Crystal structure of the ligand-free G-protein-coupled r

Nature 454, 183-187 DOI: 10.1038/nature07063

Citation Report

#	Article	IF	CITATIONS
3	Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR. Journal of Biomolecular NMR, 2008, 42, 257-269.	1.6	16
4	Molecular and structural effects of inverse agonistic mutations on signaling of the thyrotropin receptor – a basally active GPCR. Cellular and Molecular Life Sciences, 2008, 65, 3664-3676.	2.4	20
5	Ligand-Binding Architecture of Human CB2 Cannabinoid Receptor: Evidence for Receptor Subtype-Specific Binding Motif and Modeling GPCR Activation. Chemistry and Biology, 2008, 15, 1207-1219.	6.2	88
6	Crystal structure of opsin in its G-protein-interacting conformation. Nature, 2008, 455, 497-502.	13.7	1,019
7	A moving story of receptors. Nature, 2008, 455, 473-474.	13.7	33
8	Structural insights into G-protein-coupled receptor activation. Current Opinion in Structural Biology, 2008, 18, 734-740.	2.6	93
9	Constitutive activation of G protein-coupled receptors and diseases: Insights into mechanisms of activation and therapeutics. , 2008, 120, 129-148.		143
10	Agonist-Induced Conformational Changes in Bovine Rhodopsin: Insight into Activation of G-Protein-Coupled Receptors. Journal of Molecular Biology, 2008, 382, 539-555.	2.0	77
11	Conformational changes involved in G-protein-coupled-receptor activation. Trends in Pharmacological Sciences, 2008, 29, 616-625.	4.0	73
12	Activation of the μ Opioid Receptor Involves Conformational Rearrangements of Multiple Transmembrane Domains. Biochemistry, 2008, 47, 10576-10586.	1.2	13
13	Different Properties of the Native and Reconstituted Heterotrimeric G Protein Transducin. Biochemistry, 2008, 47, 12409-12419.	1.2	22
14	Monitoring Light-induced Structural Changes of Channelrhodopsin-2 by UV-visible and Fourier Transform Infrared Spectroscopy. Journal of Biological Chemistry, 2008, 283, 35033-35041.	1.6	169
15	Two protonation switches control rhodopsin activation in membranes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17795-17800.	3.3	151
16	A Ligand Channel through the G Protein Coupled Receptor Opsin. PLoS ONE, 2009, 4, e4382.	1.1	102
17	High-Level Production, Solubilization and Purification of Synthetic Human GPCR Chemokine Receptors CCR5, CCR3, CXCR4 and CX3CR1. PLoS ONE, 2009, 4, e4509.	1.1	75
18	Comparative Sequence and Structural Analyses of G-Protein-Coupled Receptor Crystal Structures and Implications for Molecular Models. PLoS ONE, 2009, 4, e7011.	1.1	72
19	Chapter 4 Diseases Associated with Mutations of the Human Lutropin Receptor. Progress in Molecular Biology and Translational Science, 2009, 89, 97-114.	0.9	39
20	The Role of Rhodopsin Glycosylation in Protein Folding, Trafficking, and Light-Sensitive Retinal Degeneration. Journal of Neuroscience, 2009, 29, 15145-15154.	1.7	67

#	Article	IF	CITATIONS
21	Conformational Toggle Switches Implicated in Basal Constitutive and Agonist-Induced Activated States of 5-Hydroxytryptamine-4 Receptors. Molecular Pharmacology, 2009, 75, 982-990.	1.0	52
22	Structural Rearrangements of Rhodopsin Subunits in a Dimer Complex: a Molecular Dynamics Simulation Study. Journal of Biomolecular Structure and Dynamics, 2009, 27, 127-147.	2.0	43
23	The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proceedings of the United States of America, 2009, 106, 9501-9506.	3.3	218
24	Structural waters define a functional channel mediating activation of the GPCR, rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14367-14372.	3.3	181
25	Lipid Protein Interactions Couple Protonation to Conformation in a Conserved Cytosolic Domain of G Protein-coupled Receptors. Journal of Biological Chemistry, 2009, 284, 28801-28809.	1.6	19
26	The Magnitude of the Light-induced Conformational Change in Different Rhodopsins Correlates with Their Ability to Activate G Proteins. Journal of Biological Chemistry, 2009, 284, 20676-20683.	1.6	52
27	The Fifth Transmembrane Domain of Angiotensin II Type 1 Receptor Participates in the Formation of the Ligand-binding Pocket and Undergoes a Counterclockwise Rotation upon Receptor Activation. Journal of Biological Chemistry, 2009, 284, 31953-31961.	1.6	15
28	Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8555-8560.	3.3	218
29	The Second Transmembrane Domain of the Human Type 1 Angiotensin II Receptor Participates in the Formation of the Ligand Binding Pocket and Undergoes Integral Pivoting Movement during the Process of Receptor Activation. Journal of Biological Chemistry, 2009, 284, 11922-11929.	1.6	13
30	Factors regulating tachyphylaxis triggered by N-terminal-modified angiotensin II analogs. Biological Chemistry, 2009, 390, 1265-1270.	1.2	2
31	Location of the Retinal Chromophore in the Activated State of Rhodopsin. Journal of Biological Chemistry, 2009, 284, 10190-10201.	1.6	89
32	Structural and kinetic modeling of an activating helix switch in the rhodopsin-transducin interface. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10660-10665.	3.3	47
33	Chapter 5 Follicle Stimulating Hormone Receptor Mutations and Reproductive Disorders. Progress in Molecular Biology and Translational Science, 2009, 89, 115-131.	0.9	22
34	Customizing G Protein-Coupled Receptor Models for Structure-Based Virtual Screening. Current Pharmaceutical Design, 2009, 15, 4026-4048.	0.9	67
35	Chapter 11 Bacterial Membrane Proteins. Current Topics in Membranes, 2009, 63, 269-297.	0.5	2
36	Endoplasmic reticulum-associated degradation of a degron-containing polytopic membrane protein. Molecular Membrane Biology, 2009, 26, 448-464.	2.0	13
37	Activation Switch in the Transmembrane Domain of Metabotropic Glutamate Receptor. Molecular Pharmacology, 2009, 76, 201-207.	1.0	17
38	Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12471-12476.	3.3	102

