, 227852.	4.0	26
11445	Enhancing the Electrocatalysis of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ by Introducing Lithium Deficiency for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 10496-10502.	4.0	33
11446	An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 2020, 5, 807-816.	8.8	97
11447	A novel graphene-wrapped corals-like NiSe2 for ultrahigh-capacity potassium ion storage. Carbon, 2020, 161, 834-841.	5.4	44
11448	New Insights into the Reaction Mechanism of Sodium Vanadate for an Aqueous Zn Ion Battery. Chemistry of Materials, 2020, 32, 2053-2060.	3.2	37
11449	Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly(ethylene oxide)@SiO ₂ Electrolytes for a High Rate Capability Li-Metal Battery. ACS Applied Materials & Interfaces, 2020, 12, 10341-10349.	4.0	77
11450	A high-resilience and conductive composite binder for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 389, 124404.	6.6	43
11451	Carbon layer encapsulated Fe3O4@Reduced graphene oxide lithium battery anodes with long cycle performance. Ceramics International, 2020, 46, 12732-12739.	2.3	43
11452	Enhancing the electrochemical properties of a Si anode by introducing cobalt metal as a conductive buffer for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 827, 154102.	2.8	27

#	Article	IF	CITATIONS
11453	Boosting the stable sodium-ion storage performance by tailoring the 1D TiO2@ReS2 core-shell heterostructures. Electrochimica Acta, 2020, 338, 135695.	2.6	17
11454	Double-Layer Honeycomb AlP: A Promising Anode Material for Li-, Na-, and K-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 2978-2986.	1.5	11
11455	Role of Defects in Low-Cost Perovskite Catalysts toward ORR and OER in Lithium–Oxygen Batteries. ACS Applied Energy Materials, 2020, 3, 1338-1348.	2.5	36
11456	Synthesis and Electrochemical Reaction of a Pitch Carbon-Coated Zinc Vanadium Oxide Anode with Excellent Electrochemical Performance for Rechargeable Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 1908-1915.	3.2	8
11457	Review on Recent Advances of Cathode Materials for Potassiumâ€ion Batteries. Energy and Environmental Materials, 2020, 3, 56-66.	7.3	63
11458	Research Development on K-Ion Batteries. Chemical Reviews, 2020, 120, 6358-6466.	23.0	804
11459	Ultrasmall SnS Quantum Dots Anchored onto Nitrogen-Enriched Carbon Nanospheres as an Advanced Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 7114-7124.	4.0	71
11460	Achieving Both High Ionic Conductivity and High Interfacial Stability with the Li2+xCl–xBxO3 Solid-State Electrolyte: Design from Theoretical Calculations. ACS Applied Materials & Interfaces, 2020, 12, 6007-6014.	4.0	17
11461	Vertical graphene growth on uniformly dispersed sub-nanoscale SiO _x /N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. Journal of Materials Chemistry A, 2020, 8, 3822-3833.	5.2	59
11462	Combining Organic and Inorganic Wastes to Form Metal–Organic Frameworks. Materials, 2020, 13, 441.	1.3	12
11463	Molecular Design Strategy for Highâ€Redoxâ€Potential and Poorly Soluble nâ€Type Phenazine Derivatives as Cathode Materials for Lithium Batteries. ChemSusChem, 2020, 13, 2337-2344.	3.6	35
11464	Hard limitations of polynomial approximations for reduced-order models of lithium-ion cells. Journal of Applied Electrochemistry, 2020, 50, 343-354.	1.5	3
11465	MnO2 particles grown on the surface of N-doped hollow porous carbon nanospheres for aqueous rechargeable zinc ion batteries. Applied Surface Science, 2020, 510, 145458.	3.1	31
11466	Nanostructure-modified in-situ synthesis of nitrogen-doped porous carbon microspheres (NPCM) loaded with FeTe2 nanocrystals and NPCM as superior anodes to construct high-performance lithium-ion capacitors. Electrochimica Acta, 2020, 337, 135749.	2.6	20
11467	Thermal Stability Enhancement through Structure Modification on the Microsized Crystalline Grain Surface of Lithium-Rich Layered Oxides. ACS Applied Materials & Interfaces, 2020, 12, 8306-8315.	4.0	43
11468	A mixed polyanion NaFe _{1â^'x} (VO) _x PO ₄ glass-ceramic cathode system for safe and large-scale economic Na-ion battery applications. New Journal of Chemistry, 2020, 44, 2897-2906.	1.4	13
11469	Li/Garnet Interface Stabilization by Thermalâ€Đecomposition Vapor Deposition of an Amorphous Carbon Layer. Angewandte Chemie - International Edition, 2020, 59, 5346-5349.	7.2	42
11470	Zinc bis(2–ethylhexanoate), a homogeneous and bifunctional additive, to improve conductivity and lithium deposition for poly (ethylene oxide) based all-solid-state lithium metal battery. Journal of Power Sources, 2020, 451, 227730.	4.0	33

#	Article	IF	CITATIONS
11471	Comparison of organic electrolytes at various temperatures for 2.8ÂV–Li-ion hybrid supercapacitors. Electrochimica Acta, 2020, 337, 135760.	2.6	15
11472	On battery materials and methods. Materials Today Advances, 2020, 6, 100046.	2.5	81
11473	<i>Post Mortem</i> and <i>Operando</i> XPEEM: a Surface-Sensitive Tool for Studying Single Particles in Li-Ion Battery Composite Electrodes. Analytical Chemistry, 2020, 92, 3023-3031.	3.2	27
11474	Low Interface Resistance in Solid-State Lithium Batteries Using Spinel LiNi _{0.5} Mn _{1.5} O ₄ (111) Epitaxial Thin Films. ACS Applied Energy Materials, 2020, 3, 1358-1363.	2.5	18
11475	Role of Nitrogen on the Porosity, Surface, and Electrochemical Characteristics of Activated Carbon. ACS Omega, 2020, 5, 1911-1918.	1.6	27
11476	Hierarchical N-doped hollow carbon microspheres as advanced materials for high-performance lithium-ion capacitors. Journal of Materials Chemistry A, 2020, 8, 3956-3966.	5.2	58
11477	Nano-SiO2@PMMA-doped composite polymer PVDF-HFP/PMMA/PEO electrolyte for lithium metal batteries. Journal of Materials Science: Materials in Electronics, 2020, 31, 2708-2719.	1.1	20
11478	A computational study on the potential application of zigzag carbon nanotubes in Mg-ion batteries. Structural Chemistry, 2020, 31, 1073-1078.	1.0	18
11479	Defective Phosphorene as a Promising Anchoring Material for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 2739-2746.	1.5	39
11480	Functional Electrolyte of Fluorinated Ether and Ester for Stabilizing Both 4.5 V LiCoO ₂ Cathode and Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 8316-8323.	4.0	44
11481	Local confinement and alloy/dealloy activation of Sn–Cu nanoarrays for high-performance lithium-ion battery. Electrochimica Acta, 2020, 336, 135690.	2.6	12
11482	Amorphous N-rich organic polymer/carbon nanotube composites as effective anode material for advanced lithium ion batteries. SN Applied Sciences, 2020, 2, 1.	1.5	4
11483	Volume expansion restriction effects of thick TiO2/C hybrid coatings on micro-sized SiOx anode materials. Chemical Engineering Journal, 2020, 387, 124106.	6.6	37
11484	Solid electrolyte interface stabilization <i>via</i> surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 3606-3612.	5.2	43
11485	Enhancing the kinetics of lithium–sulfur batteries under solid-state conversion by using tellurium as a eutectic accelerator. Journal of Materials Chemistry A, 2020, 8, 3405-3412.	5.2	28
11486	Innovative Polymers for Nextâ€Generation Batteries. Macromolecular Chemistry and Physics, 2020, 221, 1900490.	1.1	39
11487	Prelithiated V ₂ C MXene: A Highâ€Performance Electrode for Hybrid Magnesium/Lithiumâ€ l on Batteries by Ion Cointercalation. Small, 2020, 16, e1906076.	5.2	105
11488	Band-gap engineering using metal-semiconductor interfaces for photocatalysis and supercapacitor application. , 2020, , 391-451.		0

#	Article	IF	CITATIONS
11489	Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. Journal of Power Sources, 2020, 449, 227594.	4.0	52
11490	Biomass-derived porous graphitic carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 5773-5811.	5.2	234
11491	A Critical Review of Machine Learning of Energy Materials. Advanced Energy Materials, 2020, 10, 1903242.	10.2	319
11492	In Situ Generation of Artificial Solidâ€Electrolyte Interphases on 3D Conducting Scaffolds for Highâ€Performance Lithiumâ€Metal Anodes. Advanced Energy Materials, 2020, 10, 1903339.	10.2	107
11493	Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for Highâ€Performance Asymmetric Microâ€Supercapacitors. Advanced Energy Materials, 2020, 10, 1903724.	10.2	36
11494	Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries. Electrochimica Acta, 2020, 337, 135789.	2.6	22
11495	Ni0.85Se hexagonal nanosheets as an advanced conversion cathode for Mg secondary batteries. Journal of Energy Chemistry, 2020, 48, 226-232.	7.1	33
11496	Performance of high capacity Li-ion pouch cells over wide range of operating temperatures and discharge rates. Journal of Electroanalytical Chemistry, 2020, 860, 113903.	1.9	17
11497	Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale, 2020, 12, 3677-3685.	2.8	64
11498	Green route synthesis of Li+ ion nanoparticles for application in large discharge capacity of batteries. Inorganic and Nano-Metal Chemistry, 2020, 50, 205-209.	0.9	2
11499	Evaporationâ€Induced Vertical Alignment Enabling Directional Ion Transport in a 2Dâ€Nanosheetâ€Based Battery Electrode. Advanced Materials, 2020, 32, e1907941.	11.1	66
11500	MXeneâ€Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors. Advanced Energy Materials, 2020, 10, 1903534.	10.2	97
11501	An Aqueous Hybrid Zincâ€Bromine Battery with High Voltage and Energy Density. ChemElectroChem, 2020, 7, 1531-1536.	1.7	33
11502	Synthesis, structural and microstructural study of new FeNa0.5H1.5MoO5 hybrid material for highly efficient energy storage hybrid systems. Inorganic Chemistry Communication, 2020, 113, 107811.	1.8	1
11503	Redox-Driven Lithium Perfusion to Fabricate Li@Ni–Foam Composites for High Lithium-Loading 3D Anodes. ACS Applied Materials & Interfaces, 2020, 12, 9355-9364.	4.0	24
11504	Nitrogen-doped carbon stabilized LiFe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries. Chinese Journal of Chemical Engineering, 2020, 28, 1935-1940.	1.7	9
11505	An acid-assisted vacuum filtration approach towards flexible PDI/SWCNT cathodes for highly stable organic lithium ion batteries. Electrochimica Acta, 2020, 338, 135771.	2.6	9
11506	A review of mechanics-related material damages in all-solid-state batteries: Mechanisms, performance impacts and mitigation strategies. Nano Energy, 2020, 70, 104545.	8.2	65

#	Article	IF	CITATIONS
	Rational Microstructure Design on Metal–Organic Framework Composites for Better Electrochemical Performances: Design Principle, Synthetic Strategy, and Promotion Mechanism. Small	4.6	45
	Methods, 2020, 4, 1900756.		
11508	Cu2MoS4 hollow nanocages with fast and stable Mg2+-storage performance. Chemical Engineering Journal, 2020, 387, 124125.	6.6	30
11509	Cation-exchange-assisted formation of NiS/SnS ₂ porous nanowalls with ultrahigh energy density for battery–supercapacitor hybrid devices. Journal of Materials Chemistry A, 2020, 8, 3300-3310.	5.2	63
11510	Effect of Ga doping on structure and properties of V ₂ O ₅ lithium-ion batteries. Materials Technology, 2020, 35, 887-895.	1.5	11
11511	Syntheses of 1,1â€Diethyl―or â€Dihexylâ€3,4â€Diphenylâ€2,5â€Dibromo―or â€Bis(Trimethylsilyl)Siloles and Electrochemical Properties for Lithium Ion Battery. Bulletin of the Korean Chemical Society, 2020, 41, 15-22.	1.0	2
11512	A waste utilization strategy for preparing high-performance supercapacitor electrodes with sea urchin-like structure. Ionics, 2020, 26, 3565-3577.	1.2	3
11513	Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Letters, 2020, 12, 21.	14.4	159
11514	Polyanion-type electrode materials for advanced sodium-ion batteries. Materials Today Nano, 2020, 10, 100072.	2.3	57
11515	Review and Recent Advances in Mass Transfer in Positive Electrodes of Aprotic Li–O ₂ Batteries. ACS Applied Energy Materials, 2020, 3, 2258-2270.	2.5	26
11516	Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. Energy and Environmental Science, 2020, 13, 1096-1131.	15.6	266
11517	<i>In situ</i> thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 3892-3900.	5.2	59
11518	Li/Garnet Interface Stabilization by Thermalâ€Decomposition Vapor Deposition of an Amorphous Carbon Layer. Angewandte Chemie, 2020, 132, 5384-5387.	1.6	3
11519	C ₆₀ (OH) ₁₂ and Its Nanocomposite for High-Performance Lithium Storage. ACS Nano, 2020, 14, 1600-1608.	7.3	11
11520	Simultaneously suppressing lithium dendrite growth and Mn dissolution by integration of a safe inorganic separator in a LiMn ₂ 0 ₄ /Li battery. Journal of Materials Chemistry A, 2020, 8, 3859-3864.	5.2	23
11521	A Nanoâ€shield Design for Separators to Resist Dendrite Formation in Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 6561-6566.	7.2	128
11522	Synthesis and electrochemical performance of Pb3(OH)2(CO3)2/C anode material for lithium-ion battery application. Ionics, 2020, 26, 3289-3295.	1.2	4
11523	Atomic layer deposition of Al2O3 on organic potassium terephthalate with enhanced K-storage behavior for K-ion batteries. Ionics, 2020, 26, 1805-1812.	1.2	10
11524	Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive. Journal of Alloys and Compounds, 2020, 822, 153664.	2.8	26

#	Article	IF	CITATIONS
11525	In situ synthesis of MOF-derived carbon shells for silicon anode with improved lithium-ion storage. Nano Energy, 2020, 70, 104444.	8.2	99
11526	Sodium/Potassiumâ€lon Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering. Advanced Materials, 2020, 32, e1904320.	11.1	335
11527	Hollow CuS Nanoboxes as Liâ€Free Cathode for Highâ€Rate and Longâ€Life Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903401.	10.2	56
11528	Binder-free layered ZnO@Ni microspheres as advanced anode materials for lithium-ion batteries. Ionics, 2020, 26, 3281-3288.	1.2	6
11529	Preparation of pectin-based dual-crosslinked network as a binder for high performance Si/C anode for LIBs. Korean Journal of Chemical Engineering, 2020, 37, 366-373.	1.2	21
11530	A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries. Electrochimica Acta, 2020, 337, 135843.	2.6	43
11531	A surface multiple effect on the ZnO anode induced by graphene for a high energy lithium-ion full battery. Journal of Alloys and Compounds, 2020, 824, 153945.	2.8	18
11532	NiCo ₂ Se ₄ Hierarchical Microflowers of Nanosheets and Nanorods as Pseudocapacitive Mg-Storage Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 2964-2972.	3.2	21
11533	A cobalt hydroxide nanosheet-mediated synthesis of core–shell-type Mn _{0.005} Co _{2.995} O ₄ spinel nanocubes as efficient oxygen electrocatalysts. Dalton Transactions, 2020, 49, 1652-1659.	1.6	9
11534	Grain boundary Li-ion conductivity in (Li0.33La0.56)TiO3 polycrystal. Applied Physics Letters, 2020, 116, .	1.5	24
11535	Precise and controllable N/C ratio in graphdiyne for superior Li and Na ions storage capacities. 2D Materials, 2020, 7, 025032.	2.0	23
11536	Constructing Co ₃ O ₄ Nanowires on Carbon Fiber Film as a Lithiophilic Host for Stable Lithium Metal Anodes. Chemistry - an Asian Journal, 2020, 15, 1057-1066.	1.7	13
11537	Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections. Journal of Cleaner Production, 2020, 255, 120277.	4.6	60
11538	Structure and thermal stability of LiNi0.8Co0.15Al0.05O2 after long cycling at high temperature. Journal of Power Sources, 2020, 450, 227695.	4.0	16
11539	Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping. Journal of Power Sources, 2020, 450, 227718.	4.0	88
11540	Low temperature synthesis of nanostructured LiFePO4/C cathode material for lithium ion batteries. Materials Research Bulletin, 2020, 125, 110807.	2.7	13
11541	Performance effects of doping engineering on graphene-like C3N as an anode material for alkali metal ion batteries. Materials Science in Semiconductor Processing, 2020, 109, 104946.	1.9	11
11542	AC/Se composite cathode for asymmetric Li-ion capacitors. Materials Today Energy, 2020, 16, 100374.	2.5	1

#	Article	IF	CITATIONS
11543	Exploring the origin of electrochemical performance of Cr-doped LiNi0.5Mn1.5O4. Physical Chemistry Chemical Physics, 2020, 22, 3831-3838.	1.3	13
11544	PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 4836-4843.	5.2	21
11545	Excellent electrochemical performance of the SiO _x -G/PAA-PANi/Cu as anode materials for lithium-ion battery. Materials Technology, 2020, 35, 580-586.	1.5	5
11546	Investigating the Correlation of Segmental Dynamics, Free Volume Characteristics, and Ionic Conductivity in Poly(ethylene oxide)-Based Electrolyte: A Broadband Dielectric and Positron Annihilation Spectroscopy Study. Journal of Physical Chemistry C, 2020, 124, 4489-4501.	1.5	28
11547	Turning on electrocatalytic oxygen reduction by creating robust Fe–N _x species in hollow carbon frameworks <i>via in situ</i> growth of Fe doped ZIFs on g-C ₃ N ₄ . Nanoscale, 2020, 12, 5601-5611.	2.8	29
11548	Solventâ€Free Synthesis of Thin, Flexible, Nonflammable Garnetâ€Based Composite Solid Electrolyte for Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 1903376.	10.2	284
11549	Development of Novel Cathode with Large Lithium Storage Mechanism Based on Pyrophosphateâ€Based Conversion Reaction for Rechargeable Lithium Batteries. Small Methods, 2020, 4, 1900847.	4.6	5
11550	Graphite lithiation and capacity fade monitoring of lithium ion batteries using optical fibers. Journal of Energy Storage, 2020, 28, 101233.	3.9	20
11551	Synthesis of tetragonal solid-state electrolyte Li7La3Zr2O12. Materials Today: Proceedings, 2020, 30, 587-591.	0.9	3
11552	Ab Initio Studies of Discharge Mechanism of MnO ₂ in Deep-Cycled Rechargeable Zn/MnO ₂ Batteries. Journal of the Electrochemical Society, 2020, 167, 020557.	1.3	23
11553	Nonstoichiometric Cu0.6Ni0.4Co2O4 Nanowires as an Anode Material for High Performance Lithium Storage. Nanomaterials, 2020, 10, 191.	1.9	13
11554	Smoothing the Surface and Improving the Electrochemical Properties of NaxMnO2 by a Wet Chemical Method. Nanomaterials, 2020, 10, 246.	1.9	0
11555	Solid-State Proton Battery Operated at Ultralow Temperature. ACS Energy Letters, 2020, 5, 685-691.	8.8	125
11556	A Boron Nitride Nanosheets Composite Membrane for a Longâ€Life Zincâ€Based Flow Battery. Angewandte Chemie - International Edition, 2020, 59, 6715-6719.	7.2	67
11557	Reversible Anionic Redox Activities in Conventional LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes. Angewandte Chemie - International Edition, 2020, 59, 8681-8688.	7.2	91
11558	Microstructural and Electrochemical Properties of Al- and Ga-Doped Li ₇ La ₃ Zr ₂ O ₁₂ Garnet Solid Electrolytes. ACS Applied Energy Materials, 2020, 3, 4708-4719.	2.5	50
11559	Electrochemical Properties of Tin Sulfide Nano-Sheets as Cathode Material for Lithium-Sulfur Batteries. Frontiers in Chemistry, 2020, 8, 254.	1.8	6
11560	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€lon Batteries. Advanced Functional Materials, 2020, 30, 2001334.	7.8	142

#	Article	IF	CITATIONS
11561	Three-dimensional VS4 consisting of uniform nanosheets as excellent anode material for sodium ion batteries. Journal of Alloys and Compounds, 2020, 834, 155204.	2.8	22
11562	MnO2 supported on acrylic cloth as functional separator for high-performance lithium–sulfur batteries. Journal of Power Sources, 2020, 464, 228181.	4.0	42
11563	Poly(anthraquinonylimide)/graphene composite cathode for sodium-ion batteries. Materials Letters, 2020, 268, 127596.	1.3	3
11564	Rational Design of Ion Transport Paths at the Interface of Metal–Organic Framework Modified Solid Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 22930-22938.	4.0	45
11565	Coordination induced electron redistribution to achieve highly reversible Li-ion insertion chemistry in metal–organic frameworks. Chemical Communications, 2020, 56, 6424-6427.	2.2	3
11566	An alternative for the anode materials of nickel metal hydride batteries: an AB ₃ -type La _{0.6} Gd _{0.2} Mg _{0.2} Ni _{2.6} Co _{0.3} Al _{0.1} storage alloy. Dalton Transactions, 2020, 49, 6312-6320.	hydrogen	9
11567	Porous Mo–C coverage on ZnO rods for enhanced supercapacitive performance. Dalton Transactions, 2020, 49, 5134-5142.	1.6	6
11568	High-Temperature Treatment to Improve the Capacity of LiBC Anode Material in Li-ion Battery. Frontiers in Energy Research, 2020, 8, .	1.2	2
11569	High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match. Chemical Engineering Journal, 2020, 396, 125207.	6.6	29
11570	One-pot solvothermal method to fabricate 1D-VS4 nanowires as anode materials for lithium ion batteries. Inorganic Chemistry Communication, 2020, 115, 107883.	1.8	25
11571	Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. Journal of Power Sources, 2020, 464, 228182.	4.0	27
11572	Interface-Controlled Rhombohedral Li3V2(PO4)3 Embedded in Carbon Nanofibers with Ultrafast Kinetics for Li-Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 4059-4069.	2.1	11
11573	Hypercrosslinked phenothiazine-based polymers as high redox potential organic cathode materials for lithium-ion batteries. RSC Advances, 2020, 10, 16732-16736.	1.7	22
11574	Metal–organic framework-induced mesoporous carbon nanofibers as an ultrastable Na metal anode host. Journal of Materials Chemistry A, 2020, 8, 10269-10282.	5.2	47
11575	Intercalating Sn/Fe Nanoparticles in Compact Carbon Monolith for Enhanced Lithium Ion Storage. Applied Sciences (Switzerland), 2020, 10, 2220.	1.3	2
11576	A novel SiO2 nanofiber-supported organic–inorganic gel polymer electrolyte for dendrite-free lithium metal batteries. Journal of Materials Science, 2020, 55, 9504-9515.	1.7	7
11577	Preparation of nanoporous Sn-doped TiO2 anode material for lithium-ion batteries by a simple dealloying method. Ionics, 2020, 26, 4363-4372.	1.2	8
11578	Graphene-like nitrogen-doped porous carbon nanosheets as both cathode and anode for high energy density lithium-ion capacitor. Electrochimica Acta, 2020, 349, 136303.	2.6	23

		CITATION RE	PORT	
#	Article		IF	CITATIONS
11579	Cyanometallic framework-derived dual-buffer structure of Sn-Co based nanocomposites high-performance lithium storage. Journal of Alloys and Compounds, 2020, 830, 154680		2.8	12
11580	Ultrathin hybrid nanobelts of single-crystalline VO2 and Poly(3,4-ethylenedioxythiophene materials for aqueous zinc ion batteries with large capacity and high-rate capability. Jour Sources, 2020, 463, 228223.		4.0	65
11581	Effect of network homogeneity on mechanical, thermal and electrochemical properties of polymer electrolytes prepared by homogeneous 4-arm poly(ethylene glycols). Soft Matter 4290-4298.		1.2	14
11582	Engineering of three-dimensional nanohybrids: Co9S8 nanocrystal coated hollow carbon for advanced lithium storage. Applied Surface Science, 2020, 514, 146092.	nanosphere	3.1	27
11583	Exploration of low-cost microporous Fe(â¢)-based organic framework as anode materia potassium-ion batteries. Journal of Alloys and Compounds, 2020, 830, 154714.	al for	2.8	49
11584	Designing advanced P3-type K0.45Ni0.1Co0.1Mn0.8O2 and improving electrochemical Al/Mg doping as a new cathode Material for potassium-ion batteries. Journal of Power Sc 464, 228190.		4.0	34
11585	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocataly Inâ€Situ Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2020, 132, 15427-154		1.6	2
11586	Monolayer Mo2C as anodes for magnesium-ion batteries. Journal of Molecular Modeling	, 2020, 26, 86.	0.8	11
11587	Superior anodic lithium storage behavior of organic pigment 2,9-dimethylquinacridone. (Engineering Journal, 2020, 394, 124924.	Chemical	6.6	17
11588	The positive effect of nitridation on CrNb49O124 nanowires for high-performance lithiu storage. Ceramics International, 2020, 46, 15527-15533.	m-ion	2.3	4
11589	Polymers for advanced lithium-ion batteries: State of the art and future needs on polyme different battery components. Progress in Energy and Combustion Science, 2020, 79, 10		15.8	103
11591	Analyzing Energy Materials by Cryogenic Electron Microscopy. Advanced Materials, 2020), 32, e1908293.	11.1	61
11592	Silicon Anode with High Initial Coulombic Efficiency by Modulated Trifunctional Binder fo Highâ€Arealâ€Capacity Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 19	ər 903110.	10.2	221
11593	Superassembly of Porous Fe _{tet} (NiFe) _{oct} O Frameworks with S Octahedron and Multistage Structure for Superior Lithium–Oxygen Batteries. Advance Materials, 2020, 10, 1904262.		10.2	55
11594	A Cation and Anion Dual Doping Strategy for the Elevation of Titanium Redox Potential f Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 12076-12		7.2	78
11595	Metalâ€organic Framework of [Cu ₂ (BIPAâ€TC)(DMA) ₂]n: A P Material for Lithiumâ€Ion Battery. ChemistrySelect, 2020, 5, 4160-4164.	romising Anode	0.7	13
11596	Effects of silver nanoparticle on electrochemical performances of poly(o-phenylenediami hybrid composite as anode of lithium-ion batteries. Journal of Solid State Electrochemist 1007-1015.		1.2	5
11597	Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion ba Nano Research, 2020, 13, 1558-1563.	tteries.	5.8	65

#	Article	IF	CITATIONS
11598	Quest for magnesium-sulfur batteries: Current challenges in electrolytes and cathode materials developments. Coordination Chemistry Reviews, 2020, 415, 213312.	9.5	43
11599	Na2Li2Ti6O14 nanowires as ultra-long cycling performance anode material for lithium ion storage. Ceramics International, 2020, 46, 15699-15704.	2.3	10
11600	Enhanced structural and cycling stability of Li2CuO2-coated LiNi0.33Mn0.33Co0.33O2 cathode with flexible ionic liquid-based gel polymer electrolyte for lithium polymer batteries. Electrochimica Acta, 2020, 343, 136122.	2.6	37
11601	A novel chemical reduction/co-precipitation method to prepare sulfur functionalized reduced graphene oxide for lithium-sulfur batteries. Electrochimica Acta, 2020, 344, 136147.	2.6	35
11602	Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode. Energy Storage Materials, 2020, 28, 375-382.	9.5	92
11603	Structural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Storage Materials, 2020, 29, 9-16.	9.5	139
11604	Rational construction of heterostructured core-shell Bi2S3@Co9S8 complex hollow particles toward high-performance Li- and Na-ion storage. Energy Storage Materials, 2020, 29, 121-130.	9.5	98
11605	EDTA-2Na assisted dynamic hydrothermal synthesis of orthorhombic LiMnO2 for lithium ion battery. Journal of Alloys and Compounds, 2020, 830, 154599.	2.8	10
11606	Nanograined copper foil as a high-performance collector for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 831, 154801.	2.8	13
11607	Expeditious and eco-friendly synthesis of spinel LiMn2O4 and its potential for fabrication of supercapacitors. Journal of Alloys and Compounds, 2020, 834, 155060.	2.8	17
11608	γ-MnO2 nanorod-assembled hierarchical micro-spheres with oxygen vacancies to enhance electrocatalytic performance toward the oxygen reduction reaction for aluminum-air batteries. Journal of Energy Chemistry, 2020, 51, 81-89.	7.1	45
11609	Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule, 2020, 4, 771-799.	11.7	1,164
11610	Tortuosity Effects in Lithium-Metal Host Anodes. Joule, 2020, 4, 938-952.	11.7	150
11611	Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. Journal of Power Sources, 2020, 460, 228062.	4.0	150
11612	Bringing forward the development of battery cells for automotive applications: Perspective of R&D activities in China, Japan, the EU and the USA. Journal of Power Sources, 2020, 459, 228073.	4.0	109
11613	Printed Built-In Power Sources. Matter, 2020, 2, 345-359.	5.0	16
11614	Poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly(ε-caprolactone)-based hybrid polymer electrolyte for lithium metal batteries. Journal of Membrane Science, 2020, 607, 118132.	4.1	41
11615	Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries. Nano Energy, 2020, 72, 104727.	8.2	49

#	Article	IF	CITATIONS
11616	A super-lithiophilic nanocrystallization strategy for stable lithium metal anodes. Nano Energy, 2020, 73, 104731.	8.2	36
11617	Different strategies of introduction of lithium ions into nickel‑manganese‑cobalt carbonate resulting in LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode material for Li-ion batteries. Solid State Ionics, 2020, 348, 115273.	1.3	22
11618	Micro/nano-structured Li4Ti5O12 as high rate anode material for lithium ion batteries. Solid State Ionics, 2020, 349, 115297.	1.3	17
11619	Boron-containing single-ion conducting polymer electrolyte for dendrite-free lithium metal batteries. Solid State Ionics, 2020, 349, 115309.	1.3	14
11620	Application of hexaâ€periâ€hexabenzocoronene nanographene and its B, N, and Bn doped forms in Na-ion batteries: A density functional theory study. Thin Solid Films, 2020, 704, 137979.	0.8	10
11621	Creasing Highly Porous V ₂ O ₅ Scaffolds for High Energy Density Aluminum-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 4033-4042.	2.5	20
11622	Scalable In Situ Synthesis of 2D–2D-Type Graphene-Wrapped SnS ₂ Nanohybrids for Enhanced Supercapacitor and Electrocatalytic Applications. ACS Applied Energy Materials, 2020, 3, 4995-5005.	2.5	47
11623	MXene Frameworks Promote the Growth and Stability of LiF-Rich Solid–Electrolyte Interphases on Silicon Nanoparticle Bundles. ACS Applied Materials & Interfaces, 2020, 12, 18541-18550.	4.0	44
11624	Rigid-Flexible Coupling Carbon Skeleton and Potassium-Carbonate-Dominated Solid Electrolyte Interface Achieving Superior Potassium-Ion Storage. ACS Nano, 2020, 14, 4938-4949.	7.3	67
11625	Synthesis and Electrochemical Performance of ï€-Conjugated Molecule Bridged Silicon Quantum Dot Cluster as Anode Material for Lithium-Ion Batteries. ACS Omega, 2020, 5, 8629-8637.	1.6	9
11626	Sodiophilic Decoration of a Three-Dimensional Conductive Scaffold toward a Stable Na Metal Anode. ACS Sustainable Chemistry and Engineering, 2020, 8, 5452-5463.	3.2	31
11627	Definition of Redox Centers in Reactions of Lithium Intercalation in Li ₃ RuO ₄ Polymorphs. Journal of the American Chemical Society, 2020, 142, 8160-8173.	6.6	12
11628	Metal chloride perovskite thin film based interfacial layer for shielding lithium metal from liquid electrolyte. Nature Communications, 2020, 11, 1761.	5.8	68
11629	Comparative study of the implementation of tin and titanium oxide nanoparticles as electrodes materials in Li-ion batteries. Scientific Reports, 2020, 10, 5503.	1.6	15
11630	A coupled polymeric porphyrin complex as a novel cathode for highly stable lithium organic batteries. Chemical Communications, 2020, 56, 5437-5440.	2.2	28
11631	Rust-derived Fe ₂ O ₃ nanoparticles as a green catalyst for the one-pot synthesis of hydrazinyl thiazole derivatives. Organic and Biomolecular Chemistry, 2020, 18, 4575-4582.	1.5	31
11632	Bismuth nanorod networks confined in a robust carbon matrix as long-cycling and high-rate potassium-ion battery anodes. Journal of Materials Chemistry A, 2020, 8, 8440-8446.	5.2	52
11633	Influence of disorder and surface roughness on the electrical and thermal properties of lithiated silicon nanowires. Journal of Applied Physics, 2020, 127, .	1.1	4

#	Article	IF	CITATIONS
11634	High-Rate Layered Cathode of Lithium-Ion Batteries through Regulating Three-Dimensional Agglomerated Structure. Energies, 2020, 13, 1602.	1.6	14
11635	Imparting Boron Nanosheets with Ambient Stability through Methyl Group Functionalization for Mechanistic Investigation of Their Lithiation Process. ACS Applied Materials & Interfaces, 2020, 12, 23370-23377.	4.0	15
11636	Multiradical-stabilized hollow carbon spheres as a pressure-resistant cathode for fast lithium/sodium storage with excellent performance. Journal of Materials Chemistry A, 2020, 8, 8875-8882.	5.2	7
11637	Influence of Additives on the Reversible Oxygen Reduction Reaction/Oxygen Evolution Reaction in the Mg 2+ â€Containing Ionic Liquid N â€Butyl―N â€Methylpyrrolidinium Bis(Trifluoromethanesulfonyl)imide. ChemSusChem, 2020, 13, 3919-3927.	3.6	6
11638	Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 515-525.	2.4	26
11639	Robust Polyhedral CoTe ₂ –C Nanocomposites as High-Performance Li- and Na-Ion Battery Anodes. ACS Applied Energy Materials, 2020, 3, 4877-4887.	2.5	39
11640	Impact of surface coating on electrochemical and thermal behaviors of a Li-rich Li _{1.2} Ni _{0.16} Mn _{0.56} Co _{0.08} O ₂ cathode. RSC Advances, 2020, 10, 15274-15281.	1.7	28
11641	Anodes and Sodiumâ€Free Cathodes in Sodium Ion Batteries. Advanced Energy Materials, 2020, 10, 2000288.	10.2	89
11642	Excellent Cycling Stability of Sodium Anode Enabled by a Stable Solid Electrolyte Interphase Formed in Etherâ€Based Electrolytes. Advanced Functional Materials, 2020, 30, 2001151.	7.8	60
11643	Inâ€Situ Construction of an Ultraâ€Stable Conductive Composite Interface for Highâ€Voltage Allâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 11882-11886.	² 1.6	25
11644	Highâ€Safety Allâ€Solidâ€State Lithiumâ€Ion Battery Working at Ambient Temperature with Inâ€Situ UVâ€Curi Polymer Electrolyte on the Electrode. ChemElectroChem, 2020, 7, 2599-2607.	ng P.7	14
11645	Polyvinylpyrrolidoneâ€Mediated In Situ Synthesis of Wellâ€Connected Ni 3 V 2 O 8 /C Nanocomposite Anode for Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 1901461.	1.8	3
11646	Thermolytically grafted silicon particles with ultrathin carbonaceous coating rich of phenyl moieties as lithium-storage anode material. Chemical Engineering Journal, 2020, 395, 125169.	6.6	17
11647	A robust cathode of RuO2 nH2O clusters anchored on the carbon nanofibers for ultralong-life lithium-oxygen batteries. Journal of Power Sources, 2020, 463, 228161.	4.0	9
11648	Stabilized Electrode/Electrolyte Interphase by a Saturated Ionic Liquid Electrolyte for High-Voltage NMC532/Si-Graphite Cells. ACS Applied Materials & Interfaces, 2020, 12, 23035-23045.	4.0	26
11649	Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: an entirely planar B ₇ P ₂ monolayer with suitable pore size and distribution. Journal of Materials Chemistry A, 2020, 8, 10301-10309.	5.2	44
11650	Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Research, 2020, 13, 1659-1667.	5.8	78
11651	Partially Oxidized Cellulose grafted with Polyethylene Glycol mono-Methyl Ether (m-PEG) as Electrolyte Material for Lithium Polymer Battery. Carbohydrate Polymers, 2020, 240, 116339.	5.1	16

"		15	Circumonia
#	ARTICLE Low temperature growth of graphitic carbon on porous silicon for high-capacity lithium energy	IF	CITATIONS
11652	storage. Journal of Power Sources, 2020, 463, 228245.	4.0	13
11653	Conducting nitrogen-incorporated ultrananocrystalline diamond coating for highly structural stable anode materials in lithium ion battery. Nano Energy, 2020, 74, 104811.	8.2	10
11654	First-Principles Design and Investigation of Siligraphene as a Potential Anode Material for Na-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 11293-11300.	1.5	25
11655	A simple method to fabricate size and porosity tunable Si by Al–Si alloy as lithium ion battery anode material. Electrochimica Acta, 2020, 345, 136242.	2.6	24
11656	A quantum mechanical study on the application of inorganic BC2N nanotubes in the Na-ion batteries. Inorganic Chemistry Communication, 2020, 116, 107886.	1.8	3
11657	In situ fabrication of ultrathin few-layered WSe2 anchored on N, P dual-doped carbon by bioreactor for half/full sodium/potassium-ion batteries with ultralong cycling lifespan. Journal of Colloid and Interface Science, 2020, 574, 217-228.	5.0	67
11658	Energetic Cost for Being "Redox-Site-Rich―in Pseudocapacitive Energy Storage with Nickel–Aluminum Layered Double Hydroxide Materials. Journal of Physical Chemistry Letters, 2020, 11, 3745-3753.	2.1	11
11659	Composite Polymer Electrolyte Incorporating Metal–Organic Framework Nanosheets with Improved Electrochemical Stability for All-Solid-State Li Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 20514-20521.	4.0	73
11660	Recent progress in carbonyl-based organic polymers as promising electrode materials for lithium-ion batteries (LIBs). Journal of Materials Chemistry A, 2020, 8, 11906-11922.	5.2	134
11661	Theoretical formulation of Li _{3a+b} N _a X _b (X = halogen) as a potential artificial solid electrolyte interphase (ASEI) to protect the Li anode. Physical Chemistry Chemical Physics, 2020, 22, 12918-12928.	1.3	12
11662	Highly dispersed FeSe2 nanoparticles in porous carbon nanofibers as advanced anodes for sodium and potassium ion batteries. Journal of Alloys and Compounds, 2020, 834, 155265.	2.8	42
11663	Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter, 2020, 3, 57-94.	5.0	334
11664	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogenâ€Doped Carbon: Superior Potassiumâ€ion Storage and Insight into Potassium Storage Mechanism. Advanced Materials, 2020, 32, e2000958.	11.1	192
11665	Eumelanin electrodes in buffered aqueous media at different pH values. Electrochimica Acta, 2020, 347, 136250.	2.6	10
11666	Diethylenetriamine directed the assembly of Co0.85Se nanosheets layer by layer on N-doped carbon nanosheets for high performance lithium ion batteries. Journal of Colloid and Interface Science, 2020, 570, 332-339.	5.0	21
11667	Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth. Journal of Power Sources, 2020, 456, 227989.	4.0	38
11668	Spherical layered Li-rich cathode material: Unraveling the role of oxygen vacancies on improving lithium ion conductivity. Journal of Power Sources, 2020, 462, 228171.	4.0	37
11669	Monodispersed bimetallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydrazine in aqueous solution. Renewable Energy, 2020, 155, 1293-1301.	4.3	41

#	Article	IF	CITATIONS
11670	Preparation of Li (tri-(4-carboxyphenyl) amine) doped polypyrrole as cathode material of lithium ion batteries and its electrochemical performances. Solid State Ionics, 2020, 349, 115295.	1.3	5
11671	Effects of the Mirror Tilt Angle on the Growth of LiCoO2 Single Crystals by the Traveling Solvent Floating Zone (TSFZ) Technique Using a Tilting-Mirror-type Image Furnace. Crystal Growth and Design, 2020, 20, 3413-3416.	1.4	6
11672	In-Situ Formed Protecting Layer from Organic/Inorganic Concrete for Dendrite-Free Lithium Metal Anodes. Nano Letters, 2020, 20, 3911-3917.	4.5	58
11673	Energy storage usages: Engineering reactions, <scp>economicâ€technological</scp> values for electric vehicles—A technological outlook. International Transactions on Electrical Energy Systems, 2020, 30, e12422.	1.2	20
11674	Insights into the Storage Mechanism of Layered VS ₂ Cathode in Alkali Metalâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1904118.	10.2	67
11675	Highlyâ€Safe and Ultraâ€Stable Allâ€Flexible Gel Polymer Lithium Ion Batteries Aiming for Scalable Applications. Advanced Energy Materials, 2020, 10, 1904281.	10.2	48
11676	Unraveling the Dual Functionality of Highâ€Donorâ€Number Anion in Leanâ€Electrolyte Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2000493.	10.2	77
11677	The Sodium Storage Mechanism in Tunnelâ€Type Na _{0.44} MnO ₂ Cathodes and the Way to Ensure Their Durable Operation. Advanced Energy Materials, 2020, 10, 2000564.	10.2	51
11678	Understanding Highâ€Rate K ⁺ â€Solvent Coâ€Intercalation in Natural Graphite for Potassiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 13017-13024.	1.6	28
11679	Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries. Angewandte Chemie, 2020, 132, 11630-11636.	1.6	9
11680	In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendriteâ€Free Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie, 2020, 132, 12268-12275.	1.6	9
11681	Inâ€Situ Construction of an Ultraâ€Stable Conductive Composite Interface for Highâ€Voltage Allâ€Solidâ€State Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 11784-11788.	7.2	126
11682	Understanding Highâ€Rate K ⁺ â€Solvent Coâ€Intercalation in Natural Graphite for Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12917-12924.	7.2	112
11683	Charge Storage Mechanism and Structural Evolution of Viologen Crystals as the Cathode of Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 11533-11539.	7.2	40
11684	In Situ Formation of Liquid Metals via Galvanic Replacement Reaction to Build Dendriteâ€Free Alkaliâ€Metalâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 12170-12177.	7.2	41
11685	Additive Manufacturing of Aqueousâ€Processed LiMn ₂ O ₄ Thick Electrodes for Highâ€Energyâ€Density Lithiumâ€lon Batteries. Batteries and Supercaps, 2020, 3, 1040-1050.	2.4	16
11686	Singleâ€Atomic Catalysts Embedded on Nanocarbon Supports for High Energy Density Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 3404-3411.	3.6	41
11687	ZnO Interface Modified LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Toward Boosting Lithium Storage. Energy and Environmental Materials, 2020, 3, 522-528.	7.3	24

#	Article	IF	CITATIONS
11688	Ta2O5 nanoparticles as an anode material for lithium ion battery. Journal of Solid State Electrochemistry, 2020, 24, 1067-1074.	1.2	17
11689	Electrochemical Performance and Working Voltage Optimization of Nickel Ferrite/Graphene Composite based Supercapacitor. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3325-3331.	1.9	27
11690	Graphitic nanopetals and their applications in electrochemical energy storage and biosensing. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	6
11691	Solvothermal-assisted assembly of MoS2 nanocages on graphene sheets to enhance the electrochemical performance of lithium-ion battery. Nano Research, 2020, 13, 1029-1034.	5.8	28
11692	Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research, 2020, 13, 1122-1126.	5.8	19
11693	Solid-oxide metal–air redox batteries. , 2020, , 217-250.		0
11694	Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chemical Engineering Journal, 2020, 394, 124923.	6.6	61
11695	Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Materials, 2020, 29, 84-91.	9.5	64
11696	The diffusion induced stress and cracking behaviour of primary particle for Li-ion battery electrode. International Journal of Mechanical Sciences, 2020, 178, 105608.	3.6	38
11697	Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li–S batteries. Journal of Energy Chemistry, 2020, 51, 262-271.	7.1	69
11698	Li2CO3 effects: New insights into polymer/garnet electrolytes for dendrite-free solid lithium batteries. Nano Energy, 2020, 73, 104836.	8.2	65
11699	Co ₉ S ₈ Nanorods as an Electrocatalyst To Enhance Polysulfide Conversion and Alleviate Passivation in Li–S Batteries under Lean Electrolyte Conditions. ACS Applied Materials & Interfaces, 2020, 12, 21701-21708.	4.0	28
11700	Upgrading Traditional Organic Electrolytes toward Future Lithium Metal Batteries: A Hierarchical Nano-SiO ₂ -Supported Gel Polymer Electrolyte. ACS Energy Letters, 2020, 5, 1681-1688.	8.8	85
11701	Molecular crowding electrolytes for high-voltage aqueous batteries. Nature Materials, 2020, 19, 1006-1011.	13.3	431
11702	Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49, 3040-3071.	18.7	473
11703	Facile fabrication of a vanadium nitride/carbon fiber composite for half/full sodium-ion and potassium-ion batteries with long-term cycling performance. Nanoscale, 2020, 12, 10693-10702.	2.8	39
11704	Design of a LiF-rich solid electrolyte interface layer through salt-additive chemistry for boosting fast-charging phosphorus-based lithium ion battery performance. Chemical Communications, 2020, 56, 6047-6049.	2.2	37
11705	Restricted lithiation into a layered V ₂ O ₅ cathode towards building "rocking-chair―type Li-ion batteries and beyond. Journal of Materials Chemistry A, 2020, 8, 9483-9495.	5.2	25

#	Article	IF	CITATIONS
11706	Effect of Ce addition on microstructure, mechanical properties and corrosion behavior of Al-Cu-Mn-Mg-Fe alloy. Materials Research Express, 2020, 7, 036532.	0.8	9
11707	Superior Electrochemical and Kinetics Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode by Neodymium Synergistic Modifying for Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 090509.	1.3	12
11708	Towards Advanced Sodium-Ion Batteries: Green, Low-Cost and High-Capacity Anode Compartment Encompassing Phosphorus/Carbon Nanocomposite as the Active Material and Aluminum as the Current Collector. Journal of the Electrochemical Society, 2020, 167, 080509.	1.3	7
11709	Examining the Long-Term Cyclabilities of Li[Ni _{1/2} Mn _{3/2}]O ₄ and Li[Li _{0.1} Al _{0.1} Mn _{1.8}]O ₄ Using a Full-Cell Configuration Including LTO-Counter Electrodes with Extra Capacity. Journal of the Electrochemical Society, 2020, 167.060532.	1.3	9
11710	A Polymer-Rich Quaternary Composite Solid Electrolyte for Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 070557.	1.3	23
11711	Fast Charging of Lithium-ion Batteries via Electrode Engineering. Journal of the Electrochemical Society, 2020, 167, 090508.	1.3	57
11712	Metal-Free Graphene Modified Nitrogen-Doped Ultra-Thin Hollow Carbon Spheres as Superior Cathodic Catalysts of Zn-Air Battery. Journal of the Electrochemical Society, 2020, 167, 070560.	1.3	24
11713	Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe. Molecules, 2020, 25, 1585.	1.7	15
11714	A Mixed Lithiumâ€lon Conductive Li ₂ S/Li ₂ Se Protection Layer for Stable Lithium Metal Anode. Advanced Functional Materials, 2020, 30, 2001607.	7.8	158
11715	Scalable Synthesis of Microsized, Nanocrystalline Zn _{0.9} Fe _{0.1} O Secondary Particles and Their Use in Zn _{0.9} Fe _{0.1} O /LiNi _{0.5} Mn _{1.5} O ₄ Lithiumâ€Ion Full Cells. ChemSusChem. 2020. 13. 3504-3513.	3.6	14
11716	Microstructural analyses of all-solid-state Li–S batteries using LiBH4-based solid electrolyte for prolonged cycle performance. Journal of Energy Chemistry, 2020, 50, 424-429.	7.1	25
11717	Lithium carboxylate: Effectively suppressing hydrogen evolution by self-introducing CO2 in aqueous electrolyte. Journal of Power Sources, 2020, 461, 228136.	4.0	4
11718	Graphyne as an anode material for Mg-ion batteries: A computational study. Journal of Molecular Liquids, 2020, 308, 113009.	2.3	45
11719	Superior and Reversible Lithium Storage of SnO ₂ /Graphene Composites by Silicon Doping and Carbon Sealing. ACS Applied Materials & Interfaces, 2020, 12, 20824-20837.	4.0	33
11720	Circumventing huge volume strain in alloy anodes of lithium batteries. Nature Communications, 2020, 11, 1584.	5.8	130
11721	A Comprehensive Review on the Development of Solidâ€State Metal–Air Batteries Operated on Oxideâ€lon Chemistry. Advanced Energy Materials, 2021, 11, 2000630.	10.2	20
11722	Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium–sulfur batteries. Journal of Energy Chemistry, 2021, 52, 1-11.	7.1	42
11723	Perovskite-type CaMnO3 anode material for highly efficient and stable lithium ion storage. Journal of Colloid and Interface Science, 2021, 584, 698-705.	5.0	21

ARTICLE IF CITATIONS Advances in Composite Polymer Electrolytes for Lithium Batteries and Beyond. Advanced Energy 11724 10.2 162 Materials, 2021, 11, 2000802. Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion 11725 7.1 batteries. Journal of Energy Chemistry, 2021, 52, 277-283 Protective electrode/electrolyte interphases for high energy lithium-ion batteries with 11726 7.1 68 p-toluenesulfonyl fluoride electrolyte additive. Journal of Energy Chemistry, 2021, 52, 361-371. 11727 Materials Design for Highâ€Safety Sodiumâ€Ion Battery. Advanced Energy Materials, 2021, 11, 2000974. Structural evolution of mesoporous graphene/LiNi1/3Co1/3Mn1/3O2 composite cathode for Li–ion 11728 3.6 43 battery. Rare Metals, 2021, 40, 521-528. Niobium oxyphosphate nanosheet assembled two-dimensional anode material for enhanced lithium storage. Journal of Energy Chemistry, 2021, 53, 268-275. 7.1 Melamine-based polymer networks enabled N, O, S Co-doped defect-rich hierarchically porous carbon 11730 nanobelts for stable and long-cycle Li-ion and Li-Se batteries. Journal of Colloid and Interface Science, 5.0 34 2021, 582, 60-69. High-performance SiO/C as anode materials for lithium-ion batteries using commercial SiO and 3.6 glucose as raw materials. Rare Metals, 2021, 40, 1110-1117. A gelatin-based artificial SEI for lithium deposition regulation and polysulfide shuttle suppression in 11732 7.1 41 lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 52, 310-317. Interphases, Interfaces, and Surfaces of Active Materials in Rechargeable Batteries and Perovskite 11.1 Solar Cells. Advanced Materials, 2021, 33, e1905245. A Review of Metal Silicides for Lithium-Ion Battery Anode Application. Acta Metallurgica Sinica 11734 1.5 24 (English Letters), 2021, 34, 291-308. Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. Journal of Energy 7.1 44 Chemistry, 2021, 55, 129-135. High and ultra-stable energy storage from all-carbon sodium-ion capacitor with 3D framework 11736 7.1 25 carbon as cathode and carbon nanosheet as anode. Journal of Energy Chemistry, 2021, 55, 304-312. 3D Ionâ€Conducting, Scalable, and Mechanically Reinforced Ceramic Film for High Voltage Solidâ€State Batteries. Advanced Functional Materials, 2021, 31, 2002008. Enzymatic preparation of rice-starch-based surface-modified disordered carbon as an anode for 11738 1.2 1 lithium-ion batteries. Ionics, 2021, 27, 59-64. Cobalt chloride-ferric chloride-graphite Bi-Intercalation compounds as anode materials for 2.8 high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 854, 157178. Revealing the distinct electrochemical properties of TiSe2 monolayer and bulk counterpart in Li-ion 11740 3.119 batteries by first-principles calculations. Applied Surface Science, 2021, 540, 148314. Directly conversion the biomass-waste to Si/C composite anode materials for advanced lithium ion 11741 4.8 batteries. Chinese Chemical Letters, 2021, 32, 5-8.

#	ARTICLE A high-performance battery-like supercapacitor electrode with a continuous NiTe network skeleton	IF	CITATIONS
11742	running throughout Co(OH)2/Co9S8 nanohybrid. Electrochimica Acta, 2021, 365, 137325.	2.6	34
11743	Influence of oxygen content on the electrochemical behavior of SiOx@C anodes for Li-ion battery. Composites Communications, 2021, 23, 100544.	3.3	16
11744	Recent advances of organometallic complexes for rechargeable batteries. Coordination Chemistry Reviews, 2021, 429, 213650.	9.5	41
11745	Cryogenic engineering of solid polymer electrolytes for room temperature and 4ÂV-class all-solid-state lithium batteries. Chemical Engineering Journal, 2021, 420, 127623.	6.6	13
11746	Chemical energy storage. , 2021, , 249-292.		8
11747	Unraveling the advances of trace doping engineering for potassium ion battery anodes via tomography. Journal of Energy Chemistry, 2021, 58, 355-363.	7.1	12
11748	In-situ encapsulation of α-Fe2O3 nanoparticles into ZnFe2O4 micro-sized capsules as high-performance lithium-ion battery anodes. Journal of Materials Science and Technology, 2021, 75, 110-117.	5.6	31
11749	SnSe nano-particles as advanced positive electrode materials for rechargeable aluminum-ion batteries. Chemical Engineering Journal, 2021, 403, 126377.	6.6	69
11750	Lignin derived hierarchical porous carbon with extremely suppressed polyselenide shuttling for high-capacity and long-cycle-life lithium–selenium batteries. Journal of Energy Chemistry, 2021, 55, 476-483.	7.1	31
11751	Designing Ceramic/Polymer Composite as Highly Ionic Conductive Solidâ€State Electrolytes. Batteries and Supercaps, 2021, 4, 39-59.	2.4	49
11752	Interlayer Space Engineering of MXenes for Electrochemical Energy Storage Applications. Chemistry - A European Journal, 2021, 27, 1921-1940.	1.7	45
11753	Understanding the Highâ€Performance Anode Material of CoC ₂ O ₄ â<2 H ₂ O Microrods Wrapped by Reduced Graphene Oxide f Lithiumâ€ion and Sodiumâ€ion Batteries. Chemistry - A European Journal, 2021, 27, 993-1001.	o r. 7	16
11754	Modeling the chemo-mechanical behavior of all-solid-state batteries: a review Meccanica, 2021, 56, 1523-1554.	1.2	41
11755	A highly stable membrane with hierarchical structure for wide pH range flow batteries. Journal of Energy Chemistry, 2021, 56, 80-86.	7.1	22
11756	High-performance aluminum-polyaniline battery based on the interaction between aluminum ion and -NH groups. Science China Materials, 2021, 64, 318-328.	3.5	31
11757	Effects of Heat Treatment and Additive LiF on the Properties of Solid‣tate Electrolyte of Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ . Energy and Environmental Materials, 2021, 4, 208-212.	7.3	18
11758	Porous conductive interlayer for dendrite-free lithium metal battery. Journal of Energy Chemistry, 2021, 53, 412-418.	7.1	13
11759	Reactivity with Water and Bulk Ruthenium Redox of Lithium Ruthenate in Basic Solutions. Advanced Functional Materials, 2021, 31, 2002249.	7.8	5

#	Article	IF	CITATIONS
11760	Intercalation-pseudocapacitance hybrid anode for high rate and energy lithium-ion capacitors. Journal of Energy Chemistry, 2021, 55, 459-467.	7.1	26
11761	Fullerenes for rechargeable battery applications: Recent developments and future perspectives. Journal of Energy Chemistry, 2021, 55, 70-79.	7.1	54
11762	Highly stable aqueous rechargeable Zn-ion battery: The synergistic effect between NaV6O15 and V2O5 in skin-core heterostructured nanowires cathode. Journal of Energy Chemistry, 2021, 55, 25-33.	7.1	44
11763	History of Solid Polymer Electrolyteâ€Based Solid‣tate Lithium Metal Batteries: A Personal Account. Israel Journal of Chemistry, 2021, 61, 94-100.	1.0	33
11764	3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries. Applied Surface Science, 2021, 536, 147794.	3.1	15
11765	Magnetization effect of Mn-embedded in C2N on hydrogen adsorption and gas-sensing properties: Ab-initio analysis. Applied Surface Science, 2021, 537, 147970.	3.1	15
11766	Carbon coated porous Co3O4 polyhedrons as anode materials for highly reversible lithium-ion storage. Journal of Alloys and Compounds, 2021, 855, 157387.	2.8	37
11767	The first-principles study on the performance of the graphene/WS2 heterostructure as an anode material of Li-ion battery. Journal of Alloys and Compounds, 2021, 855, 157432.	2.8	30
11768	Insight into the reaction mechanism of sulfur chains adjustable polymer cathode for high-loading lithium-organosulfur batteries. Journal of Energy Chemistry, 2021, 56, 238-244.	7.1	28
11769	Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. Journal of Energy Chemistry, 2021, 56, 470-485.	7.1	56
11770	Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges. Journal of Energy Chemistry, 2021, 57, 516-542.	7.1	48
11771	Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries. Journal of Power Sources, 2021, 482, 228896.	4.0	45
11772	Polyoxometalate-based complex/graphene for high-rate lithium-ion batteries. Microporous and Mesoporous Materials, 2021, 310, 110666.	2.2	10
11773	Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy, 2021, 79, 105384.	8.2	64
11774	Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Materials Chemistry Frontiers, 2021, 5, 744-762.	3.2	49
11775	Highly Energyâ€Dissipative, Fast Selfâ€Healing Binder for Stable Si Anode in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2005699.	7.8	122
11776	Carbon nanotubes loaded with carbon nanofibers as scaffold for Li metal battery anodes. Journal of Alloys and Compounds, 2021, 854, 157122.	2.8	11
11777	Polyimide separators for rechargeable batteries. Journal of Energy Chemistry, 2021, 58, 170-197.	7.1	82

#	Article	IF	CITATIONS
11778	Tailoring percolative conduction networks and reaction interfaces via infusion of polymeric ionic conductor for high-performance solid-state batteries. Chemical Engineering Journal, 2021, 408, 127274.	6.6	5
11779	Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries. Energy Storage Materials, 2021, 34, 582-628.	9.5	73
11780	Hybridizing polymer electrolyte with poly(ethylene glycol) grafted polymer-like quantum dots for all-solid-state lithium batteries. Journal of Membrane Science, 2021, 618, 118702.	4.1	26
11781	Research Progress of Lithium Plating on Graphite Anode in <scp>Lithiumâ€lon</scp> Batteries. Chinese Journal of Chemistry, 2021, 39, 165-173.	2.6	45
11782	Highly stable H2V3O8/Mxene cathode for Zn-ion batteries with superior rate performance and long lifespan. Chemical Engineering Journal, 2021, 405, 126737.	6.6	76
11783	Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Materials, 2021, 34, 76-84.	9.5	65
11784	Recent progress and prospects of Li-CO2 batteries: Mechanisms, catalysts and electrolytes. Energy Storage Materials, 2021, 34, 148-170.	9.5	88
11785	Encapsulating hetero-Cu3Ge/Ge into nitrogen-doped carbon matrix for advanced lithium storage. Journal of Alloys and Compounds, 2021, 850, 156815.	2.8	6
11786	Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. Journal of Materiomics, 2021, 7, 209-218.	2.8	82
11787	Hierarchical Compositeâ€Solidâ€Electrolyte with High Electrochemical Stability and Interfacial Regulation for Boosting Ultraâ€Stable Lithium Batteries. Advanced Functional Materials, 2021, 31, .	7.8	57
11788	Electrochemically induced high ion and electron conductive interlayer in porous multilayer Si film anode with enhanced lithium storage properties. Journal of Power Sources, 2021, 481, 228833.	4.0	9
11789	Unveiling solid electrolyte interface morphology and electrochemical kinetics of amorphous Sb2Se3/CNT composite anodes for ultrafast sodium storage. Carbon, 2021, 171, 119-129.	5.4	21
11790	Influence of lithium difluorophosphate additive on the high voltage LiNi0.8Co0.1Mn0.1O2/graphite battery. Ceramics International, 2021, 47, 157-162.	2.3	4
11791	Co/Co3O4-embedded N-doped hollow carbon composite derived from a bimetallic MOF/ZnO Core-shell template as a sulfur host for Li-S batteries. Chemical Engineering Journal, 2021, 407, 126967.	6.6	86
11792	Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Materials, 2021, 34, 436-460.	9.5	61
11793	Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010–2050. Science of the Total Environment, 2021, 764, 142835.	3.9	82
11794	Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Science Bulletin, 2021, 66, 685-693.	4.3	149
11795	Microspherical LiFePO3.98F0.02/3DG/C as an advanced cathode material for high-energy lithium-ion battery with a superior rate capability and long-term cyclability. Ionics, 2021, 27, 1-11.	1.2	12

#	Article	IF	CITATIONS
11796	Turning waste into treasure: Reuse of contaminant-laden adsorbents (Cr(vi)-Fe3O4/C) as anodes with high potassium-storage capacity. Journal of Colloid and Interface Science, 2021, 582, 1107-1115.	5.0	15
11797	Feasibility of Ca12O12 Nanocluster in Lithium and Sodium Atom/Ion Batteries: DFT Study. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1006-1014.	1.9	5
11798	Theoretical investigation of Ti2B monolayer as powerful anode material for Li/Na batteries with high storage capacity. Applied Surface Science, 2021, 538, 148048.	3.1	14
11799	Artificial interphases enable dendrite-free Li-metal anodes. Journal of Energy Chemistry, 2021, 58, 198-206.	7.1	48
11800	Direct Ink Writing of Polymer Composite Electrolytes with Enhanced Thermal Conductivities. Advanced Functional Materials, 2021, 31, 2006683.	7.8	63
11801	Atomic Layer Deposition of Highâ€Capacity Anodes for Nextâ€Generation Lithiumâ€lon Batteries and Beyond. Energy and Environmental Materials, 2021, 4, 363-391.	7.3	43
11802	Synthesis of a novel double-ligand nickel conductive metal–organic framework material and its electrochemical characterization for supercapacitors. Journal of Materials Science, 2021, 56, 2517-2527.	1.7	15
11803	Gel-polymer electrolytes plasticized with pyrrolidinium-based ionanofluid for lithium battery applications. Ionics, 2021, 27, 123-136.	1.2	21
11804	Facile fabrication of SiO2 nanotubes coated with nitrogen-doped carbon layers as high-performance anodes for lithium-ion batteries. Ceramics International, 2021, 47, 1373-1380.	2.3	21
11805	A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression. Energy, 2021, 215, 119050.	4.5	24
11806	Coral-like porous composite material of silicon and carbon synthesized by using diatomite as self-template and precursor with a good performance as anode of lithium-ions battery. Journal of Alloys and Compounds, 2021, 854, 157253.	2.8	33
11807	Macro-microporous carbon with a three-dimensional channel skeleton derived from waste sunflower seed shells for sustainable room-temperature sodium sulfur batteries. Journal of Alloys and Compounds, 2021, 853, 157316.	2.8	25
11808	Mild strategy for generating rich void space for nano-Si/C composites to accommodate the large volume expansion during alloying/dealloying for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 857, 157530.	2.8	10
11809	Directly embedded Ni ₃ S ₂ /Co ₉ S ₈ @S-doped carbon nanofiber networks as a free-standing anode for lithium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 166-174.	2.5	19
11810	Li-ion conductivity and stability of hot-pressed LiTa2PO8 solid electrolyte for all-solid-state batteries. Journal of Materials Science, 2021, 56, 2425-2434.	1.7	20
11811	In-situ surface chemical and structural self-reconstruction strategy enables high performance of Li-rich cathode. Nano Energy, 2021, 79, 105459.	8.2	53
11812	High capacity and mobility in germanium sulfide/graphene (GeS/Gr) van der Waals heterostructure as anode materials for sodium–ion batteries: A first-principles investigation. Applied Surface Science, 2021, 536, 147779.	3.1	15
11813	Rechargeable Sodiumâ€Based Hybrid Metalâ€ion Batteries toward Advanced Energy Storage. Advanced Functional Materials. 2021. 31. 2006457.	7.8	39

#	Article	IF	CITATIONS
11814	Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Materials, 2021, 35, 70-87.	9.5	126
11815	Performance degradation due to anodic failure mechanisms in lithium-ion batteries. Journal of Power Sources, 2021, 502, 229145.	4.0	33
11816	Poly-anthraquinone sulfide isomers as electrode materials for extended operating temperature organic batteries. Materials Advances, 2021, 2, 376-383.	2.6	5
11817	Electrochemical performances of P2-Na2/3Ni1/3Mn2/3O2 doped with Li and Mg for high cycle stability. Journal of Alloys and Compounds, 2021, 858, 157717.	2.8	15
11818	Construction of 3D porous CeO2 ceramic hosts with enhanced lithiophilicity for dendrite-free lithium metal anode. Journal of Power Sources, 2021, 484, 229253.	4.0	15
11819	Disodium‣ubstituted Tetrahydroxybenzoquinone Salt as an Organic Electrode for Highâ€Performance Lithium″on Batteries. Energy Technology, 2021, 9, 2000840.	1.8	2
11820	Maghemite-based anode materials for Li-Ion batteries: The role of intentionally incorporated vacancies and cation distribution in electrochemical energy storage. Journal of Alloys and Compounds, 2021, 861, 157962.	2.8	30
11821	On the stability of Li intercalated fine-grained graphitic material. Carbon, 2021, 173, 792-799.	5.4	1
11822	P-doped cobalt carbonate hydroxide@NiMoO4 double-shelled hierarchical nanoarrays anchored on nickel foam as a bi-functional electrode for energy storage and conversion. Journal of Colloid and Interface Science, 2021, 587, 855-863.	5.0	29
11823	Cationâ€ S elective Separators for Addressing the Lithium–Sulfur Battery Challenges. ChemSusChem, 2021, 14, 792-807.	3.6	29
11824	Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Research, 2021, 14, 1382-1389.	5.8	24
11825	Single step synthesis of reduced graphene oxide/SnO2 nanocomposites for potential optical and semiconductor applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114938.	1.7	15
11826	Hybrid nanocomposites of tunneled-mesoporous sulfur-doped carbon nanofibers embedded with zinc sulfide nanoparticles for ultrafast lithium storage capability. Journal of Alloys and Compounds, 2021, 854, 157206.	2.8	21
11827	Rational design, synthesis, and application of silica/graphene-based nanocomposite: A review. Materials and Design, 2021, 198, 109367.	3.3	47
11828	Research Progress of Highâ€Performance Organic Material Pyreneâ€4,5,9,10â€Tetraone in Secondary Batteries. ChemElectroChem, 2021, 8, 352-359.	1.7	25
11829	Vanadium hexacyanoferrate with two redox active sites as cathode material for aqueous Zn-ion batteries. Journal of Power Sources, 2021, 484, 229263.	4.0	39
11830	A flexible three-dimensional composite nanofiber enhanced quasi-solid electrolyte for high-performance lithium metal batteries. Inorganic Chemistry Frontiers, 2021, 8, 361-367.	3.0	55
11831	Environmentally friendly Zn-air rechargeable battery with heavy metal free charcoal based air cathode. Electrochimica Acta, 2021, 368, 137592.	2.6	6

#	Article	IF	CITATIONS
11832	Ionic liquids for high performance lithium metal batteries. Journal of Energy Chemistry, 2021, 59, 320-333.	7.1	155
11833	Optimal utilization of fluoroethylene carbonate in potassium ion batteries. Chemical Communications, 2021, 57, 1607-1610.	2.2	11
11834	Bi2O3/Bi nanocomposites confined by N-doped honeycomb-like porous carbon for high-rate and long-life lithium storage. Applied Materials Today, 2021, 22, 100885.	2.3	11
11835	In-situ investigations of the inhomogeneous strain on the steel case of 18650 silicon/graphite lithium-ion cells. Electrochimica Acta, 2021, 367, 137516.	2.6	9
11836	High-performance Li–Se battery: Li2Se cathode as intercalation product of electrochemical in situ reduction of multilayer graphene-embedded 2D-MoSe2. Electrochimica Acta, 2021, 368, 137556.	2.6	19
11837	Free-standing composite of NaxV2O5•nH2O nanobelts and carbon nanotubes with interwoven architecture for large areal capacity and high-rate capability aqueous zinc ion batteries. Electrochimica Acta, 2021, 368, 137600.	2.6	25
11838	Effects of MoO3 coating on the structure and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4. Ionics, 2021, 27, 469-478.	1.2	5
11839	Bi2S3 spheres coated with MOF-derived Co9S8 and N-doped carbon composite layer for half/full sodium-ion batteries with superior performance. Journal of Energy Chemistry, 2021, 59, 473-481.	7.1	46
11840	In Situ Construction of Lithium Silicide Host with Unhindered Lithium Spread for Dendriteâ€Free Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2008786.	7.8	18
11841	Reaction Mechanism and Structural Evolution of Fluorographite Cathodes in Solid tate K/Na/Li Batteries. Advanced Materials, 2021, 33, e2006118.	11.1	44
11842	Non-corrosive and low-cost synthesis of hierarchically porous carbon frameworks for high-performance lithium-ion capacitors. Carbon, 2021, 173, 646-654.	5.4	40
11843	Formation and modification of cathode electrolyte interphase: A mini review. Electrochemistry Communications, 2021, 122, 106870.	2.3	46
11844	Nitrogen-doped hollow carbon spheres synthesized from solid precursor and its application in lithium ions batteries. Journal of Alloys and Compounds, 2021, 858, 157720.	2.8	7
11845	The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: recent progress and future perspectives. Sustainable Energy and Fuels, 2021, 5, 332-350.	2.5	29
11846	Effective thermo-electro-mechanical modeling framework of lithium-ion batteries based on a representative volume element approach. Journal of Energy Storage, 2021, 33, 102090.	3.9	22
11847	Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Materials Today, 2021, 43, 132-165.	8.3	174
11848	Sustainable Cathodes for Lithiumâ€lon Energy Storage Devices Based on Tannic Acid—Toward Ecofriendly Energy Storage. Advanced Sustainable Systems, 2021, 5, 2000206.	2.7	10
11849	Solid Electrolytes for Highâ€Temperature Stable Batteries and Supercapacitors. Advanced Energy Materials, 2021, 11, 2002869.	10.2	64

#	Article	IF	CITATIONS
11850	Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chemical Engineering Journal, 2021, 421, 127759.	6.6	57
11851	A nature-inspired binder with three-dimensional cross-linked networks for silicon-based anodes in lithium-ion batteries. Journal of Power Sources, 2021, 484, 229198.	4.0	39
11852	Microporous bayberry-like nano-silica fillers enabling superior performance gel polymer electrolyte for lithium metal batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 81-93.	1.1	7
11853	Na10SnSb2S12: A nanosized air-stable solid electrolyte for all-solid-state sodium batteries. Chemical Engineering Journal, 2021, 420, 127692.	6.6	36
11854	One-dimensional core-shell composite of AgNWs@Si@GO for high-specific capacity and high-safety anode materials of lithium-ion batteries. Ceramics International, 2021, 47, 4937-4943.	2.3	11
11855	Structural and electrochemical characteristics of hierarchical Li4Ti5O12 as high-rate anode material for lithium-ion batteries. Electrochimica Acta, 2021, 368, 137470.	2.6	17
11856	Bio-inspired hierarchical nanofibrous SnS/C composite with enhanced anodic performances in lithium-ion batteries. Journal of Alloys and Compounds, 2021, 860, 157897.	2.8	17
11857	Polymerâ€Based Solid Electrolytes: Material Selection, Design, and Application. Advanced Functional Materials, 2021, 31, 2007598.	7.8	164
11858	Polymer electrolytes for Li-S batteries: Polymeric fundamentals and performance optimization. Journal of Energy Chemistry, 2021, 58, 300-317.	7.1	37
11859	Scraps to superior anodes for Li-ion batteries: Sustainable and scalable upgrading of waste rust. Journal of Hazardous Materials, 2021, 410, 124571.	6.5	12
11860	Relevance of metal (Ca versus Mn) embedded C2N for energy-storage applications: Atomic-scale study. International Journal of Hydrogen Energy, 2021, 46, 2445-2463.	3.8	12
11861	TiO2 nanoparticle embedded nitrogen doped electrospun helical carbon nanofiber-carbon nanotube hybrid anode for lithium-ion batteries. International Journal of Hydrogen Energy, 2021, 46, 2464-2478.	3.8	21
11862	A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Science China Chemistry, 2021, 64, 72-81.	4.2	33
11863	Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries and Supercaps, 2021, 4, 389-406.	2.4	23
11864	Recent Advances in Aqueous Zincâ€ion Hybrid Capacitors: A Minireview. ChemElectroChem, 2021, 8, 484-491.	1.7	21
11865	A novel ceramic/polyurethane composite solid polymer electrolyte for high lithium batteries. Ionics, 2021, 27, 569-575.	1.2	6
11866	A novel fabricated conductive substrate for enhancing the mass loading of NiCoLDH nanosheets for high areal specific capacity in hybrid supercapacitors. Electrochimica Acta, 2021, 368, 137621.	2.6	20
11867	Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Materials, 2021, 35, 731-738.	9.5	106

#	ARTICLE Three-dimensional porous radical polymer/reduced graphene oxide composite with two-electron	lF	CITATIONS
11868	redox reactions as high-performance cathode for lithium-ion batteries. European Polymer Journal, 2021, 143, 110191.	2.6	6
11869	A coordinated regulation strategy to improve electronic conductivity and Li-ion transport for TiO2 lithium battery anode materials. Journal of Alloys and Compounds, 2021, 860, 158282.	2.8	12
11870	Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries. Journal of Power Sources, 2021, 485, 229286.	4.0	29
11871	A high-performance aqueous iron–hydrogen gas battery. Materials Today Energy, 2021, 19, 100603.	2.5	13
11872	Synthesis of sulfide solid electrolytes from Li ₂ S and P ₂ S ₅ in anisole. Journal of Materials Chemistry A, 2021, 9, 400-405.	5.2	22
11873	Sustainable materials for off-grid battery applications: advances, challenges and prospects. Sustainable Energy and Fuels, 2021, 5, 310-331.	2.5	14
11874	Highâ€Performance Al ₂ O ₃ /PAALi Composite Separator Prepared by Waterâ€Based Slurry for Highâ€Power Density Lithiumâ€Based Battery. Advanced Engineering Materials, 2021, 23, 2001009.	1.6	16
11875	Effects of Mn(<scp>II</scp>) on nano silicon@polyaniline electrodes in both half and full cells. International Journal of Energy Research, 2021, 45, 4357-4369.	2.2	1
11876	Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nature Materials, 2021, 20, 665-673.	13.3	110
11877	Cu ₂ Nb ₃₄ O ₈₇ nanowires as a superior lithium storage host in advanced rechargeable batteries. Inorganic Chemistry Frontiers, 2021, 8, 444-451.	3.0	31
11878	Lithium-ion capacitor with improved energy density <i>via</i> perfect matching silicon@3D graphene aerogel anode and BCNNTs cathode. Journal of Materials Chemistry A, 2021, 9, 1134-1142.	5.2	21
11879	Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2628-2661.	5.2	39
11880	A Dendriteâ€Free Lithium/Carbon Nanotube Hybrid for Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2006702.	11.1	77
11881	Dissolving Vanadium into Titanium Nitride Lattice Framework for Rational Polysulfide Regulation in Li–S Batteries. Advanced Energy Materials, 2021, 11, 2003020.	10.2	52
11882	Yolk–Shell Cu ₂ O@CuOâ€decorated RGO for Highâ€Performance Lithiumâ€lon Battery Anode. Energy and Environmental Materials, 2022, 5, 253-260.	7.3	37
11883	Inorganic Solid Electrolytes for Allâ€Solidâ€State Sodium Batteries: Fundamentals and Strategies for Battery Optimization. Advanced Functional Materials, 2021, 31, 2008165.	7.8	55
11884	Interface Engineering of Air Electrocatalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2002762.	10.2	129
11885	In situ imaging analysis of the inhibition effect of functional coating on the volume expansion of silicon anodes. Chemical Engineering Journal, 2021, 417, 128122.	6.6	20

#	Article	IF	CITATIONS
11886	Montmorillonite as the multifunctional reagent for preparing reduced graphene oxide and its improved supercapacitive performance. Applied Clay Science, 2021, 200, 105821.	2.6	3
11887	Spatially Controlled Lithium Deposition on Silverâ€Nanocrystalsâ€Decorated TiO ₂ Nanotube Arrays Enabling Ultrastable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2009605.	7.8	40
11888	Recent Advances and Prospects of Atomic Substitution on Layered Positive Materials for Lithiumâ€lon Battery. Advanced Energy Materials, 2021, 11, 2003197.	10.2	31
11889	<scp> MoO ₂ </scp> /C hybrid synthesized by a facile moltenâ€saltâ€assisted approach for highâ€performance lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 6418-6425.	2.2	9
11890	Bifunctional mesoporous CoO/nitrogenâ€incorporated graphene electrocatalysts for highâ€power and longâ€term stability of rechargeable zincâ€air batteries. International Journal of Energy Research, 2021, 45, 6698-6707.	2.2	12
11891	A nanorod-like Ni-rich layered cathode with enhanced Li ⁺ diffusion pathways for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2830-2839.	5.2	58
11892	On the study of cyclic plasticity behaviour of primary electrode particle for lithium-ion battery. European Journal of Mechanics, A/Solids, 2021, 86, 104175.	2.1	5
11893	Intra- and inter-molecular interactions in choline-based ionic liquids studied by 1D and 2D NMR. Journal of Molecular Liquids, 2021, 322, 114934.	2.3	11
11894	Opportunities of Aqueous Manganeseâ€Based Batteries with Deposition and Stripping Chemistry. Advanced Energy Materials, 2021, 11, 2002904.	10.2	107
11895	Stretchable Energy Storage Devices: From Materials and Structural Design to Device Assembly. Advanced Energy Materials, 2021, 11, 2003308.	10.2	61
11896	Functional separator for promoting lithium ion migration and its mechanism study. Applied Surface Science, 2021, 542, 148661.	3.1	14
11897	Strong lithium-polysulfide anchoring effect of amorphous carbon for lithium–sulfur batteries. Current Applied Physics, 2021, 22, 94-103.	1.1	6
11898	Coordination interaction boosts energy storage in rechargeable Al battery with a positive electrode material of CuSe. Chemical Engineering Journal, 2021, 421, 127792.	6.6	28
11899	Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon. Electrochimica Acta, 2021, 368, 137597.	2.6	16
11900	An all-organic aqueous potassium dual-ion battery. Journal of Energy Chemistry, 2021, 57, 28-33.	7.1	52
11901	Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes. Renewable and Sustainable Energy Reviews, 2021, 138, 110660.	8.2	26
11902	NaTi2(PO4)3@C nanocrystals anchored on B-doped graphene sheets with outstanding electrochemical performances for sodium energy storage. Ceramics International, 2021, 47, 9827-9833.	2.3	5
11903	One-step fabrication of two-dimensional hierarchical Mn2O3@graphene composite as high-performance anode materials for lithium ion batteries. Journal of Materials Science and Technology, 2021, 80, 13-19.	5.6	22

		CITATION REPOI	RT	
#	Article	IF		Citations
11904	Mini Review on Gas-Phase Synthesis for Energy Nanomaterials. Energy & Fuels, 2021, 35, 63-	35. 2.	5	23
11905	A general strategy for embedding ultrasmall CoM _x nanocrystals (M = S, O, Se, and Te hierarchical porous carbon nanofibers for high-performance potassium storage. Journal of Material Chemistry A, 2021, 9, 1487-1494.		2	68
11906	Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 3576-3583.	5.	2	36
11907	Self-templated synthesis of hollow hierarchical porous olive-like carbon toward universal high-performance alkali (Li, Na, K)-ion storage. Carbon, 2021, 174, 317-324.	5.	4	30
11908	Nanoscale modelling of polymer electrolytes for rechargeable batteries. Energy Storage Materials, 2021, 36, 77-90.	9.	5	14
11909	Understanding the reaction mechanism and performances of 3d transition metal cathodes for all-solid-state fluoride ion batteries. Journal of Materials Chemistry A, 2021, 9, 406-412.	5.	2	33
11910	High efficiency lithium storage in 3D composite foam of Co3O4 nanoparticles integrated carbon nanohorns. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2 263, 114839.	2021, 1.7	7	6
11911	A flexible, integrated film battery configuration for ultrafast sodium ion storage. Journal of Materials Chemistry A, 2021, 9, 1252-1259.	5.	2	1
11912	Toward the Scaleâ€Up of Solidâ€State Lithium Metal Batteries: The Gaps between Labâ€Level Cell Practical Largeâ€Format Batteries. Advanced Energy Materials, 2021, 11, 2002360.	s and 10).2	103
11913	Polyphosphonates as ionic conducting polymers. Journal of Polymer Science, 2021, 59, 139-145.	2.	0	1
11914	Preparation of fully flexible lithium metal batteries with free-standing β-Na0.33V2O5 cathodes and hybrid solid electrolytes. Journal of Industrial and Engineering Chemistry, 2021, 94, 368-375.	LAGP 2.	9	7
11915	Computational Screening of the Physical Properties of Waterâ€inâ€Salt Electrolytes**. Batteries a Supercaps, 2021, 4, 646-652.	nd 2.	4	19
11916	Recent Advances on Carbonâ€Based Materials for High Performance Lithiumâ€Ion Capacitors. Bat and Supercaps, 2021, 4, 407-428.	teries 2.	4	31
11917	Graphene and grapheneâ€like structure from biomass for Electrochemical Energy Storage applicat Review. Electrochemical Science Advances, 2021, 1, e2000028.	ion―A 1.:	2	13
11918	Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage. Frontiers of Chemica Science and Engineering, 2021, 15, 709-716.	al 2.	3	10
11919	Vertical nanoarrays with lithiophilic sites suppress the growth of lithium dendrites for ultrastable lithium metal batteries. Chemical Engineering Journal, 2021, 405, 126808.	6.	6	24
11920	Tuning the structure and morphology of Li2O2 by controlling the crystallinity of catalysts for Li-O2 batteries. Chemical Engineering Journal, 2021, 409, 128145.	<u>)</u> 6.	6	45
11921	Unveiling the structural, charge density distribution and supercapacitor performance of NiCo2O4 nano flowers for asymmetric device fabrication. Journal of Energy Storage, 2021, 34, 102029.	3.	9	41

#	Article	IF	CITATIONS
11922	Rational design of strong chemical coupling carbon coated N-doped C@MoS2@C nanotubes for high-performance lithium storage. Journal of Alloys and Compounds, 2021, 861, 157981.	2.8	12
11923	Investigation of structure and cycling performance of Nb5+ doped high‑nickel ternary cathode materials. Solid State Ionics, 2021, 359, 115520.	1.3	19
11924	Sulfur-assisted large-scale synthesis of graphene microspheres for superior potassium-ion batteries. Energy and Environmental Science, 2021, 14, 965-974.	15.6	164
11925	Enhanced sodium storage performance of silk fibroinâ€derived hollow iron sulfide with potential window control. International Journal of Energy Research, 2021, 45, 4755-4764.	2.2	4
11926	Nasicon-type phosphates as electrode materials for safe and efficient electrochemical energy storage. Materials Today: Proceedings, 2021, 37, 3928-3931.	0.9	0
11927	Characterization methods of organic electrode materials. Journal of Energy Chemistry, 2021, 57, 291-303.	7.1	15
11928	Polysiloxane Crossâ€Linked Mechanically Stable MXeneâ€Based Lithium Host for Ultrastable Lithium Metal Anodes with Ultrahigh Current Densities and Capacities. Advanced Functional Materials, 2021, 31, 2008044.	7.8	57
11929	Organic Cathode Materials for Lithiumâ€ion Batteries: Past, Present, and Future. Advanced Energy and Sustainability Research, 2021, 2, 2000044.	2.8	61
11930	Mechanism investigation of high performance Na3V2(PO4)2O2F/reduced graphene oxide cathode for sodium-ion batteries. Journal of Power Sources, 2021, 482, 228906.	4.0	27
11931	Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Materials Today, 2021, 42, 73-98.	8.3	159
11932	Lithium slurry flow cell, a promising device for the future energy storage. Green Energy and Environment, 2021, 6, 5-8.	4.7	24
11933	A 3D Crossâ€Linking Lithiophilic and Electronically Insulating Interfacial Engineering for Garnetâ€Type Solidâ€State Lithium Batteries. Advanced Functional Materials, 2021, 31, 2007815.	7.8	82
11934	Hierarchical porous Co3O4 nanocages with elaborate microstructures derived from ZIF-67 toward lithium storage. Vacuum, 2021, 184, 109879.	1.6	27
11935	Heterogeneity of Graphite Lithiation in Stateâ€ofâ€theâ€Art Cylinderâ€Type Liâ€Ion Cells. Batteries and Supercaps, 2021, 4, 327-335.	2.4	8
11936	Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery. Carbon, 2021, 172, 624-636.	5.4	49
11937	Biomass-derived nitrogen self-doped porous activation carbon as an effective bifunctional electrocatalysts. Chinese Chemical Letters, 2021, 32, 92-98.	4.8	25
11938	Aqueous nickel-ion battery with Na2V6O16·2H2O nanowire as high-capacity and zero-strain host material. Chemical Engineering Journal, 2021, 413, 127441.	6.6	13
11939	FeOOH derived urchin-like Fe2O3@C as superior anode for sodium ion storage. Journal of Alloys and Compounds, 2021, 858, 157714.	2.8	9

#	Article	IF	CITATIONS
11940	Lithiated aromatic biopolymer as high-performance organic anodes for lithium-ion storage. Chemical Engineering Journal, 2021, 409, 127454.	6.6	13
11941	Boron group element doping of Li1.5Al0.5Ge1.5(PO4)3 based on microwave sintering. Journal of Solid State Electrochemistry, 2021, 25, 527-534.	1.2	11
11942	Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Research, 2021, 14, 998-1003.	5.8	50
11943	High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics. Nano Research, 2021, 14, 1004-1011.	5.8	55
11944	Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy, 2021, 80, 105563.	8.2	87
11945	Ion transport in topological allâ€solidâ€state polymer electrolyte improved via grapheneâ€oxide. Journal of Applied Polymer Science, 2021, 138, 50173.	1.3	6
11946	A novel scalable synthesis of high-rate performance silicon anode materials by liquid-phase coating doping method. Applied Surface Science, 2021, 540, 148326.	3.1	8
11947	Highly Ordered Carbon Coating Prepared with Polyvinylidene Chloride Precursor for Highâ€Performance Silicon Anodes in Lithiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 240-247.	2.4	15
11948	Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nature Materials, 2021, 20, 76-83.	13.3	432
11949	Fast Li ⁺ Transport of Liâ~'Zn Alloy Protective Layer Enabling Excellent Electrochemical Performance of Li Metal Anode. Batteries and Supercaps, 2021, 4, 140-145.	2.4	13
11950	Analytical Model and Experimental Verification of the Interfacial Peeling Strength of Electrodes. Experimental Mechanics, 2021, 61, 321-330.	1.1	4
11951	A new family of carbonaceous cathodes for rechargeable batteries through electronic structure tuning engineering. National Science Review, 2021, 8, nwaa185.	4.6	0
11952	Stabilization of nonâ€native polymorphs for electrocatalysis and energy storage systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e389.	1.9	5
11953	Multi-electron Reaction Materials for High-Energy-Density Secondary Batteries: Current Status and Prospective. Electrochemical Energy Reviews, 2021, 4, 35-66.	13.1	68
11954	Electrolyte Engineering Toward Highâ€Voltage Aqueous Energy Storage Devices. Energy and Environmental Materials, 2021, 4, 302-306.	7.3	48
11955	Extremely pseudocapacitive interface engineered CoO@3D-NRGO hybrid anodes for high energy/ power density and ultralong life lithium-ion batteries. Carbon, 2021, 171, 869-881.	5.4	36
11956	Anchoring succinonitrile by solvent-Li+ associations for high-performance solid-state lithium battery. Chemical Engineering Journal, 2021, 406, 126754.	6.6	56
11957	Ultrathin 3 V Spinel Clothed Layered Lithiumâ€Rich Oxides as Heterostructured Cathode for Highâ€Energy and Highâ€Power Liâ€ion Batteries â€. Chinese Journal of Chemistry, 2021, 39, 345-352.	2.6	12

#	Article	IF	CITATIONS
11958	Microsized SnS/Few‣ayer Graphene Composite with Interconnected Nanosized Building Blocks for Superior Volumetric Lithium and Sodium Storage. Energy and Environmental Materials, 2021, 4, 229-238.	7.3	21
11959	Nanomatrix of Co3O4–CuO nanoarray as novel electrode material for lithium-ion battery anode. Journal of the Iranian Chemical Society, 2021, 18, 393-406.	1.2	1
11960	3D hierarchically macro-/mesoporous graphene frameworks enriched with pyridinic-nitrogen-cobalt active sites as efficient reversible oxygen electrocatalysts for rechargeable zinc-air batteries. Chinese Journal of Catalysis, 2021, 42, 571-582.	6.9	34
11961	Electrolytic alloy-type anodes for metal-ion batteries. Rare Metals, 2021, 40, 329-352.	3.6	45
11962	Electrochemical Advances in Nonâ€Aqueous Redox Flow Batteries. Israel Journal of Chemistry, 2021, 61, 101-112.	1.0	26
11963	Nanoengineering of 2D MXeneâ€Based Materials for Energy Storage Applications. Small, 2021, 17, e1902085.	5.2	398
11964	Electrochemical recovery of LiOH from used CO2 adsorbents. Catalysis Today, 2021, 359, 83-89.	2.2	9
11965	Facile assembly of layer-interlocked graphene heterostructures as flexible electrodes for Li-ion batteries. Faraday Discussions, 2021, 227, 321-331.	1.6	1
11966	Heteroatoms Doped Porous Carbon Nanostructures Recovered from Agriculture Waste for Energy Conversion and Storage. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 465-512.	1.4	0
11967	Ionic liquid functionalized nanoparticles: Synthetic strategies and electrochemical applications. , 2021, , 147-173.		0
11968	Construction of Interlayer-Expanded MoSe ₂ /Nitrogen-Doped Graphene Heterojunctions for Ultra-Long-Cycling Rechargeable Aluminum Storage. ACS Applied Energy Materials, 2021, 4, 1575-1582.	2.5	19
11969	Performance Evaluation of the LiFePO4OH Cathode for Stationary Storage Applications Using a Reduced-Order Electrochemical Model. ACS Applied Energy Materials, 2021, 4, 1021-1032.	2.5	6
11970	Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes. Journal of Materials Chemistry A, 2021, 9, 3628-3636.	5.2	23
11971	Synthesis of Organic Acid Doped Polypyrrole and Its Evaluation as a Novel Cathode Material. International Journal of Electrochemical Science, 0, , 151039.	0.5	0
11972	Self-supporting V ₂ O ₅ nanofiber-based electrodes for magnesium–lithium-ion hybrid batteries. RSC Advances, 2021, 11, 1354-1359.	1.7	5
11973	Robust thiol-branched all-solid-state polymer electrolyte featuring high ionic conductivity for lithium-metal batteries. Ionics, 2021, 27, 599-605.	1.2	6
11974	Ethyl cyanoacrylate reinforced polyvinylidene fluoride separators for robust lithium ion batteries. Materials Chemistry Frontiers, 2021, 5, 2434-2441.	3.2	8
11975	Effects of In Situ Graphitic Nanocarbon Coatings on Cycling Performance of Silicon-Flake-Based Anode of Lithium Ion Battery. Coatings, 2021, 11, 138.	1.2	6

#	Article	IF	CITATIONS
11976	Hollow porous nitrogen-doped carbon embedded with ultrafine Co nanoparticles boosting lithium-ion storage. CrystEngComm, 2021, 23, 2006-2015.	1.3	5
11977	Analysis of LiCoO2 electrodes through principal component analysis of current–voltage datacubes measured using atomic force microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 012402.	0.6	3
11978	The Implications of Post-Fire Physical Features of Cylindrical 18650 Lithium-Ion Battery Cells. Fire Technology, 2021, 57, 1707-1722.	1.5	5
11979	Hierarchical interlayer-expanded MoSe ₂ /N–C nanorods for high-rate and long-life sodium and potassium-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 1271-1278.	3.0	22
11980	Solution-based chemical pre-alkaliation of metal-ion battery cathode materials for increased capacity. Journal of Materials Chemistry A, 2021, 9, 11771-11777.	5.2	11
11981	Fabricating Nanostructured HoFeO ₃ Perovskite for Lithium-Ion Battery Anodes via Co-Precipitation. SSRN Electronic Journal, 0, , .	0.4	0
11982	A composite of CoNiP quantum dot-decorated reduced graphene oxide as a sulfur host for Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 16692-16698.	5.2	54
11983	<i>Ab initio</i> characterization of N doped T-graphene and its application as an anode material for Na ion rechargeable batteries. Sustainable Energy and Fuels, 2021, 5, 4060-4068.	2.5	9
11984	Lignin biopolymer: the material of choice for advanced lithium-based batteries. RSC Advances, 2021, 11, 23644-23653.	1.7	25
11985	A fibrous thiazolothiazole-bridged viologen polymer for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 18506-18514.	5.2	26
11986	Fe nanopowder-assisted fabrication of FeO _x /porous carbon for boosting potassium-ion storage performance. Nanoscale, 2021, 13, 2481-2491.	2.8	16
11987	Two-dimensional C3N/blue phosphorene vdW heterostructure for Li, Na and K-ion batteries. New Journal of Chemistry, 2021, 45, 12647-12654.	1.4	7
11988	Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Materials Chemistry Frontiers, 2021, 5, 5211-5232.	3.2	22
11989	Control of crystal size tailors the electrochemical performance of α-V ₂ O ₅ as a Mg ²⁺ intercalation host. Nanoscale, 2021, 13, 10081-10091.	2.8	7
11990	Gel Polymer Electrolyte Membranes Boosted with Sodium-Conductive β-Alumina Nanoparticles: Application for Na-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 623-632.	2.5	20
11991	Surface-reconstructed formation of hierarchical TiO ₂ mesoporous nanosheets with fast lithium-storage capability. Materials Chemistry Frontiers, 2021, 5, 3216-3225.	3.2	16
11992	Interfacial growth of free-standing PANI films: toward high-performance all-polymer supercapacitors. Chemical Science, 2021, 12, 1783-1790.	3.7	23
11993	Valorization of resources from end-of-life lithium-ion batteries: A review. Critical Reviews in Environmental Science and Technology, 2022, 52, 2060-2103.	6.6	20

#	Article	IF	CITATIONS
11994	Suppressing cathode dissolution <i>via</i> guest engineering for durable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 7631-7639.	5.2	47
11995	Defect-free-induced Na ⁺ disordering in electrode materials. Energy and Environmental Science, 2021, 14, 3130-3140.	15.6	62
11996	<i>In situ</i> formation of polymer electrolytes using a dicationic imidazolium cross-linker for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2021, 9, 5796-5806.	5.2	16
11997	Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes. ACS Applied Materials & amp; Interfaces, 2021, 13, 717-726.	4.0	34
11998	A universal electrochemical lithiation–delithiation method to prepare low-crystalline metal oxides for high-performance hybrid supercapacitors. RSC Advances, 2021, 11, 30407-30414.	1.7	2
11999	Labile oxygen participant adsorbate evolving mechanism to enhance oxygen reduction in SmMn ₂ O ₅ with double-coordinated crystal fields. Journal of Materials Chemistry A, 2021, 9, 380-389.	5.2	14
12000	Effects of low doping on the improvement of cathode materials Na _{3+<i>x</i>} V _{2â^'<i>x</i>} M _{<i>x</i>} (PO ₄) ₃ (M = Co ²⁺ , Cu ²⁺ ; <i>x</i> = 0.01â€"0.05) for SIBs. Journal of Materials Chemistry A, 2021, 9, 17380-17389.	5.2	24
12001	Critical role of zeolites as Hissup 22/sup S scavengers in argurodite Lissup 62/sup PS (sup Sclubs)	5.2	21
12002	A tracking problem for the state of charge in an electrochemical Li-ion battery model. Mathematical Control and Related Fields, 2022, 12, 709.	0.6	1
12003	Epitaxial Induced Plating Currentâ€Collector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709.	10.2	119
12004	A theoretical study on the intercalation and diffusion of AlF ₃ in graphite: its application in rechargeable batteries. Physical Chemistry Chemical Physics, 2021, 23, 19579-19589.	1.3	6
12005	Organoboronâ€Containing Polymer Electrolytes for Highâ€Performance Lithium Batteries. Advanced Functional Materials, 2021, 31, 2008632.	7.8	28
12006	Mn-based oxides for aqueous rechargeable metal ion batteries. Journal of Materials Chemistry A, 2021, 9, 11472-11500.	5.2	44
12007	Nanostructured anode materials in rechargeable batteries. , 2021, , 187-219.		5
12008	Computational investigation of enhanced properties in functionalized carbon nanotube doped polyvinyl alcohol gel electrolyte systems. Physical Chemistry Chemical Physics, 2021, 23, 21286-21294.	1.3	2
12009	The synthesis of alternating donor–acceptor polymers based on pyrene-4,5,9,10-tetraone and thiophene derivatives, their composites with carbon, and their lithium storage performances as anode materials. RSC Advances, 2021, 11, 15044-15053.	1.7	14
12011	Synthesis and Electrochemical Performance Analysis of LiNiO ₂ Cathode Material Using Taylor-Couette Flow-Type Co-Precipitation Method. Journal of the Electrochemical Society, 2021, 168, 010521.	1.3	6
12012	Effect of Sm3+ Substitutions on the Lithium Ionic Conduction and Relaxation Dynamics of Li5+2xLa3Nb2â ^{^2} xSmxO12 Ceramics. Crystals, 2021, 11, 95.	1.0	0

ARTICLE IF CITATIONS Micron-sized iron oxide functionalized with hydrophobic mesoporous sheets for the Niâ€"Fe battery. 12013 2.5 2 Sustainable Energy and Fuels, 2021, 5, 1756-1766. 12014 Versatile materials for energy devices and systems., 2021, , 265-291. Asymptotic Reduction of a Lithium-Ion Pouch Cell Model. SIAM Journal on Applied Mathematics, 2021, 12015 0.8 10 81, 765-788. State of charge dependent ordered and disordered phases in a Li[Ni1/3Co1/3Mn1/3]O2 cathode material. Materials Advances, 2021, 2, 3965-3970. Copper niobate nanowires boosted by a N, S co-doped carbon coating for superior lithium storage. 12017 1.6 11 Dalton Transactions, 2021, 50, 11030-11038. Dual-ion charge–discharge behaviors of Na–NiNc and NiNc–NiNc batteries. Materials Advances, 2021, 2, 2.6 2263-2266. Nanoscale Wrinkled Cu as a Current Collector for High-Loading Graphite Anode in Solid-State Lithium 12019 4.0 15 Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 2576-2583. Anionic redox behaviors of layered Li-rich oxide cathodes. Inorganic Chemistry Frontiers, 2021, 8, 9 4590-4609. Ultra-small Fe₃O₄ nanodots encapsulated in layered carbon nanosheets with 12021 1.7 16 fast kinetics for lithium/potassium-ion battery anodes. RSC Advances, 2021, 11, 1261-1270. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors 12022 and the ORR to design high performance materials. Energy and Environmental Science, 2021, 14, 15.6 2036-2089. SnS₂–SnS pn hetero-junction bonded on graphene with boosted charge transfer for 12023 2.8 10 lithium storage. Nanoscale, 2021, 13, 20481-20487. A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion 3.7 batteries. Chemical Science, 2021, 12, 12383-12390. Regulating the Solvation Structure of Nonflammable Electrolyte for Dendrite-Free Li-Metal Batteries. 12025 4.0 17 ACS Applied Materials & amp; Interfaces, 2021, 13, 681-687. Electrochemical Activity of Nitrogenâ€Containing Groups in Organic Electrode Materials and Related 10.2 59 Improvement Strategies. Advanced Energy Materials, 2021, 11, 2002523. Effect of pressure on the properties of a NASICON 12027 Li_{1.3}Al_{0.3}Ti_{1.7}(PO₄)₃ nanofiber solid 5.215 electrolyte. Journal of Materials Chemistry A, 2021, 9, 13688-13696. Recent advances in cathode engineering to enable reversible room-temperature aluminium–sulfur 2.2 batteries. Nanoscale Advances, 2021, 3, 1569-1581. Enhancing Co/Co₂VO₄ Li-ion battery anode performances <i>via</i> 2Dâ€"2D 12029 2.8 8 heterostructure engineering. Nanoscale, 2021, 13, 13065-13071. 12030 Carbon nanoflakes and nanofibers., 2021, , 399-459.

