Metabolic gene regulation in a dynamically changing en

Nature 454, 1119-1122 DOI: 10.1038/nature07211

Citation Report

#	Article	IF	CITATIONS
2	A synthetic gene network for tuning protein degradation in <i>Saccharomyces cerevisiae</i> . Molecular Systems Biology, 2007, 3, 127.	3.2	89
3	A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456, 516-519.	13.7	1,079
4	Reverse engineering the cell. Nature, 2008, 454, 1061-1062.	13.7	25
6	MOLECULAR BIOCIRCUITS. Modern Physics Letters B, 2009, 23, 773-789.	1.0	2
7	Hybridization kinetics is different inside cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21649-21654.	3.3	92
8	Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3758-3763.	3.3	134
9	A network biology approach to aging in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1145-1150.	3.3	69
10	Strategies for cellular decisionâ€making. Molecular Systems Biology, 2009, 5, 326.	3.2	272
11	In vivo measurement of signaling cascade dynamics. Cell Cycle, 2009, 8, 373-376.	1.3	7
12	A Stochastic Model for Microtubule Motors Describes the In Vivo Cytoplasmic Transport of Human Adenovirus. PLoS Computational Biology, 2009, 5, e1000623.	1.5	51
13	Design Principles for Riboswitch Function. PLoS Computational Biology, 2009, 5, e1000363.	1.5	115
14	Epigenetic responses to environmental change and their evolutionary implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 3403-3418.	1.8	217
15	Timing is everything: using fluidics to understand the role of temporal dynamics in cellular systems. Microfluidics and Nanofluidics, 2009, 6, 717-729.	1.0	32
16	Integrated microfluidic devices for combinatorial cell-based assays. Biomedical Microdevices, 2009, 11, 547-555.	1.4	45
17	Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature, 2009, 461, 997-1001.	13.7	902
18	Growth landscape formed by perception and import of glucose in yeast. Nature, 2009, 462, 875-879.	13.7	80
19	Next-generation synthetic gene networks. Nature Biotechnology, 2009, 27, 1139-1150.	9.4	321
20	Microfluidic devices for measuring gene network dynamics in single cells. Nature Reviews Genetics, 2009–10, 628-638	7.7	224

#	Article	IF	CITATIONS
21	The role of predictive modelling in rationally re-engineering biological systems. Nature Reviews Microbiology, 2009, 7, 297-305.	13.6	55
22	Extended continuous-flow stirred-tank reactor (ECSTR) as a simple model of life under thermodynamically open conditions. Chemical Physics Letters, 2009, 476, 323-328.	1.2	4
23	¹ H NMR-Based Metabolomic Approach for Understanding the Fermentation Behaviors of Wine Yeast Strains. Analytical Chemistry, 2009, 81, 1137-1145.	3.2	84
24	Towards the automated engineering of a synthetic genome. Molecular BioSystems, 2009, 5, 733.	2.9	16
25	Models of Single-Molecule Experiments with Periodic Perturbations Reveal Hidden Dynamics in RNA Folding. Journal of Physical Chemistry B, 2009, 113, 7579-7590.	1.2	10
26	Recent advances in systems microbiology. Current Opinion in Microbiology, 2009, 12, 577-581.	2.3	10
27	Integration column: Microfluidic high-throughput screening. Integrative Biology (United Kingdom), 2009, 1, 19-29.	0.6	32
28	Microfluidic Perfusion System for Automated Delivery of Temporal Gradients to Islets of Langerhans. Analytical Chemistry, 2009, 81, 1162-1168.	3.2	47
29	Gene expression dynamics in randomly varying environments. Journal of Mathematical Biology, 2010, 61, 231-251.	0.8	23
30	Microfluidic multi-analyte gradient generator. Analytical and Bioanalytical Chemistry, 2010, 398, 1985-1991.	1.9	15
31	Growth of primary embryo cells in a microculture system. Biomedical Microdevices, 2010, 12, 253-261.	1.4	8
32	Zooming of states and parameters using a lumping approach including back-translation. BMC Systems Biology, 2010, 4, 28.	3.0	17
34	The evolutionary origins of gene regulation. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 327-340.	0.6	1
35	Fusion and Fission Control of Picoliterâ€6ized Microdroplets for Changing the Solution Concentration of Microreactors. Small, 2010, 6, 2374-2377.	5.2	12
36	Measurement of single-cell dynamics. Nature, 2010, 465, 736-745.	13.7	468
38	Correct biological timing in <i>Arabidopsis</i> requires multiple light-signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13171-13176.	3.3	73
39	Cell cycle-dependent variations in protein concentration. Nucleic Acids Research, 2010, 38, 2676-2681.	6.5	57
40	LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology (United Kingdom), 2010, 156, 2782-2795.	0.7	100

