UCP2 mediates ghrelin‧™action on NPY/AgRP neuron

Nature 454, 846-851 DOI: 10.1038/nature07181

Citation Report

#	Article	IF	CITATIONS
1	AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends in Molecular Medicine, 2008, 14, 539-549.	3.5	465
2	SnapShot: The Hormonal Control of Food Intake. Cell, 2008, 135, 572.e1-572.e2.	13.5	15
3	Exercise-Induced Synaptogenesis in the Hippocampus Is Dependent on UCP2-Regulated Mitochondrial Adaptation. Journal of Neuroscience, 2008, 28, 10766-10771.	1.7	147
4	Hypothalamic Reactive Oxygen Species Are Required for Insulin-Induced Food Intake Inhibition: An NADPH Oxidase-Dependent Mechanism. Diabetes, 2009, 58, 1544-1549.	0.3	57
5	Chrelin Gene Products and the Regulation of Food Intake and Gut Motility. Pharmacological Reviews, 2009, 61, 430-481.	7.1	211
6	Enhanced Hypothalamic Glucose Sensing in Obesity: Alteration of Redox Signaling. Diabetes, 2009, 58, 2189-2197.	0.3	58
7	Hypothalamic Lipids and the Regulation of Energy Homeostasis. Obesity Facts, 2009, 2, 1-1.	1.6	24
8	Dorsal Hindbrain 5′-Adenosine Monophosphate-Activated Protein Kinase as an Intracellular Mediator of Energy Balance. Endocrinology, 2009, 150, 2175-2182.	1.4	77
9	Superoxide Anion Regulates the Mitochondrial Free Ca2+Through Uncoupling Proteins. Antioxidants and Redox Signaling, 2009, 11, 1805-1818.	2.5	44
10	Uncoupling protein-2 regulates lifespan in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E621-E627.	1.8	98
11	Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R655-R664.	0.9	119
12	Shedding light on the intricate puzzle of ghrelin's effects on appetite regulation. Journal of Endocrinology, 2009, 202, 191-198.	1.2	42
13	Coupled with uncouplers: the curious case of lifespan. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E619-E620.	1.8	3
14	Ghrelin Promotes and Protects Nigrostriatal Dopamine Function via a UCP2-Dependent Mitochondrial Mechanism. Journal of Neuroscience, 2009, 29, 14057-14065.	1.7	245
15	Nutritional and hormonal regulation of uncoupling protein 2. IUBMB Life, 2009, 61, 1123-1131.	1.5	29
16	Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2. BMC Physiology, 2009, 9, 17.	3.6	60
17	The common G-866A polymorphism of the UCP2 gene and survival in diabetic patients following myocardial infarction. Cardiovascular Diabetology, 2009, 8, 31.	2.7	16
18	Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell International, 2009, 9, 14.	1.8	77

#	Article	IF	CITATIONS
19	On the Central Mechanism Underlying Ghrelin's Chronic Proâ€Obesity Effects in Rats: New Insights from Studies Exploiting a Potent Ghrelin Receptor Antagonist. Journal of Neuroendocrinology, 2009, 21, 777-785.	1.2	43
20	Neuroprotective Role of Mitochondrial Uncoupling Protein 2 in Cerebral Stroke. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1069-1078.	2.4	83
22	Gut hormones and appetite control. Oral Diseases, 2009, 15, 18-26.	1.5	76
23	Rhythm of digestion: keeping time in the gastrointestinal tract. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 1041-1048.	0.9	38
24	Feeding signals and brain circuitry. European Journal of Neuroscience, 2009, 30, 1688-1696.	1.2	121
25	Central Ghrelin Regulates Peripheral Lipid Metabolism in a Growth Hormone-Independent Fashion. Endocrinology, 2009, 150, 4562-4574.	1.4	94
26	Role of central melanocortin pathways in energy homeostasis. Trends in Endocrinology and Metabolism, 2009, 20, 203-215.	3.1	116
27	Ghrelin – Defender of fat. Progress in Lipid Research, 2009, 48, 257-274.	5.3	37
28	Chrelin treatment protects lactotrophs from apoptosis in the pituitary of diabetic rats. Molecular and Cellular Endocrinology, 2009, 309, 67-75.	1.6	22
29	Persistent Oxidative Stress Due to Absence of Uncoupling Protein 2 Associated with Impaired Pancreatic β-Cell Function. Endocrinology, 2009, 150, 3040-3048.	1.4	156
30	Ecto-nucleoside triphosphate diphosphohydrolase 3 in the ventral and lateral hypothalamic area of female rats: morphological characterization and functional implications. Reproductive Biology and Endocrinology, 2009, 7, 31.	1.4	20
31	Lifestyle-induced metabolic inflexibility and accelerated ageing syndrome: insulin resistance, friend or foe?. Nutrition and Metabolism, 2009, 6, 16.	1.3	58
32	In Vivo Characterization of High Basal Signaling from the Ghrelin Receptor. Endocrinology, 2009, 150, 4920-4930.	1.4	105
33	Endocrine and Metabolic Actions of Chrelin. Endocrine Development, 2010, 17, 86-95.	1.3	24
34	Ghrelin: From Gene to Physiological Function. Results and Problems in Cell Differentiation, 2009, 50, 85-96.	0.2	36
35	Fuel utilization by hypothalamic neurons: roles for ROS. Trends in Endocrinology and Metabolism, 2009, 20, 78-87.	3.1	129
36	Reactive Oxygen Species in Diabetes-induced Vascular Damage, Stroke, and Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 16, 775-785.	1.2	41
37	Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cellular and Molecular Life Sciences, 2010, 67, 3255-3273.	2.4	139

#	Article	IF	CITATIONS
38	Effects of atypical antipsychotics and haloperidol on PC12 cells: only aripiprazole phosphorylates AMP-activated protein kinase. Journal of Neural Transmission, 2010, 117, 1139-1153.	1.4	12
39	Chrelin and obestatin expression in oral squamous cell carcinoma: an immunohistochemical and biochemical study. Molecular and Cellular Biochemistry, 2010, 339, 173-179.	1.4	16
40	Focus on the short- and long-term effects of ghrelin on energy homeostasis. Nutrition, 2010, 26, 579-584.	1.1	51
41	The on-off switches of the mitochondrial uncoupling proteins. Trends in Biochemical Sciences, 2010, 35, 298-307.	3.7	202
42	Mitochondrial ion transport pathways: Role in metabolic diseases. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 832-838.	0.5	46
43	Ghrelin inhibits insulin secretion through the AMPK–UCP2 pathway in β cells. FEBS Letters, 2010, 584, 1503-1508.	1.3	59
44	Uncoupling protein UCP2: When mitochondrial activity meets immunity. FEBS Letters, 2010, 584, 1437-1442.	1.3	97
45	Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Frontiers in Neuroendocrinology, 2010, 31, 4-15.	2.5	95
46	Ghrelin in the regulation of body weight and metabolism. Frontiers in Neuroendocrinology, 2010, 31, 44-60.	2.5	300
47	Role of orexin in the regulation of glucose homeostasis. Acta Physiologica, 2010, 198, 335-348.	1.8	65
48	Influence of Ghrelin and Growth Hormone Deficiency on AMPâ€Activated Protein Kinase and Hypothalamic Lipid Metabolism. Journal of Neuroendocrinology, 2010, 22, 543-556.	1.2	42
49	Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 2010, 16, 1001-1008.	15.2	581
50	Reactive oxygen species and uncoupling protein 2 in pancreatic <i>β</i> â€cell function. Diabetes, Obesity and Metabolism, 2010, 12, 141-148.	2.2	82
51	Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obesity Reviews, 2010, 11, 185-201.	3.1	50
52	Ghrelin Stimulation of Growth Hormone-Releasing Hormone Neurons Is Direct in the Arcuate Nucleus. PLoS ONE, 2010, 5, e9159.	1.1	59
52 53	Chrelin Stimulation of Growth Hormone-Releasing Hormone Neurons Is Direct in the Arcuate Nucleus. PLoS ONE, 2010, 5, e9159. Chrelin and lipid metabolism: key partners in energy balance. Journal of Molecular Endocrinology, 2011, 46, R43-63.	1.1	59 65
52 53 54	Chrelin Stimulation of Growth Hormone-Releasing Hormone Neurons Is Direct in the Arcuate Nucleus. PLoS ONE, 2010, 5, e9159.Chrelin and lipid metabolism: key partners in energy balance. Journal of Molecular Endocrinology, 2011, 46, R43-63.Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14875-14880.	1.1 1.1 3.3	59 65 370

#	Article	IF	CITATIONS
56	Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB Journal, 2010, 24, 2670-2679.	0.2	108
57	Degradation of an intramitochondrial protein by the cytosolic proteasome. Journal of Cell Science, 2010, 123, 578-585.	1.2	111
58	Glucose and Weight Control in Mice with a Designed Ghrelin O-Acyltransferase Inhibitor. Science, 2010, 330, 1689-1692.	6.0	234
59	Nutrient Selection in the Absence of Taste Receptor Signaling. Journal of Neuroscience, 2010, 30, 8012-8023.	1.7	135
60	New Insights in Ghrelin Orexigenic Effect. Frontiers of Hormone Research, 2010, 38, 196-205.	1.0	21
61	Ghrelin: New Molecular Pathways Modulating Appetite and Adiposity. Obesity Facts, 2010, 3, 3-3.	1.6	25
62	Corticosterone Regulates Synaptic Input Organization of POMC and NPY/AgRP Neurons in Adult Mice. Endocrinology, 2010, 151, 5395-5402.	1.4	74
63	Hypothalamic Responses to Fasting Indicate Metabolic Reprogramming Away from Glycolysis Toward Lipid Oxidation. Endocrinology, 2010, 151, 5206-5217.	1.4	44
64	A Comparative Study on Conformation and Ligand Binding of the Neuronal Uncoupling Proteins. Biochemistry, 2010, 49, 512-521.	1.2	26
65	Energy Balance Regulation. , 2010, , 299-316.		2
65 66	Energy Balance Regulation. , 2010, , 299-316. Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256.	3.5	2
65 66 67	Energy Balance Regulation., 2010,, 299-316. Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256. Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point – The view from two systems. Immunobiology, 2010, 215, 617-628.	3.5 0.8	2 171 22
65 66 67 68	Energy Balance Regulation., 2010,, 299-316. Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256. Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point – The view from two systems. Immunobiology, 2010, 215, 617-628. Hypothalamic lipotoxicity and the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 350-361.	3.5 0.8 1.2	2 171 22 60
65 66 67 68 69	Energy Balance Regulation., 2010,, 299-316. Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256. Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point – The view from two systems. Immunobiology, 2010, 215, 617-628. Hypothalamic lipotoxicity and the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and cell Biology of Lipids, 2010, 1801, 350-361. Hypothalamic nutrient sensing in the control of energy homeostasis. Behavioural Brain Research, 2010, 209, 1-12.	3.5 0.8 1.2 1.2	2 171 22 60 262
 65 66 67 68 69 70 	Energy Balance Regulation., 2010, 299-316. Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256. Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point – The view from two systems. Immunobiology, 2010, 215, 617-628. Hypothalamic lipotoxicity and the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and cell Biology of Lipids, 2010, 1801, 350-361. Hypothalamic nutrient sensing in the control of energy homeostasis. Behavioural Brain Research, 2010, 209, 1-12. Targeted Expression of Catalase to Mitochondria Prevents Age-Associated Reductions in Mitochondrial Function and Insulin Resistance. Cell Metabolism, 2010, 12, 668-674.	3.5 0.8 1.2 1.2 7.2	2 171 22 60 262 274
 65 66 67 68 69 70 71 	Energy Balance Regulation., 2010,, 299-316. Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256. Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point – The view from two systems. Immunobiology, 2010, 215, 617-628. Hypothalamic lipotoxicity and the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 350-361. Hypothalamic nutrient sensing in the control of energy homeostasis. Behavioural Brain Research, 2010, 209, 1-12. Targeted Expression of Catalase to Mitochondria Prevents Age-Associated Reductions in Mitochondrial Function and Insulin Resistance. Cell Metabolism, 2010, 12, 668-674. A Sympathetic View on Free Radicals in Diabetes. Neuron, 2010, 66, 809-811.	3.5 0.8 1.2 1.2 7.2 3.8	2 171 22 60 262 274 5
 65 66 67 68 69 70 71 72 	 Energy Balance Regulation., 2010,, 299-316. Regulatory T cells in obesity: the leptin connection. Trends in Molecular Medicine, 2010, 16, 247-256. Endocannabinoids, FOXO and the metabolic syndrome: Redox, function and tipping point à€" The view from two systems. Immunobiology, 2010, 215, 617-628. Hypothalamic lipotoxicity and the metabolic syndrome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 350-361. Hypothalamic nutrient sensing in the control of energy homeostasis. Behavioural Brain Research, 2010, 209, 1-12. Targeted Expression of Catalase to Mitochondria Prevents Age-Associated Reductions in Mitochondrial Function and Insulin Resistance. Cell Metabolism, 2010, 12, 668-674. A Sympathetic View on Free Radicals in Diabetes. Neuron, 2010, 66, 809-811. Alternative Splicing Disabled by Nova2. Neuron, 2010, 66, 811-813. 	3.5 0.8 1.2 1.2 7.2 3.8 3.8	2 171 22 60 262 274 5 3