#	Article	IF	CITATIONS
12031	A high performance all-vanadate-based Li-ion full cell. Journal of Materials Chemistry A, 2021, 9, 10345-10353.	5.2	32
12032	Heterostructures of titanium-based MXenes in energy conversion and storage devices. Journal of Materials Chemistry C, 2021, 9, 8395-8465.	2.7	30
12033	Kinetics of the CO ₂ reduction reaction in aprotic Li–CO ₂ batteries: a model study. Journal of Materials Chemistry A, 2021, 9, 3290-3296.	5.2	29
12034	Thermal evolution of NASICON type solid-state electrolytes with lithium at high temperature <i>via in situ</i> scanning electron microscopy. Chemical Communications, 2021, 57, 11076-11079.	2.2	8
12035	Evaluation of Ga _{0.2} Li _{6.4} Nd ₃ Zr ₂ O ₁₂ garnets: exploiting dopant instability to create a mixed conductive interface to reduce interfacial resistance for all solid state batteries. Dalton Transactions, 2021, 50, 13786-13800.	1.6	6
12036	Basic concepts and processing of nanostructures materials. , 2021, , 1-32.		1
12037	Tailoring P2/P3 Biphases of Layered Na <i>_x</i> MnO ₂ by Co Substitution for Highâ€Performance Sodiumâ€Ion Battery. Small, 2021, 17, e2007103.	5.2	38
12038	Carbon coated SiO nanoparticles embedded in hierarchical porous N-doped carbon nanosheets for enhanced lithium storage. Inorganic Chemistry Frontiers, 2021, 8, 4282-4290.	3.0	18
12039	A General Strategy for Antimonyâ€Based Alloy Nanocomposite Embedded in Swissâ€Cheeseâ€Like Nitrogenâ€Doped Porous Carbon for Energy Storage. Advanced Functional Materials, 2021, 31, 2009433.	7.8	62
12040	Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries. Journal of Materials Chemistry A, 2021, 9, 6070-6088.	5.2	21
12041	GeP ₃ /NbX ₂ (X=S, Se) Nano-Heterostructures: Promising Isotropic Flexible Anodes for Lithium-Ion Batteries with High Lithium Storage Capacity. ACS Omega, 2021, 6, 2956-2965.	1.6	6
12042	Co ₃ O ₄ @NiCo ₂ O ₄ double-shelled nanocages with hierarchical hollow structure and oxygen vacancies as efficient bifunctional electrocatalysts for rechargeable Zn–air batteries. Dalton Transactions, 2021, 50, 2093-2101.	1.6	16
12043	A graphene@framework polymer derived from addition polymerization of phthalocyanine/dicarboxaldehyde as a negative material for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 7291-7305.	3.2	3
12044	Facile fabrication of WS ₂ nanocrystals confined in chlorella-derived N, P co-doped bio-carbon for sodium-ion batteries with ultra-long lifespan. Dalton Transactions, 2021, 50, 14745-14752.	1.6	6
12045	Strategic synthesis of sponge-like structured SiO _{<i>x</i>} @C@CoO multifunctional composites for high-performance and stable lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 18440-18453.	5.2	22
12046	A review on the recent advances in hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15880-15918.	5.2	484
12047	Green and Sustainable Battery Materials. , 2021, , 1-29.		0
12048	Alkaline-earth metal substitution stabilizes the anionic redox of Li-rich oxides. Journal of Materials Chemistry A, 2021, 9, 10364-10373.	5.2	10

ARTICLE IF CITATIONS 12049 Sulfur and Sulfide Positive Electrode., 2021, , 125-135. 0 Characterization of lithium zinc titanate doped with metal ions as anode materials for lithium ion 1.6 batteries. Dalton Transactions, 2021, 50, 3356-3368. Urchin-like MnO/C microspheres as high-performance lithium-ion battery anode. Ionics, 2021, 27, 12051 1.2 6 1423-1428. Laser ablation of pristine Fe foil for constructing a layer-by-layer 12052 SiO₂/Fe₂O₃/Fe integrated anode for high cycling-stability lithium-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 10365-10376. 1.3 Applications of Metal-organic Frameworks (MOFs) Materials in Lithium-ion Battery/Lithium-metal 12053 10 0.5 Battery Electrolytes. Acta Chimica Sinica, 2021, 79, 139. Rational construction of K_{0.5}V₂O₅ nanobelts/CNTs flexible 12054 2.8 cathode for multi-functional potassium-ion batteries. Nanoscale, 2021, 13, 8199-8209. Plate-like carbon-supported Fe3C nanoparticles with superior electrochemical performance. Rare 12055 3.6 21 Metals, 2021, 40, 1402-1411. Electrospun Nanostructured Iron Oxides for High-Performance Lithium Ion Batteries. Materials 0.3 Horizon's, 2021, , 277-318. Liquid-Exfoliated Molybdenum Telluride Nanosheets for High-Performance Supercapacitors. Journal 12057 5 1.0 of Electronic Materials, 2021, 50, 2277-2286. Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chemical Science, 2021, 12, 8945-8966. Laboratory Operando XAS Study of Sodium Iron Titanite Cathode in the Li-Ion Half-Cell. Nanomaterials, 12059 7 1.9 2021, 11, 156. Boosting the sodium storage of the 1T/2H MoS₂@SnO₂ heterostructure 12060 5.2 <i>via</i> a fast surface redox reaction. Journal of Materials Chemistry A, 2021, 9, 463-471. Ti₃C₂T_x with a hydroxyl-rich surface for metal sulfides as high 12061 performance electrode materials for sodium/lithium storage. Journal of Materials Chemistry A, 2021, 5.2 32 9, 14013-14024. Recent progress and applications of niobium-based nanomaterials and their composites for 12062 2.5 supercapacitors and hybrid ion capacitors. Sustainable Energy and Fuels, 2021, 5, 3039-3083. Hysteresis abated P2-type NaCoO₂ cathode reveals highly reversible multiple phase 12063 2.517 transitions for high-rate sodium-ion batteries. Sustainable Energy and Fuels, 2021, 5, 3219-3228. High-capacity sulfur copolymer cathode with metallic fibril-based current collector and conductive 12064 5.2 capping layer. Journal of Materials Chemistry A, 2021, 9, 2334-2344. MXene-encapsulated hollow Fe₃O₄ nanochains embedded in N-doped carbon 12065 nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries. 2.8 78 Nanoscale, 2021, 13, 4624-4633. An Alternative to Carbon Additives: The Fabrication of Conductive Layers Enabled by Soluble 12066 Conducting Polymer Precursors $\hat{a} \in A$ Case Study for Organic Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 5349-5356.

#	Article	IF	CITATIONS
12067	Estimation of Potentials in Lithium-Ion Batteries Using Machine Learning Models. IEEE Transactions on Control Systems Technology, 2022, 30, 680-695.	3.2	8
12068	Polymer Functionalized Graphene in Energy Storage Devices. RSC Polymer Chemistry Series, 2021, , 322-356.	0.1	0
12069	Self-shutdown function induced by sandwich-like gel polymer electrolytes for high safety lithium metal batteries. RSC Advances, 2021, 11, 14036-14046.	1.7	10
12070	Multi-core yolk–shell-structured Bi ₂ Se ₃ @C nanocomposite as an anode for high-performance lithium-ion batteries. Dalton Transactions, 2021, 50, 10758-10764.	1.6	13
12071	Lithiophilic Covalent-Organic Frameworks Enable Uniform Lithium Deposition. Matter, 2021, 4, 17-18.	5.0	4
12072	Pillar-beam structures prevent layered cathode materials from destructive phase transitions. Nature Communications, 2021, 12, 13.	5.8	85
12073	Elucidating the nature of grain boundary resistance in lithium lanthanum titanate. Journal of Materials Chemistry A, 2021, 9, 6487-6498.	5.2	44
12074	Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A, 2021, 9, 7396-7406.	5.2	65
12075	Recent advances in conjugated polymers for lithium-ion and supercapacitor applications. , 2021, , 265-289.		0
12076	Boosting the electrochemical properties of CoCo ₂ O ₄ porous nanowire arrays by microwave-assisted synthesis for battery–supercapacitor hybrid devices. Sustainable Energy and Fuels, 2021, 5, 3918-3928.	2.5	8
12077	Defect engineering of molybdenum disulfide for energy storage. Materials Chemistry Frontiers, 2021, 5, 5880-5896.	3.2	25
12078	Extrinsicâ€Structured Bimetallicâ€Phase Ternary Metal Phosphorus Trisulfides Coupled with Nâ€Doped Graphitized Carbon for Superior Electrochemical Lithium Storage. Advanced Energy Materials, 2021, 11, 2003553.	10.2	39
12079	Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects. Journal of Materials Chemistry A, 2021, 9, 19282-19297.	5.2	73
12080	Transition metal dichalcogenide-decorated MXenes: promising hybrid electrodes for energy storage and conversion applications. Materials Chemistry Frontiers, 2021, 5, 3298-3321.	3.2	66
12081	Research Progress of Magnesium Sulfur Batteries. , 2022, , 158-170.		0
12082	Boosting the capacity of biomass-based supercapacitors using carbon materials of wood derivatives and redox molecules from plants. Journal of Materials Chemistry A, 2021, 9, 11839-11852.	5.2	72
12083	Revealing practical specific capacity and carbonyl utilization of multi-carbonyl compounds for organic cathode materials. Physical Chemistry Chemical Physics, 2021, 23, 13159-13169.	1.3	7
12084	In Situ Transmission Electron Microscopy for Studying Lithium-Ion Batteries. , 2021, , 545-569.		0

#	Article	IF	CITATIONS
12085	Well-dispersed tin nanoparticles encapsulated in amorphous carbon tubes as high-performance anode for lithium ion batteries. Nanotechnology, 2021, 32, 145402.	1.3	9
12086	Advanced electrode materials for nonaqueous calcium rechargeable batteries. Journal of Materials Chemistry A, 2021, 9, 11908-11930.	5.2	22
12087	Atomic and molecular layer deposition in pursuing better batteries. Journal of Materials Research, 2021, 36, 2-25.	1.2	22
12088	Advances in thermal conductivity for energy applications: a review. Progress in Energy, 2021, 3, 012002.	4.6	24
12089	Proton-conductive coordination polymer glass for solid-state anhydrous proton batteries. Chemical Science, 2021, 12, 5818-5824.	3.7	47
12090	A phase-convertible fast ionic conductor with a monolithic plastic crystalline host. Journal of Materials Chemistry A, 2021, 9, 10838-10845.	5.2	3
12091	Research Progress of Lithium Metal Anode Protection. Hans Journal of Nanotechnology, 2021, 11, 166-183.	0.1	0
12092	Optimization of prismatic type layered electrode materials for high performance sodium battery. International Journal of Energy Research, 2021, 45, 8497-8507.	2.2	0
12093	Understanding Structure–Property Relationships under Experimental Conditions for the Optimization of Lithiumâ€lon Capacitor Anodes based on Allâ€Carbonâ€Composite Materials. Energy Technology, 2021, 9, 2001054.	1.8	2
12094	An aqueous rechargeable lithium ion battery with long cycle life and overcharge self-protection. Materials Chemistry Frontiers, 2021, 5, 2749-2757.	3.2	9
12095	Nitrogen-doped microporous carbon with narrow pore size distribution as sulfur host to encapsulate small sulfur molecules for highly stable lithium-sulfur batteries. Journal of Solid State Electrochemistry, 2021, 25, 1293-1302.	1.2	11
12096	Effects of SiC and Resorcinol–Formaldehyde (RF) Carbon Coatings on Silicon-Flake-Based Anode of Lithium Ion Battery. Nanomaterials, 2021, 11, 302.	1.9	9
12097	K+-stabilized nanostructured amorphous manganese dioxide: excellent electrochemical properties as cathode material for sodium-ion batteries. Ionics, 2021, 27, 1559-1567.	1.2	7
12098	Imidazolium-Based Ionogels via Facile Photopolymerization as Polymer Electrolytes for Lithium–Ion Batteries. , 2021, , 203-218.		0
12099	Clarifying the lithium storage behavior of MoS ₂ with <i>in situ</i> electrochemical impedance spectroscopy. Journal of Materials Chemistry A, 2021, 9, 15734-15743.	5.2	18
12100	Enhanced electrostatic potential with high energy and power density of a symmetric and asymmetric solid-state supercapacitor of boron and nitrogen co-doped reduced graphene nanosheets for energy storage devices. New Journal of Chemistry, 2021, 45, 12408-12425.	1.4	11
12101	Single-side functionalized graphene as promising cathode catalysts in nonaqueous lithium–oxygen batteries. Nanoscale, 2021, 13, 12727-12737.	2.8	4
12102	<i>In situ</i> polymerization process: an essential design tool for lithium polymer batteries. Energy and Environmental Science, 2021, 14, 2708-2788.	15.6	140

#	Article	IF	CITATIONS
12103	Water based synthesis of highly conductive GaxLi7â ^{°,} 3xLa3Hf2O12 garnets with comparable critical current density to analogous GaxLi7â ^{°,} 3xLa3Zr2O12 systems. Dalton Transactions, 2021, 50, 2364-2374.	1.6	6
12104	Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method. Journal of Materials Chemistry A, 2021, 9, 3995-4006.	5.2	51
12105	Na0.44MnO2/Polyimide Aqueous Na-ion Batteries for Large Energy Storage Applications. Frontiers in Energy Research, 2021, 8, .	1.2	8
12106	Lithium and sodium intercalation in a 2D NbSe ₂ bilayer-stacked homostructure: comparative study of ionic adsorption and diffusion behavior. Physical Chemistry Chemical Physics, 2021, 23, 19811-19818.	1.3	8
12107	Shear-structured MoNb ₆ O ₁₈ as a new anode for lithium-ion batteries. Materials Advances, 2021, 2, 6272-6277.	2.6	6
12108	Hierarchical polyaromatic hydrocarbons (PAH) with superior sodium storage properties. Journal of Materials Chemistry A, 2021, 9, 16554-16564.	5.2	6
12109	Role of free volumes and segmental dynamics on ion conductivity of PEO/LiTFSI solid polymer electrolytes filled with SiO ₂ nanoparticles: a positron annihilation and broadband dielectric spectroscopy study. Physical Chemistry Chemical Physics, 2021, 23, 8585-8597.	1.3	19
12110	Reviewing Photovoltaics and Electric Vehicles: Synergy and End of Life Management. Springer Proceedings in Mathematics and Statistics, 2021, , 609-620.	0.1	0
12111	Cu3(PO4)2: Novel Anion Convertor for Aqueous Dual-Ion Battery. Nano-Micro Letters, 2021, 13, 41.	14.4	26
12112	Inorganic-Shell Reinforcement: TiO ₂ -Coated Polyimide Nanofibers Membrane as Advanced Separator for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160560.	1.3	10
12113	Performance optimization and fast rate capabilities of novel polymer cathode materials through balanced electronic and ionic transport. Journal of Materials Chemistry A, 2021, 9, 5657-5663.	5.2	19
12114	Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 21695-21702.	5.2	18
12115	Interior and Exterior Decoration of Transition Metal Oxide Through Cu0/Cu+ Co-Doping Strategy for High-Performance Supercapacitor. Nano-Micro Letters, 2021, 13, 61.	14.4	52
12116	Highâ€Efficacy and Polymeric Solidâ€Electrolyte Interphase for Closely Packed Li Electrodeposition. Advanced Science, 2021, 8, 2003240.	5.6	39
12117	Theoretical insights into the diffusion mechanism of alkali ions in Ruddlesden–Popper antiperovskites. New Journal of Chemistry, 2021, 45, 4219-4226.	1.4	8
12118	Succinic anhydride as a deposition-regulating additive for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2021, 9, 17317-17326.	5.2	25
12119	Background of energy storage. , 2021, , 1-26.		3
12120	Lattice-matching Ni-based scaffold with a spongy cover for uniform electric field against lithium dendrites. Chemical Communications, 2021, 57, 9442-9445.	2.2	5

ARTICLE IF CITATIONS # Freestanding Sodium Vanadate/Carbon Nanotube Composite Cathodes with Excellent Structural Stability and High Rate Capability for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 12121 4.0 25 2021, 13, 816-826. 12122 Interphases for Alkali Metal Anodes., 2022, , 137-145. Stoichiometric tuning of lattice flexibility and Na diffusion in NaAlSiO₄: quasielastic 12124 neutron scattering experiment and <i>ab initio</i> molecular dynamics simulations. Journal of 5.24 Materials Chemistry A, 2021, 9, 16129-16136. Sputtered chromium nitride/carbon nanotubes hybrid structure for electrochemical capacitors. 1.1 Applied Physics A: Materials Science and Processing, 2021, 127, 1. High Capacity and Energy Density Organic Lithiumâ€Ion Battery Based on Buckypaper with Stable 12126 3.6 10 Ï€ã̃€Radical. ĆhemSusČȟem, 2021, 14, 1377-1387. A Real-Time Scheduling Approach to Mitigation of Li-Ion Battery Aging in Low Earth Orbit Satellite Systems. Electronics (Switzerland), 2021, 10, 86. 1.8 An exceptionally large energy cathode with the Kâ€"SO₄â€"Cu conversion reaction for 12128 5.2 3 potassium rechargeable batteries. Journal of Materials Chemistry A, 2021, 9, 5475-5484. Perspective on Highâ€Concentration Electrolytes for Lithium Metal Batteries. Small Structures, 2021, 2, 12129 2000122. High-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Slurry-Coated Li6PS5Cl/S/C 12130 1.2 15 Composite Electrodes. Frontiers in Energy Research, 2021, 8, . Adsorption of propylene carbonate on the LiMn₂O₄ (100) surface investigated by DFT + U calculations*. Chinese Physics B, 2021, 30, 038202. Performance evaluation of carbon/PrBaCo2O5+Î′ composite electrodes for Li–O2 batteries. 12132 2 3.8 International Journal of Hydrogen Energy, 2021, 46, 8539-8548. Thermodynamic analysis and perspective of aqueous metal-sulfur batteries. Materials Today, 2021, 49, 8.3 184-200. Heteroatom-bridged pillar[4]quinone: evolutionary active cathode material for lithium-ion battery 12134 0.7 11 using density functional theory. Journal of Chemical Sciences, 2021, 133, 1. Solvothermal synthesis high lithium ionic conductivity of Gd-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Functional Materials Letters, 2021, 14, 2140002. Tuning Sodium Occupancy Sites in P2â€Layered Cathode Material for Enhancing Electrochemical 12136 10.2 46 Performance. Advanced Energy Materials, 2021, 11, 2003455. Multiscale Deficiency Integration by Na-Rich Engineering for High-Stability Li-Rich Layered Oxide 23 Cathodes. ACS Applied Materials & amp; Interfaces, 2021, 13, 8239-8248. CNTs/LiV3O8/Y2O3 Composites with Enhanced Electrochemical Performances as Cathode Materials for 12138 Rechargeable Solid-State Lithium Metal Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 4.0 1 8219-8228. Cowpea-like N-Doped Silicon Oxycarbide/Carbon Nanofibers as Anodes for High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 1677-1686.

		CITATION RE	PORT	
# 12140	ARTICLE Polymer-Derived Ceramic Nanoparticle/Edge-Functionalized Graphene Oxide Composites Lithium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 9794-9803.	; for	IF 4.0	Citations 9
12141	Surface and Interface Engineering of Nanoarrays toward Advanced Electrodes and Electr Energy Storage Devices. Advanced Materials, 2021, 33, e2004959.	ochemical	11.1	113
12142	Dendriteâ€Free Liâ€Metal Anode Enabled by Dendritic Structure. Advanced Functional № 2009712.	1aterials, 2021, 31,	7.8	43
12143	Solid Polymer Electrolytes with High Conductivity and Transference Number of Li Ions fo Rechargeable Batteries. Advanced Science, 2021, 8, 2003675.	r Liâ€Based	5.6	172
12144	Molybdenumâ€based materials for sodiumâ€ion batteries. InformaÄnÃ-Materiály, 2021	, 3, 339-352.	8.5	65
12145	Understanding the Effect of Interplanar Space and Preintercalated Cations of Vanadate Materials on Potassium-Ion Battery Performance. ACS Applied Materials & Amp; Interface 7377-7388.		4.0	17
12146	Graphene-Based Coronal Hybrids for Enhanced Energy Storage. Energy Material Advance	es, 2021, 2021, .	4.7	12
12147	The effect of grain boundary on Na ion transport in polycrystalline solid-state electrolyte Na ₃ PS ₄ . Materials Research Express, 2021, 8, 025508.	cubic	0.8	3
12148	Ultrathin Li–Si–O Coating Layer to Stabilize the Surface Structure and Prolong the C Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O _{2Materials at 4.5 V. ACS Applied Materials & Interfaces, 2021, 13, 10952-10963.}	Cycling Life of > Cathode	4.0	37
12149	What Is the Right Carbon for Practical Anode in Alkali Metal Ion Batteries?. Small Science 2000063.	e, 2021, 1,	5.8	25
12150	Binding Se into nitrogenâ€doped porous carbon nanosheets for highâ€performance pot InformaÄnÃ-Materiály, 2021, 3, 421-431.	assium storage.	8.5	48
12151	B2O3-Doped LATP Glass-Ceramics Studied by X-ray Diffractometry and MAS NMR Spectron Nanomaterials, 2021, 11, 390.	roscopy Methods.	1.9	16
12152	Biopolymer Nanofibers for Nanogenerator Development. Research, 2021, 2021, 184306	1.	2.8	22
12153	Bis-imino-acenaphthenequinone-Paraphenylene-Type Condensation Copolymer Binder fo Cyclable Lithium-Ion Rechargeable Batteries. ACS Applied Energy Materials, 2021, 4, 223		2.5	14
12154	Comparison of electrochemical response and electric field emission characteristics of pri La2NiO4 and La2NiO4/CNT composites: Origin of multi-functionality with theoretical pe density functional theory. Electrochimica Acta, 2021, 369, 137676.	stine netration by	2.6	15
12155	Theory of Transport in Highly Concentrated Electrolytes. Journal of the Electrochemical S 2021, 168, 026511.	Society,	1.3	21
12156	Investigation of Voltage Range and Selfâ€Discharge in Aqueous Zincâ€ion Hybrid Super ChemSusChem, 2021, 14, 1700-1709.	capacitors.	3.6	51
12157	Enhancing lithium ion diffusion kinetic in hierarchical lithium titanate@erbium oxide fror doping via facile one-step co-precipitation. Journal of Colloid and Interface Science, 202.		5.0	11

#	Article	IF	CITATIONS
12158	Magnesium Polysulfides: Synthesis, Disproportionation, and Impedance Response in Symmetrical Carbon Electrode Cells. ChemElectroChem, 2021, 8, 1062-1069.	1.7	7
12159	The electrochemical performance enhancement of carbon anode by hybrid from battery and capacitor through nitrogen doping. lonics, 2021, 27, 1393-1401.	1.2	2
12160	Transport of Sodium Ions in Solids: Progress in Firstâ€Principle Theoretical Formulation of Potential Solid Sodiumâ€Ion Electrolytes. Batteries and Supercaps, 2021, 4, 1096-1107.	2.4	11
12161	Formation mechanism of amorphous silicon nanoparticles with additional counter-flow quenching gas by induction thermal plasma. Chemical Engineering Science, 2021, 230, 116217.	1.9	16
12162	Preparation of gelatin-derived nitrogen-doped large pore volume porous carbons as sulfur hosts for lithium-sulfur batteries. New Carbon Materials, 2021, 36, 198-208.	2.9	8
12163	Internet of things energy system: Smart applications, technology advancement, and open issues. International Journal of Energy Research, 2021, 45, 8389-8419.	2.2	34
12164	Interface Aspects in Allâ€Solidâ€State Liâ€Based Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2003939.	10.2	66
12165	Ductile Ag ₂₀ S ₇ Te ₃ with Excellent Shapeâ€Conformability and High Thermoelectric Performance. Advanced Materials, 2021, 33, e2007681.	11.1	65
12166	Operando Magnetometry Probing the Charge Storage Mechanism of CoO Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2006629.	11.1	80
12167	Efficient Reversible Conversion between MoS ₂ and Mo/Na ₂ S Enabled by Grapheneâ€Supported Single Atom Catalysts. Advanced Materials, 2021, 33, e2007090.	11.1	108
12168	Effect of Additives on the Electrical, Structural and Mechanical Property Modification of PEO-NH4HF2 based Polymer Electrolytes. Recent Innovations in Chemical Engineering, 2021, 14, 4-14.	0.2	0
12169	Realizing Ultralong-Term Cyclicability of 5 Volt-Cathode-Material Graphite Flakes by Uniformly Comodified TiO2/Carbon Layer Inducing Stable Cathode–Electrolyte Interphase. ACS Applied Materials & Interfaces, 2021, 13, 10101-10109.	4.0	6
12170	Intrinsically conducting polymers and their combinations with redox-active molecules for rechargeable battery electrodes: an update. Chemical Papers, 2021, 75, 4981-5007.	1.0	20
12171	High Li ⁺ and Na ⁺ Conductivity in New Hybrid Solid Electrolytes based on the Porous MILâ€121 Metal Organic Framework. Advanced Energy Materials, 2021, 11, 2003542.	10.2	24
12172	Au/TiN nanostructure materials for energy storage applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 5810-5820.	1.1	0
12173	Efficient Sulfur Host Based on Yolkâ€5hell Iron Oxide/Sulfideâ€Carbon Nanospindles for Lithiumâ€5ulfur Batteries. ChemSusChem, 2021, 14, 1404-1413.	3.6	27
12174	Direct Observation and Quantitative Analysis of Lithium Dendrite Growth by In Situ Transmission Electron Microscopy. Journal of the Electrochemical Society, 2021, 168, 020535.	1.3	11
12175	Unraveling the Li Penetration Mechanism in Polycrystalline Solid Electrolytes. Advanced Energy Materials, 2021, 11, 2003417.	10.2	46

#	Article	IF	CITATIONS
12176	Robust Surface Reconstruction Induced by Subsurface Ni/Li Antisites in Niâ€Rich Cathodes. Advanced Functional Materials, 2021, 31, 2010291.	7.8	36
12177	Benzene-1,2-dithiolato complexes as cathode materials for rechargeable lithium batteries. Electrochimica Acta, 2021, 370, 137757.	2.6	9
12178	Swelling-Controlled Double-Layered SiO _{<i>x</i>} /Mg ₂ SiO ₄ /SiO _{<i>x</i>} Composite with Enhanced Initial Coulombic Efficiency for Lithium-Ion Battery. ACS Applied Materials & amp; Interfaces, 2021, 13, 7161-7170.	4.0	36
12179	Revealing the Role of W-Doping in Enhancing the Electrochemical Performance of the LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ Cathode at 4.5 V. ACS Applied Materials & Interfaces, 2021, 13, 7308-7316.	4.0	40
12180	Formation of Excellent Cathode/Electrolyte Interface with UV-Cured Polymer Electrolyte through In Situ Strategy. Journal of the Electrochemical Society, 2021, 168, 020511.	1.3	10
12181	A 1D–3D interconnected Î-MnO2 nanowires network as high-performance and high energy efficiency cathode material for aqueous zinc-ion batteries. Electrochimica Acta, 2021, 370, 137740.	2.6	43
12182	B ₄ Cluster-Based 3D Porous Topological Metal as an Anode Material for Both Li- and Na-Ion Batteries with a Superhigh Capacity. Journal of Physical Chemistry Letters, 2021, 12, 1548-1553.	2.1	16
12183	Alumina Nanofilms As Active Barriers for Polysulfides in High-Performance All-Solid-State Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 2463-2470.	2.5	14
12184	Ultrathin and Nonâ€Flammable Dualâ€Salt Polymer Electrolyte for Highâ€Energyâ€Density Lithiumâ€Metal Battery. Advanced Functional Materials, 2021, 31, 2010261.	7.8	78
12185	Air-stable dopamine-treated garnet ceramic particles for high-performance composite electrolytes. Journal of Power Sources, 2021, 486, 229363.	4.0	46
12186	Roomâ€Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering. Advanced Energy Materials, 2021, 11, 2003493.	10.2	114
12187	Na/Al Codoped Layered Cathode with Defects as Bifunctional Electrocatalyst for Highâ€Performance Liâ€lon Battery and Oxygen Evolution Reaction. Small, 2021, 17, e2005605.	5.2	31
12188	Benzoic Anhydride as a Bifunctional Electrolyte Additive for Hydrogen Fluoride Capture and Robust Film Construction over Highâ€Voltage Liâ€Ion Batteries. ChemSusChem, 2021, 14, 2067-2075.	3.6	17
12189	Exploration of materials electrochemistry in rechargeable batteries using advanced in situ/operando x-ray absorption spectroscopy. Electronic Structure, 2021, 3, 013001.	1.0	4
12190	Synchronous Promotion in Sodiophilicity and Conductivity of Flexible Host via Vertical Graphene Cultivator for Longevous Sodium Metal Batteries. Advanced Functional Materials, 2021, 31, 2101233.	7.8	32
12191	Abuseâ€Tolerant Electrolytes for Lithiumâ€Ion Batteries. Advanced Science, 2021, 8, e2003694.	5.6	16
12192	Theoretical investigation of the intercalation mechanism of VS2/MXene heterostructures as anode materials for metal-ion batteries. Applied Surface Science, 2021, 543, 148772.	3.1	43
12193	Fabrication of a Sandwiched Core Carbon Sphere@Na ₃ V ₂ (PO ₄) ₂ O ₂ F@N-Doped Carbon Cathode for Superior Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 3952-3961.	2.5	18

#	Article	IF	CITATIONS
12194	Investigations of Thermal Stability and Solid Electrolyte Interphase on Na ₂ Ti ₃ O ₇ /C as a Non-carbonaceous Anode Material for Sodium Storage Using Non-flammable Ether-based Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 11732-11740.	4.0	15
12195	Modeling of Chemo-Mechanical Multi-Particle Interactions in Composite Electrodes for Liquid and Solid-State Li-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 030515.	1.3	25
12196	Nitrogenâ€Ðoped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 8515-8520.	7.2	115
12197	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	1.8	66
12198	Zinc manganate/manganic oxide bi-component nanorod as excellent cathode for zinc-ion battery. Scripta Materialia, 2021, 194, 113707.	2.6	15
12199	Physicochemical Mechanisms of the Double-Layer Capacitance Dispersion and Dynamics: An Impedance Analysis. Journal of Physical Chemistry C, 2021, 125, 5870-5879.	1.5	8
12200	Manipulating Oxidation of Silicon with Fresh Surface Enabling Stable Battery Anode. Nano Letters, 2021, 21, 3127-3133.	4.5	33
12201	Sputtered titanium nitride films with finely tailored surface activity and porosity for high performance on-chip micro-supercapacitors. Journal of Power Sources, 2021, 489, 229406.	4.0	18
12202	High Performance Iron Electrodes with Metal Sulfide Additives. Journal of the Electrochemical Society, 2021, 168, 030518.	1.3	8
12203	Fundamental theoretical design of Naâ€ion and Kâ€ion based double antiperovskite <scp> X ₆ SOA ₂ </scp> (XÂ=ÂNa, K; AÂ=ÂCl, Br and I) halides: Potential candidate for energy storage and harvester. International Journal of Energy Research, 2021, 45, 13442-13460.	2.2	26
12204	High performances of <scp>allâ€solidâ€state</scp> battery with designed composite cathode: An effect of conductive binders with <scp>singleâ€walled</scp> carbon nanotube additives. International Journal of Energy Research, 2021, 45, 11041-11052.	2.2	2
12205	Two-Dimensional CuGaSe ₂ @ZnSe-NC Heterostructures for Enhanced Sodium Ion Storage. ACS Applied Energy Materials, 2021, 4, 2761-2768.	2.5	13
12206	Impact of Negative Charge Delocalization on the Properties of Solid Polymer Electrolytes. ChemElectroChem, 2021, 8, 1322-1328.	1.7	13
12207	Suppression of volume expansion by graphene encapsulated Co3O4 quantum dots for boosting lithium storage. Journal of Industrial and Engineering Chemistry, 2021, 95, 333-339.	2.9	10
12208	Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Research, 2021, 14, 3690-3723.	5.8	30
12209	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50.	7.8	208
12210	Enhanced single-ion conduction and free-standing properties of solid polymer electrolyte by incorporating a polyelectrolyte. Materials Research Express, 2021, 8, 035308.	0.8	4
12211	Sufficient Oxygen Redox Activation against Voltage Decay in Li-Rich Layered Oxide Cathode Materials. , 2021, 3, 433-441.		11

#	Article	IF	CITATIONS
12212	A Layerâ€byâ€Layer Assembly Route to Electroplated Fibrilâ€Based 3D Porous Current Collectors for Energy Storage Devices. Small, 2021, 17, e2007579.	5.2	13
12213	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	1.6	2
12214	Sulfur Transfer Melt Infiltration for Highâ€Power Carbon Nanotube Sheets in Lithiumâ€Sulfur Pouch Cells. Batteries and Supercaps, 2021, 4, 989-1002.	2.4	14
12215	Hollow SiO _{<i>x</i>} /C Microspheres with Semigraphitic Carbon Coating as the "Lithium Host―for Dendrite-Free Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 3905-3912.	2.5	20
12216	A carboxymethyl vegetable gum as a robust water soluble binder for silicon anodes in lithium-ion batteries. Journal of Power Sources, 2021, 489, 229530.	4.0	31
12217	Polymer Molecular Engineering Enables Rapid Electron/Ion Transport in Ultraâ€Thick Electrode for Highâ€Energyâ€Density Flexible Lithiumâ€ion Battery. Advanced Functional Materials, 2021, 31, .	7.8	27
12218	NiCo2S4 nanoparticles embedded in nitrogen-doped carbon nanotubes networks as effective sulfur carriers for advanced Lithium–Sulfur batteries. Microporous and Mesoporous Materials, 2021, 316, 110924.	2.2	13
12219	Hexagonal FeNi2Se4@C Nanoflakes as High Performance Anode Materials for Sodium-ion Batteries. Chemical Research in Chinese Universities, 2021, 37, 318-322.	1.3	2
12220	The rising zinc anodes for high-energy aqueous batteries. EnergyChem, 2021, 3, 100052.	10.1	74
12221	The metamorphosis of rechargeable magnesium batteries. Joule, 2021, 5, 581-617.	11.7	129
12222	Hybrid Electrolytes Based on Optimized Ionic Liquid Quantity Tethered on ZrO ₂ Nanoparticles for Solid-State Lithium-Ion Conduction. ACS Applied Materials & Interfaces, 2021, 13, 15159-15167.	4.0	6
12223	Recent progress and challenges of coâ€based compound for aqueous Zn battery. Nano Select, 2021, 2, 1642-1660.	1.9	9
12224	Controlled pyrolysis of ionically self-assembled metalloporphyrins on carbon as cathodic		4
	electrocatalysts of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2021, 46, 11041-11050.	3.8	
12225		3.8 1.9	18
12225 12226	Energy, 2021, 46, 11041-11050. HKUST-1@IL-Li Solid-state Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for		18 6
	Energy, 2021, 46, 11041-11050. HKUST-1@IL-Li Solid-state Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for Lithium Metal Batteries at High Temperature. Nanomaterials, 2021, 11, 736. Robust and Highly Ion-Conducting Gel Polymer Electrolytes with Semi-Interpenetrating Polymer	1.9	
12226	 Energy, 2021, 46, 11041-11050. HKUST-1@IL-Li Solid-state Electrolyte with 3D Ionic Channels and Enhanced Fast Li+ Transport for Lithium Metal Batteries at High Temperature. Nanomaterials, 2021, 11, 736. Robust and Highly Ion-Conducting Gel Polymer Electrolytes with Semi-Interpenetrating Polymer Network Structure. Macromolecular Research, 2021, 29, 211-216. An effective strategy for shielding polysulfides and regulating lithium deposition in lithium–sulfur 	1.9 1.0	6

ARTICLE IF CITATIONS Evolution of Internal Stress in Heterogeneous Electrode Composite during the Drying Process. 12230 4 1.6 Energies, 2021, 14, 1683. Improved Electromechanical Stability of the Li Metal/Garnet Ceramic Interface by a Solvent-Free 2.5 Deposited OIPC Soft Layer. ACS Applied Energy Materials, 2021, 4, 2388-2397. Polymerized Ionic Networks Solid Electrolyte with High Ionic Conductivity for Lithium Batteries. 12232 9 1.8 Industrial & amp; Engineering Chemistry Research, 2021, 60, 4630-4638. Covalent Coupling-Stabilized Transition-Metal Sulfide/Carbon Nanotube Composites for Lithium/Sodium-Ion Batteries. ACS Nano, 2021, 15, 6735-6746. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. 12234 4.8 79 Chinese Chemical Letters, 2021, 32, 2659-2678. Liâ€Rich Li₂[Ni_{0.8}Co_{0.1}Mn_{0.1}]O₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296. 7.2 Nanostructured strategies towards boosting organic lithium-ion batteries. Journal of Energy 12236 7.1 56 Chemistry, 2021, 54, 179-193. Synthesis and electrochemical performance of flexible LiFePO4/TinO2n â^{-,} 1/reduced graphene oxide cathode material for lithium-ion batteries. Ionics, 2021, 27, 1881-1886. Electrolyte and anode $\hat{a} \in e$ lectrolyte interphase in solid $\hat{a} \in s$ tate lithium metal polymer batteries: A 12238 7.8 74 perspective. SusMat, 2021, 1, 24-37. Expediting the Conversion of Li₂S₂ to Li₂S Enables 7.3 101 High-Performance Liâ€"S Batteries. ACS Nano, 2021, 15, 7318-7327. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. 12240 111 5.8Nature Communications, 2021, 12, 1452. Engineered Carbon Electrodes for High Performance Capacitive and Hybrid Energy Storage. Journal of 12241 Energy Storage, 2021, 35, 102340. Spontaneous Growth of Alkali Metal Ion-Preintercalated Vanadium Pentoxide for High-Performance 12242 3.2 19 Aqueous Zinc-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5095-5104. Synthesis, Structure, and Electrochemical Properties of Extended Tetrathiafulvalene Dimers Linked by 12243 Flexible Butylene Chain. Bulletin of the Chemical Society of Japan, 2021, 94, 1059-1065. Self-discharge study of lignin/graphite hybrid material electrodes. Electrochimica Acta, 2021, 371, 12244 10 2.6 137836. Superior Electrochemical Properties of Ni-Rich LiNi_{0.85}Co_{0.05}Mn_{0.10}O₂ Cathode with the Stable 12245 1.3 Polypyrrole Coating and Boron Doping for Li-Ion Batteries. Journal of the Electrochemical Society, 168.03052 Morphology formation mechanism and electrochemical performance of poly(o-phenylenediamine) 12246 2.1 7 based electrode materials. Synthetic Metals, 2021, 273, 116688. Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. 12247 1.6 Angewandte Chemie, 2021, 133, 8596-8601.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
12248	2021 roadmap on lithium sulfur batteries. JPhys Energy, 2021, 3, 031501.		2.3	74
12249	High-capacity and small-polarization aluminum organic batteries based on sustainable qu cathodes with Al3+ insertion. Cell Reports Physical Science, 2021, 2, 100354.	iinone-based	2.8	32
12250	A Comprehensive Review on Metal-Oxide Nanocomposites for High-Performance Lithium Anodes. Energy & Fuels, 2021, 35, 6420-6442.	-lon Battery	2.5	55
12251	Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review. Energies	, 2021, 14, 1406.	1.6	55
12252	Ethylene Carbonateâ€Free Propylene Carbonateâ€Based Electrolytes with Excellent Elect Compatibility for Liâ€Ion Batteries through Engineering Electrolyte Solvation Structure. / Energy Materials, 2021, 11, 2003905.		10.2	68
12253	Preparation and Performance of Rod-Like Lithium-Rich Spinel Li1+x Mn2â^x O 4 by the H Synthesis-Solid Phase Calcination Method. Science of Advanced Materials, 2021, 13, 351	ydrothermal I-355.	0.1	2
12254	Bio Based Batteries. Advanced Energy Materials, 2021, 11, 2003713.		10.2	19
12256	Electrochemical Investigation of Phenethylammonium Bismuth Iodide as Anode in Aquec Electrolytes. Nanomaterials, 2021, 11, 656.	us Zn2+	1.9	14
12257	The synthesis of crystalline Ni microwire-nanosheet monolith for recoverable host of den Li anode. Journal of Power Sources, 2021, 487, 229418.	drite-free	4.0	8
12258	Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cyc and smart switching capability. Nano Research, 2021, 14, 4154-4162.	cle stability	5.8	13
12259	A High-Voltage Hybrid Solid Electrolyte Based on Polycaprolactone for High-Performance all-Solid-State Flexible Lithium Batteries. ACS Applied Energy Materials, 2021, 4, 2318-23	26.	2.5	24
12260	A Systematic Electrochemical Investigation of a Dimethylamine Cosolvent-Assisted Nona Zinc(II) Bis(trifluoromethylsulfonyl)imide Electrolyte. Journal of the Electrochemical Socie 168, 030516.		1.3	5
12261	Hierarchical porous carbon materials obtained by Cu–Al double hydroxide templates w gravimetric and volumetric capacitance. Nanotechnology, 2021, 32, 235303.	ith high	1.3	6
12262	How Machine Learning Will Revolutionize Electrochemical Sciences. ACS Energy Letters, 1422-1431.	2021, 6,	8.8	88
12263	The exploration of a CuNb ₃ O ₈ Li ⁺ -storage anode Materials Technology, 2022, 37, 814-821.	compound.	1.5	4
12264	Anode Properties of CrxV1–xSi2/Si Composite Electrodes for Lithium-Ion Batteries. AC 8862-8869.	S Omega, 2021, 6,	1.6	4
12265	Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries. AC Materials & Interfaces, 2021, 13, 12099-12105.	CS Applied	4.0	38
12266	Recent Advances in Siliconâ€Based Electrodes: From Fundamental Research toward Prac Applications. Advanced Materials, 2021, 33, e2004577.	tical	11.1	168

#	Article	IF	CITATIONS
12267	A Robust Ternary Heterostructured Electrocatalyst with Conformal Graphene Chainmail for Expediting Biâ€Directional Sulfur Redox in Li–S Batteries. Advanced Functional Materials, 2021, 31, 2100586.	7.8	71
12268	Metal-Supported Perovskite as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution: Substrate Effect. Journal of the Electrochemical Society, 2021, 168, 034504.	1.3	10
12269	Tackling the Interfacial Issues of Spinel LiNi _{0.5} Mn _{1.5} O ₄ by Room-Temperature Spontaneous Dediazonation Reaction. ACS Applied Materials & Interfaces, 2021, 13, 13264-13272.	4.0	20
12270	Sulfur- and nitrogen-doped rice husk-derived C/SiOx composites as high-performance lithium-ion battery anodes. Solid State Ionics, 2021, 361, 115548.	1.3	23
12271	Carbon-Reinforced Nb ₂ CT _x MXene/MoS ₂ Nanosheets as a Superior Rate and High-Capacity Anode for Sodium-Ion Batteries. ACS Nano, 2021, 15, 7439-7450.	7.3	203
12273	Stable Lithium-Carbon Composite Enabled by Dual-Salt Additives. Nano-Micro Letters, 2021, 13, 111.	14.4	11
12274	In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Materials, 2021, 36, 171-178.	9.5	62
12275	Cobalt Oxide/Graphene Nanosheets/Hexagonal Boron Nitride (Co ₃ O ₄ /CoO/GNS/ <i>h</i> BN) Catalyst for High Sulfur Utilization in Li–S Batteries at Elevated Temperatures. Energy & Fuels, 2021, 35, 8365-8377.	2.5	13
12276	Pure carbon-based electrodes for metal-ion batteries. Carbon Trends, 2021, 3, 100035.	1.4	10
12277	Benzophenone as indicator detecting lithium metal inside solid state electrolyte. Journal of Power Sources, 2021, 492, 229661.	4.0	6
12278	Restacked nanohybrid graphene layers with expanded interlayer distance enabled by inorganic spacer for highly efficient, flexible Na-ion battery anodes. Journal of Electroanalytical Chemistry, 2021, 886, 115137.	1.9	4
12279	Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Research, 2021, 14, 3576-3584.	5.8	95
12280	Optimizing engineering of rechargeable aqueous zinc ion batteries to enhance the zinc ions storage properties of cathode material. Journal of Power Sources, 2021, 490, 229528.	4.0	26
12281	Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors <i>via</i> the Efficient Coupling between TiNb ₂ O ₇ /Holey-rGO Nanoarchitectures and Ionic Liquid-Based Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 21349-21361.	4.0	18
12282	In Situ Reinforcing: ZrO ₂ -Armored Hybrid Polyimide Separators for Advanced and Safe Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 6250-6257.	3.2	21
12283	Enhancing the Capacity and Stability of a Tungsten Disulfide Anode in a Lithium-Ion Battery Using Excess Sulfur. ACS Applied Materials & amp; Interfaces, 2021, 13, 20213-20221.	4.0	8
12284	An overlooked issue for high-voltage Li-ion batteries: Suppressing the intercalation of anions into conductive carbon. Joule, 2021, 5, 998-1009.	11.7	44
12285	Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Research, 2021, 14, 4370-4385.	5.8	25

#	Article	IF	CITATIONS
12286	Improved lithium storage in Fe2O3 nano-particles over nano-rods morphology. Solid State Ionics, 2021, 362, 115586.	1.3	4
12287	Atomically Thin Nanosheets Confined in 2D Heterostructures: Metalâ€lon Batteries Prospective. Advanced Energy Materials, 2021, 11, 2100451.	10.2	35
12288	High storage capacity and small volume change of potassium-intercalation into novel vanadium oxychalcogenide monolayers V2S2O, V2Se2O and V2Te2O: An ab initio DFT investigation. Applied Surface Science, 2021, 546, 149062.	3.1	63
12289	Solution-Grown Phosphorus-Hyperdoped Silicon Nanowires/Carbon Nanotube Bilayer Fabric as a High-Performance Lithium-Ion Battery Anode. ACS Applied Energy Materials, 2021, 4, 3160-3168.	2.5	17
12290	Nitrogen-Doped Graphene Quantum Dots: Sulfiphilic Additives for the High-Performance Li–S Cells. ACS Applied Energy Materials, 2021, 4, 3518-3525.	2.5	21
12291	Controlling potential difference between electrodes based on self-consistent-charge density functional tight binding. Journal of Chemical Physics, 2021, 154, 144107.	1.2	10
12292	Recent Progress in Layered Manganese and Vanadium Oxide Cathodes for Znâ€lon Batteries. Energy Technology, 2021, 9, 2100011.	1.8	22
12293	Synthesis and Characterization of LiFe _{1-x} Gd _x PO ₄ /C (x = 0.01; 0.05; 0.07) for a Lithium Battery Cathode. Materials Science Forum, 0, 1028, 111-116.	0.3	0
12294	Polyether-Based Supramolecular Electrolytes With Two-Dimensional Boroxine Skeleton. Frontiers in Energy Research, 2021, 9, .	1.2	3
12295	Design of Highly Stable and Efficient Bifunctional <i>MX</i> ene-Based Electrocatalysts for Oxygen Reduction and Evolution Reactions. Physical Review Applied, 2021, 15, .	1.5	11
12296	Comparing the effects of polymer binders on Li+ transport near the liquid electrolyte/LiFePO4 interfaces: A molecular dynamics simulation study. Electrochimica Acta, 2021, 375, 137915.	2.6	11
12297	Rocking-Chair Proton Batteries with Conducting Redox Polymer Active Materials and Protic Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 19099-19108.	4.0	27
12298	Architecting Amorphous Vanadium Oxide/MXene Nanohybrid via Tunable Anodic Oxidation for Highâ€Performance Sodiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2100757.	10.2	99
12299	One-step synthesis of Co9S8/NiS composite with enhanced charge storage performance for supercapacitors application. Ionics, 2021, 27, 3143-3152.	1.2	4
12300	Porosity Engineering of MOFâ€Based Materials for Electrochemical Energy Storage. Advanced Energy Materials, 2021, 11, 2100154.	10.2	75
12301	Progress, Challenges, and Opportunities in the Synthesis, Characterization, and Application of Metal-Boride-Derived Two-Dimensional Nanostructures. , 2021, 3, 535-556.		49
12302	Impact of Crystal Density on the Electrochemical Behavior of Lithium-Ion Anode Materials: Exemplary Investigation of (Fe-Doped) GeO ₂ . Journal of Physical Chemistry C, 2021, 125, 8947-8958.	1.5	5
12303	Salt Additives for Improving Cyclability of Polymer-Based All-Solid-State Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 4459-4464.	2.5	18

ARTICLE IF CITATIONS Conjugated Microporous Polymers with Bipolar and Double Redoxâ€Active Centers for 12304 10.2 41 Highâ€Performance Dualâ€Ión, Organic Symmetric Battery. Advanced Energy Materials, 2021, 11, 2100381. Ultrafast Zinc–Ion–Conductor Interface toward Highâ€Rate and Stable Zinc Metal Batteries. Advanced 10.2 Energy Materials, 2021, 11, 2100186. Polymorph Evolution Mechanisms and Regulation Strategies of Lithium Metal Anode under 12306 23.0 165 Multiphysical Fields. Chemical Reviews, 2021, 121, 5986-6056. Sn²⁺-Regulated Synthesis of a Bone-like Fe₃O₄@N-Doped Carbon Composite as the Anode for High-Performance Lithium Storage. ACS Applied Energy Materials, 2021, 4, 3785-3793. A Ge/Carbon Atomicâ€scale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High 12308 7.2 41 Cycling Stability. Angewandte Chemie - International Edition, 2021, 60, 12539-12546. Uncertainty Quantification Analysis on Mechanical Properties of the Structured Silicon Anode via Surrogate Models. Journal of the Electrochemical Society, 2021, 168, 040508. 12309 1.3 One-pot fabrication of N, S co-doped carbon with 3D hierarchically porous frameworks and high 12311 1.9 15 electron/ion transfer rate for lithium-ion batteries. Chemical Engineering Science, 2021, 234, 116453. Experimental Thermal Hazard Investigation of Pressure and EC/PC/EMC Mass Ratio on Electrolyte. 1.6 47 Energies, 2021, 14, 2511. Temperature-dependent electronic structure of bixbyite α-Mn₂O₃ and the 12313 importance of a subtle structural change on oxygen electrocatalysis. Science and Technology of 2.8 5 Advanced Materials, 2021, 22, 141-149. Ultra-fast and efficient calcium co-intercalation host enabled by hierarchically 3D porous carbon nanotemplates. Journal of Industrial and Engineering Chemistry, 2021, 96, 397-403. Three-dimensional nanoporous tungsten supported tellurium cathode for Li-Te batteries. Journal of 12315 2.8 1 Alloys and Compounds, 2021, 861, 158459. Li2(BH4)(NH2) Nanoconfined in SBA-15 as Solid-State Electrolyte for Lithium Batteries. Nanomaterials, 1.9 2021, 11, 946. Fe2O3-encapsulated SiC nanowires with superior electrochemical properties as anode materials for 12317 1.2 5 the lithium-ion batteries. Ionics, 2021, 27, 2431-2444. N-Doped Carbon-Wrapped Cobalt–Manganese Oxide Nanosheets Loaded into a Three-Dimensional 12318 Graphene Nanonetwork as a Free-Standing Anode for Lithium-Ion Storage. ACS Applied Nano Materials, 2.4 2021, 4, 3619-3630. Composite Electrolytes Based on Poly(Ethylene Oxide) and Lithium Borohydrides for All-Solid-State 12319 3.2 33 Lithiumâ€"Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5396-5404. Impact of mechanical stiffening and softening on the spatial distribution of lithium ions in spherical 12320 electrode particle under galvanostatic charging. International Journal of Energy Research, 2021, 45, 2.2 15569-15576. Structural Design Optimization of Micro-Thermoelectric Generator for Wearable Biomedical Devices. 12321 1.6 21 Energies, 2021, 14, 2339. Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano, 2021, 15, 6061-6104.

	Ст	CITATION REPORT		
# 12323	ARTICLE MnO/C-graphene composite aerogels with uniform nanoparticles anchored on GNS as high-capacity and long-life anode materials promoted by pseudocapacitance. Applied Surface Science, 2021, 545,		IF 3.1	CITATIONS
12324	Layered Double Hydroxide Quantum Dots for Use in a Bifunctional Separator of Lithium–Sulfur Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 17978-17987.		4.0	28
12325	Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & Fuels, 2021, 35, 7624-2	7636.	2.5	28
12326	Impact of Polypyrrole Functionalization on the Anodic Performance of Boron Nitride Nanosheets: Insights From First-Principles Calculations. Frontiers in Chemistry, 2021, 9, 670833.		1.8	6
12327	The Quest for Functional Oxide Cathodes for Magnesium Batteries: A Critical Perspective. ACS Energy Letters, 2021, 6, 1892-1900.		8.8	42
12328	An In Situ Artificial Cathode Electrolyte Interphase Strategy for Suppressing Cathode Dissolution in Aqueous Zinc Ion Batteries. Small Methods, 2021, 5, e2100094.		4.6	43
12329	A compact Bi2WO6 microflowers anode for potassium-ion storage: Taming a sequential phase evolution toward stable electrochemical cycling. Nano Energy, 2021, 82, 105784.		8.2	49
12330	RuO2 nanoparticles supported on Ni and N co-doped carbon nanotubes as an efficient bifunctional electrocatalyst of lithium-oxygen battery. Science China Materials, 2021, 64, 2397-2408.		3.5	8
12331	Flexible Quasi-Solid-State Composite Electrolyte of Poly (Propylene Glycol)-co-Pentaerythritol Triacry-Late/Li1.5Al0.5Ge1.5(PO4)3 for High-Performance Lithium-Sulfur Battery. Materials, 2021, 14, 7	1979.	1.3	7
12332	Revealing the structural degradation mechanism of the Ni-rich cathode surface: How thick is the surface?. Journal of Power Sources, 2021, 490, 229542.		4.0	17
12333	Cu–Pb Nanocomposite Cathode Material toward Room-Temperature Cycling for All-Solid-State Fluoride-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 3352-3357.		2.5	18
12334	Bimetallic Antimony–Vanadium Oxide Nanoparticles Embedded in Graphene for Stable Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 21127-21137.		4.0	14
12335	The novel N-rich hard carbon nanofiber as high-performance electrode materials for sodium-ion batteries. Ceramics International, 2021, 47, 9118-9124.		2.3	7
12336	Poor Stability of Li ₂ CO ₃ in the Solid Electrolyte Interphase of a Lithiumâ€Me Anode Revealed by Cryoâ€Electron Microscopy. Advanced Materials, 2021, 33, e2100404.	etal	11.1	147
12337	A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature, 2021, 592, 551-557.		13.7	306
12338	MXeneâ€Derived Ti <i>_n</i> O ₂ <i>_{nâ^'}</i> ₁ Quant Distributed on Porous Carbon Nanosheets for Stable and Longâ€Life Li–S Batteries: Enhanced Polysulfide Mediation via Defect Engineering. Advanced Materials, 2021, 33, e2008447.	tum Dots	11.1	115
12339	Construction of two-dimensional bimetal (Fe-Ti) oxide/carbon/MXene architecture from titanium carbide MXene for ultrahigh-rate lithium-ion storage. Journal of Colloid and Interface Science, 2021, 588, 147-156.		5.0	22
12340	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Meta Anodes. Angewandte Chemie - International Edition, 2021, 60, 10871-10879.	I	7.2	89

#	Article	IF	CITATIONS
12341	Electrochemical and thermal properties of polymer-layered silicate nanocomposites for energy storage applications. Polymers and Polymer Composites, 2021, 29, S547-S555.	1.0	6
12342	Temperature-dependent Degradation of the Copper Current Collectors in Lithium Ion Batteries Electrolyte. International Journal of Electrochemical Science, 0, , ArticleID:210417.	0.5	0
12343	Sn Alloy and Graphite Addition to Enhance Initial Coulombic Efficiency and Cycling Stability of SiO Anodes for Liâ€ion Batteries. Energy and Environmental Materials, 2022, 5, 353-359.	7.3	15
12344	Controllable synthesis of silicon/carbon hollow microspheres using renewable sources for high energy lithium-ion battery. Journal of Solid State Chemistry, 2021, 296, 121968.	1.4	12
12345	Effects of oxidized Ketjen Black as conductive additives on electrochemical performance of the LiMn2O4@Al2O3 cathode in lithium-ion batteries. Journal of Alloys and Compounds, 2021, 860, 158482.	2.8	11
12346	Redox oscillations in 18650-type lithium-ion cell revealed by in operando Compton scattering imaging. Applied Physics Letters, 2021, 118, 161902.	1.5	5
12347	Ionâ€Exchange: A Promising Strategy to Design Liâ€Rich and Liâ€Excess Layered Cathode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2022, 12, 2003972.	10.2	49
12348	Phase Engineering of CoMoO 4 Anode Materials toward Improved Cycle Life for Li + Storage â€. Chinese Journal of Chemistry, 2021, 39, 1121-1128.	2.6	6
12349	An ionic liquid-assisted route towards SnS2 nanoparticles anchored on reduced graphene oxide for lithium-ion battery anode. Journal of Solid State Chemistry, 2021, 296, 122022.	1.4	10
12350	An All-Solid-State Battery with a Tailored Electrode–Electrolyte Interface Using Surface Chemistry and Interlayer-Based Approaches. Chemistry of Materials, 2021, 33, 3401-3412.	3.2	31
12351	Synthesis of Li1.5Ni0.25Mn0.75O2.5 cathode material via carbonate co-precipitation method and its electrochemical properties. Inorganic Chemistry Communication, 2021, 126, 108434.	1.8	16
12352	Rational Electrolyte Design to Form Inorganic–Polymeric Interphase on Silicon-Based Anodes. ACS Energy Letters, 2021, 6, 1811-1820.	8.8	39
12353	Constructing Phase-Transitional NiS _{<i>x</i>} @Nitrogen-Doped Carbon Cathode Material with High Rate Capability and Cycling Stability for Alkaline Zinc-Based Batteries. ACS Applied Materials & Interfaces, 2021, 13, 19008-19015.	4.0	4
12354	Porous sulfurized poly(acrylonitrile) nanofiber as a long-life and high-capacity cathode for lithium–sulfur batteries. Journal of Alloys and Compounds, 2021, 860, 158445.	2.8	17
12355	Recent progress on strategies to improve the high-voltage stability of layered-oxide cathode materials for sodium-ion batteries. JPhys Materials, 2021, 4, 032004.	1.8	19
12356	Ultrathin Layered Double Hydroxide Nanosheets Enabling Composite Polymer Electrolyte for Allâ€Solidâ€State Lithium Batteries at Room Temperature. Advanced Functional Materials, 2021, 31, 2101168.	7.8	75
12357	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	11.8	117
12358	Tailoring FeP with a Hollow Urchin Architecture for High-Performance Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5315-5321.	3.2	22

#	Article	IF	CITATIONS
т 12359	Antimony doped SnO ₂ nanowire@C core–shell structure as a high-performance anode	1.3	12
12007	material for lithium-ion battery. Nanotechnology, 2021, 32, 285403.	1.0	12
12360	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium–Metal Anodes. Angewandte Chemie, 2021, 133, 10966-10974.	1.6	11
12361	Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives*. Chinese Physics B, 2021, 30, 068202.	0.7	1
12362	Improving the Cyclic Stability of LiNi 0.5 Mn 1.5 O 4 Cathode by Modifying the Interface Film with 8â€Hydroxyquinoline. ChemistrySelect, 2021, 6, 3988-3994.	0.7	1
12363	Layered-rocksalt intergrown cathode for high-capacity zero-strain battery operation. Nature Communications, 2021, 12, 2348.	5.8	43
12364	Cycling properties of Na3V2(PO4)2F3 as positive material for sodium-ion batteries. Ionics, 2021, 27, 1853-1860.	1.2	9
12365	Sodium de-insertion processes in single Na TMO2 particles studied by an electrochemical collision method: O3 phases versus P2 phases. Electrochemistry Communications, 2021, 125, 107000.	2.3	3
12366	Fluorinated Bifunctional Solid Polymer Electrolyte Synthesized under Visible Light for Stable Lithium Deposition and Dendriteâ€Free Allâ€Solidâ€State Batteries. Advanced Functional Materials, 2021, 31, 2101736.	7.8	65
12367	Thermally-enhanced microstructures of Si/TiNi film electrodes for improved electrochemical properties. Journal of Alloys and Compounds, 2021, 860, 158507.	2.8	2
12368	Layered P3-Type K _{0.4} Fe _{0.1} Mn _{0.8} Ti _{0.1} O ₂ as a Low-Cost and Zero-Strain Electrode Material for both Potassium and Sodium Storage. ACS Applied Materials & Interfaces, 2021, 13, 18897-18904.	4.0	28
12369	Chalcone as Anode Material for Aqueous Rechargeable Lithium-Ion Batteries. Russian Journal of Electrochemistry, 2021, 57, 419-433.	0.3	0
12370	Disc-Shaped Li4â^'xKxTi5O12 Derived from MIL-125(Ti) as an Anode Material with High Performance For Lithium-Ion Batteries. Journal of Electronic Materials, 2021, 50, 4066-4074.	1.0	4
12371	Covalently Interlinked Graphene Sheets with Sulfurâ€Chains Enable Superior Lithium–Sulfur Battery Cathodes at Fullâ€Mass Level. Advanced Functional Materials, 2021, 31, 2101326.	7.8	27
12372	Recent advances in anode materials for potassium-ion batteries: A review. Nano Research, 2021, 14, 4442-4470.	5.8	76
12373	In Situ/Operando (Soft) Xâ€ray Spectroscopy Study of Beyond Lithiumâ€ion Batteries. Energy and Environmental Materials, 2021, 4, 139-157.	7.3	26
12374	Insights into the Electrochemical Stability and Lithium Conductivity of Li ₄ MS ₄ (M = Si, Ge, and Sn). ACS Applied Materials & Interfaces, 2021, 13, 22438-22447.	4.0	7
12375	Ultraviolet-Cured Al ₂ O ₃ -Polyethylene Terephthalate/Polyvinylidene Fluoride Composite Separator with Asymmetric Design and Its Performance in Lithium Batteries. ACS Applied Energy Materials, 2021, 4, 5293-5303.	2.5	12
12376	Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 2021, 36, 147-170.	9.5	344

#	Article	IF	CITATIONS
12377	Solid Electrolyte Interphase Instability in Operating Lithium-Ion Batteries Unraveled by Enhanced-Raman Spectroscopy. ACS Energy Letters, 2021, 6, 1757-1763.	8.8	36
	Linianced-Kaman Spectroscopy. ACS Linergy Letters, 2021, 0, 1757-1705.		
12378	Design Strategies for Highâ€Voltage Aqueous Batteries. Small Structures, 2021, 2, 2100001.	6.9	54
12379	Fluoride in the SEI Stabilizes the Li Metal Interface in Li–S Batteries with Solvate Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 18865-18875.	4.0	14
12380	Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Materials Today, 2021, 50, 400-417.	8.3	161
12381	A Ge/Carbon Atomicâ€Scale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability. Angewandte Chemie, 2021, 133, 12647-12654.	1.6	4
12382	Effect of dynamic loads and vibrations on lithium-ion batteries. Journal of Low Frequency Noise Vibration and Active Control, 2021, 40, 1927-1934.	1.3	7
12383	Grain Boundaries and Their Impact on Li Kinetics in Layered-Oxide Cathodes for Li-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 10284-10294.	1.5	26
12384	Refined Tin Nanoparticles by Oxidation–Reduction Treatment for Use in Potassium-Ion Batteries. ACS Applied Nano Materials, 2021, 4, 4432-4440.	2.4	1
12385	Multivalent Amide-Hydrogen-Bond Supramolecular Binder Enhances the Cyclic Stability of Silicon-Based Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22567-22576.	4.0	26
12386	Lattice-resolution visualization of anisotropic sodiation degrees and revelation of sodium storage mechanisms in todorokite-type MnO2 with in-situ TEM. Energy Storage Materials, 2021, 37, 345-353.	9.5	11
12387	Composition and temperature dependent structural investigation of the perovskite-type sodium-ion solid electrolyte series Na1/2â^'xLa1/2â^'xSr2xZrO3. Journal of Alloys and Compounds, 2021, 863, 158500.	2.8	7
12388	Synthesis and characterization of Ca _(1â[^] <i>x</i>) Sm _{<i>x</i>} F _{(2+) Tj ETQ Processing Communications, 2021, 3, e226.}	0.5	4314 rgBT /(3
12389	Aligned graphene array anodes with dendrite-free behavior for high-performance Li-ion batteries. Energy Storage Materials, 2021, 37, 296-305.	9.5	38
12390	Reaction Mechanisms of the Degradation of Fluoroethylene Carbonate, an Additive of Lithiumâ€lon Batteries, Unraveled by Radiation Chemistry. Chemistry - A European Journal, 2021, 27, 8185-8194.	1.7	9
12391	Effects of Electrolyte Additives and Nanowire Diameter on the Electrochemical Performance of Lithiumâ€ion Battery Anodes based on Interconnected Nickel–Tin Nanowire Networks. Energy Technology, 2021, 9, 2100062.	1.8	5
12392	Designing Polymerâ€inâ€Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solidâ€State Lithium Batteries. Angewandte Chemie, 2021, 133, 13041-13050.	1.6	30
12393	Supramolecular Selfâ€Assembled Multiâ€Electronâ€Acceptor Organic Molecule as Highâ€Performance Cathode Material for Liâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2100330.	10.2	48
12394	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20102-20118.	7.2	123

#	Article	IF	CITATIONS
12395	Quicker and More Zn ²⁺ Storage Predominantly from the Interface. Advanced Materials, 2021, 33, e2100359.	11.1	111
12396	Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries. Energy, 2021, 222, 119913.	4.5	24
12397	Fluorideâ€Rich Solidâ€Electrolyteâ€Interface Enabling Stable Sodium Metal Batteries in Highâ€Safe Electrolytes. Advanced Functional Materials, 2021, 31, 2103522.	7.8	66
12398	Unraveling the Catalytic Activity of Fe–Based Compounds toward Li ₂ S <i>_x</i> in Li–S Chemical System from <i>d</i> – <i>p</i> Bands. Advanced Energy Materials, 2021, 11, 2100673.	10.2	89
12399	Large Scale Synthesis of Manganese Oxide/Reduced Graphene Oxide Composites as Anode Materials for Long Cycle Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 5424-5433.	2.5	16
12400	Lithiophilic current collector based on nitrogen doped carbon nanotubes and three-dimensional graphene for long-life lithium metal batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 267, 115067.	1.7	18
12401	Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Advanced Science, 2021, 8, 2004814.	5.6	44
12402	The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li ⁺ transportation. , 2021, 3, 482-508.		68
12404	A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Science Advances, 2021, 7, .	4.7	212
12405	Petal-shaped SnO2 free-standing electrodes with electrically conducting layers via a plasma-activated nitrogen doping process for high performance lithium-ion batteries. Chemical Engineering Journal, 2021, 412, 128614.	6.6	11
12406	Recent advances in functional oxides for high energy density sodium-ion batteries. Materials Reports Energy, 2021, 1, 100022.	1.7	26
12407	Revealing Cathode–Electrolyte Interface on Flowerâ€Shaped Na ₃ V ₂ (PO ₄) ₃ /C Cathode through Cryogenic Electron Microscopy. Advanced Energy and Sustainability Research, 2021, 2, 2100072.	2.8	8
12408	Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage. Nature Communications, 2021, 12, 3131.	5.8	80
12409	Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23743-23750.	4.0	18
12410	Heteroepitaxial interface of layered cathode materials for lithium ion batteries. Energy Storage Materials, 2021, 37, 161-189.	9.5	19
12411	Insight into bulk charge transfer of lithium metal anodes by synergism of nickel seeding and LiF-Li3N-Li2S co-doped interphase. Energy Storage Materials, 2021, 37, 491-500.	9.5	13
12412	Designing Polymerâ€inâ€Salt Electrolyte and Fully Infiltrated 3D Electrode for Integrated Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2021, 60, 12931-12940.	7.2	202
12413	High performance flexible quasi-solid-state zinc-ion hybrid supercapacitors enable by electrode potential adjustment. Journal of Power Sources, 2021, 495, 229789.	4.0	18

#	Article	IF	CITATIONS
12414	Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study. Nanomaterials, 2021, 11, 1197.	1.9	12
12415	Rational Design and Engineering of Oneâ€Dimensional Hollow Nanostructures for Efficient Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 20262-20278.	1.6	13
12416	Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4976-4985.	2.5	8
12417	Recent Advances in Emerging Nonâ€Lithium Metal–Sulfur Batteries: A Review. Advanced Energy Materials, 2021, 11, 2100770.	10.2	34
12418	Celluloseâ€Based Plastic Crystal Electrolyte Membranes with Enhanced Interface for Solidâ€State Lithium Batteries. Energy Technology, 2021, 9, 2100114.	1.8	9
12419	3D-structured organic-inorganic hybrid solid-electrolyte-interface layers for Lithium metal anode. Energy Storage Materials, 2021, 37, 567-575.	9.5	21
12420	Boron-doped Sb/SbO ₂ @rGO composites with tunable components and enlarged lattice spacing for high-rate sodium-ion batteries. Journal Physics D: Applied Physics, 2021, 54, 315505.	1.3	4
12421	Al Substitution for Mn during Co-Precipitation Boosts the Electrochemical Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ . Journal of the Electrochemical Society, 2021, 168, 050532.	1.3	8
12422	Recovery of lithium hydroxide monohydrate from a nickel-rich cathode material by a novel heat-treatment process at a significantly low temperature. Functional Materials Letters, 0, , 2150018.	0.7	2
12423	Performance Improvement of PVDF–HFP-Based Gel Polymer Electrolyte with the Dopant of Octavinyl-Polyhedral Oligomeric Silsesquioxane. Materials, 2021, 14, 2701.	1.3	5
12424	High-performance gel polymer electrolytes derived from PAN-POSS/PVDF composite membranes with ionic liquid for lithium ion batteries. Ionics, 2021, 27, 2945-2953.	1.2	9
12425	A Biomassâ€Based Integral Approach Enables Liâ€5 Full Pouch Cells with Exceptional Power Density and Energy Density. Advanced Science, 2021, 8, e2101182.	5.6	21
12426	Li[(FSO 2)(n â€C 4 F 9 SO 2)N]: A Difunctional Salt for Ethyleneâ€Carbonate―and Additiveâ€Free Electrolyte for Li―on Cells. ChemElectroChem, 2021, 8, 1807-1816.	1.7	4
12427	Nitrogen/oxygen dual-doped hierarchically porous carbon/graphene composite as high-performance anode for potassium storage. Electrochimica Acta, 2021, 377, 138093.	2.6	9
12428	Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries. Energy Storage Materials, 2021, 37, 215-223.	9.5	76
12429	3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector. ACS Applied Materials & Interfaces, 2021, 13, 24785-24794.	4.0	38
12430	Natural Self-Confined Structure Effectively Suppressing Volume Expansion toward Advanced Lithium Storage. ACS Applied Materials & amp; Interfaces, 2021, 13, 24634-24642.	4.0	5
12431	Potential Applications of MoS ₂ /M ₂ CS ₂ (M = Ti, V) Heterostructures as Anode Materials for Metal-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 10226-10234.	1.5	26

# 12432	ARTICLE Macromolecular Engineering of Poly(catechol) Cathodes towards High-Performance Aqueous Zinc-Polymer Batteries. Polymers, 2021, 13, 1673.	lF 2.0	CITATIONS
12433	Efficient preservation of surface state of LiNiO·82CoO·15AlO·03O2 through assembly of hydride terminated polydimethylsiloxane. Journal of Power Sources, 2021, 495, 229761.	4.0	8
12434	Sulfurized Polyacrylonitrile Cathode Derived from Intermolecular Cross-Linked Polyacrylonitrile for a Rechargeable Lithium Battery. ACS Applied Energy Materials, 2021, 4, 5706-5712.	2.5	11
12436	Improved electrochemical performances of LiNi0.5Co0.2Mn0.3O2 modified by Graphene/V2O5 co-coating. Ceramics International, 2021, 47, 21759-21768.	2.3	12
12437	One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials, 2021, 14, 2609.	1.3	47
12438	Size-controllable synthesis of Zn2GeO4 hollow rods supported on reduced graphene oxide as high-capacity anode for lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 589, 13-24.	5.0	10
12439	Effect of Ru Doping on the Properties of LiFePO ₄ /C Cathode Materials for Lithium-Ion Batteries. ACS Omega, 2021, 6, 14122-14129.	1.6	34
12440	Functionalized carbon nanotube doped gel electrolytes with enhanced mechanical and electrical properties for battery applications. Materials Chemistry and Physics, 2021, 264, 124448.	2.0	9
12441	Ammonia-low coprecipitation synthesis of lithium layered oxide cathode material for high-performance battery. Chemical Engineering Journal, 2021, 411, 128487.	6.6	31
12442	Efficient Simulation of Chemical–Mechanical Coupling in Battery Active Particles. Energy Technology, 2021, 9, 2000835.	1.8	11
12443	Polymorphie und schnelle Kaliumâ€ionenleitung im Phosphidosilicat KSi 2 P 3 mit T5 Supertetraedern. Angewandte Chemie, 2021, 133, 13754-13759.	1.6	2
12444	Core–Shell Structure S@PPy/CB with High Electroconductibility to Effective Confinement Polysulfide Shuttle Effect for Advanced Lithium–Sulfur Batteries. Energy & Fuels, 2021, 35, 10181-10189.	2.5	5
12445	Galvanic Couples in Ionic Liquidâ€Based Electrolyte Systems for Lithium Metal Batteries—An Overlooked Cause of Galvanic Corrosion?. Advanced Energy Materials, 2021, 11, 2101021.	10.2	22
12446	Stabilization of a 4.7â€V Highâ€Voltage Nickelâ€Rich Layered Oxide Cathode for Lithiumâ€Ion Batteries through Boronâ€Based Surface Residual Lithiumâ€Tuned Interface Modification Engineering. ChemElectroChem, 2021, 8, 2014-2021.	1.7	11
12447	The rational design and interface engineering of an electrolyte and current collector for a stable and highâ€performance aqueous supercapacitor. International Journal of Energy Research, 2021, 45, 16027-16037.	2.2	11
12448	Synthesis of porosity controllable nanoporous silicon with a self-coated nickel layer for lithium-ion batteries. Journal of Power Sources, 2021, 495, 229802.	4.0	9
12449	Hierarchical Porous Graphene Bubbles as Host Materials for Advanced Lithium Sulfur Battery Cathode. Frontiers in Chemistry, 2021, 9, 653476.	1.8	8
12450	Dynamics analysis of Si electrode particle size effect employing accurate Si model. Electrochimica Acta, 2021, 377, 138110.	2.6	4

		TIATION REPO	KI	
#	Article	IF		Citations
12451	Layer spacing gradient (NaLi)1â [~] CoO2 for electrochemical Li extraction. Matter, 2021, 4, 1611-1624	4. 5.	0	13
12452	A Review on the Current Progress and Challenges of 2D Layered Transition Metal Dichalcogenides as Li/Naâ€ion Battery Anodes. ChemElectroChem, 2021, 8, 2358-2396.	1.	7	25
12453	Demonstration of Biocarbon-Added NiS Porous Nanospheres as a Potential Anode for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 8991-9000.	2.	5	14
12454	Novel Low-Temperature Electrolyte Using Isoxazole as the Main Solvent for Lithium-Ion Batteries. AC Applied Materials & amp; Interfaces, 2021, 13, 24995-25001.	S 4.	.0	38
12455	Enhanced cycling stability of Cu-V2O5 composited with low-fraction rGO as cathodes for lithium ion batteries. Journal of Alloys and Compounds, 2021, 863, 158761.	2.	8	9
12456	A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries. Applied Energy, 2021, 290, 116777.	5.	1	21
12457	An Interphase-enhanced Liquid Na-K Anode for Dendrite-free Alkali Metal Batteries Enabled by SiCl4 Electrolyte Additive. Energy Storage Materials, 2021, 37, 199-206.	9.	.5	25
12458	Templateâ€Sacrificed Hot Fusion Construction and Nanoseed Modification of 3D Porous Copper Nanoscaffold Host for Stableâ€Cycling Lithium Metal Anodes. Advanced Functional Materials, 2021, 2102735.	31, 7.	8	51
12459	Fast and Scalable Synthesis of LiNi _{0.5} Mn _{1.5} O ₄ Cathode by Sol–Gelâ€Assisted Microwave Sintering. Energy Technology, 2021, 9, 2100085.	1.	8	7
12460	Octahedral Fe3O4/FeS composite synthesized by one-pot hydrothermal method as a high-performar anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 864, 158796.	nce 2.	.8	22
12461	Advanced and Emerging Negative Electrodes for Li-Ion Capacitors: Pragmatism vs. Performance. Energies, 2021, 14, 3010.	1.	6	4
12462	Strategies to anode protection in lithium metal battery: A review. InformaÄnÃ-Materiály, 2021, 3, 1333-1363.	8.	.5	140
12463	Liquid electrolyte design for metalâ€sulfur batteries: Mechanistic understanding and perspective. EcoMat, 2021, 3, e12115.	6.	.8	29
12464	Revealing the Various Electrochemical Behaviors of Sn ₄ P ₃ Binary Alloy Anodes in Alkali Metal Ion Batteries. Advanced Functional Materials, 2021, 31, 2102047.	7.	8	25
12465	Freestanding polyimide fiber network as thermally safer separator for high-performance Li metal batteries. Electrochimica Acta, 2021, 377, 138069.	2.	6	11
12466	Structurally stabilized lithium-metal anode via surface chemistry engineering. Energy Storage Materials, 2021, 37, 315-324.	9.	.5	46
12467	Co-Electrodeposition Mechanism in Rechargeable Metal Batteries. ACS Energy Letters, 2021, 6, 2190	D-2197. 8.	.8	17
12468	The effects of nanostructures on lithium storage behavior in Mn2O3 anodes for next-generation lithium-ion batteries. Journal of Power Sources, 2021, 493, 229682.	4.	.0	23

CITATION REPORT ARTICLE IF CITATIONS <i>Ab initio</i> random structure searching for battery cathode materials. Journal of Chemical 1.2 19 Physics, 2021, 154, 174111. 3D Yolkâ€"Shell Structured Si/void/rCO Free-Standing Electrode for Lithium-Ion Battery. Materials, 2021, 1.3 14, 2836. Coal-derived synthetic graphite with high specific capacity and excellent cyclic stability as anode 3.4 34 material for lithium-ion batteries. Fuel, 2021, 292, 120250. Silicon Single Walled Carbon Nanotube-Embedded Pitch-Based Carbon Spheres Prepared by a Spray Process with Modified Antisolvent Precipitation for Lithium Ion Batteries. Energy & amp; Fuels, 2021, 35, 9705-9713. Environmental Impact Analysis of Aprotic Li–O₂ Batteries Based on Life Cycle Assessment. 3.2 27 ACS Sustainable Chemistry and Engineering, 2021, 9, 7139-7153. Polymorphism and Fast Potassiumâ€ion Conduction in the T5 Supertetrahedral Phosphidosilicate 7.2 KSi₂P₃. Angewandte Chemie - International Edition, 2021, 60, 13641-13646. 12475 Optical lithium sensors. Coordination Chemistry Reviews, 2021, 435, 213801. 9.5 17 Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes. 2.6 Electrochimica Acta, 2021, 377, 138092. Atomic mechanism of the distribution and diffusion of lithium in a cracked Si anode. Scripta 2.6 4 Materialia, 2021, 197, 113807. 2D Covalentâ€Organic Framework Electrodes for Supercapacitors and Rechargeable Metalâ€Ion Batteries. 10.2 Advanced Energy Materials, 2022, 12, 2100177. Enhanced Electrochemical Kinetics with Highly Dispersed Conductive and Electrocatalytic Mediators 121 11.1 for Lithiumâ€"Sulfur Batteries. Advanced Materials, 2021, 33, e2100810. Constructing high-rate and long-life phosphorus/carbon anodes for potassium-ion batteries through 12480 8.2 54 rational nanoconfinement. Nano Energy, 2021, 83, 105772. Gyroidâ€Nanostructured Allâ€Solid Polymer Films Combining High H + Conductivity with Low H 2 2.0 3 Pérmeability. Macromolecular Rapid Communications, 2021, 42, 2100115. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries. Nature Energy, 2021, 6, 790-798. 19.8 198 Regulating adhesion of solid-electrolyte interphase to silicon via covalent bonding strategy towards 8.2 24 high Coulombic-efficiency anodes. Nano Energy, 2021, 84, 105935. Muconic acid as high-performance organic anode for lithium ion batteries. Journal of Alloys and 2.8 Compounds, 2021, 865, 158573.