#	Article	IF	CITATIONS
41	A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16743-16748.	3.3	37
42	Design and implementation of a feedback control strategy for IRMA, a novel synthetic gene regulatory network. , 2010, , .		3
43	Mutual information in time-varying biochemical systems. Physical Review E, 2010, 81, 061917.	0.8	61
44	Estimating the Stochastic Bifurcation Structure of Cellular Networks. PLoS Computational Biology, 2010, 6, e1000699.	1.5	32
45	Decoupling of Receptor and Downstream Signals in the Akt Pathway by Its Low-Pass Filter Characteristics. Science Signaling, 2010, 3, ra56.	1.6	79
46	A microfluidic platform for probing small artery structure and function. Lab on A Chip, 2010, 10, 2341.	3.1	110
47	Effect of feedback on the fidelity of information transmission of time-varying signals. Physical Review E, 2010, 82, 031914.	0.8	47
48	Network reconstruction reveals new links between aging and calorie restriction in yeast. HFSP Journal, 2010, 4, 94-99.	2.5	5
49	Microfluidic System for Generation of Sinusoidal Glucose Waveforms for Entrainment of Islets of Langerhans. Analytical Chemistry, 2010, 82, 6704-6711.	3.2	49
50	A modular gradientâ€sensing network for chemotaxis in <i>Escherichia coli</i> revealed by responses to timeâ€varying stimuli. Molecular Systems Biology, 2010, 6, 382.	3.2	204
51	An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study. Lab on A Chip, 2010, 10, 2710.	3.1	24
52	Oscillatory signaling processes: the how, the why and the where. Current Opinion in Genetics and Development, 2010, 20, 665-669.	1.5	46
53	Systems biology of microbial metabolism. Current Opinion in Microbiology, 2010, 13, 337-343.	2.3	111
54	A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning. Lab on A Chip, 2010, 10, 617-625.	3.1	102
55	Microfluidic perfusion system for culturing and imaging yeast cell microarrays and rapidly exchanging media. Lab on A Chip, 2010, 10, 2449.	3.1	15
56	Live Cell Imaging. Methods in Molecular Biology, 2010, , .	0.4	15
57	High-throughput tracking of single yeast cells in a microfluidic imaging matrix. Lab on A Chip, 2011, 11, 466-473.	3.1	54
58	How Do Control-Based Approaches Enter into Biology?. Annual Review of Biomedical Engineering, 2011, 13, 369-396.	5.7	48

#	Article	IF	CITATIONS
59	Microfluidics for Synthetic Biology. Methods in Enzymology, 2011, 497, 295-372.	0.4	110
60	A software-programmable microfluidic device for automated biology. Lab on A Chip, 2011, 11, 1612.	3.1	134
61	The Dynamical Systems Properties of the HOG Signaling Cascade. Journal of Signal Transduction, 2011, 2011, 1-12.	2.0	22
62	Queueing up for enzymatic processing: correlated signaling through coupled degradation. Molecular Systems Biology, 2011, 7, 561.	3.2	170
63	Derivation, identification and validation of a computational model of a novel synthetic regulatory network in yeast. Journal of Mathematical Biology, 2011, 62, 685-706.	0.8	15
64	Regulation and control of metabolic fluxes in microbes. Current Opinion in Biotechnology, 2011, 22, 566-575.	3.3	142
65	Development of a doubleâ€layer microfluidic chip with flow medium for chemotherapy resistance analysis of lung cancer. Electrophoresis, 2011, 32, 3446-3453.	1.3	6
66	Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks. Automatica, 2011, 47, 1265-1270.	3.0	58
67	Probing the Input–Output Behavior of Biochemical and Genetic Systems. Methods in Enzymology, 2011, 487, 279-317.	0.4	16
68	Growth propagation of yeast in linear arrays of microfluidic chambers over many generations. Biomicrofluidics, 2011, 5, 44118-441189.	1.2	16
69	Antagonistic gene transcripts regulate adaptation to new growth environments. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21087-21092.	3.3	30
70	Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Annals of Botany, 2011, 108, 777-787.	1.4	71
71	High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments. Nature Methods, 2011, 8, 599-605.	9.0	214
72	Trade-off between Responsiveness and Noise Suppression in Biomolecular System Responses to Environmental Cues. PLoS Computational Biology, 2011, 7, e1002091.	1.5	16
73	Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay. Molecular Biology of the Cell, 2011, 22, 2787-2795.	0.9	181
74	Optimalityâ€based modeling of planktonic organisms. Limnology and Oceanography, 2011, 56, 2080-2094.	1.6	67
75	Information Routing Driven by Background Chatter in a Signaling Network. PLoS Computational Biology, 2011, 7, e1002297.	1.5	7
76	Mapping the Environmental Fitness Landscape of a Synthetic Gene Circuit. PLoS Computational Biology, 2012, 8, e1002480.	1.5	118