#	Article	IF	Citations
39	Activation Induces Structural Changes in the Liganded Angiotensin II Type 1 Receptor. Journal of Biological Chemistry, 2009, 284, 26603-26612.	1.6	12
40	Topology of Class A G Protein-Coupled Receptors: Insights Gained from Crystal Structures of Rhodopsins, Adrenergic and Adenosine Receptors. Molecular Pharmacology, 2009, 75, 1-12.	1.0	101
41	Fluorescence Resonance Energy Transfer Analysis of α _{2a} -Adrenergic Receptor Activation Reveals Distinct Agonist-Specific Conformational Changes. Molecular Pharmacology, 2009, 75, 534-541.	1.0	103
42	Engineering G protein-coupled receptors to facilitate their structure determination. Current Opinion in Structural Biology, 2009, 19, 386-395.	2.6	169
43	Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin. Current Opinion in Structural Biology, 2009, 19, 433-439.	2.6	64
44	Discovery of New GPCR Biology: One Receptor Structure at a Time. Structure, 2009, 17, 8-14.	1.6	180
45	A G protein-coupled receptor at work: the rhodopsin model. Trends in Biochemical Sciences, 2009, 34, 540-552.	3.7	328
46	G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discovery Today, 2009, 14, 231-240.	3.2	160
47	Identification of transmembrane domain 6 & 7 residues that contribute to the binding pocket of the urotensin II receptor. Biochemical Pharmacology, 2009, 77, 1374-1382.	2.0	11
48	X-ray structure breakthroughs in the GPCR transmembrane region. Biochemical Pharmacology, 2009, 78, 11-20.	2.0	102
49	2,3â€Dihydroâ€1â€Benzofuran Derivatives as a Series of Potent Selective Cannabinoid Receptorâ€2 Agonists: Design, Synthesis, and Binding Mode Prediction through Ligandâ€Steered Modeling. ChemMedChem, 2009, 4, 1615-1629.	1.6	71
50	Identifying conformational changes of the β2 adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. Journal of Computer-Aided Molecular Design, 2009, 23, 273-288.	1.3	60
51	Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the β2-adrenergic receptor and the human adenosine A2A receptor. Journal of Computer-Aided Molecular Design, 2009, 23, 807-28.	1.3	38
52	Live molecular recognition: visualizing opioid receptors trafficking in vivo. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 189-195.	1.6	0
53	Application of the fuzzyâ€oilâ€drop model to membrane protein simulation. Proteins: Structure, Function and Bioinformatics, 2009, 77, 378-394.	1.5	14
54	Properties of the <i>N</i> â€ŧerminal domains from Y receptors probed by NMR spectroscopy. Journal of Peptide Science, 2009, 15, 184-191.	0.8	8
55	Interaction and conformational dynamics of membraneâ€spanning protein helices. Protein Science, 2009, 18, 1343-1358.	3.1	101
56	Gâ€proteinâ€coupled receptor structures were not built in a day. Protein Science, 2009, 18, 1335-1342.	3.1	27