12485	State of health (SoH) estimation and degradation modes analysis of pouch NMC532/graphite Li-ion battery. Journal of Power Sources, 2021, 498, 229884.	4.0	24
12486	Tuning functional two-dimensional MXene nanosheets to enable efficient sulfur utilization in 'lithium-sulfur batteries. Cell Reports Physical Science, 2021, 2, 100480.	2.8	10

C 1

12469

12470

12471

12472

12473

12474

12476

12477

12478

12479

12481

12482

12483

#	Article	IF	CITATIONS
12487	Core–Shell MOFâ€inâ€MOF Nanopore Bifunctional Host of Electrolyte for Highâ€Performance Solidâ€State Lithium Batteries. Small Methods, 2021, 5, e2100508.	4.6	43
12488	Deciphering the role of tetrahydrofuran residue in the poly(ethylene oxide)/LiTFSI hybrid used for secondary battery electrolyte. Giant, 2021, 6, 100056.	2.5	6
12489	Al3+-doped FeNb11O29 anode materials with enhanced lithium-storage performance. Advanced Composites and Hybrid Materials, 2021, 4, 733-742.	9.9	21
12490	Effect of Amorphous LiPON Coating on Electrochemical Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ (NMC811) in All Solid-State Batteries. Journal of the Electrochemical Society, 2021, 168, 060537.	1.3	18
12491	Improved Electrochemical Performance of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials Induced by a Facile Polymer Coating for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6205-6213.	2.5	27
12492	Two-Dimensional Planar BGe Monolayer as an Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 29764-29769.	4.0	21
12493	Effects of Conjugated Structure on the Magnesium Storage Performance of Dianhydrides. ChemPhysChem, 2021, 22, 1455-1460.	1.0	11
12494	Hollow Carbon Spheres Embedded with VN Quantum Dots as an Efficient Cathode Host for Lithium–Sulfur Batteries. Energy & Fuels, 2021, 35, 10219-10226.	2.5	17
12495	Synthesis of CuCo2O4 nanoparticles as an anode material with high performance for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 18765-18776.	1.1	11
12496	Benefit of high-pressure structure on sodium transport properties: Example with NaFeF3 post-perovskite. Open Ceramics, 2021, 6, 100123.	1.0	2
12497	Greatly enhanced energy density of allâ€solidâ€state rechargeable battery operating in high humidity environments. International Journal of Energy Research, 2021, 45, 16794-16805.	2.2	2
12498	Metal Chalcogenides with Heterostructures for Highâ€Performance Rechargeable Batteries. Small Science, 2021, 1, 2100012.	5.8	61
12499	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
12500	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 16554-16560.	7.2	80
12501	Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics Condensed Matter, 2021, 33, 303002.	0.7	65
12502	Enhanced rate performance of the mortar-like LiFePO4/C composites combined with the evenly coated of carbon aerogel. Journal of Alloys and Compounds, 2021, 867, 158776.	2.8	14
12503	An Atomistic View of the Lithiation/Delithiation Behavior of Carbon Nanotube-Confined Sulfur Cathode for Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2021, 168, 060531.	1.3	3
12504	Aging processes in high voltage lithium-ion capacitors containing liquid and gel-polymer electrolytes. Journal of Power Sources, 2021, 496, 229797.	4.0	7

#	Article	IF	CITATIONS
12505	One-dimensional channel to trigger high-performance sodium-ion battery via doping engineering. Nano Energy, 2021, 84, 105875.	8.2	11
12506	Discharge State of Layered P2-Type Cathode Reveals Unsafe than Charge Condition in Thermal Runaway Event for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 31594-31604.	4.0	17
12507	Highly Stable Quasiâ€Solidâ€State Lithium Metal Batteries: Reinforced Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface by a Protection Interlayer. Advanced Energy Materials, 2021, 11, 2101339.	10.2	62
12508	Topological Defectâ€Rich Carbon as a Metalâ€Free Cathode Catalyst for Highâ€Performance Liâ€CO ₂ Batteries. Advanced Energy Materials, 2021, 11, 2101390.	10.2	60
12509	Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy, 2021, 224, 120142.	4.5	32
12510	Ultrathin Yet Robust Single Lithiumâ€Ion Conducting Quasiâ€Solidâ€State Polymerâ€Brush Electrolytes Enable Ultralongâ€Life and Dendriteâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2100943.	11.1	88
12511	Sb2S3-Bi2S3 microrods with the combined action of carbon encapsulation and rGO confinement for improving high cycle stability in sodium/potassium storage. Chemical Engineering Journal, 2021, 414, 128787.	6.6	46
12512	Formulating the Electrolyte Towards Highâ€Energy and Safe Rechargeable Lithium–Metal Batteries. Angewandte Chemie, 2021, 133, 16690-16696.	1.6	12
12513	Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high–energy cathode for aluminum batteries. Energy Storage Materials, 2021, 38, 231-240.	9.5	49
12514	Microwaveâ€Assisted Rapid Synthesis of Urchin‣ike Bimetallic Mn–Co Carbonate Composites for Highâ€Performance Supercapacitors. ChemistrySelect, 2021, 6, 5633-5639.	0.7	0
12515	Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries. Journal of Power Sources, 2021, 498, 229934.	4.0	88
12516	Progress in thermal stability of <scp>allâ€solidâ€stateâ€Liâ€ionâ€batteries</scp> . InformaÄnÃ-Materiály, 2021, 827-853.	3 _{8.5}	126
12517	Carbon nanotubes-based electrode for Zn ion batteries. Materials Research Bulletin, 2021, 138, 111246.	2.7	18
12518	Electrochemical, Thermal, and Structural Features of BaF ₂ –SnF ₂ Fluoride-Ion Electrolytes. Journal of Physical Chemistry C, 2021, 125, 12568-12577.	1.5	8
12519	Stabilizing Li-metal host anode with LiF-rich solid electrolyte interphase. Nano Convergence, 2021, 8, 18.	6.3	12
12520	Strippable and flexible solid electrolyte membrane by coupling Li6.4La3Zr1.4Ta0.6O12 and insulating polyvinylidene fluoride for solid state lithium ion battery. lonics, 2021, 27, 3339.	1.2	8
12521	A new 2D carbon allotrope C ₅₆₈ as a high-capacity electrode material for lithium-ion batteries. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 385-391.	1.0	4
12522	All-Solid-State Li-Ion Batteries Using a Combination of Sb ₂ S ₃ /Li ₂ S-P ₂ S ₅ /Acetylene Black as the Electrode Composite and LiBH ₄ as the Electrolyte. ACS Applied Energy Materials, 2021, 4, 6269-6276.	2.5	5

#	Article	IF	CITATIONS
12523	Metal-organic framework derived vanadium-doped TiO2@carbon nanotablets for high-performance sodium storage. Journal of Colloid and Interface Science, 2021, 604, 188-197.	5.0	28
12524	Composite Separators for Robust High Rate Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2101420.	7.8	87
12525	The Role of Pilot Lines in Bridging the Gap Between Fundamental Research and Industrial Production for Lithiumâ€Ion Battery Cells Relevant to Sustainable Electromobility: A Review. Energy Technology, 2021, 9, 2100132.	1.8	25
12526	Ternary transition metal chalcogenides Ti2PX2 (XÂ=ÂS, Se, Te) anodes for high performance metal-ion batteries: A DFT study. Applied Surface Science, 2021, 550, 149177.	3.1	30
12527	Grain boundaries contribute to highly efficient lithiumâ€ion transport in advanced LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ secondary sphere with compact structure. SusMat, 2021, 1, 255-265.	7.8	20
12528	Binding Li 3 PO 4 to Spinel LiNi 0.5 Mn 1.5 O 4 via a Surface Coâ€Containing Bridging Layer to Improve the Electrochemical Performance. Energy Technology, 2021, 9, 2100147.	1.8	1
12529	Exotic nanoparticles of group IV monochalcogenides as anode materials for Li-Ion batteries. Solid State Communications, 2021, 332, 114326.	0.9	1
12530	A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nature Communications, 2021, 12, 3369.	5.8	59
12531	Encapsulation of Iodine in Nitrogen-Containing Porous Carbon Plate Arrays on Carbon Fiber Cloth as a Freestanding Cathode for Lithium-Iodine Batteries. ACS Applied Energy Materials, 2021, 4, 7012-7019.	2.5	19
12532	Zero Lithium Miscibility Gap Enables High-Rate Equimolar Li(Mn _, Fe)PO ₄ Solid Solution. Nano Letters, 2021, 21, 5091-5097.	4.5	9
12533	Improving the cycle performance of MgFe2O4 anode material based on the spatial limiting effect. Journal of Alloys and Compounds, 2021, 865, 158668.	2.8	5
12534	The application of graphyne and its boron nitride analogue in Li-ion batteries. Computational and Theoretical Chemistry, 2021, 1200, 113243.	1.1	4
12535	Spiral Graphene Coupling Hierarchically Porous Carbon Advances Dual-Carbon Lithium Ion Capacitor. Energy Storage Materials, 2021, 38, 528-534.	9.5	39
12536	High electrochemical and mechanical performance of zinc conducting-based gel polymer electrolytes. Scientific Reports, 2021, 11, 13268.	1.6	28
12537	Conceptualizing a new circular economy feature – storing renewable electricity in batteries beyond EV end-of-life: the case of Slovenia. International Journal of Productivity and Performance Management, 2022, 71, 896-911.	2.2	11
12538	One-step molten salt carbonization of tobacco stem for capacitive carbon. Journal of Porous Materials, 2021, 28, 1629-1642.	1.3	6
12539	In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Materials Today Energy, 2021, 20, 100623.	2.5	26
12540	Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes. Chemical Engineering Journal, 2021, 414, 128702.	6.6	58

#	Article	IF	Citations
12541	Rechargeable Al halcogen Batteries: Status, Challenges, and Perspectives. Advanced Energy Materials, 2021, 11, 2100769.	10.2	22
12542	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	9.5	52
12543	Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries. Materials Today, 2021, 50, 259-275.	8.3	35
12544	Transient fluctuation-induced forces in driven electrolytes after an electric field quench. New Journal of Physics, 2021, 23, 073034.	1.2	9
12545	Yeast-Derived Carbon Nanotube-Coated Separator for High Performance Lithium-Sulfur Batteries. Jom, 2021, 73, 2516-2524.	0.9	17
12546	A Copper-Based Polycarbonyl Coordination Polymer as a Cathode for Li Ion Batteries. Crystal Growth and Design, 2021, 21, 3668-3676.	1.4	14
12547	Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries. Electrochimica Acta, 2021, 382, 138346.	2.6	42
12548	Preparation of LiFePO4 Powders by Ultrasonic Spray Drying Method and Their Memory Effect. Materials, 2021, 14, 3193.	1.3	5
12549	Rate-Determining Process at Electrode/Electrolyte Interfaces for All-Solid-State Fluoride-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 30198-30204.	4.0	14
12550	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Low ost Molecular Sieve. Angewandte Chemie - International Edition, 2021, 60, 15572-15581.	7.2	43
12551	An integrated highly stable anode enabled by carbon nanotube-reinforced all-carbon binder for enhanced performance in lithium-ion battery. Carbon, 2021, 182, 749-757.	5.4	9
12552	Defect-repaired reduced graphene oxide caging silicon nanoparticles for lithium-ion anodes with enhanced reversible capacity and cyclic performance. Electrochimica Acta, 2021, 382, 138271.	2.6	11
12553	Unveiling Trifunctional Active Sites of a Heteronanosheet Electrocatalyst for Integrated Cascade Battery/Electrolyzer Systems. ACS Energy Letters, 2021, 6, 2460-2468.	8.8	42
12554	Synthesis of the SnO2@C@GN hollow porous microspheres with superior cyclability for Li-ion batteries. Chemical Physics Letters, 2021, 772, 138566.	1.2	5
12555	Design of Nb2O5@rGO composites to optimize the lithium-ion storage performance. Journal of Alloys and Compounds, 2021, 865, 158824.	2.8	23
12556	Li-ion distribution and diffusion-induced stress calculations of particles using an image-based finite element method. Mechanics of Materials, 2021, 157, 103843.	1.7	9
12557	Closely Coupled Binary Metal Sulfide Nanosheets Shielded Molybdenum Sulfide Nanorod Hierarchical Structure via Eco-Benign Surface Exfoliation Strategy towards Efficient Lithium and Sodium-ion Batteries. Energy Storage Materials, 2021, 38, 344-353.	9.5	21
12558	Capture and catalytic conversion of lithium polysulfides by metal-doped MoS2 monolayers for lithium–sulfur batteries: A computational study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114715.	1.3	9

#	Article	IF	Citations
12559	Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Materials Today Energy, 2021, 20, 100626.	2.5	42
12560	Transition metal nitride electrodes as future energy storage devices: A review. Materials Today Communications, 2021, 27, 102363.	0.9	25
12561	Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test. Journal of Energy Storage, 2021, 38, 102519.	3.9	30
12562	Vanadium Monoxide-Based Free-Standing Nanofiber Hosts for High-Loading Lithium-Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 5649-5660.	2.5	10
12563	Research on energy densities of secondary batteries. IOP Conference Series: Earth and Environmental Science, 2021, 791, 012104.	0.2	0
12564	Laserâ€Ablated Red Phosphorus on Carbon Nanotube Film for Accelerating Polysulfide Conversion toward Highâ€Performance and Flexible Lithium–Sulfur Batteries. Small Methods, 2021, 5, e2100215.	4.6	19
12565	Self-standing carbon nanotube aerogels with amorphous carbon coating as stable host for lithium anodes. Carbon, 2021, 177, 181-188.	5.4	30
12566	Sustainable Lithiumâ€Metal Battery Achieved by a Safe Electrolyte Based on Recyclable and Low ost Molecular Sieve. Angewandte Chemie, 2021, 133, 15700-15709.	1.6	2
12567	Stable Highâ€Capacity Organic Aluminum–Porphyrin Batteries. Advanced Energy Materials, 2021, 11, 2101446.	10.2	54
12568	Two advantages by a single move: Core-bishell electrode design for ultrahigh-rate capacity and ultralong-life cyclability of lithium ion batteries. Composites Part B: Engineering, 2021, 216, 108883.	5.9	14
12569	Catalytic Hexadecachlorophthalocyanine Cobalt-Coated Host Materials for Li–S Batteries. ACS Applied Energy Materials, 2021, 4, 7743-7750.	2.5	3
12570	Enabling stable sodium metal cycling by sodiophilic interphase in a polymer electrolyte system. Journal of Energy Chemistry, 2021, 63, 305-311.	7.1	10
12571	Olivine LiFePO4 as an additive into LiCoO2 electrodes for LIBs to improve high-voltage performances. Journal of Alloys and Compounds, 2021, 869, 159188.	2.8	14
12572	Realizing Compact Lithium Deposition via Elaborative Nucleation and Growth Regulation for Stable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34248-34257.	4.0	1
12573	Lignin-Based Gel Polymer Electrolyte for Cationic Conductivity. Polymers, 2021, 13, 2306.	2.0	7
12574	Thermal oxidation characteristics for smoke particles from an abused prismatic Li(Ni0.6Co0.2Mn0.2)O2 battery. Journal of Energy Storage, 2021, 39, 102639.	3.9	12
12575	Enhanced and stabilized charge transport boosting by Fe-doping effect of V2O5 nanorod for rechargeable Zn-ion battery. Journal of Industrial and Engineering Chemistry, 2021, 99, 344-351.	2.9	29
12576	Thermal transport in lithium-ion battery: A micro perspective for thermal management. Frontiers of Physics, 2022, 17, 1.	2.4	14

#	Article	IF	CITATIONS
12577	Hygroscopic Double‣ayer Gel Polymer Electrolyte toward Highâ€Performance Lowâ€Temperature Zinc Hybrid Batteries. Batteries and Supercaps, 2021, 4, 1627-1635.	2.4	13
12578	Critical Role of Ti ⁴⁺ in Stabilizing Highâ€Voltage Redox Reactions in Liâ€Rich Layered Material. Small, 2021, 17, e2100840.	5.2	13
12579	Ab Initio Study of the Defect Chemistry and Substitutional Strategies for Highly Conductive Li ₃ YX ₆ (X = F, Cl, Br, and I) Electrolyte for the Application of Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 7930-7941.	2.5	19
12580	Controllable synthesis of Li3VO4/N doped C nanofibers toward high-capacity and high-rate Li-ion storage. Electrochimica Acta, 2021, 384, 138386.	2.6	16
12581	Design Strategies of Si/C Composite Anode for Lithiumâ€ion Batteries. Chemistry - A European Journal, 2021, 27, 12237-12256.	1.7	29
12582	Currentâ€Density Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 19306-19313.	7.2	35
12583	Enhanced high-temperature performance and thermal stability of lithium-rich cathode via combining full concentration gradient design with surface spinel modification. Chemical Engineering Journal, 2021, 415, 129042.	6.6	20
12584	Recent Progress in Alâ€; Kâ€; and Znâ€ion Batteries: Experimental and Theoretical Viewpoints. Energy Technology, 2021, 9, 2100382.	1.8	5
12585	An Electrically Conducting Li-Ion Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 11641-11650.	6.6	50
12586	Improving the lithium storage performance of micro-sized SiO particles by uniform carbon interphase encapsulation and suitable SiO2 buffer component. Electrochimica Acta, 2021, 385, 138431.	2.6	6
12587	Electrospun Composite Gel Polymer Electrolytes with High Thermal Conductivity toward Wide Temperature Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 8130-8141.	2.5	11
12588	Hydrothermal synthesis of β-MnO2 nanorods for highly efficient zinc-ion storage. Ionics, 2021, 27, 3943-3950.	1.2	6
12589	Surface Modification of Nanocrystalline LiMn2O4 Using Graphene Oxide Flakes. Materials, 2021, 14, 4134.	1.3	12
12590	First Principles Study of Oxygen Adsorption on Li-MO ₂ (M = Mn, Ti and V) (110) Surface. Journal of the Electrochemical Society, 2021, 168, 070556.	1.3	5
12591	A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nature Communications, 2021, 12, 4424.	5.8	180
12592	Preparation of Carbon-Coated Silicon Nanoparticles with Different Hydrocarbon Gases in Induction Thermal Plasma. Journal of Physical Chemistry C, 2021, 125, 15551-15559.	1.5	11
12593	O3-NaFe _(1/3–<i>x</i>) Ni _{1/3} Mn _{1/3} Al <i>_x</i> O ₂ Cathodes with Improved Air Stability for Na-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 33015-33023.	lb> 4.0	31
12594	Boosting ultrafast Li storage kinetics of conductive Nb-doped TiO2 functional layer coated on LiMn2O4. Journal of Alloys and Compounds, 2021, 870, 159404.	2.8	19

#	Article	IF	CITATIONS
12595	Fluorinated Polyâ€oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for Allâ€Solidâ€State Li/NMC811 Batteries. Angewandte Chemie - International Edition, 2021, 60, 18335-18343.	7.2	53
12596	Increasing the Lithium Ion Mobility in Poly(Phosphazene)-Based Solid Polymer Electrolytes through Tailored Cation Doping. Journal of the Electrochemical Society, 2021, 168, 070559.	1.3	4
12597	The Electrocatalyst based on LiVPO4F/CNT to enhance the electrochemical kinetics for high performance Li-S batteries. Chemical Engineering Journal, 2021, 415, 129053.	6.6	17
12598	Hyperbranched organosulfur polymer cathode materials for Li-S battery. Chemical Engineering Journal, 2021, 415, 129043.	6.6	29
12599	Carbon coated Si nanoparticles anchored to graphene sheets with excellent cycle performance and rate capability for Lithium-ion battery anodes. Surface and Coatings Technology, 2021, 418, 127262.	2.2	17
12600	Progress and perspective of the cathode/electrolyte interface construction in allâ€solidâ€state lithium batteries. , 2021, 3, 866-894.		59
12601	3D-Printed Complex Microstructures with a Self-Sacrificial Structure Enabled by Grayscale Polymerization and Ultrasonic Treatment. ACS Omega, 2021, 6, 18281-18288.	1.6	5
12602	Si/C particles on graphene sheet as stable anode for lithium-ion batteries. Journal of Materials Science and Technology, 2021, 80, 259-265.	5.6	40
12603	Achieving high initial coulombic efficiency and low voltage dropping in Li-rich Mn-based cathode materials by Metal-Organic frameworks-derived coating. Journal of Power Sources, 2021, 499, 229967.	4.0	27
12604	Low-cost and scalable preparation of nano-Si from photovoltaic waste silicon for high-performance Li-ion battery anode. Functional Materials Letters, 2021, 14, 2151033.	0.7	8
12605	Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries. Electrochimica Acta, 2021, 385, 138447.	2.6	25
12606	Controllable preparation and electrochemical properties of In-situ annealed LiCoO2 films with a specific crystalline orientation on stainless steel substrates. Solid State Ionics, 2021, 365, 115658.	1.3	5
12607	Identification of the different contributions of pseudocapacitance and quantum capacitance and their electronic-structure-based intrinsic transport kinetics in electrode materials. Chemical Physics Letters, 2021, 775, 138666.	1.2	29
12608	In-situ UV cured acrylonitrile grafted epoxidized natural rubber (ACN-g-ENR) – LiTFSI solid polymer electrolytes for lithium-ion rechargeable batteries. Reactive and Functional Polymers, 2021, 164, 104938.	2.0	8
12609	Tailored synthesis of molybdenum-selenide/selenium/sodium-molybdate hybrid composites as a promising anode for lithium-ion and sodium-ion batteries. Chemical Engineering Journal, 2021, 415, 128813.	6.6	9
12610	Currentâ€Đensity Regulating Lithium Metal Directional Deposition for Long Cycleâ€Life Li Metal Batteries. Angewandte Chemie, 2021, 133, 19455-19462.	1.6	2
12611	Progress and perspective of Li _{1 +} <scp>_xAl_xTi₂</scp> _{â€æ} (<scp>PC ceramic electrolyte in lithium batteries. InformaÄnÃ-Materiály, 2021, 3, 1195-1217.</scp>	C≺⊗su∎b>4<	/ѕ ыв >)

12612Enabling high-performance aqueous rechargeable Li-ion batteries through systematic optimization of
TiS2/LiFePO4 full cell. Applied Surface Science, 2021, 553, 149496.3.16

#	Article	IF	CITATIONS
12613	The Critical Role of Ionic Liquid Crystal on Mg2+ Ion Transport Properties in Magnesium Ion Batteries; Performance and Mechanism Approach. Journal of the Electrochemical Society, 2021, 168, 070519.	1.3	6
12614	Processable Potassium Metal Anode for Stable Batteries. Energy and Environmental Materials, 2022, 5, 1278-1284.	7.3	19
12615	Toward the Development of a High-Voltage Mg Cathode Using a Chromium Sulfide Host. , 2021, 3, 1213-1220.		12
12616	Surface Coating on a Separator with a Reductive Solid Li-Ion Conductor for Dendrite-Free Li-Metal Batteries. ACS Applied Energy Materials, 2021, 4, 8621-8628.	2.5	5
12617	Electrochemical Oscillation during the Galvanostatic Charging of Li ₄ Ti ₅ O ₁₂ in Li-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 14549-14558.	1.5	6
12618	Supercritical CO ₂ â€Assisted SiO <i>_x</i> /Carbon Multiâ€Layer Coating on Si Anode for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2104135.	7.8	59
12619	Review of Cathode in Advanced Liâ^'S Batteries: The Effect of Doping Atoms at Micro Levels. ChemElectroChem, 2021, 8, 3457-3471.	1.7	15
12620	Fluorinated Polyâ€oxalate Electrolytes Stabilizing both Anode and Cathode Interfaces for Allâ€Solidâ€State Li/NMC811 Batteries. Angewandte Chemie, 2021, 133, 18483-18491.	1.6	13
12621	Exploring mechanical failure of porous electrode meso structure using the discrete element method. Extreme Mechanics Letters, 2021, 46, 101252.	2.0	8
12622	Promises and Challenges of the Practical Implementation of Prelithiation in Lithiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2101565.	10.2	112
12623	High-rate performance magnesium batteries achieved by direct growth of honeycomb-like V2O5 electrodes with rich oxygen vacancies. Nano Research, 2023, 16, 4880-4887.	5.8	24
12624	An ASIC-Based Miniaturized System for Online Multi-Measurand Monitoring of Lithium-Ion Batteries. Batteries, 2021, 7, 45.	2.1	11
12625	Ultrafine CoP nanoparticles encapsulated in N/P dual-doped carbon cubes derived from 7,7,8,8-tetracyanoquinodimethane for lithium-ion batteries. Applied Surface Science, 2021, 555, 149716.	3.1	9
12626	Reliability analysis of a multi-stack solid oxide fuel cell from a systems engineering perspective. Chemical Engineering Science, 2021, 238, 116571.	1.9	6
12627	Enhancing electrochemical performance of SnO2 anode with humic acid modification. Transactions of Nonferrous Metals Society of China, 2021, 31, 2062-2073.	1.7	7
12628	Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coordination Chemistry Reviews, 2021, 438, 213872.	9.5	51
12629	Residue grouping order reduction method in solid-phase lithium-ion battery models. Journal of Applied Electrochemistry, 2021, 51, 1635-1649.	1.5	4
12630	Organic Solvent Free Process to Fabricate High Performance Silicon/Graphite Composite Anode. Journal of Composites Science, 2021, 5, 188.	1.4	7

#	Article	IF	CITATIONS
12631	In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InformaÄnÃ-Materiály, 2022, 4, .	8.5	93
12632	Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy, 2021, 85, 105958.	8.2	110
12633	Cobalt nanoparticles encapsulated by nitrogen-doped carbon framework as anode materials for high performance lithium-ion capacitors. Journal of Electroanalytical Chemistry, 2021, 893, 115326.	1.9	7
12634	Electrochemical study on nickel aluminum layered double hydroxides as high-performance electrode material for lithium-ion batteries based on sodium alginate binder. Journal of Solid State Electrochemistry, 2022, 26, 49-61.	1.2	12
12636	Supersized Graphitic Tube@MoS ₂ Pipelines with Abundant Ion Channels Synthesized by Selective Deposition toward High-Performance Anodes. ACS Applied Energy Materials, 2021, 4, 6866-6873.	2.5	5
12637	Mechanistic Insights into Interactions of Polysulfides at VS ₂ Interfaces in Na–S Batteries: A DFT Study. ACS Applied Materials & Interfaces, 2021, 13, 35848-35855.	4.0	28
12638	(NH 4) 2 V 7 O 16 Microbricks as a Novel Anode for Aqueous Lithiumâ€Ion Battery with Good Cyclability. Chemistry - A European Journal, 2021, 27, 12341-12351.	1.7	11
12639	Adjusting the Covalency of Metal–Oxygen Bonds in LaCoO ₃ by Sr and Fe Cation Codoping to Achieve Highly Efficient Electrocatalysts for Aprotic Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2021, 13, 33133-33146.	4.0	25
12640	Controlled synthesis of Li3VO4/C nanofibers as anode for Li-ion batteries. Ionics, 2021, 27, 4705-4712.	1.2	4
12641	A Review of Potential Ferrous Metal Lathe Waste as A Raw Material of LiFePO ₄ . Materials Science Forum, 0, 1044, 41-58.	0.3	0
12642	Dualâ€Ion NiNc Battery: A Sustainable Revolution for Sodium Organic Batteries. Batteries and Supercaps, 2021, 4, 1605-1610.	2.4	5
12643	Au-modified 3D carbon cloth as a dendrite-free framework for Li metal with excellent electrochemical stability. Journal of Alloys and Compounds, 2021, 871, 159491.	2.8	10
12644	Porous CoP@RGO with pseudocapacitance characteristics for lithium ion storage. Scripta Materialia, 2021, 201, 113983.	2.6	8
12645	Hierarchically porous carbon derived from tobacco waste by one-step molten salt carbonization for supercapacitor. Carbon Letters, 2022, 32, 251-263.	3.3	18
12646	Facile synthesis of V2O3@N-doped carbon nanosheet arrays on nickel foam as free-standing electrode for high performance lithium ion batteries. Catalysis Today, 2021, 374, 117-123.	2.2	13
12647	Weaving 3D highly conductive hierarchically interconnected nanoporous web by threading MOF crystals onto multi walled carbon nanotubes for high performance Li–Se battery. Journal of Energy Chemistry, 2021, 59, 396-404.	7.1	43
12648	Surface Modification and Functional Structure Space Design to Improve the Cycle Stability of Silicon Based Materials as Anode of Lithium Ion Batteries. Coatings, 2021, 11, 1047.	1.2	5
12649	Mitigation and In Situ Probing of Volume Expansion in Silicon/Graphene Hybrid Anodes for Highâ€Capacity, Highâ€Rateâ€Capable Lithiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 202 2, 2100125.	212.8	5

#	Article	IF	CITATIONS
12650	Controlled synthesis of core-shell Fe2O3@N-C with ultralong cycle life for lithium-ion batteries. Chinese Chemical Letters, 2022, 33, 1037-1041.	4.8	21
12651	Recent Advances in Application of Ionic Liquids in Electrolyte of Lithium Ion Batteries. Journal of Energy Storage, 2021, 40, 102659.	3.9	80
12652	Methylcellulose/Polymethyl Methacrylate/Al ₂ O ₃ Composite Polymer Matrix towards Niâ€Rich Cathode/Lithium Metal Battery. Macromolecular Chemistry and Physics, 2022, 223, 2100234.	1.1	1
12653	Molecular Layer Deposition of Alucone Thin Film on LiCoO ₂ to Enable High Voltage Operation. Batteries and Supercaps, 2021, 4, 1739-1748.	2.4	8
12654	Effects of the Nb ₂ O ₅ -Modulated Surface on the Electrochemical Properties of Spinel LiMn ₂ O ₄ Cathodes. ACS Applied Energy Materials, 2021, 4, 8350-8359.	2.5	14
12655	Recent Progress in Amorphous Carbonâ€Based Materials for Anodes of Sodiumâ€Ion Batteries: Synthesis Strategies, Mechanisms, and Performance. ChemSusChem, 2021, 14, 3693-3723.	3.6	32
12656	Oxygen electrochemistry in Liâ€O ₂ batteries probed by in situ surfaceâ€enhanced Raman spectroscopy. SusMat, 2021, 1, 345-358.	7.8	31
12657	Optimize the surface of the Li-rich cathode materials with lithium phosphate and polyaniline to improve the electrochemical performance. Ionics, 2021, 27, 4649-4661.	1.2	2
12658	Insight into SEI Growth in Li-Ion Batteries using Molecular Dynamics and Accelerated Chemical Reactions. Journal of Physical Chemistry C, 2021, 125, 18588-18596.	1.5	24
12659	Functional separator with a lightweight carbon-coating for stable, high-capacity organic lithium batteries. Chemical Engineering Journal, 2021, 418, 129404.	6.6	13
12660	Interfacial Conductivity Enhancement and Pore Confinement Conductivity-Lowering Behavior inside the Nanopores of Solid Silica-gel Nanocomposite Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 40543-40551.	4.0	9
12661	Rechargeable anion-shuttle batteries for low-cost energy storage. CheM, 2021, 7, 1993-2021.	5.8	70
12662	Engineering Nanostructured Silicon and its Practical Applications in Lithiumâ€lon Batteries: A Critical Review. Energy Technology, 2021, 9, 2100400.	1.8	9
12663	A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38194-38201.	4.0	21
12664	Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. National Science Review, 2022, 9, nwab146.	4.6	27
12665	Interface Improvement of Li _{6.4} La ₃ Zr _{1.6} Ta _{0.6} O ₁₂ @La ₂ Sn <s and Cathode Transfer Printing Technology with Splendid Electrochemical Performance for Solid-State Lithium Batteries. ACS Applied Materials & amp: Interfaces. 2021. 13. 39414-39423.</s 	ub>24.0	≫O ₇
12666	Enhancing high cycle stability of Ni-rich LiNi0.94Co0.04Al0.02O2 layered cathode material. lonics, 2021, 27, 4619-4628.	1.2	4
12667	Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives. Small Science, 2021, 1, 2100058.	5.8	81

#	Article	IF	CITATIONS
12668	Matching Poly(vinylidene fluoride) and β″-Al ₂ O ₃ for Hybrid Electrolyte Membrane for Advanced Solid-State Sodium Batteries. Journal of the Electrochemical Society, 2021, 168, 080541.	1.3	4
12669	Effects of Photochemical Oxidation of the Carbonaceous Additives on Li–S Cell Performance. ACS Applied Materials & Interfaces, 2021, 13, 41517-41523.	4.0	3
12670	Recent Advances and Applications Toward Emerging Lithium–Sulfur Batteries: Working Principles and Opportunities. Energy and Environmental Materials, 2022, 5, 777-799.	7.3	106
12671	A Review on Li ⁺ /H ⁺ Exchange in Garnet Solid Electrolytes: From Instability against Humidity to Sustainable Processing in Water. ChemSusChem, 2021, 14, 4397-4407.	3.6	30
12672	Micro-nano structured VNb9O25 anode with superior electronic conductivity for high-rate and long-life lithium storage. Journal of Materials Science and Technology, 2021, 83, 66-74.	5.6	12
12673	Ultrafine ZnSe Encapsulated in Nitrogen-Doped Porous Carbon Nanofibers for Superior Na-Ion Batteries with a Long Lifespan and Low-Temperature Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 11705-11713.	3.2	31
12674	Transport numbers in the basic 1-butyl-3-methylimidazolium chloroaluminate ionic liquid. Journal of Molecular Liquids, 2021, 335, 116147.	2.3	8
12675	Improving cycling stability of Bi-encapsulated carbon fibers for lithium/sodium-ion batteries by Fe2O3 pinning. Chinese Chemical Letters, 2021, 32, 2459-2462.	4.8	18
12676	Mussel-pearl-inspired design of Si/C composite for ultrastable lithium storage anodes. Journal of Alloys and Compounds, 2021, 872, 159717.	2.8	15
12677	Spanish-dagger shaped CoP blooms decorated N-doped carbon branch anode for high-performance lithium and sodium storage. Electrochimica Acta, 2021, 388, 138628.	2.6	23
12678	Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co 2+ /Co 3+ Redox and Sodium‧ite Doping for Layered Cathode Materials. Angewandte Chemie, 2021, 133, 22197-22205.	1.6	1
12679	Mass-Zero constrained dynamics and statistics for the shell model in magnetic field. European Physical Journal B, 2021, 94, 1.	0.6	3
12680	pH switch over a cause for high efficiency allâ€aqueous CuSO 4 /[Fe(CN) 6] 3â^' redox flow battery. International Journal of Energy Research, 2021, 45, 19226.	2.2	0
12681	Fracture behavior of solid electrolyte LATP material based on micro-pillar splitting method. Journal of the European Ceramic Society, 2021, 41, 5240-5247.	2.8	8
12682	Comparative Studies of Polycrystal and Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ in Terms of Physical and Electrochemical Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 11748-11757.	3.2	11
12683	Silicon/Spent Coffee Waste-derived Carbon Composite as an Efficient Anode for Li-ion Batteries. International Journal of Electrochemical Science, 2021, 16, 210836.	0.5	1
12684	Boosting the cell performance of the SiO _{<i>x</i>} @C anode material via rational design of a Siâ€valence gradient. , 2022, 4, 129-141.		22
12685	The prepared and electrochemical property of Mg-doped LiMn0.6Fe0.4PO4/C as cathode materials for lithium-ion batteries. Ionics, 2021, 27, 4629-4637.	1.2	9

#	Article	IF	CITATIONS
12686	Encapsulating Cobalt Nanoparticles in Interconnected Nâ€Doped Hollow Carbon Nanofibers with Enriched CoNC Moiety for Enhanced Oxygen Electrocatalysis in Znâ€Air Batteries. Advanced Science, 2021, 8, e2101438.	5.6	104
12687	Ironâ€Based Layered Cathodes for Sodiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 1657-1679.	2.4	19
12688	Xylitol-assisted ball milling of graphite to prepare long-cycle and high-capacity graphene nanosheet as lithium-ion anode materials. Journal of Materials Science, 2021, 56, 18200-18209.	1.7	8
12689	Superior carbon black: High-performance anode and conducting additive for rechargeable Li- and Na-ion batteries. Chemical Engineering Journal, 2021, 417, 129242.	6.6	15
12690	Cation- and pH-Dependent Hydrogen Evolution and Oxidation Reaction Kinetics. Jacs Au, 2021, 1, 1674-1687.	3.6	109
12691	Extending Ï€â€Conjugation and Integrating Multiâ€Redox Centers into One Molecule for Highâ€Capacity Organic Cathodes. ChemSusChem, 2021, 14, 3858-3866.	3.6	17
12692	Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode. Journal of Alloys and Compounds, 2021, 873, 159799.	2.8	16
12693	Nsutite-type VO2 microcrystals as highly durable cathode materials for aqueous zinc-Ion batteries. Chemical Engineering Journal, 2021, 417, 128408.	6.6	52
12694	The Role of Alkali Cation Intercalates on the Electrochemical Characteristics of Nb ₂ CT _{<i>X</i>} MXene for Energy Storage. Chemistry - A European Journal, 2021, 27, 13235-13241.	1.7	9
12695	Nanocelluloseâ€Based Functional Materials: From Chiral Photonics to Soft Actuator and Energy Storage. Advanced Functional Materials, 2021, 31, 2104991.	7.8	128
12696	Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. Chemical Engineering Journal, 2021, 418, 129409.	6.6	35
12697	A New Germanium-Based Anode Material with High Stability for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 11883-11890.	3.2	12
12698	Facile synthesis of spinel LiNi0.5Mn1.5O4 as 5.0ÂV-class high-voltage cathode materials for Li-ion batteries. Chinese Journal of Chemical Engineering, 2021, 39, 247-254.	1.7	2
12699	Hydrogenated borophene/blue phosphorene: A novel two-dimensional donor-acceptor heterostructure with shrunken interlayer distance as a potential anode material for Li/Na ion batteries. Journal of Physics and Chemistry of Solids, 2021, 155, 110108.	1.9	8
12700	Solid-electrolyte interphase from nanowood for high-performance Li-metal batteries. Matter, 2021, 4, 2632-2634.	5.0	1
12701	Multifold Electrochemical Protons and Zinc Ion Storage Behavior in Copper Vanadate Cathodes. ACS Applied Energy Materials, 2021, 4, 10197-10202.	2.5	4
12702	Effect of Cu Ion Concentration on Microstructures and Mechanical Properties of Nanotwinned Cu Foils Fabricated by Rotary Electroplating. Nanomaterials, 2021, 11, 2135.	1.9	21
12703	A high-performance flexible aqueous silver–zinc rechargeable battery based on AgNP/CNT-graphite paper. Composites Communications, 2021, 26, 100728.	3.3	13

#	Article	IF	Citations
12704	Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Materials, 2021, 39, 365-394.	9.5	139
12705	Interface engineering of Fe3Se4/FeSe heterostructure encapsulated in electrospun carbon nanofibers for fast and robust sodium storage. Chemical Engineering Journal, 2021, 417, 129279.	6.6	73
12706	Applying Machine Learning to Rechargeable Batteries: From the Microscale to the Macroscale. Angewandte Chemie - International Edition, 2021, 60, 24354-24366.	7.2	67
12707	Electrospinning oxygen-vacant TiNb24O62 nanowires simultaneously boosts electrons and ions transmission capacities toward superior lithium storage. Electrochimica Acta, 2021, 388, 138656.	2.6	14
12708	MOF derived TiO2 with reversible magnesium pseudocapacitance for ultralong-life Mg metal batteries. Chemical Engineering Journal, 2021, 418, 128491.	6.6	28
12709	Fundamental Understanding and Effect of Anionic Chemistry in Zinc Batteries. Energy and Environmental Materials, 2022, 5, 186-200.	7.3	18
12710	Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance. Journal of the American Chemical Society, 2021, 143, 14097-14105.	6.6	30
12711	Cobalt based selenides nanocrystals modified with multifunctional carbon nanotubes for high performance lithium ion batteries. Solid State Ionics, 2021, 366-367, 115660.	1.3	3
12712	NiCo2S4/nitrogen and sulfur dual-doped three-dimensional holey-reduced graphene oxide composite architectures as high-rate battery-type cathode materials for hybrid supercapacitors. Vacuum, 2021, 190, 110302.	1.6	27
12713	Engineering the Si Anode Interface via Particle Surface Modification: Embedded Organic Carbonates Lead to Enhanced Performance. ACS Applied Energy Materials, 2021, 4, 8193-8200.	2.5	11
12714	Electrochemically Inert Li2MnO3: The Key to Improving the Cycling Stability of Li-Rich Manganese Oxide Used in Lithium-Ion Batteries. Materials, 2021, 14, 4751.	1.3	0
12715	A Micrometer‣ized Silicon/Carbon Composite Anode Synthesized by Impregnation of Petroleum Pitch in Nanoporous Silicon. Advanced Materials, 2021, 33, e2103095.	11.1	99
12716	Study of the Redox Potentials of Benzoquinone and Its Derivatives by Combining Electrochemistry and Computational Chemistry. Journal of Chemical Education, 2021, 98, 3019-3025.	1.1	4
12717	Synergy of Highly Reversible ω-Li ₃ V ₂ O ₅ Anodes and Fluorine-Containing Additive Electrolytes Promises Low-Temperature-Tolerant Li-Ion Batteries. , 2021, 3, 1394-1401.		12
12718	Advanced electrode processing of lithium ion batteries: A review of powder technology in battery fabrication. Particuology, 2021, 57, 56-71.	2.0	79
12719	Fabrication of Elastic Cyclodextrin-Based Triblock Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 9402-9411.	2.5	16
12720	Applying Machine Learning to Rechargeable Batteries: From the Microscale to the Macroscale. Angewandte Chemie, 2021, 133, 24558-24570.	1.6	11
12721	Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery. Electrochimica Acta, 2021, 387, 138456.	2.6	6

# 12722	ARTICLE Combustion-derived CuO nanoparticles: Application studies on lithium-ion battery and photocatalytic activities. Inorganic Chemistry Communication, 2021, 130, 108689.	IF 1.8	Citations
12723	Advances in solid lithium ion electrolyte based on the composites of polymer and <scp>LLTO</scp> / <scp>LLZO</scp> of rare earth oxides. Engineering Reports, 2022, 4, e12448.	0.9	8
12724	Synthesis of rod-like ternary Cu(Cd)-In-S and quaternary Cu-Cd-In-S by controlled ion exchange of MIL-68(In) derived indium sulfide for high energy-storage capacitor. Synthetic Metals, 2021, 278, 116815.	2.1	5
12725	Direct Recycling of Blended Cathode Materials by Froth Flotation. Energy Technology, 2021, 9, 2100468.	1.8	26
12726	A two-step hydrothermal synthesis of TiO2/C/FeS2 composite as high performance anode for lithium ion batteries. Electrochimica Acta, 2021, 386, 138470.	2.6	25
12727	Electrochemical oxidation of π-π coupling organic cathode for enhanced zinc ion storage. Chemical Engineering Journal, 2021, 417, 129245.	6.6	15
12728	A novel coral-like garnet for high-performance PEO-based all solid-state batteries. Science China Materials, 2022, 65, 364-372.	3.5	20
12729	Silicon nanoparticles encapsulated in multifunctional crosslinked nano-silica/carbon hybrid matrix as a high-performance anode for Li-ion batteries. Chemical Engineering Journal, 2021, 418, 129468.	6.6	57
12730	Dependence of Linker Length and Composition on Ionic Conductivity and Lithium Deposition in Single-Ion Conducting Network Polymers. Macromolecules, 2021, 54, 7582-7589.	2.2	11
12731	A Multifunctional Dualâ€Salt Localized Highâ€Concentration Electrolyte for Fast Dynamic Highâ€Voltage Lithium Battery in Wide Temperature Range. Advanced Energy Materials, 2021, 11, 2101775.	10.2	97
12732	Polaron-Assisted Charge Transport in Li-Ion Battery Anode Materials. ACS Applied Energy Materials, 2021, 4, 8583-8591.	2.5	4
12733	Liquidâ€Based Janus Electrolyte for Sustainable Redox Mediation in Lithium–Oxygen Batteries. Advanced Energy Materials, 2021, 11, 2102096.	10.2	9
12734	Recent progress in rate and cycling performance modifications of vanadium oxides cathode for lithium-ion batteries. Journal of Energy Chemistry, 2021, 59, 343-363.	7.1	52
12735	Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Research, 2022, 15, 2052-2059.	5.8	32
12736	Issues and Advances in Scaling up Sulfide-Based All-Solid-State Batteries. Accounts of Chemical Research, 2021, 54, 3390-3402.	7.6	97
12737	Double‧helled Hollow SiO ₂ @N Nanofiber Boosts the Lithium Storage Performance of [PMo ₁₂ O ₄₀] ^{3â^'} . Chemistry - A European Journal, 2021, 27, 13367-13375.	1.7	5
12738	Stabilizing Transition Metal Vacancy Induced Oxygen Redox by Co ²⁺ /Co ³⁺ Redox and Sodium‣ite Doping for Layered Cathode Materials. Angewandte Chemie - International Edition, 2021, 60, 22026-22034.	7.2	39
12739	Mo ₂ N–W ₂ N Heterostructures Embedded in Spherical Carbon Superstructure as Highly Efficient Polysulfide Electrocatalysts for Stable Roomâ€Temperature Na–S Batteries. Advanced Materials, 2021, 33, e2103846.	11.1	78

#	Article	IF	CITATIONS
12740	Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources, 2021, 502, 229919.	4.0	92
12741	Chitin and chitosan based biopolymer derived electrode materials for supercapacitor applications: A critical review. Journal of Industrial and Engineering Chemistry, 2021, 104, 155-171.	2.9	82
12742	Porous carbon assisted carbon nanotubes supporting Fe3O4 nanoparticles for improved lithium storage. Ceramics International, 2021, 47, 26092-26099.	2.3	21
12743	Negatively charged polymeric interphase for regulated uniform lithium-ion transport in stable lithium metal batteries. Nano Energy, 2021, 87, 106214.	8.2	18
12744	Hard Carbon Anodes for Nextâ€Generation Liâ€lon Batteries: Review and Perspective. Advanced Energy Materials, 2021, 11, 2101650.	10.2	213
12745	Nanostructured reactive alumina particles coated with water-soluble binder on the polyethylene separator for highly safe lithium-ion batteries. Journal of Power Sources, 2021, 506, 230119.	4.0	24
12746	Monodisperse core-shell Li4Ti5O12@C submicron particles as high-rate anode materials for lithium-ion batteries. Electrochimica Acta, 2021, 390, 138874.	2.6	11
12747	Airâ€stable inorganic solidâ€state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. InformaÄnÃ-Materiály, 2022, 4, .	8.5	71
12748	Structure control in VNxOy by hydrogen bond association extraction for enhanced zinc ion storage. Electrochimica Acta, 2021, 389, 138722.	2.6	6
12749	A Unique 3D Structured NiMoO ₄ /MoO ₃ Heterojunction for Enhanced Supercapacitor Performance. Energy & amp; Fuels, 2021, 35, 16144-16151.	2.5	20
12750	Novel K2Ti8O17 Anode via Na+/Al3+ Co-Intercalation Mechanism for Rechargeable Aqueous Al-Ion Battery with Superior Rate Capability. Nanomaterials, 2021, 11, 2332.	1.9	3
12751	Operando Measurements of Electrolyte Li-ion Concentration during fast charging with FTIR/ATR. Journal of the Electrochemical Society, 2021, 168, 090502.	1.3	7
12752	An armor-like artificial solid electrolyte interphase layer for high performance lithium-sulfur batteries. Applied Materials Today, 2021, 24, 101108.	2.3	4
12753	Integrated Covalent Organic Framework/Carbon Nanotube Composite as Liâ€ion Positive Electrode with Ultraâ€High Rate Performance. Advanced Energy Materials, 2021, 11, 2101880.	10.2	73
12754	From High―to Lowâ€Temperature: The Revival of Sodiumâ€Beta Alumina for Sodium Solidâ€State Batteries. Batteries and Supercaps, 2022, 5, .	2.4	29
12755	Employing synergetic effect of ZnSe quantum dots and layered Ni(OH) ₂ to boost the performance of lithium–sulfur cathodes. Nanotechnology, 2021, 32, 505406.	1.3	10
12756	A Pseudocapacitor from Redox Active Covalent Organic Framework. Journal of the Electrochemical Society, 2021, 168, 100501.	1.3	12
12757	A Self-Healing Anode for Li-Ion Batteries by Rational Interface Modification of Room-Temperature Liquid Metal. ACS Applied Energy Materials, 2021, 4, 12224-12231.	2.5	18

#	Article	IF	CITATIONS
12758	In Situ and Operando Analyses of Reaction Mechanisms in Vanadium Oxides for Liâ€, Naâ€, Znâ€, and Mgâ€lons Batteries. Advanced Materials Technologies, 2022, 7, 2100799.	3.0	24
12759	Algal residues-engaged formation of novel WVO4/V3Se4 hybrid nanostructure with carbon fiber confinement for enhanced long-term cycling stability in sodium/potassium storage. Journal of Alloys and Compounds, 2021, 892, 162177.	2.8	6
12760	Distinct Oxygen Redox Activities in Li ₂ MO ₃ (M = Mn, Ru, Ir). ACS Energy Letters, 2021, 6, 3417-3424.	8.8	33
12761	Enhanced cycling performance of Li ion batteries based on Ni-rich cathode materials with LaPO4/Li3PO4 co-modification. Ceramics International, 2021, 47, 34585-34594.	2.3	8
12762	Superior Sodium Storage Properties in the Anode Material NiCr ₂ S ₄ for Sodiumâ€Ion Batteries: An Xâ€ray Diffraction, Pair Distribution Function, and Xâ€ray Absorption Study Reveals a Conversion Mechanism via Nickel Extrusion. Advanced Materials, 2021, 33, e2101576.	11.1	25
12763	Impedance-based diagnosis of internal mechanical damage for large-format lithium-ion batteries. Energy, 2021, 230, 120855.	4.5	15
12764	Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor. Journal of Power Sources, 2021, 506, 230197.	4.0	43
12765	A micromechanical approach to deformation and damage of nickel foam used in conductive layer of lithium-ion battery. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141895.	2.6	5
12766	Dual-confined SiO encapsulated in PVA derived carbon layer and chitin derived N-doped carbon nanosheets for high-performance lithium storage. Chemical Engineering Journal, 2021, 420, 129754.	6.6	24
12767	Carbon-based slurry electrodes for energy storage and power supply systems. Energy Storage Materials, 2021, 40, 461-489.	9.5	36
12768	Sifting weakly-coordinated solvents within solvation sheath through an electrolyte filter for high-voltage lithium-metal batteries. Energy Storage Materials, 2022, 44, 360-369.	9.5	14
12769	Quantitative analysis on the heat transfer modes in the process of thermal runaway propagation in lithium-ion battery pack under confined and semi-confined space. International Journal of Heat and Mass Transfer, 2021, 176, 121483.	2.5	37
12770	High Energy Density Solid State Lithium Metal Batteries Enabled by Subâ€5 µm Solid Polymer Electrolytes. Advanced Materials, 2021, 33, e2105329.	11.1	123
12771	EQCM study of intercalation processes into electrodeposited MnO2 electrode in aqueous zinc-ion battery electrolyte. Journal of Alloys and Compounds, 2022, 892, 162142.	2.8	11
12772	High-Capacity Anode Material for Lithium-Ion Batteries with a Core–Shell NiFe ₂ O ₄ /Reduced Graphene Oxide Heterostructure. ACS Omega, 2021, 6, 25269-25276.	1.6	10
12773	Abrasive Blasting of Lithium Metal Surfaces Yields Clean and 3D‣tructured Lithium Metal Anodes with Superior Properties. Energy Technology, 2021, 9, 2100455.	1.8	3
12774	Facile synthesis of dual-phase lithium titanate nanowires as anode materials for lithium-ion battery. Journal of Alloys and Compounds, 2021, 875, 160038.	2.8	12
12775	Ultrafast anchored SnO2 nanoparticles revealed capacity fade and hysteresis abated stable cycling performance for high-rate lithium-ion batteries. Carbon, 2021, 185, 608-618.	5.4	5

#	Article	IF	CITATIONS
12776	Vertical growth of nickel sulfide nanosheets on graphene oxide for advanced sodium-ion storage. Carbon, 2021, 182, 194-202.	5.4	24
12777	Uniformly growing Co9S8 nanoparticles on flexible carbon foam as a free-standing anode for lithium-ion storage devices. Carbon, 2021, 182, 404-412.	5.4	29
12778	Recent progress of asymmetric solid-state electrolytes for lithium/sodium-metal batteries. EnergyChem, 2021, 3, 100058.	10.1	47
12779	Building more secure LMBs with gel polymer electrolytes based on dual matrices of PAN and HPMC by improving compatibility with anode and tuning lithium ion transference. Electrochimica Acta, 2021, 391, 138950.	2.6	7
12780	Lithium trapping in germanium nanopores during delithiation process. Applied Materials Today, 2021, 24, 101140.	2.3	1
12781	In situ AFM of interfacial evolution at magnesium metal anode. Journal of Electroanalytical Chemistry, 2021, 896, 115301.	1.9	6
12782	Real-time monitoring of the lithiation process in organic electrode 7,7,8,8-tetracyanoquinodimethane by in situ EPR. Journal of Energy Chemistry, 2021, 60, 9-15.	7.1	17
12783	Stable Interface Chemistry and Multiple Ion Transport of Composite Electrolyte Contribute to Ultraâ€ong Cycling Solidâ€State LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ /Lithium Metal Batteries. Angewandte Chemie. 2021. 133. 24873-24880.	1.6	6
12784	Facile Fabrication of High-Performance Li-Ion Battery Carbonaceous Anode from Li-Ion Battery Waste. Journal of the Electrochemical Society, 2021, 168, 090513.	1.3	5
12785	EMIMBF4 in ternary liquid mixtures of water, dimethyl sulfoxide and acetonitrile as "tri-solvent-in-salt―electrolytes for high-performance supercapacitors operating at -70°C. Energy Storage Materials, 2021, 40, 368-385.	9.5	25
12786	A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 597, 334-344.	5.0	39
12787	Effects of Ga–Ba Co-doping on the morphology and conductivity of Li7La3Zr2O12 electrolyte synthesized by sol-gel method. Ceramics International, 2022, 48, 963-970.	2.3	15
12788	Weyl semimetal orthorhombic Td-WTe ₂ as an electrode material for sodium- and potassium-ion batteries. Nanotechnology, 2021, 32, 505402.	1.3	12
12789	Epoxy-Based Interlocking Membranes for All Solid-State Lithium Ion Batteries: The Effects of Amine Curing Agents on Electrochemical Properties. Polymers, 2021, 13, 3244.	2.0	5
12790	Artificial cathode solid electrolyte interphase to endow highly stable lithium storage of FeF2 nanocrystals. Science China Materials, 2022, 65, 629-636.	3.5	7
12791	Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 3719-3724.	8.8	55
12792	Multifunctional High-Efficiency Additive with Synergistic Anion and Cation Coordination for High-Performance LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46783-46793.	4.0	26
12793	Origins of Lithium/Sodium Reverse Permeability Selectivity in 12-Crown-4-Functionalized Polymer Membranes. ACS Macro Letters, 2021, 10, 1167-1173.	2.3	13

#	Article	IF	CITATIONS
12794	Recovery of valuable metals and modification of cathode materials from spent lithium-ion batteries. Journal of Alloys and Compounds, 2021, 874, 159853.	2.8	14
12795	Stable Interface Chemistry and Multiple Ion Transport of Composite Electrolyte Contribute to Ultraâ€long Cycling Solidâ€5tate LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ /Lithium Metal Batteries. Angewandte Chemie - International Edition. 2021. 60. 24668-24675.	7.2	124
12796	In Situ Constructed Ionicâ€Electronic Dualâ€Conducting Scaffold with Reinforced Interface for Highâ€Performance Sodium Metal Anodes. Small, 2021, 17, e2104021.	5.2	17
12797	Highly ordered micro-meso-macroporous Co-N-doped carbon polyhedrons from bimetal-organic frameworks for rechargeable Zn-air batteries. Journal of Colloid and Interface Science, 2021, 598, 83-92.	5.0	25
12798	Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Science China Chemistry, 2021, 64, 1888-1907.	4.2	17
12799	Regulation of an Inner Helmholtz Plane by hierarchical porous biomass activated carbon for stable cathode electrolyte interphase films. Vacuum, 2021, 191, 110331.	1.6	18
12800	Polyvinylpyrrolidone assisted transformation of Cu-MOF into N/P-co-doped Octahedron carbon encapsulated Cu3P nanoparticles as high performance anode for lithium ion batteries. Journal of Colloid and Interface Science, 2022, 608, 227-238.	5.0	21
12801	In-situ electrochemical induced artificial solid electrolyte interphase for MnO@C nanocomposite enabling long-lived aqueous zinc-ion batteries. Chemical Engineering Journal, 2022, 430, 132673.	6.6	26
12802	Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review. Energies, 2021, 14, 6121.	1.6	11
12803	Multiple Network Binders via Dual Cross-Linking for Silicon Anodes of Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10306-10313.	2.5	26
12804	Solvated Ionicâ€Liquid Incorporated Soft Flexible Crossâ€Linked Network Polymer Electrolytes for Safer Lithium Ion Secondary Batteries. Macromolecular Chemistry and Physics, 2022, 223, 2100317.	1.1	8
12805	Harnessing the Volume Expansion of MoS ₃ Anode by Structure Engineering to Achieve High Performance Beyond Lithiumâ€Based Rechargeable Batteries. Advanced Materials, 2021, 33, e2106232.	11.1	83
12806	Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Materials, 2021, 40, 329-336.	9.5	85
12807	A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. Advanced Materials, 2021, 33, e2105480.	11.1	25
12808	A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. EScience, 2021, 1, 60-68.	25.0	72
12809	Surface-Functionalized Separator for Stable and Reliable Lithium Metal Batteries: A Review. Nanomaterials, 2021, 11, 2275.	1.9	13
12810	Selectivity in Yttrium Manganese Oxide Synthesis via Local Chemical Potentials in Hyperdimensional Phase Space. Journal of the American Chemical Society, 2021, 143, 15185-15194.	6.6	25
12811	High Salt-Content Plasticized Flame-Retardant Polymer Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 44844-44859.	4.0	22

		CITATION RE	PORT	
#	Article		IF	Citations
12812	Ionic Transport and Thermodynamic Interaction in Precision Polymer Blend Electrolytes Batteries. Macromolecular Chemistry and Physics, 0, , 2100269.	for Lithium	1.1	6
12813	Dextran Sulfate Lithium as Versatile Binder to Stabilize Highâ€Voltage LiCoO _{2Advanced Energy Materials, 2021, 11, 2101864.}	ub> to 4.6 V.	10.2	80
12814	Microscopic dynamics of lithium diffusion in single crystal of the solid-state electrolyte xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">La</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mo>/<mml:mrow><mml:mn>3</mml:mn><mml:mi>xmathvariant="normal">TiO</mml:mi><mml:mn>3</mml:mn></mml:mrow></mml:mo></mml:mrow></mml:msub>	mml:mo> <mml:mn>3nml:mi><td>mlunn><n ml:msub></n </td><td>nmd:mo>â^'< <mml:msub< td=""></mml:msub<></td></mml:mn>	mlunn> <n ml:msub></n 	nmd:mo>â^'< <mml:msub< td=""></mml:msub<>
12815	Design of high-energy-dissipation, deformable binder for high-areal-capacity silicon and lithium-ion batteries. Chemical Engineering Journal, 2021, 420, 129991.		6.6	37
12816	An advance review of solid-state battery: Challenges, progress and prospects. Sustainal and Technologies, 2021, 29, e00297.	ole Materials	1.7	74
12817	Impact of Surface Defects on LaNiO ₃ Perovskite Electrocatalysts for the C Evolution Reaction. Chemistry - A European Journal, 2021, 27, 14418-14426.	xygen	1.7	19
12818	V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries Engineering Journal, 2021, 419, 129607.	s. Chemical	6.6	89
12819	Layered Tin Phosphide Composites as Promising Anodes for Lithium-Ion Batteries. ACS Materials, 2021, 4, 11306-11313.	Applied Energy	2.5	10
12820	Electrodeâ€Less MnO ₂ â€Metal Batteries with Deposition and Stripping Cl 17, e2103921.	nemistry. Small, 2021,	5.2	35
12821	Three-dimensional alloy interface between Li6.4La3Zr1.4Ta0.6O12 and Li metal to achie cycling stability of all-solid-state battery. Journal of Power Sources, 2021, 505, 230062.	eve excellent	4.0	42
12822	Threeâ€dimensional printing of grapheneâ€based materials for energy storage and con 2021, 1, 304-323.	version. SusMat,	7.8	78
12823	Fe-doped CoS2 nanospheres decorated by reduced graphene oxide nanosheets as ultra for advanced sodium-ion capacitors. Journal of Electroanalytical Chemistry, 2021, 901,	high-rate anodes 115740.	1.9	3
12824	Eu-based anolytes for high-voltage and long-lifetime aqueous flow batteries. Journal of I Chemistry, 2021, 60, 368-375.	Inergy	7.1	3
12825	The free-standing N-doped Murray carbon framework with the engineered quasi-optima for high–Se-loading Li/Na–Se batteries at elevated temperature. Materials Today Er 100808.		2.5	8
12826	Physics-informed neural networks for electrode-level state estimation in lithium-ion bat Journal of Power Sources, 2021, 506, 230034.	eries.	4.0	49
12827	Constructing a Reinforced and Gradient Solid Electrolyte Interphase on Si Nanoparticle: Thiolâ€Ene Click Reaction for Long Cycling Lithiumâ€Ion Batteries. Small, 2021, 17, e2	s by Inâ €S itu 102316.	5.2	24
12828	Solvation Structure around Li ⁺ Ions in Organic Carbonate Electrolytes: Spa Cell IR Spectroscopy. Analytical Chemistry, 2021, 93, 12594-12601.	acer-Free Thin	3.2	13
12829	Research Progress on Coating Structure of Silicon Anode Materials for Lithiumâ€lon Ba ChemSusChem, 2021, 14, 5135-5160.	tteries.	3.6	38

#	Article	IF	CITATIONS
12830	Double core–shell structure H-TiO2/C/Fe3O4@rGO for Li+ battery anodes with long cyclability. Applied Surface Science, 2021, 559, 149975.	3.1	10
12831	Bottom-Up Design of Configurable Oligomer-Derived Conducting Metallopolymers for High-Power Electrochemical Energy Storage. ACS Nano, 2021, 15, 15422-15428.	7.3	9
12832	Metal-organic frameworks-derived CoMOF-D@Si@C core-shell structure for high-performance lithium-ion battery anode. Electrochimica Acta, 2021, 390, 138814.	2.6	19
12833	Stabilizing a Si Anode via an Inorganic Oligomer Binder Enabled by Robust Polar Interfacial Interactions. ACS Applied Materials & Interfaces, 2021, 13, 44312-44320.	4.0	17
12834	Controllably Electrodepositing ZIF-8 Protective Layer for Highly Reversible Zinc Anode with Ultralong Lifespan. Journal of Physical Chemistry Letters, 2021, 12, 9055-9059.	2.1	17
12835	Unraveling the Role of Fluorinated Alkyl Carbonate Additives in Improving Cathode Performance in Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46478-46487.	4.0	19
12836	Polyurethane-based polymer electrolytes for lithium Batteries: Advances and perspectives. Chemical Engineering Journal, 2022, 430, 132659.	6.6	45
12837	Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries. Applied Catalysis B: Environmental, 2021, 293, 120176.	10.8	66
12838	Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021, 420, 129739.	6.6	67
12839	Polyaniline-Encapsulated Hollow Co–Fe Prussian Blue Analogue Nanocubes Modified on a Polypropylene Separator To Improve the Performance of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 47593-47602.	4.0	23
12840	Preparation and performances of poly (ethylene oxide)-Li6PS5Cl composite polymer electrolyte for all-solid-state lithium batteries. Journal of Electroanalytical Chemistry, 2021, 900, 115739.	1.9	9
12841	Six-armed and dicationic polymeric ionic liquid for highly stretchable, nonflammable and notch-insensitive intrinsic self-healing solid-state polymer electrolyte for flexible and safe lithium batteries. Chemical Engineering Journal, 2022, 430, 132706.	6.6	19
12842	One-pot solvothermal preparation of graphene encapsulated SnO nanospheres composites for enhanced lithium storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126912.	2.3	6
12843	In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries. Journal of Alloys and Compounds, 2021, 874, 159763.	2.8	10
12844	Oxygen-Enriched α-MoO3– nanobelts suppress lithium dendrite formation in stable lithium-metal batteries. Journal of Power Sources, 2021, 507, 230306.	4.0	12
12845	A review: Modification strategies of nickel-rich layer structure cathode (NiÂ≥Â0.8) materials for lithium ion power batteries. Journal of Energy Chemistry, 2021, 60, 435-450.	7.1	60
12846	Progress in Solid Polymer Electrolytes for Lithiumâ€ i on Batteries and Beyond. Small, 2022, 18, e2103617.	5.2	107
12847	SnSe nanocrystals decorated on carbon nanotubes for high-performance lithium-ion battery anodes. Journal of Alloys and Compounds, 2022, 892, 162057.	2.8	20

#	Article	IF	CITATIONS
12848	Copper and Zirconium Codoped O3-Type Sodium Iron and Manganese Oxide as the Cobalt/Nickel-Free High-Capacity and Air-Stable Cathode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45528-45537.	4.0	33
12849	Methodology for enhancing the ionic conductivity of superionic halogen-rich argyrodites for all-solid-state lithium batteries. Materials Today Communications, 2021, 28, 102727.	0.9	4
12850	A review on novel activation strategy on carbonaceous materials with special morphology/texture for electrochemical storage. Journal of Energy Chemistry, 2021, 60, 572-590.	7.1	49
12851	Bis(neopentyl glycolato)diboron as A Cathode Stabilizer Additive for High-Voltage Lithium-ion Batteries. Journal of the Electrochemical Society, 2021, 168, 090554.	1.3	1
12852	Exploring the Ion Solvation Environments in Solid-State Polymer Electrolytes through Free-Energy Sampling. Macromolecules, 2021, 54, 8590-8600.	2.2	3
12853	Flexible and rigid polyurethane based polymer electrolyte for highâ€performance lithium battery. Journal of Applied Polymer Science, 2022, 139, 51566.	1.3	4
12854	Hybrid ZnSeâ€&nSe ₂ Nanoparticles Embedded in Nâ€doped Carbon Nanocube Heterostructures with Enhanced and Ultraâ€stable Lithiumâ€&torage Performance. ChemElectroChem, 2021, 8, 4732-4744.	1.7	9
12855	Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nature Communications, 2021, 12, 5459.	5.8	190
12856	Tetraethylthiopheneâ€2,5â€diylbismethylphosphonate: A Novel Electrolyte Additive for Highâ€Voltage Batteries. ChemSusChem, 2021, 14, 4466-4479.	3.6	6
12857	Effects of SiO ₂ particles in copper current collector on diffusion induced stresses in layered Li-ion battery electrodes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 7785-7799.	1.1	1
12858	High-Voltage and Wide-Temperature Lithium Metal Batteries Enabled by Ultrathin MOF-Derived Solid Polymer Electrolytes with Modulated Ion Transport. ACS Applied Materials & Interfaces, 2021, 13, 47163-47173.	4.0	42
12859	Failure of Li-Ion 18650 Cylindrical Cells Subjected to Mechanical Loading and Computational Model Development. , 0, , .		2
12860	In Situ Construction of Aramid Nanofiber Membrane on Li Anode as Artificial SEI Layer Achieving Ultraâ€High Stability. Small, 2021, 17, e2102347.	5.2	28
12861	SiO <i>_x</i> Anode: From Fundamental Mechanism toward Industrial Application. Small, 2021, 17, e2102641.	5.2	57
12862	Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors. EScience, 2021, 1, 83-90.	25.0	69
12863	Electrochemical synthesis of binder-free interconnected nanosheets of Mn-doped Co3O4 on Ni foam for high-performance electrochemical energy storage application. Chemical Engineering Journal, 2021, 421, 129767.	6.6	28
12864	Lithium distribution and transfer in high-power 18650-type Li-ion cells at multiple length scales. Energy Storage Materials, 2021, 41, 546-553.	9.5	13
12865	CoSe2@C-N/CNT-modified separator for highly efficient lithium-sulphur battery. Journal of Alloys and Compounds, 2021, 879, 160368.	2.8	20

		IN REPORT	
#	ARTICLE	IF	CITATIONS
12866	Improvement of electrochemical performances of ultrathin Ti-coated Si-based multilayer nanofibers as anode materials for lithium-ion batteries. Surface and Coatings Technology, 2021, 424, 127669.	2.2	6
12867	Verification of electrolyte decomposition in lithium-ion batteries: Based on the unique bowling-like Sn@C/EG-S composite. Chemical Engineering Journal, 2021, 422, 130520.	6.6	9
12868	Advances in micro lithium-ion batteries for on-chip and wearable applications. Journal of Micromechanics and Microengineering, 2021, 31, 114002.	1.5	13
12869	Coaxial single-walled CNT@SnO2@N-doped carbon with high rate capability and cycling stability for lithium ion batteries. Solid State Ionics, 2021, 369, 115723.	1.3	3
12870	All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chemical Engineering Journal, 2021, 421, 129965.	6.6	37
12871	Natural Activation of CuO to CuCl2 as a Cathode Material for Dual-Ion Lithium Metal Batteries. Energy Storage Materials, 2021, 41, 466-474.	9.5	16
12872	High-rate lithium/sodium storage capacities of nitrogen-enriched porous antimony composite prepared from organic-inorganic ligands. Applied Surface Science, 2021, 563, 150297.	3.1	4
12873	Direct visualization of lattice oxygen evolution and related electronic properties of Li1.2Ni0.2Mn0.6O2 cathode materials. Applied Surface Science, 2021, 563, 150334.	3.1	10
12874	Design of pseudocapacitance and amorphization Co-enhanced Mn3O4/graphene sheets nanocomposites for high-performance lithium storage. Applied Surface Science, 2021, 563, 150199.	3.1	6
12875	In-situ preparation of titania/graphene nanocomposite via a facile sol–gel strategy: A promising anodic material for Li-ion batteries. Materials Letters, 2021, 300, 130143.	1.3	17
12876	Porous Heteroatom-Doped Ti ₃ C ₂ T _{<i>x</i>} MXene Microspheres Enable Strong Adsorption of Sodium Polysulfides for Long-Life Room-Temperature Sodium–Sulfur Batteries. ACS Nano, 2021, 15, 16207-16217.	7.3	46
12877	Recent advances of metal phosphates-based electrodes for high-performance metal ion batteries. Energy Storage Materials, 2021, 41, 842-882.	9.5	49
12878	Highly porous single ion conducting membrane via a facile combined "structural self-assembly―and in-situ polymerization process for high performance lithium metal batteries. Journal of Membrane Science, 2021, 636, 119601.	4.1	7
12879	Isatin anhydride as multifunctional film-forming additive to enhance cycle life of high-voltage Li-ion batteries at elevated temperature. Journal of Power Sources, 2021, 509, 230361.	4.0	9
12880	Heat treatment process for recovering lithium hydroxide monohydrate (LiOH·H2O) from nickel-rich cathode materials. Materials Letters, 2021, 301, 130281.	1.3	3
12881	Controllable synthesis of carbon-coated Fe3O4 nanorings with high Li/Na storage performance. Journal of Alloys and Compounds, 2021, 878, 160359.	2.8	21
12882	Carbon-free Cu/SbxOy/Sb nanocomposites with yolk-shell and hollow structures as high-performance anodes for lithium-ion storage. Journal of Alloys and Compounds, 2021, 878, 160447.	2.8	13
12883	Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance. Energy Storage Materials, 2021, 41, 51-60.	9.5	35

#	Article	IF	CITATIONS
10004	Influence of free electron charge and free extra framework anions in calcium aluminate@ rGO (CA@) Tj ETQq0 0 0	rgBT /Ove 2.7	
12884	Taiwan Institute of Chemical Engineers, 2021, 127, 334-348.		10
12885	A review on nanoconfinement engineering of red phosphorus for enhanced Li/Na/K-ion storage performances. Journal of Energy Chemistry, 2021, 61, 531-552.	7.1	36
12886	Organic salts with unsaturated bond and diverse anions as substrates for solid electrolyte interphase on graphite anodes. Carbon, 2021, 183, 108-118.	5.4	11
12887	Effect of defects and defect distribution on Li-diffusion and elastic properties of anti-perovskite Li3OCl solid electrolyte. Energy Storage Materials, 2021, 41, 614-622.	9.5	16
12888	Amorphous Sn–Ni islets with high structural integrity as an anode material for lithium-ion storage. Journal of Alloys and Compounds, 2021, 879, 160416.	2.8	10
12889	Fast lithium transport kinetics regulated by low energy-barrier LixMnO2 for long-life lithium metal batteries. Energy Storage Materials, 2021, 41, 1-7.	9.5	15
12890	Recycling-oriented cathode materials design for lithium-ion batteries: Elegant structures versus complicated compositions. Energy Storage Materials, 2021, 41, 380-394.	9.5	46
12891	New synthesis route for glasses and glass-ceramics in the Ga2S3Na2S binary system. Materials Research Bulletin, 2021, 142, 111423.	2.7	8
12892	Hierarchical carbon-coated FeP derived from FeOOH with enhanced sodium-storage performance. Surface Innovations, 2021, 9, 285-292.	1.4	1
12893	Graphene as regulating zinc deposition layer for long-life zinc ion hybrid supercapacitors. Journal of Energy Storage, 2021, 42, 103037.	3.9	25
12894	Mg2Si promoted magnesio-mechanical reduction of silica into silicon nanoparticles for high-performance Li-ion batteries. Journal of Solid State Chemistry, 2021, 302, 122408.	1.4	7
12895	Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries. Chemical Engineering Journal, 2021, 422, 130526.	6.6	36
12896	A high-energy, long cycle life aqueous hybrid supercapacitor enabled by efficient battery electrode and widened potential window. Journal of Alloys and Compounds, 2021, 877, 160273.	2.8	8
12897	Self-template synthesis of Fe/N-doped carbon nanotubes as a highly efficient and stable electrocatalyst for oxygen reduction reaction. Materials Letters, 2022, 306, 130987.	1.3	2
12898	Controlling Magnesium Self-Corrosion in Mg–Air Batteries with the Conductive Nanocomposite PANI@3D-FCNT. ACS Omega, 2021, 6, 26640-26645.	1.6	6
12899	A review of role of cathodes in the performance of microbial fuel cells. Journal of Electroanalytical Chemistry, 2021, 899, 115673.	1.9	27
12900	Lithium- gel polymer electrolyte composite anode with large electrolyte-lithium interface for solid-state battery. Electrochimica Acta, 2021, 394, 139123.	2.6	4
12901	Promising anode material BN/VS2 heterostructure for the Li-ion battery: The first-principles study. Applied Surface Science, 2021, 564, 150468.	3.1	23

#	Article	IF	CITATIONS
12902	Preparation of anode materials for lithium-ion batteries by spent carbon anode from electrolytic aluminum. Journal of Environmental Chemical Engineering, 2021, 9, 105932.	3.3	15
12903	Assessment of boroxine covalent organic framework as Li-ion battery anodes. Journal of Molecular Liquids, 2021, 339, 116822.	2.3	8
12904	Importance of structures and interactions in ionic liquid-nanomaterial composite systems as a novel approach for their utilization in safe lithium metal batteries: A review. Journal of Molecular Liquids, 2021, 339, 116736.	2.3	17
12905	Synergetic design of dopant-free defect-enriched 3D interconnected hierarchical porous graphene mesh for boosting oxygen reduction reaction. Carbon, 2021, 184, 609-617.	5.4	10
12906	A self-healing neutral aqueous rechargeable Zn/MnO2 battery based on modified carbon nanotubes substrate cathode. Journal of Colloid and Interface Science, 2021, 600, 83-89.	5.0	29
12907	A nanoscale interlayer void design enabling high-performance SnO2-carbon anodes. Carbon, 2021, 183, 486-494.	5.4	12
12908	Effect of graphitic anode surface functionalization on the structure and dynamics of electrolytes at the interface. Journal of Chemical Physics, 2021, 155, 134702.	1.2	4
12909	Lattice contraction tailoring in perovskite oxides towards improvement of oxygen electrode catalytic activity. Chemical Engineering Journal, 2021, 421, 129698.	6.6	25
12910	Effect of microphase separation on the limiting current density in hybrid organic-inorganic copolymer electrolytes. Solid State Ionics, 2021, 368, 115702.	1.3	5
12911	Lithium storage behaviors of PbNb2O6 in rechargeable batteries. Ceramics International, 2021, 47, 26732-26737.	2.3	2
12912	Fast energy storage performance of CoFe2O4/CNTs hybrid aerogels for potassium ion battery. Journal of Colloid and Interface Science, 2021, 600, 820-827.	5.0	15
12913	F–N–S doped lithiophilic interphases for stable Li metal and alloy anodes. Journal of Power Sources, 2021, 508, 230334.	4.0	2
12914	Corrosion and Interfacial Behavior of FeSi Alloy in Organic Electrolyte Solutions. International Journal of Electrochemical Science, 0, , ArticleID:211060.	0.5	1
12915	Ni-Co-Fe layered double hydroxide coated on Ti3C2 MXene for high-performance asymmetric supercapacitor. Applied Surface Science, 2021, 562, 150116.	3.1	74
12916	Fabrication of C@Si@G for flexible lithium-ion batteries. Journal of Alloys and Compounds, 2021, 878, 160357.	2.8	11
12917	"Sticky―carbon coating enables high-area-capacity lithium storage of silicon-graphitic carbon hybrid. Carbon, 2021, 184, 91-101.	5.4	11
12918	Kinetically enhanced electrochemical redox reactions by chemical bridging SnO2 and graphene sponges toward high-rate and long-cycle lithium ion battery. Journal of Materials Science and Technology, 2021, 88, 250-257.	5.6	3
12919	Redox targeting of energy materials. Current Opinion in Electrochemistry, 2021, 29, 100743.	2.5	12

#	Article	IF	CITATIONS
12920	Layered Hexaphenylbenzene (HPB) derivatives with pseudo-2D structure for high-performance Li ion batteries. Energy Storage Materials, 2021, 42, 109-117.	9.5	8
12921	Uniformly inserted Fe3C nanoparticles in sericin-derived hierarchical porous carbon for high-performance Li-ion battery. Journal of Alloys and Compounds, 2021, 881, 160661.	2.8	24
12922	One-step synthesis of CoON@C with superior energy storage performance for lithium ion battery anode. Applied Surface Science, 2021, 565, 150531.	3.1	0
12923	Reactive surface coating of metallic lithium and its role in rechargeable lithium metal batteries. Electrochimica Acta, 2021, 397, 139270.	2.6	7
12924	Co0.85Se nanosheet anchored on carbon fibers as anode materials for high-performance flexible Li-ion batteries. Chemical Physics Letters, 2021, 783, 139072.	1.2	5
12925	High-voltage K/Zn dual-ion battery with 100,000-cycles life using zero-strain ZnHCF cathode. Energy Storage Materials, 2021, 42, 715-722.	9.5	21
12926	Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon, 2021, 185, 152-160.	5.4	14
12927	Preparation of single-ion conductor solid polymer electrolyte by multi-nozzle electrospinning process for lithium-ion batteries. Journal of Physics and Chemistry of Solids, 2021, 158, 110229.	1.9	11
12928	Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 446-453.	5.0	36
12929	A thermoresponsive composite separator loaded with paraffin@SiO2 microparticles for safe and stable lithium batteries. Journal of Energy Chemistry, 2021, 62, 423-430.	7.1	36
12930	Acetate-based â€~oversaturated gel electrolyte' enabling highly stable aqueous Zn-MnO2 battery. Energy Storage Materials, 2021, 42, 240-251.	9.5	25
12931	Excellent low-temperature electrochemical cycling of an anode consisting of Si nanoparticles seeded in Sn nanowires for lithium-ion batteries. Electrochimica Acta, 2021, 396, 139224.	2.6	18
12932	High-performance Na3V2(PO4)2F2.5O0.5 cathode: Hybrid reaction mechanism study via ex-situ XRD and sodium storage properties in solid-state batteries. Chemical Engineering Journal, 2021, 423, 130310.	6.6	10
12933	Superior long-term cycling of high-voltage lithium-ion batteries enabled by single-solvent electrolyte. Nano Energy, 2021, 89, 106299.	8.2	21
12934	Si-TiN alloy anode materials prepared by reactive N2 gas milling: thermal stability and electrochemistry in Li-cells. Electrochimica Acta, 2021, 396, 139259.	2.6	3
12935	Phosphorus-doped lithium- and manganese-rich layered oxide cathode material for fast charging lithium-ion batteries. Journal of Energy Chemistry, 2021, 62, 538-545.	7.1	23
12936	Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte. Energy Storage Materials, 2021, 42, 628-635.	9.5	34
12937	Development and challenges of electrode materials for rechargeable Mg batteries. Energy Storage Materials, 2021, 42, 687-704.	9.5	29

#	Article	IF	CITATIONS
12938	Bridging the gap between simulated and experimental ionic conductivities in lithium superionic conductors. Materials Today Physics, 2021, 21, 100463.	2.9	43
12939	Fusing semiconductor and nonmetal into a high conductive wide-range solid solution alloy for Li-ion batteries. Energy Storage Materials, 2021, 42, 502-512.	9.5	12
12940	Facile synthesis of Manganese selenide anchored in Three-Dimensional carbon nanosheet matrix with enhanced Lithium storage properties. Chemical Engineering Journal, 2021, 423, 130243.	6.6	17
12941	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
12942	A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode. Journal of Energy Chemistry, 2021, 62, 127-135.	7.1	53
12943	Equably-dispersed Sb/Sb2O3 nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible lithium/sodium storage. Electrochimica Acta, 2021, 395, 139210.	2.6	14
12944	Porous structures of carbon-doped Co3O4 with tunable morphologies from microflowers to cubes as anodes for high performance lithium/sodium-ion batteries. Journal of Alloys and Compounds, 2021, 881, 160588.	2.8	12
12945	Low-cost carbonyl polymer design for high-performance lithium-organic battery cathodes. Journal of Power Sources, 2021, 511, 230464.	4.0	11
12946	Mitigating voltage decay of Li-Rich layer oxide cathode material via an ultrathin "lithium ion pump― heteroepitaxial surface modification. Journal of Power Sources, 2021, 511, 230427.	4.0	6
12947	SnSb binary alloy induced heterogeneous nucleation within the confined nanospace: Toward dendrite-free, flexible and energy/power dense sodium metal batteries. Energy Storage Materials, 2021, 42, 219-230.	9.5	28
12948	Ultrafast-kinetics, ultralong-cycle-life, bifunctional inorganic open-framework for potassium-ion batteries. Energy Storage Materials, 2021, 42, 806-814.	9.5	7
12949	Confining invasion directions of Li+ to achieve efficient Si anode material for lithium-ion batteries. Energy Storage Materials, 2021, 42, 231-239.	9.5	41
12950	Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Materials, 2021, 42, 533-569.	9.5	74
12951	Numerical modeling on the delamination-induced capacity degradation of silicon anode. Journal of Energy Storage, 2021, 43, 103190.	3.9	6
12952	Diffusion-driven fabrication of yolk-shell structured K-birnessite@mesoporous carbon nanospheres with rich oxygen vacancies for high-energy and high-power zinc-ion batteries. Energy Storage Materials, 2021, 42, 753-763.	9.5	36
12953	A bipolar organic molecule toward a universal pseudocapacitive cathode for stable dual ion charge storage. Energy Storage Materials, 2021, 42, 454-463.	9.5	30
12954	Recent progress on heterostructure materials for next-generation sodium/potassium ion batteries. Renewable and Sustainable Energy Reviews, 2021, 151, 111640.	8.2	46
12955	High performance anode for sodium-ion batteries: Calcium pre-intercalated layered vanadium oxide/carbon composite. Chemical Engineering Journal, 2021, 424, 130378.	6.6	17

ARTICLE IF CITATIONS Fe, N co-doped amorphous carbon as efficient electrode materials for fast and stable Na/K-storage. 12956 2.6 11 Electrochimica Acta, 2021, 396, 139265. Rare earth-Mg-Ni-based alloys with superlattice structure for electrochemical hydrogen storage. 12957 2.8 Journal of Alloys and Compounds, 2021, 887, 161381. LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance 12958 9.5 120 solid-state batteries under different temperatures. Energy Storage Materials, 2021, 43, 53-61. Retarding electron conductor endows high reversibility and rate-capability for li-ion battery. Chemical Engineering Journal, 2021, 425, 128409. Entrapping polysulfides via S, N-coordinated supermolecule towards enhanced Li-S kinetics. Chemical 12960 6.6 6 Engineering Journal, 2021, 426, 131355. Fe-F Co-doped NaTi2(PO4)3/C anode material for high performance and long-life aqueous Li-ion battery. Journal of Alloys and Compounds, 2021, 885, 161007. 12961 2.8 Watermelon-like texture lithium titanate and silicon composite films as anodes for lithium-ion 12962 2.8 7 battery with high capacity and long cycle life. Journal of Alloys and Compounds, 2021, 885, 160994. SnSe2 monolayer is a promising Na host material: A DFT study. Materials Science in Semiconductor 12963 1.9 14 Processing, 2021, 136, 106175 Pseudocapacitance-dominated zinc storage enabled by nitrogen-doped carbon stabilized amorphous 12964 20 6.6 vanadyl phosphate. Chemical Engineering Journal, 2021, 426, 131868. Facile synthesis and first-principles study of nitrogen and sulfur dual-doped porous graphene 12965 aerogels/natural graphite as anode materials for Li-ion batteries. Journal of Alloys and Compounds, 2.8 2021, 884, 160923. Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy 12966 9.5 154 Storage Materials, 2021, 43, 317-336. Sn-based nanomaterials: From composition and structural design to their electrochemical 12967 9.5 performances for Li- and Na-ion batteries. Energy Storage Materials, 2021, 43, 430-462. Lithiation of the crystalline silicon as analyzed using soft X-ray emission spectroscopy and 12968 3.1 2 windowless energy dispersive X-ray spectroscopy. Applied Surface Science, 2021, 569, 151040. Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Materials, 2021, 43, 62-84. 12969 O3-NaNi0.47Zn0.03Mn0.5O2 cathode material for durable Na-ion batteries. Journal of Alloys and 12970 2.8 23 Compounds, 2021, 887, 161366. Enhanced reversible capacity of sulfurized polyacrylonitrile cathode for room-temperature Na/S 12971 batteries by electrochemical activation. Chemical Éngineering Journal, 2021, 426, 130787. 3D composite lithium metal with multilevel micro-nano structure combined with surface 12972 3.17 modification for stable lithium metal anodes. Applied Surface Science, 2021, 570, 151159. Rational design of Co-free layered cathode material for sodium-ion batteries. Journal of Power 12973 Sources, 2021, 514, 230581.