#	Article	IF	CITATIONS
77	Phase Resetting Reveals Network Dynamics Underlying a Bacterial Cell Cycle. PLoS Computational Biology, 2012, 8, e1002778.	1.5	9
78	Reverse engineering biomolecular systems using -omic data: challenges, progress and opportunities. Briefings in Bioinformatics, 2012, 13, 430-445.	3.2	19
79	Stochastic signalling rewires the interaction map of a multiple feedback network during yeast evolution. Nature Communications, 2012, 3, 682.	5.8	37
80	Linear conversion of pressure into concentration, rapid switching of concentration, and generation of linear ramps of concentration in a microfluidic device. Biomicrofluidics, 2012, 6, 024109.	1.2	1
81	Synthetic biology approaches to biofuel production. Biofuels, 2012, 3, 9-12.	1.4	18
82	The AMP-activated Protein Kinase Snf1 Regulates Transcription Factor Binding, RNA Polymerase II Activity, and mRNA Stability of Glucose-repressed Genes in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2012, 287, 29021-29034.	1.6	34
83	Stabilization of Feedback Systems via Distribution of Delays. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 203-208.	0.4	2
84	The adjustable nucleosome: an epigenetic signaling module. Trends in Genetics, 2012, 28, 436-444.	2.9	63
85	Microfluidic single cell analysis: from promise to practice. Current Opinion in Chemical Biology, 2012, 16, 381-390.	2.8	209
86	Microfluidic technologies for studying synthetic circuits. Current Opinion in Chemical Biology, 2012, 16, 307-317.	2.8	17
87	Disruptive Microfluidics: From Life Sciences to World Health to Energy. Disruptive Science and Technology, 2012, 1, 41-53.	1.0	10
88	Constant Flow-Driven Microfluidic Oscillator for Different Duty Cycles. Analytical Chemistry, 2012, 84, 1152-1156.	3.2	43
89	Landscape Topography Determines Global Stability and Robustness of a Metabolic Network. ACS Synthetic Biology, 2012, 1, 229-239.	1.9	10
90	Complex dynamics of transcription regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 657-666.	0.9	44
91	Probing Embryonic Stem Cell Autocrine and Paracrine Signaling Using Microfluidics. Annual Review of Analytical Chemistry, 2012, 5, 293-315.	2.8	65
92	Long-term model predictive control of gene expression at the population and single-cell levels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14271-14276.	3.3	208
93	Synthetic Gene Networks. Methods in Molecular Biology, 2012, , .	0.4	2
94	The effects of pH oscillation on Lactobacillus rhamnosus batch cultivation. Applied Microbiology and Biotechnology, 2012, 95, 1265-1273.	1.7	4