#	Article	IF	CITATIONS
	Engineering a G protein-coupled receptor for structural studies: Stabilization of the BLT1 receptor		
57	ground state. Protein Science, 2009, 18, NA-NA.	3.1	13
58	To see in different seas: spatial variation in the rhodopsin gene of the sand goby (<i>Pomatoschistus) Tj ETQq1 1</i>	0,784314	ŧ rǥβT /Over
59	Ligand-regulated oligomerization of β2-adrenoceptors in a model lipid bilayer. EMBO Journal, 2009, 28, 3315-3328.	3.5	172
60	Biophysical dissection of membrane proteins. Nature, 2009, 459, 344-346.	13.7	250
61	The structure and function of G-protein-coupled receptors. Nature, 2009, 459, 356-363.	13.7	1,982
62	FTIR analysis of GPCR activation using azido probes. Nature Chemical Biology, 2009, 5, 397-399.	3.9	173
63	Membrane protein structures. Nature Methods, 2009, 6, 35-35.	9.0	23
64	Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nature Structural and Molecular Biology, 2009, 16, 168-175.	3.6	210
65	Complement factor 5a receptor chimeras reveal the importance of lipidâ€facing residues in transport competence. FEBS Journal, 2009, 276, 2786-2800.	2.2	2
66	Rhodopsin Activation Switches in a Native Membrane Environment ^{â€} . Photochemistry and Photobiology, 2009, 85, 437-441.	1.3	20
67	Urea Unfolding of Opsin in Phospholipid Bicelles ^{â€} . Photochemistry and Photobiology, 2009, 85, 494-500.	1.3	18
68	Retinal Conformation and Dynamics in Activation of Rhodopsin Illuminated by Solidâ€state ² H NMR Spectroscopy ^{â€} . Photochemistry and Photobiology, 2009, 85, 442-453.	1.3	18
69	Comparative Analysis of GPCR Crystal Structures ^{â€} . Photochemistry and Photobiology, 2009, 85, 425-430.	1.3	40
70	pHâ€dependent Interaction of Rhodopsin with Cyanidinâ€3â€glucoside. 1. Structural Aspects ^{â€} . Photochemistry and Photobiology, 2009, 85, 454-462.	1.3	34
71	Dissection of Environmental Changes at the Cytoplasmic Surface of Lightâ€activated Bacteriorhodopsin and Visual Rhodopsin: Sequence of Spectrally Silent Steps ^{â€} . Photochemistry and Photobiology, 2009, 85, 570-577.	1.3	14
72	Surface Charge Changes upon Formation of the Signaling State in Visual Rhodopsin ^{â€} . Photochemistry and Photobiology, 2009, 85, 501-508.	1.3	11
73	Structural Coupling of 11â€ <i>cis</i> â€7â€Methylâ€retinal and Amino Acids at the Ligand Binding Pocket of Rhodopsin ^{â€} . Photochemistry and Photobiology, 2009, 85, 485-493.	1.3	9
74	Mechanism of rhodopsin kinase regulation by recoverin. Journal of Neurochemistry, 2009, 110, 72-79.	2.1	50

#	Article	IF	CITATIONS
75	Toward the three-dimensional structure and lysophosphatidic acid binding characteristics of the LPA4/p2y9/GPR23 receptor: A homology modeling study. Journal of Molecular Graphics and Modelling, 2009, 28, 70-79.	1.3	12
76	14-O-Heterocyclic-substituted naltrexone derivatives as non-peptide mu opioid receptor selective antagonists: Design, synthesis, and biological studies. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1825-1829.	1.0	19
77	NMR Characterization of Membrane Proteinâ^'Detergent Micelle Solutions by Use of Microcoil Equipment. Journal of the American Chemical Society, 2009, 131, 18450-18456.	6.6	27
78	Recent Advances in Structure-Based Virtual Screening of G-Protein Coupled Receptors. AAPS Journal, 2009, 11, 178-185.	2.2	18
79	Latest advances in cannabinoid receptor agonists. Expert Opinion on Therapeutic Patents, 2009, 19, 1647-1673.	2.4	79
80	On Transversal Hydrophobicity of Some Proteins and Their Modules. Journal of Chemical Information and Modeling, 2009, 49, 1821-1830.	2.5	6
81	Signaling through G protein coupled receptors. Plant Signaling and Behavior, 2009, 4, 942-947.	1.2	165
83	Key Determinants of Nucleotide-Activated G Protein-Coupled P2Y ₂ Receptor Function Revealed by Chemical and Pharmacological Experiments, Mutagenesis and Homology Modeling. Journal of Medicinal Chemistry, 2009, 52, 2762-2775.	2.9	73
84	6- <i>s-cis</i> Conformation and Polar Binding Pocket of the Retinal Chromophore in the Photoactivated State of Rhodopsin. Journal of the American Chemical Society, 2009, 131, 15160-15169.	6.6	38
85	From purified GPCRs to drug discovery: the promise of protein-based methodologies. Current Opinion in Pharmacology, 2009, 9, 629-635.	1.7	30
86	Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Biochemical and Biophysical Research Communications, 2009, 380, 271-276.	1.0	39
87	Ligand binding and micro-switches in 7TM receptor structures. Trends in Pharmacological Sciences, 2009, 30, 249-259.	4.0	310
88	Multiple Switches in G Protein-Coupled Receptor Activation. Trends in Pharmacological Sciences, 2009, 30, 494-502.	4.0	106
89	Distinct binding mode of 125I-AngII to AT1 receptor without the Cys18-Cys274 disulfide bridge. Regulatory Peptides, 2009, 158, 14-18.	1.9	2
90	Expression, purification and in vitro functional reconstitution of the chemokine receptor CCR1. Protein Expression and Purification, 2009, 66, 73-81.	0.6	28
91	Mechanisms and functions of agonist-independent activation in the angiotensin II type 1 receptor. Molecular and Cellular Endocrinology, 2009, 302, 140-147.	1.6	29
92	Role of helix 8 in G protein-coupled receptors based on structure–function studies on the type 1 angiotensin receptor. Molecular and Cellular Endocrinology, 2009, 302, 118-127.	1.6	54
93	Structure of the Third Intracellular Loop of the Vasopressin V2 Receptor and Conformational Changes upon Binding to gC1qR. Journal of Molecular Biology, 2009, 388, 491-507.	2.0	16