CITATION REPORT

#	Article	IF	CITATIONS
12974	Dispersion hydrophobic electrolyte enables lithium-oxygen battery enduring saturated water vapor. Journal of Energy Chemistry, 2022, 64, 511-519.	7.1	7
12975	Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. Journal of Energy Chemistry, 2022, 64, 395-403.	7.1	24
12976	Crosslinked polyacrylonitrile precursor for S@pPAN composite cathode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 65, 186-193.	7.1	15
12977	CO2-adsorbent spongy electrode for non-aqueous Li–O2 batteries. Journal of Energy Chemistry, 2022, 65, 646-653.	7.1	2
12978	Nanostructured hexaazatrinaphthalene based polymers for advanced energy conversion and storage. Chemical Engineering Journal, 2022, 427, 130995.	6.6	16
12979	Nano storage-boxes constructed by the vertical growth of MoS2 on graphene for high-performance Li-S batteries. Journal of Energy Chemistry, 2022, 66, 91-99.	7.1	37
12980	The influence of water in electrodes on the solid electrolyte interphase film of micro lithium-ion batteries for the wireless headphone. Journal of Colloid and Interface Science, 2022, 606, 1729-1736.	5.0	3
12981	A model cathode for mechanistic study of organosulfide electrochemistry in Li-organosulfide batteries. Journal of Energy Chemistry, 2022, 66, 440-447.	7.1	15
12982	3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 66, 429-439.	7.1	54
12983	Recent progress of electrocatalysts for oxygen reduction in fuel cells. Journal of Colloid and Interface Science, 2022, 607, 791-815.	5.0	55
12984	Recent advances in silicon materials for Li-ion batteries: Novel processing, alternative raw materials, and practical considerations. , 2022, , 47-92.		0
12985	Recycling the cathode materials of spent Li-ion batteries in a H-Shaped neutral water electrolysis cell. Separation and Purification Technology, 2021, 278, 119485.	3.9	11
12986	1,4-Dicyanobenzene as electrolyte additive for improve electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode materials in lithium metal rechargeable batteries. Chemical Engineering Science, 2022, 247, 117082.	1.9	6
12987	Effects of cobalt doping on structural, optical, electrical and electrochemical properties of Li4Ti5O12 anode. Journal of Alloys and Compounds, 2022, 890, 161691.	2.8	8
12988	A Janus Li1.5Al0.5Ge1.5(PO4)3 with high critical current density for high-voltage lithium batteries. Chemical Engineering Journal, 2022, 429, 132506.	6.6	10
12989	Dual-regulation strategy to enhance electrochemical catalysis ability of NiCo2O4-x for polysulfides conversion in Li-S batteries. Chemical Engineering Journal, 2022, 428, 131109.	6.6	35
12990	Nanostructured 3D (three dimensional) electrode architectures of silicon for high-performance Li-ion batteries. , 2022, , 331-371.		1
12991	Rational design of Prussian blue analogues as conversion anodes for lithium-ion batteries with high capacity and long cycle life. Journal of Alloys and Compounds, 2022, 891, 161867.	2.8	22

#	Article	IF	CITATIONS
12992	Adjusting the d-band center of metallic sites in NiFe-based Bimetal-organic frameworks via tensile strain to achieve High-performance oxygen electrode catalysts for Lithium-oxygen batteries. Journal of Colloid and Interface Science, 2022, 607, 1215-1225.	5.0	20
12993	Bamboo-like SiO /C nanotubes with carbon coating as a durable and high-performance anode for lithium-ion battery. Chemical Engineering Journal, 2022, 428, 131060.	6.6	20
12994	A low-cost and high-performance rechargeable magnesium battery based on povidone iodine cathode. Chemical Engineering Journal, 2022, 427, 131592.	6.6	14
12995	Multivalent metal–sulfur batteries for green and cost-effective energy storage: Current status and challenges. Journal of Energy Chemistry, 2022, 64, 144-165.	7.1	31
12996	Inhibiting manganese (II) from catalyzing electrolyte decomposition in lithium-ion batteries. Journal of Energy Chemistry, 2022, 65, 1-8.	7.1	15
12997	Cathode materials for aqueous zinc-ion batteries: A mini review. Journal of Colloid and Interface Science, 2022, 605, 828-850.	5.0	92
12998	Expandable crosslinked polymer coatings on silicon nanoparticle anode toward high-rate and long-cycle-life lithium-ion battery. Applied Surface Science, 2022, 571, 151294.	3.1	15
12999	A redox-active metal–organic compound for lithium/sodium-based dual-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 1024-1030.	5.0	11
13000	Fabricating nanostructured HoFeO3 perovskite for lithium-ion battery anodes via co-precipitation. Scripta Materialia, 2022, 207, 114259.	2.6	18
13001	Dispersive NiCoP/LDO heterostructure nanosheets scattered by CNTs enabling high-performance electrochemical energy storage. Chemical Engineering Journal, 2022, 429, 132482.	6.6	33
13002	Structure-dependent electrochemical properties of cobalt (II) carbonate hydroxide nanocrystals in supercapacitors. Journal of Colloid and Interface Science, 2022, 607, 1633-1640.	5.0	9
13003	Facile fabrication of carbon-encapsulated NaVPO4F nanocomposite as a high-rate and long-cycle life cathode material for sodium energy storage. Journal of Physics and Chemistry of Solids, 2022, 160, 110354.	1.9	6
13004	Cubic MnSe2 microcube enabling high-performance sulfur cathode for lithium-sulfur batteries. Sustainable Energy and Fuels, 0, , .	2.5	2
13005	Identifying a Li-rich superionic conductor from charge–discharge structural evolution study: Li ₂ MnO ₃ . Physical Chemistry Chemical Physics, 2021, 23, 4829-4834.	1.3	2
13006	Ultrathin graphitic C3N4 lithiophilic nanosheets regulating Li+ flux for lithium metal batteries. Ionics, 2021, 27, 1069-1079.	1.2	20
13007	Application of Mössbauer Spectroscopy to Li-Ion and Na-Ion Batteries. Topics in Applied Physics, 2021, , 319-379.	0.4	Ο
13008	Coreâ^'shell GaP@C nanoparticles with a thin and uniform carbon coating as a promising anode material for rechargeable lithium-ion batteries. Dalton Transactions, 2021, 50, 1703-1711.	1.6	6
13009	Electrospun Polyacrylonitrile (PAN)-Based Polymer Gel Electrolytes for Lithium-Ion Batteries. Materials Horizons, 2021, , 121-152.	0.3	2

<u> </u>	 	D	ORT
		RED	ICDT.
		NLF	

#	Article	IF	CITATIONS
13010	Progress of Non-Nucleophilic Electrolytes for Magnesium/Sulfur Battery. Acta Chimica Sinica, 2021, 79, 628.	0.5	3
13011	High-crystallinity and high-rate Prussian Blue analogues synthesized at the oil–water interface. Inorganic Chemistry Frontiers, 2021, 8, 2008-2016.	3.0	22
13012	Encapsulation of a Core–Shell Porous Fe ₃ O ₄ @Carbon Material with Reduced Graphene Oxide for Li ⁺ Battery Anodes with Long Cyclability. Langmuir, 2021, 37, 785-792.	1.6	25
13013	Sodium manganese hexacyanoferrate as Zn ion host toward aqueous energy storage. Journal of Electroanalytical Chemistry, 2021, 881, 114968.	1.9	14
13014	The rational design of a redox-active mixed ion/electron conductor as a multi-functional binder for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 4751-4757.	5.2	15
13015	The fluorination-assisted dealloying synthesis of porous reduced graphene oxide-FeF ₂ @carbon for high-performance lithium-ion battery and the exploration of its electrochemical mechanism. Inorganic Chemistry Frontiers, 2021, 8, 3273-3283.	3.0	10
13016	<i>In Situ</i> NMR Techniques for Li-ion Batteries. New Developments in NMR, 2021, , 483-512.	0.1	1
13017	Sulfide-based Electrolytes in Solid State Batteries. New Developments in NMR, 2021, , 364-390.	0.1	1
13018	Enhanced room temperature ionic conductivity of the LiBH ₄ ·1/2NH ₃ –Al ₂ O ₃ composite. Chemical Communications, 2021, 57, 2380-2383.	2.2	16
13019	Clean Solid–Electrolyte/Electrode Interfaces Double the Capacity of Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 5861-5865.	4.0	5
13020	Constructing mild expanded graphite microspheres by pressurized oxidation combined microwave treatment for enhanced lithium storage. Rare Metals, 2021, 40, 837-847.	3.6	29
13021	Towards high-areal-capacity aqueous zinc–manganese batteries: promoting MnO ₂ dissolution by redox mediators. Energy and Environmental Science, 2021, 14, 4418-4426.	15.6	104
13022	Unveiling the physiochemical aspects of the matrix in improving sulfur-loading for room-temperature sodium–sulfur batteries. Materials Advances, 2021, 2, 4165-4189.	2.6	22
13023	Principle in developing novel fluorinated sulfone electrolyte for high voltage lithium-ion batteries. Energy and Environmental Science, 2021, 14, 3029-3034.	15.6	44
13024	Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2021, 9, 19245-19281.	5.2	41
13025	Accelerating the redox kinetics by catalytic activation of "dead sulfur―in lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 13442-13458.	5.2	30
13026	Parameter Estimation of Vehicle Batteries in V2G Systems: An Exogenous Function-Based Approach. IEEE Transactions on Industrial Electronics, 2022, 69, 9535-9546.	5.2	16
13027	Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy and Environmental Science, 2021, 14, 5834-5863.	15.6	42

	CITATION RE	PORT	
# Article		IF	CITATIONS
13028 Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 20)21, 2, 2000118.	6.9	61
13029 Research Progress and Challenge of Aqueous Zinc Ion Battery. Acta Chimica Sinica, 20	021, 79, 158.	0.5	9
Dual Li-ion migration channels in an ester-rich copolymer/ionic liquid quasi-solid-state for high-performance Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 2459	electrolyte 9-2469.	5.2	18
13031 Self-diffusion in garnet-type Li7La3Zr2O12 solid electrolytes. Scientific Reports, 2021	, 11, 451.	1.6	19
13032 Electrochemical energy storage devices working in extreme conditions. Energy and Er Science, 2021, 14, 3323-3351.	ıvironmental	15.6	140
A rechargeable aqueous proton battery based on a dipyridophenazine anode and an in hexacyanoferrate cathode. Chemical Communications, 2021, 57, 4307-4310.	ndium	2.2	29
13034 Enhancement of the ionic conductivity of lithium borohydride by silica supports. Dalta Transactions, 2021, 50, 15352-15358.	on	1.6	5
13035 Numerical simulation study on the effects of delamination of silicon active material. ,	2021,,.		0
Horizons for Modern Electrochemistry Related to Energy Storage and Conversion, a R Journal of Chemistry, 2021, 61, 11-25.	eview. Israel	1.0	6
13037 Garnet-Type Lithium Ion Conducting Oxides: Li7La3Zr2O12 and Its Chemical Derivativ	ves. , 2021, , 201-219.		2
The Effect of Mechanical Strain on Lithium Staging in Graphene. Advanced Electronic7, 2000981.	Materials, 2021,	2.6	6
Research Progress of Organic Sulfur Polymer Cathode Materials for Lithium-Sulfur Bat of Advances in Physical Chemistry, 2021, 10, 41-50.	teries. Journal	0.1	0
13040 Chapter 5. 2D Nanomaterial-based Polymer Composite Electrolytes for Lithium-based Inorganic Materials Series, 2021, , 204-274.	Batteries.	0.5	2
An <i>in situ</i> photopolymerized composite solid electrolyte from halloysite nanotu 13041 comb-like polycaprolactone for high voltage lithium metal batteries. Journal of Materi A, 2021, 9, 9826-9836.	bes and als Chemistry	5.2	29
13042 Superior performance for lithium-ion battery with organic cathode and ionic liquid ele Journal of Energy Chemistry, 2021, 52, 28-32.	ctrolyte.	7.1	23
An enhanced electrochemical energy storage performance based on porous activated 13043 carbon derived from natural maple leaf. Journal of Materials Science: Materials in Elect 32, 3487-3497.	carbon and hard tronics, 2021,	1.1	5
Scalable synthesis of silicon nanoplate-decorated graphite for advanced lithium-ion ba Nanoscale, 2021, 13, 2820-2824.	attery anodes.	2.8	12
13045 A long-term stable aqueous aluminum battery electrode based on one-dimensional molybdenum–tantalum oxide nanotube arrays. Nanoscale, 2021, 13, 6087-6095.		2.8	20

# ARTICLE	IF	CITATIONS
Biomineralization-inspired: rapid preparation of a silicon-based composite as a high-performan lithium-ion battery anode. Journal of Materials Chemistry A, 2021, 9, 11614-11622.	ice 5.2	10
Fabrication of a necklace-like fiber separator by the electrospinning technique for high 13047 electrochemical performance and safe lithium metal batteries. Materials Chemistry Frontiers, 2 5033-5043.	2021, 5, 3.2	5
Nb ₂ CT <i>_x</i> MXene as High-Performance Energy Storage Materia K, and Liquid K–Na Alloy Anodes. Langmuir, 2021, 37, 1102-1109.	al with Na, 1.6	22
Highly Stable Spinel Oxide Cathode for Rechargeable Li–O ₂ Batteries in Non-Ad Liquid and Gel-Based Electrolytes. ACS Applied Energy Materials, 2021, 4, 1014-1020.	queous 2.5	14
13050 Lithiation mechanism of W18O49 anode material for lithium-ion batteries: Experiment and first-principles calculations. Journal of Electroanalytical Chemistry, 2021, 880, 114885.	1.9	10
13051 Van der Waals heterostructure engineering by 2D space-confinement for advanced potassium storage. Nano Research, 2021, 14, 3854-3863.	n-ion 5.8	26
¹³⁰⁵² Flower-like W/WO ₃ as a novel cathode for aqueous zinc-ion batteries. Chemical Communications, 2021, 57, 7549-7552.	2.2	21
Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor. Rare Metals, 2021, 4 2424-2431.	40, 3.6	41
Carbon-coated SnO ₂ riveted on a reduced graphene oxide composite 13054 (C@SnO ₂ /RGO) as an anode material for lithium-ion batteries. RSC Advances, 20 8521-8529.)21, 11, 1.7	7
Research Progress of Organic Carbonyl Compounds on Sodium-Ion Battery. Material Sciences, 717-731.	, 2021, 11, 0.0	Ο
13056 Lithiation/Delithiation Properties of Lithium Silicide Electrodes in Ionic-Liquid Electrolytes. ACS Applied Materials & amp; Interfaces, 2021, 13, 3816-3824.	5 4.0	15
Folic Acid Coordinated Cu–Co Site N-Doped Carbon Nanosheets for Oxygen Reduction Read Applied Materials & Interfaces, 2021, 13, 3949-3958.	ction. ACS 4.0	29
13058 Engineering lithiophilic Ni-Al@LDH interlayers on a garnet-type electrolyte for solid-state lithiu metal batteries. Chemical Communications, 2021, 57, 10214-10217.	m 2.2	7
13059 Effect of fluorinated additives or co-solvent on performances of graphite//LiMn2O4 cells cycled high potential. Journal of Energy Chemistry, 2021, 52, 332-342.	d at 7.1	15
13060 The rational design of inorganic and organic material based nanocomposite hybrids as Na-ion l electrodes. Materials Advances, 2021, 2, 5006-5046.	battery 2.6	7
Characterising Non-aqueous Metal–Air Batteries Using NMR Spectroscopy. New Developme 2021, , 412-432.	ents in NMR, 0.1	0
The Methodology of Electrochemical <i>In Situ</i> NMR and MRI. New Developments in NMR, 71-105.	, 2021, , 0.1	2
Crucial Challenges and Recent Optimization Progress of Metal–Sulfur Battery Electrolytes. E & Fuels, 2021, 35, 1966-1988.	Energy 2.5	26

#	Article	IF	CITATIONS
13064	Microscopic Understanding of the Ionic Networks of "Water-in-Salt―Electrolytes. Energy Material Advances, 2021, 2021, .	4.7	20
13065	Outstanding Lowâ€Temperature Performance of Structureâ€Controlled Graphene Anode Based on Surfaceâ€Controlled Charge Storage Mechanism. Advanced Functional Materials, 2021, 31, 2009397.	7.8	34
13066	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 350-356.	2.5	20
13067	Molecular engineering of carbonyl organic electrodes for rechargeable metal-ion batteries: fundamentals, recent advances, and challenges. Energy and Environmental Science, 2021, 14, 4228-4267.	15.6	100
13068	The Role of Ex Situ Solid Electrolyte Interphase in Lithium Metal Batteries. , 2021, , 479-511.		0
13069	Glycolide additives enrich organic components in the solid electrolyte interphase enabling stable ultrathin lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 2791-2797.	3.2	21
13070	Biomass-based materials for green lithium secondary batteries. Energy and Environmental Science, 2021, 14, 1326-1379.	15.6	157
13071	Progress and Challenges for Allâ€Solidâ€State Sodium Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2000057.	2.8	49
13072	Biomass-derived polymeric binders in silicon anodes for battery energy storage applications. Green Chemistry, 2021, 23, 7890-7901.	4.6	26
13073	The rise of metal–organic frameworks for electrolyte applications. Journal of Materials Chemistry A, 2021, 9, 20837-20856.	5.2	26
13074	Boosting the cycling stability of Ni-rich layered oxide cathode by dry coating of ultrastable Li ₃ V ₂ (PO ₄) ₃ nanoparticles. Nanoscale, 2021, 13, 2811-2819.	2.8	16
13075	In Situ Oriented Mn Deficient ZnMn ₂ O ₄ @C Nanoarchitecture for Durable Rechargeable Aqueous Zincâ€ion Batteries. Advanced Science, 2021, 8, 2002636.	5.6	90
13076	Tunnelâ€Type Sodium Manganese Oxide Cathodes for Sodiumâ€Ion Batteries. ChemElectroChem, 2021, 8, 798-811.	1.7	26
13077	Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A, 2021, 9, 4415-4453.	5.2	67
13078	Co-construction of sulfur vacancies and carbon confinement in V ₅ S ₈ /CNFs to induce an ultra-stable performance for half/full sodium-ion and potassium-ion batteries. Nanoscale, 2021, 13, 5033-5044.	2.8	90
13079	Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances, 2021, 2021, .	4.7	179
13080	Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nature Communications, 2021, 12, 237.	5.8	174
13084	Highâ€Voltage LiNi _{0.45} Cr _{0.1} Mn _{1.45} O ₄ Cathode with Superlong Cycle Performance for Wide Temperature Lithiumâ€Ion Batteries. Advanced Functional Materials, 2018, 28, 1704808.	7.8	91

	CITATION REF	PORT	
# 13085	ARTICLE Toward High Performance Thiophene ontaining Conjugated Microporous Polymer Anodes for Lithiumâ€Ion Batteries through Structure Design. Advanced Functional Materials, 2018, 28, 1705432.	IF 7.8	Citations
13086	Decoupling the Voltage Hysteresis of Liâ€Rich Cathodes: Electrochemical Monitoring, Modulation Anionic Redox Chemistry and Theoretical Verifying. Advanced Functional Materials, 2021, 31, .	7.8	59
13087	Bioinspired Redoxâ€Active Catecholâ€Bearing Polymers as Ultrarobust Organic Cathodes for Lithium Storage. Advanced Materials, 2017, 29, 1703373.	11.1	101
13088	Highâ€Safety and Highâ€Energyâ€Density Lithium Metal Batteries in a Novel Ionicâ€Liquid Electrolyte. Advanced Materials, 2020, 32, e2001741.	11.1	176
13089	Nano Polymorphismâ€Enabled Redox Electrodes for Rechargeable Batteries. Advanced Materials, 2021, 33, e2004920.	11.1	23
13090	Nonâ€Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts. Advanced Science, 2017, 4, 1700176.	5.6	29
13091	Hierarchical Carbideâ€Derived Carbon Foams with Advanced Mesostructure as a Versatile Electrochemical Energyâ€Storage Material. Advanced Energy Materials, 2014, 4, 1300645.	10.2	96
13092	Selenium Impregnated Monolithic Carbons as Freeâ€ S tanding Cathodes for High Volumetric Energy Lithium and Sodium Metal Batteries. Advanced Energy Materials, 2018, 8, 1701918.	10.2	132
13093	Effect of Intrinsic Defects of Carbon Materials on the Sodium Storage Performance. Advanced Energy Materials, 2020, 10, 1903652.	10.2	194
13094	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	10.2	309
13095	Superior Sodium Metal Anodes Enabled by Sodiophilic Carbonized Coconut Framework with 3D Tubular Structure. Advanced Energy Materials, 2021, 11, 2003699.	10.2	77
13096	Ion–Solvent Complexes Promote Gas Evolution from Electrolytes on a Sodium Metal Anode. Angewandte Chemie - International Edition, 2018, 57, 734-737.	7.2	208
13097	Highâ€Voltage Electrolytes for Aqueous Energy Storage Devices. Batteries and Supercaps, 2020, 3, 323-330.	2.4	92
13098	<scp>Redoxâ€Active</scp> Porous Organic Polymers for Energy Storage. Bulletin of the Korean Chemical Society, 2021, 42, 159-167.	1.0	13
13099	Improving the Cyclic Stability of LiNi 0.5 Mn 1.5 O 4 at High Cutoff Voltage by Using Pyrene as a Novel Additive. Energy Technology, 2020, 8, 2000671.	1.8	4
13100	Layerâ€byâ€Layer Selfâ€Assembled Nanostructured Electrodes for Lithiumâ€Ion Batteries. Small, 2021, 17, e2006434.	5.2	12
13101	Three-Dimensional Electrode. , 2014, , 2077-2081.		2
13102	Thermoresponsive Microcapsules for Autonomic Lithium-ion Battery Shutdown. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 17-23.	0.3	3

#	Article	IF	Citations
13103	Molecular Dynamics Simulations of Electrochemical Energy Storage Devices. Green Energy and Technology, 2016, , 61-89.	0.4	3
13104	Fuel Cells and Batteries In Silico Experimentation Through Integrative Multiscale Modeling. Green Energy and Technology, 2016, , 191-233.	0.4	1
13105	A Highly Reversible Room-Temperature Lithium Metal Battery Based on Cross-Linked Hairy Nanoparticles. Springer Theses, 2019, , 35-57.	0.0	7
13106	Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities. Springer Theses, 2019, , 81-94.	0.0	4
13107	Li Metal Polymer Batteries. , 2019, , 347-373.		7
13108	Nanocomposites from V2O5 and Lithium-Ion Batteries. , 2018, , 223-249.		1
13109	A Critical Evaluation of Cathode Materials for Lithium-Ion Electric Vehicle Batteries. Lecture Notes in Management and Industrial Engineering, 2019, , 99-110.	0.3	6
13110	Glasses and Glass-Ceramics for Solid-State Battery Applications. Springer Handbooks, 2019, , 1697-1754.	0.3	9
13111	Investigation of NiO/CNF Coating on Glass Fiber Separator as Polysulfide Migration Inhibitors for High-Energy Lithium–Sulfur Batteries. Springer Proceedings in Energy, 2020, , 379-386.	0.2	1
13112	Electrostatic layer-by-layer self-assembly of 1D α-LiFeO2 with enhanced rate capability and cycling performance. Journal of Materials Science, 2020, 55, 8651-8664.	1.7	4
13113	Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Research, 2017, 10, 4055-4081.	5.8	111
13114	Dealloyed nanoporous materials for rechargeable lithium batteries. Electrochemical Energy Reviews, 2020, 3, 541-580.	13.1	49
13115	High-performance lithium battery driven by hybrid lithium storage mechanism in 3D architectured carbonized eggshell membrane anode. Carbon, 2020, 166, 26-35.	5.4	9
13116	Mesoporous carbon nanotube aerogel-sulfur cathodes: A strategy to achieve ultrahigh areal capacity for lithium-sulfur batteries via capillary action. Carbon, 2020, 166, 183-192.	5.4	38
13117	Surface engineering Co–B nanoflakes on Mn0.33Co0.67CO3 microspheres as multifunctional bridges towards facilitating Li+ storing performance. Ceramics International, 2020, 46, 19873-19879.	2.3	4
13118	High specific power/energy, ultralong life supercapacitors enabled by cross-cutting bamboo-derived porous carbons. Diamond and Related Materials, 2020, 109, 108044.	1.8	25
13119	Atomically ordered and epitaxially grown surface structure in core-shell NCA/NiAl2O4 enabling high voltage cyclic stability for cathode application. Electrochimica Acta, 2019, 300, 437-444.	2.6	10
13120	Enhancing the electrochemical performance of Li2MnSiO4 cathode by manipulating the cathode-electrolyte interphase with triphenylphosphine oxide additive. Electrochimica Acta, 2020, 348, 136340.	2.6	9

#	Article	IF	CITATIONS
13121	The function of Mn2+ additive in aqueous electrolyte for Zn∬́-MnO2 battery. Electrochimica Acta, 2020, 351, 136445.	2.6	85
13122	Ultra-thick wood biochar monoliths with hierarchically porous structure from cotton rose for electrochemical capacitor electrodes. Electrochimica Acta, 2020, 352, 136452.	2.6	39
13123	Catalytic Effects in the Cathode of Li-S Batteries: Accelerating polysulfides redox conversion. EnergyChem, 2020, 2, 100036.	10.1	35
13124	The Impact of Non-uniform Metal Scaffolds on the Performance of 3D Structured Silicon Anodes. Journal of Energy Storage, 2020, 30, 101502.	3.9	13
13125	Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation. Journal of Energy Storage, 2020, 30, 101514.	3.9	53
13126	Highly stable nanostructured Bi2Se3 anode material for all solid-state lithium-ion batteries. Journal of Alloys and Compounds, 2020, 838, 155403.	2.8	28
13127	Hollow I-Cu2MoS4 nanocubes coupled with an ether-based electrolyte for highly reversible lithium storage. Journal of Colloid and Interface Science, 2020, 577, 86-91.	5.0	17
13128	A polypyrrole-coated acetylene black/sulfur composite cathode material for lithium–sulfur batteries. Journal of Energy Chemistry, 2018, 27, 813-819.	7.1	45
13129	A multifunctional electrolyte with highly-coordinated solvation structure-in-nonsolvent for rechargeable lithium batteries. Journal of Energy Chemistry, 2020, 51, 362-371.	7.1	18
13130	Semi-empirical long-term cycle life model coupled with an electrolyte depletion function for large-format graphite/LiFePO 4 lithium-ion batteries. Journal of Power Sources, 2017, 365, 257-265.	4.0	52
13131	Multi carbonyl polyimide as high capacity anode materials for lithium ion batteries. Journal of Power Sources, 2020, 451, 227792.	4.0	39
13132	Pseudocapacitance effect in Al-C batteries with expanded graphite positive electrode at different temperatures. Journal of Power Sources, 2020, 467, 228323.	4.0	16
13133	Real-time visualized battery health monitoring sensor with piezoelectric/pyroelectric poly (vinylidene) Tj ETQq0 0 C Sources, 2020, 467, 228367.) rgBT /Ove 4.0	erlock 10 Tf 14
13134	Synergetic effect of nitrogen and sulfur co-doping in mesoporous graphene for enhanced energy storage properties in supercapacitors and lithium-ion batteries. Journal of Solid State Chemistry, 2020, 289, 121451.	1.4	18
13135	Secondary-structured LiFePO4 cathode with high tap density and reversible capacity. Materials Letters, 2020, 274, 128006.	1.3	5
13136	An integral interface with dynamically stable evolution on micron-sized SiOx particle anode. Nano Energy, 2020, 74, 104890.	8.2	84
13137	Synthesis and Electrochemical Properties of Porous α-Co(OH) 2 and Co 3 O 4 Microspheres. Progress in Natural Science: Materials International, 2017, 27, 197-202.	1.8	47
13138	Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chemical Reviews, 2020, 120, 2811-2878.	23.0	334

#	Article	IF	CITATIONS
13139	Multi-Yolk–Shell MnO@Carbon Nanopomegranates with Internal Buffer Space as a Lithium Ion Battery Anode. Langmuir, 2021, 37, 2195-2204.	1.6	22
13140	A Fireproof, Lightweight, Polymer–Polymer Solid-State Electrolyte for Safe Lithium Batteries. Nano Letters, 2020, 20, 1686-1692.	4.5	175
13141	High-Performance Borophene/Graphene Heterostructure Anode of Lithium-Ion Batteries Achieved via Controlled Interlayer Spacing. ACS Applied Energy Materials, 2020, 3, 11699-11705.	2.5	33
13142	Composite Polymer Electrolytes Based on PVA/PAN for All-Solid-State Lithium Metal Batteries Operated at Room Temperature. ACS Applied Energy Materials, 2020, 3, 11024-11035.	2.5	39
13143	Silicon Few-Layer Graphene Nanocomposite as High-Capacity and High-Rate Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 1793-1802.	2.5	26
13144	Electric Field Polarization To Increase Bifunctional Oxygen Electrocatalyst Performance of Nitrogen–Iron Functionalized Carbon Nanomaterials. ACS Applied Energy Materials, 2020, 3, 1484-1495.	2.5	6
13145	Solvent-Free Synthesis of the Polymer Electrolyte via Photo-Controlled Radical Polymerization: Toward Ultrafast In-Built Fabrication of Solid-State Batteries under Visible Light. ACS Applied Materials & Interfaces, 2021, 13, 8426-8434.	4.0	18
13146	New Anode Material for Lithium-Ion Batteries: Aluminum Niobate (AlNb ₁₁ O ₂₉). ACS Applied Materials & Interfaces, 2019, 11, 6089-6096.	4.0	93
13147	The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS Nano, 2021, 15, 47-80.	7.3	130
13148	Traditional Electrodeposition Preparation of Nonstoichiometric Tin-Based Anodes with Superior Lithium-Ion Storage. ACS Omega, 2019, 4, 2410-2417.	1.6	3
13149	P ₄ Nb ₂ O ₁₅ @CNTs: A New Type of Niobium Phosphate Compositing Carbon Nanotube Used as Anode Material for High-Rate Lithium Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 216-223.	3.2	10
13150	Defects and dopant properties of Li3V2(PO4)3. Scientific Reports, 2019, 9, 333.	1.6	33
13151	Solid Electrolytes for Lithium Metal and Future Lithium-ion Batteries. , 2019, , 72-101.		7
13152	From Lithium to Sodium and Potassium Batteries. , 2019, , 181-219.		1
13153	Radical Polymers for Rechargeable Batteries. RSC Polymer Chemistry Series, 2020, , 137-165.	0.1	2
13154	Amorphous/crystalline hybrid MoO ₂ nanosheets for high-energy lithium-ion capacitors. Chemical Communications, 2017, 53, 10723-10726.	2.2	97
13155	Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology. Nanoscale, 2017, 9, 17241-17247.	2.8	14
13156	Graphite-like polyoxometalate-based metal–organic framework as an efficient anode for lithium ion batteries. CrystEngComm, 2020, 22, 1340-1345.	1.3	22

#	Article	IF	CITATIONS
13157	A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy and Environmental Science, 2020, 13, 1269-1278.	15.6	39
13158	Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications. Sustainable Energy and Fuels, 2020, 4, 1554-1576.	2.5	21
13159	Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9ÂV K–Zn hybrid aqueous batteries. Journal of Materials Chemistry A, 2020, 8, 6631-6637.	5.2	66
13160	Accelerated lithium-ion conduction in covalent organic frameworks. Chemical Communications, 2020, 56, 10465-10468.	2.2	40
13161	NaV ₆ O ₁₅ microflowers as a stable cathode material for high-performance aqueous zinc-ion batteries. RSC Advances, 2020, 10, 6807-6813.	1.7	23
13162	Ultrafast-charging and long cycle-life anode materials of TiO ₂ -bronze/nitrogen-doped graphene nanocomposites for high-performance lithium-ion batteries. RSC Advances, 2020, 10, 43811-43824.	1.7	23
13163	Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li ₂ MnO ₃ coating. Journal of Materials Chemistry A, 2020, 8, 17429-17441.	5.2	82
13164	Enhanced ionic conduction in nanodimensional lithium borosilicate glass confined within mesoporous alumina. AIP Conference Proceedings, 2020, , .	0.3	2
13165	One-dimensional nanomaterials in lithium-ion batteries. Journal Physics D: Applied Physics, 2021, 54, 083001.	1.3	11
13166	Superior electrochemical performance of layered WTe ₂ as potassium-ion battery electrode. Nanotechnology, 2020, 31, 455406.	1.3	20
13167	High performance Li-ion capacitor fabricated with dual graphene-based materials. Nanotechnology, 2021, 32, 015403.	1.3	32
13168	Yolk-void-shell Si–C nano-particles with tunable void size for high-performance anode of lithium ion batteries. Nanotechnology, 2021, 32, 085403.	1.3	18
13169	Modeling lithium-ion solid-state electrolytes with a pinball model. Physical Review Materials, 2018, 2, .	0.9	33
13170	Self-recording and manipulation of fast long-range hydrogen diffusion in quasifree magnesium. Physical Review Materials, 2018, 2, .	0.9	17
13171	Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate. Physical Review Materials, 2018, 2, .	0.9	17
13172	Energetics and cathode voltages of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Li</mml:mi> <mml:mi>M</mml:mi> olivines (<mml:math) (xmlns:mml="http://www.w3.org/199</td><td><mml:msi
8¢M9ath/N</td><td>ub> < mml:mi
la\$l8ML" 0.784314="" 1="" 10="" 137="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""> < m</mml:math)></mml:mrow></mml:math 		
13173	Unsupervised landmark analysis for jump detection in molecular dynamics simulations. Physical Review Materials, 2019, 3, .	0.9	24
13174	Structural and electronic properties of lithiated Si nanowires: An <i>ab initio</i> study. Physical Review Materials, 2019, 3, .	0.9	3

ARTICLE IF CITATIONS Attractive Ellipsoid Sliding Mode Observer Design for State of Charge Estimation of Lithium-Ion Cells. 13175 3.9 22 IEEE Transactions on Vehicular Technology, 2020, 69, 14701-14712. Internal Fuzzy Hybrid Charger System for a Hybrid Electrical Vehicle. Journal of Energy Resources 13176 1.4 Technology, Transactions of the ASME, 2018, 140, . A Gaussian Process-Based Crack Pattern Modeling Approach for Battery Anode Materials Design. 13177 1.1 15 Journal of Electrochemical Energy Conversion and Storage, 2021, 18, . 13178 Using Extremophile Enzymes To Generate Hydrogen for Electricity. Microbe Magazine, 2009, 4, 560-565. 0.4 Polyurethane-Based Elastomeric Polymer Electrolyte for Lithium Metal Polymer Cells with Enhanced 13179 10 1.3Thérmal Safety. Journal of the Electrochemical Society, 2020, 167, 080525. Fingerprinting Redox Heterogeneity in Electrodes during Extreme Fast Charging. Journal of the Electrochemical Society, 2020, 167, 090542. 1.3 64 Influence of Charge Cutoff Voltage on the Cycling Behavior of 13181 LiNi_{0.5}Mn_{0.3}Co_{0.2}O₂ Cathode. Journal of the 1.36 Electrochemical Society, 2020, 167, 120509. Electrochemical Study of Functional Additives for Li-Ion Batteries. Journal of the Electrochemical 1.3 Society, 2020, 167, 120535. Status and Targets for Polymer-Based Solid-State Batteries for Electric Vehicle Applications. Journal 13183 9 1.3 of the Electrochemical Society, 2020, 167, 130520. Lithium-Silicon Compounds as Electrode Material for Lithium-Ion Batteries. Journal of the 13184 1.3 Electrochemical Society, 2020, 167, 130522. A Suite of Reduced-Order Models of a Single-Layer Lithium-Ion Pouch Cell. Journal of the 13185 22 1.3 Electrochemical Society, 2020, 167, 140513. Effect of Molecular Structure and Coordinating lons on the Solubility and Electrochemical Behavior 13186 of Quinone Derivatives for Aqueous Redox Flow Batteries. Journal of the Electrochemical Society, 1.3 2020, 167, 160502. Reviewâ€"Open-Framework Structure Based Cathode Materials Coupled with Metallic Anodes for 13187 1.3 4 Rechargeable Multivalent Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160530. Reviewâ€"Polymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite 13188 1.3 Solid Electrolytes for Li-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160514. Achieving of High Density/Utilization of Active Groups via Synergic Integration of C=N and C=O Bonds 13189 2.8 28 for Ultra-Stable and High-Rate Lithium-Ion Batteries. Research, 2018, 2018, 1936735. A Hybrid Na//K⁺-Containing Electrolyte//O₂ Battery with High Rechargeability 2.8 and Cycle Stability. Research, 2019, 2019, 1-9. Binder-Free Electrode based on Electrospun-Fiber for Li Ion Batteries via a Simple Rolling Formation. 13191 3.13 Nanoscale Research Letters, 2020, 15, 147. Efficient production of myo-inositol in Escherichia coli through metabolic engineering. Microbial Cell Factories, 2020, 19, 109.

CITATION REPORT

ARTICLE IF CITATIONS 13193 Organic Rechargeable Batteries., 2019, , 205-252. 9 Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel 1.1 Distribution, and Powertrain Systems. PLoS ONE, 2011, 6, e22113. Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy. PLoS 13196 1.1 128 ONE, 2012, 7, e49182. Preparation and characterization of PEO-based composite gel-polymer electrolytes complexed with 0.4 lithium trifluoro methane sulfonate. Materials Science-Poland, 2018, 36, 185-192. Stable silicon electrodes with vinylidene fluoride polymer binder for lithium-ion batteries. Himia, 13198 0.2 5 Fizika Ta Tehnologia Poverhni, 2020, 11, 58-71. Investigation of Porous Silicon/Carbon Composite as Anodes for Lithium Ion Batteries. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30, 351. VS\$lt;inf\$gt;2\$lt;/inf\$gt; Nanosheets: A Potential Anode Materiral for Li-ion Batteriers. Wuji Cailiao 13200 0.6 10 Xuebao/Journal of Inorganic Materials, 2015, 30, 1339. A FIRST-PRINCIPLES INVESTIGATIONS OF LITHIUM ADSORPTION AND DIFFUSION ON BN, AIN AND GaN 13201 MONOLAYERS. EskiÅŸehir Technical University Journal of Science and Technology A - Applied Sciences and 0.4 Engineering, 0, , . Analysis on Extraction Behaviour of Lithium-ion Battery Electrolyte Solvents in Supercritical CO by 13203 0.5 31 Gas Chromatography. International Journal of Electrochemical Science, 2016, 11, 7594-7604. Zinc Polypyrrole-air Sea Water Battery. International Journal of Electrochemical Science, 2016, 11, 13204 10270-10277. I Doping 1D LiTiO Nanofibers as Anode Materials for Lithium-Ion Battery. International Journal of 13205 2 0.5 Electrochemical Science, 2016, 11, 10863-10873. Study on the Performance of MnFe2O4 as Anode Material for Lithium-Ion Batteries Using Spent 13206 Alkalíne Zn-Mn Batteries as Manganese Source. International Journal of Electrochemical Šcience, 2017, 0.5 12, 11235-11243. In Situ Synthesis of Nanosized NiO Encapsulated in Graphene as High-performance Supercapacitor 13207 0.5 2 Cathode. International Journal of Electrochemical Science, 0, , 8615-8622. Research Progress of Magnesium Anode Materials and Their Applications in Chemical Power Sources. International Journal of Electrochemical Science, 2020, 15, 10584-10615. Graphene and Graphene/Binary Transition Metal Oxide Composites as Anode Materials in Li-Ion 13209 0.3 7 Batteries. Nanoscience and Nanotechnology - Asia, 2015, 5, 90-108. Potential of cellulose-based materials for lithium-ion batteries (LIB) separator membranes. Journal of 11.8 Bioresources and Bioproducts, 2016, 1, . A Frontier 2D Nanobattery: "Improving Challenges (Hotumese) and Developmentâ€. Science Nature, 2019, 13211 0.56 2, 114-121. Preparation and Characterization of Glauber's Salt Microcapsules for Thermal Energy Storage.

CITATION REPORT

Tenside, Surfactants, Detergents, 2017, 54, 32-37.

#	Article	IF	CITATIONS
13213	Thermochemical stability of Li–Cu–O ternary compounds stable at room temperature analyzed by experimental and theoretical methods. International Journal of Materials Research, 2017, 108, 959-970.	0.1	1
13214	Solvated Ion Intercalation in Graphite: Sodium and Beyond. Frontiers in Chemistry, 2020, 8, 432.	1.8	45
13215	Carbon Anode Materials for Rechargeable Alkali Metal Ion Batteries and in-situ Characterization Techniques. Frontiers in Chemistry, 2020, 8, 607504.	1.8	25
13216	Binder-Free V2O5 Cathode for High Energy Density Rechargeable Aluminum-Ion Batteries. Nanomaterials, 2020, 10, 247.	1.9	21
13217	The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries. Journal of Electrochemical Science and Technology, 2016, 7, 245-250.	0.9	2
13218	Effect of Tris(trimethylsilyl) Phosphate Additive on the Electrochemical Performance of Nickel-rich Cathode Materials at High Temperature. Journal of Electrochemical Science and Technology, 2017, 8, 162-168.	0.9	6
13219	Electrochemical Performance of M2GeO4(M = Co, Fe and Ni) as Anode Materials with High Capacity for Lithium-Ion Batteries. Journal of Electrochemical Science and Technology, 2017, 8, 323-330.	0.9	17
13220	High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries. Journal of Electrochemical Science and Technology, 2020, 11, 282-290.	0.9	9
13221	Nanostructured Electrode Materials for Rechargeable Lithium-Ion Batteries. Journal of Electrochemical Science and Technology, 2020, 11, 195-219.	0.9	25
13222	Low-Carbon and Nanosheathed ZnCo ₂ O ₄ Spheroids with Porous Architecture for Boosted Lithium Storage Properties. Research, 2019, 2019, 1354829.	2.8	4
13223	A Hybrid Na//K ⁺ -Containing Electrolyte//O ₂ Battery with High Rechargeability and Cycle Stability. Research, 2019, 2019, 6180615.	2.8	21
13224	Synergistic Effects of Salt Concentration and Working Temperature towards Dendrite-Free Lithium Deposition. Research, 2019, 2019, 7481319.	2.8	10
13225	Synthesis and Electrochemical Performance of SnO ₂ /Graphene Anode Material for Lithium Ion Batteries. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 515-520.	0.6	4
13226	Preparation and Electrochemical Properties of Porous Silicon/Carbon Composite as Negative Electrode Materials. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 937-942.	0.6	4
13227	Sol-Gel Synthesis and Conductivity Properties of Sodium Ion Solid State Electrolytes Na3Zr2Si2PO12. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1255-1260.	0.6	14
13228	Recent Development of Aqueous Sodium Ion Batteries and Their Key Materials. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 1165-1171.	0.6	19
13229	Preparation, structure, surface and impedance analysis of Na ₂ Zn _{0.5} Mn _{0.5} P ₂ O ₇ ceramics. Lithuanian Journal of Physics, 2017, 57, .	0.1	3
13230	Sodium nickel oxide nanoporous cathodes used for sodium-ion rechargeable batteries. Sri Lankan Journal of Physics, 2015, 15, 19.	0.4	3

#	Article	IF	CITATIONS
13231	Ge–Al Multilayer Thin Film as an Anode for Li-ion Batteries. Journal of the Korean Ceramic Society, 2017, 54, 249-256.	1.1	11
13232	Surface-Modified Spinel LiNi0.5Mn1.5O4 for Li-Ion Batteries. Journal of the Korean Ceramic Society, 2018, 55, 21-35.	1.1	16
13233	Battery Modeling: A Versatile Tool to Design Advanced Battery Management Systems. Advances in Chemical Engineering and Science, 2014, 04, 62-72.	0.2	10
13234	Electrolytic Cobalt Removal in Wastewater. Journal of Environmental Protection, 2016, 07, 728-733.	0.3	5
13235	Progress of Non-Aqueous Electrolyte for Li-Air Batteries. Journal of Materials Science and Chemical Engineering, 2015, 03, 1-8.	0.2	2
13236	Increase in Discharge Capacity of Li Battery Assembled with Electrochemically Prepared V ₂ O ₅ /polypyrrole-composite-film Cathode. Bulletin of the Korean Chemical Society, 2010, 31, 3109-3114.	1.0	18
13237	Synthesis and Characterization of New Macroporous SnO ₂ Foams. Bulletin of the Korean Chemical Society, 2013, 34, 1388-1390.	1.0	1
13238	Lithium-ion Batteries Aging Motinoring Througth Open Circuit Voltage (OCV) Curve Modelling and Adjustment. , 2016, , .		2
13239	Synthesis and Electrochemical Characterization of Reduced Graphene Oxide-Manganese Oxide Nanocomposites. Journal of Electrochemical Science and Technology, 2011, 2, 1-7.	0.9	7
13240	Charge/Discharge Mechanism of Multicomponent Olivine Cathode for Lithium Rechargeable Batteries. Journal of Electrochemical Science and Technology, 2011, 2, 14-19.	0.9	9
13241	A Carbon Nanotubes-Silicon Nanoparticles Network for High Performance Lithium Rechargeable Battery Anodes. Journal of Electrochemical Science and Technology, 2012, 3, 116-122.	0.9	3
13242	Electrochemical Characteristics of Nano-sized A ₂ MnPO ₄ F (A = Li, Na) as Cathode Materials for Lithium ion Batteries. Journal of Electrochemical Science and Technology, 2013, 4, 113-118.	0.9	3
13243	Hydrothermally Synthesized TiO ₂ Nanoparticles as a Cathode Catalyst Material in Lithium-Oxygen Batteries. Journal of Electrochemical Science and Technology, 2014, 5, 45-48.	0.9	3
13244	Hydrothermally Synthesized TiO ₂ Nanoparticles as a Cathode Catalyst Material in Lithium-Oxygen Batteries. Journal of Electrochemical Science and Technology, 2014, 5, 105-108.	0.9	2
13249	Effects of phosphorus content and operating temperature on the electrochemical performance of phosphorus-doped soft carbons. Carbon Letters, 2014, 15, 277-281.	3.3	10
13250	Recent Development in the Rate Performance of Li4Ti5O12. Applied Science and Convergence Technology, 2014, 23, 72-82.	0.3	1
13251	Electrochemistry and Solid-State Chemistry of Layered Oxides for Li-, Na-, and K-Ion Batteries. Electrochemistry, 2020, 88, 507-514.	0.6	12
13253	Fast Discharge Process of Thin Film Electrode of Prussian Blue Analogue. Japanese Journal of Applied Physics, 2012, 51, 107301.	0.8	5

#	Article	IF	CITATIONS
13254	<i>In Situ</i> / <i>Operando</i> Advances of Electrode Processes in Solid-state Lithium Batteries. Acta Chimica Sinica, 2021, 79, 1197.	0.5	2
13255	Monitoring battery electrolyte chemistry <i>via</i> in-operando tilted fiber Bragg grating sensors. Energy and Environmental Science, 2021, 14, 6464-6475.	15.6	51
13256	Anionic redox induced anomalous structural transition in Ni-rich cathodes. Energy and Environmental Science, 2021, 14, 6441-6454.	15.6	33
13257	Synthesis and Applications of Colloidal Nanomaterials of Main Group- and Transition- Metal Phosphides. Indian Institute of Metals Series, 2021, , 461-536.	0.2	1
13258	Prospect of Poly(2-chloroaniline)-Nanocomposite-Silica as Anode in Li-Ion Coin Cell. Asian Journal of Chemistry, 2021, 33, 2700-2706.	0.1	0
13259	Neural-network design of Li ₃ VO ₄ /NC fibers toward superior high-rate Li-ion storage. Journal of Materials Chemistry A, 2021, 9, 24002-24011.	5.2	26
13260	Understanding the interlayer rearrangement toward enhanced lithium storage for LiBC anode. Chemical Communications, 2021, 57, 12492-12495.	2.2	1
13261	Assessing cathode property prediction <i>via</i> exchange-correlation functionals with and without long-range dispersion corrections. Physical Chemistry Chemical Physics, 2021, 23, 24726-24737.	1.3	8
13262	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
13263	A Highâ€performance Lithium Metal Battery with a Multilayer Hybrid Electrolyte. Energy and Environmental Materials, 2023, 6, .	7.3	41
13264	Gramâ€Scale Synthesis of Nanosized Li ₃ HoBr ₆ Solid Electrolyte for Allâ€Solidâ€State Liâ€Se Battery. Small Methods, 2021, 5, e2101002.	4.6	22
13265	Environmental Impacts of Aqueous Zinc Ion Batteries Based on Life Cycle Assessment. Advanced Sustainable Systems, 2022, 6, 2100308.	2.7	27
13266	Electrolyte additives inhibit the surface reaction of aqueous sodium/zinc battery. Journal of Colloid and Interface Science, 2022, 608, 1481-1488.	5.0	12
13267	Gradient Hâ€Bonding Binder Enables Stable Highâ€Areal apacity Siâ€Based Anodes in Pouch Cells. Advanced Materials, 2021, 33, e2104416.	11.1	78
13268	New Covalent Organic Square Lattice Based on Porphyrin and Tetraphenyl Ethylene Building Blocks toward High-Performance Supercapacitive Energy Storage. Chemistry of Materials, 2021, 33, 8512-8523.	3.2	40
13269	Ceria-Spiderweb Nanosheets Unlock the Energy-Storage Properties in the "Sleeping―Triplite (Mn2(PO4)F). ACS Applied Energy Materials, 0, , .	2.5	2
13270	Systematic density functional theory investigations on cubic lithium-rich iron-based Li2FeO3: A multiple electrons cationic and anionic redox cathode material. ETransportation, 2021, 10, 100141.	6.8	8
13271	Quasi-Solid-State Electrolyte Using an In Situ Click Reaction for Safety-Enhanced Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 100538.	1.3	2

#	Article	IF	CITATIONS
13272	Role of impurity phases present in orthorhombic-Li2MnSiO4 towards the Li-reactivity and storage as LIB cathode. Applied Surface Science, 2022, 574, 151689.	3.1	7
13273	A Flexible, Fireproof, Composite Polymer Electrolyte Reinforced by Electrospun Polyimide for Room-Temperature Solid-State Batteries. Polymers, 2021, 13, 3622.	2.0	7
13274	Interfacial Engineering Regulates Deposition Kinetics of Zinc Metal Anodes. ACS Applied Energy Materials, 2021, 4, 11743-11751.	2.5	8
13275	Synthesis of Electrospun NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid Electrolyte Nanofibers by Control of Germanium Hydrolysis. Journal of the Electrochemical Society, 2021, 168, 110512.	1.3	6
13276	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	9
13277	Xylitol-Maleic Anhydride as Small-Molecule Binders for Silicon Anodes in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 100533.	1.3	1
13278	An All-Solid-State Lithium Metal Battery Based on Electrodes-Compatible Plastic Crystal Electrolyte. Energies, 2021, 14, 6946.	1.6	2
13279	Time-frequency analysis of Li solid-phase diffusion in spherical active particles under typical discharge modes. Journal of Energy Chemistry, 2022, 67, 209-224.	7.1	9
13280	Electrolyte Regulation of Bismuth Ions toward High-Performance Aqueous Manganese-based Batteries. , 2021, 3, 1558-1565.		18
13281	Topologically-mediated energy release by relativistic antiferromagnetic solitons. Physical Review Research, 2021, 3, .	1.3	1
13282	An aqueous zinc pyrovanadate nanowire cathode doped by nitrogen-doped carbon from PANI calcination for capacity and stability enhancement. Ionics, 2022, 28, 295-305.	1.2	3
13283	Formation, lithium storage properties and mechanism of nanoporous germanium fabricated by dealloying. Journal of Chemical Physics, 2021, 155, 184702.	1.2	2
13284	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, e202111826.	7.2	21
13285	<i>In Situ</i> Visualization of Atmosphere-Dependent Relaxation and Failure in Energy Storage Electrodes. Journal of the American Chemical Society, 2021, 143, 17843-17850.	6.6	7
13286	Construction of a Cu-Based Metal–Organic Framework by Employing a Mixed-Ligand Strategy and Its Facile Conversion into Nanofibrous CuO for Electrochemical Energy Storage Applications. Inorganic Chemistry, 2021, 60, 16986-16995.	1.9	18
13287	A Morphologically Stable Li/Electrolyte Interface for Allâ€5olidâ€5tate Batteries Enabled by 3Dâ€Micropatterned Garnet. Advanced Materials, 2021, 33, e2104009.	11.1	76
13288	Improving interfacial stability of ultrahigh-voltage lithium metal batteries with single-crystal Ni-rich cathode via a multifunctional additive strategy. Journal of Colloid and Interface Science, 2022, 608, 1471-1480.	5.0	25
13289	Na ₃ V ₂ (PO ₄) ₃ Revisited: A High-Resolution Solid-State NMR Study. Journal of Physical Chemistry C, 2021, 125, 24060-24066.	1.5	6

#	Article	IF	CITATIONS
13290	Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Advanced Materials, 2022, 34, e2104327.	11.1	78
13291	Boosting the High Capacitance-Controlled Capacity of Hard Carbon by Using Surface Oxygen Functional Groups for Fast and Stable Sodium Storage. ACS Applied Energy Materials, 2021, 4, 11436-11446.	2.5	14
13292	Charge Storage Mechanism of an Anthraquinone-Derived Porous Covalent Organic Framework with Multiredox Sites as Anode Material for Lithium-Ion Battery. ACS Applied Energy Materials, 2021, 4, 11377-11385.	2.5	31
13293	Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. Advanced Materials, 2022, 34, e2104150.	11.1	69
13294	Control of Chemical Structure and Lithium-ion Conductivity of Amorphous Lithium Phosphate Thin Film Deposited by Pulsed Laser Deposition. Chemistry Letters, 2022, 51, 34-37.	0.7	1
13295	Hierarchical porous transition metal oxide nanosheets templated from waste bagasse: General synthesis and Li/Na storage performance. Ceramics International, 2022, 48, 2298-2305.	2.3	10
13296	High performance aqueous Li-ion capacitors with palladium nanoparticle/graphene composite anode and activated carbon cathode employing safe and environmentally friendly electrolytes. Ionics, 2022, 28, 443-450.	1.2	0
13297	Dualâ€Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium–Manganeseâ€Rich Cathode Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100140.	2.8	9
13298	Capturing polysulfides by sulfurizedâ€polyacrylonitrile in lithiumâ€sulfur batteries and the sulfurâ€chain effects through Density Functional Theory. Electrochemical Science Advances, 2022, 2, .	1.2	2
13299	N-doped sawdust-based activated biocarbons prepared by microwave-assisted heat treatment as potential electrode materials for supercapacitors. Journal of Wood Chemistry and Technology, 2021, 41, 307-320.	0.9	6
13300	Doctorâ€Blade Casting Fabrication of Ultrathin Li Metal Electrode for Highâ€Energyâ€Density Batteries. Advanced Energy Materials, 2021, 11, 2102259.	10.2	40
13301	Enhancing the Reduction Kinetics of Lïī£¿SF ₆ Batteries by Dispersed Cobalt Phthalocyanines on Porous Carbon. Small, 2021, 17, e2103778.	5.2	3
13302	Activating a Multielectron Reaction of NASICON-Structured Cathodes toward High Energy Density for Sodium-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 18091-18102.	6.6	96
13303	Synergistic Role of Eg Filling and Anion–Cation Hybridization in Enhancing the Oxygen Evolution Reaction Activity in Nickelates. ACS Applied Energy Materials, 0, , .	2.5	7
13304	Atomic layer deposition of alumina onto yolk-shell FeS/MoS2 as universal anodes for Li/Na/K-Ion batteries. Electrochimica Acta, 2022, 402, 139471.	2.6	12
13305	Aluminum fluoride intercalation in graphite for rechargeable batteries design. Carbon, 2022, 186, 724-736.	5.4	3
13306	Metal-organic frameworks and their derivatives in stable Zn metal anodes for aqueous Zn-ion batteries. ChemPhysMater, 2022, 1, 252-263.	1.4	25
13307	<i>In Situ</i> Formed Li–Ag Alloy Interface Enables Li ₁₀ GeP ₂ S ₁₂ -Based All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 50076-50082.	4.0	27

#	Article	IF	CITATIONS
13308	Recent Progress on In Situ/Operando Characterization of Rechargeable Alkali Ion Batteries. ChemPlusChem, 2021, 86, 1487-1496.	1.3	3
13309	Confined interfacial assembly of controlled Li2Ti3O7 building blocks and Si nanoparticles in Lithium-ion batteries. Energy Storage Materials, 2022, 44, 239-249.	9.5	13
13310	Unraveling the Role of Neutral Units for Single-Ion Conducting Polymer Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 51525-51534.	4.0	18
13311	Reversible and Fast (De)fluorination of Highâ€Capacity Cu ₂ O Cathode: One Step Toward Practically Applicable Allâ€Solidâ€State Fluorideâ€Ion Battery. Advanced Energy Materials, 2021, 11, 2102285.	10.2	23
13312	High-concentration dual-complex electrolyte enabled a neutral aqueous zinc-manganese electrolytic battery with superior stability. Chemical Engineering Journal, 2022, 430, 133058.	6.6	17
13313	Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science, 2021, 374, 172-178.	6.0	238
13314	Relation Between the Local Structure and Solid Solubility of the Layered Material LiMO2 (M = Co, Ni,) Tj	ETQq0 0 0) rgBT /Overl
13315	Pyrrolidiniumâ€PEG Ionic Copolyester: Liâ€Ion Accelerator in Polymer Network Solidâ€State Electrolytes. Advanced Energy Materials, 2021, 11, 2102660.	10.2	17
13316	Recent Progress of Hexaazatriphenylene-based Electrode Materials for Rechargeable Batteries. Catalysis Today, 2022, 400-401, 102-114.	2.2	12
13317	Multifunctional Catalyst CuS for Nonaqueous Rechargeable Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2021, 13, 50065-50075.	4.0	13
13318	Electrochemical activation of a diatom-derived SiO2/C composite anode and its implementation in a lithium ion battery. Solid State Ionics, 2021, 371, 115766.	1.3	7
13319	Suppression of lithium dendrite by aramid nanofibrous aerogel separator. Journal of Power Sources, 2021, 515, 230608.	4.0	10
13320	5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. Nano Energy, 2021, 90, 106589.	8.2	53
13321	Long-life SnS/TiO2/C stemming from nano-TiO2 @C complex hull as Li-ion battery anode. Journal of Electroanalytical Chemistry, 2021, 902, 115763.	1.9	3
13322	The complementary advanced characterization and electrochemical techniques for electrode materials for supercapacitors. Journal of Energy Storage, 2021, 44, 103370.	3.9	23
13323	Novel self-supporting multilevel-3D porous NiO nanowires with metal-organic gel coating via "like dissolves like―to trigger high-performance binder-free lithium-ion batteries. Microporous and Mesoporous Materials, 2021, 328, 111483.	2.2	8
13324	NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (MÂ=ÂMn, Co, Mg) phosphates as electrode materials for lithium-ion batteries. Electrochimica Acta, 2021, 399, 139438.	2.6	1
13325	The mosaic structure design to improve the anchoring strength of SiOx@C@Graphite anode. Materials Today Chemistry, 2021, 22, 100599.	1.7	8

#	Article	IF	CITATIONS
13326	C10F as a potential anode material for alkali-ion batteries; a quantum chemical approach. Computational and Theoretical Chemistry, 2021, 1206, 113470.	1.1	5
13327	Unveiling low-tortuous effect on electrochemical performance toward ultrathick LiFePO4 electrode with 100ÂmgÂcmâ^2 area loading. Journal of Power Sources, 2021, 515, 230588.	4.0	22
13328	Designing advanced sandwiched 2D NC/MoSe2@N-doped carbon arrays as new anode materials for efficient sodium storage. Electrochimica Acta, 2021, 399, 139369.	2.6	12
13329	Tailoring the transport and magnetic properties of Mn doped spinel FeCo2O4 and their impact on energy storage properties: A new strategy to improve storage performance. Journal of Energy Storage, 2021, 44, 103361.	3.9	11
13330	Cooperative Relay Scheduling in Energy Harvesting Sensor Networks. , 2011, , 127-150.		0
13331	Investigation of electrochemical performances of ZnFe2O4 prepared by solid state and hydrothermal method. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 058201.	0.2	1
13332	Modeling of the Thermal Behavior of a Lithium-Ion Battery Pack. Journal of Energy Engineering, 2011, 20, 1-7.	0.2	2
13333	Cation Extraction Process in Bilayer Cyanide Film as Investigated by Depth-Resolved X-ray Absorption Spectroscopy. Japanese Journal of Applied Physics, 2011, 50, 125802.	0.8	0
13334	Fuel Cell fuel cell Comparison to Alternate Technologies fuel cell comparison to alternate technologies. , 2012, , 3847-3860.		1
13335	Lithium Battery Electrolyte Stability and Performance from Molecular Modeling and Simulations. , 2012, , 6037-6067.		1
13336	Battery Technologies. , 2012, , 353-393.		0
13337	Battery battery Technologies battery technologies. , 2012, , 768-805.		0
13339	Introduction to the World of Nanotechnology. , 2012, , 1-31.		0
13340	Studies on Crystallographic and Mossbauer Spectra of the LiFe0.9Mn0.1PO4. Journal of the Korean Magnetics Society, 2012, 22, 15-18.	0.0	0
13341	Evaluation Modeling Heat Generation Behavior for Lithium-ion Battery Using FEMLAB. Clean Technology, 2012, 18, 320-324.	0.1	0
13342	Battery battery Technologies battery technologies. , 2013, , 158-195.		0
13343	Nanostructured Electrode Materials for Lithium-ion Battery. , 2013, , 99-143.		0
13344	Ultrathin Atomic Layer Deposited ZrO2 Coating to Enhance the Electrochemical Performance of Li4Ti5O12 as an Anode Material. ECS Meeting Abstracts, 2013, , .	0.0	0

#	Article	IF	CITATIONS
13345	Functional Properties of Molecular Clusters Based on Solid-state Electrochemistry. Molecular Science, 2013, 7, A0061.	0.2	1
13346	High Pressure X-ray Diffraction Study of LiFePO4/C-olivine-like Phase. Journal of the Mineralogical Society of Korea, 2013, 26, 35-44.	0.2	2
13347	The Effect of Low-Temperature Carbon Encapsulation on Si Nanoparticles for Lithium Rechargeable Batteries. Bulletin of the Korean Chemical Society, 2013, 34, 2162-2166.	1.0	0
13348	The Study on Prediction of Oxidative Decomposition Potential by Comparison between Simulation and Electrochemical Methods to Develop the Binder for High-voltage Lithium-ion Batteries. Journal of the Korean Electrochemical Society, 2013, 16, 177-183.	0.1	0
13349	Heat Treatment Effect of Seed on Synthesis of Chemical Manganese Dioxide (CMD) and Electrochemical Properties of LiMn ₂ 0 ₄ obtained from the CMD. Korean Chemical Engineering Research, 2013, 51, 460-464.	0.2	0
13350	All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2013, 2013, 000187-000191.	0.2	0
13351	Lithium Reaction with Metal Nanofilms. , 2013, , 213-240.		0
13352	Structural Effect on Electrochemical Performance of 4,4'-Biphenyldicarboxylate Soduim Salts As an Anode for Na-Ion Batteries. ECS Meeting Abstracts, 2014, , .	0.0	0
13353	A Solid-State, Rechargeable Lithium Oxygen Battery. , 2014, , 235-254.		1
13354	Binder-Free Nanotube Electrodes for High Energy and Power Density 3D Li-Ion Microbatteries. ECS Meeting Abstracts, 2014, , .	0.0	0
13356	Intelligent Energy Harvesting Power Management and Advanced Energy Storage System. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2014, 27, 417-427.	0.0	0
13358	Lithium-Ion Battery Degradation Related Parameter Estimation Using Electrochemistry-Based Dual Models. Lecture Notes in Mechanical Engineering, 2015, , 565-579.	0.3	0
13359	Hydrothermally Synthesized TiO2 Nanoparticles as a Cathode Catalyst Material in Lithium-Oxygen Batteries. Journal of Electrochemical Science and Technology, 2014, 5, 105-108.	0.9	0
13360	Preparation and Electrochemical Lithium Insertion of TiO\$lt;inf\$gt;2\$lt;/inf\$gt;/Graphene Nanocomposites. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2015, 30, 1218.	0.6	0
13361	Evaluation of a copper based gel polymer electrolyte and its performance in a primary cell. Sri Lankan Journal of Physics, 2015, 15, 45.	0.4	2
13364	Nitrided LATP Solid Electrolyte for Enhanced Chemical Stability in Alkaline Media. Journal of the Korean Electrochemical Society, 2015, 18, 45-50.	0.1	0
13365	Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni _{1/3} Co _{1/3} Mn _{1/3})O ₂ /Graphite Cells. Journal of the Korean Electrochemical Society, 2015, 18, 58-67.	0.1	3
13366	Urgency of LiFePO ₄ as cathode material for Li-ion batteries. Advances in Materials Research (South Korea), 2015, 4, 63-76.	0.6	0

# 13367	ARTICLE Electrochemically Fabricated Nanostructures in Energy Storage and Conversion Applications. , 2016, , 71-100.	IF	CITATIONS
13369	Synthesis of Perforated Polygonal Cobalt Oxides usinga Carbon Nanofiber Template. Journal of Korean Powder Metallurgy Institute, 2015, 22, 350-355.	0.2	2
13371	Highly Stable Mesoporous Ge@C Sphere Anodes for Lithium-ion Batteries. , 2016, , .		0
13372	Li Batteries with PSi-Based Electrodes. , 2016, , 319-345.		0
13373	One-pot method of synthesis and supercritical carbon dioxide drying of PVdF-HFP composite membranes. European Journal of Chemistry, 2016, 7, 121-127.	0.3	0
13374	Cluster-Assembled Carbon Thin Films for Planar Supercapacitors. , 0, , 1-7.		0
13375	Na-Ion Anode Based on Na(Li,Ti)O2 System: Effects of Mg Addition. Journal of the Korean Ceramic Society, 2016, 53, 282-287.	1.1	0
13376	Development of Novel Cathode Materials Based on MWCNT for Energy Storage/Conversion Devices. Springer Proceedings in Physics, 2017, , 347-355.	0.1	0
13377	The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2and its Electrochemical Performance as Cathode Materials for Li ion Batteries. Journal of Electrochemical Science and Technology, 2016, 7, 245-250.	0.9	0
13378	Li1.4Al0.4Ti1.6(PO4)3 high lithium ion conducting solid electrolyte prepared by tape casting and modified with epoxy resin. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 188201.	0.2	1
13379	Influence of Aland Ga on Lithium Ion Conductivities of Cubic Garnet-Type Li _{7-x} La ₃ Zr _{2-x} Ta _x O ₁₂ Electrolytes. Material Sciences, 2017, 07, 243-253.	0.0	0
13380	Structure Studies of Lithium Ion Conducting Glasses Using Neutron Diffraction. Materia Japan, 2017, 56, 443-447.	0.1	0
13381	Nitrogen Interaction with Carbon Nanotubes: Adsorption and Doping. Nanoscience and Technology, 2017, , 115-169.	1.5	0
13383	Revolutionizing Causal Circuitry Neurostimulation Utilizing the Optogenetic Technique Through Advanced Microsystems Development. Series in Bioengineering, 2017, , 61-80.	0.3	0
13384	Fuel Cell Comparison to Alternate Technologies. , 2017, , 1-16.		0
13385	Optimization of Synthesis Conditions of LiMn _{2–x} Fe _x O <su Cathode Materials Based on Thermal Characterizations. American Journal of Analytical Chemistry, 2017. 08. 51-59.</su 	ub&g	t;4
13386	Silicon nanowires for Li-based battery anode applications. , 2017, , 455-474.		0
13387	Silicon nanowires for Li-based battery anode applications. Series in Materials Science and Engineering, 2017, , 455-474.	0.1	0

		CITATION REPORT		
#	Article		IF	CITATIONS
13388	Fundamentals of silicon nanotubes. Series in Materials Science and Engineering, 2017,	, , 537-564.	0.1	0
13390	Lithium-ion Migration in Layered Li1.06Ni0.5Co0.2Mn0.3O2 Cathode Materials Synthe Temperatures. International Journal of Electrochemical Science, 0, , 936-950.	esized at Different	0.5	1
13391	Supercomputer Simulation of Promising Nanocomposite Anode Materials forÂLithium- New Results. Communications in Computer and Information Science, 2018, , 294-305	lon Batteries:	0.4	0
13392	Study on Heat-Sealing Strength of the Pouch Film. Journal of the Korean Society for Pr Engineering, 2018, 35, 219-223.	ecision	0.1	0
13393	Synthesis and Conductivity Studies of Tetraarylphosphonium Salts As Potential Electro Advanced Batteries. International Journal for Innovation Education and Research, 2018)lytes in 3, 6, 116-123.	0.0	2
13394	Electrolyte dictated materials design for beyond lithium ion batteries. , 2018, , .			0
13396	Preparation of Rechargeable Battery from Poultry Waste. Pakistan Journal of Scientific Research Series A: Physical Sciences, 2019, 61, 80-83.	and Industrial	0.2	0
13397	Fuel Cell Comparison to Alternate Technologies. , 2019, , 11-25.			0
13399	Electrochemical and Spectroscopic Studies of Nanocomposites Laden with BaTiO3-gra Oxide. International Journal of Scientific Research in Science and Technology, 2018, , 3	fted-graphene 19-327.	0.1	0
13400	Functionalized Ionic Liquid-Based Electrolytes for Li-Ion Batteries. , 2019, , 401-428.			2
13401	Designing Solid-Liquid Interphases for Sodium Batteries. Springer Theses, 2019, , 95-1	16.	0.0	0
13403	Solid Polymer Interphases for Lithium Metal Batteries. Springer Theses, 2019, , 183-19	8.	0.0	0
13404	Lithium-ion Battery Safety. , 2019, , 290-315.			0
13405	Ionic Conductivity, Polymer Electrolyte, Membranes, Electrochemical Stability, Separat 163-193.	ors. , 2019, ,		2
13406	Interfacial Engineering for Lithium Metal Batteries Based on Garnet Structured Solid Fa Conductors. , 2019, , 241-273.	ıst Lithium-Ion		0
13407	Design and Temperature Analysis of an Aluminum-Air Battery Casing for Electric Vehicl Structured Materials, 2019, , 207-216.	es. Advanced	0.3	0
13408	Gel Polymer Electrolytes. , 2019, , 102-129.			1
13409	Cathode Materials, Samples, Pristine, Layered, Doping, Discharge Capacity. , 2019, , 73	3-161.		0

#	Article	IF	CITATIONS
13410	One-Step Synthesis and Lithium Storage Performance of Sub-5-nm MoO ₂ -Graphene Nanocomposites. Advances in Material Chemistry, 2019, 07, 53-60.	0.0	0
13411	Electroless Formation of Hybrid Lithium Anodes for High Interfacial Ion Transport. Springer Theses, 2019, , 117-135.	0.0	0
13412	<i>In situ</i> observation of lithiation mechanism of SnO ₂ nanoparticles. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158201.	0.2	1
13413	Chapter 3. Intercalation-based Layered Materials for Rechargeable Sodium-ion Batteries. RSC Smart Materials, 2019, , 71-94.	0.1	0
13414	Graphene-based Nanocomposites for Electrochemical Energy Storage. , 2019, , 134-150.		0
13415	Pushing the Energy Limits of Lithium Ion Batteries through Fluorinated Materials. , 0, , .		1
13416	Advanced Diagnostics of Lithium-Ion Batteries. , 2019, , 69-93.		0
13418	Micro-Phase Separated Poly(VdF-co-HFP)/Ionic Liquid/Carbonate as Gel Polymer Electrolytes for Lithium-Ion Batteries. , 2019, , 197-213.		0
13421	Graphene modulated LiMn _{1.5} Ni _{0.4} Cr _{0.1} O ₄ spinel cathode for lithium ion battery. Nano Express, 2020, 1, 020028.	1.2	0
13422	Silicon Substituted Lithium Stannum Phosphate Ceramic Electrolytes: Structural, Electrical and Electrochemical Properties. Scientific Research Journal, 2020, 17, 191.	0.4	1
13423	Strategic Approaches to the Dendritic Growth and Interfacial Reaction of Lithium Metal Anode. Chemistry - an Asian Journal, 2021, 16, 4010-4017.	1.7	17
13424	Study of the Role of Void and Residual Silicon Dioxide on the Electrochemical Performance of Silicon Nanoparticles Encapsulated by Graphene. Nanomaterials, 2021, 11, 2864.	1.9	4
13425	Biredoxâ€lonic Anthraquinoneâ€Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Liâ€Organic Batteries. Advanced Science, 2022, 9, e2103632.	5.6	8
13426	Electrolyte-dependent formation of solid electrolyte interphase and ion intercalation revealed by in situ surface characterizations. Journal of Energy Chemistry, 2022, 67, 718-726.	7.1	20
13427	Steric modulation of Na2Ti2O3(SiO4)·2H2O toward highly reversible Na ion intercalation/deintercalation for Na ion batteries. Chemical Engineering Journal, 2022, 431, 133245.	6.6	3
13428	Highly Adaptable Poly(ether-acrylate) Solid Electrolyte for Cathode/Electrolyte Interface Integration and Application in Lithium Metal-Free Solid-State Batteries. ACS Applied Energy Materials, 2021, 4, 12989-12997.	2.5	2
13429	Polymorphic Purity and Structural Charge–Discharge Evolution of β-LiVOPO ₄ Cathodes. Journal of Physical Chemistry C, 2021, 125, 24301-24309.	1.5	3
13430	Electrolyzed Ni(OH) ₂ Precursor Sintered with LiOH/LiNiO ₃ Mixed Salt for Structurally and Electrochemically Stable Cobalt-Free LiNiO ₂ Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 50965-50974.	4.0	8

#	Article	IF	CITATIONS
13431	ZnNiâ€MnCo2O4@CNT porous double heterojunction cageâ€like structure with threeâ€dimensional network for superior lithiumâ€ion batteries and capacitors. Electrochimica Acta, 2022, 401, 139502.	2.6	10
13432	Ultrathin MoS2 nanosheets anchored on carbon nanofibers as free-standing flexible anode with stable lithium storage performance. Journal of Alloys and Compounds, 2022, 894, 162550.	2.8	58
13433	Clusterâ€Bridgingâ€Coordinated Bimetallic Metalâ^'Organic Framework as Highâ€Performance Anode Material for Lithiumâ€Ion Storage. Small Structures, 2021, 2, 2100122.	6.9	25
13434	In situ construction of a flexible interlayer for durable solid-state lithium metal batteries. Carbon, 2022, 187, 13-21.	5.4	13
13435	A Comparison of Solid Electrolyte Interphase Formation and Evolution on Highly Oriented Pyrolytic and Disordered Graphite Negative Electrodes in Lithiumâ€ion Batteries. Small, 2021, 17, e2105292.	5.2	18
13436	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	10.2	59
13437	Chemical Heterogeneity in PAN/LLZTO Composite Electrolytes by Synchrotron Imaging. Journal of the Electrochemical Society, 2021, 168, 110522.	1.3	3
13438	Ceramic-Coated Separator to Enhance Cycling Performance of Lithium-ion Batteries at High Current Density. Journal of Korean Institute of Metals and Materials, 2021, 59, 813-820.	0.4	4
13439	Polymer Nanocomposites: Synthesis and Characterization. Environmental Chemistry for A Sustainable World, 2020, , 265-315.	0.3	3
13440	Lignocellulosics as a Green Material Opportunity for Energy Storage Systems. , 2020, , 297-343.		0
13441	Development and application of battery materials database. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226104.	0.2	0
13442	Synthesis of Ce-doped SnO ₂ @Ti ₃ C ₂ nanocomposites for enhanced lithium-ion storage. Functional Materials Letters, 2021, 14, 2151003.	0.7	4
13443	The application of Cr-MOF@MWCNT modified separator in high-performance lithium-sulfur batteries. IOP Conference Series: Earth and Environmental Science, 0, 619, 012064.	0.2	1
13444	Surfactantâ€free and controllable synthesis of hierarchically lithiated MoO ₃ microspheres. Micro and Nano Letters, 2021, 16, 97-102.	0.6	0
13445	Strategy for Long Cycling Performance of Graphite/LiNi1/3Mn1/3Co1/3O2 Full-Cell Through High-Efficiency Slurry Preparation. Journal of the Electrochemical Society, 2020, 167, 160533.	1.3	2
13446	Advanced cobalt-free cathode materials for sodium-ion batteries. Chemical Society Reviews, 2021, 50, 13189-13235.	18.7	109
13447	Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Materials, 2022, 44, 93-103.	9.5	77
13448	Magnetically controlled crystallographic properties of graphite sheets with self-assembled periodic arrays of magnetoelectric nanoparticles. Applied Surface Science, 2022, 573, 151455.	3.1	1

#	Article	IF	CITATIONS
13449	Boosting capacity and operating voltage of LiVO3 as cathode for lithium-ion batteries by activating oxygen reaction in the lattice. Journal of Power Sources, 2022, 517, 230728.	4.0	7
13450	Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries. Journal of Membrane Science, 2022, 642, 119952.	4.1	25
13451	PVDF-HFP based polymer electrolytes with high Li+ transference number enhancing the cycling performance and rate capability of lithium metal batteries. Applied Surface Science, 2022, 574, 151593.	3.1	46
13452	Schottky junction and multiheterostructure synergistically enhance rate performance and cycling stability. Chemical Engineering Journal, 2022, 430, 132994.	6.6	8
13453	Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452, 214297.	9.5	92
13454	An enhanced stability and efficiency of SPEEK-based composite membrane influenced by amphoteric side-chain polymer for vanadium redox flow battery. Journal of Membrane Science, 2022, 643, 120011.	4.1	29
13455	Continuous Fabrication of Fiber Devices. , 2020, , 363-389.		0
13457	MOF-derived porous carbon inlaid with MnO ₂ nanoparticles as stable aqueous Zn-ion battery cathodes. Dalton Transactions, 2021, 50, 17723-17733.	1.6	14
13458	Transport Phenomena, Electrochemistry and Degradation in Lithium-Oxygen Battery. Energy, Environment, and Sustainability, 2020, , 433-464.	0.6	2
13460	Transition metal nitride nanoflake thin film grown by DC-magnetron sputtering for high-performance supercapacitor applications. AIP Conference Proceedings, 2020, , .	0.3	7
13461	Large-Scale Simulations I: Methods and Applications for a Li-Ion Battery. , 2020, , 147-194.		1
13462	Stability of interphase between solid state electrolyte and electrode. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228206.	0.2	7
13463	Powering Healthcare IoT Sensors-Based Triboelectric Nanogenerator. Advances in Computer and Electrical Engineering Book Series, 2020, , 29-51.	0.2	2
13464	Current Density Regulating Lithium Metal Directional Deposition for Long Cycle Life Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13465	Preparation of spherical LiNi _{0.5} Mn _{1.5} O ₄ with core-multilayer shells structure by co-precipitation method and long cycle performance. E3S Web of Conferences, 2020, 213, 01011.	0.2	1
13466	Nickel-based metal–organic framework-derived Ni/NC/KB as a separator coating for high capacity lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 6372-6380.	2.5	6
13467	Haeckelite phosphorus: an emerging 2D allotrope of phosphorus for potential use in LIBs/SIBs. Physical Chemistry Chemical Physics, 2021, 23, 26547-26560.	1.3	5
13468	Preparation of (50-x)Li ₂ SO ₄ â^™xLi ₂ WO ₄ â^™50LiPO ₃ (mol%) Glasses and Their Lithium-ion Conducting Properties. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy. 2020. 67. 158-162.	0.1	0

#	Article	IF	CITATIONS
13470	Preparation of Lithium-ion Conducting Glasses in the System Li ₂ SO ₄ -LiPO ₃ . Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 153-157.	0.1	0
13473	Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO ₄ Particle. Analytical Chemistry, 2021, 93, 14448-14453.	3.2	13
13474	Perovskiteâ€Type SrVO ₃ as Highâ€Performance Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2107262.	11.1	29
13475	A novel functional polymeric binder for silicon anodes in lithium-ion batteries. Journal of Physics: Conference Series, 2021, 2021, 012017.	0.3	2
13476	Si nanoparticles seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries. Materials Futures, 2022, 1, 015101.	3.1	18
13477	First-Principles Studies on the Formation of Oxygen Vacancies in Li ₂ CoSiO ₄ . Journal of the Electrochemical Society, 2021, 168, 110527.	1.3	2
13478	Carbon-coated BiVO4 prepared by molten salt method combined with ball milling for high-performance lithium-ion battery anode. Ionics, 2022, 28, 689-696.	1.2	3
13479	Dualâ€Design of Nanoporous to Compact Interface via Atomic/Molecular Layer Deposition Enabling a Longâ€Life Silicon Anode. Advanced Functional Materials, 2022, 32, 2109682.	7.8	26
13480	Elucidating and Mitigating Highâ€Voltage Degradation Cascades in Cobaltâ€Free LiNiO ₂ Lithiumâ€Ion Battery Cathodes. Advanced Materials, 2022, 34, e2106402.	11.1	44
13481	Laponite-Assisted Graphite Anode with a 3D Conductive and Interlinked Structure for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 18798-18804.	2.5	1
13482	Clarifying the Roles of Cobalt and Nickel in the Structural Evolution of Layered Cathodes for Sodium-Ion Batteries. Nano Letters, 2021, 21, 9619-9624.	4.5	13
13483	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Advanced Materials, 2022, 34, e2105855.	11.1	45
13484	Polyphenylene Sulfideâ€Based Solid‣tate Separator for Limited Li Metal Battery. Small, 2021, 17, e2104365.	5.2	12
13485	Charge Storage Behavior of Carbon Nanoparticles toward Alkali Metal Ions at Fast-Charging Rates. ACS Applied Energy Materials, 0, , .	2.5	2
13486	SnSex (xÂ=Â1, 2) nanoparticles encapsulated in carbon nanospheres with reversible electrochemical behaviors for lithium-ion half/full cells. Chemical Engineering Journal, 2022, 431, 133463.	6.6	12
13487	Combined Role of Biaxial Strain and Nonstoichiometry for the Electronic, Magnetic, and Redox Properties of Lithiated Metal-Oxide Films: The LiMn ₂ O ₄ Case. ACS Applied Materials & Interfaces, 2021, 13, 54610-54619.	4.0	1
13488	Homogenizing Silicon Domains in SiO _{<i>x</i>} Anode during Cycling and Enhancing Battery Performance via Magnesium Doping. ACS Applied Materials & Interfaces, 2021, 13, 52202-52214.	4.0	20
13489	A Dualâ€Protective Artificial Interface for Stable Lithium Metal Anodes. Advanced Energy Materials, 2021, 11, 2102242.	10.2	35