#	Article	IF	CITATIONS
95	Vacuum-assisted cell loading enables shear-free mammalian microfluidic culture. Lab on A Chip, 2012, 12, 4732.	3.1	89
96	Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e30053.	1.1	3
97	Optimality Principles in the Regulation of Metabolic Networks. Metabolites, 2012, 2, 529-552.	1.3	11
98	Microfluidics in Single Cell Analysis. , 0, , .		1
99	Fast stochastic algorithm for simulating evolutionary population dynamics. Bioinformatics, 2012, 28, 1230-1238.	1.8	15
100	Quantitative and dynamic assay of single cell chemotaxis. Integrative Biology (United Kingdom), 2012, 4, 381.	0.6	29
101	Periodic perturbation of genetic oscillations. Chaos, Solitons and Fractals, 2012, 45, 577-587.	2.5	12
102	A Vesicular Transport Pathway Shuttles Cargo from Mitochondria to Lysosomes. Current Biology, 2012, 22, 135-141.	1.8	589
103	Mathematical model of GAL regulon dynamics in Saccharomyces cerevisiae. Journal of Theoretical Biology, 2012, 293, 219-235.	0.8	11
104	Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metabolic Engineering, 2012, 14, 212-222.	3.6	129
105	Invariance and optimality in the regulation of an enzyme. Biology Direct, 2013, 8, 7.	1.9	3
106	Measuring Competitive Fitness in Dynamic Environments. Journal of Physical Chemistry B, 2013, 117, 13175-13181.	1.2	17
107	Tunable Signal Processing Through Modular Control of Transcription Factor Translocation. Science, 2013, 339, 460-464.	6.0	132
108	Dynamic and structural constraints in signal propagation by regulatory networks. Molecular BioSystems, 2013, 9, 268-284.	2.9	3
109	Microfluidic oscillators with widely tunable periods. Lab on A Chip, 2013, 13, 1644.	3.1	27
110	Microfluidic interrogation and mathematical modeling of multi-regime calcium signaling dynamics. Integrative Biology (United Kingdom), 2013, 5, 932.	0.6	11
111	Translational Cross Talk in Gene Networks. Biophysical Journal, 2013, 104, 2564-2572.	0.2	54
112	Microfluidic systems: A new toolbox for pluripotent stem cells. Biotechnology Journal, 2013, 8, 180-191.	1.8	27

		CITATION REPORT		
#	Article		IF	CITATIONS
113	Molecular tools for chemical biotechnology. Current Opinion in Biotechnology, 2013, 2	24, 1000-1009.	3.3	11
114	Reverse Engineering To Suggest Biologically Relevant Redox Activities of Phenolic Mate Chemical Biology, 2013, 8, 716-724.	erials. ACS	1.6	44
115	Dynamic Response Diversity of NFAT Isoforms in Individual Living Cells. Molecular Cell, 322-330.	2013, 49,	4.5	92
116	Microfluidics for Manipulating Cells. Small, 2013, 9, 9-21.		5.2	175
117	Transport of Dynamic Biochemical Signals in Steady Flow in a Shallow Y-Shaped Microf Effect of Transverse Diffusion and Longitudinal Dispersion. Journal of Biomechanical Er 2013, 135, 121011.	luidic Channel: Igineering,	0.6	22
118	Flux Imbalance Analysis and the Sensitivity of Cellular Growth to Changes in Metabolit Computational Biology, 2013, 9, e1003195.	e Pools. PLoS	1.5	61
119	A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proceed National Academy of Sciences of the United States of America, 2013, 110, 15842-158	dings of the 47.	3.3	123
120	The fluctuation-dissipation theorem for stochastic kinetics—Implications on genetic i Journal of Chemical Physics, 2013, 139, 224109.	regulations.	1.2	11
121	Hybrid time-data-driven control for biological cellular systems. , 2013, , .			0
122	Dimerization and Bifunctionality Confer Robustness to the Isocitrate Dehydrogenase R System in Escherichia coli*. Journal of Biological Chemistry, 2013, 288, 5770-5778.	legulatory	1.6	24
123	NONLINEAR CONTROL FOR GAL REGULATORY NETWORK IN S. CEREVISIAE. Internation Information Acquisition, 2013, 09, 1350002.	nal Journal of	0.2	0
125	An experimental approach to identify dynamical models of transcriptional regulation in Chaos, 2013, 23, 025106.	living cells.	1.0	12
126	Gene network requirements for regulation of metabolic gene expression to a desired s Reports, 2013, 3, 1417.	tate. Scientific	1.6	18
127	Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Ch Environments. PLoS ONE, 2014, 9, e90695.	anging	1.1	9
129	Product and Process Design. , 2014, , 747-781.			2
130	In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Computational Biology, 2014, 10, e1003625.	Networks. PLoS	1.5	114
131	Synthetic biology: A control engineering perspective. , 2014, , .			11
132	Systems cell biology. Journal of Cell Biology, 2014, 206, 695-706.		2.3	39