#	Article	IF	CITATIONS
74	Metabolic reprogramming, caloric restriction and aging. Trends in Endocrinology and Metabolism, 2010, 21, 134-141.	3.1	233
75	Compromised respiratory adaptation and thermoregulation in aging and age-related diseases. Ageing Research Reviews, 2010, 9, 20-40.	5.0	17
76	Agrp Neurons Mediate Sirt1's Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity. Journal of Neuroscience, 2010, 30, 11815-11825.	1.7	194
77	Chrelin's Role as a Major Regulator of Appetite and Its Other Functions in Neuroendocrinology. Progress in Brain Research, 2010, 182, 189-205.	0.9	27
78	Uncoupling Protein-2 Decreases the Lipogenic Actions of Ghrelin. Endocrinology, 2010, 151, 2078-2086.	1.4	44
79	Ghrelin: more than endogenous growth hormone secretagogue. Annals of the New York Academy of Sciences, 2010, 1200, 140-148.	1.8	72
80	AMPK as a mediator of hormonal signalling. Journal of Molecular Endocrinology, 2010, 44, 87-97.	1.1	267
81	ENDURANCE TRAINING ACTIVATES PANCREATIC ISLETS AMP-ACTIVATED KINASE-UNCOUPLING PROTEIN 2 PATHWAY AND REDUCES INSULIN SECRETION. Journal of Endocrinology, 2011, 208, 257-64.	1.2	51
82	Peroxisome proliferation–associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nature Medicine, 2011, 17, 1121-1127.	15.2	239
83	The early programming of metabolic health: is epigenetic setting the missing link?. American Journal of Clinical Nutrition, 2011, 94, S1953-S1958.	2.2	104
85	Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature, 2011, 476, 109-113.	13.7	350
86	Clucosensing and glucose homeostasis: From fish to mammals. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2011, 160, 123-149.	0.7	241
87	Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop. Cell, 2011, 146, 992-1003.	13.5	369
88	Synaptic Plasticity of Feeding Circuits: Hormones and Hysteresis. Cell, 2011, 146, 863-865.	13.5	50
89	Autophagy in Hypothalamic AgRP Neurons Regulates Food Intake and Energy Balance. Cell Metabolism, 2011, 14, 173-183.	7.2	326
90	Elevated Hypothalamic TCPTP in Obesity Contributes to Cellular Leptin Resistance. Cell Metabolism, 2011, 14, 684-699.	7.2	162
91	Setting the Tone: Reactive Oxygen Species and the Control of Appetitive Melanocortin Neurons. Cell Metabolism, 2011, 14, 573-574.	7.2	2
92	AMP-activated protein kinase activates neuropeptide Y neurons in the hypothalamic arcuate nucleus to increase food intake in rats. Neuroscience Letters, 2011, 499, 194-198.	1.0	44

		CITATION REPORT		
#	Article		IF	CITATIONS
93	Chrelin in obesity and endocrine diseases. Molecular and Cellular Endocrinology, 2011	, 340, 15-25.	1.6	49
94	Ghrelin and reproductive disorders. Molecular and Cellular Endocrinology, 2011, 340,	70-79.	1.6	37
95	Ghrelin in gastrointestinal disease. Molecular and Cellular Endocrinology, 2011, 340, 3	5-43.	1.6	15
96	Investigation of the presence of ghrelin in the central nervous system of the rat and m Neuroscience, 2011, 193, 1-9.	ouse.	1.1	107
97	Peripheral ghrelin stimulates feeding behavior and positive energy balance in a sciurid Hormones and Behavior, 2011, 59, 512-519.	hibernator.	1.0	23
98	The extra-hypothalamic actions of ghrelin on neuronal function. Trends in Neuroscienc 31-40.	es, 2011, 34,	4.2	172
99	Chrelin-mediated appetite regulation in the central nervous system. Peptides, 2011, 3	2, 2256-2264.	1.2	37
100	Central mechanisms involved in the orexigenic actions of ghrelin. Peptides, 2011, 32, 2	2248-2255.	1.2	234
101	Ghrelin and food reward: The story of potential underlying substrates. Peptides, 2011,	32, 2265-2273.	1.2	100
102	Balancing Mitochondrial Redox Signaling: A Key Point in Metabolic Regulation. Antioxi Redox Signaling, 2011, 14, 519-530.	dants and	2.5	49
103	Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 prote 477, 220-224.	ein. Nature, 2011,	13.7	202
104	Hypothalamic lipophagy and energetic balance. Aging, 2011, 3, 934-942.		1.4	14
105	Gut Hormones Restrict Neurodegeneration in Parkinsonâ \in ^{IM} s Disease. , 2011, , .			3
106	Brown fat biology and thermogenesis. Frontiers in Bioscience - Landmark, 2011, 16, 1	233.	3.0	190
107	Unexpected Long-Term Protection of Adult Offspring Born to High-Fat Fed Dams agair Induced by a Sucrose-Rich Diet. PLoS ONE, 2011, 6, e18043.	1st Obesity	1.1	26
108	Recent advances in pancreatic endocrine and exocrine secretion. Current Opinion in Gastroenterology, 2011, 27, 439-443.		1.0	22
111	Molecular analysis of central feeding regulation in hypothalamic nuclei using the siRN/ system. Folia Pharmacologica Japonica, 2011, 137, 166-171.		0.1	1
113	Local infusion of ghrelin enhanced hippocampal synaptic plasticity and spatial memory activation of phosphoinositide 3-kinase in the dentate gyrus of adult rats. European Jo Neuroscience, 2011, 33, 266-275.	/ through urnal of	1.2	89

#	Article	IF	CITATIONS
114	Diet-Induced Obesity Attenuates Fasting-Induced Hyperphagia. Journal of Neuroendocrinology, 2011, 23, 620-626.	1.2	39
115	Carnitine palmitoyltransferaseâ€1c gainâ€ofâ€function in the brain results in postnatal microencephaly. Journal of Neurochemistry, 2011, 118, 388-398.	2.1	28
116	Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell, 2011, 10, 996-1010.	3.0	161
117	mTORC1 signaling in energy balance and metabolic disease. International Journal of Obesity, 2011, 35, 751-761.	1.6	51
118	Ghrelin, peptide YY and their hypothalamic targets differentially regulate spontaneous physical activity. Physiology and Behavior, 2011, 105, 52-61.	1.0	31
119	New aspects of melanocortin signaling: A role for PRCP in α-MSH degradation. Frontiers in Neuroendocrinology, 2011, 32, 70-83.	2.5	48
120	Developmental Biology: Physics Adds a Twist to Gut Looping. Current Biology, 2011, 21, R854-R857.	1.8	1
121	Phagocytosis: Coupling of Mitochondrial Uncoupling andÂEngulfment. Current Biology, 2011, 21, R852-R854.	1.8	4
122	Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radical Biology and Medicine, 2011, 51, 1106-1115.	1.3	460
123	Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Reviews in Endocrine and Metabolic Disorders, 2011, 12, 127-140.	2.6	64
124	The ghrelin/GOAT/GHS-R system and energy metabolism. Reviews in Endocrine and Metabolic Disorders, 2011, 12, 173-186.	2.6	56
125	5′â€AMPâ€activated protein kinase activity is elevated early during primary brain tumor development in the rat. International Journal of Cancer, 2011, 128, 2230-2239.	2.3	35
126	GPA protects the nigrostriatal dopamine system by enhancing mitochondrial function. Neurobiology of Disease, 2011, 43, 152-162.	2.1	20
127	Ghrelin Inhibits Hydrogen Peroxide-Induced Apoptotic Cell Death of Oligodendrocytes Via ERK and p38MAPK Signaling. Endocrinology, 2011, 152, 2377-2386.	1.4	33
129	Impaired Expression of Uncoupling Protein 2 Causes Defective Postischemic Angiogenesis in Mice Deficient in AMP-Activated Protein Kinase α Subunits. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1757-1765.	1.1	35
130	Knocking down the transcript of protein kinase C-lambda modulates hypothalamic glutathione peroxidase, melanocortin receptor and neuropeptide Y gene expression in amphetamine-treated rats. Journal of Psychopharmacology, 2011, 25, 982-994.	2.0	15
131	The Central Sirtuin 1/p53 Pathway Is Essential for the Orexigenic Action of Ghrelin. Diabetes, 2011, 60, 1177-1185.	0.3	133
132	Endocrine factors in the hypothalamic regulation of food intake in females: a review of the physiological roles and interactions of ghrelin, leptin, thyroid hormones, oestrogen and insulin. Nutrition Research Reviews, 2011, 24, 132-154.	2.1	25

#	ARTICLE	IF	CITATIONS
133	hypothalamic control of feeding. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9691-9696.	3.3	79
134	Metabolic Status Regulates Ghrelin Function on Energy Homeostasis. Neuroendocrinology, 2011, 93, 48-57.	1.2	111
135	Hypothalamic Control of Lipid Metabolism: Focus on Leptin, Ghrelin and Melanocortins. Neuroendocrinology, 2011, 94, 1-11.	1.2	90
136	Hypothalamic mitochondrial dysfunction associated with anorexia in the <i>anx/anx</i> mouse. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18108-18113.	3.3	46
137	Glutathionylation Acts as a Control Switch for Uncoupling Proteins UCP2 and UCP3. Journal of Biological Chemistry, 2011, 286, 21865-21875.	1.6	156
138	Role of Reactive Oxygen Species-Related Enzymes in Neuropeptide Y and Proopiomelanocortin-Mediated Appetite Control: A Study Using Atypical Protein Kinase C Knockdown. Antioxidants and Redox Signaling, 2011, 15, 2147-2159.	2.5	36
139	Let them eat fat. Nature, 2011, 477, 166-167.	13.7	5
140	Naloxone, but Not Valsartan, Preserves Responses to Hypoglycemia After Antecedent Hypoglycemia. Diabetes, 2011, 60, 39-46.	0.3	32
141	Perspectives for feed-efficient animal production1. Journal of Animal Science, 2011, 89, 4344-4363.	0.2	53
142	Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R209-R217.	0.9	19
143	Reactive Oxygen Species in Health and Disease. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-14.	3.0	553
144	Intracerebroventricular Administration of Metformin Inhibits Ghrelin-Induced Hypothalamic AMP-Kinase Signalling and Food Intake. Neuroendocrinology, 2012, 96, 24-31.	1.2	44
145	Quantification of Uncoupling Protein 2 Reveals Its Main Expression in Immune Cells and Selective Up-Regulation during T-Cell Proliferation. PLoS ONE, 2012, 7, e41406.	1.1	47
146	Autophagy in the control of food intake. Adipocyte, 2012, 1, 75-79.	1.3	14
147	Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice. Journal of Neuroscience, 2012, 32, 11970-11979.	1.7	64
148	Nicotine Induces Negative Energy Balance Through Hypothalamic AMP-Activated Protein Kinase. Diabetes, 2012, 61, 807-817.	0.3	147
149	The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. Journal of Psychopharmacology, 2012, 26, 114-124.	2.0	111
150	Measurement of AMP-Activated Protein Kinase Activity and Expression in Response to Ghrelin. Methods in Enzymology, 2012, 514, 271-287.	0.4	12