#	Article	IF	CITATIONS
13490	Additive manufacturing of novel 3D ceramic electrodes for highâ€powerâ€density batteries. International Journal of Applied Ceramic Technology, 2022, 19, 979-991.	1.1	1
13491	Sodium manganese hexacyanoferrate as ultra-high rate host for aqueous proton storage. Electrochimica Acta, 2022, 401, 139525.	2.6	5
13492	<scp>Vacancy–vacancy</scp> pairs induced new phase formation in carbon boride: A design principle to achieve superior performance Li/Naâ€ion battery anodes. EcoMat, 2022, 4, .	6.8	16
13493	Design of a Dual-Electrolyte Battery System Based on a High-Energy NCM811-Si/C Full Battery Electrode-Compatible Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 54069-54078.	4.0	16
13494	Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries. Energy Storage Materials, 2022, 45, 1153-1164.	9.5	43
13495	Designing Weakly Solvating Solid Main-Chain Fluoropolymer Electrolytes: Synergistically Enhancing Stability toward Li Anodes and High-Voltage Cathodes. ACS Energy Letters, 2021, 6, 4255-4264.	8.8	73
13496	On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures. ACS Biomaterials Science and Engineering, 2023, 9, 2070-2086.	2.6	12
13497	A novel Fe-defect induced pure-phase Na4Fe2.91(PO4)2P2O7 cathode material with high capacity and ultra-long lifetime for low-cost sodium-ion batteries. Nano Energy, 2022, 91, 106680.	8.2	67
13498	High ionic conductivity PEO-based electrolyte with 3D framework for Dendrite-free solid-state lithium metal batteries at ambient temperature. Chemical Engineering Journal, 2022, 431, 133352.	6.6	61
13499	Binder-free flexible zinc-ion batteries: one-step potentiostatic electrodeposition strategy derived Ce doped-MnO2 cathode. Chemical Engineering Journal, 2022, 431, 133387.	6.6	31
13500	Lithiated Hybrid Polymer/Inorganic PAA/MnO ₂ Protection Layer for High-Performance Tin Oxide Alloy Anode. ACS Applied Energy Materials, 2021, 4, 13208-13215.	2.5	5
13501	Tuning Solid Interfaces via Varying Electrolyte Distributions Enables Highâ€Performance Solidâ€State Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	36
13502	Synthesis and modification of LiFePO ₄ cathode materials for lithium-ion batteries by aerosol pyrolysis method. Functional Materials, 2020, 27, .	0.4	1
13503	Strongly trapping soluble lithium polysulfides using polar cysteamine groups for highly stable lithium sulfur batteries. Nanotechnology, 2020, 31, 485403.	1.3	4
13504	Development of Novel Ternary SnSb-ZnO Nanocomposites as Alternative Anode Material for Lithium-Ion Batteries. , 2021, , 147-157.		0
13505	Solid Polymer Electrolytes Comprising Camphor-Derived Chiral Salts for Solid-State Batteries. Journal of the Electrochemical Society, 2020, 167, 120541.	1.3	1
13506	Role of heterogeneous inactive component distribution induced by drying process on the mechanical integrity of composite electrode during electrochemical operation. Journal Physics D: Applied Physics, 2021, 54, 055503.	1.3	3
13507	High Charge and Discharge Rate Limitations in Ordered Macroporous Li-ion Battery Materials. Journal of the Electrochemical Society, 2020, 167, 140532.	1.3	3

#	Article	IF	CITATIONS
13508	Atomic and molecular layer deposition in pursuing better batteries. Journal of Materials Research, 0, , 1-24.	1.2	1
13509	Integral Role of the NiS Electrode/Electrolyte Interface in the Redox Reaction with Lithium. Surface Engineering and Applied Electrochemistry, 2020, 56, 665-674.	0.3	1
13510	Temperature dependentÂelectrochemical performance of LiNi0.6Co0.2Mn0.2O2 coated with Li2ZrO3Âfor Li-ion batteries. Journal of Electroceramics, 2020, 45, 99-110.	0.8	3
13511	Enhanced Conductivity via Homopolymer-Rich Pathways in Block Polymer-Blended Electrolytes. Macromolecules, 2019, 52, .	2.2	0
13512	Application of nanotechnology in multivalent ion-based batteries. Frontiers of Nanoscience, 2021, , 229-272.	0.3	1
13513	Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. Journal of Materials Chemistry A, 2021, 9, 27408-27414.	5.2	37
13514	An ultra-thin polymer electrolyte based on single-helical-structured agarose for high performance solid-state lithium batteries. Journal of Materials Chemistry A, 2021, 9, 26939-26948.	5.2	10
13515	Effect of deposition potential and annealing on performance of electrodeposited copper oxide thin films for supercapacitor application. Solid State Sciences, 2022, 123, 106780.	1.5	13
13516	Polymer/graphene nanocomposites as versatile platforms for energy and electronic devices. , 2022, , 173-196.		0
13517	Transition metal catalysis in lithium-ion batteries studied by operando magnetometry. Chinese Journal of Catalysis, 2022, 43, 158-166.	6.9	8
13518	Toward stable lithium-ion batteries: Accelerating the transfer and alloying reactions of Sn-based anodes via coordination atom regulation and carbon hybridization. Journal of Power Sources, 2022, 519, 230778.	4.0	16
13519	Opportunities in Na/K [hexacyanoferrate] frameworks for sustainable non-aqueous Na ⁺ /K ⁺ batteries. Sustainable Energy and Fuels, 2022, 6, 550-595.	2.5	6
13520	Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment. Nano Energy, 2022, 92, 106760.	8.2	40
13521	3D hierarchical biobased gel electrolyte with superior ionic conductivity and flame resistance for suppressing lithium dendrites via alloying and sieving mechanisms. Composites Part B: Engineering, 2022, 230, 109501.	5.9	20
13522	P2-Na0.55[Mg0.25Mn0.75]O2: An SEI-free anode for long-life and high-rate Na-ion batteries. Energy Storage Materials, 2022, 45, 92-100.	9.5	12
13523	Pyro-polymerization of organic pigments for superior lithium storage. Carbon, 2022, 188, 187-196.	5.4	4
13524	Modern Progression in Anode Materials for Lithium-Ion Batteries: Review. Advances in Sustainability Science and Technology, 2022, , 595-603.	0.4	0
13525	Tinâ€Based Anode Materials for Stable Sodium Storage: Progress and Perspective. Advanced Materials, 2022, 34, e2106895.	11.1	68

#	Article	IF	CITATIONS
13526	Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. Journal of Advanced Ceramics, 2022, 11, 158-171.	8.9	35
13527	Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy, 2022, 4, 012002.	4.6	12
13528	High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells. Nature Communications, 2021, 12, 6536.	5.8	44
13529	Battery-type electrodeposited ternary metal sulfides electrodes for advanced hybrid energy storage devices. Journal of Electroanalytical Chemistry, 2022, 904, 115881.	1.9	8
13530	Scalable synthesis of Li2GeO3/expanded graphite as a high-performance anode for Li-ion batteries. Journal of Alloys and Compounds, 2022, 898, 162893.	2.8	11
13531	Ladder-type π-conjugated metallophthalocyanine covalent organic frameworks with boosted oxygen reduction reaction activity and durability for zinc-air batteries. Chemical Engineering Journal, 2022, 435, 133872.	6.6	25
13532	Binderâ€Free ωâ€Li ₃ V ₂ O ₅ Catalytic Network with Multiâ€Polarization Centers Assists Lithium–Sulfur Batteries for Enhanced Kinetics Behavior. Advanced Functional Materials, 2022, 32, 2110665.	7.8	16
13533	Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Materials, 2022, 45, 142-181.	9.5	29
13534	Elucidation of the Solid Electrolyte Interphase Formation Mechanism in Microâ€Mesoporous Hardâ€Carbon Anodes. Advanced Materials Interfaces, 2022, 9, 2101267.	1.9	18
13535	Comparative studies on the combustion characters of the lithium-ion battery electrolytes with composite flame-retardant additives. Journal of Energy Storage, 2022, 47, 103642.	3.9	7
13536	Efficient Magnesium Plating and Stripping in DOL/DME-Mg(HMDS) ₂ -Based Electrolytes and Application in Mg/S Batteries. ACS Applied Energy Materials, 2021, 4, 14121-14128.	2.5	5
13537	Rechargeable Mg ²⁺ /Li ⁺ , Mg ²⁺ /Na ⁺ , and Mg ²⁺ /K ⁺ Hybrid Batteries Based on Layered VS ₂ . ACS Applied Materials & Interfaces, 2021, 13, 57252-57263.	4.0	10
13538	Carbonyl-based polyimide immobilization on carbon nanotubes for aqueous zinc-ion batteries. Journal of Physics: Conference Series, 2021, 2085, 012032.	0.3	0
13539	Effect of Nickel Doping on the Electrochemical Performances of Carbon-Coated Na ₃ V ₂ (PO ₄) ₃ Cathodes for Hybrid Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 13538-13549.	2.5	5
13540	Multifunctional Nickel–Cobalt Phosphates for High-Performance Hydrogen Gas Batteries and Self-Powered Water Splitting. ACS Applied Energy Materials, 2021, 4, 12927-12934.	2.5	12
13541	Enhanced Lithium Storage in Micrometerâ€Scale Tungsten Bronze Mo ₃ Nb ₂ O ₁₄ by Molybdenum Reduction and Oxygen Deficiency. Advanced Materials Interfaces, 2021, 8, 2101016.	1.9	4
13542	A mechanistic investigation of the Li10GeP2S12 LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nature Communications, 2021, 12, 6669.	5.8	72
13543	Centrifugal Force Regularized Laponite@Graphene Hybrid Membranes with Ordered Interlayer Mass Transfer Channels and High Structural Stability for High-Rate Supercapacitors. Industrial & Engineering Chemistry Research, 2021, 60, 17564-17574.	1.8	8

#	Article	IF	CITATIONS
13544	A review on carbon nanomaterials for <scp>Kâ€ion</scp> battery anode: Progress and perspectives. International Journal of Energy Research, 2022, 46, 4033-4070.	2.2	9
13545	The Strategy of Achieving Flexibility in Materials and Configuration of Flexible Lithiumâ€lon Batteries. Energy Technology, 2021, 9, .	1.8	9
13546	Fabrication of GeS-graphene composites for electrode materials in lithium-ion batteries. Materials Research Express, 2021, 8, 115013.	0.8	5
13547	Intercalation in two-dimensional transition metal chalcogenides: interlayer engineering and applications. Progress in Energy, 2022, 4, 022001.	4.6	2
13548	Cathode materials for rechargeable lithium batteries: Recent progress and future prospects. Journal of Energy Storage, 2022, 47, 103534.	3.9	25
13549	Effect of quinoline-8-sulfonic acid and CaO as hybrid electrolyte additives on microstructure and property of AA5052 alloy anode for aluminum-air battery. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104150.	2.7	16
13550	Wood for Application in Electrochemical Energy Storage Devices. Cell Reports Physical Science, 2021, 2, 100654.	2.8	12
13551	Confinement of TiO2 quantum dots in graphene nanoribbons for high-performance lithium and sodium ion batteries. Journal of Alloys and Compounds, 2022, 898, 162856.	2.8	14
13552	Alkaliphilic Cu(OH)2 nanowires on copper foam for dendrite-free alkali metal anodes. Journal of Alloys and Compounds, 2022, 898, 162815.	2.8	4
13553	Impedance investigation of the high temperature performance of the solid-electrolyte-interface of a wide temperature electrolyte. Journal of Colloid and Interface Science, 2022, 608, 3079-3086.	5.0	9
13554	Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer between the Garnet-Type Solid-State Electrolyte and Li–Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 56181-56190.	4.0	13
13555	Preliminary Investigation of Flash Sintering of Li _{1.5} Al _{O.5} Ge _{1.5} (PO ₄) ₃ Solid Electrolyte. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 494-499.	0.1	Ο
13556	Fliciting Specific Electrochemical Reaction Behavior by Rational Design of a Red Phosphorus	1.9	2
13557	Metal organic framework derived SnS@C composites for efficient sodium storage. Journal of Solid State Chemistry, 2022, 307, 122736.	1.4	5
13558	Screening for Stable Ternary-Metal MXenes as Promising Anode Materials for Sodium/Potassium-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 26332-26338.	1.5	4
13559	Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Chemistry of Materials, 2021, 33, 8812-8821.	3.2	66
13560	Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM Cathode. Nano Letters, 2021, 21, 9997-10005.	4.5	58
13561	Rational modulation of emerging MXene materials for zincâ€ion storage. , 2022, 4, 60-76.		46

#	Article	IF	Citations
13562	Lithium Storage Performance and Investigation of Electrochemical Mechanism of Cobalt Vanadate Nanowires Assembled by Nanosheets. ACS Applied Energy Materials, 2021, 4, 13401-13409.	2.5	12
13563	<i>In Situ</i> Polymerized Electrolytes with Fully Cross-Linked Networks Boosting High Ionic Conductivity and Capacity Retention for Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 14309-14322.	2.5	8
13564	Unleash the Capacity Potential of LiFePO ₄ through Rocking hair Coordination Chemistry. Advanced Functional Materials, 2022, 32, .	7.8	10
13565	Homogeneous Na Deposition Enabling Highâ€Energy Naâ€Metal Batteries. Advanced Functional Materials, 2022, 32, 2110280.	7.8	38
13566	Boost the cyclability and Na+ diffusion kinetics of Sb2S3 anode by CNTs cross-linking N-doped carbon matrix. Journal of Alloys and Compounds, 2022, 898, 162855.	2.8	6
13567	An Environmentally Benign Electrolyte for High Energy Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58229-58237.	4.0	5
13568	Potassium-ion batteries using KFSI/DME electrolytes: Implications of cation solvation on the K+-graphite (co-)intercalation mechanism. Energy Storage Materials, 2022, 45, 291-300.	9.5	28
13569	Incorporation of aniline tetramer into alginate-grafted-polyacrylamide as polymeric binder for high-capacity silicon/graphite anodes. Chemical Engineering Journal, 2022, 433, 133553.	6.6	10
13570	Superconductivity induced by Ag intercalation in Dirac semimetal Bi2Se3. Computational Materials Science, 2022, 210, 110989.	1.4	1
13571	Controllable Morphology Tailoring with Solvothermal Method Toward LiMnPO4/C Cathode Materials for Improved Performance and Favorable Thermostability. Acta Metallurgica Sinica (English) Tj ETQq1	10 7.8 4314	rgBT /Overla
13572	A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Accounts of Chemical Research, 2021, 54, 4474-4485.	7.6	17
13573	Remarkable-cycle-performance β-bismuthene/graphene heterostructure anode for Li-ion battery. Chinese Chemical Letters, 2022, 33, 3802-3808.	4.8	8
13574	Metal-organic framework-derived nitrogen-doped three-dimensional porous carbon loaded CoTe2 nanoparticles as anodes for high energy lithium-ion capacitors. Journal of Energy Storage, 2022, 47, 103617.	3.9	8
13575	A Method for Monitoring State-of-Charge of Lithium-Ion Cells Using Multi-Sine Signal Excitation. Batteries, 2021, 7, 76.	2.1	7
13576	Cyclodextrin polymers as effective water-soluble binder with enhanced cycling performance for Li2ZnTi3O8 anode in lithium-ion batteries. Ionics, 2022, 28, 669-682.	1.2	2
13577	Inhibiting electrochemical phase transition of NaCrO2 with long-cycle stability by surface fluorination treatment. Electrochimica Acta, 2022, 403, 139641.	2.6	4
13578	Li2ZrO3-Coated Monocrystalline LiAl0.06Mn1.94O4 Particles as Cathode Materials for Lithium-Ion Batteries. Nanomaterials, 2021, 11, 3223.	1.9	4
13579	Constructing stable lithium interfaces via coordination of fluorinated ether and liquid crystal for room-temperature solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 433, 133562.	6.6	8

#	Article	IF	CITATIONS
13580	Constructing Sb O C bond to improve the alloying reaction reversibility of free-standing Sb2Se3 nanorods for potassium-ion batteries. Nano Energy, 2022, 93, 106764.	8.2	68
13581	Atomistic studies on waterâ€induced lithium corrosion. ChemSusChem, 2021, , .	3.6	2
13582	Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter, 2022, 5, 162-179.	5.0	98
13583	Facile Synthesis of Carbon Nanospheres with High Capability to Inhale Selenium Powder for Electrochemical Energy Storage. Materials, 2021, 14, 6760.	1.3	2
13584	Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Accounts of Chemical Research, 2021, 54, 4423-4433.	7.6	27
13585	Cubic garnet solid polymer electrolyte for room temperature operable all-solid-state-battery. Journal of Materials Research and Technology, 2021, 15, 5849-5863.	2.6	7
13586	Janus-faced graphene substrate stabilizes lithium metal anode. Chemical Engineering Journal, 2022, 433, 133561.	6.6	5
13587	Photochemically driven solid electrolyte interphase for extremely fast-charging lithium-ion batteries. Nature Communications, 2021, 12, 6807.	5.8	32
13588	Recent developments in electrode materials for dual-ion batteries: Potential alternatives to conventional batteries. Materials Today, 2022, 52, 269-298.	8.3	60
13589	Selective Separation of Lithium Chloride by Organogels Containing Strapped Calix[4]pyrroles. Journal of the American Chemical Society, 2021, 143, 20403-20410.	6.6	28
13590	A novel composite of SnO nanoparticles and SiO2@N-doped carbon nanofibers with durable lifespan for diffusion-controlled lithium storage. Journal of Alloys and Compounds, 2022, 897, 162703.	2.8	10
13591	Heavy Fluorination via Ion Exchange Achieves Highâ€Performance Li–Mn–O–F Layered Cathode for Liâ€ŀon Batteries. Small, 2022, 18, e2103499.	5.2	10
13592	Selfâ€Expanding Ionâ€Transport Channels on Anodes for Fastâ€Charging Lithiumâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	8
13593	Study on the Interfacial Mechanism of Bisalt Polyether Electrolyte for Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, 2109184.	7.8	14
13594	Critical Review on Lowâ€Temperature Liâ€ion/Metal Batteries. Advanced Materials, 2022, 34, e2107899.	11.1	204
13595	From Atoms to Cells: Multiscale Modeling of LiNi _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>} O ₂ Cathodes for Li-lon Batteries. ACS Energy Letters, 2022, 7, 108-122.	8.8	16
13596	Assessing the Importance of Cation Size in the Tetragonal ubic Phase Transition in Lithiumâ€Garnet Electrolytes**. Chemistry - A European Journal, 2022, 28, .	1.7	5
13597	Enabling double layer polymer electrolyte batteries: Overcoming the Li-salt interdiffusion. Energy Storage Materials, 2022, 45, 578-585.	9.5	14

#	Article	IF	CITATIONS
13598	Bronze titanium dioxide nanowires with Nâ€rich pseudocapacitive surfaces toward improved lithium kinetics and charge storage. International Journal of Energy Research, 0, , .	2.2	1
13599	Post-Synthetic and In Situ Vacancy Repairing of Iron Hexacyanoferrate Toward Highly Stable Cathodes for Sodium-Ion Batteries. Nano-Micro Letters, 2022, 14, 9.	14.4	32
13600	Complementary side chain promotes microphase separation in the membranes for alkali fuel cells. Polymer, 2022, 238, 124403.	1.8	5
13601	Ion migration and defect effect of electrode materials in multivalent-ion batteries. Progress in Materials Science, 2022, 125, 100911.	16.0	79
13602	Selfâ€Expanding Ionâ€Transport Channels on Anodes for Fastâ€Charging Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, e202113313.	7.2	46
13603	Improved cathode performance and relaxation properties of LiMn ₂ O ₄ prepared by optimized ball-milling with single-step sintering. Journal of the Ceramic Society of Japan, 2021, 129, 744-752.	0.5	2
13604	Large-Sized Nickel–Cobalt–Manganese Composite Oxide Agglomerate Anode Material for Long-Life-Span Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 13811-13818.	2.5	5
13605	Redox reaction does not facilitate oxygen evolution on bismuth ruthenate pyrochlore. Journal of Materials Chemistry A, 2022, 10, 561-569.	5.2	0
13606	First-principles study on h-BSi ₃ sheet as a promising high-performance anode for sodium-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 27282-27293.	1.3	4
13607	Study of multi-electron redox mechanism <i>via</i> electrochromic behavior in hexaazatrinaphthylene-based polymer as the cathode of lithium–organic batteries. Journal of Materials Chemistry A, 2021, 9, 27010-27018.	5.2	18
13608	(La _{0.65} Sr _{0.3}) _{0.95} FeO _{3â^'<i>δ</i>} perovskite with high oxygen vacancy as efficient bifunctional electrocatalysts for Zn–air batteries. RSC Advances, 2021, 11, 38977-38981.	1.7	4
13609	Viologens: a versatile organic molecule for energy storage applications. Journal of Materials Chemistry A, 2021, 9, 27215-27233.	5.2	38
13610	Determinants of lithium-ion battery technology cost decline. Energy and Environmental Science, 2021, 14, 6074-6098.	15.6	46
13611	Constructing Sb-O-C Bond to Improve the Alloying Reaction Reversibility of Free-Standing Sb ₂ Se ₃ Nanorods Anode for Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13612	A photo-curable gel electrolyte ink for 3D-printable quasi-solid-state lithium-ion batteries. Dalton Transactions, 2021, 50, 16504-16508.	1.6	10
13613	Impact of nanomaterials on Li-ion battery anodes. Frontiers of Nanoscience, 2021, 19, 55-98.	0.3	1
13614	Tailoring anode material for high cycle ability of Lithium-ion battery. AIP Conference Proceedings, 2021, , .	0.3	0
13615	MXene nanofibers confining MnO _{<i>x</i>} nanoparticles: a flexible anode for high-speed lithium ion storage networks. Dalton Transactions, 2022, 51, 1423-1433.	1.6	8

#	Article	IF	CITATIONS
13616	Constructing Artificial SEI Layer on Lithiophilic MXene Surface for Highâ€Performance Lithium Metal Anodes. Advanced Science, 2022, 9, e2103930.	5.6	55
13617	Mitigating Interfacial Mismatch between Lithium Metal and Garnet-Type Solid Electrolyte by Depositing Metal Nitride Lithiophilic Interlayer. ACS Applied Energy Materials, 2022, 5, 648-657.	2.5	16
13618	Challenge-driven printing strategies toward high-performance solid-state lithium batteries. Journal of Materials Chemistry A, 2022, 10, 2601-2617.	5.2	3
13619	Lignin-derived materials and their applications in rechargeable batteries. Green Chemistry, 2022, 24, 565-584.	4.6	37
13620	Understanding the constant-voltage fast-charging process using a high-rate Ni-rich cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 10, 288-295.	5.2	10
13621	Growth Parameters and Diffusion Barriers for Functional High-Voltage Thin-Film Batteries Based on Spinel LiNi0.5Mn1.5O4 Cathodes. ACS Applied Materials & Interfaces, 2022, , .	4.0	3
13622	Recent trends in 2D materials and their polymer composites for effectively harnessing mechanical energy. IScience, 2022, 25, 103748.	1.9	19
13623	Synchronous construction of oxygen vacancies with suitable concentrations and carbon coating on the surface of Li-rich layered oxide cathode materials by spray drying for Li-ion batteries. Electrochimica Acta, 2022, 405, 139798.	2.6	8
13624	Critical roles of reduced graphene oxide in the electrochemical performance of silicon/reduced graphene oxide hybrids for high rate capable lithium-ion battery anodes. Electrochimica Acta, 2022, 404, 139753.	2.6	4
13625	In situ TEM studies of electrochemistry of high temperature lithium-selenium all-solid-state batteries. Electrochimica Acta, 2022, 404, 139773.	2.6	5
13626	Ultrafine Li4Ti5O12 nanocrystals as building blocks for ultrahigh-power lithium-ion battery anodes. Journal of Power Sources, 2022, 521, 230970.	4.0	19
13627	Removing lithium residues via H3BO3 washing and concurrent in-situ formation of a lithium reactive coating on Ni-rich cathode materials toward enhanced electrochemical performance. Electrochimica Acta, 2022, 406, 139879.	2.6	8
13628	Impedance-based capacity estimation for lithium-ion batteries using generative adversarial network. Applied Energy, 2022, 308, 118317.	5.1	25
13629	Solid polymer electrolytes based on polysiloxane with anion-trapping boron moieties for all-solid-state lithium metal batteries. Polymer, 2022, 240, 124517.	1.8	12
13630	Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries. ETransportation, 2022, 11, 100152.	6.8	53
13631	Malonic-acid-functionalized fullerene enables the interfacial stabilization of Ni-rich cathodes in lithium-ion batteries. Journal of Power Sources, 2022, 521, 230923.	4.0	21
13632	Sulfonated poly(vinyl alcohol) as an artificial solid electrolyte interfacial layer for Li metal anode. Electrochimica Acta, 2022, 406, 139840.	2.6	13
13633	Suppressing O3â~'O'3 phase transition in NaCrO2 cathode enabling high rate capability for sodium-ion batteries by Sb substitution. Chemical Engineering Journal, 2022, 432, 134305.	6.6	11

#	Article	IF	CITATIONS
13634	Understanding Na-ion adsorption in nitrogen doped graphene oxide anode for rechargeable sodium ion batteries. Applied Surface Science, 2022, 579, 152147.	3.1	22
13635	Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method. Energy, 2022, 243, 123082.	4.5	45
13636	One-step fabrication of garnet solid electrolyte with integrated lithiophilic surface. Energy Storage Materials, 2022, 45, 814-820.	9.5	19
13637	Enabling high-fidelity electrochemical P2D modeling of lithium-ion batteries via fast and non-destructive parameter identification. Energy Storage Materials, 2022, 45, 952-968.	9.5	58
13638	Towards practically accessible aprotic Li-air batteries: Progress and challenges related to oxygen-permeable membranes and cathodes. Energy Storage Materials, 2022, 45, 869-902.	9.5	32
13639	Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Materials, 2022, 45, 618-646.	9.5	125
13640	Spinel-related Li2Ni0.5Mn1.5O4 cathode for 5-V anode-free lithium metal batteries. Energy Storage Materials, 2022, 45, 821-827.	9.5	21
13641	A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries. Chemical Engineering Journal, 2022, 431, 134019.	6.6	16
13642	Highly porous structured Sr-doped La2NiO4/NiO composite cathode with interconnected pores for lithium-oxygen batteries. Chemical Engineering Journal, 2022, 431, 134278.	6.6	2
13643	Binary sulfuric effect on ZnO laminated carbon nanofibers hybrid structure for ultrafast lithium storage capability. Journal of Alloys and Compounds, 2022, 896, 163148.	2.8	11
13644	Insight into the nanostructure of "water in salt―solutions: A SAXS/WAXS study on imide-based lithium salts aqueous solutions. Energy Storage Materials, 2022, 45, 696-703.	9.5	19
13645	A safer organic cathode material with overheating self-protection function for lithium batteries. Chemical Engineering Journal, 2022, 431, 133901.	6.6	2
13646	Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ Co-uptake. Chemical Engineering Journal, 2022, 431, 134253.	6.6	37
13647	Insights to the variation of oxygen content and reasons for improved electrochemical performance of annealing SiOx anodes for Li-ion battery. Applied Surface Science, 2022, 579, 152179.	3.1	11
13648	Two-dimentional MoSe2/chitosan-derived nitrogen-doped carbon composite enabling stable sodium/potassium storage. Journal of Physics and Chemistry of Solids, 2022, 163, 110573.	1.9	7
13649	Bismuth/bismuth trioxide with a dual-carbon support for high and long life lithium storage. Journal of Physics and Chemistry of Solids, 2022, 163, 110562.	1.9	8
13650	Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy, 2022, 94, 106900.	8.2	57
13651	Hybrid MnO-SiOx@C microspheres with a hierarchical mesoporous structure for advanced lithium-ion battery anodes. Journal of Alloys and Compounds, 2022, 899, 163251.	2.8	6

#	Article	IF	CITATIONS
13652	Surface alteration driven bi-functional catalytic activity of alkali niobate-N doped graphene composite for exalted oxygen electrochemistry. Applied Surface Science, 2022, 580, 152160.	3.1	4
13653	Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon, 2022, 189, 46-56.	5.4	86
13654	Hierarchical design of Ni3S2@Co9S8 nanotubes for supercapacitors with long cycle-life and high energy density. Journal of Alloys and Compounds, 2022, 900, 163503.	2.8	16
13655	Revealing the synergistic mechanism of multiply nanostructured V2O3 hollow nanospheres integrated with doped N, Ni heteroatoms, in-situ grown carbon nanotubes and coated carbon nanolayers for the enhancement of lithium-sulfur batteries. Journal of Colloid and Interface Science, 2022. 612. 760-771.	5.0	11
13656	Advanced red phosphorus/carbon composites with practical application potential for sodium ion batteries. Energy Storage Materials, 2022, 46, 20-28.	9.5	13
13657	Advanced Lithium Ion Batteries for Electric Vehicles: Promises and Challenges of Nanostructured Electrode Materials. , 2020, , 127-170. Facile synthesis of core–shell porous Fe <mml:math< td=""><td></td><td>1</td></mml:math<>		1
13658	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mrow></mml:mrow> <mml:mn>3</mml:mn> </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mn>4</mml:mn> </mml:msub>@carbon microspheres with high lithium storage performance. Comptes</mml:math 	0.2	1
13659	Rendus Chimie, 2020, 23, 279-289. Online Identification of Battery Internal Resistance under extreme Temperatures. , 2020, , .		4
13660	Synergistic-Effect-Promoted Performance of MoO ₂ /N-Doped Carbon Nanoribbons with Rich Oxygen Vacancies for Robust Sodium/Potassium Storage. SSRN Electronic Journal, 0, , .	0.4	0
13661	Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering. Korean Journal of Materials Research, 2021, 31, 614-618.	0.1	1
13662	High lithium-ion conductivity in all-solid-state lithium batteries by Sb doping LLZO. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	6
13663	Recycling of Li-Ion and Lead Acid Batteries: A Review. Journal of the Indian Institute of Science, 2022, 102, 281-295.	0.9	27
13664	A succinonitrile-infiltrated silica aerogel synergistically-reinforced hybrid solid electrolyte for durable solid-state lithium metal batteries. Materials Chemistry Frontiers, 0, , .	3.2	1
13665	Structure and Conductivity Correlation in NASICON Based Na3Al2P3O12 Glass: Effect of Na2SO4. Frontiers in Materials, 2022, 8, .	1.2	4
13666	A Facile Potential Hold Method for Fostering an Inorganic Solidâ€Electrolyte Interphase for Anodeâ€Free Lithiumâ€Metal Batteries. Angewandte Chemie, 0, , .	1.6	3
13667	Ultrathin MoS _{1.68} Se _{0.32} Alloy Nanoflakes: An Intercalation-Type Positive Electrode Material for Rechargeable Aluminum-Ion Battery. Journal of Physical Chemistry C, 2022, 126, 2679-2688.	1.5	6
13668	Probing the Polysulfide Confinement in Two Different Sulfur Hosts for a Mg S Battery Employing Operando Raman and Ex-Situ UV–Visible Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 1159-1164.	2.1	10
13669	Facile One-Step Fabrication of 3-Dimensional SiO2-C Electrodes for Lithium-ion Batteries Using a Highly Porous SBA-15 Template and Pore-Forming Agent. Electronic Materials Letters, 2022, 18, 187-196.	1.0	2

#	Article	IF	CITATIONS
13670	Designing Advanced Liquid Electrolytes for Alkali Metal Batteries: Principles, Progress, and Perspectives. Energy and Environmental Materials, 2023, 6, .	7.3	19
13671	The Emerging Electrochemical Activation Tactic for Aqueous Energy Storage: Fundamentals, Applications, and Future. Advanced Functional Materials, 2022, 32, .	7.8	34
13672	A cycling-insensitive recycling method for producing lithium transition metal oxide from Li-ion batteries using centrifugal gravity separation. Sustainable Materials and Technologies, 2022, 32, e00399.	1.7	2
13673	First-Principles Plane-Wave-Based Exploration of Cathode and Anode Materials for Li- and Na-Ion Batteries Involving Complex Nitrogen-Based Anions. Chemistry of Materials, 2022, 34, 652-668.	3.2	9
13674	Sodiumâ€rich <scp>NASICON</scp> â€structured cathodes for boosting the energy density and lifespan of sodiumâ€freeâ€anode sodium metal batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	41
13675	Tensile shear strength and cross tensile strength in welding using an ultrasonic complex vibration source. Acoustical Science and Technology, 2022, 43, 1-9.	0.3	0
13676	A comprehensive review of polymer electrolyte for lithium-ion battery. Polymer Bulletin, 2023, 80, 89-135.	1.7	18
13679	Evolution of a solid electrolyte interphase enabled by FeN _{<i>X</i>} /C catalysts for sodium-ion storage. Energy and Environmental Science, 2022, 15, 771-779.	15.6	34
13680	Synthesis of V2O5/Single-Walled Carbon Nanotubes Integrated into Nanostructured Composites as Cathode Materials in High Performance Lithium-Ion Batteries. Energies, 2022, 15, 552.	1.6	3
13681	New insights into the mechanism of cation migration induced by cation–anion dynamic coupling in superionic conductors. Journal of Materials Chemistry A, 2022, 10, 3093-3101.	5.2	11
13682	Evaluating Interfacial Stability in Solid-State Pouch Cells via Ultrasonic Imaging. ACS Energy Letters, 2022, 7, 650-658.	8.8	32
13683	The transcendental role of lithium zirconates in the development of modern energy technologies. Ceramics International, 2022, 48, 8930-8959.	2.3	9
13684	Homogenization of Spirally Wound High-Contrast Layered Materials. SIAM Journal on Applied Mathematics, 2022, 82, 168-193.	0.8	3
13685	A Janus Separator for Inhibiting Shuttle Effect and Lithium Dendrite in Lithiumâ^'Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	17
13686	Singleâ€Atom Reversible Lithiophilic Sites toward Stable Lithium Anodes. Advanced Energy Materials, 2022, 12, .	10.2	49
13687	In-situ preparation of Nb2O5 coated Si nanoparticles with pseudocapacitive effect for high-rate lithium ion batteries. Journal of Electroanalytical Chemistry, 2022, 904, 115945.	1.9	5
13688	Highly safe and stable lithium–metal batteries based on a quasi-solid-state electrolyte. Journal of Materials Chemistry A, 2022, 10, 651-663.	5.2	32
13689	High-Performance and Safe Hybrid Li-Ion Batteries Based on Li ₄ Ti ₅ O ₁₂ –TiO ₂ (A)–TiO ₂ (R)@C Anode and Na ₃ V ₂ O ₂ (PO ₄) ₂ F–Na ₃ V _{2 Cathode. ACS Sustainable Chemistry and Engineering. 2022. 10. 1390-1397.}	< ³ sub>(PC	D∛sub>4<∣s

#	Article	IF	Citations
13690	Boosting Aqueous Zn/MnO ₂ Batteries via a Synergy of Edge/Defect-Rich Cathode and Dendrite-Free Anode. ACS Applied Materials & Interfaces, 2022, 14, 4316-4325.	4.0	20
13691	Potassium-ion storage behavior of microstructure-engineered hard carbons. Journal of Materials Chemistry A, 2022, 10, 2055-2063.	5.2	10
13692	A Highâ€Voltage Lithiumâ€Metal Batteries Electrolyte Based on Fullyâ€Methylated Pivalonitrile. Batteries and Supercaps, 2022, 5, .	2.4	2
13693	An Airâ€Stable Highâ€Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li ₂ CO ₃ Modification. Advanced Materials, 2022, 34, e2108947.	11.1	83
13694	Atom probe analysis of electrode materials for Li-ion batteries: challenges and ways forward. Journal of Materials Chemistry A, 2022, 10, 4926-4935.	5.2	20
13695	MXene/Organics Heterostructures Enable Ultrastable and High-Rate Lithium/Sodium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 2979-2988.	4.0	46
13696	Uniform lithium nucleation/deposition regulated by N/S co-doped carbon nanospheres towards ultra-stable lithium metal anodes. Journal of Materials Chemistry A, 2022, 10, 1463-1472.	5.2	10
13697	Electrolyte engineering on a porphyrin-based electrode for lithium–organic charge storage. Sustainable Energy and Fuels, 2022, 6, 361-370.	2.5	2
13698	Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Research, 2022, 15, 4091-4099.	5.8	96
13699	Discharge Performance of the Non-rechargeable Lithium-air Batteries with a Waterproof and Breathable Film in an Open Environment. Electrochemistry, 2022, 90, 027008-027008.	0.6	0
13700	First principles calculations on lithium diffusion near the surface and in the bulk of Fe-doped LiCoPO ₄ . Physical Chemistry Chemical Physics, 2022, 24, 1147-1155.	1.3	5
13701	Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nature Communications, 2022, 13, 172.	5.8	83
13702	Influence of electrolyte structural evolution on battery applications: Cationic aggregation from dilute to high concentration. Aggregate, 2022, 3, .	5.2	37
13703	Atomic Layer Deposition for Thin Film Solid-State Battery and Capacitor. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 851-873.	2.7	2
13704	Revisiting the Roles of Natural Graphite in Ongoing Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2106704.	11.1	99
13705	The road to potassium-ion batteries. , 2022, , 265-307.		1
13706	A Facile Potential Hold Method for Fostering an Inorganic Solidâ€Electrolyte Interphase for Anodeâ€Free Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
13707	Metal–organic-framework derived Co@CN modified horizontally aligned graphene oxide array as free-standing anode for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 699-706.	5.2	17

	Сітатіо	CITATION REPORT		
# 13708	ARTICLE Enhancement of the cycling stability of lithium-sulfur batteries by using a reactive additive for blocking dissolution of lithium polysulfides. Journal of Industrial and Engineering Chemistry, 2022, 108, 484-492.	IF 2.9	Citations	
13709	Electrochemical performance of elements derived from coal combustion fly ash for high-performance lithium-ion batteries. , 2022, , 715-727.		1	
13710	Oxides free materials as anodes for zinc-bromine batteries. , 2022, , 201-217.		0	
13711	Role of Critical Oxygen Concentration in the β-Li ₃ PS _{4–<i>x</i>} O _{<i>x</i>} Solid Electrolyte. ACS Applied Energy Materials, 2022, 5, 35-41.	2.5	6	
13712	Stable Quasiâ€Solidâ€State Aluminum Batteries. Advanced Materials, 2022, 34, e2104557.	11.1	19	
13713	Cotton-Derived Fe/Fe ₃ C-Encapsulated Carbon Nanotubes for High-Performance Lithium–Sulfur Batteries. Nano Letters, 2022, 22, 1217-1224.	4.5	51	
13714	Recent advances of energy storage technologies for grid: A comprehensive review. Energy Storage, 2022, 4, .	2.3	26	
13715	Biomass-Derived Carbon/Sulfur Composite Cathodes with Multiwalled Carbon Nanotube Coatings for Li-S Batteries. Processes, 2022, 10, 136.	1.3	6	
13716	Long-enduring oxygen redox enabling robust layered cathodes for sodium-ion batteries. Chemical Engineering Journal, 2022, 435, 134944.	6.6	11	
13717	Ga ₂ O ₃ –Li ₃ VO ₄ /NC nanofibers toward superb high-capacity and high-rate Li-ion storage. New Journal of Chemistry, 2022, 46, 1025-1033.	1.4	10	
13718	High ion conductivity based on a polyurethane composite solid electrolyte for all-solid-state lithium batteries. RSC Advances, 2022, 12, 3828-3837.	1.7	10	
13719	Structure, Composition, Transport Properties, and Electrochemical Performance of the Electrodeâ€Electrolyte Interphase in Nonâ€Aqueous Naâ€Ion Batteries. Advanced Materials Interfaces, 2022 9, .	2, 1.9	27	
13720	Mapping Lattice Distortions in LiNi _{0.5} Mn _{1.5} O ₄ Cathode Materials. ACS Energy Letters, 2022, 7, 690-695.	8.8	14	
13721	Exploiting the paddle-wheel mechanism for the design of fast ion conductors. Nature Reviews Materials, 2022, 7, 389-405.	23.3	83	
13722	Sustainable and cost-effective ternary electrolyte Et ₃ NHCl–AlCl ₃ –Mg(DEP) ₂ for high-performance rechargeable magnesium batteries. Physical Chemistry Chemical Physics, 2022, 24, 1840-1848.	1.3	4	
13723	Advances in materials and fabrication of separators in supercapacitors. Materials Advances, 2022, 3, 1472-1496.	2.6	33	
13724	Oxygen Loss in Layered Oxide Cathodes for Li-Ion Batteries: Mechanisms, Effects, and Mitigation. Chemical Reviews, 2022, 122, 5641-5681.	23.0	108	
13725	Scalable and low-cost synthesis of porous silicon nanoparticles as high-performance lithium-ion battery anode. Materials Today Nano, 2022, 18, 100175.	2.3	28	

#	Article	IF	CITATIONS
13726	Structurally Reinforced Silicon/Graphene Composite for Lithiumâ€lon Battery Anodes: Carbon Anchor as a Conductive Structural Support. ChemSusChem, 2022, 15, .	3.6	6
13727	Coupling of 3D Porous Hosts for Li Metal Battery Anodes with Viscous Polymer Electrolytes. Journal of the Electrochemical Society, 2022, 169, 010511.	1.3	2
13728	Concentration Gradient Induced Delithiation Failure of MoO ₃ for Li-Ion Batteries. Nano Letters, 2022, 22, 761-767.	4.5	10
13729	Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy and Environmental Science, 2022, 15, 991-1033.	15.6	100
13730	Anode Materials for Rechargeable Aqueous Alâ€ion Batteries: Progress and Prospects. ChemNanoMat, 2022, 8, .	1.5	4
13731	Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 601, 217-222.	13.7	290
13732	Dual functions of zirconium metaphosphate modified high-nickel layered oxide cathode material with enhanced electrochemical performance. Journal of Colloid and Interface Science, 2022, 615, 554-562.	5.0	7
13733	Synthesis, characterization, and applications of ZnO–TiO2 nanocomposites. , 2022, , 271-314.		2
13734	Metal oxides-free anodes for lithium-ion batteries. , 2022, , 149-176.		0
13735	Mechanical Degradation Behavior of Single Crystal LiNixMnyCozO2 Cathode in Li-Ion Battery by Indentation Analysis. Journal of Pressure Vessel Technology, Transactions of the ASME, 2022, 144, .	0.4	2
13736	A superior Na3V2(PO4)3-based cathode enhanced by Nb-doping for high-performance sodium-ion battery. APL Materials, 2022, 10, .	2.2	9
13737	Oxygen vacancies enable excellent electrochemical kinetics of carbon coated mesoporous SnO2 nanoparticles in lithium ion batteries. Materials Advances, 2022, 3, 1617-1628.	2.6	2
13738	New Class of Titanium Niobium Oxide for a Li-Ion Host: TiNbO ₄ with Purely Single-Phase Lithium Intercalation. Chemistry of Materials, 2022, 34, 854-863.	3.2	21
13739	Oxide cathodes for sodiumâ€ion batteries: Designs, challenges, and perspectives. , 2022, 4, 170-199.		76
13740	An aqueous zincâ€ion battery working at â^'50°C enabled by lowâ€concentration perchlorateâ€based chaotropic salt electrolyte. EcoMat, 2022, 4, .	6.8	40
13741	Recent advances in oxygen deficient metal oxides: Opportunities as supercapacitor electrodes. International Journal of Energy Research, 2022, 46, 7055-7081.	2.2	20
13742	Performance Predictors for Organic Cathodes of Lithium-Ion Battery. ACS Applied Energy Materials, 2022, 5, 2074-2082.	2.5	8
13743	Amide compounds as electrolyte additives for improving the performance of high-voltage lithium-ion batteries. Ionics, 2022, 28, 1753-1766.	1.2	7

<u> </u>			<u> </u>	
(15	ГАТ	ON	REPC	TDT
			NLFC	ואנ

#	Article	IF	CITATIONS
13744	Thermodynamics-driven interfacial engineering of alloy-type anode materials. Cell Reports Physical Science, 2022, 3, 100694.	2.8	4
13745	Gently does it!: <i>in situ</i> preparation of alkali metal–solid electrolyte interfaces for photoelectron spectroscopy. Faraday Discussions, 2022, 236, 267-287.	1.6	11
13746	<i>In situ</i> construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 3989-3995.	5.2	41
13747	Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. Journal of Materials Chemistry A, 2022, 10, 4517-4532.	5.2	75
13748	Engineering Sodium Metal Anode with Sodiophilic Bismuthide Penetration for Dendrite-Free and High-Rate Sodium-Ion Battery. Engineering, 2022, 11, 87-94.	3.2	18
13749	MoO3 Nanoparticle Coatings on High-Voltage 5 V LiNi0.5Mn1.5O4 Cathode Materials for Improving Lithium-Ion Battery Performance. Nanomaterials, 2022, 12, 409.	1.9	6
13750	Understanding and Performance of the Zinc Anode Cycling in Aqueous Zincâ€Ion Batteries and a Roadmap for the Future. Batteries and Supercaps, 2022, 5, .	2.4	27
13751	Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nature Communications, 2022, 13, 547.	5.8	66
13752	Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Nano Letters, 2022, 22, 1302-1310.	4.5	68
13753	Influence of an electrified interface on the entropy and energy of solvation of methanol oxidation intermediates on platinum(111) under explicit solvation. Physical Chemistry Chemical Physics, 2022, 24, 4251-4261.	1.3	5
13754	Exploration of a Na3V2(PO4)3/C –Pb full cell Na-ion prototype. Nano Energy, 2022, 95, 107010.	8.2	31
13755	Hydrogen bonds to balance mechanical and adhesive properties of pectin/polyacrylic acid blends as efficient binders for cathode in lithium-sulfur battery. Materials Today Communications, 2022, 31, 103211.	0.9	5
13756	Preparation of titanium nitride/oxynitride nanotube array via ammonia-free PECVD method for enhancing supercapacitor performance. Journal of Alloys and Compounds, 2022, 904, 163895.	2.8	10
13757	Impacts of negative to positive capacities ratios on the performance of next-generation lithium-ion batteries. Electrochimica Acta, 2022, 406, 139878.	2.6	9
13758	Single-atom catalysts for lithium sulfur batteries via atomic layer deposition process. Electrochemistry Communications, 2022, 135, 107215.	2.3	7
13759	Elucidation of the sodiation/desodiation mechanism in Ca0.5Ti2(PO4)3/C as promising electrode for sodium batteries: New insights into the phase transitions. Journal of Energy Chemistry, 2022, 70, 36-44.	7.1	3
13760	A combined first principles and experimental study on Al-doped Na3V2(PO4)2F3 cathode for rechargeable Na batteries. Surface and Coatings Technology, 2022, 434, 128184.	2.2	19
13761	Application of Guar Gum and its Derivatives as Green Binder/Separator for Advanced Lithiumâ€lon Batteries. ChemistryOpen, 2022, 11, e202100209.	0.9	10

#	Article	IF	CITATIONS
13762	A Homogeneous Polymer Network Organogel Prepared in Concentrated Lithium-ion Battery Electrolytes Using a Nonflammable Fluorinated Solvent. Chemistry Letters, 2022, 51, 412-415.	0.7	3
13763	Modulating Crystal and Interfacial Properties by Wâ€Gradient Doping for Highly Stable and Long Life Liâ€Rich Layered Cathodes. Advanced Functional Materials, 2022, 32, .	7.8	56
13764	Modulating superlattice structure and cyclic stability of Ce2Ni7-type LaY2Ni10.5-based alloys by Mn, Al, and Zr substitutions. Journal of Power Sources, 2022, 524, 231067.	4.0	16
13765	Enhanced electrochemical performances of FeS/PC composites as anode materials for lithium-ion batteries. Inorganic Chemistry Communication, 2022, 137, 109211.	1.8	5
13766	Construction of superior performance LiVPO4F/C cathode assisting by a regulating additive NH4F and the "Combination-Protection-Release―mechanism for lithium ion batteries. Journal of Power Sources, 2022, 523, 231024.	4.0	7
13767	Improving interfacial stability by in situ protective layer formation in 4.2V poly(ethylene oxide) based solid state lithium batteries. Journal of Power Sources, 2022, 523, 231062.	4.0	6
13768	Controllable porous perovskite with three-dimensional ordered structure as an efficient oxygen reduction reaction electrocatalyst for flexible aluminum-air battery. Journal of Power Sources, 2022, 523, 231028.	4.0	9
13769	Binder-free SnS2 sheet array with high sulfur vacancy concentration for enhanced lithium storage performance. Electrochimica Acta, 2022, 409, 139979.	2.6	11
13770	Temperature–responsive coating endowing LiNi0.8Co0.1Mn0.1O2 cathode materials with improved cycling stability and overheating self-protection function. Chemical Engineering Journal, 2022, 434, 134645.	6.6	12
13771	Vacuum-assisted sulfur crystallization process to improve the electrochemical performance of S@PC composite cathode materials for Li–S batteries. Vacuum, 2022, 198, 110896.	1.6	2
13772	The influence of crack on the Si anode performance in Na- and Mg-ion batteries: An atomic multiscale study. Computational Materials Science, 2022, 205, 111237.	1.4	1
13773	High entropy lithium garnets – Testing the compositional flexibility of the lithium garnet system. Journal of Solid State Chemistry, 2022, 308, 122944.	1.4	10
13774	Ultrahigh proton conductive nanofibrous composite membrane with an interpenetrating framework and enhanced acid-base interfacial layers for vanadium redox flow battery. Journal of Membrane Science, 2022, 647, 120327.	4.1	23
13775	Significantly fastened redox kinetics in single crystal layered oxide cathode by gradient doping. Nano Energy, 2022, 94, 106961.	8.2	42
13776	High-voltage lithium-ion capacitors enabled by a multifunctional phosphite electrolyte additive. Energy Storage Materials, 2022, 46, 431-442.	9.5	9
13777	Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries. Energy Storage Materials, 2022, 46, 563-569.	9.5	28
13778	Lithiophilic perovskite-CaTiO3 engineered separator for dendrite-suppressing 5ÂV-class lithium metal batteries with commercial carbonate-based electrolyte. Applied Surface Science, 2022, 583, 152430.	3.1	8
13779	A self-catalyzed strategy towards facile fabrication of bottlebrush polyester-based solid polymer electrolytes. Energy Storage Materials, 2022, 46, 461-471.	9.5	18

#	Article	IF	CITATIONS
13780	Room-temperature liquid metal engineered iron current collector enables stable and dendrite-free sodium metal batteries in carbonate electrolytes. Journal of Materials Science and Technology, 2022, 115, 156-165.	5.6	18
13781	Recent advances in "water in salt―electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+,) Tj ETQq1	1,0.7843 7.1	14 rgBT /0 21
13782	Boosting K-ion kinetics by interfacial polarization induced by amorphous MoO3- for MoSe2/MoO3-@rGO composites. Journal of Materials Science and Technology, 2022, 115, 232-240.	5.6	8
13783	Self-Assembled MOF Derived Co@C/rGO as Positive Electrode Material for a Supercapattery with High Energy Density. SSRN Electronic Journal, 0, , .	0.4	1
13784	Preparation and electrochemical investigation of single-crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ for high-performance lithium-ion batteries. New Journal of Chemistry, 2022, 46, 4877-4883.	1.4	10
13785	Fe-Based metal–organic frameworks as functional materials for battery applications. Inorganic Chemistry Frontiers, 2022, 9, 827-844.	3.0	24
13786	Cubic MnV ₂ O ₄ fabricated through a facile sol–gel process as an anode material for lithium-ion batteries: morphology and performance evolution. Dalton Transactions, 2022, 51, 4644-4652.	1.6	3
13788	Rationally Designed Heterostructure ZnS/SnS@N-Doped Carbon Microspheres as High-Performance Anode for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13789	Accelerated Degradation of SiO/NCM Cell Quick Rechargeability Due to Depth-of-Discharge Range Dependent Failure Induced Li Dendrite Formation. Journal of the Electrochemical Society, 2022, 169, 020562.	1.3	7
13790	A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anodeâ€Free Sodiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2109767.	11.1	79
13791	Nitrogenâ€Enriched Mesoporous Carbon Spheres as Efficient Anode Material for Long ycle Li/Naâ€Ion Batteries. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	7
13792	A New Era of Integrative Ice Frozen Assembly into Multiscale Architecturing of Energy Materials. Advanced Functional Materials, 2022, 32, .	7.8	21
13793	Micrometerâ€Sized SiMg <i>_y</i> O <i>_x</i> with Stable Internal Structure Evolution for Highâ€Performance Liâ€Ion Battery Anodes. Advanced Materials, 2022, 34, e2200672.	11.1	83
13794	Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Roomâ€Temperature Sodium–Sulfur Batteries. Advanced Science, 2022, 9, e2105544.	5.6	18
13795	Tailored Carrier Transport Path by Interpenetrating Networks in Cathode Composite for High Performance All-Solid-State Li-SeS2 Batteries. Advanced Fiber Materials, 2022, 4, 487-502.	7.9	17
13796	Hygroscopic Chemistry Enables Fireâ€Tolerant Supercapacitors with a Selfâ€Healable "Soluteâ€inâ€Air― Electrolyte. Advanced Materials, 2022, 34, e2109857.	11.1	12
13797	Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes. ACS Applied Materials & amp; Interfaces, 2022, 14, 7972-7979.	4.0	10
13798	Nondestructive quantitative imaging for spatially nonuniform degradation in a commercial lithium-ion battery using a pulsed neutron beam. Applied Physics Express, 2022, 15, 027005.	1.1	2

#	Article	IF	CITATIONS
13799	Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li-S batteries. Communications Chemistry, 2022, 5, .	2.0	18
13800	New Phosphate Zn ₂ Fe(PO ₄) ₂ Cathode Material for Nonaqueous Zinc Ion Batteries with Long Life Span. ACS Applied Materials & Interfaces, 2022, 14, 8888-8895.	4.0	11
13801	Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for â€⊋0~70°C lithium metal battery. Nano Energy, 2022, 95, 107027.	8.2	29
13802	A 3D interconnected metal-organic framework-derived solid-state electrolyte for dendrite-free lithium metal battery. Energy Storage Materials, 2022, 47, 262-270.	9.5	66
13803	Organosilane based artificial solid electrolyte interface layer for stable metallic lithium anode. Applied Surface Science, 2022, 586, 152806.	3.1	10
13804	Highly Sodiophilic, Defectâ€Rich, Ligninâ€Derived Skeletal Carbon Nanofiber Host for Sodium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	47
13805	Unblocked Electron Channels Enable Efficient Contact Prelithiation for Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2110337.	11.1	58
13806	Inâ€Situ Synthesis of Carbonâ€Encapsulated Atomic Cobalt as Highly Efficient Polysulfide Electrocatalysts for Highly Stable Lithium–Sulfur Batteries. Small, 2022, 18, e2106640.	5.2	33
13807	Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry. Chinese Physics Letters, 2022, 39, 028202.	1.3	1
13808	Investigations on the Electrochemical and Mechanical Properties of Sb ₂ O ₃ Nanobelts by In Situ Transmission Electron Microscopy. Small Methods, 2022, 6, e2101416.	4.6	5
13809	Few-layer bismuth selenide cathode for low-temperature quasi-solid-state aqueous zinc metal batteries. Nature Communications, 2022, 13, 752.	5.8	49
13810	Porphyrin-based conjugated microporous polymers with dual active sites as anode materials for lithium-organic batteries. International Journal of Hydrogen Energy, 2022, 47, 10902-10910.	3.8	14
13811	Enhancing Cycling Stability and Capacity Retention of NMC811 Cathodes by Reengineering Interfaces via Electrochemical Fluorination. Advanced Materials Interfaces, 2022, 9, .	1.9	10
13812	Facile and Economic Synthesis of Robust Non-Nucleophilic Electrolyte for High-Performance Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 8906-8915.	4.0	18
13813	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€based allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	92
13814	Tin-cobalt bimetals in 2D leaf-like MOF-derived carbon for advanced lithium storage applications. Electrochimica Acta, 2022, 410, 140036.	2.6	5
13815	An integrated interfacial engineering for efficiently confining the asymmetric strain in scalable silicon anode. Journal of Power Sources, 2022, 524, 231086.	4.0	3
13816	Electronic Structure and Electrochemical Properties of Garnet Type Li7 La3 Zr2O 12 Solid Electrolytes Doped with Ta and Nb. International Journal of Electrochemical Science, 2022, 17, 220316.	0.5	2

#	Article	IF	CITATIONS
13817	Interaction of Mg with the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide—An experimental and computational model study of the electrode–electrolyte interface in post-lithium batteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	6
13818	Diagnosis tools for humidity-born surface contaminants on Li[Ni0.8Mn0.1Co0.1]O2 cathode materials for lithium batteries. Journal of Power Sources, 2022, 525, 231111.	4.0	7
13819	Self-assembled MOF derived Co@C/rGO as positive electrode material for a supercapattery with high energy density. Diamond and Related Materials, 2022, 123, 108912.	1.8	11
13820	Environmentally friendly high performance Zn-air rechargeable battery using cellulose derivatives: A 3D-printed prototype. Journal of Energy Storage, 2022, 49, 104173.	3.9	7
13821	Carbothermic reduction of spent Lithium-Ion batteries using CO2 as reaction medium. Chemical Engineering Journal, 2022, 435, 135165.	6.6	21
13822	Aqueous Processed Ni-Rich Li(Ni _{0.8} Co _{0.1} Mn _{0.1})O ₂ Cathodes Along with Water-Based Binders and a Carbon Fabric as 3-D Conductive Host. Journal of the Electrochemical Society, 2021, 168, 120538.	1.3	5
13823	Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization ⁷ Li NMR. Chinese Physics Letters, 2021, 38, 126801.	1.3	0
13824	Thermoelectric Generator: Materials and Applications in Wearable Health Monitoring Sensors and Internet of Things Devices. Advanced Materials Technologies, 2022, 7, .	3.0	42
13825	Highâ€Performance Aqueous Zincâ€Ion Battery Based on an Al _{0.35} Mn _{2.52} O ₄ Cathode: A Design Strategy from Defect Engineering and Atomic Composition Tuning. Small, 2022, 18, e2105970.	5.2	13
13826	<i>Ino</i> -Chloridolithates from Ionothermal Synthesis. Inorganic Chemistry, 2021, 60, 19145-19151.	1.9	1
13827	Ultrahigh Active Material Content and Highly Stable Ni-Rich Cathode Leveraged by Oxidative Chemical Vapor Deposition. SSRN Electronic Journal, 0, , .	0.4	0
13828	Modulating Superlattice Structure and Cyclic Stability of Ce ₂ Ni ₇ -Type LaY ₂ Ni _{10.5} -Based Alloys by Mn, Al, and Zr Substitutions. SSRN Electronic Journal, 0, , .	0.4	0
13829	Topology Crafting of Polyvinylidene Difluoride Electrolyte Creates Ultra-Long Cycling High-Voltage Lithium Metal Solid-State Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13830	Fabrication of Asymmetric Bilayer Solid-State Electrolyte with Boosted Ion Transport Enabled by Charge-Rich Space Charge Layer for -20~70°C Lithium Metal Battery. SSRN Electronic Journal, 0, , .	0.4	0
13831	Significantly Fastened Redox Kinetics in Single Crystal Layered Oxide Cathode by Gradient Doping. SSRN Electronic Journal, 0, , .	0.4	0
13832	Highly Reversible Mg Metal Anodes Enabled by Interfacial Liquid Metal Engineering for High-Energy Mg-S Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13833	Self-Assembled Mof Derived Co@C/Rgo as Positive Electrode Material for a Supercapattery with High Energy Density. SSRN Electronic Journal, 0, , .	0.4	0
13834	Understanding PEDOT doped with tosylate. Chemical Communications, 2022, 58, 4553-4560.	2.2	12

#	Article	IF	CITATIONS
13835	Control of cyclic stability and volume expansion on graphite–SiO _{<i>x</i>} –C hierarchical structure for Li-ion battery anodes. RSC Advances, 2022, 12, 6552-6560.	1.7	1
13836	Poly(viologen halide)s: both cationic main-chain and counter anions are active for high-performance organic cathodes. Journal of Materials Chemistry A, 2022, 10, 10026-10032.	5.2	11
13837	Study of Sodium Storage and Diffusion Over Phosphorene Using Density Functional Theory. Springer Proceedings in Physics, 2022, , 329-337.	0.1	1
13838	The chain-mail Co@C electrocatalyst accelerating one-step solid-phase redox for advanced Li–Se batteries. Journal of Materials Chemistry A, 2022, 10, 8059-8067.	5.2	11
13839	Space-Confined Synthesis of a Novel Ge@Hcs-Rgo Yolk-Shell Nanostructure as Anode Materials for Enhanced Lithium Storage. SSRN Electronic Journal, 0, , .	0.4	0
13840	A Dendrite Suppression Coating Formulated Via Electrophoretic Deposition Using Bi-FunctionalASurfactants for Zn-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13841	Preparation and controllable prelithiation of core–shell SnO _{<i>x</i>} @C composites for high-performance lithium-ion batteries. CrystEngComm, 2022, 24, 3189-3198.	1.3	4
13842	Investigation on the Ultra-High Stability Performance and Mechanism of Cu1.8se@Cmk-3 Aluminum Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13843	Regulating Interfacial Structure Enables High-Voltage Dilute Ether Electrolytes. SSRN Electronic Journal, 0, , .	0.4	0
13844	Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy and Environmental Science, 2022, 15, 1805-1839.	15.6	71
13845	Atomistic insight into the dopant impacts at the garnet Li ₇ La ₃ Zr ₂ 12 solid electrolyte grain boundaries. Journal of Materials Chemistry A, 2022, 10, 10083-10091.	5.2	13
13846	Boosting Lithium Ions Inserting Onto Aromatic Rings by Extending Conjugation of Triazine-Based Porous Organic Frameworks for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13847	Eliminating Oxygen Releasing of Li-Rich Layered Cathodes by Tuning the Distribution of Superlattice Domain. SSRN Electronic Journal, 0, , .	0.4	0
13848	Rational Design of Bio-Derived Four-Electron-Accepting Carbonyl-N-Methylpyridinium Species for High-Performance Lithium/Organic Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13849	A self-powered wearable brain–machine-interface system for ceasing action. Nanoscale, 2022, 14, 4671-4678.	2.8	4
13850	The fabrication of a highly conductive ceria-embedded gadolinium-stabilized bismuth oxide nanocomposite solid electrolyte for low-temperature solid oxide fuel cells. Materials Advances, 2022, 3, 3316-3325.	2.6	7
13851	Navigating fast and uniform zinc deposition <i>via</i> a versatile metal–organic complex interphase. Energy and Environmental Science, 2022, 15, 1872-1881.	15.6	145
13852	Influence of Ti ^{IV} substitution on the properties of a Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ nanofiber-based solid electrolyte. Nanoscale, 2022, 14, 5094-5101.	2.8	4

#	Article	IF	CITATIONS
13853	Non-aqueous synthesis of high-quality Prussian blue analogues for Na-ion batteries. Chemical Communications, 2022, 58, 4472-4475.	2.2	16
13854	Covalent organic frameworks for solid-state electrolytes of lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 7497-7516.	5.2	28
13855	Ion transport in composite polymer electrolytes. Materials Advances, 2022, 3, 3809-3819.	2.6	22
13856	Doping of Carbon Nanostructures for Energy Application. Advances in Material Research and Technology, 2022, , 83-109.	0.3	3
13858	Self-Supported Hollow-Co3o4@Cnt: A Versatile Anode and Cathode Host Material for High-Performance Lithium-Ion and Lithium-Sulfur Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13859	Constructing Partially Crystalized Carbon Layers on Cfx Nanocapsule by Ald-Ccvd Technique for High-Capacity Lithium Primary Battery. SSRN Electronic Journal, 0, , .	0.4	0
13860	Iron-chalcogenide-based electrode materials for electrochemical energy storage. Journal of Materials Chemistry A, 2022, 10, 7517-7556.	5.2	20
13861	A fluorinated macrocyclic organodisulfide cathode for lithium organic batteries. Chemical Communications, 2022, 58, 5602-5605.	2.2	4
13862	Hf-based UiO-66 type solid electrolytes for all-solid-state lithium batteries. New Journal of Chemistry, 0, , .	1.4	4
13863	Benzoate Anion Derived Carbon-Encapsulated Nis Nanoparticles as a Freestanding Cathode for Magnesium-Based Batteries. SSRN Electronic Journal, 0, , .	0.4	0
13864	Enhancement of Li+ Ion Kinetics in Boehmite Nanofiber Coated Polypropylene Separator in Lifepo4 Cells. SSRN Electronic Journal, 0, , .	0.4	0
13865	Mechanochemically Prepared Highly Conductive Na _{2.88} Sb _{0.88} W _{0.12} S _{4Composite Electrolytes for All-Solid-State Sodium Battery. Electrochemistry, 2022, 90, 047005-047005.}	⧁-Nal	4
13866	Lithium-rich sulfide/selenide cathodes for next-generation lithium-ion batteries: challenges and perspectives. Chemical Communications, 2022, 58, 3591-3600.	2.2	12
13867	Unraveling the multivalent aluminium-ion redox mechanism in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA). Physical Chemistry Chemical Physics, 2022, 24, 5886-5893.	1.3	3
13868	Structure and Lowâ€ŧemperature Performance of Waste Graphite Used in Lithiumâ€ion Battery Anode. ChemistrySelect, 2022, 7, .	0.7	1
13869	Zinc Storage Mechanism in Polypyrrole Electrodeposited from Aqueous, Organic, and Ionic Liquid Electrolytes: An In Situ Raman Spectroelectrochemical Study. ACS Applied Energy Materials, 2022, 5, 3217-3226.	2.5	8
13870	Development of Nonaqueous Electrolytes for High-Voltage K-Ion Batteries. Bulletin of the Chemical Society of Japan, 2022, 95, 569-581.	2.0	14
13871	Electrolyte Engineering Enables High Performance Zincâ€ion Batteries. Small, 2022, 18, e2107033.	5.2	118

#	Article	IF	CITATIONS
13872	Block copolymer binders with hard and soft segments for scalable fabrication of sulfideâ€based allâ€solidâ€state batteries. EcoMat, 2022, 4, .	6.8	7
13873	Compact Interlaminar Lithium Plating Realized by Silver Nanowires Imbedded in a Stacked Graphene Host with a Rational Void Space. ACS Applied Energy Materials, 2022, 5, 3100-3109.	2.5	0
13874	Constructing Advanced Aqueous Zincâ€ion Batteries with 2D Carbonâ€Rich Materials. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	4
13875	A Highâ€Performance Solidâ€State Na–CO ₂ Battery with Poly(Vinylidene) Tj ETQq1 1 0.784314 rg Electrolyte. Energy and Environmental Materials, 2023, 6, .	gBT /Overl 7.3	ock 10 Tf 5 7
13876	Quinoneâ€Amine Polymer Nanoparticles Prepared through Facile Precipitation Polymerization as Ultrafast and Ultralong Cycle Life Cathode Materials for Lithiumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	39
13877	Rational construction of CoP@C hollow structure for ultrafast and stable sodium energy storage. Rare Metals, 2022, 41, 1859-1869.	3.6	30
13878	Oxygen Redox Versus Oxygen Evolution in Aqueous Electrolytes: Critical Influence of Transition Metals. Advanced Science, 2022, 9, e2104907.	5.6	5
13879	Sheet-Like Stacking SnS ₂ /rGO Heterostructures as Ultrastable Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11739-11749.	4.0	28
13880	Unveiling the Cation Exchange Reaction between the NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid Electrolyte and the pyr13TFSI Ionic Liquid. Journal of the American Chemical Society, 2022, 144, 3442-3448.	6.6	15
13881	Understanding Lithium Local Environments in LiMn _{0.5} Ni _{0.5} O ₂ Cathodes: A DFT-Supported ⁶ Li Solid-State NMR Study. Journal of Physical Chemistry C, 2022, 126, 4276-4285.	1.5	2
13882	Combined Thermal Runaway Investigation of Coin Cells with an Accelerating Rate Calorimeter and a Tian-Calvet Calorimeter. Batteries, 2022, 8, 15.	2.1	4
13883	MXene based Heterostructures for electrode materials of Batteries: A Review. IOP Conference Series: Materials Science and Engineering, 2022, 1225, 012018.	0.3	3
13885	Elucidating Synergistic Mechanisms of Adsorption and Electrocatalysis of Polysulfides on Double-Transition Metal MXenes for Na–S Batteries. ACS Applied Materials & Interfaces, 2022, 14, 10298-10307.	4.0	18
13886	Open-Framework Metal Oxides for Fast and Reversible Hydrated Zinc-Ion Intercalation. ACS Applied Materials & amp; Interfaces, 2022, 14, 10407-10418.	4.0	5
13887	Unraveling the reaction mechanisms of electrode materials for sodiumâ€ion and potassiumâ€ion batteries by in situ transmission electron microscopy. , 2022, 1, 196-212.		54
13888	Effect of Internal AC Heating on the Temperature Homogeneity of Different Size Battery Cells. Batteries, 2022, 8, 17.	2.1	1
13889	Electrochemical evaluation of porous CaFe2O4 anode material prepared via solution combustion synthesis at increasing fuel-to-oxidizer ratios and calcination temperatures. Scientific Reports, 2022, 12, 3082.	1.6	5
13890	Solid/Quasiâ€Solid Phase Conversion of Sulfur in Lithium–Sulfur Battery. Small, 2022, 18, e2106970.	5.2	21

#	Article	IF	CITATIONS
13891	A Lithium-Ion Battery Cathode with Enhanced Wettability toward an Electrolyte Fabricated by a Fast Light Curing of Photoactive Slurry. Energy & Fuels, 2022, 36, 3313-3318.	2.5	4
13892	Facile Method for the Formation of Intimate Interfaces in Sulfide-Based All-Solid-State Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 9242-9248.	4.0	14
13893	Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte. EScience, 2022, 2, 311-318.	25.0	41
13894	Low Error Estimation of Half-Cell Thermodynamic Parameters from Whole-Cell Li-Ion Battery Experiments: Physics-Based Model Formulation, Experimental Demonstration, and an Open Software Tool. Journal of the Electrochemical Society, 2022, 169, 030539.	1.3	6
13895	Flexible Free-Standing Fe ₂ O ₃ Nanoparticle/Carbon Shells/Graphene Films for Advanced Lithium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 5017-5024.	2.4	13
13896	Selective Extraction of Transition Metals from Spent LiNi _{<i>x</i>} Co _y Mn _{1â^<i>x</i>âr<i>y</i>} O ₂ Cathode via Regulation of Coordination Environment. Angewandte Chemie - International Edition, 2022, 61, .	7.2	72
13897	Sizeâ€Controllable Nickel Sulfide Nanoparticles Embedded in Carbon Nanofibers as Highâ€Rate Conversion Cathodes for Hybrid Mgâ€Based Battery. Advanced Science, 2022, 9, e2106107.	5.6	17
13898	CuCl ₂ â€Modified Lithium Metal Anode via Dynamic Protection Mechanisms for Dendriteâ€Free Longâ€Life Charging/Discharge Processes. Advanced Energy Materials, 2022, 12, .	10.2	28
13899	Understanding the Role of a Water-Soluble Catechol-Functionalized Binder for Silicon Anodes by Diverse In Situ Analyses. , 2022, 4, 831-839.		15
13900	Polypeptide Radical Cathode for Aqueous Znâ€lon Battery with Twoâ€Electron Storage and Faster Charging Rate. ChemSusChem, 2022, 15, .	3.6	13
13901	A dual-function liquid electrolyte additive for high-energy non-aqueous lithium metal batteries. Nature Communications, 2022, 13, 1297.	5.8	56
13902	K2.13V1.52Ti0.48(PO4)3 as an anode material with a long cycle life for potassium-ion batteries. Electrochemistry Communications, 2022, 136, 107247.	2.3	4
13903	"One Stone Two Birds―Design for Dualâ€Functional TiO ₂ â€TiN Heterostructures Enabled Dendriteâ€Free and Kineticsâ€Enhanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	80
13904	Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries. ACS Energy Letters, 2022, 7, 1374-1382.	8.8	27
13905	lonic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+ Diffusion. Inorganics, 2022, 10, 45.	1.2	2
13906	Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16279-16288.	4.0	21
13907	Current advancement on anode materials for Na-ion batteries: Review. Materials Today: Proceedings, 2022, 62, 3022-3026.	0.9	2
13908	A Highly Durable Rubberâ€Derived Lithiumâ€Conducting Elastomer for Lithium Metal Batteries. Advanced Science, 2022, 9, e2200553.	5.6	22

#	Article	IF	CITATIONS
13909	Solid Electrolyte Interface Regulated by Solventâ€inâ€Water Electrolyte Enables Highâ€Voltage and Stable Aqueous Mgâ€MnO ₂ Batteries. Advanced Energy Materials, 2022, 12, .	10.2	14
13910	Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 1125-1136.	1.2	18
13911	One Stone for Multiple Birds: A Versatile Cross-Linked Poly(dimethyl siloxane) Binder Boosts Cycling Life and Rate Capability of an NCM 523 Cathode at 4.6 V. ACS Applied Materials & Interfaces, 2022, 14, 16245-16257.	4.0	10
13912	Conjugated Tetrathiafulvalene Carboxylates for Stable Organic Lithium Batteries. ChemElectroChem, 2022, 9, .	1.7	2
13913	Structure Engineering of BiSbS _{<i>x</i>} Nanocrystals Embedded within Sulfurized Polyacrylonitrile Fibers for High Performance of Potassium″on Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	5
13914	Insights into the Effect of Heat Treatment and Carbon Coating on the Electrochemical Behaviors of SiO Anodes for Liâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	10.2	28
13915	Multi-scale simulation of the adsorption of lithium ion on graphite surface: From quantum Monte Carlo to molecular density functional theory. Journal of Chemical Physics, 2022, 156, 094709.	1.2	6
13916	Generation of Si@C/SiC@C core–shell nanoparticles by laser irradiation of silicon grinding waste. Nano Select, 0, , .	1.9	1
13917	Formation/Decomposition of Li ₂ O ₂ Induced by Porous NiCeO _{<i>x</i>} Nanorod Catalysts in Aprotic Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2022, , .	4.0	6
13918	Migration Barrier Estimation of Carbon in Lead for Lead–Acid Battery Applications: A Density Functional Theory Approach. Solids, 2022, 3, 177-187.	1.1	2
13919	Poly(1,5-diaminoanthraquinone) as a High-Capacity Bipolar Cathode for Rechargeable Magnesium Batteries. ACS Applied Energy Materials, 2022, 5, 3004-3012.	2.5	16
13920	Acoustics-Actuated Microrobots. Micromachines, 2022, 13, 481.	1.4	23
13921	Graphene Oxide Aerogel Foam Constructed All-Solid Electrolyte Membranes for Lithium Batteries. Langmuir, 2022, 38, 3257-3264.	1.6	8
13922	Promoting Mechanistic Understanding of Lithium Deposition and Solidâ€Electrolyte Interphase (SEI) Formation Using Advanced Characterization and Simulation Methods: Recent Progress, Limitations, and Future Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	47
13923	Intrinsic defects of nonprecious metal electrocatalysts for energy conversion: Synthesis, advanced characterization, and fundamentals. ChemPhysMater, 2022, 1, 155-182.	1.4	6
13924	Sodium and potassium ion rich ferroelectric solid electrolytes for traditional and electrode-less structural batteries. APL Materials, 2022, 10, .	2.2	7
13925	Modification Strategy for Constructing Li Gradient Combined with Spinel Phase Coating on Li-Rich Mn-Based Materials. ACS Applied Energy Materials, 2022, 5, 4641-4650.	2.5	9
13927	Selective Extraction of Transition Metals from Spent LiNi _{<i>x</i>} Co _y Mn _{1â~<i>x</i>â~<i>y</i>} O ₂ Cathode via Regulation of Coordination Environment. Angewandte Chemie, 2022, 134, .	1.6	6

			-
#	ARTICLE	IF	CITATIONS
13928	Recent Advances and Strategies toward Polysulfides Shuttle Inhibition for Highâ€Performance Li–S Batteries. Advanced Science, 2022, 9, e2106004.	5.6	161
13929	Nonlinear Phase-Field Modeling of Lithium Dendritic Growth during Electrodeposition. Journal of the Electrochemical Society, 2022, 169, 032511.	1.3	6
13930	Zeroâ€Strain Highâ€Capacity Silicon/Carbon Anode Enabled by a MOFâ€Derived Spaceâ€Confined Singleâ€Atom Catalytic Strategy for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2200894.	11.1	57
13931	Stable All-Solid-State Lithium Metal Batteries Enabled by Machine Learning Simulation Designed Halide Electrolytes. Nano Letters, 2022, 22, 2461-2469.	4.5	32
13932	Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery. Journal of Energy Chemistry, 2022, 70, 531-541.	7.1	32
13933	Advancing to 4.6ÂV Review and Prospect in Developing Highâ€Energyâ€Density LiCoO ₂ Cathode for Lithium″on Batteries. Small Methods, 2022, 6, e2200148.	4.6	41
13934	Reversible Redox Chemistry of Anionic Imidazole-2-thione-Fused 1,4-Dihydro-1,4-diphosphinines. Inorganic Chemistry, 2022, 61, 4639-4646.	1.9	5
13935	Interfaceâ€Adaptive Binder Enabled by Supramolecular Interactions for Highâ€Capacity Si/C Composite Anodes in Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	54
13936	A Liquidâ€Metal Electrocatalyst as a Selfâ€Healing Anchor to Suppress Polysulfide Shuttling in Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	1
13937	Janus Membranes with Graphene Meshes and ZnO Rods for Controlling Dendritic Growth in High-Performance Li Metal Anodes. ACS Applied Energy Materials, 2022, 5, 4413-4420.	2.5	1
13938	Mesocarbon Microbeads Boost the Electrochemical Performances of LiFePO ₄ Li ₄ Ti ₅ O ₁₂ through Anion Intercalation. ChemSusChem, 2022, 15, .	3.6	7
13939	Tailored lithium metal/polymer electrolyte interface with LiTa2PO8 fillers in PEO-based composite electrolyte. Rare Metals, 2022, 41, 2826-2833.	3.6	7
13940	Emcoating Architecture Construction via CO ₂ /H ₂ Coupling Treatment Doubles Reversible Capacity of NbO ₂ /C Anode. ChemSusChem, 2022, 15, .	3.6	2
13941	Architecting a 3D continuous C/CuVO ₃ @Cu composite anode for lithium-ion storage. Surface Innovations, 2023, 11, 70-78.	1.4	5
13942	Guiding Uniform Li Deposition through Interfacial Adsorption of Thin Polymer Films on the Anode for High Stability Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 4513-4521.	2.5	1
13943	Heterostructured WS2/MoS2@carbon hollow microspheres anchored on graphene for high-performance Li/Na storage. Chemical Engineering Journal, 2022, 443, 136080.	6.6	36
13944	Anions with a Dipole: Toward High Transport Numbers in Solid Polymer Electrolytes. Chemistry of Materials, 2022, 34, 3451-3460.	3.2	11
13945	Comprehensive review on <scp>zincâ€ion</scp> battery anode: Challenges and strategies. InformaÄnÃ- Materiály, 2022, 4, .	8.5	121

\mathbf{C}	TATI	ON	DEDC	NDT.
	LAH	ΟN	REPC	жт

#	Article	IF	CITATIONS
13946	Pomegranate-Inspired Nitrogen-Doped Carbon-Coated Bimetallic Sulfides as a High-Performance Anode of Sodium-Ion Batteries and Their Structural Evolution Analysis. ACS Applied Energy Materials, 2022, 5, 3199-3207.	2.5	9
13947	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	96
13948	Boosting Zn l2 Battery's Performance by Coating a Zeolite-Based Cation-Exchange Protecting Layer. Nano-Micro Letters, 2022, 14, 82.	14.4	62
13949	Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nature Communications, 2022, 13, 1153.	5.8	65
13950	Firstâ€Principles Studies on the Atomistic Properties of Metallic Magnesium as Anode Material in Magnesiumâ€ion Batteries. ChemSusChem, 2022, 15, .	3.6	9
13951	Recent Progress and Future Advances on Aqueous Monovalentâ€Ion Batteries towards Safe and Highâ€Power Energy Storage. Advanced Materials, 2022, 34, e2107965.	11.1	48
13952	Hollow CoS/C Structures for High-Performance Li, Na, K Ion Batteries. Frontiers in Chemistry, 2022, 10, 845742.	1.8	1
13953	Synthesis, Characterization, and Optical Properties of Titano-Molybdenum Phosphate Glasses. Journal of Electronic Materials, 2022, 51, 2528-2544.	1.0	8
13954	Largeâ€Scale Synthesis of Nanostructured Carbonâ€īi ₄ O ₇ Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithiumâ€Sulfur Pouch Cells. Batteries and Supercaps, 2022, 5, .	2.4	8
13955	A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments. Nature Communications, 2022, 13, 1510.	5.8	93
13956	A step towards meeting battery raw material demand: the geology and exploration of graphite deposits, examples from northern Norway. Geological Society Special Publication, 2023, 526, 251-265.	0.8	4
13957	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	9
13958	<scp>3D Foamâ€Based MXene</scp> Architectures: Structural and Electrolytic Engineering for Advanced Potassiumâ€Ion Storage. Energy and Environmental Materials, 0, , .	7.3	17
13959	Investigation of the Role of Sr and Development of Superior Sr-Doped Hexagonal BaCoO _{3â^î} Perovskite Bifunctional OER/ORR Catalysts in Alkaline Media. Energy & Fuels, 2022, 36, 3219-3228.	2.5	14
13960	Toward High-Voltage Solid-State Li-Metal Batteries with Double-Layer Polymer Electrolytes. ACS Energy Letters, 2022, 7, 1473-1480.	8.8	55
13961	Interface engineering of MoS2-based ternary hybrids towards reversible conversion of sodium storage. Materials Today Energy, 2022, 26, 100993.	2.5	5
13962	Antisolvent Precipitation for Metal Recovery from Citric Acid Solution in Recycling of NMC Cathode Materials. Metals, 2022, 12, 607.	1.0	12
13963	Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal–Oxygen Covalency for Layered Battery Electrodes. Advanced Materials, 2022, 34, e2201152.	11.1	49

#	Article	IF	CITATIONS
13964	Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Research, 2022, 15, 5038-5063.	5.8	25
13965	Cableâ€like V ₂ O ₅ Decorated Carbon Cloth as a Highâ€Capacity Cathode for Flexible Zinc Ion Batteries. Energy Technology, 2022, 10, .	1.8	4
13966	Properties of Fe–Si Alloy Anode for Lithium-Ion Battery Synthesized Using Mechanical Milling. Materials, 2022, 15, 1873.	1.3	7
13967	Facile construction of single-crystalline sodium niobate anode materials: insight into the relationship of the morphology and excellent performance for lithium-ion batteries. Journal of Materials Science, 2022, 57, 5987-5997.	1.7	5
13968	Reversible Temperature-Responsive Cathode for Thermal Protection of Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5236-5244.	2.5	6
13969	Rational Design Strategy of Novel Energy Storage Systems: Toward Highâ€Performance Rechargeable Magnesium Batteries. Small, 2022, 18, e2200418.	5.2	56
13970	Crystalline Porous Materials-based Solid-State Electrolytes for Lithium Metal Batteries. EnergyChem, 2022, 4, 100073.	10.1	18
13971	Unusual pseudocapacitive lithium-ion storage on defective Co ₃ O ₄ nanosheets. Nanotechnology, 2022, 33, 225403.	1.3	6
13972	Design Strategies of Flame-Retardant Additives for Lithium Ion Electrolyte. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	7
13973	Concentration dependence of yield stress, thixotropy, and viscoelasticity rheological behavior of lithium-ion battery slurry. Ceramics International, 2022, 48, 19073-19080.	2.3	10
13974	A novel Mo8.7Nb6.1Ox@NCs egg-nest composite structure as superior anode material for lithium-ion storage. Rare Metals, 2022, 41, 2645-2654.	3.6	9
13975	Role of oxidation states of iron on the super-capacitive behaviour of iron oxide films. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	2
13976	Boosting Energy Efficiency and Stability of Li–CO ₂ Batteries via Synergy between Ru Atom Clusters and Singleâ€Atom Ru–N ₄ sites in the Electrocatalyst Cathode. Advanced Materials, 2022, 34, e2200559.	11.1	83
13977	Synergistic Effect of Co and Mn Co-Doping on SnO2 Lithium-Ion Anodes. Inorganics, 2022, 10, 46.	1.2	5
13978	First-Principles Investigation of Graphenylene as a Long-Life Cathode Material in Aluminum Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4970-4975.	2.5	4
13979	Boosting the electrochemical energy storage and conversion performance by structural distortion in metal–organic frameworks. Chemical Engineering Journal, 2022, 443, 136269.	6.6	12
13980	A First-Principles Study on the Multilayer Graphene Nanosheets Anode Performance for Boron-Ion Battery. Nanomaterials, 2022, 12, 1280.	1.9	11
13981	Biomassâ€Derived Lenthionine Enhanced by Radical Receptor for Rechargeable Lithium Battery. ChemSusChem, 2022, 15, .	3.6	3

#	Article	IF	CITATIONS
13982	Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. Journal of Power Sources, 2022, 526, 231105.	4.0	20
13983	Natural ore molybdenite as a high-capacity and cheap anode material for advanced lithium-ion capacitors. Nanotechnology, 2022, 33, 255401.	1.3	1
13984	MnO2 depositing on the surface of hollow porous carbon microspheres for supercapacitor application. Ceramics International, 2022, 48, 10533-10538.	2.3	5
13985	Engineering Bamboo Leaves Into 3D Macroporous Si@C Composites for Stable Lithium-Ion Battery Anodes. Frontiers in Chemistry, 2022, 10, 882681.	1.8	2
13986	Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries. Materials Today Communications, 2022, 31, 103518.	0.9	23
13988	Materials and systems for polymer-based Metallocene batteries: Status and challenges. Polymer, 2022, 245, 124658.	1.8	3
13989	Suitability of Carbazolyl Hauser and Turboâ€Hauser Bases as Magnesiumâ€Based Electrolytes. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6
13990	Electrochemical Properties of Multilayered Sn/TiNi Shape-Memory-Alloy Thin-Film Electrodes for High-Performance Anodes in Li-Ion Batteries. Materials, 2022, 15, 2665.	1.3	0
13991	Influence of Rutile and Anatase TiO ₂ Precursors on the Synthesis of a Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ Electrolyte for Solid-State Lithium Batteries. Journal of the Electrochemical Society, 2022, 169, 040515.	1.3	3
13992	Revealing interfacial space charge storage of Li+/Na+/K+ by operando magnetometry. Science Bulletin, 2022, 67, 1145-1153.	4.3	23
13993	Correlating the initial gas evolution and structural changes to cycling performance of Co-free Li-rich layered oxide cathode. Journal of Power Sources, 2022, 527, 231181.	4.0	12
13994	Will Vanadiumâ€Based Electrode Materials Become the Future Choice for Metalâ€Ion Batteries?. ChemSusChem, 2022, 15, .	3.6	10
13995	Observing Two-Dimensional Spontaneous Reaction between a Silicon Electrode and a LiPF ₆ -Based Electrolyte <i>In Situ</i> and in Real Time. Journal of Physical Chemistry Letters, 2022, , 3224-3229.	2.1	2
13996	Amorphous Titanium Polysulfide Composites with Electronic/Ionic Conduction Networks for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17594-17600.	4.0	6
13997	Intrinsic Nonflammable Ether Electrolytes for Ultrahighâ€Voltage Lithium Metal Batteries Enabled by Chlorine Functionality. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
13998	High-performance silicon from quartz product waste as an anode material for Li-ion batteries. Ceramics International, 2022, 48, 19412-19423.	2.3	1
14000	A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2110323.	11.1	46
14001	High-Power and Long-Life Na ₃ V ₂ O ₂ (PO ₄) ₂ F–Na ₃ V _{2 Bimaterial Electrodes for Hybrid Battery–Capacitor Energy Storage Devices. ACS Applied Energy Materials 2022 5, 4070-4084}	2(P0 2.5	⊃ ₄ sub>4<