ARTICLE IF CITATIONS # Loss of growth homeostasis by genetic decoupling of cell division from biomass growth: implication 133 3.2 11 for size control mechanisms. Molecular Systems Biology, 2014, 10, 769. Microfluidic cell culture. Current Opinion in Biotechnology, 2014, 25, 95-102. 134 3.3 Characterizing bacterial gene circuit dynamics with optically programmed gene expression signals. 135 9.0 179 Nature Methods, 2014, 11, 449-455. Noise in biology. Reports on Progress in Physics, 2014, 77, 026601. 136 8.1 347 Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends in 137 4.9 101 Biotechnology, 2014, 32, 608-616. Three-dimensional patterning of multiple cell populations through orthogonal genetic control of cell motility. Soft Matter, 2014, 10, 2372-2380. 138 1.2 Real-time optogenetic control of intracellular protein concentration in microbial cell cultures. 139 0.6 68 Integrative Biology (United Kingdom), 2014, 6, 366. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in 140 3.1 free solution. Lab on A Chip, 2014, 14, 2688-2697. Microfluidic Platforms for Generating Dynamic Environmental Perturbations to Study the Responses 141 0.4 2 of Single Yeast Cells. Methods in Molecular Biology, 2014, 1205, 111-129. 142 Yeast Genetics. Methods in Molecular Biology, 2014, , . 0.4 Bacterial sugar utilization gives rise to distinct singleâ€cell behaviours. Molecular Microbiology, 2014, 143 1.2 51 93, 1093-1103. Integration of microfluidics into the synthetic biology design flow. Lab on A Chip, 2014, 14, 3459-3474. 144 3.1 Reverse engineering and identification in systems biology: strategies, perspectives and challenges. 145 1.5 194 Journal of the Royal Society Interface, 2014, 11, 20130505. Structural Identification of Nonlinear Dynamic Biomolecular Feedback and Feedforward Loops. IFAC 0.4 Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 796-802 Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant 149 1.6 67 Mechanism. Scientific Reports, 2015, 5, 18447. Microfluidic Bioreactors for Cellular Microarrays. Fermentation, 2015, 1, 38-78. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental 151 1.510 Change. PLoS Computational Biology, 2015, 11, e1004399. Hydrodynamic nonadhesive cell retention in a microfluidic circuit for stressless suspension culture. 1.3 Analytical Methods, 2015, 7, 7264-7269.

#	Article	IF	CITATIONS
153	How to train your microbe: methods for dynamically characterizing gene networks. Current Opinion in Microbiology, 2015, 24, 113-123.	2.3	27
154	An automated programmable platform enabling multiplex dynamic stimuli delivery and cellular response monitoring for high-throughput suspension single-cell signaling studies. Lab on A Chip, 2015, 15, 1497-1507.	3.1	38
155	Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1636-1641.	3.3	115
156	Transcriptional dynamics with time-dependent reaction rates. Physical Biology, 2015, 12, 016015.	0.8	7
157	Digital microfluidic immunocytochemistry in single cells. Nature Communications, 2015, 6, 7513.	5.8	98
158	High-throughput microfluidics to control and measure signaling dynamics in single yeast cells. Nature Protocols, 2015, 10, 1181-1197.	5.5	84
159	Population Diversification in a Yeast Metabolic Program Promotes Anticipation of Environmental Shifts. PLoS Biology, 2015, 13, e1002042.	2.6	110
160	Programmable genetic circuits for pathway engineering. Current Opinion in Biotechnology, 2015, 36, 115-121.	3.3	28
161	Review of methods to probe single cell metabolism and bioenergetics. Metabolic Engineering, 2015, 27, 115-135.	3.6	82
162	Slow and Steady Wins the Race: A Bacterial Exploitative Competition Strategy in Fluctuating Environments. ACS Synthetic Biology, 2015, 4, 240-248.	1.9	19
163	The yeast galactose network as a quantitative model for cellular memory. Molecular BioSystems, 2015, 11, 28-37.	2.9	41
164	Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161458.	1.2	70
165	Yeast Nanobiotechnology. Fermentation, 2016, 2, 18.	1.4	10
166	Cellular Interrogation: Exploiting Cell-to-Cell Variability to Discriminate Regulatory Mechanisms in Oscillatory Signalling. PLoS Computational Biology, 2016, 12, e1004995.	1.5	5
167	Adaptive Benefits of Storage Strategy and Dual AMPK/TOR Signaling in Metabolic Stress Response. PLoS ONE, 2016, 11, e0160247.	1.1	5
168	Kinetics of Reactive Modules Adds Discriminative Dimensions for Selective Cell Imaging. ChemPhysChem, 2016, 17, 1396-1413.	1.0	12
169	Microfluidic Methods in Single Cell Biology. , 2016, , 19-54.		0
170	Steady-state and dynamic gene expression programs in <i>Saccharomyces cerevisiae</i> in response to variation in environmental nitrogen. Molecular Biology of the Cell, 2016, 27, 1383-1396.	0.9	32