#	Article	IF	CITATIONS
94	Thermostabilization of the Neurotensin Receptor NTS1. Journal of Molecular Biology, 2009, 390, 262-277.	2.0	150
95	Transmembrane Helical Domain of the Cannabinoid CB1 Receptor. Biophysical Journal, 2009, 96, 3251-3262.	0.2	33
96	Structure of a Double Transmembrane Fragment of a G-Protein-Coupled Receptor in Micelles. Biophysical Journal, 2009, 96, 3187-3196.	0.2	32
97	Observation of "Ionic Lock―Formation in Molecular Dynamics Simulations of Wild-Type β1 and β2 Adrenergic Receptors. Biochemistry, 2009, 48, 4789-4797.	1.2	65
98	Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding. Molecular BioSystems, 2009, 5, 1877.	2.9	34
99	Helix Formation in Arrestin Accompanies Recognition of Photoactivated Rhodopsin. Biochemistry, 2009, 48, 10733-10742.	1.2	39
100	Definition of the G Protein-Coupled Receptor Transmembrane Bundle Binding Pocket and Calculation of Receptor Similarities for Drug Design. Journal of Medicinal Chemistry, 2009, 52, 4429-4442.	2.9	100
101	Strategies for The Cloning and Expression of Membrane Proteins. Advances in Protein Chemistry and Structural Biology, 2009, 76, 43-86.	1.0	10
102	2008: Signaling Breakthroughs of the Year. Science Signaling, 2009, 2, eg1.	1.6	0
103	Modern Homology Modeling of G-Protein Coupled Receptors: Which Structural Template to Use?. Journal of Medicinal Chemistry, 2009, 52, 5207-5216.	2.9	146
104	Chapter 8 Activation Mechanisms of Chemokine Receptors. Methods in Enzymology, 2009, 461, 171-190.	0.4	12
105	Chapter 13 Modeling Small Molecule–Compound Binding to Gâ€Protein–Coupled Receptors. Methods in Enzymology, 2009, 460, 263-288.	0.4	22
106	Design, Synthesis, and Biological Evaluation of 6α- and 6β- <i>N</i> -Heterocyclic Substituted Naltrexamine Derivatives as 1¼ Opioid Receptor Selective Antagonists. Journal of Medicinal Chemistry, 2009, 52, 1416-1427.	2.9	70
107	SeleX-CS: A New Consensus Scoring Algorithm for Hit Discovery and Lead Optimization. Journal of Chemical Information and Modeling, 2009, 49, 623-633.	2.5	36
108	Thyrotropin and Homologous Glycoprotein Hormone Receptors: Structural and Functional Aspects of Extracellular Signaling Mechanisms. Endocrine Reviews, 2009, 30, 133-151.	8.9	130
109	Chemokine receptors and other G protein-coupled receptors. Current Opinion in HIV and AIDS, 2009, 4, 88-95.	1.5	46
110	Membrane rafts and caveolae in cardiovascular signaling. Current Opinion in Nephrology and Hypertension, 2009, 18, 50-56.	1.0	61
111	Unraveling the Structure and Function of G Protein-Coupled Receptors Through NMR Spectroscopy. Current Pharmaceutical Design, 2009, 15, 4003-4016.	0.9	30