#	Article	IF	CITATIONS
14002	Fast and Simple Ag/Cu Ion Exchange on Cu Foil for Anode-Free Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17454-17460.	4.0	21
14003	Intrinsic Nonflammable Ether Electrolytes for Ultrahighâ€Voltage Lithium Metal Batteries Enabled by Chlorine Functionality. Angewandte Chemie, 0, , .	1.6	1
14004	Biomassâ€Derived Carbon for Highâ€Performance Batteries: From Structure to Properties. Advanced Functional Materials, 2022, 32, .	7.8	71
14005	Revisiting Rb2TiNb6O18 as electrode materials for energy storage devices. Electrochemistry Communications, 2022, 137, 107249.	2.3	4
14006	A High Energy Density Li-ion Battery with Lithium Titanium Oxide Anode. International Journal of Electrochemical Science, 2022, 17, 22045.	0.5	2
14007	Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material. Nano Energy, 2022, 98, 107222.	8.2	23
14008	Self-assembly of Li single-ion-conducting block copolymers for improved conductivity and viscoelastic properties. Electrochimica Acta, 2022, 413, 140126.	2.6	11
14009	Structural features of complete and partial activation of Li-rich cathodes studied by in-situ XRD. Electrochimica Acta, 2022, 414, 140237.	2.6	10
14010	Towards understanding aluminum sulfur batteries with imidazolium-based electrolytes: A phenomenological model. Journal of Power Sources, 2022, 529, 231254.	4.0	9
14011	Realization of high cycle life bismuth oxychloride Na-ion anode in glyme-based electrolyte. Journal of Power Sources, 2022, 529, 231227.	4.0	4
14012	Facile one-pot preparation of porous SiOx@Li2SiO3/C composite from rice husks for high initial coulomb efficiency lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2022, 912, 116265.	1.9	4
14013	Facile synthesis and lithium storage mechanism study of directly usable tin-based metal organic framework. Journal of Electroanalytical Chemistry, 2022, 912, 116268.	1.9	10
14014	A green strategy towards fabricating FePO4-graphene oxide for high-performance cathode of lithium/sodium-ion batteries recovered from spent batteries. Journal of Electroanalytical Chemistry, 2022, 913, 116287.	1.9	11
14015	The lithium storage mechanism of a new Li3Ti0.75(MoO4)3 high-performance anode material and its applications for both half-cell and full-cell. Journal of Power Sources, 2022, 530, 231300.	4.0	1
14016	Superior cycling stability of saturated graphitic carbon nitride in hydrogel reduced graphene oxide anode for Sodium-ion battery. FlatChem, 2022, 33, 100351.	2.8	9
14017	Ordered sodium zeolite-templated carbon with high first discharge capacity for sodium battery application. Microporous and Mesoporous Materials, 2022, 336, 111853.	2.2	7
14018	Unveiling unique steric effect of threonine additive for highly reversible Zn anode. Nano Energy, 2022, 97, 107145.	8.2	69
14019	Ultra-long cycle H-doped VO2(B) cathode for high capacity aqueous Zn-ion battery. Materials Today Advances, 2022, 14, 100230.	2.5	10

#	Article	IF	CITATIONS
14020	Ultrahigh active material content and highly stable Ni-rich cathode leveraged by oxidative chemical vapor deposition. Energy Storage Materials, 2022, 48, 1-11.	9.5	23
14021	Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Storage Materials, 2022, 48, 447-457.	9.5	46
14022	Building up ion-conduction pathways in solid polymer electrolytes through surface and pore functionalization of PVDF porous membranes with ionic conductors. Journal of Membrane Science, 2022, 651, 120456.	4.1	9
14023	The origin of the aggressive degradation of Ni-rich transition metal oxide cathodes for high-energy density lithium-ion batteries. Journal of Solid State Chemistry, 2022, 310, 123040.	1.4	3
14024	Unveiling the Na-ions storage mechanism and sodiation-induced brittleness of multiwalled carbon nanotubes. Journal of Power Sources, 2022, 532, 231357.	4.0	6
14025	Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Materials, 2022, 48, 375-383.	9.5	61
14026	Controllable C-N site assisting observable potential difference for homogeneous copper deposition in aqueous Cu-S batteries. Energy Storage Materials, 2022, 48, 74-81.	9.5	28
14027	Bifunctional separators design for safe lithium-ion batteries: Suppressed lithium dendrites and fire retardance. Nano Energy, 2022, 97, 107204.	8.2	23
14028	CoP/Cu3P heterostructured nanoplates for high-rate supercapacitor electrodes. Chemical Engineering Journal, 2022, 437, 135352.	6.6	66
14029	Cobalt oxyhydroxide decorating hollow carbon sphere: A high-efficiency multi-functional material for Li-S batteries and alkaline electrocatalysis. Chemical Engineering Journal, 2022, 439, 135790.	6.6	31
14030	A flexible free-standing FeF3/reduced graphene oxide film as cathode for advanced lithium-ion battery. Journal of Alloys and Compounds, 2022, 909, 164702.	2.8	17
14031	One-pot spray pyrolysis for core–shell structured Sn@SiOC anode nanocomposites that yield stable cycling in lithium-ion batteries. Applied Surface Science, 2022, 589, 152952.	3.1	7
14032	A new modification strategy for improving the electrochemical performance of high-nickel cathode material: V2O5 particles anchored on rGO sheets as a dual coating layer. Applied Surface Science, 2022, 589, 152878.	3.1	8
14033	Stainless steel: A high potential material for green electrochemical energy storage and conversion. Chemical Engineering Journal, 2022, 440, 135459.	6.6	22
14034	High performance supercapacitors assembled with hierarchical porous carbonized wood electrode prepared through self-activation. Industrial Crops and Products, 2022, 181, 114802.	2.5	26
14035	A silk sericin-confined in-situ synthesis strategy: Fe7S8 inserted N,S co-doped carbon nano-aggregates for high-performance sodium storage. Journal of Alloys and Compounds, 2022, 910, 164875.	2.8	6
14036	Lithium-ion transfer strengthened by graphite tailings and coking coal for high-rate performance anode. Chemical Engineering Journal, 2022, 442, 136184.	6.6	18
14037	Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries. Energy Storage Materials, 2022, 49, 19-57.	9.5	15

#	Article	IF	CITATIONS
14038	Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes. Chemical Engineering Journal, 2022, 442, 136245.	6.6	21
14039	Construction of SnS-Mo-graphene nanosheets composite for highly reversible and stable lithium/sodium storage. Journal of Materials Science and Technology, 2022, 121, 190-198.	5.6	11
14040	Constructing advanced electrode materials for low-temperature lithium-ion batteries: A review. Energy Reports, 2022, 8, 4525-4534.	2.5	64
14041	Designing safer lithium-based batteries with nonflammable electrolytes: A review. EScience, 2021, 1, 163-177.	25.0	147
14042	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications. Small, 2022, 18, e2104628.	5.2	33
14043	Shapeable carbon fiber networks with hierarchical porous structure for high-performance Zn-I2 batteries. Science China Chemistry, 2022, 65, 391-398.	4.2	39
14044	Elucidating the Synergistic Behavior of Orientationâ€Controlled SnS Nanoplates and Carbon Layers for Highâ€Performance Lithium―and Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	25
14045	Mesoporous Mulberry-like CoMoO ₄ : A Highly Suitable Anode Material for Sodium Ion Batteries over Lithium Ion Batteries. ACS Applied Energy Materials, 2022, 5, 126-136.	2.5	12
14046	Surface Coordination Layer to Enhance the Stability of Plasmonic Cu Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 27624-27630.	1.5	2
14047	Using Metal Cation to Control the Microstructure of Cobalt Oxide in Energy Conversion and Storage Applications. Small, 2022, 18, e2106391.	5.2	14
14048	Trends in a study on thermal runaway mechanism of lithiumâ€ion battery with E LiNi _{<i>x</i>} Mn _{<i>y</i>} Co _{1â€<i>x</i>â€<i>y</i>} O ₂ cathode materials. , 2022, 1, .		32
14049	Lithium Diffusion in Silicon Encapsulated with Graphene. Nanomaterials, 2021, 11, 3397.	1.9	3
14050	A Generalized Synthesis Strategy for Binderless, Free-Standing Anode for Lithium/Sodium Ion Battery Comprised of Metal Selenides@Carbon Nanofibers. ACS Applied Energy Materials, 2022, 5, 842-851.	2.5	6
14051	A Strategic Co-doping Approach Using Sc ³⁺ and Ce ⁴⁺ toward Enhanced Conductivity in NASICON-Type Na ₃ Zr ₂ Si ₂ PO ₁₂ . Journal of Physical Chemistry C, 2021, 125, 27723-27735.	1.5	17
14052	Turn "Waste―into Wealth: A Facile Reviving Strategy for Degraded Ni-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathodes. Industrial & Engineering Chemistry Research, 2022, 61, 141-151.	1.8	7
14053	Short-Process Multiscale Core–Shell Structure Buffer Control of a Ni/N Codoped Si@C Composite Using Waste Silicon Powder for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 178-185.	2.5	5
14054	Interface Modification and Halide Substitution To Achieve High Ionic Conductivity in LiBH ₄ -Based Electrolytes for all-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1260-1269.	4.0	9
14055	Prussian Blue Nanolayer-Embedded Separator for Selective Segregation of Nickel Dissolution in High Nickel Cathodes. Nano Letters, 2022, 22, 1804-1811.	4.5	10

	CITATION RE	PORT	
# 14056	ARTICLE Thermodynamic Analysis of Li-Intercalated Graphite by First-Principles Calculations with Vibrational and Configurational Contributions. Journal of Physical Chemistry C, 2021, 125, 27891-27900.	IF 1.5	Citations 3
14057	Advanced Simulation Tool to Develop Efficient Thermal Management Systems for Electric Vehicles. , 2021, , .		1
14058	The Effects of the Binder and Buffering Matrix on InSb-Based Anodes for High-Performance Rechargeable Li-Ion Batteries. Nanomaterials, 2021, 11, 3420.	1.9	8
14059	A Unique Structure of Highly Stable Interphase and Selfâ€Consistent Stress Distribution Radialâ€Gradient Porous for Silicon Anode. Advanced Functional Materials, 2022, 32, .	7.8	34
14060	Seamlessly Merging the Capacity of P into Sb at Same Voltage with Maintained Superior Cycle Stability and Lowâ€ŧemperature Performance for Liâ€ion Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	3
14061	Ammonium-ion batteries with a wide operating temperature window from â^40 to 80Â °C. EScience, 2021, 1, 212-218.	25.0	49
14062	Novel Self-Adaptive Electrolyte for High-Energy Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 862-869.	2.5	4
14063	STEM-EELS Spectrum Imaging of an Aerosol-Deposited NASICON-Type LATP Solid Electrolyte and LCO Cathode Interface. ACS Applied Energy Materials, 2022, 5, 98-107.	2.5	10
14064	A delicately designed functional binder enabling in situ construction of <scp>3D</scp> crossâ€linking robust network for highâ€performance Si/graphite composite anode. Journal of Polymer Science, 2022, 60, 1835-1844.	2.0	8
14065	Rearrangement of Ion Transport Path on Nano-Cross-linker for All-Solid-State Electrolyte with High Room Temperature Ionic Conductivity. ACS Nano, 2021, 15, 20489-20503.	7.3	31
14066	All-Climate High-Voltage Commercial Lithium-Ion Batteries Based on Propylene Carbonate Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 574-580.	4.0	24
14067	Novel lignin as <scp>naturalâ€biodegradable</scp> binder for various sectors—A review. Journal of Applied Polymer Science, 2022, 139, .	1.3	27
14068	Regulating Interfacial Desolvation and Deposition Kinetics Enables Durable Zn Anodes with Ultrahigh Utilization of 80%. Small, 2022, 18, e2106441.	5.2	51
14069	Laboratory X-ray Microscopy Study of Microcrack Evolution in a Novel Sodium Iron Titanate-Based Cathode Material for Li-Ion Batteries. Crystals, 2022, 12, 3.	1.0	3
14070	Recent progress in zinc-based redox flow batteries: a review. Journal Physics D: Applied Physics, 2022, 55, 163001.	1.3	18
14071	Revealing Atomic‣cale Ionic Stability and Transport around Grain Boundaries of Garnet Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte. Advanced Energy Materials, 2022, 12, .	10.2	25
14072	Development of a Novel Solvent Extraction Process to Recover Cobalt, Nickel, Manganese, and Lithium from Cathodic Materials of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 582-593.	3.2	16
14073	Free-Standing N, P Codoped Hollow Carbon Fibers as Efficient Hosts for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 14191-14197.	2.5	8

#	Article	IF	CITATIONS
14074	Nonstoichiometric Molybdenum Trioxide Adjustable Energy Barrier Enabling Ultralong-Life All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 60907-60920.	4.0	11
14075	Highly Active Atomically Dispersed Co–N _{<i>x</i>} Sites Anchored on Ultrathin N-Doped Carbon Nanosheets with Durability Oxygen Reduction Reaction of Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 16956-16964.	3.2	11
14076	High-Performance Li-Metal-Free Sulfur Battery Employing a Lithiated Anatase TiO ₂ Anode and a Freestanding Li ₂ S–Carbon Aerogel Cathode. ACS Sustainable Chemistry and Engineering, 2022, 10, 410-420.	3.2	6
14077	Gospel for Improving the Lithium Storage Performance of High-Voltage High-Nickel Low-Cobalt Layered Oxide Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 58871-58884.	4.0	26
14078	Thermally encapsulated phenothiazine@MWCNT cathode for aqueous zinc ion battery. Materials Advances, 2022, 3, 4310-4321.	2.6	7
14079	Materials and Synthesis of Organic Electrode. Engineering Materials, 2022, , 27-46.	0.3	1
14080	Si doped T-graphene: a 2D lattice as an anode electrode in Na ion secondary batteries. New Journal of Chemistry, 2022, 46, 9718-9726.	1.4	10
14081	Superior performance enabled by supramolecular interactions in metalâ^'organic cathode: the power of weak bonds. Journal of Materials Chemistry A, 2022, 10, 19671-19679.	5.2	6
14082	Insights into interfacial chemistry of Ni-rich cathodes and sulphide-based electrolytes in all-solid-state lithium batteries. Chemical Communications, 2022, , .	2.2	8
14083	Two-dimensional nanofluidic suppressing anion mobility towardÂdendrite-free lithium metal anode. Materials Today Energy, 2022, 26, 101015.	2.5	6
14084	Suppression of lithium dendrites in all-solid-state lithium batteries by using a Janus-structured composite solid electrolyte. Chemical Engineering Journal, 2022, 443, 136479.	6.6	13
14085	Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Materials Today, 2022, 54, 110-152.	8.3	66
14086	In situ enhance lithium polysulfides redox kinetics by carbon cloth/MoO3 self-standing electrode for lithium–sulfur battery. Journal of Materials Science, 2022, 57, 10003-10016.	1.7	3
14087	Electrolytes for rechargeable aluminum batteries. Progress in Materials Science, 2022, 128, 100960.	16.0	32
14088	Engineering a passivating electric double layer for high performance lithium metal batteries. Nature Communications, 2022, 13, 2029.	5.8	113
14089	Effects of Local Order Parameter Dependent Transport Coefficient in Diblock Copolymers Under Applied Electric Fields. Journal of Chemical Physics, 2022, 156, 174903.	1.2	2
14090	Enhanced Cycling Stability in the Anion Redox Material P3â€Type Znâ€Substituted Sodium Manganese Oxide. ChemElectroChem, 2022, 9, .	1.7	6
14091	Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction. Advanced Energy Materials, 2022, 12, .	10.2	72

#	Article	IF	CITATIONS
14092	Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer. EScience, 2022, 2, 509-517.	25.0	124
14093	Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes. Journal of Electrochemical Science and Technology, 2022, 13, 177-185.	0.9	1
14094	First Principles Study of Layered CrGeTe ₃ as Lithium Intercalation Compound. Journal of the Electrochemical Society, 2022, 169, 040557.	1.3	5
14095	Intermediate polaronic charge transport in organic crystals from a many-body first-principles approach. Npj Computational Materials, 2022, 8, .	3.5	13
14096	Tailoring the Solvation Sheath of Cations by Constructing Electrode Frontâ€Faces for Rechargeable Batteries. Advanced Materials, 2022, 34, e2201339.	11.1	66
14097	Composite solid electrolytes containing single-ion lithium polymer grafted garnet for dendrite-free, long-life all-solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 445, 136436.	6.6	40
14098	Calcium Based Allâ€Organic Dualâ€lon Batteries with Stable Low Temperature Operability. Small, 2022, 18, e2200049.	5.2	12
14099	Recent Progress and Prospects on Dendriteâ€free Engineerings for Aqueous Zinc Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	15
14100	Ionic Liquid-Supported Interpenetrating Polymer Network Flexible Solid Electrolytes for Lithium-Ion Batteries. Energy & Fuels, 2022, 36, 4999-5008.	2.5	10
14101	Boron Nitrideâ€Based Release Agent Coating Stabilizes Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface with Superior Leanâ€Lithium Electrochemical Performance and Thermal Stability. Advanced Functional Materials. 2022, 32, .	7.8	27
14102	Feasibility to Improve the Stability of Lithium-Rich Layered Oxides by Surface Doping. ACS Applied Materials & Interfaces, 2022, 14, 18353-18359.	4.0	21
14103	A high-voltage aqueous rechargeable zinc-polyaniline hybrid battery achieved by decoupling alkali–acid electrolyte. Chemical Engineering Journal, 2022, 444, 136478.	6.6	13
14104	Internal Short Circuit Detection for Parallel-Connected Battery Cells Using Convolutional Neural Network. Automotive Innovation, 2022, 5, 107.	3.1	4
14105	Recent Progress on the Low and High Temperature Performance of Nanoscale Engineered Li-ion Battery Cathode Materials. Nanotechnology, 2022, , .	1.3	3
14106	Crack Healing Mechanism by Application of Stack Pressure to the Carbon-Based Composite Anode of an All-Solid-State Battery. ACS Applied Energy Materials, 2022, 5, 5227-5235.	2.5	8
14107	Recent progress of quantum dots for energy storage applications. , 2022, 1, 1.		80
14108	An overview of the application of atomic layer deposition process for lithiumâ€ion based batteries. International Journal of Energy Research, 2022, 46, 10499-10521.	2.2	8
14109	Advanced Current Collector Materials for Highâ€Performance Lithium Metal Anodes. Small, 2022, 18, e2200010.	5.2	33

#	Article	IF	CITATIONS
14110	3D Hollow ZnO Spheres Embedded withTiO2 Nanoparticles as Anodes for High-Performance of Lithium-ion Batteries. International Journal of Electrochemical Science, 0, , ArticleID:22057.	0.5	1
14111	Biphasic solid electrolytes with homogeneous Li-ion transport pathway enabled by metal–organic frameworks. Electrochimica Acta, 2022, 418, 140374.	2.6	10
14112	Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2022, 535, 231445.	4.0	33
14113	The in-system growth of highly-reversible hierarchical Zn for seawater-based energy storage with self-regulation interface. Chemical Engineering Journal, 2022, 442, 136327.	6.6	3
14114	Nanoscale interface engineering of inorganic Solid-State electrolytes for High-Performance alkali metal batteries. Journal of Colloid and Interface Science, 2022, 621, 41-66.	5.0	12
14129	In Situ Anchoring Anionâ€Rich and Multiâ€Cavity NiS ₂ Nanoparticles on NCNTs for Advanced Magnesiumâ€ion Batteries. Advanced Science, 2022, 9, e2200067.	5.6	23
14130	2D Homogeneous Holey Carbon Nitride: An Efficient Anode Material for Liâ€ion Batteries With Ultrahigh Capacity. ChemPhysChem, 2022, 23, .	1.0	12
14131	A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nature Nanotechnology, 2022, 17, 613-621.	15.6	152
14132	High-Content Lithium Aluminum Titanium Phosphate-Based Composite Solid Electrolyte with Poly(ionic liquid) Binder. Polymers, 2022, 14, 1274.	2.0	0
14133	Uracil-Based Additives for Enabling Robust Interphases of High-Voltage Li-Ion Batteries at Elevated Temperature by Substituent Effects. SSRN Electronic Journal, 0, , .	0.4	0
14134	Mos2/Graphene Hybrid Nanosheets Prepared by Xylitol Assisted Ball Milling as High-Performance Anode Materials for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
14135	Nucleation–Oxidation Coupled Technology for High-Nickel Ternary Cathode Recycling of Spent Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
14136	Chapter 10. Redox-active Molecules and Their Energy Device Application. RSC Green Chemistry, 2022, , 227-248.	0.0	0
14137	Introduction to electrochemical energy storage technologies. , 2022, , 3-10.		2
14138	Stabilizing intermediate phases <i>via</i> the efficient confinement effects of the SnS ₂ -SPAN fibre composite for ultra-stable half/full sodium/potassium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 11449-11457.	5.2	36
14139	Recent advances in Fe-based metal–organic framework derivatives for battery applications. Sustainable Energy and Fuels, 2022, 6, 2665-2691.	2.5	15
14140	High-performance lithium–sulfur batteries. , 2022, , 57-73.		1
14141	Ether-based electrolytes for sodium ion batteries. Chemical Society Reviews, 2022, 51, 4484-4536.	18.7	187

#	Article	IF	CITATIONS
14142	Calcium-intercalated birnessite MnO ₂ anchored on carbon nanotubes as high-performance cathodes for aqueous zinc-ion batteries. Dalton Transactions, 2022, 51, 9477-9485.	1.6	7
14143	Vacancy Engineering in Ws2 Nanosheets for Enhanced Potassiumâ€lon Storage. SSRN Electronic Journal, 0, , .	0.4	0
14145	Advanced carbon-based nanostructure frameworks for lithium anodes. , 2022, , 499-520.		0
14146	Recent advancements in carbon/sulfur electrode nanocomposites for lithium–sulfur batteries. , 2022, , 225-239.		0
14147	Defect-Abundant Commercializable 3d Carbon Papers for Fabricating Composite Li Anode with High Loading and Long Life. SSRN Electronic Journal, 0, , .	0.4	0
14148	Novel One-Dimensional Nanofiber Mnse/Cmk-3 High-Performance Cathode Material for Aluminum Batteries. SSRN Electronic Journal, 0, , .	0.4	0
14149	Electrochemically Exfoliated Ws2 in Molten Salt for Sodium Ion Battery Anode. SSRN Electronic Journal, 0, , .	0.4	0
14150	A high-energy conversion-type cathode activated by amorpholization for Li rechargeable batteries. Journal of Materials Chemistry A, 2022, 10, 20080-20089.	5.2	4
14151	Synthesis and Energy Storage Characteristics of Mno Microchains Induced by High Magnetic Field. SSRN Electronic Journal, 0, , .	0.4	0
14152	NiCo2O4@PPy concurrently as cathode host material and interlayer for high-rate and long-cycle lithium sulfur batteries. Ceramics International, 2022, 48, 22287-22296.	2.3	16
14153	Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries. Nanomaterials, 2022, 12, 1436.	1.9	17
14155	Metaphosphate-Bridged Interface Boosts High-Performance Lithium Storage. ACS Applied Materials & Interfaces, 2022, 14, 20896-20906.	4.0	0
14156	A significantly improved polymer Ni(OH)2 alkaline rechargeable battery using anthraquinone-based conjugated microporous polymer anode. Materials Today Energy, 2022, 27, 101014.	2.5	8
14157	Cellulose nanofiberâ€derived carbon aerogel for advanced roomâ€temperature sodium–sulfur batteries. , 2023, 5, .		15
14158	Status and perspectives of hierarchical porous carbon materials in terms of highâ€performance lithium–sulfur batteries. , 2022, 4, 346-398.		65
14159	Quinone Electrodes for Alkali–Acid Hybrid Batteries. Journal of the American Chemical Society, 2022, 144, 8066-8072.	6.6	23
14160	Degrees of freedom for energy storage material. , 2022, 4, 633-644.		9
14161	A primitive model for intercalation–conversion bifunctional battery materials. , 2022, 1, .		0

#	Article	IF	CITATIONS
14162	Battery energy storage systems and SWOT (strengths, weakness, opportunities, and threats) analysis of batteries in power transmission. Energy, 2022, 254, 123987.	4.5	74
14163	One-Step Route to Fe2O3 and FeSe2 Nanoparticles Loaded on Carbon-Sheet for Lithium Storage. Molecules, 2022, 27, 2875.	1.7	6
14164	A critical review on nickel-based cathodes in rechargeable batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 925-941.	2.4	22
14165	Organic materialsâ€based cathode for zinc ion battery. SmartMat, 2022, 3, 565-581.	6.4	54
14166	Toward Practical Highâ€Energyâ€Density Lithium–Sulfur Pouch Cells: A Review. Advanced Materials, 2022, 34, e2201555.	11.1	112
14167	A technology for producing electrode materials for lithium-ion batteries from Kazakhstan spodumene raw materials. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2022, 12, 141-152.	0.1	0
14168	A Robust Bundled and Wrapped Structure Design of Ultrastable Silicon Anodes for Antiaging Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 5540-5550.	2.5	3
14169	Multifunctional Cr Substitution Modulates Electrochemical Activity of Mn _{1<i>–x</i>} Cr _{<i>x</i>} O for High-Performance Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2022, 14, 21028-21037.	4.0	8
14170	Investigation of a Fluorine-Free Phosphonium-Based Ionic Liquid Electrolyte and Its Compatibility with Lithium Metal. ACS Applied Materials & Interfaces, 2022, 14, 20888-20895.	4.0	4
14171	Assessment of optimization strategies for battery electrode active particles based on chemo-mechanical analysis. Journal of Electrochemical Energy Conversion and Storage, 0, , 1-26.	1.1	0
14172	Microcrystalline Hybridization Enhanced Coalâ€Based Carbon Anode for Advanced Sodiumâ€Ion Batteries. Advanced Science, 2022, 9, e2200023.	5.6	43
14173	Eliminating oxygen releasing of Li-rich layered cathodes by tuning the distribution of superlattice domain. Materials Today Energy, 2022, 27, 101039.	2.5	9
14174	Study and Characterization of the Porous Silicon Membrane Anode for LITHIUM-Ion Batteries. Silicon, 0, , .	1.8	0
14175	PI-LAGP Separator─Construction, Battery Application Performance, and Chemical Valence Changes of Germanium. ACS Applied Polymer Materials, 2022, 4, 4003-4012.	2.0	1
14176	Fe3O4/N-CNTs derived from hypercrosslinked carbon nanotube as efficient catalyst for ORR in both acid and alkaline electrolytes. International Journal of Hydrogen Energy, 2022, 47, 20529-20539.	3.8	16
14177	Study on the possibility of diagonal line rule in elemental doping effects in Li4Ti5O12 by mechanochemical method. Electrochimica Acta, 2022, 422, 140485.	2.6	2
14178	Flexible self-charging power sources. Nature Reviews Materials, 2022, 7, 870-886.	23.3	159
14179	Optimization of VOSO4@C cathode materials with CNT and GO for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 914, 165354.	2.8	3

#	Article	IF	CITATIONS
14180	Implanting an ion-selective "skin―in electrolyte towards high-energy and safe lithium-sulfur battery. Matter, 2022, 5, 2225-2237.	5.0	14
14181	Thin polymer electrolyte with MXene functional layer for uniform Li+ deposition in all-solid-state lithium battery. Green Energy and Environment, 2024, 9, 71-80.	4.7	4
14182	Sequential Fe Reduction, Involving Two Different Fe ⁺ Intermediates, in the Conversion Reaction of Prussian Blue in Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 4660-4671.	3.2	0
14183	High-Pressure Synthesis of Trigonal LiFe ₂ F ₆ : New Iron Fluoride with Li ⁺ Tunnels as a Potential Cathode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 8248-8255.	1.5	1
14184	Regulating Solvation Structure in Nonflammable Amideâ€Based Electrolytes for Longâ€Cycling and Safe Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	47
14185	Rational design of robust and universal aqueous binders to enable highly stable cyclability of highâ€capacity conversion and alloyâ€ŧype anodes. Energy and Environmental Materials, 0, , .	7.3	2
14186	High-performance lithium-ion batteries with gel polymer electrolyte based on ultra-thin PVDF film. Ionics, 2022, 28, 3269-3276.	1.2	1
14187	Hydroxylated Multiâ€Walled Carbon Nanotubes Covalently Modified with Tris(hydroxypropyl) Phosphine as a Functional Interlayer for Advanced Lithium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	1.6	7
14188	Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. Journal of Energy Chemistry, 2022, 72, 56-72.	7.1	33
14189	Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. National Science Review, 2022, 9, .	4.6	55
14190	A Polymer Network Layer Containing Dually Anchored Ionic Liquids for Stable Lithium–Sulfur Batteries. Macromolecular Rapid Communications, 2023, 44, e2200246.	2.0	2
14191	Understanding the role of Ca-doping onto MgMn2O4 cathode material for rechargeable Mg cells. Ionics, 0, , 1.	1.2	0
14192	Zeolitic imidazolate framework-8 derivative/carbonized polyacrylonitrile composite filled in Ni foam as a self-supporting anode for lithium-ion batteries. lonics, 0, , 1.	1.2	1
14193	Hydroxylated Multiâ€Walled Carbon Nanotubes Covalently Modified with Tris(hydroxypropyl) Phosphine as a Functional Interlayer for Advanced Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	43
14194	Regulating Liâ€ion Flux through a Dense yet Highly Ionic Conductive Interlayer for Stable Li Deposition. Advanced Materials Interfaces, 0, , 2200457.	1.9	3
14195	Discovery of the Li–Sr–La–Zr–O Compound and the Investigation of Its Lithium-Ion Conductivity. Inorganic Chemistry, 2022, 61, 7835-7840.	1.9	2
14196	ZIF-8-Derived Carbon <i>In Situ</i> Modification of High-Content Manganese Oxide for a High-Capacity Lithium-Ion Battery. Energy & Fuels, 0, , .	2.5	1
14197	Deep Probabilistic Learning Model for Prediction of Ionic Liquids Toxicity. International Journal of Molecular Sciences, 2022, 23, 5258.	1.8	8

#	Article	IF	Citations
" 14198	Multi-hierarchical earbuds-ball-like silicon suboxide-carbon hybrids design for high-performance lithium storage. Composites Part B: Engineering, 2022, 238, 109951.	5.9	4
14199	Highly safe and stable Li–CO2 batteries using conducting ceramic solid electrolyte and MWCNT composite cathode. Electrochimica Acta, 2022, 419, 140408.	2.6	12
14200	Molecular dynamics simulations on AlCl3-LiCl molten salt with deep learning potential. Computational Materials Science, 2022, 210, 111494.	1.4	7
14201	Marine shrimp/tin waste as a negative electrode for rechargeable sodium-ion batteries. Journal of Cleaner Production, 2022, 359, 131994.	4.6	9
14202	Boosting the performances of water-processable LiNi0.5Co0.2Mn0.3O2 cathode with conventional white latex as binder ingredient. Chinese Journal of Analytical Chemistry, 2022, 50, 100101.	0.9	4
14203	High safety and electrochemical performance electrospun para-aramid nanofiber composite separator for lithium-ion battery. Composites Science and Technology, 2022, 225, 109479.	3.8	19
14204	Heat generation and thermal runaway mechanisms induced by overcharging of aged lithium-ion battery. Applied Thermal Engineering, 2022, 212, 118565.	3.0	38
14205	MXene-carbon nanotubes-Cellulose-LiFePO4 based self-supporting cathode with ultrahigh-area-capacity for lithium-ion batteries. Electrochimica Acta, 2022, 420, 140464.	2.6	15
14206	Flexible 3D porous boron nitride interconnected network as a high-performance Li-and Na-ion battery electrodes. Electrochimica Acta, 2022, 421, 140491.	2.6	9
14207	MnO2 core-shell type materials for high-performance supercapacitors: A short review. Inorganic Chemistry Communication, 2022, 141, 109493.	1.8	33
14208	Effect of sodium addition on lattice structure and tuning performance in sodium rich NaxTm2-xO2 type cathode materials (Tm=Mn and Cr; X=1.05–1.3) - a study. Electrochimica Acta, 2022, 421, 140493.	2.6	4
14209	In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554.	9.5	24
14210	Nitrogen-rich azoles as trifunctional electrolyte additives for high-performance lithium-sulfur battery. Journal of Energy Chemistry, 2022, 71, 572-579.	7.1	18
14211	In-situ modification of ultrathin and uniform layer on LiCoO2 particles for 4.2 V poly(ethylene oxide) based solid-state lithium batteries with excellent cycle performance. Electrochimica Acta, 2022, 421, 140473.	2.6	2
14212	In-situ fabrication of dense structure nitrogen-doped carbon nanotube embedded Co/Co2P accelerating the electrochemical kinetics of lithium-sulfur battery. Applied Surface Science, 2022, 595, 153488.	3.1	11
14213	Constructing carbon-decorated CFx nanocapsule by atomic layer deposition and catalytic chemical vapor deposition for high-capacity lithium primary battery. Applied Surface Science, 2022, 596, 153570.	3.1	7
14214	Computational redox chemistry of functionalized Polycaprolactone as electrolytes for lithium batteries. Journal of Electroanalytical Chemistry, 2022, 916, 116377.	1.9	2
14215	Interfacial chemistry of vinylphenol-grafted PVDF binder ensuring compatible cathode interphase for lithium batteries. Chemical Engineering Journal, 2022, 446, 136798.	6.6	11

#	Article	IF	CITATIONS
14216	Exceptionally high sodium ion conductivity and enhanced air stability in Na3SbS4 via germanium doping. Journal of Alloys and Compounds, 2022, 913, 165229.	2.8	7
14217	Sub-zero temperature electrolytes for lithium-sulfur batteries: Functional mechanisms, challenges and perspectives. Chemical Engineering Journal, 2022, 443, 136637.	6.6	12
14218	Absence of anomalous underscreening in highly concentrated aqueous electrolytes confined between smooth silica surfaces. Journal of Colloid and Interface Science, 2022, 622, 819-827.	5.0	15
14219	A self-purifying electrolyte enables high energy Li ion batteries. Energy and Environmental Science, 2022, 15, 3331-3342.	15.6	40
14220	Benzoselenol as an organic electrolyte additive in Li-S battery. Nano Research, 2023, 16, 3814-3822.	5.8	20
14221	Recent advancements in batteries and photo-batteries using metal halide perovskites. APL Materials, 2022, 10, .	2.2	17
14222	Interface science in polymerâ€based composite solid electrolytes in lithium metal batteries. SusMat, 2022, 2, 264-292.	7.8	21
14223	MoO2-Mo2C uniformly encapsulated into N, P co-doped carbon nanofibers as a freestanding anode for high and long-term lithium storage. Journal of Electroanalytical Chemistry, 2022, 917, 116414.	1.9	8
14224	Facile hydrothermal synthesis of high-performance binary silver-cobalt-sulfide for supercapattery devices. Journal of Energy Storage, 2022, 52, 104847.	3.9	44
14225	Rice husk-derived porous silicon dioxide fillers for enhancing ionic conductivity in a solid-state electrolyte of lithium–sulfur batteries under molecular dynamic calculation. Journal of Materials Chemistry A, 2022, 10, 12928-12937.	5.2	4
14226	Salt–solvent synchro-constructed robust electrolyte–electrode interphase for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 19903-19913.	5.2	10
14227	In-Situ Visualization of the Transition Metal Dissolution in Layered Cathodes. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	2
14228	Research Development on Aqueous Ammoniumâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	58
14229	Synthesis and characterization of viologen functionalized fluorene-containing poly(arylene ether) Tj ETQq1 1 0.78	4314 rgBT 2.6	20verlock
14230	Sulfur/Nitrogen Co-Doped Mesoporous Carbon for High-Performance Lithium-Ion Battery Anodes. Journal of Electronic Materials, 0, , .	1.0	1
14231	Deformation and fracture behaviors of cylindrical battery shell during thermal runaway. Journal of Power Sources, 2022, 539, 231607.	4.0	18
14232	Enhanced immobilization and accelerated conversion of polysulfides by functionalized separator for advanced lithium sulfur batteries. Journal of Power Sources, 2022, 539, 231490.	4.0	6
14233	In-situ construction of chemically bonded conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries. Journal of Power Sources, 2022, 539, 231591.	4.0	12

#	Article	IF	CITATIONS
14234	Ball Milling Solidâ€State Synthesis of Highly Crystalline Prussian Blue Analogue Na _{2â''<i>x</i>} MnFe(CN) ₆ Cathodes for Allâ€Climate Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	53
14235	Mesoporous Ti ₄ O ₇ Nanosheets with High Polar Surface Area for Catalyzing Separator to Reduce the Shuttle Effect of Soluble Polysulfides in Lithiumâ€sulfur Batteries. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
14236	Enabling Scalable Polymer Electrolyte with Synergetic Ion Conductive Channels via a Two Stage Rheology Tuning UV Polymerization Strategy. Small, 2022, 18, e2202013.	5.2	9
14237	A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrode. Journal of the American Chemical Society, 2022, 144, 9434-9442.	6.6	77
14238	Investigating the Perovskite Ag1-3xLaxNbO3 as a High-Rate Negative Electrode for Li-Ion Batteries. Frontiers in Chemistry, 2022, 10, 873783.	1.8	2
14239	Organic redox polymers as electrochemical energy materials. Green Chemistry, 2022, 24, 4650-4679.	4.6	18
14240	Fabrication of ultra-thin, flexible, dendrite-free, robust and nanostructured solid electrolyte membranes for solid-state Li-batteries. Journal of Materials Chemistry A, 2022, 10, 12196-12212.	5.2	12
14241	A nonflammable low-concentration electrolyte for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 12575-12587.	5.2	10
14242	Enhanced rate performance of lithium-ion battery anodes using a cobalt-incorporated carbon conductive agent. Inorganic Chemistry Frontiers, 2022, 9, 3484-3493.	3.0	2
14243	Electrocatalytic Selenium Redox Reaction for Highâ€Massâ€Loading Zincâ€Selenium Batteries with Improved Kinetics and Selenium Utilization. Advanced Energy Materials, 2022, 12, .	10.2	29
14244	Engineering of Sodium-Ion Batteries: Opportunities and Challenges. Engineering, 2023, 24, 172-183.	3.2	28
14245	Solid–Electrolyte Interphase of Molecular Crowding Electrolytes. Chemistry of Materials, 2022, 34, 5176-5183.	3.2	14
14246	In Situ Synthesis of Organopolysulfides Enabling Spatial and Kinetic Co-Mediation of Sulfur Chemistry. ACS Nano, 2022, 16, 9163-9171.	7.3	13
14247	Liâ^'N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
14248	Key materials and future perspective for aqueous rechargeable lithium-ion batteries. Materials Reports Energy, 2022, 2, 100096.	1.7	6
14249	Oxygen Defect-Enriched Hierarchical NiCo ₂ O ₄ Hollow Rectangular Nanobars with Enhanced Bifunctional Oxygen Electrocatalysis for Efficient Rechargeable Zinc–Air Batteries. Energy & Fuels, 2022, 36, 6542-6551.	2.5	16
14250	Li+ additive accelerated structural transformation of MoS2 cathodes for performance-enhancing rechargeable Mg2+ batteries. Materials Today Energy, 2022, 27, 101047.	2.5	5
14251	Lamella-like electrode with high Br2-entrapping capability and activity enabled by adsorption and spatial confinement effects for bromine-based flow battery. Science Bulletin, 2022, 67, 1362-1371.	4.3	16

#	Article	IF	CITATIONS
14252	VPO ₄ F Fluorophosphates Polyanion Cathodes for Highâ€Voltage Proton Storage. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
14253	Ball Milling Solidâ€State Synthesis of Highly Crystalline Prussian Blue Analogue Na _{2â~'<i>x</i>} MnFe(CN) ₆ Cathodes for Allâ€Climate Sodiumâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	1.6	11
14254	Fastâ€Charging Electrolyte: A Multiple Additives Strategy with 1,3,2â€Dioxathiolane 2,2â€Dioxide and Lithium Difluorophosphate for Commercial Graphite/LiFePO ₄ Pouch Battery. ChemistrySelect, 2022, 7, .	0.7	3
14255	Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Materials, 2022, 50, 407-416.	9.5	4
14256	Enhanced Li+ Ionic Conduction and Relaxation Properties of Li5+2xLa3Ta2-xGaxO12 Garnets. Crystals, 2022, 12, 770.	1.0	1
14257	Powder metallurgical 3D nickel current collectors with plasma-induced Ni3N nanocoatings enabling long-life and dendrite-free lithium metal anode. Journal of Energy Chemistry, 2022, 72, 149-157.	7.1	16
14258	Chain Dynamics and Crystallization Behavior of Poly(ethylene oxide) in Imidazolium-Based Ionic Liquids with Different Cationic Structures. Macromolecules, 0, , .	2.2	1
14259	Li–N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithiumâ€Metal Batteries. Angewandte Chemie, 0, , .	1.6	0
14260	Both Interface and Bulk Stable LiNi _{0.5} Mn _{1.5} O ₄ Cathodes for High-Energy Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7582-7589.	2.5	2
14261	P-functionalized carbon nanotubes promote highly stable electrocatalysts based on Fe-phthalocyanines for oxygen reduction: Experimental and computational studies. Journal of Energy Chemistry, 2022, 72, 276-290.	7.1	11
14262	Realizing highly reversible and deeply rechargeable Zn anode by porous zeolite layer. Journal of Power Sources, 2022, 540, 231659.	4.0	5
14263	Rechargeable metal-SO2 batteries: Recent progress, current challenges and future prospects. Journal of Energy Storage, 2022, 52, 104952.	3.9	3
14264	Zinc-guided 3D graphene bulk materials for high-performance binder-free anodes of potassium-ion batteries. Journal of Power Sources, 2022, 540, 231613.	4.0	2
14265	Reinforce effect with carbon interphase for high performance multi-phase V-based anode on sodium ion batteries. Journal of Physics and Chemistry of Solids, 2022, 168, 110796.	1.9	3
14266	Subnanometer MoP clusters confined in mesoporous carbon (CMK-3) as superior electrocatalytic sulfur hosts for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2022, 446, 137050.	6.6	9
14267	Three-Dimensional Ti3c2 Mxene@Silicon@Nitrogen-Doped Carbon Foam as High Performance Self-Standing Lithium-Ion Battery Anodes. SSRN Electronic Journal, 0, , .	0.4	0
14268	Rational Construction of Hierarchical 2d/2d Ti3c2tx/Nico Mof Heterostructure for Highly Efficient Li+ Storage. SSRN Electronic Journal, 0, , .	0.4	0
14269	Conductive Co-triazole metal-organic framework exploited as an oxygen evolution electrocatalyst. Chemical Communications, 2022, 58, 7124-7127.	2.2	9

#	Article	IF	CITATIONS
14270	Protic ethers as highly efficient hydrogen-bond regulators for aqueous eutectic electrolytes. Journal of Materials Chemistry A, 2022, 10, 13711-13718.	5.2	11
14271	N-Doped Graphitized Carbon-Coated Fe2o3 Nanoparticles/Highly Graphitized Carbon Hollow Fibersfor Advanced Lithium-Ion Batteries Application. SSRN Electronic Journal, 0, , .	0.4	0
14272	Doped Superior Garnet Electrolyte Toward All-Solid-State Li Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
14273	Nitrogen-Doped Porous Carbon Nanofiber Decorated with Feni Alloy for Dendrite-Free High-Performance Lithium Metal Anode. SSRN Electronic Journal, 0, , .	0.4	0
14274	Poly(ethylene glycol)-functionalized 3D covalent organic frameworks as solid-state polyelectrolytes. RSC Advances, 2022, 12, 16354-16357.	1.7	8
14275	Solid electrolyte based on 2-adamantanone for all-solid-state lithium-ion batteries. Ionics, 2022, 28, 3615-3621.	1.2	1
14276	Synthesis of freeâ€standing flexible <scp> g ₃ N ₄ </scp> / <scp>MXene</scp> film as electrode materials for supercapacitors. International Journal of Energy Research, 2022, 46, 13308-13315.	2.2	6
14277	New Cathode Materials in the Feâ€PO ₄ â€F Chemical Space for Highâ€Performance Sodiumâ€ŀon Storage. Advanced Science, 2022, 9, .	5.6	3
14278	NaCl Pinning Induced Ultrafine Sn Nanoparticles Anchored on Three-Dimensional Porous Carbon for Na Storage. ACS Applied Energy Materials, 0, , .	2.5	4
14279	Carbon-coated monoclinic NbOPO4 with polyanionic framework for rechargeable aqueous lithium-ion batteries beyond 2 V. Electrochimica Acta, 2022, 426, 140579.	2.6	2
14280	Superionic Li-Ion Transport in a Single-Ion Conducting Polymer Blend Electrolyte. Macromolecules, 2022, 55, 4692-4702.	2.2	19
14281	VPO4F Fluorophosphates Polyanion Cathodes forÂHighâ€Voltage Proton Storage. Angewandte Chemie, 0, , .	1.6	0
14282	Mechanisms for selfâ€ŧemplating design of micro/nanostructures toward efficient energy storage. Exploration, 2022, 2, .	5.4	11
14283	Conjugated ladder-type polymers with multielectron reactions as high-capacity organic anode materials for lithium-ion batteries. Science China Materials, 2022, 65, 2354-2362.	3.5	15
14284	Halideâ€type Liâ€ion conductors: Future options for highâ€voltage allâ€solidâ€state batteries. Journal of the Chinese Chemical Society, 2022, 69, 1233-1241.	0.8	2
14285	Grapheneâ€based Activated Carbon Composites for High Performance Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
14286	Large-Scale Synthesis of Silicon-Based Nanocomposites in Air Atmosphere for Lithium-Ion Batteries by Ball-Milling Method. Journal of Electronic Materials, 2022, 51, 4329-4336.	1.0	3
14287	Compositional and Morphology Optimization to Boost the Bifunctionality of Perovskite Oxygen Electrocatalysts. ACS Applied Energy Materials, 2022, 5, 7420-7431.	2.5	11

#	Article	IF	CITATIONS
14288	Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 25501-25515.	4.0	15
14289	Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Materials Today, 2022, 56, 114-134.	8.3	26
14290	Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Research, 2022, 15, 7209-7219.	5.8	42
14291	Interfacially Enhanced Stability and Electrochemical Properties of C/SiO <i>_x</i> Nanocomposite Lithiumâ€lon Battery Anodes. Advanced Materials Interfaces, 2022, 9, .	1.9	12
14292	Cross-Linked Naphthalene Diimide-Based Polymer as a Cathode Material for High-Performance Organic Batteries. ACS Applied Energy Materials, 0, , .	2.5	7
14293	Facile Dissolution–Crystallization Strategy to Achieve Rapid and Uniform Distribution of Sulfur on Porous Carbon for Lithium–Sulfur Batteries. ACS Omega, 0, , .	1.6	1
14294	Anion π–π Stacking for Improved Lithium Transport in Polymer Electrolytes. Journal of the American Chemical Society, 2022, 144, 9806-9816.	6.6	28
14295	Water-Soluble Conductive Composite Binder for High-Performance Silicon Anode in Lithium-Ion Batteries. Batteries, 2022, 8, 54.	2.1	8
14296	Energetic Aqueous Batteries. Advanced Energy Materials, 2022, 12, .	10.2	48
14297	Understanding of the sodium storage mechanism in hard carbon anodes. , 2022, 4, 1133-1150.		83
14298	SiO ₂ –GeO ₂ Glass–Ceramic Flakes as an Anode Material for Highâ€Performance Lithiumâ€Ion Batteries. Energy Technology, 2022, 10, .	1.8	5
14299	Electrospun-based nanofibers for sodium and potassium ion storage: Structure design for alkali metal ions with large radius. Journal of Alloys and Compounds, 2022, 918, 165680.	2.8	10
14300	Quasi-Solid-State Electrolyte Membranes Based on Helical Mesoporous Polysilsesquioxane Nanofibers for High-Performance Lithium Batteries. Journal of the Taiwan Institute of Chemical Engineers, 2022, 135, 104399.	2.7	4
14301	Water-Based Fabrication of a Li Li ₇ La ₃ Zr ₂ O ₁₂ LiFePO ₄ Solid-State Battery─Toward Green Battery Production. ACS Sustainable Chemistry and Engineering, 2022, 10, 7613-7624.	3.2	13
14302	Regulating interfacial structure enables high-voltage dilute ether electrolytes. Cell Reports Physical Science, 2022, 3, 100919.	2.8	12
14303	Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries. Sustainable Materials and Technologies. 2022, 33, e00446. Dynamics of a <a <br="" mini:math="" xmlns:mml="http://www.w3.org/1998/Math/MathML">bynamics of a <a <="" mini:math="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.7</td><td>18</td>	1.7	18
14304	altimg="si20.svg"> <mml:mimul:mrow><mml:mi mathvariant="normal">P</mml:mi><mml:mi mathvariant="normal">E<mml:mi mathvariant="normal">G based polymer gel Electrolyte: A combined frequency dependent dielectric relaxation and Time-resolved fluorescence spectroscopic</mml:mi </mml:mi </mml:mimul:mrow>	2.3	1
14305	study. Journal of Molecular Liquids, 2022, 360, 119491. Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn- and Al-ion batteries. Nano Energy, 2022, 99, 107424.	8.2	63

# ARTICLE	IF	CITATIONS
Ionic liquids as antistatic additives for polymer composites – A review. Polymer Testing, 2022, 112, 107649.	2.3	15
14307 Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review. Renewable and Sustainable Energy Reviews, 2022, 166, 112624.	8.2	41
Potassium formate-based electrolytes for high performance aqueous electrochemical capacitors. Journal of Power Sources, 2022, 541, 231657.	4.0	8
¹⁴³⁰⁹ Understanding catalytic activity trends of atomic pairs in single-atom catalysts towards oxygen reduction reactions. Applied Surface Science, 2022, 598, 153873.	3.1	3
14310 Thermal behavior and failure mechanisms of 18650 lithium ion battery induced by overcharging cycling. Energy Reports, 2022, 8, 7286-7296.	2.5	9
Submicron Ti ₂ CT _{<i>x</i>/i>} MXene particulates as high-rate intercalation anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15474-15484.	5.2	7
Hedging Li dendrite formation by virtue of controllable tip effect. Journal of Materials Chemistry A, 2022, 10, 15161-15168.	5.2	10
¹⁴³¹⁵ Effective High-throughput Screening of Two-Dimensional Layered Materials for Potential Lithium-ion battery Anodes. Dalton Transactions, 0, , .	1.6	0
14316 Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review. CrystEngComm, 2022, 24, 5014-5030.	1.3	64
 Increasing the Ionic Conductivity and Lithium-Ion Transport of Photo-Cross-Linked Polymer Electrolytes With Honeycomb Film Hybrids. SSRN Electronic Journal, 0, , . 	0.4	0
14318 Oxygen reduction reaction in lithium-air batteries. , 2022, , 467-492.		1
Nanocubes of Mo ₆ S ₈ Chevrel phase as active electrode material for aqueous lithium-ion batteries. Nanoscale, 2022, 14, 10125-10135.	2.8	9
Enhancing the Electrochemical Performance of Co-Less Ni-Rich Lini0.925co0.03mn0.045o2 Cathode Material Via Co-Modification with Li2b4o7 Coating and B3+ Doping. SSRN Electronic Journal, 0, , .	0.4	0
Graphene/polymer composite membranes for vanadium redox flow battery applications. , 2022, , 487-520.		0
14322 Phosphorus-based nanomaterials for lithium-ion battery anode. , 2023, , 533-549.		5
A Multifunctional Subassembly of Carbon Nanotube Paper for Highly Stable Cycling Performance of Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
Promise and reality of organic electrodes from materials design and charge storage perspective. Journal of Materials Chemistry A, 2022, 10, 15215-15234.	5.2	19
Development of cathode materials for rechargeable magnesium batteries: From intercalation to enolization. , 2022, , .		0

#	Article	IF	CITATIONS
14326	First-Principles Assessment of Chemical Lithiation of Sulfide Electrolytes and its Impact on Their Transport, Electronic and Mechanical Properties. SSRN Electronic Journal, 0, , .	0.4	0
14327	Developing a nitrile-based lithium-conducting electrolyte for low temperature operation. Journal of Materials Chemistry A, 2022, 10, 19972-19983.	5.2	2
14328	Solar energy conversion technologies: principles and advancements. , 2022, , 29-76.		1
14329	Polyaniline-Based Flexible Nanocomposite Materials. ACS Symposium Series, 0, , 367-395.	0.5	2
14330	Co ₂ V ₂ O ₇ @Ti ₃ C ₂ T _x MXene Hollow Structures Synergizing the Merits of Conversion and Intercalation for Efficient Lithium Ion Storage. Advanced Sustainable Systems, 2022, 6, .	2.7	8
14332	Bio-derived 4-electron-accepting carbonyl-N-methylpyridinium species for high-performance lithium-organic batteries. Cell Reports Physical Science, 2022, 3, 100951.	2.8	7
14333	Recent Advances in Carbon Anodes for Sodiumâ€lon Batteries. Chemical Record, 2022, 22, .	2.9	53
14334	Realizing Sub-5 nm Red Phosphorus Dispersion in a SiO _{<i>x</i>} /C Matrix for Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2022, 14, 26775-26781.	4.0	7
14335	A Highly Stretchable and Selfâ€Healing Composite Binder Based on the Hydrogenâ€Bond Network for Silicon Anodes in Highâ€Energyâ€Đensity Lithiumâ€Ion Batteries. ChemElectroChem, 2022, 9, .	1.7	6
14336	Progress, Key Issues, and Future Prospects for Liâ€lon Battery Recycling. Global Challenges, 2022, 6, .	1.8	56
14337	Calcium copper titanate a perovskite oxide structure: effect of fabrication techniques and doping on electrical properties—a review. Journal of Materials Science: Materials in Electronics, 2022, 33, 15992-16028.	1.1	5
14338	Spindle-like Fe7S8/C anchored on S-doped graphene nanosheets as a superior long-life and high-rate anode for lithium-ion batteries. Applied Surface Science, 2022, 599, 154042.	3.1	11
14339	Evaluation of Large-Format Lithium-Ion Cell Thermal Runaway Response Triggered by Nail Penetration using Novel Fractional Thermal Runaway Calorimetry and Gas Collection Methodology. Journal of the Electrochemical Society, 2022, 169, 060535.	1.3	5
14340	Hydrophilic crosslinked TEMPOâ€methacrylate copolymers – a straight forward approach towards aqueous semiâ€organic batteries. ChemSusChem, 0, , .	3.6	4
14341	Two-dimensional polymers made of carbonyl-bridged heterotriangulenes are promising anode materials for Li-ion batteries. 2D Materials, 2022, 9, 034003.	2.0	6
14342	Single Lithium Ion Conducting "Binderlyte―for Highâ€Performing Lithium Metal Batteries. Small, 2022, 18, .	5.2	6
14343	Anion Concentration Gradient-Assisted Construction of a Solid–Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates. Journal of the American Chemical Society, 2022, 144, 11168-11177.	6.6	94
14344	Design and synthesis of cellulose nanofiber-derived CoO/Co/C two-dimensional nanosheet toward enhanced and stable lithium storage. Journal of Colloid and Interface Science, 2022, 625, 915-924.	5.0	8

#	Article	IF	CITATIONS
14345	Solid-State Lithium-Air Batteries. ACS Symposium Series, 0, , 249-265.	0.5	0
14346	Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode. Nature Communications, 2022, 13, .	5.8	18
14347	Sodium-Ion Solid-State Electrolyte. ACS Symposium Series, 0, , 275-294.	0.5	0
14348	Facile Preparation of a Trilayer Separator with a Shutdown Function Based on the Compounding of β-Crystal Polypropylene and Hydrogenated Petroleum Resin. Industrial & Engineering Chemistry Research, 2022, 61, 9015-9024.	1.8	0
14349	State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review. Renewable Energy Focus, 2022, 42, 146-164.	2.2	20
14350	Ion–Dipole Interaction Regulation Enables Highâ€Performance Singleâ€Ion Polymer Conductors for Solidâ€State Batteries. Advanced Materials, 2022, 34, .	11.1	49
14351	Ferroelectric BaTiO ₃ Based Multiâ€Effects Coupled Materials and Devices. Advanced Electronic Materials, 2022, 8, .	2.6	10
14352	Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Siâ^'C Composite Anode for High-Performance Lithium-Ion Batteries. Materials, 2022, 15, 4264.	1.3	11
14353	Dendriteâ€accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat, 2022, 2, 435-444.	7.8	53
14354	Microrod Patterned Lithium Metal Surface for High-performance Solid-state Lithium Batteries. Chemistry Letters, 2022, 51, 891-893.	0.7	6
14355	Highly elastic energy storage device based on intrinsically super-stretchable polymer lithium-ion conductor with high conductivity. Fundamental Research, 2024, 4, 140-146.	1.6	19
14356	Room-Temperature Preparation of All-Solid-State Lithium Batteries Using TiO ₂ Anodes and Oxide Electrolytes. Journal of Physical Chemistry C, 2022, 126, 10320-10326.	1.5	6
14357	Zn _{0.52} V ₂ O _{5â^²<i>a</i>} â<1.8 H ₂ O Cathode Stabilized b Situ Phase Transformation for Aqueous Zincâ€ion Batteries with Ultraâ€Long Cyclability. Angewandte Chemie - International Edition, 2022, 61, .	oy In 7.2	41
14358	Zn _{0.52} V ₂ O _{5â^{°°}<i>a</i>} â<1.8 H ₂ O Cathode Stabilized b Situ Phase Transformation for Aqueous Zincâ€lon Batteries with Ultraâ€Long Cyclability. Angewandte Chemie, 2022, 134, .	oy In 1.6	1
14359	Development of high ionic-conductive Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic solid electrolyte sheet at low temperature using glass/powder composite. Journal of Solid State Electrochemistry, 2022, 26, 1687-1692.	1.2	1
14360	Assessing (Mo _{2/3} Sc _{1/3}) ₂ C and (Mo _{2/3} Sc _{1/3}) ₂ CT ₂ (T = â°O, â°OH, and â°F) i-MXenes as High-Performance Electrode Materials for Lithium and Non-Lithium Ion Batteries. Journal of Physical Chemistry C. 2022. 126. 10273-10286.	1.5	5
14361	Nâ€Substituted Carbazole Derivate Salts as Stable Organic Electrodes for Anion Insertion. ChemNanoMat, 2022, 8, .	1.5	2
14362	Nucleation–Oxidation coupled technology for High-Nickel ternary cathode recycling of spent Lithium-ion batteries. Separation and Purification Technology, 2022, 298, 121569.	3.9	5

#	Article	IF	CITATIONS
14363	DFT study of lithium diffusion in pristine La ₂ O ₃ . Journal of Physics: Conference Series, 2022, 2243, 012108.	0.3	2
14364	AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity. Chinese Physics B, 2022, 31, 116302.	0.7	2
14365	In Situ Thermal Safety Aspect of the Electrospun Polyimide-Al ₂ O ₃ Separator Reveals Less Exothermic Heat Energies Than Polypropylene at the Thermal Runaway Event of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 28310-28320.	4.0	10
14366	Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects. Journal of Energy Chemistry, 2022, 73, 370-386.	7.1	32
14367	Critical Role of Pits in Suppressing Li Dendrites Revealed by Continuum Mechanics Simulation and In Situ Experiment. Journal of the Electrochemical Society, 2022, 169, 060522.	1.3	4
14368	Self-supported hollow-Co3O4@CNT: A versatile anode and cathode host material for high-performance lithium-ion and lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 920, 166022.	2.8	8
14369	Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. EScience, 2022, 2, 537-545.	25.0	57
14370	Phoenicin Switch: Discovering the Trigger for Radical Phoenicin Production in Multiple Wild-Type <i>Penicillium</i> Species. Applied and Environmental Microbiology, 2022, 88, .	1.4	3
14371	Al2O3-Coated Si-Alloy Prepared by Atomic Layer Deposition as Anodes for Lithium-Ion Batteries. Materials, 2022, 15, 4189.	1.3	6
14372	Hysteresis Induced by Incomplete Cationic Redox in Liâ€Rich 3dâ€Transitionâ€Metal Layered Oxides Cathodes. Advanced Science, 2022, 9, .	5.6	7
14373	Roomâ€Temperature Sodium–Sulfur Batteries: Rules for Catalyst Selection and Electrode Design. Advanced Materials, 2022, 34, .	11.1	31
14374	Highly Densified Fractureâ€Free Siliconâ€Based Electrode for High Energy Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	2.4	6
14375	Cobalt-free nickel-rich layered LiNi0.9Al0.1-xZrxO2 cathode for high energy density and stable lithium-ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104421.	2.7	5
14376	Three-dimensional graphene with charge transfer doping for stable lithium metal anode. Journal of Electroanalytical Chemistry, 2022, 918, 116512.	1.9	1
14377	Industrial waste micron-sized silicon use for Si@C microspheres anodes in low-cost lithium-ion batteries. Sustainable Materials and Technologies, 2022, 33, e00454.	1.7	4
14378	Enhancing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathodes through amorphous coatings. Electrochimica Acta, 2022, 425, 140745.	2.6	8
14379	Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes. Journal of Power Sources, 2022, 541, 231671.	4.0	5
14380	Polyanion-assisted ionic-electronic conductive agents designed for high density Si-based anodes. Journal of Power Sources, 2022, 541, 231728.	4.0	8

#	Article	IF	CITATIONS
14381	Green preparation of N-doped hierarchical porous carbon composites from humic acid extraction residue of lignite as anodes for lithium/sodium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129400.	2.3	5
14382	Enhanced lithium storage capacitance of layered CoFe2O4&V2CT hybrid anode material synthesized by in-situ hydrothermal method. Journal of Alloys and Compounds, 2022, 918, 165778.	2.8	5
14383	Crystalline geometry engineering towards high-energy spinel cathode for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 919, 165798.	2.8	4
14384	Benzoate anion derived carbon-encapsulated NiS nanoparticles as a freestanding cathode for magnesium-based batteries. Journal of Alloys and Compounds, 2022, 919, 165835.	2.8	5
14385	Laser-radiated tellurium vacancies enable high-performance telluride molybdenum anode for aqueous zinc-ion batteries. Energy Storage Materials, 2022, 51, 29-37.	9.5	22
14386	Morphological dependent behaviour of CoMoO4 anode: Lithium vs. sodium ion batteries. Journal of Alloys and Compounds, 2022, 920, 165925.	2.8	11
14387	High-performance carbon-coated hollow nanocube ZnSe as cathode material for aluminum batteries. Journal of Alloys and Compounds, 2022, 920, 166006.	2.8	5
14388	On the Interfacial Properties of the Garnet-Type Electrolyte Ceramic Pellets of Cubic Li6.4la3zr1.4ta0.6o12: A Comprehensive Promotion Mechanism by the Sintering Additive of Li-Ion Conducting Licl. SSRN Electronic Journal, 0, , .	0.4	Ο
14389	Multiscale modeling of physicochemical interactions in lithium-sulfur battery electrodes. , 2022, , 123-158.		1
14390	Stable Cycling of Si Nanowire Electrodes Enabled by Fluorine-Free Cyano-Based Ionic Liquid Electrolyte. SSRN Electronic Journal, 0, , .	0.4	Ο
14391	Optimized Structure Stability and Cycling Performance of Lini0.8co0.1mn0.1o2 Through Homogeneous Nano-Thickness Al2o3 Coating. SSRN Electronic Journal, 0, , .	0.4	0
14392	Challenges and Applications of In Situ TEM for Sodium-Ion Batteries. , 0, 1, .		Ο
14393	Metal nanoclusters for energy storage applications. , 2022, , 625-658.		1
14394	Organic carbonized copper foil facilitates the performance of the current collector for lithium-ion batteries. Materials Chemistry Frontiers, 2022, 6, 2478-2490.	3.2	2
14395	Residual Stress-Tailored Lithium Deposition and Dissolution Behaviors for Safe Lithium Metal Anode. SSRN Electronic Journal, 0, , .	0.4	0
14396	Sb-Doped metallic 1T-MoS ₂ nanosheets embedded in N-doped carbon as high-performance anode materials for half/full sodium/potassium-ion batteries. Dalton Transactions, 2022, 51, 11685-11692.	1.6	14
14398	Fabrication of amorphous hollow mesoporous Si@SiOx nanoboxes as anode material for enhanced lithium storage performance. New Journal of Chemistry, 0, , .	1.4	3
14399	Impact of the crystalline phase of binary silicide on its lithiation and delithiation properties. Materials Advances, 2022, 3, 6231-6236.	2.6	3

#	Article	IF	CITATIONS
14400	Doped Superior Garnet Electrolyte Toward All-Solid-State Li Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
14401	Applications of metal-organic framework based membranes in energy storage and conversion. , 2022, , 259-272.		0
14403	Polydimethylsiloxane functionalized separator for a stable and fast lithium metal anode. CrystEngComm, 0, , .	1.3	0
14404	From Solid Waste to High-Performance Li3.25Si Anode: Towards High Initial Coulombic Efficiency Li-Si Alloy Electrodes for Li-Ion Batteries. New Journal of Chemistry, 0, , .	1.4	1
14405	Structure and properties of silicon nano- and microparticles obtained by electric-spark dispersion method. Molecular Crystals and Liquid Crystals, 0, , 1-16.	0.4	2
14406	Phase-Field Simulation and Machine Learning Study of the Effects of Elastic and Plastic Properties of Electrodes and Solid Polymer Electrolytes on the Suppression of Li Dendrite Growth. ACS Applied Materials & amp; Interfaces, 2022, 14, 30658-30671.	4.0	12
14407	Thioâ€/LISICON and LGPSâ€Type Solid Electrolytes for Allâ€Solidâ€State Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	35
14408	Galliumâ€based liquid metals for lithiumâ€ion batteries. , 2022, 1, 354-372.		39
14409	Unraveling the Evolution of Transition Metals during Li Alloying–Dealloying by In-Operando Magnetometry. Chemistry of Materials, 2022, 34, 5852-5859.	3.2	19
14410	Multifunctional Mesoporous Polyaniline/Graphene Nanosheets for Flexible Planar Integrated Microsystem of Zinc Ion Microbattery and Gas Sensor. Small, 2022, 18, .	5.2	17
14411	Wireless Crowd Charging with Battery Aging Mitigation. , 2022, , .		2
14412	Nanostructure Sn/C Composite High-Performance Negative Electrode for Lithium Storage. Molecules, 2022, 27, 4083.	1.7	1
14413	Rational Design of Woodâ€6tructured Thick Electrode for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	33
14414	Decoupled aqueous batteries using pH-decoupling electrolytes. Nature Reviews Chemistry, 2022, 6, 505-517.	13.8	44
14415	<scp>Highâ€Performance Quasiâ€Solidâ€State</scp> Pouch Cells Enabled by in situ Solidification of a Novel Polymer Electrolyte. Energy and Environmental Materials, 2023, 6, .	7.3	12
14416	Elemental Twoâ€Dimensional Materials for Li/Naâ€ion Battery Anode Applications. Chemical Record, 2022, 22, .	2.9	10
14417	Primary particles with ultra-thin carbon layer combined with loose secondary particles to jointly promote the low-temperature performance of LiFePO4. Ionics, 2022, 28, 4229-4237.	1.2	1
14418	<scp>Highâ€Energy</scp> Lithiumâ€lon Batteries: Recent Progress and a Promising Future in Applications. Energy and Environmental Materials, 2023, 6, .	7.3	77

#	Article	IF	CITATIONS
14419	Metal Phosphides as Promising Electrode Materials for Alkali Metal Ion Batteries and Supercapacitors: A Review. Advanced Sustainable Systems, 2022, 6, .	2.7	6
14420	Conversion reaction-based transition metal oxides as anode materials for lithium ion batteries: recent progress and future prospects. Ceramist, 2022, 25, 218-246.	0.0	0
14421	Bioâ€Based Solid Electrolytes Bearing Cyclic Carbonates for Solidâ€State Lithium Metal Batteries. ChemSusChem, 2022, 15, .	3.6	9
14422	Atomistic Diffusion Pathways of Lithium Ions in Crystalline Lithium Silicides from <i>ab Initio</i> Molecular Dynamics Simulations. Journal of Physical Chemistry C, 0, , .	1.5	1
14423	20 <i>μ</i> m-Thick Li _{6.4} La ₃ Zr _{1.4} Ta _{0.6} O ₁₂ -Based Flexible Solid Electrolytes for All-Solid-State Lithium Batteries. Energy Material Advances, 2022, 2022, .	4.7	48
14424	Mesoporous VCN Nanobelts for High-Performance Flexible Zn-Ion Batteries. Energies, 2022, 15, 4932.	1.6	4
14425	Ultranarrow Bandgap Seâ€Deficient Bimetallic Selenides for High Performance Alkali Metalâ€ion Batteries. Advanced Functional Materials, 2022, 32, .	7.8	30
14426	Regulation of Dendrite-Free Li Plating via Lithiophilic Sites on Lithium-Alloy Surface. ACS Applied Materials & Interfaces, 2022, 14, 33952-33959.	4.0	15
14427	Anhydrous Fast Proton Transport Boosted by the Hydrogen Bond Network in a Dense Oxideâ€lon Array of αâ€MoO ₃ . Advanced Materials, 2022, 34, .	11.1	23
14428	Study of influences on the direct electrolysis of silica in molten salt: particle size, temperature, time and voltage. Journal of Electrochemical Energy Conversion and Storage, 0, , 1-11.	1.1	0
14429	NiFe Layered Double Hydroxide Electrocatalysts for an Efficient Oxygen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 8592-8600.	2.5	23
14430	Design Criteria for Siliconâ€Based Anode Binders in Half and Full Cells. Advanced Energy Materials, 2022, 12, .	10.2	52
14431	A Capacity-Prediction Model for Exploration of Organic Anodes: Discovery of 5-Formylsalicylic Acid as a High-Performance Anode Active Material. ACS Applied Energy Materials, 2022, 5, 8990-8998.	2.5	5
14432	Structural Oxygen Vacancies and Crystalline Defects in Iron Vanadate with Multiple Redox Centers Boosting Surface Migration for Highâ€Performance Zincâ€Ion Battery. Advanced Materials Interfaces, 2022, 9, .	1.9	4
14433	Recent progress of sulfur cathodes and other components for flexible lithium–sulfur batteries. Materials Today Sustainability, 2022, 19, 100181.	1.9	8
14434	A numerical study of mechanical degradation of Carbon-Coated Graphite Active Particles in Li-ion battery anodes. Journal of the Electrochemical Society, 0, , .	1.3	1
14435	Achieving a High-Rate and Stable Li ₄ Ti ₅ O ₁₂ Anode via a "Three-in-One―Strategy. Journal of Physical Chemistry C, 2022, 126, 12283-12293.	1.5	4
14436	White Latex: Appealing "Green―Alternative for PVdF in Electrode Manufacturing for Sustainable Li-Ion Batteries. Langmuir, 0, , .	1.6	2

#	Article	IF	CITATIONS
14437	Defect Properties of Li2NiGe3O8. Clean Technologies, 2022, 4, 619-628.	1.9	1
14438	Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries. Journal of Energy Chemistry, 2022, 74, 283-308.	7.1	33
14439	A dual-lithiophilic interfacial layer with intensified Lewis basicity and orbital hybridization for high-performance lithium metal batteries. Energy Storage Materials, 2022, 51, 777-788.	9.5	4
14440	Boosting of reversible capacity delivered at a low voltage below 0.5ÂV in mildly expanded graphitized needle coke anode for a high-energy lithium ion battery. Journal of Energy Chemistry, 2022, 74, 100-110.	7.1	12
14441	CoOOH-hierarchical porous carbon-sulfur as an excellent cathode for Li-S batteries. Journal of Alloys and Compounds, 2022, 923, 166334.	2.8	3
14443	Effect of Al doping on electrochemical performance of NaTi2(PO4)3/C anode for aqueous sodium ion battery. Journal of Applied Electrochemistry, 2022, 52, 1563-1572.	1.5	2
14444	New Generation of Li-Ion Batteries with Superior Specific Capacity Lifetime and Safety Performance Based on Novel Ultrananocrystalline Diamond (UNCDâ,,¢)-Coated Components for a New Generation of Defibrillators/Pacemakers and Other Battery-Powered Medical and High-Tech Devices. , 2022, , 197-213.		0
14445	The applications of Internet of Things in the automotive industry: A review of the batteries, fuel cells, and engines. Internet of Things (Netherlands), 2022, 19, 100579.	4.9	25
14446	Research progress on carbon materials as negative electrodes in sodium―and potassiumâ€ion batteries. , 2022, 4, 1182-1213.		55
14447	Yolk‣hell Spindle‣haped FeSe ₂ @Nâ€Đoped Carbon Decorated on rGO with Highâ€Rate Capability and Cycling Stability in a Wide Temperature Range for Sodium Ion Batteries**. ChemElectroChem, 2022, 9, .	1.7	2
14448	Nitrogen and Sulfur Enriched Porous Carbon Materials withÂTraceÂFe Derived from Hyperâ€crosslinked Polymer as an Efficient Oxygen Reduction Electrocatalyst . ChemElectroChem, 0, , .	1.7	2
14449	Surface-Phase Engineering via Lanthanum Doping Enables Enhanced Electrochemical Performance of Li-Rich Layered Cathode. ACS Applied Energy Materials, 2022, 5, 9648-9656.	2.5	8
14450	Phosphazene based LATP precursor for a CEI coating layer on high voltage LiNi0.5Mn1.5O4 cathode with improved cycling durability. Materials Chemistry and Physics, 2022, 290, 126492.	2.0	4
14451	Heterogeneity and Nanostructure of Superconcentrated LiTFSI–EmimTFSI Hybrid Aqueous Electrolytes: Beyond the 21 m Limit of Water-in-Salt Electrolyte. Journal of Physical Chemistry B, 2022, 126, 5291-5304.	1.2	8
14452	NaSICON: A promising solid electrolyteÂfor solidâ€state sodium batteries. , 2022, 1, 396-416.		44
14453	Advanced Materials for Electrochemical Energy Conversion and Storage. Coatings, 2022, 12, 982.	1.2	0
14454	Effect of Mg and Al cosubstitution on the structure and electrochemical performance of a Co-free LiNiO2 cathode material. Journal of Materials Science: Materials in Electronics, 2022, 33, 18533-18543.	1.1	2
14455	Design and Development of Cathode Materials for Rechargeable Batteries. Batteries, 2022, 8, 68.	2.1	0

#	Article	IF	CITATIONS
14456	Electric Field Polarized Feâ^'N Functionalized Graphene Oxide Nanosheet Catalyst for Efficient Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	0.7	0
14457	Construction of Na3V2(PO4)2F3@C/CNTs nanocomposites with three-dimensional conductive network as cathode materials for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 920, 116613.	1.9	8
14458	Complex Electrode Microstructure Simulations using a Smoothed Boundary Method with Adaptive Mesh Refinement. Journal of the Electrochemical Society, 2022, 169, 070527.	1.3	3
14459	A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries. Electrochimica Acta, 2022, 426, 140790.	2.6	5
14460	Enhancement of the performance of a proton battery. Journal of Power Sources, 2022, 543, 231808.	4.0	3
14461	Vacancy engineering in WS2 nanosheets for enhanced potassiumâ€ion storage. Journal of Power Sources, 2022, 542, 231791.	4.0	6
14462	Boosting lithium ions inserting onto aromatic ring by extending conjugation of triazine-based porous organic frameworks for lithium-ion batteries. Materials Chemistry and Physics, 2022, 289, 126391.	2.0	3
14463	Rational construction of 2D/2D Ti3C2Tx/NiCo MOF heterostructure for highly efficient Li+ storage. Electrochimica Acta, 2022, 427, 140851.	2.6	18
14464	Promoting superior K-ion storage of Bi2S3 nanorod anode via graphene physicochemical protection and electrolyte stabilization effect. Applied Energy, 2022, 322, 119471.	5.1	11
14465	Salt-assisted synthesis of Fe3O4 nanoparticles embedded in hierarchical porous carbon for high-performance lithium storage. Diamond and Related Materials, 2022, 128, 109208.	1.8	5
14466	Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy Storage Materials, 2022, 51, 638-659.	9.5	28
14467	Regulating dissolution chemistry of nitrates in carbonate electrolyte for high-stable lithium metal batteries. Journal of Energy Chemistry, 2022, 73, 422-428.	7.1	7
14468	FeCo nanoalloys encapsulated in pod-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts for zinc-air batteries. Journal of Alloys and Compounds, 2022, 921, 166122.	2.8	9
14469	One-pot synthesis of uniform MoSe2 nanoparticles as high performance anode materials for lithium/sodium ion batteries. Journal of Alloys and Compounds, 2022, 922, 166306.	2.8	15
14470	Tree root-inspired structural electrolyte for laminated carbon fiber reinforced composites with high energy density and mechanically-robust properties. Chemical Engineering Journal, 2022, 449, 137828.	6.6	6
14471	Structural and electronic engineering towards high-efficiency metal-free electrocatalysts for boosting oxygen evolution. Chemical Engineering Journal, 2022, 450, 138063.	6.6	7
14472	Integrated pyrazine-based porous aromatic frameworks/carbon nanotube composite as cathode materials for aqueous zinc ion batteries. Chemical Engineering Journal, 2022, 450, 138051.	6.6	19
14473	Polydopamine-assisted coating layer of a fast Li-ion conductor Li6.25La3Zr2Al0.25O12 on Ni-rich cathodes for Li-ion batteries. Chemical Engineering Journal, 2022, 450, 137939.	6.6	8

#	Article	IF	CITATIONS
14474	Interface engineering of high entropy Oxide@Polyaniline heterojunction enables highly stable and excellent lithium ion storage performance. Chemical Engineering Journal, 2022, 450, 137924.	6.6	18
14475	Tris(pyridinâ€2â€ylmethyl)amineâ€Based Ion Pair Receptors for Selective Lithium Salt Recognition. European Journal of Organic Chemistry, 0, , .	1.2	1
14476	Reversible and rapid calcium intercalation into molybdenum vanadium oxides. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
14477	Li-Compound Anodes: A Classification for High-Performance Li-Ion Battery Anodes. ACS Nano, 2022, 16, 13704-13714.	7.3	14
14478	Facile Synthesis of Hierarchical CoSeO3‧2H2O Nanoflowers Assembled by Nanosheets as a Novel Anode Material for High-Performance Lithium-Ion Batteries. Nanomaterials, 2022, 12, 2474.	1.9	1
14479	KTi ₈ O _{16.5} Nanobelt Array with the Zero Strain Property for High-Performance Lithium-Ion Batteries with Enhanced Capacity and Rate Capability. ACS Applied Energy Materials, 2022, 5, 9641-9647.	2.5	3
14480	Improving Li-ion interfacial transport in hybrid solid electrolytes. Nature Nanotechnology, 2022, 17, 959-967.	15.6	71
14481	Interfacial self-assembled Si@SiO @C microclusters with high tap density for high-performance Li-ion batteries. Materials Today Energy, 2022, , 101090.	2.5	7
14482	A self-sacrifice template strategy to synthesize silicon@carbon with interior void space for boosting lithium storage performance. Advanced Composites and Hybrid Materials, 2022, 5, 3002-3011.	9.9	12
14483	Heuristic Design of Cathode Hybrid Coating for Powerâ€Limited Sulfideâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2022, 12, .	10.2	23
14484	Iterative Synthesis of Contorted Macromolecular Ladders for Fast-Charging and Long-Life Lithium Batteries. Journal of the American Chemical Society, 2022, 144, 13973-13980.	6.6	25
14485	Practical Implementation of Magnetite-Based Conversion-Type Negative Electrodes via Electrochemical Prelithiation. ACS Applied Materials & Interfaces, 2022, 14, 34665-34677.	4.0	6
14486	Hierarchical Na ₃ V ₂ (PO ₄) ₂ F ₃ Microsphere Cathodes for High-Temperature Li-Ion Battery Application. ACS Omega, 2022, 7, 26523-26530.	1.6	8
14487	Efficient Sodium Storage in Selenium Electrodes Achieved by Selenium Doping and Copper Current Collector Induced Displacement Redox Mechanisms. Advanced Functional Materials, 2022, 32, .	7.8	23
14488	CMK-3 modified separator for ultra-high stability performance Cu1.8Se aluminum batteries. Nano Research, 2022, 15, 8136-8145.	5.8	4
14489	Customized design of electrolytes for high-safety and high-energy-density lithium batteries. EnergyChem, 2022, 4, 100082.	10.1	4
14490	NiS2 nanoparticles anchored on MXene conductive frameworks with enhanced lithium and sodium storage properties. Ionics, 2022, 28, 4621-4629.	1.2	6
14491	Commercially Viable Hybrid Li-Ion/Metal Batteries with High Energy Density Realized by Symbiotic Anode and Prelithiated Cathode. Nano-Micro Letters, 2022, 14, .	14.4	8

#	Article	IF	CITATIONS
14492	A Monocrystalline Coordination Polymer with Multiple Redox Centers as a Highâ€Performance Cathode for Lithiumâ€ l on Batteries. Angewandte Chemie, 2022, 134, .	1.6	0
14493	Unconventional Charge Transport in MgCr ₂ O ₄ and Implications for Battery Intercalation Hosts. Journal of the American Chemical Society, 2022, 144, 14121-14131.	6.6	13
14494	CuFeS ₂ Nanosheets Assembled into Honeycomb-like Microspheres as Stable High-Capacity Anodes for Sodium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 10392-10398.	2.4	4
14495	Fabrication and electrochemical performance of Si-based porous electrodes for thin-film lithium-ion batteries. Electrochimica Acta, 2022, 428, 140909.	2.6	1
14496	Boron–Based Electrolytes for Rechargeable Magnesium Batteries: Biography and Perspective. Batteries and Supercaps, 2022, 5, .	2.4	5
14497	Crystallinityâ€controlled <scp>SiO</scp> <i> _{<i>x</i>} </i> anode material prepared through a saltâ€assisted magnesiothermic reduction for lithiumâ€ion batteries. International Journal of Energy Research, 0, , .	2.2	1
14498	Reactive plasma oxygen-modified and nitrogen-doped soft carbon as a potential anode material for lithium-ion batteries using a tornado-type atmospheric pressure plasma jet. Electrochimica Acta, 2022, 427, 140897.	2.6	4
14499	Insights of cationic diffusion in nickel-based honeycomb layered tellurates using molecular dynamics simulation. Solid State Ionics, 2022, 383, 115982.	1.3	0
14500	Energy-efficient system and charge balancing topology for electric vehicle application. Sustainable Energy Technologies and Assessments, 2022, 53, 102516.	1.7	11
14501	Precisely modulating the structural stability and redox potential of sodium layered cathodes through the synergetic effect of co-doping strategy. Energy Storage Materials, 2022, 52, 10-18.	9.5	26
14502	MgO-template synthesis of hollow N/O dual-doped carbon boxes as extremely stable anodes for potassium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 17827-17837.	5.2	5
14503	Investigating the abnormal conductivity behaviour of divalent cations in low dielectric constant tetraglyme-based electrolytes. Physical Chemistry Chemical Physics, 2022, 24, 21601-21611.	1.3	5
14504	Physical Properties and Structural Stability of Cobalt Pyrovanadate Co ₂ V ₂ O ₇ under High-Pressure Conditions. Journal of Physical Chemistry C, 2022, 126, 13416-13426.	1.5	5
14505	Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode: A review. Nano Research, 2023, 16, 3741-3765.	5.8	16
14506	Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochemical Energy Reviews, 2022, 5, .	13.1	54
14507	Synergistic effect of fluorinated solvent and Mg2+ enabling 4.6â€V LiCoO2 performances. Chinese Chemical Letters, 2023, 34, 107711.	4.8	2
14508	N,N-dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes. Nano Research, 2023, 16, 8269-8280.	5.8	7
14509	Improvement in Cycle Life of Organic Lithium-Ion Batteries by In-Cell Polymerization of Tetrathiafulvalene-Based Electrode Materials. ACS Applied Materials & Interfaces, 2022, 14, 35978-35984.	4.0	5

#	Article	IF	CITATIONS
14510	Catalytic Effects of Electrodes and Electrolytes in Metal–Sulfur Batteries: Progress and Prospective. Advanced Materials, 2022, 34, .	11.1	22
14511	High Performance Solidâ€&tate Lithiumâ€&ulfur Battery Enabled by Multiâ€Functional Cathode and Flexible Hybrid Solid Electrolyte. Small, 2022, 18, .	5.2	10
14512	Recent Developments and Future Prospects of Transition Metal Compounds as Electrode Materials for Potassiumâ€ion Hybrid Capacitors. Advanced Materials Technologies, 2023, 8, .	3.0	11
14513	Citric acid-assisted synthesis of Na3V2(PO4)3/C composite as high-performance electrode material for sodium-ion batteries. Ionics, 2022, 28, 4631-4639.	1.2	5
14514	<i>Ab-initio</i> analysis of zigzag stanene nanoribbons for lithium-ion batteries. International Journal of Modern Physics B, 0, , .	1.0	1
14515	A Generative Approach to Materials Discovery, Design, and Optimization. ACS Omega, 2022, 7, 25958-25973.	1.6	13
14516	Preset Lithium Source Electrolyte Boosts SiO Anode Performance for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 10351-10360.	3.2	7
14517	Tensile Property and Corrosion Performance of Ag Microalloying of Al-Cu Alloys for Positive Electrode Current Collectors of Li-Ion Batteries. Materials, 2022, 15, 5126.	1.3	Ο
14518	Ultrahigh Lithium Storage Capacity of Al ₂ C Monolayer in a Restricted Multilayered Growth Mechanism. ACS Applied Materials & Interfaces, 2022, 14, 35663-35672.	4.0	4
14519	Morphology engineering of Ni6MnO8/NiMn2O4 nanostructures through in-situ solvothermal synthesis controlling for electrochemical hydrogen storage inquiries. International Journal of Hydrogen Energy, 2022, 47, 34112-34127.	3.8	4
14520	Triggering Anionic Redox Activity in Li ₃ NbS ₄ Through Cationic Disordering or Substitution. Advanced Energy Materials, 2022, 12, .	10.2	5
14521	Hybrid Electrolytes Enabling inâ€situ Interphase Protection and Suppressed Electrode Dissolution for Aqueous Sodiumâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	2.4	8
14522	Stabilizing the (003) Facet of Micron-Sized LiNi0.6Co0.2Mn0.2O2 Cathode Material Using Tungsten Oxide as an Exemplar. Inorganics, 2022, 10, 111.	1.2	4
14523	Progress in Waste Lead Paste Recycling Technology from Spent Lead–Acid Battery in China. Journal of Sustainable Metallurgy, 2022, 8, 978-993.	1.1	7
14524	A NovelÂEDOT/FÂCoâ€doped PMIA Nanofiber MembraneÂas Separator for Highâ€₽erformance Lithiumâ€&ulfur Battery. Chemistry - an Asian Journal, 0, , .	1.7	2
14525	Annealing Treatment: A Facile Approach to Enhance Transfer Kinetics for LiFePO ₄ /C Cathode. Chemical Engineering and Technology, 0, , .	0.9	Ο
14526	High-performance flexible SnO2 anode boosted by an N-doped graphite coating layer for lithium-ion and sodium-ion batteries. Electrochemistry Communications, 2022, 141, 107345.	2.3	7
14527	Controlled polymerization for lithium-ion batteries. Energy Storage Materials, 2022, 52, 598-636.	9.5	4