		CITATION R	EPORT	
#	Article		IF	CITATIONS
151	Ghrelin O-Acyltransferase Assays and Inhibition. Methods in Enzymology, 2012, 514, 2	05-228.	0.4	27
152	Lipophagy: Connecting Autophagy and Lipid Metabolism. International Journal of Cell 2012, 1-12.	Biology, 2012,	1.0	392
153	Cellular Signal Mechanisms of Reward-Related Plasticity in the Hippocampus. Neural P 2012, 1-18.	asticity, 2012,	1.0	30
154	The Role of Ghrelin in the Control of Energy Balance. Handbook of Experimental Pharm 161-184.	acology, 2012, ,	0.9	66
155	Neurohormones, Rikkunshito and Hypothalamic Neurons Interactively Control Appetit Current Pharmaceutical Design, 2012, 18, 4854-4864.	e and Anorexia.	0.9	18
156	Ghrelin – A Pleiotropic Hormone Secreted from Endocrine X/A-Like Cells of the Stom Neuroscience, 2012, 6, 24.	ach. Frontiers in	1.4	63
157	The Role of Ghrelin, Salivary Secretions, and Dental Care in Eating Disorders. Nutrients 967-989.	, 2012, 4,	1.7	11
158	Ghrelin Receptor Expression and Colocalization with Anterior Pituitary Hormones Usin Mouse Line. Endocrinology, 2012, 153, 5452-5466.	g a GHSR-GFP	1.4	37
159	Changes in expression of hepatic genes involved in energy metabolism during hibernat adult, female Japanese black bears (Ursus thibetanus japonicus). Comparative Biochen Physiology - B Biochemistry and Molecular Biology, 2012, 163, 254-261.	ion in captive, nistry and	0.7	23
160	Molecular analysis of central feeding regulation by neuropeptide Y (NPY) neurons with small interfering RNAs (siRNAs). Neurochemistry International, 2012, 61, 936-941.	NPY receptor	1.9	15
161	Estradiol signaling in the regulation of reproduction and energy balance. Frontiers in Neuroendocrinology, 2012, 33, 342-363.		2.5	71
162	Many mouths to feed: The control of food intake during lactation. Frontiers in Neuroei 2012, 33, 301-314.	ndocrinology,	2.5	40
163	Inactivation of the Constitutively Active Ghrelin Receptor Attenuates Limbic Seizure Ac Rodents. Neurotherapeutics, 2012, 9, 658-672.	ctivity in	2.1	30
164	Ghrelin signalling and obesity: At the interface of stress, mood and food reward. , 2012	2, 135, 316-326.		194
165	Limitations in anti-obesity drug development: the critical role of hunger-promoting neu Reviews Drug Discovery, 2012, 11, 675-691.	ırons. Nature	21.5	174
166	Hypothalamic dysfunction in obesity. Proceedings of the Nutrition Society, 2012, 71, 5	521-533.	0.4	108
167	Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends in Medicine, 2012, 18, 52-58.	Molecular	3.5	180
168	Control of metabolism by nutrient-regulated nuclear receptors acting in the brain. Jour Biochemistry and Molecular Biology, 2012, 130, 126-137.	nal of Steroid	1.2	126

#	Article	IF	CITATIONS
169	Importance of Mitochondrial Dynamin-Related Protein 1 in Hypothalamic Glucose Sensitivity in Rats. Antioxidants and Redox Signaling, 2012, 17, 433-444.	2.5	38
170	Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Reports, 2012, 13, 1079-1086.	2.0	325
171	Hyperinsulinism Due to Mutations of Uncoupling Protein 2. Frontiers in Diabetes, 2012, , 158-171.	0.4	1
172	Synaptic plasticity in neuronal circuits regulating energy balance. Nature Neuroscience, 2012, 15, 1336-1342.	7.1	108
173	Early ghrelin treatment attenuates disruption of the blood brain barrier and apoptosis after traumatic brain injury through a UCP-2 mechanism. Brain Research, 2012, 1489, 140-148.	1.1	39
174	Role of Ghrelin in the Pathophysiology of Eating Disorders. CNS Drugs, 2012, 26, 281-296.	2.7	20
175	Points of integration between the intracellular energy sensor AMP-activated protein kinase (AMPK) activity and the somatotroph axis function. Endocrine, 2012, 42, 292-298.	1.1	10
176	Ghrelin Regulation of AMPK in the Hypothalamus and Peripheral Tissues. , 2012, , 91-110.		0
177	Ghrelin Regulation of Learning, Memory, and Neurodegeneration. , 2012, , 171-180.		0
178	mTOR Signaling Fades POMC Neurons during Aging. Neuron, 2012, 75, 356-357.	3.8	7
178 179	mTOR Signaling Fades POMC Neurons during Aging. Neuron, 2012, 75, 356-357. Ucp2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior. PLoS ONE, 2012, 7, e42911.	3.8 1.1	7 52
178 179 180	mTOR Signaling Fades POMC Neurons during Aging. Neuron, 2012, 75, 356-357. Ucp2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior. PLoS ONE, 2012, 7, e42911. Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Ghrelin. PLoS ONE, 2012, 7, e46923.	3.8 1.1 1.1	7 52 101
178 179 180 181	mTOR Signaling Fades POMC Neurons during Aging. Neuron, 2012, 75, 356-357. Ucp2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior. PLoS ONE, 2012, 7, e42911. Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Chrelin. PLoS ONE, 2012, 7, e46923. Recent Insights into the Role of Hypothalamic AMPK Signaling Cascade upon Metabolic Control. Frontiers in Neuroscience, 2012, 6, 185.	3.8 1.1 1.1 1.4	7 52 101 29
178 179 180 181 182	mTOR Signaling Fades POMC Neurons during Aging. Neuron, 2012, 75, 356-357. Ucp2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior. PLoS ONE, 2012, 7, e42911. Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Chrelin. PLoS ONE, 2012, 7, e46923. Recent Insights into the Role of Hypothalamic AMPK Signaling Cascade upon Metabolic Control. Frontiers in Neuroscience, 2012, 6, 185. Chrelin Attenuates Brain Injury after Traumatic Brain Injury and Uncontrolled Hemorrhagic Shock in Rats. Molecular Medicine, 2012, 18, 186-193.	3.8 1.1 1.1 1.4 1.9	7 52 101 29 24
178 179 180 181 182 183	mTOR Signaling Fades POMC Neurons during Aging. Neuron, 2012, 75, 356-357. Ucp2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior. PLoS ONE, 2012, 7, e42911. Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Ghrelin. PLoS ONE, 2012, 7, e46923. Recent Insights into the Role of Hypothalamic AMPK Signaling Cascade upon Metabolic Control. Frontiers in Neuroscience, 2012, 6, 185. Ghrelin Attenuates Brain Injury after Traumatic Brain Injury and Uncontrolled Hemorrhagic Shock in Rats. Molecular Medicine, 2012, 18, 186-193. Yin and Yang - the Gastric X/A-like Cell as Possible Dual Regulator of Food Intake. Journal of Neurogastroenterology and Motility, 2012, 18, 138-149.	 3.8 1.1 1.1 1.4 1.9 0.8 	 7 52 101 29 24 51
178 179 180 181 182 183 183	mTOR Signaling Fades POMC Neurons during Aging. Neuron, 2012, 75, 356-357. Ucp2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior. PLoS ONE, 2012, 7, e42911. Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Chrelin. PLoS ONE, 2012, 7, e46923. Recent Insights into the Role of Hypothalamic AMPK Signaling Cascade upon Metabolic Control. Frontiers in Neuroscience, 2012, 6, 185. Ghrelin Attenuates Brain Injury after Traumatic Brain Injury and Uncontrolled Hemorrhagic Shock in Rats. Molecular Medicine, 2012, 18, 186-193. Yin and Yang - the Gastric X/A-like Cell as Possible Dual Regulator of Food Intake. Journal of Neurogastroenterology and Motility, 2012, 18, 138-149. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radical Biology and Medicine, 2012, 52, 1607-1619.	3.8 1.1 1.1 1.4 1.9 0.8 1.3	 7 52 101 29 24 51 104
 178 179 180 181 182 183 184 185 	mTOR Signaling Fades POMC Neurons during Aging. Neuron, 2012, 75, 356-357. Ucp2 Induced by Natural Birth Regulates Neuronal Differentiation of the Hippocampus and Related Adult Behavior. PLoS ONE, 2012, 7, e42911. Hypothalamic mTOR Signaling Mediates the Orexigenic Action of Chrelin. PLoS ONE, 2012, 7, e46923. Recent Insights into the Role of Hypothalamic AMPK Signaling Cascade upon Metabolic Control. Frontiers in Neuroscience, 2012, 6, 185. Ghrelin Attenuates Brain Injury after Traumatic Brain Injury and Uncontrolled Hemorrhagic Shock in Rats. Molecular Medicine, 2012, 18, 186-193. Yin and Yang - the Gastric X/A-like Cell as Possible Dual Regulator of Food Intake. Journal of Neurogastroenterology and Motility, 2012, 18, 138-149. Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radical Biology and Medicine, 2012, 52, 1607-1619. Deconstruction of a neural circuit for hunger. Nature, 2012, 488, 172-177.	 3.8 1.1 1.1 1.4 1.9 0.8 1.3 13.7 	7 52 101 29 24 51 104 779

#	Article	IF	CITATIONS
187	Role of the AMP-activated protein kinase (AMPK) signaling pathway in the orexigenic effects of endogenous ghrelin. Regulatory Peptides, 2012, 173, 27-35.	1.9	21
188	AMP-activated protein kinase, stress responses and cardiovascular diseases. Clinical Science, 2012, 122, 555-573.	1.8	197
189	Knocking down the transcript of NF-kappaB modulates the reciprocal regulation of endogenous antioxidants and feeding behavior in phenylpropanolamine-treated rats. Archives of Toxicology, 2012, 86, 453-463.	1.9	12
190	PAS Kinase as a Nutrient Sensor in Neuroblastoma and Hypothalamic Cells Required for the Normal Expression and Activity of Other Cellular Nutrient and Energy Sensors. Molecular Neurobiology, 2013, 48, 904-920.	1.9	17
191	Antibodies to cannabinoid type 1 receptor coâ€react with stomatinâ€like protein 2 in mouse brain mitochondria. European Journal of Neuroscience, 2013, 38, 2341-2348.	1.2	39
192	Functionally biased signalling properties of <scp>7TM</scp> receptors – opportunities for drug development for the ghrelin receptor. British Journal of Pharmacology, 2013, 170, 1349-1362.	2.7	55
193	Brain regulation of energy balance and body weight. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 387-407.	2.6	128
194	Role of hypothalamic autophagy in the control of whole body energy balance. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 377-386.	2.6	9
195	Calorie-Restricted Weight Loss Reverses High-Fat Diet-Induced Ghrelin Resistance, Which Contributes to Rebound Weight Gain in a Chrelin-Dependent Manner. Endocrinology, 2013, 154, 709-717.	1.4	74
196	Hypothalamic malonyl-CoA and the control of food intake. Physiology and Behavior, 2013, 122, 17-24.	1.0	42
197	The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release. FASEB Journal, 2013, 27, 5112-5121.	0.2	25
198	Regulation of Peripheral Metabolism by Substrate Partitioning in the Brain. Endocrinology and Metabolism Clinics of North America, 2013, 42, 67-80.	1.2	6
199	The role of nitric oxide signaling in food intake; insights from the inner mitochondrial membrane peptidase 2 mutant mice. Redox Biology, 2013, 1, 498-507.	3.9	25
200	Mitochondrial uncoupling protein 2 protects splenocytes from oxidative stress-induced apoptosis during pathogen activation. Cellular Immunology, 2013, 286, 39-44.	1.4	15
201	Hypothalamic clocks and rhythms in feeding behaviour. Trends in Neurosciences, 2013, 36, 74-82.	4.2	118
202	Chrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling. Molecular and Cellular Endocrinology, 2013, 381, 280-290.	1.6	48
203	Clucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes. Journal of Biological Chemistry, 2013, 288, 37216-37229.	1.6	49
204	Reversal of Hypertriglyceridemia, Fatty Liver Disease, and Insulin Resistance by a Liver-Targeted Mitochondrial Uncoupler. Cell Metabolism, 2013, 18, 740-748.	7.2	190

#	Article	IF	Citations
205	Melanocortin-3 Receptors and Metabolic Homeostasis. Progress in Molecular Biology and Translational Science, 2013, 114, 109-146.	0.9	31
206	Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends in Biochemical Sciences, 2013, 38, 592-602.	3.7	241
207	An eGFP-expressing subpopulation of growth hormone secretagogue receptor cells are distinct from kisspeptin, tyrosine hydroxylase, and RFamide-related peptide neurons in mice. Peptides, 2013, 47, 45-53.	1.2	24
208	Natural birth-induced UCP2 in brain development. Reviews in Endocrine and Metabolic Disorders, 2013, 14, 347-350.	2.6	5
209	Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (â™,) mand through transcriptome analysis. BMC Genomics, 2013, 14, 601.	arin fish 1.2	72
210	Mitochondrial Dynamics Controlled by Mitofusins Regulate Agrp Neuronal Activity and Diet-Induced Obesity. Cell, 2013, 155, 188-199.	13.5	249
211	Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends in Neurosciences, 2013, 36, 65-73.	4.2	190
212	Genes involved in fatty acid metabolism: Molecular characterization and hypothalamic mRNA response to energy status and neuropeptide Y treatment in the orange-spotted grouper Epinephelus coioides. Molecular and Cellular Endocrinology, 2013, 376, 114-124.	1.6	33
213	In vitro response of putative fatty acid-sensing systems in rainbow trout liver to increased levels of oleate or octanoate. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2013, 165, 288-294.	0.8	19
214	Ghrelin regulates hypothalamic prolyl carboxypeptidase expression in mice. Molecular Metabolism, 2013, 2, 23-30.	3.0	21
215	The role of ghrelin signalling in second-generation antipsychotic-induced weight gain. Psychoneuroendocrinology, 2013, 38, 2423-2438.	1.3	50
216	Neuroinflammatory basis of metabolic syndrome. Molecular Metabolism, 2013, 2, 356-363.	3.0	123
217	AMPK and the neuroendocrine regulation of appetite and energy expenditure. Molecular and Cellular Endocrinology, 2013, 366, 215-223.	1.6	79
218	Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. Physiology and Behavior, 2013, 118, 165-170.	1.0	36
219	UCP2 overexpression worsens mitochondrial dysfunction and accelerates disease progression in a mouse model of amyotrophic lateral sclerosis. Molecular and Cellular Neurosciences, 2013, 57, 104-110.	1.0	34
220	Metabolic transceivers: in tune with the central melanocortin system. Trends in Endocrinology and Metabolism, 2013, 24, 68-75.	3.1	19
221	Leptin and ghrelin prevent hippocampal dysfunction induced by $\hat{Al^2}$ oligomers. Neuroscience, 2013, 241, 41-51.	1.1	45
222	Ghrelin Signaling in the Ventral Hippocampus Stimulates Learned and Motivational Aspects of Feeding via PI3K-Akt Signaling. Biological Psychiatry, 2013, 73, 915-923.	0.7	173