#	Article	IF	CITATIONS
171	Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering. Journal of the Royal Society Interface, 2016, 13, 20151046.	1.5	47
172	Microfluidic Platforms for Yeastâ€Based Aging Studies. Small, 2016, 12, 5787-5801.	5.2	14
173	Mathematical model of galactose regulation and metabolic consumption in yeast. Journal of Theoretical Biology, 2016, 407, 238-258.	0.8	3
174	A Bacterial Continuous Culture System Based on a Microfluidic Droplet Open Reactor. Analytical Sciences, 2016, 32, 61-66.	0.8	6
175	Mechanically activated artificial cell by using microfluidics. Scientific Reports, 2016, 6, 32912.	1.6	26
176	Multi-scale design in layered synthetic biological systems. , 2016, , .		0
177	Transcriptional reprogramming of metabolic pathways in critically ill patients. Intensive Care Medicine Experimental, 2016, 4, 21.	0.9	24
178	The Landscape of Evolution: Reconciling Structural and Dynamic Properties of Metabolic Networks in Adaptive Diversifications. Integrative and Comparative Biology, 2016, 56, 235-246.	0.9	12
179	Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Research, 2016, 44, 6994-7005.	6.5	101
180	<i>In Vivo</i> Real-Time Control of Gene Expression: A Comparative Analysis of Feedback Control Strategies in Yeast. ACS Synthetic Biology, 2016, 5, 154-162.	1.9	76
181	Integrative systems and synthetic biology of cell-matrix adhesion sites. Cell Adhesion and Migration, 2016, 10, 451-460.	1.1	3
182	Microfluidic technologies for yeast replicative lifespan studies. Mechanisms of Ageing and Development, 2017, 161, 262-269.	2.2	65
183	Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic labâ€onâ€chips. Electrophoresis, 2017, 38, 953-976.	1.3	43
184	High-throughput single-cell analysis for the proteomic dynamics study of the yeast osmotic stress response. Scientific Reports, 2017, 7, 42200.	1.6	16
185	Single-cell resolution of intracellular T cell Ca ²⁺ dynamics in response to frequency-based H ₂ O ₂ stimulation. Integrative Biology (United Kingdom), 2017, 9, 238-247.	0.6	16
186	Decoupling Resource-Coupled Gene Expression in Living Cells. ACS Synthetic Biology, 2017, 6, 1596-1604.	1.9	68
187	Dynamics of sequestration-based gene regulatory cascades. Nucleic Acids Research, 2017, 45, 7515-7526.	6.5	7
188	Universal signal generator for dynamic cell stimulation. Lab on A Chip, 2017, 17, 2218-2224.	3.1	15

#	Article	IF	CITATIONS
189	Advanced Biotechnologies Toward Engineering a Cell Home for Stem Cell Accommodation. Advanced Materials Technologies, 2017, 2, 1700022.	3.0	9
190	Understanding Robust Adaptation Dynamics of Gene Regulatory Network. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 942-957.	2.7	3
191	Microfluidic Chemical Function Generator for Probing Dynamic Cell Signaling. Analytical Chemistry, 2017, 89, 9209-9217.	3.2	21
192	Late-Arriving Signals Contribute Less to Cell-Fate Decisions. Biophysical Journal, 2017, 113, 2110-2120.	0.2	26
193	Polymorphisms in the yeast galactose sensor underlie a natural continuum of nutrient-decision phenotypes. PLoS Genetics, 2017, 13, e1006766.	1.5	20
194	Integration of genome-scale metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-induced metabolic perturbation. Npj Systems Biology and Applications, 2018, 4, 10.	1.4	28
195	A sharp-edge-based acoustofluidic chemical signal generator. Lab on A Chip, 2018, 18, 1411-1421.	3.1	48
196	Relief from nitrogen starvation triggers transient destabilization of glycolytic mRNAs in <i>Saccharomyces cerevisiae</i> cells. Molecular Biology of the Cell, 2018, 29, 490-498.	0.9	7
197	A simple microfluidic platform for the partial treatment of insuspendable tissue samples with orientation control. Lab on A Chip, 2018, 18, 735-742.	3.1	4
198	Insert-based microfluidics for 3D cell culture with analysis. Analytical and Bioanalytical Chemistry, 2018, 410, 3025-3035.	1.9	40
199	Microfluidics Engineering: Recent Trends, Valorization, and Applications. Arabian Journal for Science and Engineering, 2018, 43, 23-32.	1.7	14
200	Frequencyâ€Domain Response Analysis for Quantitative Systems Pharmacology Models. CPT: Pharmacometrics and Systems Pharmacology, 2018, 7, 111-123.	1.3	5
201	Modelling of the GAL1 Genetic Circuit in Yeast Using Three Equations. IFAC-PapersOnLine, 2018, 51, 185-190.	0.5	0
202	Nab3's localization to a nuclear granule in response to nutrient deprivation is determined by its essential prion-like domain. PLoS ONE, 2018, 13, e0209195.	1.1	8
203	Dynamic control of endogenous metabolism with combinatorial logic circuits. Molecular Systems Biology, 2018, 14, e8605.	3.2	90
204	Synergy and Redundancy in a Signaling Cascade with Different Feedback Mechanisms. Communications in Theoretical Physics, 2018, 70, 485.	1.1	2
205	Describing functionâ€based approximations of biomolecular systems. IET Systems Biology, 2018, 12, 93-100.	0.8	3
206	Transmission of dynamic biochemical signals in the shallow microfluidic channel: nonlinear modulation of the pulsatile flow. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	9