#	Article	IF	CITATIONS
14528	Biosourced quinones for high-performance environmentally benign electrochemical capacitors via interface engineering. Communications Chemistry, 2022, 5, .	2.0	12
14529	Interpretable learning of voltage for electrode design of multivalent metal-ion batteries. Npj Computational Materials, 2022, 8, .	3.5	10
14530	Multi-scale simulations and phase stability prediction of mixed Li ₂ S _{1-x} Se _x system. Journal of Physics: Conference Series, 2022, 2298, 012003.	0.3	0
14531	In Situ Visualization of Electrochemical Processes in Solid-State Lithium Batteries. ACS Energy Letters, 2022, 7, 2988-3002.	8.8	14
14532	Boosting Zn metal anode stability: from fundamental science to design principles. EcoMat, 2022, 4, .	6.8	20
14533	Enabling two-electron redox chemistry of P-type organic cathode for high-capacity aluminium-ion batteries. Nano Energy, 2022, 102, 107727.	8.2	9
14534	A Volume Self-Regulation MoS ₂ Superstructure Cathode for Stable and High Mass-Loaded Zn-Ion Storage. ACS Nano, 2022, 16, 12095-12106.	7.3	54
14535	Ti Sn O2 phase separation modulated electronic structure and kinetic behaviors for high-rate and long-cycle anodes. Composites Part B: Engineering, 2022, 243, 110151.	5.9	5
14536	Perception of Mg adsorption on the BC2N nanotube as a anode for rechargeable Mg ion batteries. International Journal of Hydrogen Energy, 2022, 47, 29006-29013.	3.8	1
14537	A High Airâ€Stability and Liâ€Metalâ€Compatible Li _{3+2x} P _{1â^'x} Bi _x S _{4â^'1.5x} O _{1.5x} Sulfide Electrolyte for Allâ€Solidâ€State Li–Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	17
14538	Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule, 2022, 6, 2122-2137.	11.7	30
14539	Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nature Communications, 2022, 13, .	5.8	54
14540	Iron doping of NiSe2 nanosheets to accelerate reaction kinetics in sodium-ion half/full batteries. Science China Materials, 2023, 66, 69-78.	3.5	20
14541	A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 080510.	1.3	4
14542	Designer Cathode Additive for Stable Interphases on High-Energy Anodes. Journal of the American Chemical Society, 2022, 144, 15100-15110.	6.6	12
14543	Polysulfide Speciation in Li–S Battery Electrolyte via In-Operando Optical Imaging and Ex-Situ UV-vis Spectra Analysis. Journal of the Electrochemical Society, 2022, 169, 090518.	1.3	2
14544	NASICON lithium ions conductors: Materials, composites, and batteries. Current Opinion in Electrochemistry, 2022, 36, 101108.	2.5	7
14545	Review on lithium metal anodes towards high energy density batteries. Green Energy and Environment, 2023, 8, 1509-1530.	4.7	14

#	Article	IF	CITATIONS
14546	Increasing the ionic conductivity and lithium-ion transport of photo-cross-linked polymer with hexagonal arranged porous film hybrids. IScience, 2022, 25, 104910.	1.9	2
14547	Phonon study of Jahn–Teller distortion and phase stability in NaMnO2 for sodium-ion batteries. Journal of Applied Physics, 2022, 132, .	1.1	3
14548	Thermodynamic Factor for Facilitating Homogeneous Dendrite Growth in Alkali Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	12
14549	Correlating atom probe tomography with x-ray and electron spectroscopies to understand microstructure–activity relationships in electrocatalysts. MRS Bulletin, 2022, 47, 718-726.	1.7	1
14550	Hierarchical carbon nanofibers@tin sulfide nanotube with sulfurâ€doped carbon layer for ultrafast lithiumâ€storage capability. International Journal of Energy Research, 2022, 46, 18518-18528.	2.2	2
14551	Effect of ionotropic gelation of COOH-functionalized polymeric binders in multivalent ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 1969-1980.	1.2	0
14552	ls there a common reaction pathway for chromium sulfides as anodes in sodium-ion batteries? A case study about sodium storage properties of MCr2S4 (M = Cr, Ti, Fe). Journal of Solid State Electrochemistry, 2022, 26, 2501-2514.	1.2	5
14554	Copper Hexacyanoferrate Solidâ€State Electrolyte Protection Layer on Zn Metal Anode for Highâ€Performance Aqueous Zincâ€Ion Batteries. Small, 2022, 18, .	5.2	34
14555	Priority and Prospect of Sulfideâ \in Based Solidâ \in Electrolyte Membrane. Advanced Materials, 2023, 35, .	11.1	15
14556	Novel One-Dimensional Nanofiber MnSe/CMK-3 High-Performance Cathode Material for Aluminum Batteries. ACS Applied Materials & Interfaces, 2022, 14, 37814-37822.	4.0	4
14557	Applicationâ€Based Prospects for Dualâ€ion Batteries. ChemSusChem, 2023, 16, .	3.6	4
14558	An ion-released MgI2-doped separator inducing a Lil-containing solid electrolyte interphase for dendrite-free Li metal anodes. Journal of Energy Chemistry, 2022, 75, 83-94.	7.1	9
14559	Lithium Atom Surface Diffusion and Delocalized Deposition Propelled by Atomic Metal Catalyst toward Ultrahigh-Capacity Dendrite-Free Lithium Anode. Nano Letters, 2022, 22, 8008-8017.	4.5	36
14560	First AIE probe for lithium-metal anodes. Matter, 2022, 5, 3530-3540.	5.0	8
14561	Macroscopic Architecture Design of Lithium Metal Electrodes: Impacts of Millimeter-Size Hollows on Economization, Cyclability, and Utilization. Journal of Electrochemical Energy Conversion and Storage, 2023, 20, .	1.1	3
14562	Study on annealing treatment of spinel <scp> LiNi _O </scp> _. <scp> ₅ Mn ₁ </scp> _. <scp> ₅ O ₄ </scp> as cathode materials for <scp>highâ€voltage</scp> lithiumâ€ion batteries. International Journal of Energy Research. 2022. 46. 18495-18510.	2.2	8
14563	Poly(m-phenylene isophthalamide)-reinforced polyethylene oxide composite electrolyte with high mechanical strength and thermostability for all-solid-state lithium metal batteries. Rare Metals, 2022, 41, 3762-3773.	3.6	23
14564	Thiophene Based Selfâ€Doped Conducting Polymers as Cathode for Aqueous Zincâ€lon Battery. Batteries and Supercaps, 2022, 5, .	2.4	7

#	Article	IF	Citations
14565	A Monocrystalline Coordination Polymer with Multiple Redox Centers as a Highâ€Performance Cathode for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
14566	In Situ Inorganic-Rich Electrode–Electrolyte Interphases for Safer 4.5 V Gr NCM811 Batteries Enabled by an Ethylene Carbonate-Free Electrolyte. ACS Applied Energy Materials, 2022, 5, 11748-11755.	2.5	1
14567	Deciphering the Double-Layer Structure and Dynamics on a Model Li _{<i>x</i>} MoO ₃ Interface by Advanced Electrogravimetric Analysis. ACS Nano, 2022, 16, 14907-14917.	7.3	6
14568	Advances in Zinc and Magnesium Battery Polymer Cathode Materials. ACS Applied Energy Materials, 2022, 5, 10331-10358.	2.5	3
14569	The role of solid solutions in iron phosphate-based electrodes for selective electrochemical lithium extraction. Nature Communications, 2022, 13, .	5.8	19
14570	Interfacial Space Charge Enhanced Sodium Storage in a Zeroâ€Strain Cerium Niobite Perovskite Anode. Advanced Functional Materials, 2022, 32, .	7.8	11
14571	Novel Organic Cathode with Conjugated N-Heteroaromatic Structures for High-Performance Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 38844-38853.	4.0	21
14572	ImprovedÂlithium-ion batteries with coral-like anodes made ofÂrecycled spherical porous silicon coated with nitrogen-doped carbon. Environmental Chemistry Letters, 2022, 20, 3377-3385.	8.3	7
14573	Machine learning-facilitated multiscale imaging for energy materials. Cell Reports Physical Science, 2022, 3, 101008.	2.8	4
14574	Direct Tracking of Additiveâ€Regulated Evolution on the Lithium Anode in Quasiâ€Solidâ€State Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	10.2	15
14575	Stabilizing the Halide Solid Electrolyte to Lithium by a β-Li ₃ N Interfacial Layer. ACS Applied Materials & Interfaces, 2022, 14, 39951-39958.	4.0	10
14576	Ameliorating discharge capability of Co-free flower-like spherical α-Ni(OH)2 by NiS coating. Electrochimica Acta, 2022, 430, 141074.	2.6	3
14577	Residual stress-tailored lithium deposition and dissolution behaviors for safe lithium metal anode. Journal of Alloys and Compounds, 2022, 927, 166776.	2.8	1
14578	National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries. Sustainability, 2022, 14, 10014.	1.6	2
14579	Recent Progress on Phosphate Cathode Materials for Aqueous Zincâ€lon Batteries. ChemSusChem, 2022, 15, .	3.6	7
14580	Multi-functional yolk-shell structured materials and their applications for high-performance lithium ion battery and lithium sulfur battery. Energy Storage Materials, 2022, 53, 684-743.	9.5	28
14581	Synthesis and evaluation of a new gel polymer electrolyte for high-performance Li-ion batteries from electrospun nanocomposite of PVDF/Ca–Al-layered double hydroxide. Journal of Materials Research, 0, , .	1.2	1
14582	Effects of Different Acids Dopant on the Electrochemical Properties of Polyaniline Cathode in Aluminum-ion batteries. , 0, 13, 62-67.		0

<u> </u>			<u> </u>	
(15	ГАТ	ON	REPC	TDT
			NLFC	ואנ

#	Article	IF	CITATIONS
14583	Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Science Advances, 2022, 8, .	4.7	40
14584	Three-dimensional Ti3C2 MXene@silicon@nitrogen-doped carbon foam for high performance self-standing lithium-ion battery anodes. Journal of Electroanalytical Chemistry, 2022, 921, 116664.	1.9	3
14585	Interfacial engineering on metal anodes in rechargeable batteries. EnergyChem, 2022, 4, 100089.	10.1	12
14586	Feasible regeneration of cathode material from spent portable electronics batteries via nano-bubbles enhanced leaching. Journal of Cleaner Production, 2022, 368, 133199.	4.6	3
14587	Effect of Thermal Parameters on Behaviour of A Lithium-Ion Battery: Simulation Study. International Journal of Electrochemical Science, 2022, 17, 220951.	0.5	2
14588	Electric aviation: A review of concepts and enabling technologies. Transportation Engineering, 2022, 9, 100134.	2.3	24
14589	Investigating graphdiyne based materials for rechargeable batteries. Nano Today, 2022, 46, 101588.	6.2	8
14590	CuS/GO composite for high performance Lithium ion storage. Applied Surface Science Advances, 2022, 11, 100285.	2.9	2
14591	State of charge and state of health diagnosis of batteries with voltage-controlled models. Journal of Power Sources, 2022, 544, 231828.	4.0	8
14592	Improved interfacial properties of LiNi0.8Co0.15Al0.05O2 cathode by tris(trimethylsilyl) borate as an electrolyte additive to inhibit HF formation. Electrochimica Acta, 2022, 428, 140958.	2.6	4
14593	Ordered double transition metal MBene: the hexagonal ScTiB2 monolayer as a superior anode material for lithium-ion batteries. Computational Materials Science, 2022, 214, 111736.	1.4	2
14594	Two-dimensional montmorillonite-based heterostructure for high-rate and long-life lithium-sulfur batteries. Energy Storage Materials, 2022, 52, 120-129.	9.5	35
14595	Porphyrin- and phthalocyanine-based systems for rechargeable batteries. Energy Storage Materials, 2022, 52, 495-513.	9.5	17
14596	An artificial zinc phosphide interface toward stable zinc anodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 129970.	2.3	2
14597	A facile path from fast synthesis of Li-argyrodite conductor to dry forming ultrathin electrolyte membrane for high-energy-density all-solid-state lithium batteries. Journal of Energy Chemistry, 2022, 74, 309-316.	7.1	9
14598	High-throughput screening of protective layers to stabilize the electrolyte-anode interface in solid-state Li-metal batteries. Nano Energy, 2022, 102, 107640.	8.2	12
14599	Investigation on the optimization strategy of phase change material thermal management system for lithium-ion battery. Journal of Energy Storage, 2022, 55, 105365.	3.9	18
14600	Synthesis and energy storage characteristics of MnO microchains induced by high magnetic field. Journal of Alloys and Compounds, 2022, 926, 166774.	2.8	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
14601	The emerging aqueous zinc-organic battery. Coordination Chemistry Reviews, 2022, 47	'2, 214772.	9.5	42
14602	Cobalt hexacyanoferrate enhanced by common ion effect for aqueous potassium-ion ba Surface Science, 2022, 604, 154654.	atteries. Applied	3.1	3
14603	Nitrogen-doped porous carbon nanofiber decorated with FeNi alloy for dendrite-free high-performance lithium metal anode. Journal of Alloys and Compounds, 2022, 925, 10	66691.	2.8	4
14604	Constructing robust polymer/two-dimensional Ti3C2TX solid-state electrolyte interphase polymerization for high-capacity long-life and dendrite-free lithium metal anodes. Journa and Interface Science, 2022, 628, 583-594.	se via in-situ al of Colloid	5.0	5
14605	Synergistic interlayer and defect engineering of hydrated vanadium oxide toward stable batteries. Chemical Engineering Journal, 2022, 450, 138367.	2 Zn-ion	6.6	22
14606	In-situ construction of nano-sized Ni-NiO-MoO2 heterostructures on holey reduced grap nanosheets as high-capacity lithium-ion battery anodes. Journal of Alloys and Compoun 166847.		2.8	8
14607	Highly scalable and environment-friendly conversion of low-grade coal to activated carb as electrode material in symmetric supercapacitor. Fuel, 2022, 329, 125385.	on for use	3.4	31
14608	Synthesis of fluorine free MXene through lewis acidic etching for application as electroc supercapacitors. Journal of Alloys and Compounds, 2022, 926, 166903.	de of proton	2.8	28
14609	Insight into the cation migration and surface structural evolution of spinel LiNi0.5Mn1. material for lithium-ion batteries. Chemical Engineering Journal, 2023, 451, 138708.	504 cathode	6.6	17
14610	Advanced dual-gradient carbon nanofibers/graphite felt composite electrode for the nex vanadium flow battery. Journal of Materials Science and Technology, 2023, 136, 32-42.	xt-generation	5.6	15
14611	A room-temperature ionic liquid-based superionic conductive polymer electrolyte with h stability for long-cycle-life lithium batteries. Colloid and Polymer Science, 2022, 300, 12		1.0	1
14612	Nitrogenâ€doped Porous Carbon Nanofibers Decorated with Nickel Nanoparticles for U Lowâ€cost Structural Lithium Metal Anodes. ChemistrySelect, 2022, 7, .	Inlocking	0.7	2
14613	A High Rate and Long Cycling Performance NaTi ₂ (PO ₄) _{ Core–Shell Porous Nanosphere Anode for Aqueous Sodiumâ€Ion Batteries. Energy Te}	>3 echnology, 2022, 10,	1.8	3
14614	Copper-Coated Graphite Felt as Current Collector for Li-Ion Batteries. Coatings, 2022, 1	.2, 1321.	1.2	2
14615	Removal of car battery heavy metals from wastewater by activated carbons: a brief revie Environmental Science and Pollution Research, 2022, 29, 73675-73717.	ew.	2.7	1
14616	A multifunctional subassembly of carbon nanotube paper for stable lithium metal anod Today Energy, 2022, 29, 101134.	es. Materials	2.5	1
14617	The use of activated bio-carbon derived from "Posidonia oceanica―sea-waste for L batteries development. Sustainable Energy Technologies and Assessments, 2022, 53, 1		1.7	2
14618	Ultralow-concentration electrolyte unlocking the high-stable proton storage in (NH4)0. electrode. Electrochimica Acta, 2022, 431, 141097.	5V2O5	2.6	6

#	Article	IF	CITATIONS
14619	Corrosion suppression of aluminium current collectors within Li-ion cells using 3-methoxypropionitrile-based electrolytes. Electrochimica Acta, 2022, 431, 141105.	2.6	4
14620	Suitability and performance of NaNi1-x(VO)xPO4 mixed polyanion glass and Glass-Ceramic cathodes for Na-ion battery. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 285, 115938.	1.7	2
14621	Failure analysis and design principles of silicon-based lithium-ion batteries using micron-sized porous silicon/carbon composite. Journal of Power Sources, 2022, 548, 232063.	4.0	8
14622	In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. ETransportation, 2022, 14, 100203.	6.8	38
14623	Origin of enhanced capacity retention of aqueous potassium-ion batteries using monohydrate-melt electrolyte. Journal of Power Sources, 2022, 548, 232096.	4.0	5
14624	Multi-buffer engineering of nitrogen-doped carbon nanosheets/carbon nanotubes network encapsulated and carbon coated silicon anode for high performance lithium-ion batteries. Journal of Power Sources, 2022, 548, 232093.	4.0	2
14625	Nanostructured SiO -based anodes synthesized by a scalable micelle assisted method for high-performance lithium-ion battery. Materials Chemistry and Physics, 2022, 291, 126721.	2.0	1
14626	Enhancing the electrochemical performance of Co-less Ni-rich LiNi0.925Co0.03Mn0.045O2 cathode material via Co-modification with Li2B4O7 coating and B3+ doping. Journal of Power Sources, 2022, 548, 232092.	4.0	9
14627	Structural engineering of α-MnO2 cathode by Ag+ incorporation for high capacity aqueous zinc-ion batteries. Journal of Power Sources, 2022, 548, 232010.	4.0	12
14628	Developing practical solid-state rechargeable Li-ion batteries: Concepts, challenges, and improvement strategies. Journal of Energy Storage, 2022, 55, 105688.	3.9	11
14629	ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries. Applied Surface Science, 2022, 605, 154685.	3.1	15
14630	Investigating the electrochemical properties of SnO monolayer in sodium-ion batteries. Journal of Physics and Chemistry of Solids, 2022, 171, 110975.	1.9	6
14631	Identifying interfacial mechanisms limitations within aqueous Zn-MnO2 batteries and means to cure them with additives. Energy Storage Materials, 2022, 53, 238-253.	9.5	16
14632	Hydrogen passivated <mmi:math si11.svg<br="" xmins:mmi="http://www.w3.org/1998/Math/MathML_altimg=">display="inline" id="d1e548"><mml:msub><mml:mrow><mml:mi>î²</mml:mi></mml:mrow><mml:mrow><mml:mn>12nanoribbon: A propitious one-dimensional metallic anode for sodium-ion rechargeable batteries.</mml:mn></mml:mrow></mml:msub></mmi:math>	ıæ∢‡mml:n	זי ג w>
14633	Applied Surface Science, 2022, 606, 154825. Solvent-free and large-scale synthesis of SiO /C nanocomposite with carbon encapsulation for high-performance lithium-ion battery anodes. Composites Part B: Engineering, 2022, 247, 110308.	5.9	11
14634	Construction of hierarchical ZnS/MoS2 bimetallic sulfides heterostructures for high – performance sodium ion batteries. Applied Surface Science, 2023, 607, 154821.	3.1	13
14635	Integrating multiple redox-active sites and universal electrode-active features into covalent triazine frameworks for organic alkali metal-ion batteries. Chemical Engineering Journal, 2023, 451, 139016.	6.6	14
14636	Robust MXene adding enables the stable interface of silicon anodes for high-performance Li-ion batteries. Chemical Engineering Journal, 2023, 452, 139139.	6.6	33

#	Article	IF	CITATIONS
14637	Gradational anionic redox enabling high-energy P2-type Na-layered oxide cathode. Chemical Engineering Journal, 2023, 451, 138883.	6.6	9
14638	Interfacial modification between argyrodite-type solid-state electrolytes and Li metal anodes using LiPON interlayers. Energy and Environmental Science, 2022, 15, 3805-3814.	15.6	39
14639	High-Performance Sno2 Anode Boosted by an N-Doped Graphite Coating Layer for Lithium-Ion and Sodium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
14640	A solid–solution-based Li–Mg alloy for highly stable lithium metal anodes. Sustainable Energy and Fuels, 2022, 6, 4137-4145.	2.5	2
14641	Templated synthesis of 2D TiO ₂ nanoflakes for durable lithium ion batteries. New Journal of Chemistry, 2022, 46, 16260-16264.	1.4	4
14642	Two-dimensional metallic VTe ₂ demonstrating fast ion diffusion for aqueous zinc-ion batteries. Sustainable Energy and Fuels, 2022, 6, 4626-4635.	2.5	6
14643	Regulating the Solvation Chemistry of Poly-EtherÂBased Non-Flammable High Voltage Electrolyte Through Salt-Solvent Ratio Modulation. SSRN Electronic Journal, 0, , .	0.4	0
14644	A metal-free reduced graphene oxide coupled covalent imine network as an anode material for lithium-ion batteries. Energy Advances, 0, , .	1.4	0
14645	Emerging two-dimensional nanostructured manganese-based materials for electrochemical energy storage: recent advances, mechanisms, challenges, and prospects. Journal of Materials Chemistry A, 2022, 10, 21197-21250.	5.2	43
14646	Versatile Fe ₂ GeS ₄ for Li/Na–Fe ₂ GeS ₄ battery cathodes and Li/Na-ion battery anodes. Journal of Materials Chemistry A, 2022, 10, 21973-21984.	5.2	4
14647	Recent advances in dendrite-free lithium metal anodes for high-performance batteries. Physical Chemistry Chemical Physics, 2022, 24, 19996-20011.	1.3	34
14648	A thianthrene-based small molecule as a high-potential cathode for lithium–organic batteries. Chemical Communications, 2022, 58, 11993-11996.	2.2	9
14649	Solid-State Electrolytes for Lithium Batteries. , 2022, , .		0
14650	Zn ₂ SiO ₄ @C submicro-ellipsoids assembled from oriented nanorods with outstanding rate performance for Li-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 17561-17571.	5.2	6
14651	Synthesis of high ionic conductivity Li6PS5Cl solid electrolyte by second sintering process. Results in Chemistry, 2022, 4, 100468.	0.9	3
14652	Suppressing water clusters by using "hydrotropic―ionic liquids for highly stable aqueous lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 20545-20551.	5.2	5
14653	Green and Sustainable Batteries. , 2022, , 1-12.		0
14654	The crucial role of oxygen substitution in argyrodite solid electrolytes from the bulk to the surface under atmospheric conditions. Journal of Materials Chemistry A, 2022, 10, 16908-16919.	5.2	5

#	Article	IF	CITATIONS
14655	Polyimide-derived carbon nanofiber membranes as free-standing anodes for lithium-ion batteries. RSC Advances, 2022, 12, 21904-21915.	1.7	9
14656	<i>Ab initio</i> study of lithium intercalation into a graphite nanoparticle. Materials Advances, 2022, 3, 8469-8484.	2.6	4
14657	Rational design of coral ball-like MoS ₂ /N-doped carbon nanohybrids <i>via</i> atomic interface engineering for effective sodium/potassium storage. Journal of Materials Chemistry C, 2022, 10, 14686-14694.	2.7	3
14658	A Li ⁺ and PANI co-intercalation strategy for hydrated V ₂ O ₅ to enhance zinc ion storage performance. Journal of Materials Chemistry A, 2022, 10, 18962-18971.	5.2	10
14659	Challenges and prospects of high-voltage aqueous electrolytes for energy storage applications. Physical Chemistry Chemical Physics, 2022, 24, 20674-20688.	1.3	3
14660	Highly active and stable surface structure for oxygen evolution reaction originating from balanced dissolution and strong connectivity in BalrO ₃ solid solutions. RSC Advances, 2022, 12, 24427-24438.	1.7	14
14661	Polyurethane–P ₂ S ₅ composite-based solid-state electrolyte assists low polarization and high stability all-solid-state lithium-ion batteries. RSC Advances, 2022, 12, 27881-27888.	1.7	0
14662	Defective Nano-Structure Regulating C-F Bond for Lithium/Fluorinated Carbon Batteries with Dual High-Performance. SSRN Electronic Journal, 0, , .	0.4	0
14663	Surface reduction in lithium- and manganese-rich layered cathodes for lithium ion batteries drives voltage decay. Journal of Materials Chemistry A, 0, , .	5.2	3
14664	Data-driven selection of electrolyte additives for aqueous magnesium batteries. Journal of Materials Chemistry A, 2022, 10, 21672-21682.	5.2	6
14665	One-pot fabrication of N-doped hierarchical porous carbon derived from sponge for lithium-ion battery. Results in Chemistry, 2022, 4, 100529.	0.9	0
14666	Electrical, Structural, Surface Evaluation Depends on the Different Deposition Temperature of rGO/SnSbS Nanocomposite. Uluslararası Muhendislik Arastirma Ve Gelistirme Dergisi, 2022, 14, 907-916.	0.1	Ο
14667	Advanced layered oxide cathodes for sodium/potassium-ion batteries: Development, challenges and prospects. Chemical Engineering Journal, 2023, 452, 139438.	6.6	57
14668	Surface chemistry engineeringÂof layered oxide cathodes for sodiumâ€ion batteries. , 2022, 1, 96-116.		40
14669	Shape $\hat{a} \in M$ emory Electrochemical Energy Storage Devices. Batteries and Supercaps, 0, , .	2.4	1
14670	A Competitive Solvation of Ternary Eutectic Electrolytes Tailoring the Electrode/Electrolyte Interphase for Lithium Metal Batteries. ACS Nano, 2022, 16, 14558-14568.	7.3	19
14671	Electrochemical pseudocapacitors of different compounds and nanocomposite of manganese: an introduction and review to it in recent studies. Journal of Materials Science: Materials in Electronics, 2022, 33, 19693-19710.	1.1	6
14672	Engineering current collectors for advanced alkali metal anodes: A review and perspective. EcoMat, 2023, 5, .	6.8	18

#	Article	IF	CITATIONS
14673	The Recent Advances of Metal–Organic Frameworks in Electric Vehicle Batteries. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 867-884.	1.9	2
14674	Forced Disorder in the Solid Solution Li ₃ P–Li ₂ S: A New Class of Fully Reduced Solid Electrolytes for Lithium Metal Anodes. Journal of the American Chemical Society, 2022, 144, 16350-16365.	6.6	13
14675	Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries. Science China Materials, 2023, 66, 79-87.	3.5	44
14676	Ultrathin Polyaniline-Coated Single-Crystalline Mn ₂ O ₃ Nanoporous Ellipsoids with High Energy Density and Cyclability for Low-Cost Zinc-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 12729-12736.	2.4	2
14677	lonic Liquid-Type Additive for Lithium Metal Batteries Operated in LiPF ₆ Based-Electrolyte Containing 2500 ppm H ₂ O. ACS Applied Materials & Interfaces, 2022, 14, 41103-41113.	4.0	9
14678	Recent Progress in \$ext{Li}_{2}ext{FeSiO}_{4}\$ Cathode Materials. , 2022, , .		0
14679	Transition Metal Assisting Preâ€Lithiation Reduces the P/N Ratio to Balance the Energy Density and Cycle Life of Aqueous Batteries. Advanced Energy Materials, 2022, 12, .	10.2	5
14680	<scp>Topological Structure</scp> â€Modulated Collagen Carbon as <scp>Twoâ€inâ€One</scp> Energy Storage Configuration toward Ultrahigh Power and Energy Density. Energy and Environmental Materials, 0, , .	7.3	4
14681	Noncoordinating Flame-Retardant Functional Electrolyte Solvents for Rechargeable Lithium-Ion Batteries. Journal of the American Chemical Society, 2022, 144, 18240-18245.	6.6	33
14682	Stability and electronic properties of layered NaMnO2 using the SCAN(+U). Journal of the Korean Physical Society, 0, , .	0.3	0
14683	Examination of Morphological Changes of Active Materials for Solution-Based Rechargeable Fluoride Shuttle Batteries Using <i>In Situ</i> Electrochemical Atomic Force Microscopy Measurements. Chemistry of Materials, 2022, 34, 8280-8288.	3.2	6
14684	Microstructural Adjusting Crack Evolution of Polycrystalline NCM Particle during Charge/Discharge Cycle. Journal of the Electrochemical Society, 2022, 169, 090513.	1.3	4
14685	Safety Evaluation of All-Solid-State Batteries: An Innovative Methodology Using In Situ Synchrotron X-ray Radiography. ACS Applied Energy Materials, 2022, 5, 10862-10871.	2.5	6
14686	Progress and challenges of prelithiation technology for lithiumâ€ion battery. , 2022, 4, 1107-1132.		46
14687	Graphene: A Path-Breaking Discovery for Energy Storage and Sustainability. Materials, 2022, 15, 6241.	1.3	10
14688	Adjusting the state of pitch anode for effective oxidation with suppressed graphitization and enhanced Na storage performances. Ionics, 0, , .	1.2	1
14689	Gallium-Telluride-Based Composite as Promising Lithium Storage Material. Nanomaterials, 2022, 12, 3362.	1.9	2
14690	Computational Screening of Na ₃ MBr ₆ Compounds as Sodium Solid Electrolytes. Chemistry of Materials, 2022, 34, 8356-8365.	3.2	7

#	Article	IF	CITATIONS
14691	Ab Initio Analysis of Li Adsorption on Beryllium-Doped Zigzag Graphene Nanoribbon for Lithium-Ion Batteries (LIBs). Journal of Electronic Materials, 0, , .	1.0	0
14692	Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification. Nano Research, 2023, 16, 3864-3871.	5.8	3
14693	Organic batteries for a greener rechargeable world. Nature Reviews Materials, 2023, 8, 54-70.	23.3	109
14694	Improvement Strategies toward Stable Lithiumâ€Metal Anodes for Highâ€Energy Batteries. Batteries and Supercaps, 2022, 5, .	2.4	4
14695	Recent Progress in Developing a LiOHâ€Based Reversible Nonaqueous Lithium–Air Battery. Advanced Materials, 2023, 35, .	11.1	7
14696	Tailoring the Void Space of a Silicon Anode for Highâ€Capacity and Lowâ€Expansion Lithium Storage. Energy Technology, 2022, 10, .	1.8	2
14697	Enhancing the Performance of Bi ₂ S ₃ in Electrocatalytic and Supercapacitor Applications by Controlling Lattice Strain. Advanced Functional Materials, 2022, 32, .	7.8	14
14698	Synergistic Modification of Fe-Based Prussian Blue Cathode Material Based on Structural Regulation and Surface Engineering. ACS Applied Materials & amp; Interfaces, 2022, 14, 43308-43318.	4.0	4
14699	The Effect of Sn-Doped Li ₇ La ₃ Zr ₂ O _{12 } on the Structure and Electrical Properties of Electrolyte Material for Li-Ion Batteries. Advances in Science and Technology, 0, , .	0.2	0
14700	Modifying the Interface between the Solvated Ionic Liquid Electrolyte and Positive Electrode to Boost Lithium-Ion Battery Performance. ACS Applied Energy Materials, 2022, 5, 10891-10896.	2.5	1
14701	Redox Evolution of Li-Rich Layered Cathode Materials. Batteries, 2022, 8, 132.	2.1	10
14702	Precisely Tunable Synthesis of Binder-Free Cobalt Oxide-Based Li-Ion Battery Anode Using Scalable Electrothermal Waves. ACS Nano, 2022, 16, 17313-17325.	7.3	6
14703	Caesium Acetateâ€Based Electrolytes for Aqueous Electrical Double Layer Capacitors. ChemElectroChem, 2022, 9, .	1.7	2
14704	Interface regulation of Cu2Se via Cu-Se-C bonding for superior lithium-ion batteries. Nano Research, 2023, 16, 2421-2427.	5.8	10
14705	Silicon-carbide fiber-reinforced polymer electrolyte for all-solid-state lithium-metal batteries. Rare Metals, 2022, 41, 3774-3782.	3.6	5
14706	A Lithium-Ion Conducting Polysulfide Polymer for Flexible Batteries. , 2022, 4, 1904-1911.		4
14707	Thermal Runaway of Nonflammable Localized Highâ€Concentration Electrolytes for Practical LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Graphiteâ€SiO Pouch Cells. Advanced Science, 2022, 9, .	5.6	15
14708	CO ₂ Laser Sintering of Garnet-Type Solid-State Electrolytes. ACS Energy Letters, 2022, 7, 3392-3400.	8.8	17

#	Article	IF	CITATIONS
14709	Enhanced interfacial and structural stability of Ni-rich LiNi0.96Mg0.02Ti0.02O2 cathode using a CeO2-coating technique. Ionics, 0, , .	1.2	0
14710	Realizing high energy-density lithium-ion batteries: High Ni-content or high cut-off voltage of single-crystal layered cathodes?. Journal of Electroanalytical Chemistry, 2022, 924, 116847.	1.9	4
14711	Lithium Ionic Conductive Mechanism in PEO Polymer Electrolytes Enhanced by Nano/Micron Size LLZO Fillers. Journal of the Electrochemical Society, 2022, 169, 100513.	1.3	5
14712	Superstructure Variation and Improved Cycling of Anion Redox Active Sodium Manganese Oxides Due to Doping by Iron. Advanced Energy Materials, 2022, 12, .	10.2	13
14713	Composite polymer electrolyte incorporating WO3 nanofillers with enhanced performance for dendrite-free solid-state lithium battery. Ceramics International, 2023, 49, 4473-4481.	2.3	15
14714	Twoâ€Ðimensional Fluorinated Graphene Reinforced Solid Polymer Electrolytes for Highâ€Performance Solidâ€State Lithium Batteries. Advanced Energy Materials, 2022, 12, .	10.2	57
14715	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
14716	Rigid-Rod Sulfonated Polyamide as an Aqueous-Processable Binder for Li-Ion Battery Electrodes. ACS Applied Energy Materials, 2022, 5, 12531-12537.	2.5	4
14717	Development of Proteins for Highâ€Performance Energy Storage Devices: Opportunities, Challenges, and Strategies. Advanced Energy Materials, 2022, 12, .	10.2	5
14718	Anion Donicity of Liquid Electrolytes for Lithium Carbon Fluoride Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
14719	High-Energy and Long-Lasting Organic Electrode for a Rechargeable Aqueous Battery. ACS Energy Letters, 2022, 7, 3637-3645.	8.8	10
14720	Accelerating the electrochemical kinetics of metal-iodine batteries: progress and prospects. Materials Today Energy, 2022, 30, 101146.	2.5	12
14721	Effect of a One-Dimensional Columnar Structure on the Cathode Active Material Performance of Single-Component Hexaazatriphenylene Derivatives. ACS Applied Energy Materials, 2022, 5, 12760-12767.	2.5	0
14722	Revealing the Impact of Cl Substitution on the Crystallization Behavior and Interfacial Stability of Superionic Lithium Argyrodites. Advanced Functional Materials, 2022, 32, .	7.8	18
14723	Tuning the electrochemical activity of Li–Se batteries by redox mediator additives. Applied Physics Letters, 2022, 121, 133904.	1.5	4
14724	Fabricating ion-conducting channel in SU-8 matrix for high-performance patternable polymer electrolytes. Nano Research, 2023, 16, 496-502.	5.8	1
14725	A highâ€energyâ€density and highâ€rate membraneless Niâ€Fe battery enabled by a 1â€butylâ€3â€methylimidaz bromideâ€based gel electrolyte. ChemElectroChem, 0, , .	olium 1.7	0
14726	Discharged Titanium Oxide Nanotube Arrays Coated with Ni as a Highâ€Performance Lithium Battery Electrode Material. Energy Technology, 2022, 10, .	1.8	5

#	Article	IF	CITATIONS
14727	Boosting Charge Transfer Via Heterostructure Engineering of Ti ₂ CT <i>_x</i> /Na ₂ Ti ₃ O ₇ Nanobelts Array for Superior Sodium Storage Performance. Small, 2022, 18, .	5.2	8
14728	Effect of Cu substitution on anion redox behaviour in P3-type sodium manganese oxides. JPhys Energy, 2022, 4, 044006.	2.3	2
14729	Monolithic All-Solid-State High-Voltage Li-Metal Thin-Film Rechargeable Battery. ACS Applied Energy Materials, 0, , .	2.5	7
14730	Anion Donicity of Liquid electrolytes for Lithium Carbon Fluoride Batteries. Angewandte Chemie, 0, , .	1.6	0
14731	Crystallinity Regulated Functional Separator Based on Bimetallic Ni _x Fe _y Alloy Nanoparticles for Facilitated Redox Kinetics of Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	38
14732	Faceted Antimony Particles with Interiors Reinforced with Reduced Graphene Oxide as High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 45296-45307.	4.0	6
14733	Important Impact of the Slurry Mixing Speed on Water-Processed Li ₄ Ti ₅ O ₁₂ Lithium-Ion Anodes in the Presence of H ₃ PO ₄ as the Processing Additive. ACS Applied Materials & Interfaces, 2022, 14, 43237-43245.	4.0	1
14734	In situ self-assembled synthesis of polypyrrole-derived nitrogen-doped carbon nanotube reinforced graphene aerogels as high-performance anode materials for lithium ion batteries. Journal of Materials Science: Materials in Electronics, 2022, 33, 21425-21443.	1.1	0
14735	Conductivity enhancement within garnetâ€rich polymer composite electrolytes via the addition of succinonitrile. International Journal of Applied Ceramic Technology, 2023, 20, 236-250.	1.1	6
14736	Sulfur Reduction Reaction in Lithium–Sulfur Batteries: Mechanisms, Catalysts, and Characterization. Advanced Energy Materials, 2022, 12, .	10.2	69
14737	Facile synthesis of yolk-shell CoS2@FeS2@NC hollow microspheres for advanced lithium-ion batteries anode materials. Ionics, 2022, 28, 4967-4976.	1.2	2
14738	High Lithium Salt Content PVDFâ€Based Solidâ€State Composite Polymer Electrolyte Enhanced by hâ€BN Nanosheets. ChemSusChem, 2022, 15, .	3.6	7
14739	Bifunctional MOF Doped PEO Composite Electrolyte for Long-Life Cycle Solid Lithium Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 45476-45483.	4.0	37
14740	Sn Nanoparticles Anchored on Carbon Foam Prepared by a Facile Electrodeposition for Lithium Storage. Energy Technology, 2022, 10, .	1.8	1
14741	Free-Standing Stable Silicon-Based Anode with Exceptional Flexibility Realized by a Multifunctional Structure Design in Multiple Dimensions. ACS Applied Materials & Interfaces, 2022, 14, 46439-46448.	4.0	7
14742	Clean preparation of Fe2SiO4 coated Fe2O3 integrated with graphene for Li-ion storage application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130275.	2.3	5
14743	Operando monitoring of the open circuit voltage during electrolyte filling ensures high performance of lithium-ion batteries. Nano Energy, 2022, 104, 107874.	8.2	6
14744	Li(Ni _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>} O ₂ with high specific surface area prepared by electrospinning. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2022, 45, 706-712.	0.6	0

		CITATION REP	ORT	
#	Article		IF	CITATIONS
14745	A Nonflammable Highâ€Voltage 4.7 V Anodeâ€Free Lithium Battery. Advanced Materials	, 2022, 34, .	11.1	24
14746	Hewettite ZnV6O16·8H2O with Remarkably Stable Layers and Ultralarge Interlayer Spa Highâ€Performance Aqueous Znâ€ion Batteries. Angewandte Chemie, 0, , .	cing for	1.6	2
14747	Hewettite ZnV ₆ O ₁₆ â< 8H ₂ O with Re Ultralarge Interlayer Spacing for Highâ€Performance Aqueous Znâ€Ion Batteries. Angew International Edition, 2023, 62, .		d 7.2	19
14748	Expanding the reversibility of graphite-Li metal hybrid anodes by interface and inner-strue modifications. Energy Storage Materials, 2022, 53, 621-628.	cture	9.5	10
14749	Interfacial high-concentration electrolyte for stable lithium metal anode: Theory, design, demonstration. Nano Research, 2023, 16, 8321-8328.	and	5.8	2
14750	Molecular engineering of interplanar spacing via π-conjugated phenothiazine linkages fo 2D covalent organic framework batteries. CheM, 2023, 9, 117-129.	r high-power	5.8	13
14751	Linear correlation between state-of-health and incremental state-of-charge in Li-ion batte application to SoH evaluation. Electrochimica Acta, 2022, 434, 141300.	ries and its	2.6	11
14752	Enhanced electrochemical performance of Na4MnCr(PO4)3@C cathode by multi-walled nanotubes interconnection for Na-ion batteries. Journal of Electroanalytical Chemistry, 2 116873.		1.9	3
14753	Recent advances in NASICON-type oxide electrolytes for solid-state sodium-ion recharge lonics, 2022, 28, 5289-5319.	able batteries.	1.2	12
14754	Highly Stable Lithium Metal Batteries by Regulating the Lithium Nitrate Chemistry with a Eutectic Electrolyte. Advanced Energy Materials, 2022, 12, .	Modified	10.2	22
14755	Reconfiguring Sodium Intercalation Process of TiS ₂ Electrode for Sodium-Ic by a Partial Solvent Cointercalation. ACS Energy Letters, 2022, 7, 3718-3726.	n Batteries	8.8	8
14756	Flameâ€Retardant Crosslinked Polymer Stabilizes Graphite–Silicon Composite Anode f Selfâ€Extinguishing Lithiumâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	or	10.2	6
14757	Conductive polymerâ€based coating layer on copper current collector for enhanced perf Liâ€ion battery. Journal of Applied Polymer Science, 0, , .	ormance of	1.3	2
14758	Poly(ethylene oxide)â€Based Composite Electrolyte with Lithiumâ€Doped Highâ€Entrop Enabled Robust Solidâ€State Lithiumâ€Metal Batteries. Chemistry - an Asian Journal, 202		1.7	3
14759	Preparation of SnO2@TiO2/Graphene by micro-arc oxidation as an anode material for litbatteries. Inorganic Chemistry Communication, 2022, 145, 110048.	nium ion	1.8	7
14760	Synergetic effects of silica-coated silver nanowires in composite single-ion conducting por electrolytes for lithium metal batteries. Journal of Power Sources, 2022, 551, 232171.	blymer	4.0	4
14761	Bi-nanofillers integrated into PEO-based electrolyte for high-performance solid-state Li m batteries. Journal of Power Sources, 2022, 550, 232139.	etal	4.0	8
14762	Corrosion inhibition of aluminum current collector by a newly synthesized 5-formyl-8-hydroxyquinoline for aqueous-based battery. Journal of Power Sources, 2022,	550, 232142.	4.0	6

		CITATION RE	PORT	
#	Article		IF	CITATIONS
14763	Anode chemistry in calcium ion batteries: A review. Energy Storage Materials, 2022, 53,	467-481.	9.5	16
14764	Oxygen vacancy-rich Fe3O4 nanoparticle synthesized via facile electrochemical method material for high-performance lithium-ion batteries. Journal of Physics and Chemistry of 171, 111028.		1.9	1
14765	Doped superior garnet electrolyte toward all-solid-state Li metal batteries. Physics Open 100119.	, 2022, 13,	0.7	2
14766	Facile synthesis of amorphous carbon-coated bismuth phosphate nanocomposite for lit battery anode with ultra-long cycle stability. Journal of Solid State Chemistry, 2022, 316	nium-ion , 123588.	1.4	5
14767	Catalysis of nickel nanodomains on Li-F dissociation for high-capacity fluoride cathodes delithiation ability. Nano Energy, 2022, 103, 107843.	with prior	8.2	3
14768	Structural design enabled a hypotoxic Na _{3.36} FeV(PO ₄) _{with ultra-fast and ultra-long sodium storage. Nanoscale, 2022, 14, 15640-15650.}	3 cathode	2.8	5
14769	Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmot Energy and Environmental Science, 2022, 15, 5217-5228.	ropic effect.	15.6	18
14770	Cluster-derived TiO ₂ nanocrystals with multiple carbon coupling for interfapseudo-capacitive lithium storage. Dalton Transactions, 2022, 51, 17858-17868.	cial	1.6	1
14771	Tetraamidoindolyl calix[4]arene as a selective ion pair receptor for LiCl. Organic Chemis 2022, 9, 6888-6893.	try Frontiers,	2.3	4
14772	The Mechanical Properties of Batteries and Supercapacitors. , 2022, , .			0
14773	A strongly complexed solid polymer electrolyte enables a stable solid state high-voltage battery. Energy and Environmental Science, 2022, 15, 5149-5158.	lithium metal	15.6	40
14774	Perpetual Voltage Control with Flexible Thin Battery from Green Garbage Materials. , 20	22, , 1-9.		0
14775	Single-wall and graphene-modified multiwall wasp nest shaped Bi ₂ Mo ₂ O ₉ self-assembly for performance-enhan supercapacitor. Journal of Materials Chemistry C, 2022, 10, 16453-16464.	ced asymmetric	2.7	9
14776	Prospective Electrolytes for Solid-State Battery. Advances in Material Research and Tech , 127-155.	nology, 2022,	0.3	0
14777	2D Nb2O5@2D Metallic RuO2 Heterostructures as Highly Reversible Anode Materials for Batteries. , 0, 1, .	or Lithium-ion		0
14778	Designing and tuning the components of random terpolymers toward Ampere-hour-scal lithium batteries. Journal of Materials Chemistry A, 2022, 10, 23562-23569.	e organic	5.2	1
14779	Linearized Tracking of Dendritic Evolution in Rechargeable Batteries. Journal of the Elect Society, 2022, 169, 112507.	rochemical	1.3	1
14780	Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Applications for Monovalent and Multivalent Metalâ€Ion Hybrid Capacitors. Small, 2022		5.2	29

#	Article	IF	Citations
14781	The role of polysulfide-saturation in electrolytes for high power applications of real world Li-S pouch cells. Nano Research, 2023, 16, 8313-8320.	5.8	2
14782	Transition Metal Carbides Filler-Reinforced Composite Polymer Electrolyte for Solid-State Lithium-Sulfur Batteries at Room Temperature: Breakthrough. Energies, 2022, 15, 7827.	1.6	2
14783	Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy. Nature Communications, 2022, 13, .	5.8	11
14784	Solvent-free protic liquid enabling batteries operation at an ultra-wide temperature range. Nature Communications, 2022, 13, .	5.8	20
14785	Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage. ACS Applied Materials & Interfaces, 2022, 14, 48727-48733.	4.0	6
14786	An Electrocatalytic Model of the Sulfur Reduction Reaction in Lithium–Sulfur Batteries. Angewandte Chemie, 2022, 134, .	1.6	2
14787	3D Sodiophilic Ti ₃ C ₂ MXene@g-C ₃ N ₄ Hetero-Interphase Raises the Stability of Sodium Metal Anodes. ACS Nano, 2022, 16, 17197-17209.	7.3	26
14788	α-graphyne as a promising anode material for Na-ion batteries: a first-principles study. Nanotechnology, 2023, 34, 045404.	1.3	5
14789	Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
14790	Underpinnings of Multiscale Interactions and Heterogeneities in Liâ€lon Batteries: Electrode Microstructure to Cell Format. Energy Technology, 2023, 11, .	1.8	2
14791	Controlled Nitrogen Doping in Crumpled Graphene for Improved Alkali Metalâ€Ion Storage under Lowâ€Temperature Conditions. Advanced Functional Materials, 2023, 33, .	7.8	11
14792	Effect of Extremely Short-Sized MWCNT as Additive Material in High Surface Area Activated Carbon and Its Enhanced Electrical LIC Performance. Molecules, 2022, 27, 7033.	1.7	0
14793	Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies. Molecules, 2022, 27, 6516.	1.7	8
14794	Mechanochemical Synthesis of N and S Dual-Doped Carbonaceous Anodes for Lithium-/Sodium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 13336-13345.	2.5	2
14795	High-Energy Metallic Lithium Batteries Enabled by Polymer-in-Salt Electrolytes of Cyclic Carbonate Substituted Polyethers. ACS Applied Polymer Materials, 2022, 4, 8584-8593.	2.0	7
14796	Thermalâ€Stable Separators: Design Principles and Strategies Towards Safe Lithiumâ€lon Battery Operations. ChemSusChem, 2022, 15, .	3.6	13
14797	Electrochemical In Situ/ <i>operando</i> Spectroscopy and Microscopy Part 2: Battery Applications. Electrochemistry, 2022, 90, 102010-102010.	0.6	1
14798	Performance of Li-ion battery with silicon nanowire in anode. Journal of Physics: Conference Series, 2022, 2355, 012071.	0.3	0

#	Article	IF	CITATIONS
14799	An Electrocatalytic Model of the Sulfur Reduction Reaction in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
14800	Gradient Designs for Efficient Sodium Batteries. ACS Energy Letters, 2022, 7, 4106-4117.	8.8	16
14801	Recent developments of polysaccharideâ€based doubleâ€network hydrogels. Journal of Polymer Science, 2023, 61, 7-43.	2.0	20
14802	Correlation between Electrolyte Chemistry and Solid Electrolyte Interphase for Reversible Ca Metal Anodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
14803	Recent advances based on Mg anodes and their interfacial modulation in Mg batteries. Journal of Magnesium and Alloys, 2022, 10, 2699-2716.	5.5	29
14804	Silicon as Emerging Anode in Solid-State Batteries. ACS Energy Letters, 2022, 7, 4005-4016.	8.8	59
14805	Exfoliation and Reassembly Routes to a Ge/RuO2 Nanocomposite as an Anode for Advanced Lithium-Ion Batteries. International Journal of Molecular Sciences, 2022, 23, 11766.	1.8	1
14806	Understanding fast ion dynamics in sodiated Li ₄ Na _x Ti ₅ O ₁₂ : from interfacial to extended Li ⁺ and Na ⁺ dynamics in its mixed-conducting solid solutions. JPhys Energy, 2023, 5, 015001.	2.3	1
14807	Rational design of thermally stable polymorphic layered cathode materials for next generation lithium rechargeable batteries. Materials Today, 2022, 61, 91-103.	8.3	16
14808	First-Principles Insights on the Formation Mechanism of Innermost Layers of Solid Electrolyte Interphases on Carbon Anodes for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 3654.	1.9	0
14809	Unlocking the High Capacity Ammoniumâ€lon Storage in Defective Vanadium Dioxide. Small, 2022, 18, .	5.2	19
14810	Investigation of effective bonding between varied binders and Si anode with different particle sizes. Applied Physics Letters, 2022, 121, 183901.	1.5	4
14811	S-doped crosslinked porous Si/SiO2 anode materials with excellent lithium storage performance synthesized via disproportionation. Ceramics International, 2023, 49, 5799-5807.	2.3	5
14812	Understanding the Impact of Multi-Chain Ion Coordination in Poly(ether-Acetal) Electrolytes. Macromolecules, 2022, 55, 9880-9889.	2.2	4
14813	Synthesis and characterization of graphene quantum dot/SiNP/carbon nanomaterial composites. Applied Nanoscience (Switzerland), 2022, 12, 3219-3228.	1.6	4
14814	Electrospun Nanofiber Electrodes for Lithiumâ€lon Batteries. Macromolecular Rapid Communications, 2023, 44, .	2.0	10
14815	Confined Synthesis of SnO2 Nanoparticles Encapsulated in Carbon Nanotubes for High-Rate and Stable Lithium-Ion Batteries. Journal of Electronic Materials, 2022, 51, 6637-6644.	1.0	1
14816	Molecularâ€Crowding Effect Mimicking Coldâ€Resistant Plants to Stabilize the Zinc Anode with Wider Service Temperature Range. Advanced Materials, 2023, 35, .	11.1	68

\sim			<u> </u>	
	ITAT	ION	RED	UDL
\sim	IIAI		IVEL 1	

#	Article	IF	CITATIONS
14817	Theoretical Prediction of Two-Dimensional Metal Boride Mg ₄ B ₆ as a High-Capacity Electrode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 17474-17481.	1.5	3
14818	Correlation between Electrolyte Chemistry and Solid Electrolyte Interphase for Reversible Ca Metal Anodes. Angewandte Chemie, 0, , .	1.6	0
14819	Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium. Angewandte Chemie, 0, , .	1.6	0
14820	Uniform Lithium Deposition Induced by ZnFx(OH)y for High-Performance Sulfurized Polyacrylonitrile-Based Lithium-Sulfur Batteries. Polymers, 2022, 14, 4494.	2.0	2
14821	High Discharge Capacity and Ultra-Fast-Charging Sodium Dual-Ion Battery Based on Insoluble Organic Polymer Anode and Concentrated Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 49774-49784.	4.0	11
14822	Coâ€Intercalation Batteries (CoIBs): Role of TiS ₂ as Electrode for Storing Solvated Na Ions. Advanced Energy Materials, 2022, 12, .	10.2	13
14823	BC2N nanotube as a promising anode for rechargeable calcium ion batteries. Materials Chemistry and Physics, 2023, 294, 126926.	2.0	5
14824	Room Temperature Synthesis of Vertically Aligned Amorphous Ultrathin <scp>NiCoâ€LDH</scp> Nanosheets Bifunctional Flexible Supercapacitor Electrodes. Energy and Environmental Materials, 0, ,	7.3	6
14825	Homogenous metallic deposition regulated by abundant lithiophilic sites in nickel/cobalt oxides nanoneedle arrays for lithium metal batteries. Journal of Energy Chemistry, 2023, 77, 11-18.	7.1	5
14826	Synergistic Effect of Bis(2,2,2-trifluoroethyl) Carbonate and Succinonitrile in Suppressing the Dissolution of Nickel for Performance Improvement of Nickel-Rich Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 14201-14210.	2.5	0
14827	Defectâ€Induced Dense Amorphous/Crystalline Heterophase Enables Highâ€Rate and Ultrastable Sodium Storage. Advanced Science, 2022, 9, .	5.6	21
14828	Emerging organic electrode materials for aqueous proton batteries. Trends in Chemistry, 2022, , .	4.4	4
14829	Li ⁺ Transport in Ethylene Carbonate Based Comb-Branched Solid Polymer Electrolyte: A Molecular Dynamics Simulation Study. ACS Applied Polymer Materials, 2022, 4, 8496-8507.	2.0	4
14830	Cooperative Cationic and Anionic Redox Reactions in Ultrathin Polyvalent Metal Selenide Nanoribbons for High-Performance Electrochemical Magnesium-Ion Storage. ACS Applied Materials & Interfaces, 2022, 14, 48734-48742.	4.0	17
14831	Non-negligible Influence of Oxygen in Hard Carbon as an Anode Material for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 47674-47684.	4.0	10
14832	Construction of a flexible, integrated rechargeable Li battery based on a coaxial anode with a carbon fiber core encapsulated in FeNiMnO4 and a nitrogen-doped carbon sheath. New Carbon Materials, 2022, 37, 944-955.	2.9	1
14833	Stabilization of garnet/Li interphase by diluting the electronic conductor. Science Advances, 2022, 8, .	4.7	25
14834	Li-Ion Diffusion Correlations in LiAlGeO ₄ : Quasielastic Neutron Scattering and Ab Initio Simulation. ACS Applied Energy Materials, 2022, 5, 14119-14126.	2.5	1

#	Article	IF	CITATIONS
14835	Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries. National Science Review, 2023, 10, .	4.6	26
14836	Superhalogen-based Li-rich double antiperovskite Li6OS(BH4)2 as solid electrolyte. MRS Communications, 2022, 12, 1140-1146.	0.8	2
14837	Tailoring grain boundary structures and chemistry of Li7La3Zr2O12 solid electrolytes for enhanced air stability. Energy Storage Materials, 2023, 54, 543-552.	9.5	19
14838	Early Braking of Overwarmed Lithium-Ion Batteries by Shape-Memorized Current Collectors. Nano Letters, 2022, 22, 9122-9130.	4.5	11
14839	Integrated conjugated microporous polymers/carbon nanotube composite boosting superior anodic lithium storage behavior. Batteries and Supercaps, 0, , .	2.4	0
14840	"In Situ―Formation of Zn Anode from Bimetallic Cu-Zn Alloy (Brass) for Dendrite-Free Operation of Zn-Air Rechargeable Battery. Batteries, 2022, 8, 212.	2.1	6
14841	Manganese-based NASICON structured Na1+2Mn Ti2-(PO4)3 as promising cathode in aqueous sodium ion battery. Journal of Alloys and Compounds, 2023, 934, 167872.	2.8	5
14843	Understanding fundamentals of electrochemical reactions with tender X-rays: A new lab-based operando X-ray photoelectron spectroscopy method for probing liquid/solid and gas/solid interfaces across a variety of electrochemical systems. Chinese Journal of Catalysis, 2022, 43, 2858-2870.	6.9	4
14844	Facile fabrication of MoS2 nanocrystals confined in waste leather derived N, P co-doped carbon fiber for long-lifespan of sodium/potassium ion batteries. Journal of Physics and Chemistry of Solids, 2023, 172, 111080.	1.9	2
14845	Achieving High Performance of Lithium Metal Batteries by Improving the Interfacial Compatibility between Organic and Inorganic Electrolytes Using a Lithium Single-Ion Polymer. ACS Applied Energy Materials, 2022, 5, 14175-14184.	2.5	1
14846	In situ formed synaptic Zn@LiZn host derived from ZnO nanofiber decorated Zn foam for dendrite-free lithium metal anode. Nano Research, 2023, 16, 8345-8353.	5.8	5
14847	Improving electrochemical properties of LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium ion batteries by controlling calcination gas atmosphere. Solid State Ionics, 2022, 386, 116031.	1.3	2
14848	Reversible lithium deposition/dissolution reaction with low polarization through a cross-linked polymer: Geometrical structure effects of the polymer protective layer on lithium metal anodes. Solid State Ionics, 2022, 386, 116045.	1.3	1
14849	Physics-Based SoH Estimation for Li-Ion Cells. Batteries, 2022, 8, 204.	2.1	10
14850	Facile design of alloy-based hybrid layer to stabilize lithium metal anode. Electrochimica Acta, 2022, 436, 141464.	2.6	1
14851	Optimized structure stability and cycling performance of LiNi0.8Co0.1Mn0.1O2 through homogeneous nano-thickness Al2O3 coating. Electrochimica Acta, 2022, 435, 141411.	2.6	8
14852	An overlooked parameter in Li-S batteries: The impact of electrolyte-to-sulfur ratio on capacity fading. Nano Energy, 2022, 104, 107913.	8.2	21
14853	Mitigating interfacial instability of high-voltage sodium layered oxide cathodes with coordinative polymeric structure. Journal of Power Sources, 2022, 552, 232235.	4.0	6

#	Article	IF	CITATIONS
14854	A high-performance solid sodium battery enabled by a thin Na-Ti3C2Tx composite anode. Electrochimica Acta, 2022, 436, 141424.	2.6	4
14855	Electrochemical investigation of double layer surface-functionalized Li-NMC cathode with nano-composite gel polymer electrolyte for Li-battery applications. Electrochimica Acta, 2022, 435, 141328.	2.6	4
14856	Interface functionalization of composite electrolyte by Lix-CeO2 layer on the surface of Li6.4La3Zr1.4Ta0.6O12. Electrochimica Acta, 2022, 435, 141366.	2.6	0
14857	First-principles study on selenium-doped Li10GeP2S12 solid electrolyte: Effects of doping on moisture stability and Li-ion transport properties. Materials Today Chemistry, 2022, 26, 101223.	1.7	3
14858	Defective nano-structure regulating C-F bond for lithium/fluorinated carbon batteries with dual high-performance. Nano Energy, 2022, 104, 107905.	8.2	17
14859	First-principles studies of the two-dimensional 1H-BeP2 as an electrode material for rechargeable metal ion (Li+, Na+, K+) batteries. Computational Materials Science, 2023, 216, 111868.	1.4	5
14860	Synergistic effects of conformal surface precise nanofilm coating and doping on single-crystal LiNi0.5Co0.2Mn0.3O2 at high voltage. Applied Surface Science, 2023, 609, 155162.	3.1	5
14861	Constructing solid electrode-electrolyte interfaces in high-voltage Li LiCoO2 batteries under dual-additive electrolyte synergistic effect. Journal of Power Sources, 2023, 553, 232311.	4.0	10
14862	Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Materials, 2023, 54, 227-253.	9.5	19
14863	A poly(ether block amide) based solid polymer electrolyte for solid-state lithium metal batteries. Journal of Colloid and Interface Science, 2023, 630, 595-603.	5.0	5
14864	Energy harvesting and storage for stand-alone microsystems. , 2023, , 283-306.		0
14865	High energy density flexible and ecofriendly lithium-ion smart battery. Energy Storage Materials, 2023, 54, 266-275.	9.5	7
14866	Constructing a 700 Wh kgâ^'1-level rechargeable lithium-sulfur pouch cell. Journal of Energy Chemistry, 2023, 76, 181-186.	7.1	48
14867	A synergistic effect on a ternary Co-S-Se catalytic material for simultaneous enhancement of the kinetics and stability in a lithium-sulfur battery. Applied Surface Science, 2023, 609, 155333.	3.1	0
14868	Structure dependence of fracture toughness and ionic conductivity in lithium borophosphate glassy electrolytes for all-solid-state batteries. Journal of Power Sources, 2023, 553, 232302.	4.0	2
14869	Two-dimensional porous β-Co(OH)2 and Co3O4 hexagonal nanoplates as stable and high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 933, 167618.	2.8	5
14870	Enhanced pseudocapacitive energy storage and thermal stability of Sn ²⁺ ion-intercalated molybdenum titanium carbide (Mo ₂ TiC ₂) MXene. RSC Advances, 2022, 12, 31923-31934.	1.7	10
14871	Green and Sustainable Battery Materials. , 2022, , 2337-2365.		0

#	Article	IF	CITATIONS
14872	Polysulfide shuttle mitigation through a tailored separator for critical temperature energy-dense lithium–sulfur batteries. Sustainable Energy and Fuels, 0, , .	2.5	1
14873	On the performance of a hierarchically porous Ag ₂ S–Cu _{<i>x</i>} S electrode in Li-ion batteries. Dalton Transactions, 0, , .	1.6	0
14874	Utilizing MOF precursors toward one-step, calcination-free synthesis of MnO ₂ superstructures for superior lithium storage. Sustainable Energy and Fuels, 2022, 7, 181-189.	2.5	2
14875	<i>In situ</i> electrochemical synthesis of Pd aerogels as highly efficient anodic electrocatalysts for alkaline fuel cells. Chemical Science, 2022, 13, 13956-13965.	3.7	12
14876	Tuning the annealing temperature to achieve heterostructured nanofibers for high performance lithium-ion batteries. New Journal of Chemistry, 2022, 47, 167-178.	1.4	3
14877	From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives. Energy and Environmental Science, 2023, 16, 11-52.	15.6	35
14878	Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes. Journal of Power Sources, 2023, 555, 232336.	4.0	9
14879	All-in-one structured textile energy storage electrodes prepared via Janus bond assembly-induced electrodeposition. Chemical Engineering Journal, 2023, 454, 140150.	6.6	2
14880	Enabling robust anionic redox structure via tuning the symmetry of locally ordered lattice in Li-rich Li-Mn-O cathodes. Chemical Engineering Journal, 2023, 454, 140327.	6.6	4
14881	Longitudinally grown pyrolyzed quinacridones for sodium-ion battery anode. Chemical Engineering Journal, 2023, 453, 139805.	6.6	7
14882	Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare Metals, 2023, 42, 740-750.	3.6	5
14883	Visualizing surface-enriched Li storage with a nanopore-array model battery. Nano Research, 2023, 16, 5026-5032.	5.8	1
14884	Soft X-ray emission spectroscopy finds plenty of room in exploring lithium-ion batteries. Materials Research Letters, 2023, 11, 239-249.	4.1	6
14885	Recent Progress of Anode Protection in Liâ \in S Batteries. Energy Technology, 2023, 11, .	1.8	7
14886	State-of-the-art in bioresources for sustainable transportation. International Journal of Hydrogen Energy, 2023, 48, 3768-3790.	3.8	7
14887	Li ₂ Se: A High Ionic Conductivity Interface to Inhibit the Growth of Lithium Dendrites in Garnet Solid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 50710-50717.	4.0	4
14888	Integration strategy for facile fabrication of porous carbon coated Fe3O4 nanospindles with enhanced lithium storage. Journal of Alloys and Compounds, 2023, 935, 168105.	2.8	4
14889	Collaboration of two-star nanomaterials: The applications of nanocellulose-based metal organic frameworks composites. Carbohydrate Polymers, 2023, 302, 120359.	5.1	15

#	Article	IF	CITATIONS
14890	A Shuttleâ€Free Solidâ€State Cuâ^'Li Battery Based on a Sandwichâ€Structured Electrolyte. Angewandte Chemie, 2023, 135, .	1.6	2
14891	Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	29
14892	Electrospun Interconnected Bead-Like P2-NaxCoyMn1â^'yO2 (x = 0.66, y = 0.1) Cathode Material for Stable Sodium-Ion Storage. Batteries, 2022, 8, 237.	2.1	1
14893	Assisting Zn storage in layered vanadyl phosphate cathode by interactions with oligoaniline pillars for rechargeable aqueous zinc batteries. Chemical Engineering Journal, 2023, 454, 140323.	6.6	5
14894	Decavanadate-Type Polyoxometalate Anions Encapsulated in a MIL-100 Framework with Enhanced Mixed Ion–Electron Conduction and Potential Application as Cathode Materials for a Lithium Ion Battery. , 2023, 1, 350-358.		1
14895	Progress of Atomic Layer Deposition and Molecular Layer Deposition in the Development of Allâ€Solidâ€State Lithium Batteries. Batteries and Supercaps, 2023, 6, .	2.4	3
14896	Balancing Activity and Stability in Spinel Cobalt Oxides through Geometrical Sites Occupation towards Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie, 0, , .	1.6	0
14897	Filling Selenium into Sulfur Vacancies in Ultrathin Tungsten Sulfide Nanosheets for Superior Potassium Storage. ACS Applied Materials & Interfaces, 2022, 14, 51994-52006.	4.0	4
14898	Recent Advances in the Multifunctional Natural Gum-Based Binders for High-Performance Rechargeable Batteries. Energies, 2022, 15, 8552.	1.6	5
14900	Recent Advances on Highâ€Capacity Sodium Manganeseâ€Based Oxide Cathodes for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2023, 29, .	1.7	3
14901	Synthesis and Fast Exfoliation of Layered GeP Nanosheets for Advanced Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 14550-14558.	2.5	2
14902	Comparative study on high-voltage safety performance of LiNixMnyCozO2 cathode with different nickel contents. Applied Physics Letters, 2022, 121, .	1.5	3
14903	Activation of 2D MoS2 electrodes induced by high-rate lithiation processes. Journal of Energy Chemistry, 2023, 78, 56-70.	7.1	7
14904	Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect. Journal of Materials Research, 2022, 37, 3931-3941.	1.2	3
14905	Vanadium Oxide-Poly(3,4-ethylenedioxythiophene) Nanocomposite as High-Performance Cathode for Aqueous Zn-Ion Batteries: The Structural and Electrochemical Characterization. Nanomaterials, 2022, 12, 3896.	1.9	3
14906	Costâ€Effective Vat Orange 3â€Đerived Organic Cathodes for Electrochemical Energy Storage. Batteries and Supercaps, 0, , .	2.4	2
14907	Balancing Activity and Stability in Spinel Cobalt Oxides through Geometrical Sites Occupation towards Efficient Electrocatalytic Oxygen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	7.2	30
14908	Entropy Stabilization Strategy for Enhancing the Local Structural Adaptability of Liâ€Rich Cathode Materials. Advanced Materials, 2023, 35, .	11.1	28

#	Article	IF	CITATIONS
14909	A Shuttleâ€Free Solid‣tate Cuâ^'Li Battery Based on a Sandwich‣tructured Electrolyte. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
14910	An Fe ₂ O ₃ /Mn ₂ O ₃ Nanocomposite Derived from a Metalâ€Organic Framework as an Anode Material for Lithiumâ€ion Batteries. ChemistrySelect, 2022, 7, .	0.7	0
14911	Highâ€resolution mass spectroscopy for revealing the charge storage mechanism in batteries: Oxamide materials as an example. Energy and Environmental Materials, 0, , .	7.3	1
14912	Boosting the lithium-ion storage performance of perovskite Sr VO3â^' via Sr cation and O anion deficient engineering. Science Bulletin, 2022, , .	4.3	4
14913	Organofluorophosphates as Oxidative Degradation Products in High-Voltage Lithium Ion Batteries with NMC or LNMO Cathodes. Journal of the Electrochemical Society, 2022, 169, 110534.	1.3	4
14914	Blending of Activated Low-Grade Coal Powder with Coconut Shell Waste for Supercapacitor Applications. Energy & amp; Fuels, 2022, 36, 14476-14489.	2.5	7
14915	Atomically dispersed Co-N4C2 catalytic sites for wide-temperature Na-Se batteries. Nano Energy, 2023, 105, 108005.	8.2	7
14916	Long-life lithium-metal batteries with dendrite-free anodes enabled by Zn(TFSI)2 additive. Journal of Alloys and Compounds, 2023, 936, 168108.	2.8	3
14917	Tunable Conjugated Porous Polymers with Cyano-Containing Organic Molecules as Anode Materials for High-Performance Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 14541-14549.	2.5	5
14918	Unlock the Potassium Storage Behavior of Singleâ€Phased Tungsten Selenide Nanorods via Large Cation Insertion. Advanced Materials, 2023, 35, .	11.1	10
14919	An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nature Communications, 2022, 13, .	5.8	48
14920	Synthesis and electrochemical properties of Mn-doped porous Mg0.9Zn0.1Fe2â^'xMnxO4 (0Â≤Ââ‰Â1.25) spinel oxides as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 935, 167997.	2.8	9
14921	Imine-linked triazine-based conjugated microporous polymers/carbon nanotube composites as organic anode materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130496.	2.3	2
14922	An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries. Journal of Energy Storage, 2022, 56, 105955.	3.9	5
14923	Metallic group VB transition metal dichalcogenides for electrochemical energy storage. Materials Today Chemistry, 2022, 26, 101241.	1.7	5
14924	Dendrite-free zinc anode enabled by Buffer-like additive via strong cationic specific absorption. Chemical Engineering Journal, 2023, 454, 140435.	6.6	24
14925	Modulating Electron Conducting Properties at Lithium Anode Interfaces for Durable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 53850-53859.	4.0	15
14926	A Review of the Application of Carbon Materials for Lithium Metal Batteries. Batteries, 2022, 8, 246.	2.1	9

#	Article	IF	CITATIONS
14927	Tuning NiCo2O4 bifunctionality with nitrogen-doped graphene nanoribbons in oxygen electrocatalysis for zinc-air battery application. Journal of Electroanalytical Chemistry, 2023, 928, 117000.	1.9	9
14928	Highly Conductive Solid Polymer Electrolytes by <i>para</i> -Fluoro/Thiol Clicked Diblock Copolymer Self-Assembly: Paving the Way for Nanostructured Materials for Lithium-Ion Conductivity. ACS Applied Energy Materials, 2022, 5, 15520-15528.	2.5	1
14929	One-step co-precipitation of MnSe2/CNTs as a high-performance cathode material for zinc-ion batteries. Ceramics International, 2023, 49, 10165-10171.	2.3	5
14931	Multiâ€Ionic Capacity of Znâ€Al/V ₆ O ₁₃ Systems Enable Fastâ€Charging and Ultraâ€Stable Aqueous Aluminiumâ€Ion Batteries. ChemElectroChem, 2022, 9, .	1.7	2
14932	Novel Cu1.8Se carbon fiber composite for aluminum-ion battery cathode materials: Outstanding electrochemical performance. Composites Part B: Engineering, 2023, 249, 110411.	5.9	1
14933	Ultrathin CoOOH/Co(OH)2 hybrid nanosheets for high-performance anodes of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 935, 168076.	2.8	3
14934	Fast divalent conduction in MB ₁₂ H ₁₂ ·12H ₂ O (M = Zn, Mg) complex hydrides: effects of rapid crystal water exchange and application for solid-state electrolytes. Journal of Materials Chemistry A, 2022, 10, 24877-24887.	5.2	6
14935	Surface film formation on Mg electrode containing magnesium polysulfides in TFSI-based electrolytes. Journal of Power Sources, 2023, 555, 232367.	4.0	3
14936	In situ formation of organosulfide-metal complexes in cathode for lithium battery. Journal of Power Sources, 2023, 555, 232355.	4.0	1
14937	A Low ost and Recyclable Mg/SOCl ₂ Primary Battery Via Synergistic Solvation and Kinetics Regulation. Advanced Functional Materials, 2023, 33, .	7.8	1
14938	Co-doped g-C ₃ N ₄ nanotube decorated separators mediate polysulfide redox for high performance lithium sulfur batteries. Nanoscale Advances, 2023, 5, 471-478.	2.2	2
14939	Red phosphorus/graphite composite as a high performance anode for lithium-ion batteries. Solid State Ionics, 2023, 389, 116098.	1.3	6
14940	Low-temperature lithium-ion batteries: challenges and progress of surface/interface modifications for advanced performance. Nanoscale, 2023, 15, 987-997.	2.8	9
14941	Broadband Wide-Angle VElocity Selector (BWAVES) neutron spectrometer designed for the SNS Second Target Station. EPJ Web of Conferences, 2022, 272, 02003.	0.1	0
14942	Elucidating the Adsorption and Co-adsorption of Potassium and Oxygen on (110) MnO ₂ , TiO ₂ and VO ₂ Surfaces. MATEC Web of Conferences, 2022, 370, 02001.	0.1	0
14943	Hard carbon production from corncob and oil-palm empty fruit bunch for Li-ion battery. AIP Conference Proceedings, 2022, , .	0.3	0
14944	Ionothermal synthesis of activated carbon from waste PET bottles as anode materials for lithium-ion batteries. RSC Advances, 2022, 12, 34670-34684.	1.7	7
14945	Fundamental, application and opportunities of single atom catalysts for Li-S batteries. Energy Storage Materials, 2023, 55, 322-355.	9.5	36

#	Article	IF	CITATIONS
14946	Bulk oxygen release inducing cyclic strain domains in Ni-rich ternary cathode materials. Energy Storage Materials, 2023, 55, 691-697.	9.5	3
14947	Soft anharmonic coupled vibrations of Li and SiO ₄ enable Li-ion diffusion in amorphous Li ₂ Si ₂ O ₅ . Journal of Materials Chemistry A, 2023, 11, 1712-1722.	5.2	2
14948	Conformal carbon nitride thin film inter-active interphase heterojunction with sustainable carbon enhancing sodium storage performance. Journal of Materials Chemistry A, 2023, 11, 1439-1446.	5.2	4
14949	Origin of over-cycling tolerance achieved by metal phosphate coating for transition metal oxide lithium-ion batteries. Solid State Ionics, 2023, 389, 116105.	1.3	0
14950	Preparation and degradation of high air stability sulfide solid electrolyte 75Li2S·25P2S5 glass-ceramic. Solid State Ionics, 2023, 389, 116106.	1.3	3
14951	Surface modification of carbon fiber cloth with graphene oxide through an electrophoresis method for lithium metal anode. Carbon, 2023, 203, 743-752.	5.4	13
14952	A voltage control strategy to improve the cycling stability of organic electrode materials: The case of para-dinitrobenzene. Chemical Engineering Journal, 2023, 456, 141114.	6.6	7
14953	Understanding the active formation of a cathode–electrolyte interphase (CEI) layer with energy level band bending for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 11, 221-231.	5.2	6
14954	Structure regulation induced high capacity and ultra-stable cycling of conjugated organic cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2022, 11, 77-83.	5.2	5
14955	Uracil-based additives for enabling robust interphases of high-voltage Li-ion batteries at elevated temperature by substituent effects. Materials Chemistry Frontiers, 2023, 7, 249-258.	3.2	2
14956	A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energy and Environmental Science, 2023, 16, 438-445.	15.6	12
14957	Constructing VS4/Nb2O5/GO composite to facilitate rapid Na+ transport with internal and external synergy. Electrochimica Acta, 2023, 439, 141600.	2.6	3
14958	Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects. Materials Today Chemistry, 2023, 27, 101294.	1.7	8
14959	Few-layer δ-MnO2 nanosheets grown on three-dimensional N-doped hierarchically porous carbon networks for long-life aqueous zinc ion batteries. Carbon, 2023, 203, 326-336.	5.4	10
14960	A closed-loop control on temperature difference of a lithium-ion battery by pulse heating in cold climates. Journal of Energy Storage, 2023, 57, 106311.	3.9	4
14961	On the contribution of phonons to electrochemical potential of Li-ion metal-organic frameworks. Electrochimica Acta, 2023, 439, 141734.	2.6	1
14962	Metastable properties of a garnet type Li ₅ La ₃ Bi ₂ O ₁₂ solid electrolyte towards low temperature pressure driven densification. Journal of Materials Chemistry A, 2022, 11, 364-373.	5.2	3
14963	A study of superstructure Hf ₆ Ta ₂ O ₁₇ ceramics for electrochemical energy storage applications. Sustainable Energy and Fuels, 2023, 7, 848-856.	2.5	6

#	Article	IF	CITATIONS
14964	Formation of effective carbon composite structure for improving electrochemical performances of rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium ion batteries. Journal of Electroanalytical Chemistry, 2023, 928, 117076.	1.9	0
14965	Orchestrating multiple cobalt compounds via a unique dual-templating design towards enhanced sulfur conversion kinetics. Electrochimica Acta, 2023, 439, 141720.	2.6	0
14966	Electrode/electrolyte additives for practical sodium-ion batteries: a mini review. Inorganic Chemistry Frontiers, 2022, 10, 37-48.	3.0	11
14967	Molecular engineering of atomically dispersed Fe-N4 and Cu-N4 dual-sites in carbon nitride nanotubes for rechargeable zinc–air batteries. Energy Storage Materials, 2023, 55, 397-405.	9.5	11
14968	Mechanism of inhomogeneous deformation and equal-stiffness design of large-format prismatic lithium-ion batteries. Applied Energy, 2023, 332, 120494.	5.1	5
14969	Studies on sodium-ion batteries: Searching for the proper combination of the cathode material, the electrolyte and the working voltage. The role of magnesium substitution in layered manganese-rich oxides, and pyrrolidinium ionic liquid. Electrochimica Acta, 2023, 439, 141654.	2.6	2
14970	Ionic liquid crystal electrolytes: Fundamental, applications and prospects. Nano Energy, 2023, 106, 108087.	8.2	23
14971	Progress and challenges of Prussian blue analogs for potassium-ion batteries: a perspective on redox-active transition metals. Journal of Materials Chemistry A, 2023, 11, 1532-1550.	5.2	10
14972	CoSe-catalyzed growth of graphene sheath to construct CNF@graphene-CoSe cable/sheath heterostructure for high-performance Lithium–Sulfur batteries. Carbon, 2023, 204, 102-111.	5.4	12
14973	Cross-linking chemistry enables robust conductive polymeric network for high-performance silicon microparticle anodes in lithium-ion batteries. Journal of Power Sources, 2023, 556, 232495.	4.0	4
14974	Enhancement of superconductivity in multilayer FeSe film by Nb coating. Solid State Communications, 2023, 360, 115026.	0.9	0
14975	Conjugated polycopper phthalocyanine as the anode-active material with high specific capacity for lithium-organic batteries. Materials Letters, 2023, 333, 133682.	1.3	1
14976	On the interfacial properties of the garnet-type electrolyte ceramic pellets of cubic Li6.4La3Zr1.4Ta0.6O12: A comprehensive improvement of the sintering additive of Li-ion conducting LiCl. Journal of Power Sources, 2023, 556, 232459.	4.0	4
14977	Fundamentals and advances of ligand field theory in understanding structure-electrochemical property relationship of intercalation-type electrode materials for rechargeable batteries. Progress in Materials Science, 2023, 133, 101055.	16.0	16
14978	One-step constructed oxygen vacancies and Fe-doping to improve the electrochemical performance of Li-rich Mn-based cathode. Journal of Alloys and Compounds, 2023, 937, 168426.	2.8	3
14979	Theoretical exploration of the structural evolution of sodium sulfide clusters in Na-S batteries. Applied Surface Science, 2023, 613, 155906.	3.1	4
14980	Synergistic effect of NaTi2(PO4)3 and MXene synthesized in situ for high-performance sodium-ion capacitors. Applied Surface Science, 2023, 612, 155960.	3.1	7
14981	Constructing practical micron silicon anodes via a homogeneous and robust network binder induced by a strong-affinity inorganic oligomer. Journal of Colloid and Interface Science, 2023, 634, 621-629.	5.0	1

#	Article	IF	CITATIONS
14982	Impact of carbon additives on lead-acid battery electrodes: A review. Renewable and Sustainable Energy Reviews, 2023, 173, 113078.	8.2	14
14983	Investigating the local structure of Ti based MXene materials by temperature dependent X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2023, 25, 3011-3019.	1.3	3
14984	Liquid-Metal Batteries for Next Generation. , 2022, , 1-22.		0
14985	Recent Developments of Solid-State Electrolytes for All-Solid-State Lithium Metal Batteries. , 2022, , .		0
14986	Electrolyte Additive-Controlled Interfacial Models Enabling Stable Antimony Anodes for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 20302-20313.	1.5	6
14987	Operando Observation of Coupled Discontinuous-Continuous Transitions in Ion-Stabilized Intercalation Cathodes. Batteries, 2022, 8, 252.	2.1	0
14988	Electrochemoâ€Mechanical Stresses and Their Measurements in Sulfideâ€Based Allâ€Solidâ€State Batteries: A Review. Advanced Energy Materials, 2023, 13, .	10.2	20
14989	Gradient "Single rystal―Liâ€Rich Cathode Materials for High‧table Lithiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	21
14990	In Situ Formation of LiF-Rich Carbon Interphase on Silicon Particles for Cycle-Stable Battery Anodes. Transactions of Tianjin University, 2023, 29, 101-109.	3.3	3
14991	Clarifying the Relationship between the Lithium Deposition Coverage and Microstructure in Lithium Metal Batteries. Journal of the American Chemical Society, 2022, 144, 21961-21971.	6.6	21
14992	Pulse High Temperature Sintering to Prepare Singleâ€Crystal High Nickel Oxide Cathodes with Enhanced Electrochemical Performance. Advanced Energy Materials, 2023, 13, .	10.2	17
14993	Influence of the operating temperature on the ageing and interfaces of double layer polymer electrolyte solid state Li metal batteries. Nano Research, 2023, 16, 8377-8384.	5.8	3
14994	Composite Electrolytes Prepared by Improving the Interfacial Compatibility of Organic–Inorganic Electrolytes for Dendrite-Free, Long-Life All-Solid Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 53828-53839.	4.0	6
14995	Triggering the Phase Conversion of GeP from Monoclinic to Cubic by Zn Substitution toward a Highâ€Rate Ge _{1â''x} Zn _x P Solid Solution Anode for Liâ€ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	2
14996	Reevaluating Flexible Lithium-Ion Batteries from the Insights of Mechanics and Electrochemistry. Electrochemical Energy Reviews, 2022, 5, .	13.1	11
14997	Atomic Layer Deposition for Electrochemical Energy: from Design to Industrialization. Electrochemical Energy Reviews, 2022, 5, .	13.1	21
14998	Uncovering the Fundamental Role of Interlayer Water in Charge Storage for Bilayered V ₂ O ₅ · <i>n</i> H ₂ O Xerogel Cathode Materials. Advanced Energy Materials, 2023, 13, .	10.2	32
14999	Halide Solidâ€State Electrolytes: Stability and Application for High Voltage Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2023, 13, .	10.2	29

#	Article	IF	Citations
15000	Adjusting the Electrolyte Polarity to Address the Dissolution Issue of Organic Electrode. Batteries and Supercaps, 2023, 6, .	2.4	3
15001	Ion-Conducting Robust Cross-Linked Organic/Inorganic Polymer Composite as Effective Binder for Electrode of Electrochemical Capacitor. Polymers, 2022, 14, 5174.	2.0	0
15002	Applications of In Situ Neutron-Based Techniques in Solid-State Lithium Batteries. Batteries, 2022, 8, 255.	2.1	0
15003	Carbon nanotube-hyperbranched polymer core-shell nanowires with highly accessible redox-active sites for fast-charge organic lithium batteries. Journal of Energy Chemistry, 2022, , .	7.1	3
15004	Review—Lithium Carbon Composite Material for Practical Lithium Metal Batteries. Chinese Journal of Chemistry, 2023, 41, 814-824.	2.6	4
15005	MXenes for Sulfurâ€Based Batteries. Advanced Energy Materials, 2023, 13, .	10.2	24
15006	Restraining Shuttle Effect in Rechargeable Batteries by Multifunctional Zeolite Coated Separator. Advanced Functional Materials, 2023, 33, .	7.8	10
15008	Zeolite-Based Electrolytes: A Promising Choice for Solid-State Batteries. , 2022, 1, .		3
15009	Structural Improvement of the Blatter Radical for High-Current Organic Batteries. ACS Applied Energy Materials, 2022, 5, 15019-15028.	2.5	5
15010	Quenchingâ€Induced Defects Liberate the Latent Reversible Capacity of Lithium Titanate Anode. Advanced Materials, 2023, 35, .	11.1	7
15011	A Semiâ€solid Zinc Powderâ€based Slurry Anode for Advanced Aqueous Zincâ€ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	8
15012	Synthesis and Structure Stabilization of Disordered Rock Salt Mn/V-Based Oxyfluorides as Cathode Materials for Li-Ion Batteries. ACS Materials Au, 2023, 3, 132-142.	2.6	5
15013	A Semiâ€solid Zinc Powderâ€based Slurry Anode for Advanced Aqueous Zincâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	34
15014	Effects of Diffusion-Induced Nonlinear Local Volume Change on the Structural Stability of NMC Cathode Materials of Lithium-Ion Batteries. Mathematics, 2022, 10, 4697.	1.1	4
15015	Synthesis of D-A-Type Polymers Containing Thieno[3,2-b]thiophene Unit, Their Composites with Carbon, and Lithium Storage Performance as Anode Materials. Coatings, 2022, 12, 1912.	1.2	2
15016	Polyacrylonitrile-Polyvinyl Alcohol-Based Composite Gel-Polymer Electrolyte for All-Solid-State Lithium-Ion Batteries. Polymers, 2022, 14, 5327.	2.0	5
15017	Recent Advances in Conduction Mechanisms, Synthesis Methods, and Improvement Strategies for Li ₁₊ <i>_x</i> Al <i>_x</i> Ti _{2â^'} <i>_x</i> (pO _{4 Solid Electrolyte for Allâ€6olidâ€6tate Lithium Batteries. Advanced Energy Materials, 2023, 13, .}	<td>ubø3</td>	ubø3
15018	Three-dimensional architecture of multichannel carbon fibers for enhanced lithium and sodium storage properties. Chemical Engineering Journal, 2023, 455, 140788.	6.6	6

#	Article	IF	CITATIONS
15019	Influence of AlPO ₄ Impurity on the Electrochemical Properties of NASICONâ€Type Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ Solid Electrolyte. ChemElectroChem, 2022, 9, .	1.7	3
15020	Preparation of CeO2-coated Li1.2Mn0.54Co0.13Ni0.13O2 as cathode materials for Lithium Ion Batteries. International Journal of Electrochemical Science, 2022, 17, 221265.	0.5	0
15021	Fluorinated Solid‣tate Electrolytes for Lithium Batteries: Interface Design and Ion Conduction Mechanisms. Advanced Engineering Materials, 2023, 25, .	1.6	2
15022	Electrochemically Induced Defects Promotional High-Performance Binder-Free MnO@CC Cathodes for Flexible Quasi-Solid-State Zinc-Ion Battery. ACS Applied Energy Materials, 2022, 5, 15510-15519.	2.5	5
15023	Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Nature Communications, 2022, 13, .	5.8	24
15024	Electronic level modelling of graphene-borophene lateral heterostructures as anodes in Li-ion batteries. Applied Surface Science, 2023, 614, 156227.	3.1	2
15025	Evaluation of Cathode Materials with Lithium-Metal Anodes: Baseline Performance and Protocol Standardization of Coin Cells. Journal of the Electrochemical Society, 2023, 170, 010507.	1.3	1
15026	A Disordered Rubik's Cubeâ€Inspired Framework for Sodiumâ€Ion Batteries with Ultralong Cycle Lifespan. Angewandte Chemie - International Edition, 2023, 62, .	7.2	36
15027	Thiolate-Based Electrolytes with Anion-Dominated Solvation for Highly Stable Lithium Metal Batteries. Journal of Physical Chemistry C, 2022, 126, 21181-21187.	1.5	3
15028	Progress in electrode materials for the industrialization of sodium-ion batteries. Progress in Natural Science: Materials International, 2023, 33, 1-7.	1.8	29
15029	A disordered Rubik's cubeâ€inspired framework for sodiumâ€ion batteries with ultralong cycle lifespan. Angewandte Chemie, 0, , .	1.6	0
15030	Crossover effects of transition metal ions in high-voltage lithium metal batteries. Nano Research, 2023, 16, 8417-8424.	5.8	2
15031	Molecular dynamics simulations of fluoroethylene carbonate and vinylene carbonate as electrolyte additives for Li-ion batteries. Molecular Simulation, 2023, 49, 271-283.	0.9	0
15032	Blocking Directional Lithium Diffusion in Solid-State Electrolytes at the Interface: First-Principles Insights into the Impact of the Space Charge Layer. ACS Applied Materials & Interfaces, 2022, 14, 55471-55479.	4.0	0
15033	Dip-Coating of Carbon Fibers for the Development of Lithium Iron Phosphate Electrodes for Structural Lithium-Ion Batteries. Energy & amp; Fuels, 2023, 37, 711-723.	2.5	7
15034	Secondary Batteries for Mobile Applications: From Lead to Lithium [Historical]. IEEE Industrial Electronics Magazine, 2022, 16, 60-68.	2.3	1
15035	Toluene Tolerated Li _{9.88} GeP _{1.96} Sb _{0.04} S _{11.88} Cl _{0.12} Solid Electrolyte toward Ultrathin Membranes for All-Solid-State Lithium Batteries. Nano Letters, 2023, 23, 227-234.	4.5	44
15036	Improving the Ionic Conductivity of	1.3	1