		CITATION RE	PORT	
#	Article		IF	CITATIONS
223	Mitochondrial Fatty Acid Oxidation in Obesity. Antioxidants and Redox Signaling, 2013,	19, 269-284.	2.5	175
224	Central manipulation of dopamine receptors attenuates the orexigenic action of ghrelin. Psychopharmacology, 2013, 229, 275-283.		1.5	18
225	Role of ghrelin in glucose homeostasis and diabetes. Diabetes Management, 2013, 3, 17	⁷ 1-182.	0.5	5
226	Hypothalamic κ-Opioid Receptor Modulates the Orexigenic Effect of Ghrelin. Neuropsychopharmacology, 2013, 38, 1296-1307.		2.8	40
227	Metabolic mystery: aging, obesity, diabetes, and the ventromedial hypothalamus. Trends Endocrinology and Metabolism, 2013, 24, 488-494.	s in	3.1	29
228	BDNF and the central control of feeding: accidental bystander or essential player?. Trenc Neurosciences, 2013, 36, 83-90.	ls in	4.2	120
229	Energy balance regulation by thyroid hormones at central level. Trends in Molecular Mec 19, 418-427.	licine, 2013,	3.5	164
230	Chrelin At the Interface of Obesity and Reward. Vitamins and Hormones, 2013, 91, 285-	323.	0.7	33
231	Glutathionylation of UCP2 sensitizes drug resistant leukemia cells to chemotherapeutics Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 80-89.	s. Biochimica	1.9	35
232	Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolis Molecular and Cellular Endocrinology, 2013, 365, 303-308.	m.	1.6	56
233	Localization of Mitochondrial Carnitine/Acylcarnitine Translocase in Sensory Neurons fro Dorsal Root Ganglia. Neurochemical Research, 2013, 38, 2535-2541.	om Rat	1.6	14
234	Ghrelin Requires p53 to Stimulate Lipid Storage in Fat and Liver. Endocrinology, 2013, 1	54, 3671-3679.	1.4	56
235	Ghrelin is neuroprotective in Parkinson's disease: molecular mechanisms of metabol neuroprotection. Therapeutic Advances in Endocrinology and Metabolism, 2013, 4, 25-3	ic }6.	1.4	66
236	Inhibiting neuropeptide Y Y1 receptor modulates melanocortin receptor- and NF-ήB-med behavior in phenylpropanolamine-treated rats. Hormones and Behavior, 2013, 64, 95-10	liated feeding 2.	1.0	12
237	Glutaredoxin-2 Is Required to Control Proton Leak through Uncoupling Protein-3. Journa Biological Chemistry, 2013, 288, 8365-8379.	l of	1.6	61
238	Anorexigenic and Orexigenic Hormone Modulation of Mammalian Target of Rapamycin (Activity and the Regulation of Hypothalamic Agouti-Related Protein mRNA Expression. N 2013, 21, 28-41.	Complex 1 leuroSignals,	0.5	2,288
239	Effects of Neonatal Programming on Hypothalamic Mechanisms Controlling Energy Bala and Metabolic Research, 2013, 45, 935-944.	ince. Hormone	0.7	19
240	Ghrelin: Central and Peripheral Implications in Anorexia Nervosa. Frontiers in Endocrinolo 15.	bgy, 2013, 4,	1.5	54

		CITATION R	EPORT	
#	ARTICLE	rol of	IF	CITATIONS
241	food intake. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E	.336-E347.	1.8	11
242	Hypothalamic Ceramide Levels Regulated by CPT1C Mediate the Orexigenic Effect of Ghre 2013, 62, 2329-2337.	lin. Diabetes,	0.3	82
243	Structure and Physiological Actions of Ghrelin. Scientifica, 2013, 2013, 1-25.		0.6	144
244	Could ROS signals drive tissue-specific clocks?. Transcription, 2013, 4, 206-208.		1.7	6
245	The Role of Ghrelin in Neuroprotection after Ischemic Brain Injury. Brain Sciences, 2013, 3,	344-359.	1.1	28
246	Knockdown of specific host factors protects against influenza virus-induced cell death. Ce and Disease, 2013, 4, e769-e769.	ll Death	2.7	39
247	Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance. Nut Diabetes, 2013, 3, e99-e99.	rition and	1.5	36
248	Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Molecular and Cellular Endocrinology, 2013, 376, 70-80.		1.6	128
249	Oral â€~hydrogen water' induces neuroprotective ghrelin secretion in mice. Scientific I 3273.	Reports, 2013, 3,	1.6	58
251	Ghrelin. , 2013, , 776-783.			1
252	Ghrelin. , 2013, , 1104-1110.			2
253	Role of Reactive Oxygen Species in Hypothalamic Regulation of Energy Metabolism. Endoo Metabolism, 2013, 28, 3.	crinology and	1.3	22
254	The Anorexigenic Effect of Serotonin Is Mediated by the Generation of NADPH Oxidase-De PLoS ONE, 2013, 8, e53142.	pendent ROS.	1.1	19
255	Action of Neurotransmitter: A Key to Unlock the AgRP Neuron Feeding Circuit. Frontiers in Neuroscience, 2012, 6, 200.		1.4	25
256	Long-Term Increased Carnitine Palmitoyltransferase 1A Expression in Ventromedial Hypota Causes Hyperphagia and Alters the Hypothalamic Lipidomic Profile. PLoS ONE, 2014, 9, e9	ılamus 7195.	1.1	23
257	Chrelin Protects against Renal Damages Induced by Angiotensin-Il via an Antioxidative Stre Mechanism in Mice. PLoS ONE, 2014, 9, e94373.	255	1.1	35
258	Unacylated Ghrelin Suppresses Ghrelin-Induced Neuronal Activity in the Hypothalamus and of Male Rats. PLoS ONE, 2014, 9, e98180.	l Brainstem	1.1	33
259	The role of gastrointestinal hormones in the pathogenesis of obesity and type 2 diabetes. Gastroenterologiczny, 2014, 2, 69-76.	Przeglad	0.3	30

		_	
	ION	Drno	DT
CHAL	IUN	KEPU	IK I

#	Article	IF	CITATIONS
260	Hindbrain lactostasis regulates hypothalamic AMPK activity and metabolic neurotransmitter mRNA and protein responses to hypoglycemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R457-R469.	0.9	32
261	Expressional profile of cardiac uncoupling protein-2 following myocardial ischemia reperfusion in losartan- and ramiprilat-treated rats. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 209-217.	1.0	20
262	Loss of UCP2 Attenuates Mitochondrial Dysfunction without Altering ROS Production and Uncoupling Activity. PLoS Genetics, 2014, 10, e1004385.	1.5	63
263	Hormonal regulation of the hypothalamic melanocortin system. Frontiers in Physiology, 2014, 5, 480.	1.3	70
264	AMPK: Regulating Energy Balance at the Cellular and Whole Body Levels. Physiology, 2014, 29, 99-107.	1.6	187
265	Cellular energy sensors: AMPK and beyond. Molecular and Cellular Endocrinology, 2014, 397, 1-3.	1.6	4
266	Independent, Reciprocal Neuromodulatory Control of Sweet and Bitter Taste Sensitivity during Starvation in Drosophila. Neuron, 2014, 84, 806-820.	3.8	144
267	Exercise Training does not Enhance Hypothalamic Responsiveness to Leptin or Ghrelin in Male Mice. Journal of Neuroendocrinology, 2014, 26, 68-79.	1.2	14
268	The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation. International Journal of Molecular Sciences, 2014, 15, 4837-4855.	1.8	110
269	Altered ghrelin secretion in mice in response to diet-induced obesity and Roux-en-Y gastric bypass. Molecular Metabolism, 2014, 3, 717-730.	3.0	42
270	Neuroendocrine control of satiation. Hormone Molecular Biology and Clinical Investigation, 2014, 19, 163-192.	0.3	13
271	Neuroendocrine Circuits Governing Energy Balance and Stress Regulation: Functional Overlap and Therapeutic Implications. Cell Metabolism, 2014, 19, 910-925.	7.2	87
272	Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats. Experimental Gerontology, 2014, 56, 37-44.	1.2	54
273	Neural melanocortin receptors in obesity and related metabolic disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 482-494.	1.8	94
274	Central Functions of the Ghrelin Receptor. Receptors, 2014, , .	0.2	1
275	The Central Nervous System Sites Mediating the Orexigenic Actions of Ghrelin. Annual Review of Physiology, 2014, 76, 519-533.	5.6	72
276	Metformin—mode of action and clinical implications for diabetes and cancer. Nature Reviews Endocrinology, 2014, 10, 143-156.	4.3	955
277	A Systems Biology Approach to Study Metabolic Syndrome. , 2014, , .		5

ARTICLE IF CITATIONS # Evidence That Diet-Induced Hyperleptinemia, but Not Hypothalamic Gliosis, Causes Ghrelin Resistance in 278 57 1.4 NPY/AgRP Neurons of Male Mice. Endocrinology, 2014, 155, 2411-2422. Mitochondrial dynamics in the central regulation of metabolism. Nature Reviews Endocrinology, 279 4.3 2014, 10, 650-<u>6</u>58. Minireview: Central Sirt1 Regulates Energy Balance via the Melanocortin System and Alternate 280 3.7 33 Pathways. Molecular Endocrinology, 2014, 28, 1423-1434. Ghrelin: A link between ageing, metabolism and neurodegenerative disorders. Neurobiology of Disease, 2014, 72, 72-83. Ghrelin Receptor Regulates Appetite and Satiety during Aging in Mice by Regulating Meal Frequency 282 1.324 and Portion Size but Not Total Food Intake. Journal of Nutrition, 2014, 144, 1349-1355. O-GlcNAc Transferase Enables AgRP Neurons to Suppress Browning of White Fat. Cell, 2014, 159, 13.5 306-317. Curcumin Prevents Cerebral Ischemia Reperfusion Injury Via Increase of Mitochondrial Biogenesis. 284 1.6 71 Neurochemical Research, 2014, 39, 1322-1331. Uncoupling Protein-2 Mediates DPP-4 Inhibitor-Induced Restoration of Endothelial Function in 2.5 76 Hypertension Through Reducing Oxidative Stress. Antioxidants and Redox Signaling, 2014, 21, 1571-1581. UCP2 Overexpression Worsens Mitochondrial Dysfunction and Accelerates Disease Progression in a 286 0.2 0 Mouse Model of Amyotrophic Lateral Sclerosis. Biophysical Journal, 2014, 106, 592a-593a. Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Molecular Metabolism, 2014, 3, 64-72. Hypothalamic effects of thyroid hormones on metabolism. Best Practice and Research in Clinical 288 2.2 47 Endocrinology and Metabolism, 2014, 28, 703-712. Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits 1.0 food intake in rainbow trout. Physiology and Behavior, 2014, 129, 272-279. Mitochondrial UCP2 in the central regulation of metabolism. Best Practice and Research in Clinical 290 2.2 95 Endocrinology and Metabolism, 2014, 28, 757-764. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience, 2014, 17, 908-910. 7.1 268 Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK. Cell Metabolism, 292 7.2 342 2014, 20, 41-53. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake 43 and energy metabolism. Molecular Psychiatry, 2014, 19, 752-761. Ghrelin Protects Rats Against Traumatic Brain Injury and Hemorrhagic Shock Through Upregulation 294 2.1 24 of UCP2. Annals of Surgery, 2014, 260, 169-178. AgRP Neurons Regulate Bone Mass. Cell Reports, 2015, 13, 8-14. 48