#	Article	IF	CITATIONS
112	Human A3 Adenosine Receptor as Versatile G Protein-Coupled Receptor Example to Validate the Receptor Homology Modeling Technology. Current Pharmaceutical Design, 2009, 15, 4069-4084.	0.9	10
113	Progress in Elucidating the Structural and Dynamic Character of G Protein-Coupled Receptor Oligomers for Use in Drug Discovery. Current Pharmaceutical Design, 2009, 15, 4017-4025.	0.9	14
114	Computer-Aided Identification of Ligands for GPCR Anti-Obesity Targets. Current Topics in Medicinal Chemistry, 2009, 9, 539-553.	1.0	4
115	G Protein-Coupled Receptors: Target-Based In Silico Screening. Current Pharmaceutical Design, 2009, 15, 4049-4068.	0.9	33
116	Rhodopsin and the Others: A Historical Perspective on Structural Studies of G Protein-Coupled Receptors. Current Pharmaceutical Design, 2009, 15, 3994-4002.	0.9	65
117	GPR55, a Lysophosphatidylinositol Receptor with Cannabinoid Sensitivity?. Current Topics in Medicinal Chemistry, 2010, 10, 799-813.	1.0	42
118	Complexes between photoactivated rhodopsin and transducin: progress and questions. Biochemical Journal, 2010, 428, 1-10.	1.7	47
120	Phototransduction: Rhodopsin. , 2010, , 403-412.		1
124	Methods for Combinatorial and Parallel Library Design. Methods in Molecular Biology, 2010, 672, 387-434.	0.4	7
125	Normal Mode Analysis of Biomolecular Structures: Functional Mechanisms of Membrane Proteins. Chemical Reviews, 2010, 110, 1463-1497.	23.0	461
126	Structures of membrane proteins. Quarterly Reviews of Biophysics, 2010, 43, 65-158.	2.4	157
127	Superactive mutants of thromboxane prostanoid receptor: functional and computational analysis of an active form alternative to constitutively active mutants. Cellular and Molecular Life Sciences, 2010, 67, 2979-2989.	2.4	14
128	On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy. Analytical and Bioanalytical Chemistry, 2010, 397, 2967-2976.	1.9	10
129	Insights into binding modes of adenosine A2B antagonists with ligand-based and receptor-based methods. European Journal of Medicinal Chemistry, 2010, 45, 3459-3471.	2.6	29
130	Study of a structurally similar kappa opioid receptor agonist and antagonist pair by molecular dynamics simulations. Journal of Molecular Modeling, 2010, 16, 1567-1576.	0.8	27
131	Allosteric antagonist binding sites in class B GPCRs: corticotropin receptor 1. Journal of Computer-Aided Molecular Design, 2010, 24, 659-674.	1.3	11
132	Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. Journal of Computer-Aided Molecular Design, 2010, 24, 1023-1033.	1.3	24
133	Influence of MT7 toxin on the oligomerization state of the M ₁ muscarinic receptor ¹ . Biology of the Cell, 2010, 102, 409-420.	0.7	12

ARTICLE IF CITATIONS # The p1D4-hrGFP II expression vector: A tool for expressing and purifying visual pigments and other G 134 0.4 30 protein-coupled receptors. Plasmid, 2010, 64, 162-169. The crystallographic structure of the human adenosine A2A receptor in a high-affinity antagonist-bound state: implications for GPCR drug screening and design. Current Opinion in 2.6 Structural Biology, 2010, 20, 401-414. Internally bridging water molecule in transmembrane α-helical kink. Current Opinion in Structural 136 2.6 17 Biology, 2010, 20, 456-463. Dynamics and flexibility of G-protein-coupled receptor conformations and their relevance to drug désign. Drug Discovery Today, 2010, 15, 951-957. Temperature dependent photolabeling of the human angiotensin II type 1 receptor reveals insights into 138 its conformational landscape and its activation mechanism. Biochemical Pharmacology, 2010, 80, 2.0 9 990-999. Comparison of the pharmacological properties of human and rat histamine H3-receptors. Biochemical Pharmacology, 2010, 80, 1437-1449. Role of the extracellular amino terminus and first membrane-spanning helix of dopamine D1 and D5 140 1.7 13 receptors in shaping ligand selectivity and efficacy. Cellular Signalling, 2010, 22, 106-116. Structural determinants underlying constitutive dimerization of unoccupied human follitropin receptors. Cellular Signalling, 2010, 22, 247-256. 1.7 The Gâ€proteinâ€coupled receptor, <i>GPR84</i>, is important for eye development in <i>Xenopus 142 0.8 21 laevis</i>
</i> G Proteinâ€Coupled Receptor Activation: Amino Acid Movements Caught Infraâ€Redâ€Handed. ChemBioChem, 143 1.3 2010, 11, 2247-2249. A Photoâ€Crossâ€Linking Strategy to Map Sites of Proteinâ€"Protein Interactions. Chemistry - A European 144 1.7 19 Journal, 2010, 16, 7389-7394. Structure and function of G protein-coupled receptors using NMR spectroscopy. Progress in Nuclear 38 Magnetic Resonance Spectroscopy, 2010, 57, 159-180. High molecular diversity in the rhodopsin gene in closely related goby fishes: A role for visual 146 1.2 39 pigments in adaptive speciation?. Molecular Phylogenetics and Evolution, 2010, 55, 689-698. Building a MCHR1 homology model provides insight into the receptor–antagonist contacts that are important for the development of new anti-obesity agents. Bioorganic and Medicinal Chemistry, 2010, 147 1.4 18, 7365-7379. Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a 148 2.329 computational approach. BMC Structural Biology, 2010, 10, 8. FoldGPCR: Structure prediction protocol for the transmembrane domain of G proteinâ€eoupled 149 33 receptors from class A. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2189-2201. The impact of GPCR structures on pharmacology and structureâ€based drug design. British Journal of 150 2.7 123 Pharmacology, 2010, 159, 986-996. Differential modes of selection on the rhodopsin gene in coastal Baltic and North Sea populations of 151 the sand goby, Pomatoschistus minutus. Molecular Ecology, 2010, 19, 2256-2268.