#	Article	IF	CITATIONS
207	An automated microfluidic gene-editing platform for deciphering cancer genes. Lab on A Chip, 2018, 18, 2300-2312.	3.1	31
208	Electromechanics and Volume Dynamics in Nonexcitable Tissue Cells. Biophysical Journal, 2018, 114, 2231-2242.	0.2	25
209	Brr6 plays a role in gene recruitment and transcriptional regulation at the nuclear envelope. Molecular Biology of the Cell, 2018, 29, 2578-2590.	0.9	3
210	Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nature Biotechnology, 2018, 36, 614-623.	9.4	169
211	Microparticle separation using asymmetrical induced-charge electro-osmotic vortices on an arc-edge-based floating electrode. Analyst, The, 2019, 144, 5150-5163.	1.7	6
212	A System for Analog Control of Cell Culture Dynamics to Reveal Capabilities of Signaling Networks. IScience, 2019, 19, 586-596.	1.9	15
213	Cell-machine interfaces for characterizing gene regulatory network dynamics. Current Opinion in Systems Biology, 2019, 14, 1-8.	1.3	31
214	Scaling laws of cell-fate responses to transient stress. Journal of Theoretical Biology, 2019, 478, 14-25.	0.8	4
215	Quantitative analysis of the yeast pheromone pathway. Yeast, 2019, 36, 495-518.	0.8	18
216	Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science, 2019, 364, 593-597.	6.0	117
217	Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data. Journal of the Royal Society Interface, 2019, 16, 20180967.	1.5	39
218	First-passage time statistics of stochastic transcription process for time-dependent reaction rates. European Physical Journal E, 2019, 42, 24.	0.7	7
219	The rate of environmental fluctuations shapes ecological dynamics in a twoâ€species microbial system. Ecology Letters, 2019, 22, 838-846.	3.0	35
220	Dynamic Microfluidic Cytometry for Single-Cell Cellomics: High-Throughput Probing Single-Cell-Resolution Signaling. Analytical Chemistry, 2019, 91, 1619-1626.	3.2	17
221	Analysis of a genetic-metabolic oscillator with piecewise linear models. Journal of Theoretical Biology, 2019, 462, 259-269.	0.8	7
222	System biology. , 2020, , 9-16.		3
223	A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Analytica Chimica Acta, 2020, 1125, 94-113.	2.6	40
224	A microfluidic platform enabling real-time control of dynamic biochemical stimuli to biological cells. Journal of Micromechanics and Microengineering, 2020, 30, 095011.	1.5	5