#	Article	IF	CITATIONS
296	Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy. Physiological Reports, 2015, 3, e12629.	0.7	6
297	Association of <i>UCPâ€3</i> rs1626521 with obesity and stomach functions in humans. Obesity, 2015, 23, 898-906.	1.5	6
298	Proâ€Opiomelanocortin (<scp>POMC</scp>) Neurones, <scp>POMC</scp> â€Derived Peptides, Melanocortin Receptors and Obesity: How Understanding of this System has Changed Over the Last Decade. Journal of Neuroendocrinology, 2015, 27, 406-418.	1.2	62
299	Silencing of uncoupling protein 2 by small interfering RNA aggravates mitochondrial dysfunction in cardiomyocytes under septic conditions. International Journal of Molecular Medicine, 2015, 35, 1525-1536.	1.8	40
301	Estradiol regulates effects of hindbrain activator 5-aminoimidazole-4-carboxamide-riboside administration on hypothalamic adenosine 5â€2-monophosphate-activated protein kinase activity and metabolic neurotransmitter mRNA and protein expression. Journal of Neuroscience Research, 2015, 93, 651-659.	1.3	13
303	The Biochemistry of Hunger Stimulating Hormone: Why Understanding This Cascade In Hypothalamus Is Beneficial. Biochemistry & Physiology, 2015, 04, .	0.2	Ο
304	Plasticity of the Melanocortin System: Determinants and Possible Consequences on Food Intake. Frontiers in Endocrinology, 2015, 6, 143.	1.5	31
305	Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Frontiers in Aging Neuroscience, 2015, 7, 101.	1.7	56
306	Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Frontiers in Neuroscience, 2015, 9, 56.	1.4	69
307	Ghrelin. Molecular Metabolism, 2015, 4, 437-460.	3.0	810
308	Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R973-R982.	0.9	24
309	UCP2 Knockout Suppresses Mouse Skin Carcinogenesis. Cancer Prevention Research, 2015, 8, 487-491.	0.7	22
310	Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature, 2015, 519, 45-50.	13.7	336
311	Comparative secretome analysis of rat stomach under different nutritional status. Journal of Proteomics, 2015, 116, 44-58.	1.2	2
312	Drug targeting of leptin resistance. Life Sciences, 2015, 140, 64-74.	2.0	29
313	Diversity and plasticity of microglial cells in psychiatric and neurological disorders. , 2015, 154, 21-35.		148
314	Chronic overproduction of ghrelin in the hypothalamus leads to temporal increase in food intake and body weight. Neuropeptides, 2015, 50, 23-28.	0.9	17
315	Molecular cloning and tissue expression of uncoupling protein 1, 2 and 3 genes in Chinese perch (Siniperca chuatsi). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 185, 24-33.	0.7	19

# 316	ARTICLE Involvement of oxidative stress in the regulation of NPY/CART-mediated appetite control in amphetamine-treated rats. NeuroToxicology, 2015, 48, 131-141.	IF 1.4	CITATIONS
318	High Calorie Diet and the Human Brain. , 2015, , .		10
319	Mitochondrial ROS Signaling in Organismal Homeostasis. Cell, 2015, 163, 560-569.	13.5	915
320	Neuronal Regulation of Energy Homeostasis: Beyond the Hypothalamus and Feeding. Cell Metabolism, 2015, 22, 962-970.	7.2	304
321	Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis. Molecular and Cellular Endocrinology, 2015, 418, 9-16.	1.6	21
322	Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. Journal of General Physiology, 2015, 146, 205-219.	0.9	59
323	A talk between fat tissue, gut, pancreas and brain to control body weight. Molecular and Cellular Endocrinology, 2015, 418, 108-119.	1.6	40
324	Appetite regulation is independent of the changes in ghrelin levels in pregnant rats fed low-protein diet. Physiological Reports, 2015, 3, e12368.	0.7	7
325	Dietary sugars: their detection by the gut–brain axis and their peripheral and central effects in health and diseases. European Journal of Nutrition, 2015, 54, 1-24.	1.8	50
326	Gene-Environment Interactions Controlling Energy and Glucose Homeostasis and the Developmental Origins of Obesity. Physiological Reviews, 2015, 95, 47-82.	13.1	124
327	Beneficial Effects of AMP-Activated Protein Kinase Agonists in Kidney Ischemia-Reperfusion: Autophagy and Cellular Stress Markers. Nephron Experimental Nephrology, 2015, 128, 98-110.	2.4	45
328	Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends in Neurosciences, 2015, 38, 36-44.	4.2	81
329	The brain and brown fat. Annals of Medicine, 2015, 47, 150-168.	1.5	124
330	Analysis and interpretation of acylcarnitine profiles in dried blood spot and plasma of preterm and full-term newborns. Pediatric Research, 2015, 77, 36-47.	1.1	29
331	Targeting oxidative stress in the hypothalamus: the effect of transcription factor STAT3 knockdown on endogenous antioxidants-mediated appetite control. Archives of Toxicology, 2015, 89, 87-100.	1.9	6
332	Brain Regulation of Energy Metabolism. Endocrinology and Metabolism, 2016, 31, 519.	1.3	64
333	Fatty Acids and Hypothalamic Dysfunction in Obesity. , 2016, , 557-582.		0
334	Functions of Ghrelin in Brain, Gut and Liver. CNS and Neurological Disorders - Drug Targets, 2016, 15, 956-963.	0.8	15

	Сітат	ion Report	
#	ARTICLE	IF	CITATIONS
335	Effects of ghrelin in energy balance and body weight homeostasis. Hormones, 2016, 15, 186-196.	0.9	64
336	Ghrelin receptor regulates adipose tissue inflammation in aging. Aging, 2016, 8, 178-191.	1.4	57
337	Role of <i>UCP2</i> polymorphisms on dietary intake of obese patients who underwent bariatric surgery. Clinical Obesity, 2016, 6, 354-358.	1.1	4
338	Uncoupling protein 2 protects mice from aging. Mitochondrion, 2016, 30, 42-50.	1.6	17
339	The pathophysiology of defective proteostasis in the hypothalamus — from obesity to ageing. Nature Reviews Endocrinology, 2016, 12, 723-733.	4.3	74
340	Diet-induced cellular neuroinflammation in the hypothalamus: Mechanistic insights from investigation of neurons and microglia. Molecular and Cellular Endocrinology, 2016, 438, 18-26.	1.6	39
341	Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nature Reviews Endocrinology, 2016, 12, 421-432.	4.3	227
342	Chronic Activation of γ2 AMPK Induces Obesity and Reduces β Cell Function. Cell Metabolism, 2016, 23, 821-836.	° 7.2	87
343	Sweet Mitochondrial Dynamics in VMH Neurons. Cell Metabolism, 2016, 23, 577-579.	7.2	2
344	Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neuroscience and Biobehavioral Reviews, 2016, 66, 33-53.	2.9	43
345	UCPs, at the interface between bioenergetics and metabolism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2443-2456.	1.9	90
346	Molecular mechanisms of appetite and obesity: a role for brain AMPK. Clinical Science, 2016, 130, 1697-1709.	1.8	18
347	A novel neuropeptide Y neuronal pathway linking energy state and reproductive behavior. Neuropeptides, 2016, 59, 1-8.	0.9	29
348	Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics. Molecular and Cellular Endocrinology, 2016, 434, 199-209.	1.6	35
349	Ghrelin gene products rescue cultured adult rat hippocampal neural stem cells from high glucose insult. Journal of Molecular Endocrinology, 2016, 57, 171-184.	1.1	4
350	Low circulating ghrelin levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. Endocrine Journal, 2016, 63, 93-100.	0.7	23
351	A Postsynaptic AMPK→p21-Activated Kinase Pathway Drives Fasting-Induced Synaptic Plasticity in AgRP Neurons. Neuron, 2016, 91, 25-33.	3.8	60
352	The Neurobiology of "Food Addiction―and Its Implications for Obesity Treatment and Policy. Annual Review of Nutrition, 2016, 36, 105-128.	4.3	151

#	Article	IF	CITATIONS
353	PGC-1α expression in murine AgRP neurons regulates food intake and energy balance. Molecular Metabolism, 2016, 5, 580-588.	3.0	11
354	Dietary triglycerides as signaling molecules that influence reward and motivation. Current Opinion in Behavioral Sciences, 2016, 9, 126-135.	2.0	12
355	Preparation of purified perikaryal and synaptosomal mitochondrial fractions from relatively small hypothalamic brain samples. MethodsX, 2016, 3, 417-429.	0.7	11
356	Role of estradiol in intrinsic hindbrain AMPK regulation of hypothalamic AMPK, metabolic neuropeptide, and norepinephrine activity and food intake in the female rat. Neuroscience, 2016, 314, 35-46.	1.1	17
357	Mitochondria controlled by UCP2 determine hypoxia-induced synaptic remodeling in the cortex and hippocampus. Neurobiology of Disease, 2016, 90, 68-74.	2.1	22
358	Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol. Molecular and Cellular Endocrinology, 2016, 422, 42-56.	1.6	34
359	Day-night variations in pro-oxidant reactions of hypothalamic, hepatic and pancreatic tissue in mice with spontaneous obesity (Neotomodon alstoni). Biological Rhythm Research, 2016, 47, 275-284.	0.4	5
360	AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue. Cell, 2016, 165, 125-138.	13.5	222
361	Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: A case study of toxicological implications from nanomaterials released during consumer use. NanoImpact, 2016, 1, 1-8.	2.4	41
362	Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1. Molecular Psychiatry, 2016, 21, 1613-1623.	4.1	87
363	UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness. Cell, 2016, 164, 872-883.	13.5	136
364	Effects of central irisin administration on the uncoupling proteins in rat brain. Neuroscience Letters, 2016, 618, 6-13.	1.0	28
365	Mitochondrial Uncoupling Protein 2 (UCP2) Regulates Retinal Ganglion Cell Number and Survival. Journal of Molecular Neuroscience, 2016, 58, 461-469.	1.1	25
366	Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease. Journal of Neuroscience, 2016, 36, 3049-3063.	1.7	128
367	Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells. Endocrinology, 2016, 157, 1110-1121.	1.4	81
368	Obesity Impairs the Action of the Neuroendocrine Ghrelin System. Trends in Endocrinology and Metabolism, 2016, 27, 54-63.	3.1	109
369	Ghrelin modulates hypothalamic fatty acid-sensing and control of food intake in rainbow trout. Journal of Endocrinology, 2016, 228, 25-37.	1.2	45
370	Ghrelin and Neurodegenerative Disorders—a Review. Molecular Neurobiology, 2017, 54, 1144-1155.	1.9	52

#	Article	IF	CITATIONS
371	Molecular Profiling of Human <scp>Induced Pluripotent Stem Cell</scp> â€Derived Hypothalamic Neurones Provides Developmental Insights into Genetic Loci for Body Weight Regulation. Journal of Neuroendocrinology, 2017, 29, .	1.2	4
372	Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy. Stem Cell Research and Therapy, 2017, 8, 20.	2.4	26
373	Reduced metabolism in the hypothalamus of the anorectic anx/anx mouse. Journal of Endocrinology, 2017, 233, 15-24.	1.2	24
374	Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends in Neurosciences, 2017, 40, 167-180.	4.2	92
375	The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nature Reviews Endocrinology, 2017, 13, 338-351.	4.3	304
376	The effects of intracerebroventricular infusion of irisin on feeding behaviour in rats. Neuroscience Letters, 2017, 645, 25-32.	1.0	28
377	Participation of ghrelin signalling in the reciprocal regulation of hypothalamic NPY/POMC-mediated appetite control in amphetamine-treated rats. Appetite, 2017, 113, 30-40.	1.8	6
378	EJE PRIZE 2017: Hypothalamic AMPK: a golden target against obesity?. European Journal of Endocrinology, 2017, 176, R235-R246.	1.9	53
379	DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons. Cell Metabolism, 2017, 25, 647-660.	7.2	84
380	POMC Neurons: From Birth to Death. Annual Review of Physiology, 2017, 79, 209-236.	5.6	117
381	Complexity of Stomach–Brain Interaction Induced by Molecular Hydrogen in Parkinson's Disease Model Mice. Neurochemical Research, 2017, 42, 2658-2665.	1.6	19
382	Hypothalamic Regulation of Liver and Muscle Nutrient Partitioning by Brain-Specific Carnitine Palmitoyltransferase 1C in Male Mice. Endocrinology, 2017, 158, 2226-2238.	1.4	18
383	Neuroendocrine hypothalamus as a homeostat of endogenous time. Journal of Evolutionary Biochemistry and Physiology, 2017, 53, 1-16.	0.2	3
384	Astrocytic Process Plasticity and IKKβ/NF-κB in Central Control of Blood Glucose, Blood Pressure, and Body Weight. Cell Metabolism, 2017, 25, 1091-1102.e4.	7.2	124
385	Is there a role for ghrelin in central dopaminergic systems? Focus on nigrostriatal and mesocorticolimbic pathways. Neuroscience and Biobehavioral Reviews, 2017, 73, 255-275.	2.9	30
386	Interleukin-22 restored mitochondrial damage and impaired glucose-stimulated insulin secretion through down-regulation of uncoupling protein-2 in INS-1 cells. Journal of Biochemistry, 2017, 161, mvw084.	0.9	13
387	Alterations in neuronal control of body weight and anxiety behavior by glutathione peroxidase 4 deficiency. Neuroscience, 2017, 357, 241-254.	1.1	38
388	Insulin Resistance and Mitochondrial Dysfunction. Advances in Experimental Medicine and Biology, 2017, 982, 465-520.	0.8	110