			2
#	ARTICLE	IF	CITATIONS
15037	Organic Heterocyclic Strategy for Precisely Regulating Electronic State of Palladium Interface to Boost Alcohol Oxidation. Advanced Functional Materials, 2023, 33, .	7.8	12
15038	Application and Progress of Confinement Synthesis Strategy in Electrochemical Energy Storage. Transactions of Tianjin University, 2023, 29, 151-187.	3.3	4
15039	Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Research, 2023, 16, 4246-4276.	5.8	10
15040	Microstructural and mechanical characterization of Na1+xHf2Si2.3P0.7O10.85+0.5x and Na1+xZr2P3-xSixO12 NASICON-type solid electrolytes. Journal of Materials Science, 2023, 58, 144-156.	1.7	1
15041	Sodium Composite Oxide Cathode Materials:Phase Regulation, Electrochemical Performance and Reaction Mechanism. Batteries and Supercaps, 2023, 6, .	2.4	4
15042	Building Bridges: Unifying Design and Development Aspects for Advancing Non-Aqueous Redox-Flow Batteries. Batteries, 2023, 9, 4.	2.1	6
15043	MoS2/graphene nanosheet composites prepared by xylitol-assisted ball milling as high-performance anode materials for lithium-ion batteries. Ionics, 2023, 29, 917-930.	1.2	4
15044	Progress of Single-Crystal Nickel-Cobalt-Manganese Cathode Research. Energies, 2022, 15, 9235.	1.6	4
15045	Cathode Electrolyte Interphase-Forming Additive for Improving Cycling Performance and Thermal Stability of Ni-Rich LiNi _{<i>x</i>} Co _{<i>y</i>} Mn _{1–<i>x</i>–<i>y</i>} O ₂ Cathode Materials. ACS Applied Materials & amp; Interfaces, 2022, 14, 54688-54697.	4.0	10
15046	Enhanced Electrocatalytic Water Oxidation of Ultrathin Porous Co3O4 Nanosheets by Physically Mixing with Au Nanoparticles. Nanomaterials, 2022, 12, 4419.	1.9	0
15047	Allâ€Solidâ€State Garnetâ€Based Lithium Batteries at Work–In Operando TEM Investigations of Delithiation/Lithiation Process and Capacity Degradation Mechanism. Advanced Science, 2023, 10, .	5.6	8
15048	Insights into Capacity Fading Mechanism and Coating Modification of High-Nickel Cathodes in Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 55491-55502.	4.0	3
15049	Effect of Nanoparticles in LiFePO ₄ Cathode Material Using Organic/Inorganic Composite Solid Electrolyte for All-Solid-State Batteries. Langmuir, 2023, 39, 45-52.	1.6	5
15050	Propanediol Cyclic Sulfate as An Electrolyte Additive to Improve the Cyclic Performance of LiNi _{0.6} Co _{0.1} Mn _{0.3} O ₂ /Graphite Pouchâ€Cell at High Voltage. ChemElectroChem, 2023, 10, .	1.7	3
15051	Optimization for ultrahigh specific capacity and superior temperature control in a Li-ion battery cell. Physica Scripta, 2023, 98, 015710.	1.2	0
15052	Achieving High-Performance Si Nanoparticles-Embedded Carbon Fiber Film Anodes in Lithium-Ion Batteries Through Low Current Activation. Electronic Materials Letters, 0, , .	1.0	0
15053	Vertical aligned solidâ€state electrolyte templated by nanostructured "upright―cellulose film layers for advanced cell performance. EcoMat, 2023, 5, .	6.8	6
15054	Mechanism of high-concentration electrolyte inhibiting the destructive effect of Mn(II) on the performance of lithium-ion batteries. Journal of Energy Chemistry, 2023, 78, 381-392.	7.1	7

0			D -		
	ITAT	$1 \cap N$	RE	υn	DТ
				гU	IV I

#	Article	IF	CITATIONS
15055	Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies, Interfacial Optimization, and Perspectives. Small, 2023, 19, .	5.2	10
15056	Deciphering the effects of electrolyte concentration on the performance of lithium batteries by correlative surface characterization. Journal of Chemical Physics, 2022, 157, 224203.	1.2	0
15057	Using innovative FeF3 cathode materials in Li batteries working under spacecraft applications. Solid State Ionics, 2022, 387, 116079.	1.3	4
15058	Proton storage chemistry in aqueous zincâ€organic batteries: A review. InformaÄnÃ-Materiály, 2023, 5, .	8.5	29
15059	Data-driven short circuit resistance estimation in battery safety issues. Journal of Energy Chemistry, 2023, 79, 37-44.	7.1	5
15060	Impact of Ni Content on the Electrochemical Performance of the Co-Free, Li and Mn-Rich Layered Cathode Materials. Electrochem, 2023, 4, 21-30.	1.7	3
15061	A Study on High-Rate Performance of Graphite Nanostructures Produced by Ball Milling as Anode for Lithium-Ion Batteries. Micromachines, 2023, 14, 191.	1.4	2
15062	Advance of Prussian Blueâ€Đerived Nanohybrids in Energy Storage: Current Status and Perspective. Small, 2023, 19, .	5.2	8
15063	Nâ€doped Nanocarbon Inserted NiCoâ€LDH Nanoplates on NF with High OER/ORR Performances for Zincâ€Air Battery. ChemCatChem, 2023, 15, .	1.8	5
15064	Tracking lithiation with transmission electron microscopy. Science China Chemistry, 2024, 67, 291-311.	4.2	4
15065	Ultrasmooth and Dense Lithium Deposition Toward Highâ€Performance Lithiumâ€Metal Batteries. Advanced Materials, 0, , 2210130.	11.1	11
15066	Advanced Strategies for Improving Lithium Storage Performance under Cryogenic Conditions. Advanced Energy Materials, 2023, 13, .	10.2	10
15067	Probing how Ti- and Nb-substitution affect the stability and improve the electrochemical performance of \hat{l}^2 - and $\hat{l}\mu$ -LiVOPO ₄ . Journal of Materials Chemistry A, O, , .	5.2	0
15068	A Stable Polymerâ€based Solidâ€State Lithium Metal Battery and its Interfacial Characteristics Revealed by Cryogenic Transmission Electron Microscopy. Advanced Functional Materials, 2023, 33, .	7.8	10
15069	Sulfur polymerization strategy based on the intrinsic properties of polymers for advanced binderâ€free and highâ€sulfurâ€content Li–S batteries. SusMat, 2023, 3, 111-127.	7.8	8
15070	Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries. , 2023, 1, 39-59.		25
15071	PEO composite solid polymer electrolytes with the synergistic effect of cryogenic engineering and trace BP nanosheets for nearly room temperature and 4 V class all-solid-state lithium batteries. Sustainable Energy and Fuels, 0, , .	2.5	1
15072	Interface Design Enabling Stable Polymer/Thiophosphate Electrolyte Separators for Dendriteâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15

#	Article	IF	CITATIONS
15073	Excellent electrochemical properties of Ni-rich LiNi _{0.88} Co _{0.09} Al _{0.03} Co ₂ cathode materials co-modified with Mg-doping and LiBO ₂ -coating for lithium ion batteries. New Journal of Chemistry, 0, , .	1.4	0
15074	Rational design of PANIâ€modified threeâ€dimensional dendritic hierarchical porous Cu–Sn nanocomposites as thick anodes with ultrahigh areal capacity and good cycling stability. , 2023, 2, .		2
15075	Sputtered titanium nitride films as pseudocapacitive electrode for on chip micro-supercapacitors. Journal of Materials Science, 2023, 58, 337-354.	1.7	1
15076	3D nanofiber framework based on polyacrylonitrile and siloxane-modified Li6.4La3Zr1.4Ta0.6O12 reinforced poly (ethylene oxide)-based composite solid electrolyte for lithium batteries. Journal of Alloys and Compounds, 2023, 945, 168877.	2.8	5
15077	A customized strategy to design intercalation-type Li-free cathodes for all-solid-state batteries. National Science Review, 2023, 10, .	4.6	6
15078	Designing strategies of advanced electrode materials for high-rate rechargeable batteries. Journal of Materials Chemistry A, 2023, 11, 4428-4457.	5.2	11
15079	A Review of Particle Shape Effects on Material Properties for Various Engineering Applications: From Macro to Nanoscale. Minerals (Basel, Switzerland), 2023, 13, 91.	0.8	29
15080	Multiâ€Functional Membrane for Airâ€Proof and High Temperatureâ€Stable Li Metal Batteries. ChemElectroChem, 0, , .	1.7	0
15081	Selecting the Optimal Fluorinated Ether Co-Solvent for Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 2804-2811.	4.0	8
15082	A Comparison Study of the Electrocatalytic Sulfur Reduction Activity on Heteroatomâ€Doped Graphene for Li–S Battery. Small Structures, 2023, 4, .	6.9	17
15083	Stabilizing Zn Metal Anodes via Cation/Anion Regulation toward High Energy Density Zn″on Batteries. Advanced Energy Materials, 2023, 13, .	10.2	46
15084	Defect-rich WS ₂ –SPAN nanofibers for sodium/potassium-ion batteries: ultralong lifespans and wide-temperature workability. Inorganic Chemistry Frontiers, 2023, 10, 1187-1196.	3.0	11
15085	Emerging organic electrodes for Na-ion and K-ion batteries. Energy Storage Materials, 2023, 56, 267-299.	9.5	41
15086	Dual Modification of Olivine LiFe _{0.5} Mn _{0.5} PO ₄ Cathodes with Accelerated Kinetics for High-Rate Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2023, 62, 1029-1034.	1.8	6
15087	Effect of Ti doping on the structure and electrochemical properties of Na ₃ V ₂ (PO ₄) ₂ F ₃ as anode material for sodium ion batteries. Ferroelectrics, 2023, 602, 166-173.	0.3	0
15088	Excellent Metal Phosphide Electrode for Potassium Ion Hybrid Capacitors: The Case of Carbon Nanotube-Wrapped AgP ₂ . ACS Applied Energy Materials, 2023, 6, 822-831.	2.5	3
15089	SiO-induced thermal instability and interplay between graphite and SiO in graphite/SiO composite anode. Nature Communications, 2023, 14, .	5.8	20
15090	Gradient Hâ€Bonding Supports Highly Adaptable and Rapidly Selfâ€Healing Composite Binders with High Ionic Conductivity for Silicon Anodes in Lithiumâ€Ion Batteries. Macromolecular Rapid Communications, 2023, 44, .	2.0	1

#	Article	IF	CITATIONS
15091	In-situ polymerized carbonate induced by Li-Ga alloy as novel artificial interphase on Li metal anode. Chinese Chemical Letters, 2023, 34, 108151.	4.8	3
15092	Thermal stability as well as electrochemical performance of Li-rich and Ni-rich cathode materials—a comparative study. Ionics, 2023, 29, 983-992.	1.2	9
15093	Crystal facet correlated Zn growth on Cu for aqueous Zn metal batteries. Energy Storage Materials, 2023, 56, 424-431.	9.5	16
15094	Synthesis of hydrazineâ€fumaryl chlorideâ€based polyamide and its electrical conductivity studies. Polymer Engineering and Science, 2023, 63, 584-592.	1.5	5
15095	A Nickel-Rich Oxide, Li(Ni0.90Co0.06Mn0.04)0.995Al0.005 O2, with a Dual Conductive Coating. Journal of Alloys and Compounds, 2023, , 168870.	2.8	1
15096	Solid-State NMR Revealing the Impact of Polymer Additives on Li-Ion Motions in Plastic-Crystalline Succinonitrile Electrolytes. Journal of Physical Chemistry C, 2023, 127, 1464-1474.	1.5	2
15097	Microwaveâ€assisted synthesis and electrochemical characterization of TiNb ₂ O ₇ microspheres as anode materials for lithiumâ€ion batteries. Journal of the American Ceramic Society, 2023, 106, 4192-4201.	1.9	2
15098	Interface Design Enabling Stable Polymer/Thiophosphate Electrolyte Separators for Dendriteâ€Free Lithium Metal Batteries. Angewandte Chemie, 0, , .	1.6	1
15099	A comprehensive overview of the electrochemical mechanisms in emerging alkali metal–carbon dioxide batteries. , 2023, 5, .		4
15100	High-voltage deprotonation of layered-type materials as a newly identified cause of electrode degradation. Journal of Materials Chemistry A, 2023, 11, 3018-3027.	5.2	4
15101	Uncovering the origin of the anomalously high capacity of a 3d anode <i>via in situ</i> magnetometry. Chemical Science, 2023, 14, 2455-2460.	3.7	2
15102	Design of Phosphide Anodes Harvesting Superior Sodium Storage: Progress, Challenges, and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	30
15103	Preparation of N-doped Si/Cu/C anode for high-performance lithium-ion batteries. Sustainable Energy and Fuels, 0, , .	2.5	1
15104	Investigation on step overcharge to self-heating behavior and mechanism analysis of lithium ion batteries. Journal of Energy Chemistry, 2023, 79, 301-311.	7.1	3
15105	(Electro)Chemical Processes of Poly(Ethylene Oxide)â€Based Electrolyte on Cu Surface during Lithium Secondary Battery Operation. Energy Technology, 2023, 11, .	1.8	1
15106	Detecting voltage shifts and charge storage anomalies by iron nanoparticles in three-electrode cells based on converted iron oxide and lithium iron phosphate. Electrochimica Acta, 2023, 440, 141747.	2.6	2
15107	Double sites doping local chemistry Adjustment: A Multiple-Layer oriented P2-Type cathode with Long-life and Water/Air stability for sodium ion batteries. Chemical Engineering Journal, 2023, 458, 141384.	6.6	8
15108	Stable cycling of Si nanowire electrodes in fluorine-free cyano-based ionic liquid electrolytes enabled by vinylene carbonate as SEI-forming additive. Journal of Power Sources, 2023, 558, 232621.	4.0	2

#	Article	IF	CITATIONS
15109	Highly-concentrated bis(fluorosulfonyl)imide-based ternary gel polymer electrolytes for high-voltage lithium metal batteries. Journal of Power Sources, 2023, 557, 232554.	4.0	8
15110	Gram-scale carbothermic control of LLZO garnet solid electrolyte particle size. Chemical Engineering Journal, 2023, 457, 141349.	6.6	2
15111	A novel composite polymer electrolyte containing the lithium-ion conductor Li3Zr2Si2PO12 synthesized by cationic-exchange method for solid lithium metal batteries. Electrochimica Acta, 2023, 441, 141795.	2.6	2
15112	Design and synthesis of high-silicon silicon suboxide nanowires by radio-frequency thermal plasma for high-performance lithiumâ€ion battery anodes. Applied Surface Science, 2023, 614, 156235.	3.1	12
15113	Depth of discharge characteristics and control strategy to optimize electric vehicle battery life. Journal of Energy Storage, 2023, 59, 106477.	3.9	9
15114	10-Molybdo-2-vanadophosphoric acid derived (V) MoS2 microflowers @ V2CTx MXene designed 3D@2D nanoarchitecture for high-performance aqueous supercapacitors. Journal of Energy Storage, 2023, 59, 106447.	3.9	8
15115	Coating lithium titanate anodes with a mixed ionic-electronic conductor for high-rate lithium-ion batteries. Journal of Power Sources, 2023, 559, 232657.	4.0	7
15116	High-performance lithium metal batteries enabled by fluorinated aromatic diluent assisted nonflammable localized high-concentration electrolytes. Journal of Power Sources, 2023, 559, 232631.	4.0	5
15117	Investigation of the effects of CO2 annealing of polymer matrix composite anode electrodes used in Li-ion batteries. Solid State Ionics, 2023, 391, 116129.	1.3	0
15118	Silicon oxides for Li-ion battery anode applications: Toward long-term cycling stability. Journal of Power Sources, 2023, 559, 232660.	4.0	19
15119	Zincophilic polyurethane-based porous film enables dendrite-free zinc anode for reversible aqueous zinc-based batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130960.	2.3	5
15120	MnCo2O4 decorating porous PbO2 composite with enhanced activity and durability for acidic water oxidation. Fuel, 2023, 338, 127344.	3.4	3
15121	Enhanced Li storage properties of nickel oxalate microtubes with manganese doping and graphene oxide for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 940, 168808.	2.8	7
15122	Carbon-coated LiTi2(PO4)3 composites synthesized through tannic acid with high rate performance for aqueous lithium-ion batteries. Journal of Alloys and Compounds, 2023, 939, 168704.	2.8	2
15123	Identifying cathode and anode polarizations during practical highâ€rate charging/discharging in different Liâ€ion pouch batteries. , 2023, 2, .		10
15124	Porous Liquids as Electrolyte: A Case Study of Li ⁺ and Mg ²⁺ Ion Transport in Crown Ether-Based Type-II Porous Liquids. , 2023, 5, 330-335.		2
15125	Spatially Offset Raman Spectroscopy for Characterization of a Solid-State System. Batteries, 2023, 9, 20.	2.1	0
15126	Mechanistic Insight into Wettability Enhancement of Lithium-Ion Batteries Using a Ceramic-Coated Layer. ACS Nano, 2023, 17, 1305-1314.	7.3	3

#	Article	IF	CITATIONS
15127	Janus Dione-Based Conjugated Covalent Organic Frameworks with High Conductivity as Superior Cathode Materials. Journal of the American Chemical Society, 2023, 145, 1022-1030.	6.6	42
15128	Templated Synthesis of SiO ₂ Nanotubes for Lithium-Ion Battery Applications: An In Situ (Scanning) Transmission Electron Microscopy Study. ACS Omega, 2023, 8, 925-933.	1.6	4
15129	Co-substitution Strategy for Boosting Rate-Capability of Lithium-Superionic-Conductor (LISICON)-Type Anode Materials in γ-Li ₃ VO ₄ –Li ₄ GeO ₄ –Li ₃ PO ₄ Quasi-Ternary-System. Journal of the Electrochemical Society, 2023, 170, 010524.	1.3	1
15130	Probing the Na ⁺ /Li ⁺ â€ions Insertion Mechanism in an Aqueous Mixedâ€ion Rechargeable Batteries with NASICONâ€NaTi ₂ (PO ₄) ₃ Anode and Olivineâ€LiFePO ₄ Cathode. ChemElectroChem, 0, , .	1.7	0
15131	Sacrificial Catalyst of Carbothermal-Shock-Synthesized 1T-MoS ₂ Layers for Ultralong-Lifespan Seawater Battery. Nano Letters, 2023, 23, 344-352.	4.5	4
15132	Direct Correlation between Short-Range Vibrational Spectral Diffusion and Localized Ion-Cage Dynamics of Water-in-Salt Electrolytes. Journal of Physical Chemistry B, 2023, 127, 236-248.	1.2	1
15133	Supramolecule-Based Excluded-Volume Electrolytes and Conjugated Sulfonamide Cathodes for High-Voltage and Long-Cycling Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2023, 8, 762-771.	8.8	17
15134	Class of Boehmite/Polyacrylonitrile Membranes with Different Thermal Shutdown Temperatures for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 2112-2123.	4.0	1
15135	A Covalent Organic Framework as a Longâ€life and Highâ€Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angewandte Chemie, 2023, 135, .	1.6	4
15136	A Covalent Organic Framework as a Longâ€life and Highâ€Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
15137	Highly Reversible Lithium Metal Anode Enabled by 3D Lithiophilic–Lithiophobic Dualâ€ s keletons. Advanced Materials, 0, , 2211203.	11.1	24
15138	A 3D lithiophilic ZIF-8@RGO free-standing scaffold with dendrite-free behavior enabling high-performance Li metal batteries. Journal of Materials Chemistry A, 2023, 11, 12910-12917.	5.2	4
15139	Nonflammable Electrolyte Based on Fluoroethylene Carbonate for High-Voltage LiCoO ₂ /Si–Graphite Lithium-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 1955-1964.	2.5	4
15140	Designing Highly Conductive Sodiumâ€Based Metal Hydride Nanocomposites: Interplay between Hydride and Oxide Properties. Advanced Functional Materials, 2023, 33, .	7.8	4
15141	Supercapacitors—new developments. , 2023, , 39-64.		0
15142	Selective Dualâ€Ion Modulation in Solidâ€State Magnetoelectric Heterojunctions for Inâ€Memory Encryption. Small, 0, , 2206824.	5.2	1
15143	An Elastic Cross-Linked Binder for Silicon Anodes in Lithium-Ion Batteries with a High Mass Loading. ACS Applied Materials & Interfaces, 2023, 15, 6594-6602.	4.0	13
15144	Electrospun membranes for batteries. , 2023, , 521-553.		0

#	Article	IF	CITATIONS
15145	Three-dimensional block assembled wireless rechargeable supercapacitors. Journal of Industrial and Engineering Chemistry, 2023, , .	2.9	0
15146	Enhancing Performance of LiFePO4 Battery by Using a Novel Gel Composite Polymer Electrolyte. Batteries, 2023, 9, 51.	2.1	1
15147	A General Route for Encapsulating Monodispersed Transition Metal Phosphides into Carbon Multiâ€Chambers toward High‣fficient Lithiumâ€ŀon Storage with Underlying Mechanism Exploration. Advanced Functional Materials, 2023, 33, .	7.8	20
15148	Surfactantâ€Mediated Synthesis of Novel Mesoporous Hollow CuO Nanotubes as an Anode Material for Lithiumâ€ion Battery Application. ChemistrySelect, 2023, 8, .	0.7	3
15149	MOFs Containing Solidâ \in State Electrolytes for Batteries. Advanced Science, 2023, 10, .	5.6	22
15150	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie, 2023, 135, .	1.6	3
15151	Engineering green and sustainable solvents for scalable wet synthesis of sulfide electrolytes in high-energy-density all-solid-state batteries. Green Chemistry, 2023, 25, 1473-1487.	4.6	7
15152	SDF-based conjugated microporous polymers cathode materials with high cycle stability for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
15153	Stabilizing the NASICON Solid Electrolyte in an Inert Atmosphere as a Function of Physical Properties and Sintering Conditions for Solid-State Battery Fabrication. ACS Applied Energy Materials, 2023, 6, 1197-1207.	2.5	2
15154	Solid‣tate Batteries Based on Organic Cathode Materials. Batteries and Supercaps, 2023, 6, .	2.4	3
15155	Properties and working mechanism of Sn-doped Li0.33La0.56TiO3-based all-solid-state supercapacitor. Journal of Solid State Electrochemistry, 2023, 27, 1021-1031.	1.2	2
15156	P3 type layered oxide frameworks: An appealing family of insertion materials for K-ion batteries. Current Opinion in Electrochemistry, 2023, 38, 101216.	2.5	0
15157	Strain engineering of Li ⁺ ion migration in olivine phosphate cathode materials LiMPO ₄ (M = Mn, Fe, Co) and (LiFePO ₄) _{<i>n</i>} (LiMnPO ₄) _{<i>m</i>} superlattices. Physical Chemistry Chemical Physics, 2023, 25, 6142-6152.	1.3	6
15158	Pendant Length-Dependent Electrochemical Performances for Conjugated Organic Polymers as Solid-State Polymer Electrolytes in Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2023, 15, 5283-5292.	4.0	2
15159	lonic Conduction in Polymerâ \in Based Solid Electrolytes. Advanced Science, 2023, 10, .	5.6	66
15160	Fabrication of high-performance silicon anode materials for lithium-ion batteries by the impurity compensation doping method. Journal of Solid State Electrochemistry, 2023, 27, 969-976.	1.2	7
15161	Beyond lithium: Solid-state sodium-ion batteries and their potential applications. , 2023, , 223-262.		0
15163	Historical perspective of electrochemical energy storage devices. , 2023, , 17-38.		0

#	Article	IF	CITATIONS
15164	Multiphysics Modeling on the Capacity Degradation of Silicon Anode. , 2023, , .		2
15165	Single-Ion Conducting Multi-block Copolymer Electrolyte for Lithium-Metal Batteries with High Mass Loading NCM ₈₁₁ Cathodes. ACS Energy Letters, 2023, 8, 1114-1121.	8.8	14
15166	Molybdenum Vanadium Oxides as Intercalation Hosts for Chloroaluminate Anions. Batteries, 2023, 9, 92.	2.1	1
15167	First-principles study on ultrafast Li-ion diffusion in halospinel Li ₂ Sc _{2/3} Cl ₄ through multichannels designed by aliovalent doping. Journal of Materials Chemistry A, 2023, 11, 4272-4279.	5.2	2
15168	Surface-patterned graphite electrode with hybrid polymer/garnet electrolyte for all-solid-state batteries. Materials Today Sustainability, 2023, 22, 100338.	1.9	1
15169	Insight into the Anchoring Effect of Twoâ€Dimensional TiX ₂ (X = S, Se) Materials for Sodium–Sulfur Batteries: A Firstâ€Principles Study. Advanced Theory and Simulations, 2023, 6, .	1.3	1
15170	2D materials for flexible electronics. , 2023, , 169-206.		1
15171	Role of polymeric ionic liquids in rechargeable batteries. , 2023, , 365-389.		0
15172	Application of 2D MXene in Organic Electrode Materials for Rechargeable Batteries: Recent Progress and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	13
15173	N-doped Branched Carbon Nanofibers @S as Cathode for Lithium-Sulfur Batteries. New Journal of Chemistry, 0, , .	1.4	1
15174	Synthesis of TiO2 Nanobelt Bundles Decorated with TiO2 Nanoparticles and Aggregates and Their Use as Anode Materials for Lithium-Ion Batteries. Micromachines, 2023, 14, 243.	1.4	5
15175	Comparison between supercapacitors and other energy storing electrochemical devices. , 2023, , 673-712.		1
15176	Silicon disulfide for high-performance Li-ion batteries and solid-state electrolytes. Journal of Materials Chemistry A, 2023, 11, 4987-5000.	5.2	1
15177	Sc2CX (X=N2, ON, O2) MXenes as a promising anode material: A first-principles study. Journal of Applied Physics, 2023, 133, .	1.1	5
15178	A ZIF-8 composite SiO ₂ -enhanced high-performance PEO-based solid-state electrolyte for Li-metal batteries. Sustainable Energy and Fuels, 2023, 7, 1245-1255.	2.5	2
15179	Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review. Nano-Micro Letters, 2023, 15, .	14.4	44
15180	Highâ€Performance Dualâ€5alt Plastic Crystal Electrolyte Enabled by Succinonitrileâ€Regulated Porous Polymer Host. Advanced Functional Materials, 2023, 33, .	7.8	2
15181	Probing depth-dependent inhomogeneous lithium concentration in thick LiNi0.88Co0.09Al0.03O2 cathodes for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 943, 169029.	2.8	4

#	Article	IF	Citations
15182	Tuning a small electron polaron in FePO ₄ by P-site or O-site doping based on DFT+ <i>U</i> and KMC simulation. Physical Chemistry Chemical Physics, 2023, 25, 8734-8742.	1.3	2
15183	A self-sacrificing strategy to fabricate a fluorine-modified integrated silicon/carbon anode for high-performance lithium-ion batteries. New Journal of Chemistry, 2023, 47, 6191-6200.	1.4	1
15184	An extended π-conjugated organosulfide-based cathode for highly reversible sodium metal batteries. Journal of Materials Chemistry A, 2023, 11, 8694-8699.	5.2	2
15185	Effect of morphological variation in three-dimensional multiwall carbon nanotubes as the host cathode material for high-performance rechargeable lithium–sulfur batteries. RSC Advances, 2023, 13, 9402-9412.	1.7	2
15186	Metal–support interactions for heterogeneous catalysis: mechanisms, characterization techniques and applications. Journal of Materials Chemistry A, 2023, 11, 8540-8572.	5.2	13
15187	A Review on Various Supply Sources for DC Micro Grids. , 2023, , .		0
15188	A Brief Review of Gel Polymer Electrolytes Using In Situ Polymerization for Lithium-ion Polymer Batteries. Polymers, 2023, 15, 803.	2.0	18
15189	Structural, optical, photoluminescence, magnetic and electrochemical supercapacitor application of tin oxide nanoparticles. Materials Today: Proceedings, 2023, , .	0.9	0
15190	Nonâ€Flammable Electrolyte with Lithium Nitrate as the Only Lithium Salt for Boosting Ultraâ€Stable Cycling and Fireâ€Safety Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
15191	Unravelling the Complex Na ₂ CO ₃ Electrochemical Process in Rechargeable Na O ₂ Batteries. Advanced Energy Materials, 2023, 13, .	10.2	11
15192	Stable Operation of Lithium Metal Batteries with Aggressive Cathode Chemistries at 4.9 V. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
15193	Deep and Comprehensive Study on the Impact of Different Phosphazeneâ€Based Flameâ€Retardant Additives on Electrolyte Properties, Performance, and Durability of Highâ€Voltage LMNOâ€Based Lithiumâ€Ion Batteries. Energy Technology, 2023, 11, .	1.8	3
15194	The Influence of Nano- and Micron-size of MXene Flakes on the Electrochemical Performance. Electronic Materials Letters, 2023, 19, 527-533.	1.0	4
15195	Recent Advancement and Structural Engineering in Transition Metal Dichalcogenides for Alkali Metal Ions Batteries. Materials, 2023, 16, 2559.	1.3	5
15196	Corrosion performance and possible mechanism of aluminium nitride-molybdenum gradient material in a simulated liquid metal battery environment. Materials Chemistry and Physics, 2023, 299, 127494.	2.0	2
15197	Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries. Chemical Engineering Journal, 2023, 462, 142183.	6.6	10
15198	La0.8Sr0.2Mn0.8Co0.2O3-Î [^] perovskite as an efficient functional electrocatalyst for oxygen reduction reactions. International Journal of Hydrogen Energy, 2023, 48, 26718-26728.	3.8	1
15199	Effect of lattice water on the proton diffusion mechanism in hydrated tungsten trioxide nanostructures. Physica Scripta, 2023, 98, 055918.	1.2	0

#	Article	IF	CITATIONS
15200	2D VOPO ₄ Pseudocapacitive Ultrafastâ€Charging Cathode with Multiâ€Electron Chemistry for Highâ€Energy and Highâ€Power Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	2
15201	Sustainable Graphene Quantum Dots (GQDs) as an Electrolyte Additive for Zinc-Air Battery System. Materials Circular Economy, 2023, 5, .	1.6	3
15202	Molten lithium metal battery with Li4Ti5O12 cathode and solid electrolyte. ETransportation, 2023, 16, 100235.	6.8	1
15203	Dehydrofluorination Process of Poly(vinylidene difluoride) PVdF-Based Gel Polymer Electrolytes and Its Effect on Lithium-Sulfur Batteries. Gels, 2023, 9, 336.	2.1	6
15204	Constructing the bonding between conductive agents and active materials/binders stabilizes silicon anode in Lithium-ion batteries. Journal of Energy Chemistry, 2023, 80, 23-31.	7.1	9
15205	Multiredox tripyridine-triazine molecular cathode for lithium-organic battery. Journal of Power Sources, 2023, 567, 232963.	4.0	2
15206	Unraveling the superior anodic lithium storage behavior in the redox-active porphyrinic triazine frameworks. Chemical Engineering Journal, 2023, 463, 142434.	6.6	6
15207	Impact of annealing on material and electrical characteristics of lithium phosphate thin films on silicon carbide. Journal of Materials Research and Technology, 2023, 24, 1579-1588.	2.6	1
15208	Mixing methods for solid state electrodes: Techniques, fundamentals, recent advances, and perspectives. Chemical Engineering Journal, 2023, 464, 142469.	6.6	10
15209	Integrated interface configuration by in-situ interface chemistry enabling uniform lithium deposition in all-solid-state lithium metal batteries. Journal of Energy Chemistry, 2023, 80, 458-465.	7.1	19
15210	Design strategies for coordination polymers as electrodes and electrolytes in rechargeable lithium batteries. Coordination Chemistry Reviews, 2023, 483, 215084.	9.5	8
15211	Al2O3/ZnO composite-based sensors for battery safety applications: An experimental and theoretical investigation. Nano Energy, 2023, 109, 108301.	8.2	8
15212	Fluorine substitution and pre-sodiation strategies to boost energy density of V-based NASICON-structured SIBs: Combined theoretical and experimental study. Chemical Engineering Journal, 2023, 463, 142464.	6.6	6
15213	Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries. Journal of Energy Chemistry, 2023, 80, 501-534.	7.1	17
15214	A Schiff based p-phenylenediimine polymer as high capacity anode materials for stable lithium ion batteries. Electrochimica Acta, 2023, 450, 142276.	2.6	4
15215	Li-ion complex enhances interfacial lowest unoccupied molecular orbital for stable solid electrolyte interface of natural graphite anode. Electrochimica Acta, 2023, 449, 142262.	2.6	4
15216	Highly conductive polyacrylonitrile-based hybrid aqueous/ionic liquid solid polymer electrolytes with tunable passivation for Li-ion batteries. Electrochimica Acta, 2023, 453, 142349.	2.6	3
15217	Imidazolium-based ionanofluid electrolytes with viscosity decoupled ion transport properties for lithium-ion batteries. Journal of Molecular Liquids, 2023, 379, 121645.	2.3	1

# 15218	ARTICLE Introduction of oxygen vacancies and amorphous layers into copper vanadium oxide for better lithium ion battery performance. Journal of Power Sources, 2023, 566, 232918.	IF 4.0	CITATIONS
15219	Fast ion conduction and stable [Na-Si-P] glass-ceramic solid electrolyte mixed with hafnium and scandium ions: Application to Na-ion full cell. Journal of Electroanalytical Chemistry, 2023, 937, 117392.	1.9	1
15220	Stretchable high-capacity SiOx/carbon anode with good cycle stability enabled by a triblock copolymer elastomer. European Polymer Journal, 2023, 190, 111989.	2.6	2
15221	Enhanced Na+ diffusion in Na3V2(PO4)2F2O cathodes via Zr4+ doping for high-rate and long-cycling sodium batteries. Journal of Alloys and Compounds, 2023, 945, 169314.	2.8	3
15222	In-depth Li+ transportation in three-dimensionalized nanodiamond network for improved liquid and solid lithium metal batteries. Nano Energy, 2023, 110, 108370.	8.2	9
15223	Ion transport phenomena in electrode materials. Chemical Physics Reviews, 2023, 4, 021302.	2.6	0
15224	A novel strategy for high energy density supercapacitors: Formation of cyanuric acid between Ti3C2Tx (MXene) interlayer hybrid electrodes. Chemical Engineering Journal, 2023, 465, 142935.	6.6	5
15225	Phosphorylated cellulose nanofiber as sustainable organic filler and potential flame-retardant for all-solid-state lithium batteries. Journal of Energy Storage, 2023, 62, 106838.	3.9	11
15226	Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries. Journal of Colloid and Interface Science, 2023, 640, 487-497.	5.0	5
15227	High-performance rechargeable metal–air batteries enabled by efficient charge transport in multielement random alloy electrocatalyst. Applied Catalysis B: Environmental, 2023, 330, 122631.	10.8	2
15228	A novel sorting method for liquid metal batteries based on deep learning and sequential features. Journal of Energy Storage, 2023, 64, 107093.	3.9	4
15229	Biologically inspired anthraquinone redox centers and biomass graphene for renewable colloidal gels toward ultrahigh-performance flexible micro-supercapacitors. Journal of Materials Science and Technology, 2023, 151, 178-189.	5.6	6
15230	Thermal analysis of phase change material encapsulated li-ion battery pack using multi-scale multi-dimensional framework. Journal of Energy Storage, 2023, 65, 107290.	3.9	5
15231	Capacity dependent mechanical behaviour of anodes in lithium-ion batteries. Journal of Energy Storage, 2023, 64, 107261.	3.9	2
15232	MoC@Cu@C composites with structural advantages exhibit excellent electrochemical performance and stability in LIBs. Journal of Energy Storage, 2023, 64, 107207.	3.9	2
15233	Building a high-performance organic cathode material containing electron-withdrawing groups for lithium-ion batteries. Journal of Energy Storage, 2023, 64, 107241.	3.9	4
15234	Semi-metallic bilayer borophene for lithium-ion batteries anode material: A first-principles study. Chemical Physics, 2023, 571, 111911.	0.9	4
15235	Recyclable 3Dâ€Printed Aqueous Lithiumâ€Ion Battery. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	1

#	Article	IF	CITATIONS
15236	Cyclotetrabenzil Derivatives for Electrochemical Lithiumâ€lon. Angewandte Chemie, 0, , .	1.6	0
15237	An ultrafast rechargeable and high durability lithium metal battery using composite electrolyte with the three-dimensional inorganic framework by Li6.4La3Zr1.4Ta0.6O12 surface functionalization. ETransportation, 2023, 16, 100234.	6.8	2
15238	A bibliometric analysis of lithium-ion batteries in electric vehicles. Journal of Energy Storage, 2023, 63, 107109.	3.9	8
15239	Polyphosphazene-derived P/S/N-doping and carbon-coating of yolk-shelled CoMoO4 nanospheres towards enhanced pseudocapacitive lithium storage. Journal of Colloid and Interface Science, 2023, 641, 366-375.	5.0	6
15240	Regulating the solvation chemistry of non-flammable high voltage electrolyte through salt-solvent ratio modulation. Journal of Colloid and Interface Science, 2023, 642, 820-828.	5.0	1
15241	Coexistence of Sn and FeSn2 nanoparticles dispersed in glass-ceramics and their electrochemical performance as sodium-ion battery anode. Journal of Alloys and Compounds, 2023, 947, 169576.	2.8	2
15242	Model-free reconstruction of capacity degradation trajectory of lithium-ion batteries using early cycle data. ETransportation, 2023, 17, 100243.	6.8	8
15243	Polyethylene terephthalate-based cathode current collectors coated by ultrathin aluminum metal layers for commercial lithium-ion batteries with high security and long-term cycling stability. Journal of Alloys and Compounds, 2023, 941, 168937.	2.8	6
15244	First-principles assessment of chemical lithiation of sulfide solid electrolytes and its impact on their transport, electronic and mechanical properties. Journal of Power Sources, 2023, 560, 232689.	4.0	4
15245	Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook. Advanced Energy Materials, 2023, 13, .	10.2	98
15246	Tuning desolvation kinetics of in-situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries. Journal of Energy Chemistry, 2023, 79, 340-347.	7.1	7
15247	Cellulose Nanocrystals as Additives in Electrospun Biocompatible Separators for Aprotic Lithium-Ion Batteries. ACS Applied Polymer Materials, 2023, 5, 1453-1463.	2.0	6
15248	Highly defective N-doped carbon/reduced graphene oxide composite cathode material with rapid electrons/ions dual transport channels for high energy density lithium-ion capacitor. Electrochimica Acta, 2023, 443, 141704.	2.6	7
15249	Photo-Initiated in situ synthesis of polypyrrole Fe-Coated porous silicon microspheres for High-performance Lithium-ion battery anodes. Chemical Engineering Journal, 2023, 459, 141543.	6.6	18
15250	Plasma enabled in-situ deposition of hybrid structured SiOx/C on polymorphous carbon hosts for superior lithium storage. Carbon, 2023, 205, 253-261.	5.4	11
15251	Orientedâ€Etched Graphite for Lowâ€Temperature Lithiumâ€Ion Batteries. Batteries and Supercaps, 2023, 6, .	2.4	3
15252	Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries. Nanoscale, 2023, 15, 4195-4218.	2.8	11
15253	Enhancing pseudocapacitive behavior of MOF-derived TiO2-x@Carbon nanocubes via Mo-doping for high-performance sodium-ion capacitors. Composites Part B: Engineering, 2023, 253, 110557.	5.9	25

#	Article	IF	CITATIONS
15254	Properties of Composite Electrodes for All-solid-state Fluoride-ion Secondary Batteries Processed by High-pressure Torsion. Electrochemistry, 2023, 91, 027002-027002.	0.6	0
15255	Encapsulating and Operating a Stable Li ₃ ErBr ₆ â€Based Solid Li–SeS ₂ Battery at Room Temperature. Advanced Functional Materials, 2023, 33, .	7.8	2
15256	Simulating fracture patterns under anisotropic swelling in lithiated crystalline nanostructures. Engineering Fracture Mechanics, 2023, 281, 109088.	2.0	0
15257	Influencing Factors on Liâ€ion Conductivity and Interfacial Stability of Solid Polymer Electrolytes, Exampled by Polycarbonates, Polyoxalates and Polymalonates. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
15258	Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries. Journal of Power Sources, 2023, 561, 232720.	4.0	6
15259	Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode. Molecules, 2023, 28, 1409.	1.7	3
15260	Evolution of Stabilized 1Tâ€MoS ₂ by Atomicâ€Interface Engineering of 2Hâ€MoS ₂ /Feâ^'N _{<i>x</i>} towards Enhanced Sodium Ion Storage. Angewandte Chemie, 2023, 135, .	1.6	19
15261	Evolution of Stabilized 1Tâ€MoS ₂ by Atomicâ€Interface Engineering of 2Hâ€MoS ₂ /Feâ``N _{<i>x</i>} towards Enhanced Sodium Ion Storage. Angewandte Chemie - International Edition, 2023, 62, .	7.2	28
15262	Designing All-Solid-State Batteries by Theoretical Computation: A Review. Electrochemical Energy Reviews, 2023, 6, .	13.1	17
15263	Determining the Limits of Fast Charging of a High-Energy Lithium-Ion NMC/Graphite Pouch Cell Through Combined Modeling and Experiments. Journal of the Electrochemical Society, 2023, 170, 020525.	1.3	0
15264	A hexaazatriphenylene-based polymer as high performance anode for Li-/Na-/K-ion batteries. Chemical Engineering Journal, 2023, 460, 141703.	6.6	14
15265	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	23.0	57
15266	Self-adaptive Gel Poly(imide-siloxane) Binder Ensuring Stable Cathode-Electrolyte Interface for Achieving High-Performance NCM811 Cathode in Lithium-ion Batteries. Energy Storage Materials, 2023, 56, 621-630.	9.5	7
15267	Regulating the local chemical environment in layered O3-NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries. Energy Storage Materials, 2023, 56, 631-641.	9.5	24
15268	Formation of an Artificial Cathode–Electrolyte Interphase to Suppress Interfacial Degradation of Ni-Rich Cathode Active Material with Sulfide Electrolytes for Solid-State Batteries. ACS Energy Letters, 2023, 8, 1322-1329.	8.8	15
15269	Improved Lithium Storage Performance of a TiO2 Anode Material Doped by Co. Materials, 2023, 16, 1325.	1.3	0
15270	Improved Performance of Silicon Anodes Using Copper Nanoparticles as Additive. Journal of Electrochemical Energy Conversion and Storage, 2023, 20, .	1.1	1
15271	Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries. Batteries, 2023, 9, 110.	2.1	4

#	Article	IF	CITATIONS
15272	A Robust Dualâ€Polymer@Inorganic Networks Composite Polymer Electrolyte Toward Ultra‣ong‣ife and Highâ€Voltage Li/Liâ€Rich Metal Battery. Advanced Functional Materials, 2023, 33, .	7.8	28
15273	Nanoâ€singleâ€crystalâ€constructed submicron MnCO ₃ hollow spindles enabled by solid precursor transition combined Ostwald ripening in situ on graphene toward exceptional interfacial and capacitive lithium storage. , 2023, 5, .		16
15274	Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application. Chemical Reviews, 2023, 123, 1262-1326.	23.0	45
15275	Interfacial coupling metallic MoS2 nanosheets with wrinkled Ti3C2TX MXene for reversible and stable sodium storage. Materials Today Energy, 2023, 33, 101256.	2.5	3
15276	Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites—A Review. Materials, 2023, 16, 1430.	1.3	2
15277	Dual-effect-assisted cross-linkable poly(N-allyl-vinylimidazolium) ·TFSIâ^' as alternative electrode binder of lithium-ion battery. Korean Journal of Chemical Engineering, 2023, 40, 504-511.	1.2	1
15278	An intercalation-type Li-free cathode with energy density exceeding 550 Wh kgâ^'1. National Science Review, 2023, 10, .	4.6	0
15279	Electrochemical production of two-dimensional atomic layer materials and their application for energy storage devices. Chemical Physics Reviews, 2023, 4, .	2.6	0
15280	Designing Bidirectionally Functional Polymer Electrolytes for Stable Solid Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	14
15281	A highâ€safety, flameâ€retardant celluloseâ€based separator with encapsulation structure for lithiumâ€ion battery. SmartMat, 2023, 4, .	6.4	5
15282	<i>In situ</i> synthesis of Cu(<scp>ii</scp>) dicarboxylate metal organic frameworks (MOFs) and their application as battery materials. Physical Chemistry Chemical Physics, 2023, 25, 12684-12693.	1.3	3
15283	Alignment does matter: Design thick electrodes to improve the comprehensive lithium storage performance. Carbon, 2023, 206, 105-113.	5.4	5
15284	Organic Hydronium-Ion Battery with Ultralong Life. ACS Energy Letters, 2023, 8, 1390-1396.	8.8	3
15285	A localized high concentration carboxylic ester-based electrolyte for high-voltage and low temperature lithium batteries. Chemical Engineering Journal, 2023, 461, 141904.	6.6	7
15286	Poly(acrylic acid) locally enriched in slurry enhances the electrochemical performance of the SiO _{<i>x</i>} lithium-ion battery anode. Journal of Materials Chemistry A, 2023, 11, 6205-6216.	5.2	6
15287	Threeâ€dimensional Honeycomb MoP@C Nanocomposite with Advanced Sodium/Potassium Ion Storage Performance. ChemistrySelect, 2023, 8, .	0.7	2
15288	Nitrogen as An Anionic Center/Dopant for Nextâ€Generation Highâ€Performance Lithium/Sodiumâ€Ion Battery Electrodes: Key Scientific Issues, Challenges and Perspectives. Advanced Functional Materials, 2023, 33, .	7.8	8
15289	Nano-Silicon@Exfoliated Graphite/Pyrolytic Polyaniline Composite of a High-Performance Cathode for Lithium Storage, Materials, 2023, 16, 1584.	1.3	0

#	Article	IF	Citations
15290	Pyrene-4,5,9,10-Tetrachalcogenone Derivatives: A Computational Study on Their Potential Use as Materials for Batteries. , 0, , .		0
15291	Thermal stable polymer-based solid electrolytes: Design strategies and corresponding stable mechanisms for solid-state Li metal batteries. Sustainable Materials and Technologies, 2023, 36, e00587.	1.7	2
15292	Computational insights into the rational design of organic electrode materials for metal ion batteries. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	5
15293	Scanning Electrochemical Microscopy for the Study of Energy Accumulators: Principles, Equipment, and Application. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo) Tj ETQq1 1 0.7	78 43 14 rg	BTL/Overlo
15294	Stable Operation of Lithium Metal Batteries with Aggressive Cathode Chemistries at 4.9â€V. Angewandte Chemie, 2023, 135, .	1.6	0
15295	Current Status and Future Perspective on Lithium Metal Anode Production Methods. Advanced Energy Materials, 2023, 13, .	10.2	38
15296	Understanding the Configurational Entropy Evolution in Metalâ€Phosphorus Solid Solution for Highly Reversible Liâ€lon Batteries. Advanced Science, 2023, 10, .	5.6	7
15297	Highâ€Energyâ€Density Graphene Hybrid Flexible Fiber Supercapacitors. Batteries and Supercaps, 2023, 6, .	2.4	1
15298	Octahedral Fe2P/C anchored on reduced graphene oxide as long-life and high-rate Li-ion battery anodes. Ionics, 2023, 29, 1347-1357.	1.2	0
15299	Research Progress of Stable Lithium Metal Anodes. Advances in Analytical Chemistry, 2023, 13, 11-26.	0.1	0
15300	A review in rational design of graphene toward advanced Li–S batteries. , 2023, 2, e9120054.		7
15301	The Role of Pulse Duty Cycle and Frequency on Dendritic Compression. Journal of Physical Chemistry C, 2023, 127, 4407-4415.	1.5	1
15302	Rechargeable metal-metal alkaline batteries: Recent advances, current issues and future research strategies. Journal of Power Sources, 2023, 563, 232777.	4.0	12
15303	Thermal and electrical insulation properties of <scp>BN</scp> â€filled polymerâ€based elastomer composites. Journal of Applied Polymer Science, 2023, 140, .	1.3	1
15304	Molecular dynamics simulations of the Li-ion diffusion in the amorphous solid electrolyte interphase. Chinese Chemical Letters, 2023, 34, 108242.	4.8	2
15305	Transition Metal Vacancy in Layered Cathode Materials for Sodiumâ€lon Batteries. Chemistry - A European Journal, 2023, 29, .	1.7	2
15306	Active thermography characterization of aerogel materials for vehicle electrification. IOP Conference Series: Materials Science and Engineering, 2023, 1275, 012014.	0.3	1
15307	High-performance SiO electrodes for lithium-ion batteries: merged effects of a new polyacrylate binder and an electrode-maturation process. Materials Advances, 2023, 4, 1637-1647.	2.6	2

		CITATION RE	PORT	
# 15308	ARTICLE A Review of Renewable Energy and Storage Technologies for Automotive Applications. ,	0, , 10.	IF	Citations
15309	Elastomeric Electrolyte for High Capacity and Longâ€Cycleâ€Life Solidâ€State Lithium M Methods, 2023, 7, .	Netal Battery. Small	4.6	10
15310	Molecular brush: an ion-redistributor to homogenize fast Zn ²⁺ flux and dep calendar-life Zn batteries. Energy and Environmental Science, 2023, 16, 1610-1619.	position for	15.6	36
15311	Electrochemically exfoliated WS2 in molten salt for sodium-ion battery anode. Rare Met 1227-1237.	als, 2023, 42,	3.6	7
15312	Towards Promotion of Graphene/Titaniaâ€Based Electrode via Ultrafast and Selfâ€Expar for Liâ€ion Battery. ChemElectroChem, 2023, 10, .	ision Reduction	1.7	0
15313	Long-Lifespan Lithium Metal Batteries Enabled by a Hybrid Artificial Solid Electrolyte Inte ACS Applied Materials & Interfaces, 2023, 15, 10585-10592.	erface Layer.	4.0	8
15314	Chrysanthemum-like Polyaniline-Anchored PANI _{0.22} ·V ₂ O ₅ ·0.88H ₂ O-Hybrid High-Stable Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3102-31		2.5	5
15315	Coupling of cerium oxide cyanamide with Fe–N–C for enhanced oxygen reduction r Journal of Chemistry, 2023, 47, 6058-6065.	eaction. New	1.4	1
15316	Longâ€life highâ€capacity lithium battery with liquid organic cathode and sulfide solid e 2, .	lectrolyte. , 2023,		8
15317	Pyrolyzed Organic Pigment as Efficient Surface-Dominated Alkali-Ion Storage Anodes. Ad Materials & Materials & Interfaces, 2023, 15, 11652-11661.	CS Applied	4.0	0
15318	Hybrid polymer gels for energy applications. Journal of Materials Chemistry A, 2023, 11,	12593-12642.	5.2	10
15319	Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Energy Material Advances, 2023, 4, .	Batteries.	4.7	12
15320	Sn-doped induced stable 1T-WSe2 nanosheets entrenched on N-doped carbon with extr half/full sodium/potassium storage performance. Rare Metals, 2023, 42, 1557-1569.	aordinary	3.6	15
15321	Analysis of Intermediate States of Electrode-slurry by Electronic Conductivity Measurem	ents. , 2023, , .		0
15322	Local Structural Analysis of Sulfide Polymer Electrolytes Prepared via I ₂ -Ind Polymerization of Li ₃ PS ₄ . Journal of Physical Chemistry C, 202	uced 23, 127, 4792-4798.	1.5	3
15323	Review—Earth-Abundant, Mn-Rich Cathodes for Vehicle Applications and Beyond: Ove Barriers. Journal of the Electrochemical Society, 2023, 170, 030509.	rview of Critical	1.3	3
15324	Electrochemical Behavior of Emeraldine Salt Polymer Coated Li _x FePO <su Cathode Materials with Excess Lithium Doping. Macromolecular Symposia, 2023, 407, .</su 	b>4	0.4	0
15325	Suppressing staircase-like electrochemical profile induced by P O transition by solid-solu reaction with continuous structural evolution in layered Na-ion battery cathode. Chemic Engineering Journal, 2023, 461, 142101.		6.6	0

#	Article	IF	CITATIONS
15326	Insights into the Coating Integrity and its Effect on the Electrochemical Performance of Core–Shell Structure SiO <i>_x</i> @C Composite Anodes. Small Methods, 2023, 7, .	4.6	6
15327	Controlled Isotropic Canalization of Microsized Silicon Enabling Stable Highâ€Rate and Highâ€Loading Lithium Storage. Advanced Materials, 2023, 35, .	11.1	10
15328	Interfacial Issues and Modification of Solid Electrolyte Interphase for Li Metal Anode in Liquid and Solid Electrolytes. Advanced Energy Materials, 2023, 13, .	10.2	34
15329	Highly Reversible Local Structural Transformation Enabled by Native Vacancies in O2-Type Li-Rich Layered Oxides with Anion Redox Activity. Journal of Physical Chemistry Letters, 2023, 14, 2323-2330.	2.1	7
15330	Recent Progress on Honeycomb Layered Oxides as a Durable Cathode Material for Sodiumâ€lon Batteries. Small Methods, 2023, 7, .	4.6	5
15331	Improved rate performance of Li1.2Mn0.54Co0.13Ni0.13O2 Li-rich cathode by LaPO4 coating and Lanthanum doping. Ionics, 2023, 29, 1311-1322.	1.2	1
15332	Highâ€Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications. Small Methods, 2023, 7, .	4.6	14
15333	A <scp>Pyrazineâ€Based 2D</scp> Conductive <scp>Metalâ€Organic</scp> Framework for Efficient Lithium Storage ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1691-1696.	2.6	7
15334	Non-flammable Phosphate-Grafted Nanofiber Separator Enabling Stable-Cycling and High-Safety Lithium Metal Batteries. Journal of the Electrochemical Society, 2023, 170, 030513.	1.3	1
15335	Enhanced electrochemical performance of silicon anode materials with titanium hydride treatment. Journal of Electroanalytical Chemistry, 2023, 933, 117292.	1.9	3
15336	A Li3PO4 coating strategy to enhance the Li-ion transport properties of Li2ZnTi3O8 anode material for Lithium-ion Battery. Electrochimica Acta, 2023, 447, 142151.	2.6	4
15337	Atomic Insights into Advances and Issues in Lowâ€Temperature Electrolytes. Advanced Energy Materials, 2023, 13, .	10.2	22
15338	A polysulfide-functionalized separator enables robust long-cycle operation of lithium-metal batteries. , 0, , .		0
15339	Revisiting the Storage Capacity Limit of Graphite Battery Anodes: Spontaneous Lithium Overintercalation at Ambient Pressure. , 2023, 2, .		2
15340	Towards safe lithium-sulfur batteries from liquid-state electrolyte to solid-state electrolyte. Frontiers of Materials Science, 2023, 17, .	1.1	2
15341	Beyond conventional aqueous electrolytes: Recent developments in Liâ€free "waterâ€inâ€salt―electrolytes for supercapacitors. Bulletin of the Korean Chemical Society, 2023, 44, 468-482.	1.0	3
15342	Precipitation-free aluminum-air batteries with high capacity and durable service life. Chemical Engineering Journal, 2023, 462, 142182.	6.6	11
15343	High-Temperature Thermal Reactivity and Interface Evolution of the NMC-LATP-Carbon Composite Cathode. ACS Applied Materials & amp; Interfaces, 2023, 15, 13689-13699.	4.0	2

#	Article	IF	CITATIONS
15344	Recycling inactive lithium in lithium–sulfur batteries using organic polysulfide redox. Journal of Materials Chemistry A, 2023, 11, 7441-7446.	5.2	11
15345	The structural behavior of electrochemically delithiated LixNi0.8Co0.15Al0.05O2 (x<1) battery cathodes. Journal of Power Sources, 2023, 564, 232799.	4.0	4
15346	Thermodynamic properties study of polyoxometalate Na7[H2PV14O42]. Journal of Chemical Physics, 2023, 158, .	1.2	1
15347	Structural, electronic, and Li-ion mobility properties of garnet-type Li ₇ La ₃ Zr ₂ O ₁₂ surface: An insight from first-principles calculations. Chinese Physics B, 2023, 32, 068201.	0.7	1
15348	Supercapacitors Based on Resveratrol/Reduced Graphene Oxide Composites. ACS Applied Nano Materials, 2023, 6, 4162-4169.	2.4	3
15349	Sphere-like Naphthalene-Based Microporous Nickel Phosphonate Facile for Asymmetric Supercapacitor Devices and Bifunctional Oxygen Electrocatalysts. ACS Applied Energy Materials, 2023, 6, 3347-3356.	2.5	6
15350	Electrolyte Modulation Strategies for High Performance Zinc Batteries. Batteries and Supercaps, 2023, 6, .	2.4	3
15351	Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries. Journal of Electronic Materials, 2023, 52, 2904-2912.	1.0	4
15352	Sulfur Polymer as Emerging Advanced Materials: Synthesis and Applications. ChemistrySelect, 2023, 8, .	0.7	3
15353	Strategies to increase the stability and energy density of NVPF– A comprehensive review. Functional Materials Letters, 2023, 16, .	0.7	3
15354	Interfacial Coupling FeSe ₂ /MoS ₂ Heterostructure as a Promising Cathode for Aluminum-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3366-3373.	2.5	4
15355	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	32
15356	Fe–Nb Co-Doped Rutile TiO ₂ for Anode Materials of Li-Ion Batteries. , 2023, 1, 994-1000.		6
15357	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie, 2023, 135, .	1.6	2
15358	Comparative studies of hexagonal boron phosphide/V ₂ CS ₂ heterostructure and homogeneous bilayers as metal-ion battery anodes. Physical Chemistry Chemical Physics, 2023, 25, 10011-10021.	1.3	1
15360	Transferring state of health estimation neural networks for different battery chemistries and charging protocols using renormalization and transfer learning. , 2023, 1, 100013.		1
15361	Identification and Fast Measurement Method of Open-circuit Voltage. Journal of the Electrochemical Society, 2023, 170, 030525.	1.3	2
15362	Naked metallic skin for homo-epitaxial deposition in lithium metal batteries. Nature Communications, 2023, 14, .	5.8	28

#	Article	IF	CITATIONS
15363	A Perspective on the Critical Design Criteria for Anode-free Li Metal Batteries. , 0, 1, .		0
15364	Organicâ€Additiveâ€Đerived Cathode Electrolyte Interphase Layer Mitigating Intertwined Chemical and Mechanical Degradation for Sulfideâ€Based Solidâ€&tate Batteries. Advanced Energy Materials, 2023, 13, .	10.2	6
15365	Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics. , 2023, 42, 100061.		1
15366	Reversible Li Plating on Graphite Anodes through Electrolyte Engineering for Fastâ€Charging Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	26
15367	Determining the Role of Ion Transport Throughput in Solidâ€State Lithium Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
15368	Determining the Role of Ion Transport Throughput in Solidâ€State Lithium Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
15369	Reversible Li Plating on Graphite Anodes through Electrolyte Engineering for Fast harging Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
15370	Stable all-solid-state Li-Te battery with Li3TbBr6 superionic conductor. Nano Research, 2023, 16, 9344-9351.	5.8	1
15371	Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries. Materials, 2023, 16, 2240.	1.3	3
15372	Vanadium Oxide-Based Cathode Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Design Strategy. Inorganics, 2023, 11, 118.	1.2	2
15373	Battery production consistency impact analysis based on particle swarm trimmed mean fuzzy analytic hierarchy process. , 2022, , .		0
15374	Mesoscale Modeling and Analysis in Electrochemical Energy Systems. Modern Aspects of Electrochemistry, 2023, , 69-117.	0.2	0
15375	In Situ Transmission Electron Microscopy for Sodiumâ€ion Batteries. Advanced Materials, 2023, 35, .	11.1	8
15376	The Influences of DMF Content in Composite Polymer Electrolytes on Li ⁺ onductivity and Interfacial Stability with Liâ€Metal. Advanced Functional Materials, 2023, 33, .	7.8	15
15377	Metal-organic frameworks for nanoconfinement of chlorine in rechargeable lithium-chlorine batteries. Joule, 2023, 7, 515-528.	11.7	21
15378	Oxygen-permeable and moisture-proof membrane for stable Li-O2/air batteries in humid working environment. Energy Storage Materials, 2023, 58, 94-100.	9.5	5
15379	Pressure and polymer selections for solid-state batteries investigated with high-throughput simulations. Cell Reports Physical Science, 2023, 4, 101328.	2.8	4
15380	Singleâ€Walled Carbon Nanotube Film as an Efficient Conductive Network for Siâ€Based Anodes. Advanced Functional Materials, 2023, 33, .	7.8	14

#	Article	IF	CITATIONS
15381	Charge Transport in Water–NaCl Electrolytes with Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2023, 127, 2729-2738.	1.2	5
15382	Space-Confined Electrochemical Reactions and Materials for High-Energy-Density Batteries. Accounts of Materials Research, 2023, 4, 580-590.	5.9	3
15383	High Energy Density Lithium–Sulfur Batteries Based on Carbonaceous Two-Dimensional Additive Cathodes. ACS Applied Energy Materials, 2023, 6, 3579-3589.	2.5	5
15384	Hybrid Aqueous/Nonâ€aqueous Electrolytes for Lithiumâ€lon and Zincâ€lon Batteries: A Miniâ€Review. Batteries and Supercaps, 2023, 6, .	2.4	3
15385	Amorphous Germanium Nanomaterials as Highâ€Performance Anode for Lithium and Sodiumâ€lon Batteries. Advanced Materials Technologies, 2023, 8, .	3.0	6
15386	Nonâ€van der Waals 2D Materials for Electrochemical Energy Storage. Advanced Functional Materials, 2023, 33, .	7.8	9
15387	State-of-art progress and perspectives on alloy-type anode materials for potassium-ion batteries. Materials Chemistry Frontiers, 2023, 7, 3011-3036.	3.2	9
15388	Fundamentals, preparation, and mechanism understanding of Li/Na/Mg-Sn alloy anodes for liquid and solid-state lithium batteries and beyond. Nano Research, 2023, 16, 8191-8218.	5.8	6
15389	Intercalant-induced V <i>t</i> _{<i>2</i>} <i> _g </i> orbital occupation in vanadium oxide cathode toward fast-charging aqueous zinc-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
15390	Effect of SiO2 Coating on Microstructure and Electrochemical Properties of LiNi0.5Mn1.5O4 Cathode Material. Journal of Electrochemical Energy Conversion and Storage, 2024, 21, .	1.1	0
15391	Aqueous Processing of LiCoO ₂ –Li _{6.6} La ₃ Zr _{1.6} Ta _{0.4} O ₁₂ Composite Cathode for High-Capacity Solid-State Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 5184-5194.	3.2	3
15392	Lead-free bismuth pyrochlore-based dielectric films for ultrahigh energy storage capacitors. Materials Today Physics, 2023, 33, 101054.	2.9	1
15393	Lithium-Ion Battery State-of-Charge Estimation Using Electrochemical Model with Sensitive Parameters Adjustment. Batteries, 2023, 9, 180.	2.1	7
15394	Synergistic Co-doping effect of CNTs and PVP in Na4MnCr(PO4)3 cathode as a strategy for improving the electrochemical performance of SIBs. Chinese Chemical Letters, 2024, 35, 108358.	4.8	2
15395	All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs. Batteries, 2023, 9, 186.	2.1	8
15396	Stacking Faults Inducing Oxygen Anion Activities in Li ₂ MnO ₃ . Advanced Materials, 2023, 35, .	11.1	11
15397	Neuromorphic Hardware Applied in the Development of Low-Power IoTs * , 2022, , .		1
15398	Temperatureâ€Derived Fe Dissolution of a LiFePO ₄ /Graphite Cell at Fast Charging and High Stateâ€ofâ€Charge Condition. Energy Technology, 2023, 11, .	1.8	1

		CITATION RE	PORT	
#	Article		IF	Citations
15399	Optimization Strategies for Lithium-Ion Batteries in Practical Electric Vehicles. , 0, 37, 18-2	6.		0
15400	An electrolyte additive for the improved high voltage performance of LiNi _{0.5} Mn _{1.5} O ₄ (LNMO) cathodes in Li-ion batteri Materials Chemistry A, 2023, 11, 7670-7678.	es. Journal of	5.2	6
15401	Preparation of a Flexible Reduced Graphene Oxide-Si Composite Film and Its Application in High-Performance Lithium Ion Batteries. Crystals, 2023, 13, 547.		1.0	1
15402	Activating ultra-low temperature Li-metal batteries by tetrahydrofuran-based localized satu electrolyte. Energy Storage Materials, 2023, 58, 184-194.	irated	9.5	9
15403	Mo–F Co-Doping LiNi _{0.83} Co _{0.11} Mn _{0.06} O <sub the Structure and Induces Compact Primary Particle To Improve the Electrochemical Perfor ACS Applied Energy Materials, 2023, 6, 3834-3843.</sub 		2.5	1
15404	Na ⁺ Migration Mediated Phase Transitions Induced by Electric Field in the Fra Structured Tungsten Bronze. Journal of Physical Chemistry Letters, 2023, 14, 3152-3159.	mework	2.1	2
15405	Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batterie Solutions, and Perspectives. Electrochemical Energy Reviews, 2023, 6, .	s: Origins,	13.1	25
15406	Polyethylene Oxide/Sodium Sulfonamide Polymethacrylate Blends as Highly Conducting Si Solid Polymer Electrolytes. Energy & Fuels, 2023, 37, 5519-5529.	ngle-Ion	2.5	4
15407	Improving the Reaction Kinetics by Annealing MoS2/PVP Nanoflowers for Sodium-Ion Stora Molecules, 2023, 28, 2948.	age.	1.7	1
15408	The Anode Materials for Lithiumâ€lon and Sodiumâ€lon Batteries Based on Conversion Re ChemElectroChem, 2023, 10, .	actions: a Review.	1.7	12
15409	Synergistic realization of Co/N co-doped hierarchical vanadium trioxide core–shell spher ultra-long cycle performance of Li–S batteries. Applied Physics Letters, 2023, 122, 1339	e for 04.	1.5	0
15410	Recent Progress in Aqueous Zincâ€lon Batteries: From FundamentalScience to Structure D Chemical Record, 2023, 23, .	esign.	2.9	10
15411	Activated nanolithia as an effective prelithiation additive for lithium-ion batteries. Journal c Materials Chemistry A, 2023, 11, 8757-8765.	f	5.2	7
15412	A Recyclable and Scalable High apacity Organic Battery. Angewandte Chemie, 2023, 13	35,.	1.6	1
15413	The Biomodified Lignin Platform: A Review. Polymers, 2023, 15, 1694.		2.0	11
15414	Co-Fe phosphide@graphitic carbon nitride nanosheet modified separator for high-perform lithium-sulfur batteries. Journal of Alloys and Compounds, 2023, 949, 169873.	ance	2.8	7
15415	The Effect of Key Electronic States on Excess Lithium Intercalation in Li ₂ Ru _{<i>y</i>/i>} Mn _{1–<i>y</i>} O ₃ . Jou Chemistry Letters, 2023, 14, 3296-3306.	rnal of Physical	2.1	0
15416	A Recyclable and Scalable Highâ€Capacity Organic Battery. Angewandte Chemie - Internat 2023, 62, .	ional Edition,	7.2	22

#	Article	IF	CITATIONS
15417	Porous Hybrid Electrode Materials for High Energy Density Li-Ion and Li-S Batteries. , 2023, , 193-214.		0
15418	The Importance of Morphology on Ion Transport in Single-Ion, Comb-Branched Copolymer Electrolytes: Experiments and Simulations. Macromolecules, 2023, 56, 2790-2800.	2.2	4
15419	Synthesis of FeS/Fe2O3 hollow fibers derived from Fe-alginate fibers as anodes for high performance sodium-ion batteries. Journal of Alloys and Compounds, 2023, 952, 169908.	2.8	1
15420	Amorphous SnS <i>_x</i> (1 < <i>x</i> < 2) Anode with a High-Rate Li Alloying Reaction for Li-lon Batteries. ACS Applied Materials & Interfaces, 2023, 15, 17904-17913.	4.0	3
15421	A Novel Potassium Salt Regulated Solvation Chemistry Enabling Excellent Liâ€Anode Protection in Carbonate Electrolytes. Advanced Materials, 2023, 35, .	11.1	10
15422	Unraveling the Origin of Lithiophilicity toward a Molten Li Metal: Zn Metal as Trojan Horse. ACS Applied Energy Materials, 2023, 6, 4257-4263.	2.5	3
15423	A Critical Evaluation of Interfacial Stability in Li-excess Cation-disordered Rock-salt Oxide Cathode. Chemical Engineering Journal, 2023, 464, 142709.	6.6	2
15424	Extraordinary Ionic Conductivity Excited by Hierarchical Ionâ€Transport Pathways in MOFâ€Based Quasiâ€Solid Electrolytes. Advanced Materials, 2023, 35, .	11.1	9
15425	Syntheticâ€Clayâ€Assisted Carrier Transport in Solid Polymer Electrolytes for Enhanced Allâ€Solidâ€State Lithium Metal Batteries. ChemPlusChem, 0, , .	1.3	0
15426	Layered buserite Mg-Mn oxide cathode for aqueous rechargeable Mg-ion battery. Journal of Magnesium and Alloys, 2023, 11, 840-850.	5.5	10
15427	An amorphous niobium polysulfide based nanocomposite enables ultrastable all-solid-state lithium batteries. Materials Chemistry Frontiers, 2023, 7, 2844-2850.	3.2	2
15428	Choosing Carbon Conductive Additives for NMC-LATP Composite Cathodes: Impact on Thermal Stability. Journal of the Electrochemical Society, 2023, 170, 040523.	1.3	2
15429	Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries. Materials Today, 2023, 66, 221-244.	8.3	15
15430	Novel Lamellar Se ₄ P ₄ /Graphene Hybrid Anode Stimulated Durable Potassium Storage. Energy & Fuels, 2023, 37, 6177-6185.	2.5	2
15431	Graphite Anode Functionalized with a Gel Biopolymer Binder for Li-Ion Batteries Operating in a Broad Temperature Range. ACS Applied Energy Materials, 2023, 6, 4404-4412.	2.5	1
15432	Investigation of the AlB2 intermetallic phases effect on Al–Zn–B alloys' electrochemical performance in Al–air battery anodes. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	2
15433	Lamellar Ionic Liquid Composite Electrolyte for Wideâ€Temperature Solidâ€State Lithiumâ€Metal Battery. Advanced Energy Materials, 2023, 13, .	10.2	7
15434	Physicochemical Dual Crossâ€Linking Conductive Polymeric Networks Combining High Strength and High Toughness Enable Stable Operation of Silicon Microparticle Anodes. Advanced Materials, 2023, 35, .	11.1	20

#	Article	IF	CITATIONS
15435	Status and Prospects of MXeneâ€Based Lithium–Oxygen Batteries: Theoretical Prediction and Experimental Modulation. Advanced Energy Materials, 2023, 13, .	10.2	11
15436	Bi2S3/rGO nanocomposites with covalent heterojunctions as a high-performance aqueous zinc ion battery material. Ceramics International, 2023, 49, 22160-22169.	2.3	3
15437	Unraveling the Dynamic Correlations between Transition Metal Migration and the Oxygen Dimer Formation in the Highly Delithiated Li _{<i>x</i>} CoO ₂ Cathode. Journal of Physical Chemistry Letters, 2023, 14, 3677-3684.	2.1	4
15438	Metallic and Dimensional Optimization of Metal–Organic Frameworks for Highâ€₽erformance Lithium‧ulfur Batteries. Chemistry - A European Journal, 2023, 29, .	1.7	1
15439	Recent Progress in and Perspectives on Emerging Halide Superionic Conductors for All-Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	30
15440	Trade-off between critical metal requirement and transportation decarbonization in automotive electrification. Nature Communications, 2023, 14, .	5.8	19
15441	Small Molecules, Great Powers: Chemistry of Small Organoâ€Chalcogenide Molecules in Rechargeable Liâ€Sulfur Batteries. Advanced Functional Materials, 2023, 33, .	7.8	6
15442	Scalable Interlayer Nanostructure Design for High-Rate (10C) Submicron Silicon-Film Electrode by Incorporating Silver Nanoparticles. ACS Applied Materials & Interfaces, 2023, 15, 18845-18856.	4.0	4
15443	Recent advancements in 3D porous graphene-based electrode materials for electrochemical energy storage applications. Materials Advances, 2023, 4, 2524-2543.	2.6	5
15444	A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Advances in Materials Science and Engineering, 2023, 2023, 1-15.	1.0	3
15445	Boron-Pnictogen Monolayers with Negative Poisson's ratio and Excellent Band Edge Positions for Photocatalytic Water Splitting. Physical Chemistry Chemical Physics, 0, , .	1.3	0
15446	Aqueous Cold Sintering of Li-Based Compounds. ACS Applied Materials & amp; Interfaces, 0, , .	4.0	0
15447	Artificial intelligence-navigated development of high-performance electrochemical energy storage systems through feature engineering of multiple descriptor families of materials. Energy Advances, 2023, 2, 615-645.	1.4	3
15448	Relation between microscopic structure and macroscopic properties in polyacrylonitrile-based lithium-ion polymer gel electrolytes. Journal of Chemical Physics, 2023, 158, .	1.2	1
15449	Exploring the role of 2D-C2N monolayers in potassium ion batteries. Journal of Molecular Modeling, 2023, 29, .	0.8	0
15450	Dynamic Networks of Cellulose Nanofibrils Enable Highly Conductive and Strong Polymer Gel Electrolytes for Lithiumâ€ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	1
15451	Hydrogenated titanium dioxide modified core–shell structure Fe3O4@NiO for lithium-ion battery anode material. Ionics, 0, , .	1.2	0
15452	Cyclotetrabenzil Derivatives for Electrochemical Lithiumâ€lon Storage. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4

#	Article	IF	CITATIONS
15453	Simulation of Discharge of a Lithium Oxygen Battery. Lecture Notes in Mechanical Engineering, 2023, , 515-522.	0.3	0
15454	<i>In Situ</i> Raman Spectroscopy of Li ⁺ and Na ⁺ Storage in Anodic TiO ₂ Nanotubes: Implications for Battery Design. ACS Applied Nano Materials, 2023, 6, 6528-6537.	2.4	4
15455	Solid-state electrolytes for safe rechargeable lithium metal batteries: a strategic view. Materials Futures, 2023, 2, 033501.	3.1	16
15456	Synthesis and electrochemical performances of PbGeO3/C as novel anode materials. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
15457	SYNTHESIS AND INVESTIGATION OF ELECTROCHEMICAL CHARACTERISTICS OF OXIDE Li-CONDUCTIVE MATERIALS WITH SPINEL AND PEROSKITE STRUCTURES. Ukrainian Chemistry Journal, 2023, 89, 3-17.	0.1	0
15458	Highâ€Power and Ultrastable Aqueous Calciumâ€Ion Batteries Enabled by Small Organic Molecular Crystal Anodes. Advanced Functional Materials, 2023, 33, .	7.8	10
15459	Study of polyethylene coating to improve the cycle stability of Ni-rich cathode for Li-ion batteries. Journal of Solid State Electrochemistry, 2023, 27, 2251-2261.	1.2	1
15460	Single additive to regulate lithium-ion solvation structure in carbonate electrolytes for high-performance lithium-metal batteries. Cell Reports Physical Science, 2023, 4, 101379.	2.8	3
15461	Analytical and experimental investigation of the mode-II energy release rate of electrodes using a plasticity-assisted zero-degree peeling configuration. Engineering Fracture Mechanics, 2023, 284, 109276.	2.0	0
15462	Regulating the Water Molecular in the Solvation Structure for Stable Zinc Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	9
15463	Optimized Pinecone-Squama-Structure MoS2-Coated CNT and Graphene Framework as Binder-Free Anode for Li-Ion Battery with High Capacity and Cycling Stability. Materials, 2023, 16, 3218.	1.3	2
15464	Effect of particle microstructure and the role of proton on the lithium insertion properties of HTiNbO5 electrode material. Electrochimica Acta, 2023, , 142432.	2.6	0
15465	Recent advances in transition metal phosphide materials: Synthesis and applications in supercapacitors. Nano Materials Science, 2023, , .	3.9	2
15466	Solid composite electrolyte based on oxygen vacancy effect of Lix(CoCrFeMnNi)O4-y high entropy oxides. Electrochimica Acta, 2023, 456, 142459.	2.6	6
15467	Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior. Journal of Materials Science and Technology, 2023, 160, 9-17.	5.6	16
15468	Tailoring Conversionâ€Reactionâ€Induced Alloy Interlayer for Dendriteâ€Free Sulfideâ€Based Allâ€Solidâ€State Lithiumâ€Metal Battery. Advanced Science, 2023, 10, .	5.6	8
15469	Recent advances in developing tetrathiafulvalene analogs of electrode materials: discovery of an in-cell polymerization technique. Pure and Applied Chemistry, 2023, 95, 431-438.	0.9	0
15470	A Novel Graphene Based Biâ€Function Humidity Tolerant Binder for Lithiumâ€ŀon Battery. Small Methods, 2023, 7, .	4.6	1

#	Article	IF	CITATIONS
15471	Toward stable and highly reversible zinc anodes for aqueous batteries via electrolyte engineering. Journal of Energy Chemistry, 2023, 83, 209-228.	7.1	8
15472	Reduced graphene oxide (rGO) integrated sodium titanate nanocomposite as a high-rate performance anode material for sodium ion batteries. Journal of Electroanalytical Chemistry, 2023, 939, 117485.	1.9	3
15494	Embedding alloying sites in a lithiated polymer matrix as a stable interphase of lithium electrodes. Chemical Communications, 2023, 59, 6517-6520.	2.2	3
15502	A review of drop test and quasi-static method test of lithium-ion battery for electric vehicle. AIP Conference Proceedings, 2023, , .	0.3	0
15507	Organic materials as charge hosts for pseudocapacitive energy storage. Sustainable Energy and Fuels, 2023, 7, 2802-2818.	2.5	1
15508	Structure andÂStability ofÂModern Electrolytes inÂNanoscale Confinements fromÂMolecular Dynamics Perspective. Composites Science and Technology, 2023, , 125-144.	0.4	1
15520	Atomic-level insights into the first cycle irreversible capacity loss of Ni-rich layered cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2023, 11, 12002-12012.	5.2	0
15532	Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Research, 2023, 16, 9158-9178.	5.8	14
15553	Functionalization of Graphene and Factors Affecting Catalytic Performance. , 2023, , 154-207.		0
15575	Advanced organic electrode materials for aqueous rechargeable batteries. Science China Chemistry, 2024, 67, 137-164.	4.2	5
15580	Realizing fast Li-ion conduction of Li ₃ PO ₄ solid electrolyte at low temperature by mechanochemical formation of lithium-containing dual-shells. Materials Advances, 0, ,	2.6	0
15585	Recent advances of structural/interfacial engineering for Na metal anode protection in liquid/solid-state electrolytes. Nanoscale, 0, , .	2.8	1
15644	Application of high energy X-ray diffraction and Rietveld refinement in layered lithium transition metal oxide cathode materials. Nano Research, 2023, 16, 9954-9967.	5.8	2
15646	Potential Applications of Graphene. Engineering Materials, 2023, , 127-165.	0.3	1
15695	Short Communication: Thermal Insitu Analyses of Multicomponent Pyrophosphate Cathodes Materials. International Journal of Electrochemical Science, 2015, 10, 8941-8950.	0.5	5
15696	Short Communication: Facile Synthesis of High-quality N-doped Graphene Anchored with Fe2O3 for Use As Lithium-ion Battery Anode Materials. International Journal of Electrochemical Science, 2015, 10, 10651-10658.	0.5	3
15730	New superionic halide solid electrolytes enabled by aliovalent substitution in Li _{3â^²<i>x</i>} Y _{1â^²<i>x</i>} Hf _{<i>x</i>} Cl ₆ for all-solid-state lithium metal based batteries. Journal of Materials Chemistry A, 2023, 11, 15651-15662.	5.2	4
15738	Implications and Applications of Multifunctional Advanced Materials/Gadgets for Energy Conversion and Storage. , 2023, , 141-157.		0

		CITATION REI	PORT	
# 15739	ARTICLE Polymer blend nanocomposites with CNTs for energy storage applications. , 2023, , 241-	270	IF	Citations
	Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Che		22.0	
15747	Reviews, 2023, 123, 9204-9264.		23.0	30
15765	Electrochemistry of anode materials in lithium- and sodium-ion batteries. , 2023, , 454-46	57.		0
15786	Construction of single-ion conducting polymeric protective layer for high-charging rate L batteries. MRS Communications, 0, , .	i-metal	0.8	0
15801	Electrode Materials in Lithium-Ion Batteries. Materials Horizons, 2023, , 77-89.		0.3	0
15811	Recycling of sodium-ion batteries. Nature Reviews Materials, 2023, 8, 623-634.		23.3	32
15812	Fluoropolymer nanocomposites for piezoelectric energy harvesting applications. , 2023,	, 317-358.		1
15814	Novel and innovative ionic liquids based electrolytes and their applications in batteries. , 313-335.	2023, ,		0
15821	From material properties to device metrics: a data-driven guide to battery design. Energy 2023, 2, 1326-1350.	Advances,	1.4	1
15835	A reflection on polymer electrolytes for solid-state lithium metal batteries. Nature Comm 2023, 14, .	unications,	5.8	15
15846	é«~æ•^åằå"碳基å,¬åŒ−å‰,çš,,ç"ç©¶èį›å±•åŠå¶åœï锌空溔电æ±ä,应ç"". Scie	nce China Materials, 202	3 ,3666, 3383	123400.
15862	Li–O2 battery redox mediators go positive. Nature Chemistry, 2023, 15, 1206-1208.		6.6	1
15867	Small-molecule organic electrode materials for rechargeable batteries. Science China Che 66, 3070-3104.	mistry, 2023,	4.2	6
15874	Current Trends in the Commercialization of Supercapacitors as Emerging Energy Storing Materials Horizons, 2024, , 631-651.	Systems.	0.3	0
15876	Pre & Post-Treatment of Functionalized Nanomaterials in Fabricating Supercapacito Materials Horizons, 2024, , 223-250.	r Electrodes.	0.3	0
15878	Research progress of bionic fog collection surfaces based on special structures from nation organisms. RSC Advances, 2023, 13, 27839-27864.	ural	1.7	0
15897	High-entropy materials for electrochemical energy storage devices. Energy Advances, 202	23, 2, 1565-1590.	1.4	1
15901	Aggregation behaviour of pyrene-based luminescent materials, from molecular design an properties to application. Chemical Society Reviews, 2023, 52, 6715-6753.	d optical	18.7	26

#	Article	IF	CITATIONS
15939	Halogen chemistry of solid electrolytes in all-solid-state batteries. Nature Reviews Chemistry, 2023, 7, 826-842.	13.8	4
15952	Recent progress in electrochemical application of Magnéli phase Ti4O7-based materials: a review. Journal of Materials Science, 2023, 58, 14911-14944.	1.7	0
15958	Printed Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	1
15962	Progress in Electrolyte Engineering of Aqueous Batteries in a Wide Temperature Range. Transactions of Tianjin University, 0, , .	3.3	1
15973	Design of functional binders for high-specific-energy lithium-ion batteries: from molecular structure to electrode properties. , 0, , .		2
15980	Utilization of 2D materials in aqueous zinc ion batteries for safe energy storage devices. Nanoscale, 2023, 15, 17270-17312.	2.8	1
16002	Self-powered Flexible Electronic Skin Based on Ultra-stretchable Frictional Nano-integration. Lecture Notes in Computer Science, 2023, , 613-624.	1.0	0
16010	Potential of Electrical Cells: the Effect of the Experimental Design on the Results. , 2023, , .		1
16033	Tuning the electrochemical performance of covalent organic framework cathodes for Li- and Mg-based batteries: the influence of electrolyte and binder. Journal of Materials Chemistry A, 2023, 11, 21553-21560.	5.2	2
16077	Iron-based fluorophosphate Na ₂ FePO ₄ F as a cathode for aqueous zinc-ion batteries. Chemical Communications, 0, , .	2.2	0
16092	Opportunities for ionic liquid-based electrolytes in rechargeable lithium batteries. Science China Chemistry, 2023, 66, 3443-3466.	4.2	0
16101	Ti ₃ C ₂ T _{<i>x</i>} MXene-embedded MnO ₂ -based hydrophilic electrospun carbon nanofibers as a freestanding electrode for supercapacitors. Chemical Communications, 2023, 59, 14309-14312.	2.2	1
16134	The significance of fillers in composite polymer electrolytes for optimizing lithium battery. Ionics, 2024, 30, 647-675.	1.2	0
16215	Lithium batteries - Secondary systems – All-solid state systems Halides and oxy-halides lithium-based solid electrolytes. , 2023, , .		0
16237	A Review of Parameterization Methods for the Electrochemical Model of Lithium-ion Battery. , 2023, , .		0
16254	Copper tetrathiovanadate (Cu3VS4): a new emerging electrode for rechargeable aqueous aluminum-ion battery. Dalton Transactions, 0, , .	1.6	0
16264	Reversible and high-density energy storage with polymers populated with bistable redox sites. Polymer Journal, 2024, 56, 127-144.	1.3	0
16278	Roadmap for rechargeable batteries: present and beyond. Science China Chemistry, 0, , .	4.2	0

	CITATION REPORT		
# Article	IF	CITATIONS	
16308 Challenges and opportunities of chalcogenides and their nanocomposites. , 2024, , 221-260).	0	
16314 Energy Efficiency Analysis of Electric Vehicle System Components. , 2023, , .		о	
¹⁶³³⁶ Tailored nonwoven supported non-flammable quasi-solid electrolyte enables an ultra-stable s metal battery. Energy Advances, 2024, 3, 419-423.	sodium 1.4	0	
16374 Advanced electrode materials of solid-state batteries. , 2024, , 423-500.		0	
16410 Nanoceramics in the energy storage industry. , 2024, , 267-277.		0	
16413 Batteries for small-scale robotics. MRS Bulletin, 2024, 49, 115-124.	1.7	2	
16414 Preliminary investigations of supercapacitor-driven solar energy for IoT and portable devices.	., 2023, , .	0	
Metal organic frameworks-based cathode materials for advanced Li-S batteries: A compreher review. Nano Research, 2024, 17, 2592-2618.	nsive 5.8	0	
16493 Solid Electrolytes for Lithium Batteries. , 2024, , 140-171.		0	
Effect of Annealing Process on Recrystallization Structure, Texture, and Precipitates of 1235 Aluminum Sheets. Minerals, Metals and Materials Series, 2024, , 350-355.	5D 0.3	Ο	