#	Article	IF	CITATIONS
152	The quest to understand heterotrimeric G protein signaling. Nature Structural and Molecular Biology, 2010, 17, 650-652.	3.6	52
153	Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature, 2010, 463, 108-112.	13.7	432
154	Structural basis of G protein–coupled receptor–G protein interactions. Nature Chemical Biology, 2010, 6, 541-548.	3.9	75
155	The evolution of the repertoire and structure of G protein-coupled receptors. , 0, , 5-31.		0
156	Functional studies of isolated GPCR-G protein complexes in the membrane bilayer of lipoprotein particles. , 0, , 32-52.		0
157	Signal Transduction by G Proteins. , 2010, , 1597-1614.		1
158	The β2 Adrenergic Receptor as a Model for G-Protein-Coupled Receptor Structure and Activation by Diffusible Hormones. , 2010, , 163-169.		0
159	Structures of Heterotrimeric G Proteins and their Complexes. , 2010, , 119-128.		1
160	Signalingâ€sensitive amino acids surround the allosteric ligand binding site of the thyrotropin receptor. FASEB Journal, 2010, 24, 2347-2354.	0.2	46
161	Functional Differences of Invariant and Highly Conserved Residues in the Extracellular Domain of the Clycoprotein Hormone Receptors. Journal of Biological Chemistry, 2010, 285, 34813-34827.	1.6	15
162	Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of the Royal Society Interface, 2010, 7, 373-395.	1.5	265
163	On the functional significance of soft modes predicted by coarse-grained models for membrane proteins. Journal of General Physiology, 2010, 135, 563-573.	0.9	49
164	Ligand-Supported Purification of the Urotensin-II Receptor. Molecular Pharmacology, 2010, 78, 639-647.	1.0	5
165	A Conserved Aromatic Lock for the Tryptophan Rotameric Switch in TM-VI of Seven-transmembrane Receptors. Journal of Biological Chemistry, 2010, 285, 3973-3985.	1.6	126
166	Identification of Residue-to-residue Contact between a Peptide Ligand and Its G Protein-coupled Receptor Using Periodate-mediated Dihydroxyphenylalanine Cross-linking and Mass Spectrometry. Journal of Biological Chemistry, 2010, 285, 39425-39436.	1.6	25
167	A Lipid Pathway for Ligand Binding Is Necessary for a Cannabinoid G Protein-coupled Receptor. Journal of Biological Chemistry, 2010, 285, 17954-17964.	1.6	187
168	Highly conserved tyrosine stabilizes the active state of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19861-19866.	3.3	75
170	Interactions between Intracellular Domains as Key Determinants of the Quaternary Structure and Function of Receptor Heteromers. Journal of Biological Chemistry, 2010, 285, 27346-27359.	1.6	102

#	Article	IF	CITATIONS
171	Conserved Water-mediated Hydrogen Bond Network between TM-I, -II, -VI, and -VII in 7TM Receptor Activation. Journal of Biological Chemistry, 2010, 285, 19625-19636.	1.6	45
172	Ligand-specific Conformation of Extracellular Loop-2 in the Angiotensin II Type 1 Receptor. Journal of Biological Chemistry, 2010, 285, 16341-16350.	1.6	63
173	Induced Effects of Sodium Ions on Dopaminergic G-Protein Coupled Receptors. PLoS Computational Biology, 2010, 6, e1000884.	1.5	93
174	Structure and Function of G-Protein-Coupled Receptors. , 2010, , 151-156.		2
175	Control of Rhodopsin's Active Lifetime by Arrestin-1 Expression in Mammalian Rods. Journal of Neuroscience, 2010, 30, 3450-3457.	1.7	71
176	Computational Modeling of Structure-Function of G Protein-Coupled Receptors with Applications for Drug Design. Current Medicinal Chemistry, 2010, 17, 1167-1180.	1.2	44
177	Understanding Functional Residues of the Cannabinoid CB1 Receptor for Drug Discovery. Current Topics in Medicinal Chemistry, 2010, 10, 779-798.	1.0	34
178	The Melanocortin-4 Receptor: Physiology, Pharmacology, and Pathophysiology. Endocrine Reviews, 2010, 31, 506-543.	8.9	435
179	A New Phenotype of Nongoitrous and Nonautoimmune Hyperthyroidism Caused by a Heterozygous Thyrotropin Receptor Mutation in Transmembrane Helix 6. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3605-3610.	1.8	27
180	4-Oxo-1,4-dihydropyridines as Selective CB ₂ Cannabinoid Receptor Ligands: Structural Insights into the Design of a Novel Inverse Agonist Series. Journal of Medicinal Chemistry, 2010, 53, 7918-7931.	2.9	30
181	Heterodimerization of the GABAB Receptor—Implications for GPCR Signaling and Drug Discovery. Advances in Pharmacology, 2010, 58, 63-91.	1.2	20
182	Concerted Interconversion between Ionic Lock Substates of the β2 Adrenergic Receptor Revealed by Microsecond Timescale Molecular Dynamics. Biophysical Journal, 2010, 98, 76-84.	0.2	65
183	Putative Active States of a Prototypic G-Protein-Coupled Receptor from Biased Molecular Dynamics. Biophysical Journal, 2010, 98, 2347-2355.	0.2	59
184	Structural Insights into Conformational Stability of Wild-Type and Mutant β1-Adrenergic Receptor. Biophysical Journal, 2010, 99, 568-577.	0.2	23
185	Binding of More Than One Retinoid to Visual Opsins. Biophysical Journal, 2010, 99, 2366-2373.	0.2	32
186	Computational Mapping of the Conformational Transitions in Agonist Selective Pathways of a G-Protein Coupled Receptor. Journal of the American Chemical Society, 2010, 132, 5205-5214.	6.6	61
187	NMR Analyses of the Interaction between CCR5 and Its Ligand Using Functional Reconstitution of CCR5 in Lipid Bilayers. Journal of the American Chemical Society, 2010, 132, 6768-6777.	6.6	68
188	Using the β ₂ -Adrenoceptor for Structure-Based Drug Design. Journal of Chemical Education, 2010, 87, 625-627.	1.1	7