#	Article	IF	CITATIONS
389	Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. DMM Disease Models and Mechanisms, 2017, 10, 679-689.	1.2	515
390	Adiponectin at physiological level glucose-independently enhances inhibitory postsynaptic current onto NPY neurons in the hypothalamic arcuate nucleus. Neuropeptides, 2017, 65, 1-9.	0.9	17
391	Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment?. , 2017, 178, 109-122.		53
392	Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid \hat{I}^2 (A $\hat{I}^21\hat{a}$ \in 40) administration in mice. Journal of Neuroendocrinology, 2017, 29, .	1.2	47
393	Central Regulation of Glucose Homeostasis. , 2017, 7, 741-764.		52
394	Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis. Diabetes, 2017, 66, 314-324.	0.3	27
395	The neurological effects of ghrelin in brain diseases: Beyond metabolic functions. Neuroscience and Biobehavioral Reviews, 2017, 73, 98-111.	2.9	39
396	Serum levels of uncoupling proteins in patients with differential insulin resistance. Medicine (United) Tj ETQq1 1	0.784314 0.4	• rgJT /Overlo
397	Dynamics of Gut-Brain Communication Underlying Hunger. Neuron, 2017, 96, 461-475.e5.	3.8	193
398	Acylated and unacylated ghrelin confer neuroprotection to mesencephalic neurons. Neuroscience, 2017, 365, 137-145.	1.1	12
399	Role of hindbrain adenosine 5′-monophosphate-activated protein kinase (AMPK) in hypothalamic AMPK and metabolic neuropeptide adaptation to recurring insulin-induced hypoglycemia in the male rat. Neuropeptides, 2017, 66, 25-35.	0.9	18
400	Mitochondrial uncoupling in the melanocortin system differentially regulates NPY and POMC neurons to promote weight-loss. Molecular Metabolism, 2017, 6, 1103-1112.	3.0	15
401	A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding. Cell Metabolism, 2017, 26, 375-393.e7.	7.2	42
402	Less is more: Caloric regulation of neurogenesis and adult brain function. Journal of Neuroendocrinology, 2017, 29, e12512.	1.2	16
403	Mammalian Î ³ 2 AMPK regulates intrinsic heart rate. Nature Communications, 2017, 8, 1258.	5.8	43
404	FGF1 — a new weapon to control type 2 diabetes mellitus. Nature Reviews Endocrinology, 2017, 13, 599-609.	4.3	74
405	Mediation of oxidative stress in hypothalamic ghrelinâ€associated appetite control in rats treated with phenylpropanolamine. Genes, Brain and Behavior, 2017, 16, 439-448.	1.1	1
406	Brain Ceramide Metabolism in the Control of Energy Balance. Frontiers in Physiology, 2017, 8, 787.	1.3	30

#	Article	IF	CITATIONS
407	Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection. Frontiers in Physiology, 2017, 8, 875.	1.3	34
408	Therapeutic Potential of Targeting the Ghrelin Pathway. International Journal of Molecular Sciences, 2017, 18, 798.	1.8	109
409	Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons. ELife, 2017, 6, .	2.8	19
410	Suppression of GHS-R in AgRP Neurons Mitigates Diet-Induced Obesity by Activating Thermogenesis. International Journal of Molecular Sciences, 2017, 18, 832.	1.8	42
411	Suppression of Ghrelin Exacerbates HFCS-Induced Adiposity and Insulin Resistance. International Journal of Molecular Sciences, 2017, 18, 1302.	1.8	23
412	Lipid Processing in the Brain: A Key Regulator of Systemic Metabolism. Frontiers in Endocrinology, 2017, 8, 60.	1.5	155
413	mTORC1 in AGRP neurons integrates exteroceptive and interoceptive food-related cues in the modulation of adaptive energy expenditure in mice. ELife, 2017, 6, .	2.8	36
414	The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective. Journal of Diabetes Research, 2017, 2017, 1-15.	1.0	58
415	Loss of Autophagy in Hypothalamic Neurons May Be Involved in the Pathogenesis of Obesity. , 2017, , 295-312.		2
416	FTO associations with obesity and telomere length. Journal of Biomedical Science, 2017, 24, 65.	2.6	49
416 417	FTO associations with obesity and telomere length. Journal of Biomedical Science, 2017, 24, 65. Obesity and Appetite: Central Control Mechanisms. , 2017, , 369-376.	2.6	49 0
416 417 418	FTO associations with obesity and telomere length. Journal of Biomedical Science, 2017, 24, 65. Obesity and Appetite: Central Control Mechanisms. , 2017, , 369-376. Hypothalamic redox balance and leptin signaling - Emerging role of selenoproteins. Free Radical Biology and Medicine, 2018, 127, 172-181.	2.6 1.3	49 0 26
416 417 418 419	FTO associations with obesity and telomere length. Journal of Biomedical Science, 2017, 24, 65. Obesity and Appetite: Central Control Mechanisms. , 2017, , 369-376. Hypothalamic redox balance and leptin signaling - Emerging role of selenoproteins. Free Radical Biology and Medicine, 2018, 127, 172-181. Analyzing AMPK Function in the Hypothalamus. Methods in Molecular Biology, 2018, 1732, 433-448.	2.6 1.3 0.4	49 0 26 3
 416 417 418 419 420 	FTO associations with obesity and telomere length. Journal of Biomedical Science, 2017, 24, 65. Obesity and Appetite: Central Control Mechanisms., 2017,, 369-376. Hypothalamic redox balance and leptin signaling - Emerging role of selenoproteins. Free Radical Biology and Medicine, 2018, 127, 172-181. Analyzing AMPK Function in the Hypothalamus. Methods in Molecular Biology, 2018, 1732, 433-448. Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721.	2.6 1.3 0.4 2.9	 49 0 26 3 50
 416 417 418 419 420 421 	FTO associations with obesity and telomere length. Journal of Biomedical Science, 2017, 24, 65. Obesity and Appetite: Central Control Mechanisms. , 2017, , 369-376. Hypothalamic redox balance and leptin signaling - Emerging role of selenoproteins. Free Radical Biology and Medicine, 2018, 127, 172-181. Analyzing AMPK Function in the Hypothalamus. Methods in Molecular Biology, 2018, 1732, 433-448. Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721. The Stomach as an Endocrine Organ: Expression of Key Modulatory Genes and Their Contribution to Obesity and Non-alcoholic Fatty Liver Disease (NAFLD). Current Castroenterology Reports, 2018, 20, 24.	2.6 1.3 0.4 2.9 1.1	 49 0 26 3 50 4
 416 417 418 419 420 421 422 	FTO associations with obesity and telomere length. Journal of Biomedical Science, 2017, 24, 65. Obesity and Appetite: Central Control Mechanisms., 2017, , 369-376. Hypothalamic redox balance and leptin signaling - Emerging role of selenoproteins. Free Radical Biology and Medicine, 2018, 127, 172-181. Analyzing AMPK Function in the Hypothalamus. Methods in Molecular Biology, 2018, 1732, 433-448. Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721. The Stomach as an Endocrine Organ: Expression of Key Modulatory Genes and Their Contribution to Obesity and Non-alcoholic Fatty Liver Disease (NAFLD). Current Gastroenterology Reports, 2018, 20, 24. Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and Hormone Responses. Cell Stem Cell, 2018, 22, 698-712.e9.	2.6 1.3 0.4 2.9 1.1 5.2	 49 0 26 3 50 4 42
 416 417 418 419 420 421 422 423 	FTO associations with obesity and telomere length. Journal of Biomedical Science, 2017, 24, 65. Obesity and Appetite: Central Control Mechanisms. , 2017, , 369-376. Hypothalamic redox balance and leptin signaling - Emerging role of selenoproteins. Free Radical Biology and Medicine, 2018, 127, 172-181. Analyzing AMPK Function in the Hypothalamus. Methods in Molecular Biology, 2018, 1732, 433-448. Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721. The Stomach as an Endocrine Organ: Expression of Key Modulatory Genes and Their Contribution to Obesity and Non-alcoholic Fatty Liver Disease (NAFLD). Current Gastroenterology Reports, 2018, 20, 24. Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and Hormone Responses. Cell Stem Cell, 2018, 22, 698-712-e9. Cell and molecular mechanisms behind dietâ€induced hypothalamic inflammation and obesity. Journal of Neuroendocrinology, 2018, 30, e12598.	2.6 1.3 0.4 2.9 1.1 5.2 1.2	 49 0 26 3 50 4 42 34

#	Article	IF	CITATIONS
425	AgRP Neurons Require Carnitine Acetyltransferase to Regulate Metabolic Flexibility and Peripheral Nutrient Partitioning. Cell Reports, 2018, 22, 1745-1759.	2.9	30
426	Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox SignalingReviewing Editors: <i>Jerzy Beltowski, Joseph Burgoyne, Gabor Csanyi, Sergey Dikalov, Frank Krause, Anibal Vercesi, and Jeremy Ward</i> . Antioxidants and Redox Signaling, 2018, 29, 667-714.	2.5	93
427	Ghrelin mediated neuroprotection - A possible therapy for Parkinson's disease?. Neuropharmacology, 2018, 136, 317-326.	2.0	31
428	mTORC1-dependent increase in oxidative metabolism in POMC neurons regulates food intake and action of leptin. Molecular Metabolism, 2018, 12, 98-106.	3.0	19
429	Methylmercury Affects the Expression of Hypothalamic Neuropeptides That Control Body Weight in C57BL/6J Mice. Toxicological Sciences, 2018, 163, 557-568.	1.4	16
430	The Homeostatic Force of Ghrelin. Cell Metabolism, 2018, 27, 786-804.	7.2	202
431	Gastric mucosal devitalization reduces adiposity and improves lipid and glucose metabolism in obese rats. Gastrointestinal Endoscopy, 2018, 87, 288-299.e6.	0.5	22
432	Mitochondria-Bound Hexokinase (mt-HK) Activity Differ in Cortical and Hypothalamic Synaptosomes: Differential Role of mt-HK in H2O2 Depuration. Molecular Neurobiology, 2018, 55, 5889-5900.	1.9	9
433	Chrelin alleviates paclitaxel-induced peripheral neuropathy by reducing oxidative stress and enhancing mitochondrial anti-oxidant functions in mice. European Journal of Pharmacology, 2018, 819, 35-42.	1.7	37
434	aP2-Cre Mediated Ablation of GHS-R Attenuates Adiposity and Improves Insulin Sensitivity during Aging. International Journal of Molecular Sciences, 2018, 19, 3002.	1.8	8
435	The Food and Drug Addiction Epidemic: Targeting Dopamine Homeostasis. Current Pharmaceutical Design, 2018, 23, 6050-6061.	0.9	40
436	Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance. International Journal of Molecular Sciences, 2018, 19, 3552.	1.8	53
437	Functional Interrogation of the AgRP Neural Circuits in Control of Appetite, Body Weight, and Behaviors. Advances in Experimental Medicine and Biology, 2018, 1090, 1-16.	0.8	6
438	Orexigenic action of oral zinc: metabolomic analysis in the rat hypothalamus. Bioscience, Biotechnology and Biochemistry, 2018, 82, 2168-2175.	0.6	6
439	Mild Impairment of Mitochondrial OXPHOS Promotes Fatty Acid Utilization in POMC Neurons and Improves Glucose Homeostasis in Obesity. Cell Reports, 2018, 25, 383-397.e10.	2.9	26
440	UCP2 Mitigates the Loss of Human Spermatozoa Motility by Promoting mROS Elimination. Cellular Physiology and Biochemistry, 2018, 50, 952-962.	1.1	15
441	The 7q11.23 Protein DNAJC30 Interacts with ATP Synthase and Links Mitochondria to Brain Development. Cell, 2018, 175, 1088-1104.e23.	13.5	46
442	Glucose Availability Predicts the Feeding Response to Ghrelin in Male Mice, an Effect Dependent on AMPK in AgRP Neurons. Endocrinology, 2018, 159, 3605-3614.	1.4	22