щ		IF	Citations
# 225	ARTICLE Role of Noise-Induced Cellular Variability in Saccharomyces cerevisiae During Metabolic Adaptation: Causes, Consequences and Ramifications. Journal of the Indian Institute of Science, 2020, 100, 465-484.	0.9	1
226	Dynamic Environmental Control in Microfluidic Singleâ€Cell Cultivations: From Concepts to Applications. Small, 2020, 16, e1906670.	5.2	22
227	Genome-scale transcriptional dynamics and environmental biosensing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3301-3306.	3.3	21
228	Gene Regulation and Cellular Metabolism: An Essential Partnership. Trends in Genetics, 2021, 37, 389-400.	2.9	31
229	A predictive model of gene expression reveals the role of network motifs in the mating response of yeast. Science Signaling, 2021, 14, .	1.6	2
230	Bistability in the polarity circuit of yeast. Molecular Biology of the Cell, 2021, , mbc.E20-07-0445.	0.9	4
231	FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks. PLoS Computational Biology, 2021, 17, e1009410.	1.5	1
232	Computational analysis of GAL pathway pinpoints mechanisms underlying natural variation. PLoS Computational Biology, 2021, 17, e1008691.	1.5	1
235	Long-Term Imaging in Microfluidic Devices. Methods in Molecular Biology, 2010, 591, 229-242.	0.4	16
236	Predicting Synthetic Gene Networks. Methods in Molecular Biology, 2012, 813, 57-81.	0.4	21
237	Efficient and Settings-Free Calibration of Detailed Kinetic Metabolic Models with Enzyme Isoforms Characterization. Lecture Notes in Computer Science, 2020, , 187-202.	1.0	3
238	Entropy production in systems with unidirectional transitions. Physical Review Research, 2020, 2, .	1.3	23
239	Computational study on ratio-sensing in yeast galactose utilization pathway. PLoS Computational Biology, 2020, 16, e1007960.	1.5	5
240	Probing Cellular Dynamics with a Chemical Signal Generator. PLoS ONE, 2009, 4, e4847.	1.1	53
241	Trade-offs and Noise Tolerance in Signal Detection by Genetic Circuits. PLoS ONE, 2010, 5, e12314.	1.1	12
242	External Control of the GAL Network in S. cerevisiae: A View from Control Theory. PLoS ONE, 2011, 6, e19353.	1.1	10
243	Constitutive versus Responsive Gene Expression Strategies for Growth in Changing Environments. PLoS ONE, 2011, 6, e27033.	1.1	31
244	Microfabricated Polyacrylamide Devices for the Controlled Culture of Growing Cells and Developing Organisms. PLoS ONE, 2013, 8, e75537.	1.1	25

#	Article	IF	CITATIONS
245	A Microfluidic System for Studying Ageing and Dynamic Single-Cell Responses in Budding Yeast. PLoS ONE, 2014, 9, e100042.	1.1	123
247	The art of reporter proteins in science: past, present and future applications. BMB Reports, 2010, 43, 451-460.	1.1	67
248	Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination. ELife, 2017, 6, .	2.8	67
249	A Quantitative Model of Glucose Signaling in Yeast Reveals an Incoherent Feed Forward Loop Leading to a Specific, Transient Pulse of Transcription. Lecture Notes in Computer Science, 2011, , 153-153.	1.0	0
254	Volume II: The Simplicity of Complexity. The Frontiers Collection, 2019, , 181-214.	0.1	0
257	Design and Characterization of an Optogenetic System in <i>Pichia pastoris</i> . ACS Synthetic Biology, 2022, 11, 297-307.	1.9	7
259	A Single-Component Blue Light-Induced System Based on EL222 in Yarrowia lipolytica. International Journal of Molecular Sciences, 2022, 23, 6344.	1.8	4
260	Degradation-driven protein level oscillation in the yeast Saccharomyces cerevisiae. BioSystems, 2022, 219, 104717.	0.9	1
261	Review and assessment of Boolean approaches for inference of gene regulatory networks. Heliyon, 2022, 8, e10222.	1.4	9
262	A Gene Circuit Combining the Endogenous I-E Type CRISPR-Cas System and a Light Sensor to Produce Poly-β-Hydroxybutyric Acid Efficiently. Biosensors, 2022, 12, 642.	2.3	3
263	Phosphorylation of RGS regulates MAP kinase localization and promotes completion of cytokinesis. Life Science Alliance, 2022, 5, e202101245.	1.3	1
265	Detection of Alternaria solani with high accuracy and sensitivity during the latent period of potato early blight. Frontiers in Microbiology, 0, 13, .	1.5	3
267	Plant nitrogen retention in alpine grasslands of the Tibetan Plateau under multi-level nitrogen addition. Scientific Reports, 2023, 13, .	1.6	3
268	Microfluidic single-cell scale-down systems: introduction, application, and future challenges. Current Opinion in Biotechnology, 2023, 81, 102915.	3.3	2
269	L-2L ladder digital-to-analogue converter for dynamics generation of chemical concentrations. Royal Society Open Science, 2023, 10, .	1.1	0