#	Article	IF	CITATIONS
189	Structure of a GPCR Ligand in Its Receptor-Bound State: Leukotriene B4 Adopts a Highly Constrained Conformation When Associated to Human BLT2. Journal of the American Chemical Society, 2010, 132, 9049-9057.	6.6	66
190	Ligand-Steered Modeling and Docking: A Benchmarking Study in Class A G-Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 2010, 50, 2119-2128.	2.5	60
191	Molecular Dynamics Simulation at High Sodium Chloride Concentration: Toward the Inactive Conformation of the Human Adenosine A2A Receptor. Journal of Physical Chemistry Letters, 2010, 1, 1008-1013.	2.1	8
192	Cholesterol Modulates the Membrane Effects and Spatial Organization of Membrane-Penetrating Ligands for G-Protein Coupled Receptors. Journal of Physical Chemistry B, 2010, 114, 12046-12057.	1.2	31
193	Conservation of Molecular Interactions Stabilizing Bovine and Mouse Rhodopsin. Biochemistry, 2010, 49, 10412-10420.	1.2	26
194	Investigation of the Histamine H3 Receptor Binding Site. Design and Synthesis of Hybrid Agonists with a Lipophilic Side Chain. Journal of Medicinal Chemistry, 2010, 53, 6445-6456.	2.9	19
195	Conformational Changes in the G Protein-Coupled Receptor Rhodopsin Revealed by Histidine Hydrogenâ	1.2	24
196	Visualizing Water Molecules in Transmembrane Proteins Using Radiolytic Labeling Methods. Biochemistry, 2010, 49, 827-834.	1.2	44
197	Mass Spectrometry-Based GPCR Proteomics: Comprehensive Characterization of the Human Cannabinoid 1 Receptor. Journal of Proteome Research, 2010, 9, 1746-1753.	1.8	21
198	Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists. Science, 2010, 330, 1066-1071.	6.0	1,610
199	Predicted 3D structures for adenosine receptors bound to ligands: Comparison to the crystal structure. Journal of Structural Biology, 2010, 170, 10-20.	1.3	58
200	Activation of the Ghrelin Receptor is Described by a Privileged Collective Motion: A Model for Constitutive and Agonist-induced Activation of a Sub-class A G-Protein Coupled Receptor (GPCR). Journal of Molecular Biology, 2010, 395, 769-784.	2.0	32
201	Light Activation of Rhodopsin: Insights from Molecular Dynamics Simulations Guided by Solid-State NMR Distance Restraints. Journal of Molecular Biology, 2010, 396, 510-527.	2.0	54
202	A Conserved Protonation-Induced Switch can Trigger "Ionic-Lock―Formation in Adrenergic Receptors. Journal of Molecular Biology, 2010, 397, 1339-1349.	2.0	36
203	The Membrane Complex between Transducin and Dark-State Rhodopsin Exhibits Large-Amplitude Interface Dynamics on the Sub-Microsecond Timescale: Insights from All-Atom MD Simulations. Journal of Molecular Biology, 2010, 398, 161-173.	2.0	21
204	Interactions of the Melanocortin-4 Receptor with the Peptide Agonist NDP-MSH. Journal of Molecular Biology, 2010, 401, 433-450.	2.0	20
205	Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery?. Life Sciences, 2010, 86, 590-597.	2.0	38
206	Dominant negative effects of human follicle-stimulating hormone receptor expression-deficient mutants on wild-type receptor cell surface expression. Rescue of oligomerization-dependent defective receptor expression by using cognate decoys. Molecular and Cellular Endocrinology, 2010, 321, 112-122.	1.6	40