#	Article	IF	CITATIONS
443	Electrophysiological Effects of Ghrelin in the Hypothalamic Paraventricular Nucleus Neurons. Frontiers in Cellular Neuroscience, 2018, 12, 275.	1.8	18
444	Mitochondrial Dynamics and Hypothalamic Regulation of Metabolism. Endocrinology, 2018, 159, 3596-3604.	1.4	33
445	A new brain circuit in feeding control. Science, 2018, 361, 29-30.	6.0	3
446	Ghrelin and LEAP-2: Rivals in Energy Metabolism. Trends in Pharmacological Sciences, 2018, 39, 685-694.	4.0	52
447	AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. ELife, 2018, 7, .	2.8	58
448	Hypothalamic Mitochondrial Dysfunction as a Target in Obesity and Metabolic Disease. Frontiers in Endocrinology, 2018, 9, 283.	1.5	26
449	Dynamin-Related Protein 1 at the Crossroads of Cancer. Genes, 2018, 9, 115.	1.0	67
450	3.15 Neuronal Energy Production. , 2018, , 638-672.		0
451	Liu Jun Zi Tang—A Potential, Multi-Herbal Complementary Therapy for Chemotherapy-Induced Neurotoxicity. International Journal of Molecular Sciences, 2018, 19, 1258.	1.8	16
452	Hypothalamic <scp>AMPK</scp> and energy balance. European Journal of Clinical Investigation, 2018, 48, e12996.	1.7	78
453	Targeting AgRP neurons to maintain energy balance: Lessons from animal models. Biochemical Pharmacology, 2018, 155, 224-232.	2.0	16
454	Obesity and Stress: The Melanocortin Connection. , 2018, , 271-319.		Ο
455	Intense physical exercise potentiates glucose inhibitory effect over food intake of male Wistar rats. Experimental Physiology, 2018, 103, 1076-1086.	0.9	3
456	Peripheral and Central Nutrient Sensing Underlying Appetite Regulation. Trends in Neurosciences, 2018, 41, 526-539.	4.2	22
457	RhoA in tyrosine hydroxylase neurones regulates food intake and body weight via altered sensitivity to peripheral hormones. Journal of Neuroendocrinology, 2019, 31, e12761.	1.2	10
458	Ghrelin attenuates oxidative stress and neuronal apoptosis via GHSR-11±/AMPK/Sirt1/PGC-11±/UCP2 pathway in a rat model of neonatal HIE. Free Radical Biology and Medicine, 2019, 141, 322-337.	1.3	79
459	Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Molecular Metabolism, 2019, 27, 1-10.	3.0	34
460	Actinodaphnine and Rutacridone as New T-Cell Protein Tyrosine Phosphatase Inhibitors for Drug Development of Obesity. IOP Conference Series: Materials Science and Engineering, 2019, 546, 062007.	0.3	0

#	Article	IF	CITATIONS
461	Microglial UCP2 Mediates Inflammation and Obesity Induced by High-Fat Feeding. Cell Metabolism, 2019, 30, 952-962.e5.	7.2	139
462	Double immunofluorescent evidence that oxidative stress-associated activation of JNK/AP-1 signaling participates in neuropeptide-mediated appetite control. European Neuropsychopharmacology, 2019, 29, 1235-1249.	0.3	4
463	Hypothalamic neuronal cellular and subcellular abnormalities in experimental obesity. International Journal of Obesity, 2019, 43, 2361-2369.	1.6	9
464	Circulating messenger for neuroprotection induced by molecular hydrogen. Canadian Journal of Physiology and Pharmacology, 2019, 97, 909-915.	0.7	8
465	Role of Mitochondria in Brain Nutrient Sensing: Control of Energy Balance and Dysregulation in Obesity and Type 2 Diabetes. , 2019, , 245-260.		0
466	Emerging roles for hypothalamic microglia as regulators of physiological homeostasis. Frontiers in Neuroendocrinology, 2019, 54, 100748.	2.5	20
467	The anx/anx Mouse – A Valuable Resource in Anorexia Nervosa Research. Frontiers in Neuroscience, 2019, 13, 59.	1.4	18
468	Ghrelinâ€mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington's disease. Journal of Neuroendocrinology, 2019, 31, e12699.	1.2	12
469	Palmitate-induced autophagy liberates monounsaturated fatty acids and increases <i>Agrp</i> expression in hypothalamic cells. Animal Cells and Systems, 2019, 23, 384-391.	0.8	11
470	Neurobiological characteristics underlying metabolic differences between males and females. Progress in Neurobiology, 2019, 176, 18-32.	2.8	16
471	Molecular evolution of uncoupling proteins and implications for brain function. Neuroscience Letters, 2019, 696, 140-145.	1.0	17
472	UCP2â€dependent improvement of mitochondrial dynamics protects against acute kidney injury. Journal of Pathology, 2019, 247, 392-405.	2.1	39
473	Hindbrain dorsal vagal complex AMPK controls hypothalamic gluco-regulatory transmitter and counter-regulatory hormone responses to hypoglycemia. Brain Research Bulletin, 2019, 144, 171-179.	1.4	11
474	AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biology, 2019, 20, 75-86.	3.9	121
475	Ghrelin Signaling: GOAT and GHS-R1a Take a LEAP in Complexity. Trends in Endocrinology and Metabolism, 2020, 31, 107-117.	3.1	48
476	17β-Estradiol Increases Arcuate KNDy Neuronal Sensitivity to Ghrelin Inhibition of the M-Current in Female Mice. Neuroendocrinology, 2020, 110, 582-594.	1.2	15
477	POMC Neurons Dysfunction in Diet-induced Metabolic Disease: Hallmark or Mechanism of Disease?. Neuroscience, 2020, 447, 3-14.	1.1	14
478	lrisin increases the expression of anorexigenic and neurotrophic genes in mouse brain. Diabetes/Metabolism Research and Reviews, 2020, 36, e3238.	1.7	21

ARTICLE IF CITATIONS # Perinatal over- and underfeeding affect hypothalamic leptin and ghrelin neuroendocrine responses in 479 1.0 9 adult rats. Physiology and Behavior, 2020, 215, 112793. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutrition and 480 1.3 38 Metabolism, 2020, 17, 88. Effects of Opuntia ficusâ€indica in the diet of primiparous sows on the metabolic profile during late 481 gestation and lactation and feed intake during lactation. Journal of Animal Physiology and Animal 1.0 3 Nutrition, 2020, 104, 1884-1895. Mitochondrial Dynamics in the Brain Are Associated With Feeding, Glucose Homeostasis, and 482 Whole-Body Metabolism. Frontiers in Endocrinology, 2020, 11, 580879. Mitochondrial dysfunction in GnRH neurons impaired GnRH production. Biochemical and Biophysical 483 7 1.0 Research Communications, 2020, 530, 329-335. Olanzapine increases AMPK-NPY orexigenic signaling by disrupting H1R-GHSR1a interaction in the 484 1.3 hypothalamic neurons of mice. Psychoneuroendocrinology, 2020, 114, 104594. AMPK-Dependent Mechanisms but Not Hypothalamic Lipid Signaling Mediates GH-Secretory Responses 485 1.8 3 to GHRH and Ghrelin. Cells, 2020, 9, 1940. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Frontiers in 486 1.4 Néuroscience, 2020, 14, 614828. Malnourishment during early lactation disrupts the ontogenetic distribution of the CART and α-MSH 487 anorexigenic molecules in the arcuate/paraventricular pathway and lateral hypothalamus in male 1.1 1 rats. Brain Research, 2020, 1743, 146906. Physiological Effect of Ghrelin on Body Systems. International Journal of Endocrinology, 2020, 2020, 488 49 1-26. Sexual hormones regulate the redox status and mitochondrial function in the brain. Pathological 489 3.9 33 implications. Redox Biology, 2020, 31, 101505. Homeostatic versus hedonic control of carbohydrate selection. Journal of Physiology, 2020, 598, 490 1.3 3831-3844. Neuronal control of peripheral nutrient partitioning. Diabetologia, 2020, 63, 673-682. 491 2.9 21 Towards a comprehensive theory of obesity and a healthy diet: The causal role of oxidative stress in 1.2 food addiction and obesity. Behavioural Brain Research, 2020, 384, 112560. The return of malonyl-CoA to the brain: Cognition and other stories. Progress in Lipid Research, 2021, 493 5.328 81, 101071. Chronic exposure to methylmercury disrupts ghrelin actions in C57BL/6J mice. Food and Chemical 494 1.8 Toxicology, 2021, 147, 111918. Human torpor: translating insights from nature into manned deep space expedition. Biological 495 4.7 8 Reviews, 2021, 96, 642-672. The Effect of ω3 Fatty Acids Supplementation on Levels of PPARÎ³ and UCP2 Genes Expression, Serum Level 496 of UCP2 Protein, Metabolic Status, and Appetite in Elite male Athletes: Protocol for a Randomized Control Trial. International Journal of Surgery Protocols, 2021, 25, 184-193.

ARTICLE IF CITATIONS # The redox language in neurodegenerative diseases: oxidative post-translational modifications by 497 2.7 68 hydrogen peroxide. Cell Death and Disease, 2021, 12, 58. AgRP neurons trigger long-term potentiation and facilitate food seeking. Translational Psychiatry, 498 2.4 2021, 11, 11. 499 Neural Control of Homeostatic Feeding and Food Selection., 0, , . 0 Mitohormesis in Hypothalamic POMC Neurons Mediates Regular Exercise-Induced High-Turnover 500 Metabolism. Cell Metabolism, 2021, 33, 334-349.e6. Neuroprotective and Preventative Effects of Molecular Hydrogen. Current Pharmaceutical Design, 501 0.9 8 2021, 27, 585-591. UCP2 as a Potential Biomarker for Adjunctive Metabolic Therapies in Tumor Management. Frontiers in 1.3 Oncology, 2021, 11, 640720. 503 Drp1 is required for AgRP neuronal activity and feeding. ELife, 2021, 10, . 2.8 13 Metabolic Regulation of Hypoxia-Inducible Factors in Hypothalamus. Frontiers in Endocrinology, 2021, 504 1.5 12,650284. Metabolic Adaptations to Weight Loss. Journal of Strength and Conditioning Research, 2021, Publish 505 1.0 1 Ahead of Print, . Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and 4.1 anxiety-like behavior. Molecular Psychiatry, 2021, 26, 2740-2752 Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in 507 3.9 38 mice. Journal of Clinical Investigation, 2021, 131, . Molecular characterization and expression of the SiUCP2 gene in sea urchin Strongylocentrotus 508 0.6 intermedius. Journal of Oceanology and Limnology, 2021, 39, 1523. The effect of omega3 fatty acid supplementation on PPARÎ³ and UCP2 expressions, resting energy 509 0.7 6 expenditure, and appetite in athletes. BMC Sports Science, Medicine and Rehabilitation, 2021, 13, 48. Mitochondrial Fission Governed by Drp1 Regulates Exogenous Fatty Acid Usage and Storage in Hela 1.3 16 Cells. Metabolites, 2021, 11, 322. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Frontiers in 511 1.5 18 Endocrinology, 2021, 12, 668396. Microglia–Neuron Crosstalk in Obesity: Melodious Interaction or Kiss of Death?. International 1.8 Journal of Molecular Sciences, 2021, 22, 5243. Activation of UCP2 by anethole trithione suppresses neuroinflammation after intracerebral 514 2.8 8 hemorrhage. Acta Pharmacologica Sinica, 2022, 43, 811-828. Mitochondria in Neuronal Health: From Energy Metabolism to Parkinson's Disease. Advanced Biology, 1.4 2021, 5, e2100663.

ARTICLE IF CITATIONS # Murine neuronatin deficiency is associated with a hypervariable food intake and bimodal obesity. 516 1.6 5 Scientific Reports, 2021, 11, 17571. Molecular Machinery and Pathophysiology of Mitochondrial Dynamics. Frontiers in Cell and Developmental Biology, 2021, 9, 743892. 1.8 Rolling out physical exercise and energy homeostasis: Focus on hypothalamic circuitries. Frontiers in 518 2.57 Neuroendocrinology, 2021, 63, 100944. Ghrelin as a treatment for amyotrophic lateral sclerosis. Journal of Neuroendocrinology, 2021, 33, 1.2 e12938. The Role of the Ghrelin Receptor in Appetite and Energy Metabolism., 2014, , 35-52. 520 2 The Ghrelin Receptor: A Novel Therapeutic Target for Obesity. Receptors, 2014, , 89-122. 0.2 Food intake regulation: Relevance to bariatric and metabolic endoscopic therapies. Techniques and 522 0.4 1 Innovations in Gastrointestinal Endoscopy, 2020, 22, 100-108. Neonatal ghrelin programs development of hypothalamic feeding circuits. Journal of Clinical Investigation, 2015, 125, 846-858. 3.9 126 PPARÎ³ ablation sensitizes proopiomelanocortin neurons to leptin during high-fat feeding. Journal of 526 3.9 50 Clinical Investigation, 2014, 124, 4017-4027. Brain nuclear receptors and body weight regulation. Journal of Clinical Investigation, 2017, 127, 1172-1180. The Complex Signaling Pathways of the Ghrelin Receptor. Endocrinology, 2020, 161, . 528 1.4 34 Olanzapine-Induced Hyperphagia and Weight Gain Associate with Orexigenic Hypothalamic 529 1.1 101 Neuropeptide Signaling without Concomitant AMPK Phosphorylation. PLoS ONÉ, 2011, 6, e20571. Anti-Obesity Sodium Tungstate Treatment Triggers Axonal and Glial Plasticity in Hypothalamic Feeding 530 1.1 8 Centers. PLoS ONE, 2012, 7, e39087. Neuron-Specific Deletion of Peroxisome Proliferator-Activated Receptor Delta (PPARÎ) in Mice Leads to 1.1 Increased Susceptibility to Diet-Induced Obesity. PLoS ONE, 2012, 7, e42981. Serum Acylated Ghrelin Is Negatively Correlated with the Insulin Resistance In the CODING study. PLoS 532 1.1 21 ONE, 2012, 7, e45657. Role of Hypothalamic Creb-Binding Protein in Obesity and Molecular Reprogramming of Metabolic 1.1 14 Substrates. PLoS ONE, 2016, 11, e0166381. Direct versus indirect actions of ghrelin on hypothalamic NPY neurons. PLoS ONE, 2017, 12, e0184261. 534 1.1 22 The melanocortin pathway and control of appetite-progress and therapeutic implications. Journal of 1.2 143 Endocrinology, 2019, 241, R1-R33.

#	Article	lF	CITATIONS
536	The suppression of ghrelin signaling mitigates age-associated thermogenic impairment. Aging, 2014, 6, 1019-1032.	1.4	51
537	Chrelin attenuates brain injury after traumatic brain injury and uncontrolled hemorrhagic shock in rats. Molecular Medicine, 2012, 18, 1.	1.9	20
538	Review of Novel Aspects of the Regulation of Ghrelin Secretion. Current Drug Metabolism, 2014, 15, 398-413.	0.7	26
539	Oxidative Stress in the Hypothalamus: the Importance of Calcium Signaling and Mitochondrial ROS in Body Weight Regulation. Current Neuropharmacology, 2012, 10, 344-353.	1.4	21
540	Uncoupling Protein-2 and the Potential Link Between Metabolism and Longevity. Current Aging Science, 2010, 3, 102-112.	0.4	34
541	The central nervous system at the core of the regulation of energy homeostasis. Frontiers in Bioscience - Scholar, 2009, S1, 448-465.	0.8	51
542	Endocrine impact of Helicobacter pylori: Focus on ghrelin and ghrelin o-acyltransferase. World Journal of Gastroenterology, 2011, 17, 1249.	1.4	42
543	Ghrelin's second life: from appetite stimulator to glucose regulator. World Journal of Gastroenterology, 2012, 18, 3183-95.	1.4	69
544	Ghrelin is the metabolic link connecting calorie restriction to neuroprotection. Neural Regeneration Research, 2016, 11, 1228.	1.6	6
545	Ghrelin and the central regulation of feeding and energy balance. Indian Journal of Endocrinology and Metabolism, 2012, 16, 617.	0.2	25
546	Multiple Effects of Molecular Hydrogen and its Distinct Mechanism. Journal of Neurological Disorders, 2014, 02, .	0.1	3
547	Ghrelin and oral diseases. Central-European Journal of Immunology, 2020, 45, 433-438.	0.4	5
548	Mitochondrial Uncoupling Proteins in the Brain: Their Structure, Function and Physiological Roles [Beyindeki Mitokondriyal Eslesme Bozucu Proteinler: Yapisi, Islevi ve Fizyolojik Rolleri]. Medicine Science, 2015, 4, 2289.	0.0	3
549	Cold-induced hyperphagia requires AgRP neuron activation in mice. ELife, 2020, 9, .	2.8	32
550	Metabolic Syndrome as a Disorder of the Brain with Its Origins in the Perinatal Period. , 2011, , 2597-2616.		0
551	Ghrelin: Neuropeptide Regulator of Metabolism. , 2012, , 111-130.		0
552	Neuroendocrine Regulation of Energy Metabolism. Endocrinology and Metabolism, 2012, 27, 268.	1.3	2
553	Ghrelin, a Gastric Hormone with Diverse Functions. , 0, , .		0

ARTICLE IF CITATIONS # The Anorectic Phenotype of the anx/anx Mouse Is Related to Hypothalamic Dysfunction. 554 0.2 0 Neuromethods, 2013, 333-350. <i>Helicobacter pylori</i>Infection and Metabolic Disease. Korean Journal of Medicine, 2013, 84, 781. 0.1 556 The Central Nervous System in Metabolic Syndrome., 2014, , 137-156. 0 Reactive oxygen species signaling influences feeding behaviour. International Journal of Research in 558 0.0 Medical Sciences, 0, , 2998-3003. Regulation of Lipophagy., 2017, , 147-172. 560 0 Effects of 8 Weeks Aerobic Training on Plasma Ghrelin Level and Ghrelin Lymphocyte Gene Expression 0.2 in Elderly Men. Salmand: Iranian Journal of Ageing, 0, , 494-505. The Anorectic Phenotype of the anx/anx Mouse Is Associated with Hypothalamic Dysfunction. 564 0.2 0 Neuromethods, 2021, , 297-317. A temperature hypothesis of hypothalamus-driven obesity. Yale Journal of Biology and Medicine, 2014, 0.2 87, 149-58. Effects of mitochondrial uncoupling protein 2 inhibition by Genipin on rat bone marrow mesenchymal 566 stem cells under hypoxia and serum deprivation (H/SD) conditions. International Journal of Clinical 0.5 1 and Experimental Pathology, 2017, 10, 10047-10055. Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus., 2022, 234, 108044. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. 568 1.7 55 European Journal of Pharmacology, 2022, 915, 174611. Detailed resume of RNA m6A demethylases. Acta Pharmaceutica Sinica B, 2022, 12, 2193-2205. 5.7 569 Tamas Horvath: The hunger view on body, brain and behavior., 2022, , 67-146. 570 0 GHS-R1a deficiency mitigates lipopolysaccharide-induced lung injury in mice via the downregulation of 571 1.0 macrophage activity. Biochemical and Biophysical Research Communications, 2022, 589, 260-266. 572 Ghrelin mediated hippocampal neurogenesis. Vitamins and Hormones, 2022, 118, 337-367. 0.7 6 Chrelin attenuates methylmercury-induced oxidative stress in neuronal cells. Molecular 1.9 Neurobiology, 2022, 59, 2098-2115. Life is an Engineering Marvel of Water: It's Water that Manages Noise to Synthesis Life. Studies in 574 0.1 0 Rhythm Engineering, 2022, , 77-115. Genetic variation in satiety signaling and hypothalamic inflammation: merging fields for the study of 576 obesity. Journal of Nutritional Biochemistry, 2022, 101, 108928.

#	Article	IF	CITATIONS
577	The timeline of neuronal and glial alterations in experimental obesity. Neuropharmacology, 2022, 208, 108983.	2.0	7
578	Astrocytic lipid metabolism determines susceptibility to diet-induced obesity. Science Advances, 2021, 7, eabj2814.	4.7	11
579	Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants, 2022, 11, 572.	2.2	31
580	Diverse and Complementary Effects of Ghrelin and Obestatin. Biomolecules, 2022, 12, 517.	1.8	13
581	Using Intermittent Fasting as a Non-pharmacological Strategy to Alleviate Obesity-Induced Hypothalamic Molecular Pathway Disruption. Frontiers in Nutrition, 2022, 9, 858320.	1.6	3
582	Appetite to learn: An allostatic role for AgRP neurons in the maintenance of energy balance. Current Opinion in Endocrine and Metabolic Research, 2022, 24, 100337.	0.6	7
584	Role and significance of ghrelin and leptin in hunger, satiety, and energy homeostasis. Journal of the Scientific Society, 2022, 49, 12.	0.1	1
585	Endothelial Cells Mediated by UCP2 Control the Neurogenicâ€toâ€Astrogenic Neural Stem Cells Fate Switch During Brain Development. Advanced Science, 2022, 9, e2105208.	5.6	7
586	Ghrelin-dependent mechanisms of food reward. Part 1. Ghrelin and dopamine. Reviews on Clinical Pharmacology and Drug Therapy, 2022, 20, 29-54.	0.2	0
587	Acylation, a Conductor of Ghrelin Function in Brain Health and Disease. Frontiers in Physiology, 0, 13,	1.3	1
588	Microglial Engulfment of Spines in the Ventral Zona Incerta Regulates Anxiety-Like Behaviors in a Mouse Model of Acute Pain. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	2
589	Achieving dopamine homeostasis to combat brain-gut functional impairment: behavioral and neurogenetic correlates of reward deficiency syndrome. , 2022, , 229-243.		0
590	A nexus of lipid and O-Glcnac metabolism in physiology and disease. Frontiers in Endocrinology, 0, 13, .	1.5	6
591	Acyl-Ghrelin Attenuates Neurochemical and Motor Deficits in the 6-OHDA Model of Parkinson's Disease. Cellular and Molecular Neurobiology, 2023, 43, 2377-2384.	1.7	1
592	Brain Related Gut Peptides – A Review. Protein and Peptide Letters, 2022, 29, 1016-1030.	0.4	2
593	Role of brain-gut-muscle axis in human health and energy homeostasis. Frontiers in Nutrition, 0, 9, .	1.6	12
594	Hormone des Hypothalamus und der Hypophyse. , 2022, , 629-644.		0
596	AAV-ie-mediated UCP2 overexpression accelerates inner hair cell loss during aging in vivo. Molecular Medicine, 2022, 28, .	1.9	2

		Citation Report		
#	Article		IF	CITATIONS
597	Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients, 20	022, 14, 4191.	1.7	13
599	Differential expression of uncoupling protein gene in feed efficient cattle. Indian Journal Sciences, 2019, 89, .	of Animal	0.1	0
600	Food-induced dopamine signaling in AgRP neurons promotes feeding. Cell Reports, 202	2, 41, 111718.	2.9	7
601	Roles of Ghrelin and Leptin in Body Mass Regulation under Food Restriction Based on th Pathway in the Red-Backed Vole, Eothenomys miletus, from Kunming and Dali Regions. 3333.	ie AMPK Animals, 2022, 12,	1.0	0
602	Current Perspectives of Neuroendocrine Regulation in Liver Fibrosis. Cells, 2022, 11, 37	83.	1.8	2
603	Inflammatory Milieu Induces Mitochondrial Alterations and Neuronal Activations in Hyp POMC Neurons in a Time-Dependent Manner. Molecular Neurobiology, 2023, 60, 1164-	othalamic 1178.	1.9	2
604	UCP2 as a Cancer Target through Energy Metabolism and Oxidative Stress Control. Inte Journal of Molecular Sciences, 2022, 23, 15077.	rnational	1.8	10
605	Targeting G Protein-Coupled Receptors in the Treatment of Parkinson's Disease. Jou Biology, 2023, 435, 167927.	rnal of Molecular	2.0	2
606	Targeting carnitine palmitoyltransferase 1 isoforms in the hypothalamus: A promising st regulate energy balance. Journal of Neuroendocrinology, 2023, 35, .	rategy to	1.2	5
607	UCP2-dependent redox sensing in POMC neurons regulates feeding. Cell Reports, 2022	, 41, 111894.	2.9	5
608	The Bidirectional Relationship of NPY and Mitochondria in Energy Balance Regulation. B 2023, 11, 446.	iomedicines,	1.4	0
609	High sucrose consumption decouples intrinsic and synaptic excitability of AgRP neurons altering body weight. International Journal of Obesity, 0, , .	s without	1.6	1
610	Orexin induces the production of an endocannabinoid-derived lysophosphatidic acid elio hypothalamic synaptic loss in obesity. Molecular Metabolism, 2023, 72, 101713.	iting	3.0	0
611	Analyses of regulatory network and discovery of potential biomarkers for Korean rockfis Biochemistry and Physiology Part D: Genomics and Proteomics, 2023, 46, 101061.	h (Sebastes) Tj ETQq1	1 0.784314 r 0.4	rgBT /Overlo 0
612	Hypothalamic Glucose Hypersensitivity-Induced Insulin Secretion in the Obese Zücker by Central Ghrelin Treatment. Antioxidants and Redox Signaling, 0, , .	Rat Is Reversed	2.5	0
613	Emerging role of hypothalamus in the metabolic regulation in the offspring of maternal Frontiers in Nutrition, 0, 10, .	obesity.	1.6	1
616	CPT1A in AgRP neurons is required for sex-dependent regulation of feeding and thirst. B Differences, 2023, 14, .	iology of Sex	1.8	4
627	Sex hormones in neuroprotection and neurodegeneration. , 2024, , 571-613.			0

#	Article	IF	CITATIONS
629	Homeostatic and Endocrine Response Underlying Protective Effects by Molecular Hydrogen. , 2024, , 113-123.		0