#	Article	IF	CITATIONS
207	Emerging roles for the FSH receptor adapter protein APPL1 and overlap of a putative 14-3-3Ï,, interaction domain with a canonical G-protein interaction site. Molecular and Cellular Endocrinology, 2010, 329, 17-25.	1.6	36
208	Dimerization in GPCR mobility and signaling. Current Opinion in Pharmacology, 2010, 10, 53-58.	1.7	145
209	The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Current Opinion in Pharmacology, 2010, 10, 775-781.	1.7	102
210	Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 177-193.	1.4	35
211	A purified C-terminally truncated human adenosine A2A receptor construct is functionally stable and degradation resistant. Protein Expression and Purification, 2010, 74, 80-87.	0.6	22
212	Defective lipid transport and biosynthesis in recessive and dominant Stargardt macular degeneration. Progress in Lipid Research, 2010, 49, 476-492.	5.3	73
213	The minor binding pocket: a major player in 7TM receptor activation. Trends in Pharmacological Sciences, 2010, 31, 567-574.	4.0	99
214	Mutagenesis of human neuropeptide Y/peptide YY receptor Y2 reveals additional differences to Y1 in in interactions with highly conserved ligand positions. Regulatory Peptides, 2010, 163, 120-129.	1.9	15
215	FTIR Study of the Photoreaction of Bovine Rhodopsin in the Presence of Hydroxylamine. Journal of Physical Chemistry B, 2010, 114, 9039-9046.	1.2	10
216	G Protein-Coupled Receptor Structures. , 2010, , 129-138.		0
217	Structure and Activation of the Visual Pigment Rhodopsin. Annual Review of Biophysics, 2010, 39, 309-328.	4.5	169
218	Homology Modeling and Docking Evaluation of Aminergic G Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 2010, 50, 626-637.	2.5	91
219	The Year In G Protein-Coupled Receptor Research. Molecular Endocrinology, 2010, 24, 261-274.	3.7	146
220	Diversity and functional properties of bistable pigments. Photochemical and Photobiological Sciences, 2010, 9, 1435-1443.	1.6	71
221	Membrane Protein Structure Determination. Methods in Molecular Biology, 2010, , .	0.4	7
222	Structural divergence and functional versatility of the rhodopsin superfamily. Photochemical and Photobiological Sciences, 2010, 9, 1458-1465.	1.6	37
223	Incorporation of the dopamine D2L receptor and bacteriorhodopsin within bicontinuous cubic lipid phases. 1. Relevance to in meso crystallization of integral membrane proteins in monoolein systems. Soft Matter, 2010, 6, 4828.	1.2	41
224	What site-directed labeling studies tell us about the mechanism of rhodopsin activation and G-protein binding. Photochemical and Photobiological Sciences, 2010, 9, 1466-1474.	1.6	26

#	Article	IF	CITATIONS
225	The Amino-Terminus of Angiotensin II Contacts Several Ectodomains of the Angiotensin II Receptor AT1. Journal of Medicinal Chemistry, 2010, 53, 2063-2075.	2.9	18
226	Preparation of an Activated Rhodopsin/Transducin Complex Using a Constitutively Active Mutant of Rhodopsin. Biochemistry, 2011, 50, 10399-10407.	1.2	16
227	Identification of a Novel Allosteric Binding Site in the CXCR2 Chemokine Receptor. Molecular Pharmacology, 2011, 80, 1108-1118.	1.0	28
228	Conserved Tyr223 ^{5.58} Plays Different Roles in the Activation and G-Protein Interaction of Rhodopsin. Journal of the American Chemical Society, 2011, 133, 7159-7165.	6.6	30
229	The Implication of the First Agonist Bound Activated GPCR X-ray Structure on GPCR in Silico Modeling. ACS Medicinal Chemistry Letters, 2011, 2, 414-418.	1.3	10
230	Recombinant Expression and Functional Characterization of Mouse Olfactory Receptor mOR256-17 in Mammalian Cells. Biochemistry, 2011, 50, 7228-7235.	1.2	21
231	The Use of GPCR Structures in Drug Design. Advances in Pharmacology, 2011, 62, 1-36.	1.2	38
232	The use of G-protein coupled receptor models in lead optimization. Future Medicinal Chemistry, 2011, 3, 709-721.	1.1	15
234	Homology Modeling of Class A G Protein-Coupled Receptors. Methods in Molecular Biology, 2011, 857, 259-279.	0.4	48
235	The Mouse Eugenol Odorant Receptor: Structural and Functional Plasticity of a Broadly Tuned Odorant Binding Pocket. Biochemistry, 2011, 50, 843-853.	1.2	81
237	The Splice Variant of the V2 Vasopressin Receptor Adopts Alternative Topologies. Biochemistry, 2011, 50, 4981-4986.	1.2	8
238	Protein Allostery at the Solid–Liquid Interface: Endoglucanase Attachment to Cellulose Affects Glucan Clenching in the Binding Cleft. Journal of the American Chemical Society, 2011, 133, 16617-16624.	6.6	22
239	Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, 2011, , .	0.4	10
240	Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation. Archives of Biochemistry and Biophysics, 2011, 506, 142-149.	1.4	4
241	From cradle to twilight: The carboxyl terminus directs the fate of the A2A-adenosine receptor. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1350-1357.	1.4	34
242	Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1868-1878.	1.4	76
243	Dimerization and ligand binding affect the structure network of A2A adenosine receptor. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1256-1266.	1.4	59
244	Molecular Dynamics Simulations Reveal Insights into Key Structural Elements of Adenosine Receptors. Biochemistry, 2011, 50, 4194-4208.	1.2	64

#	ARTICLE	IF	CITATIONS
245	Analysis of Disease-Linked Rhodopsin Mutations Based on Structure, Function, and Protein Stability Calculations. Journal of Molecular Biology, 2011, 405, 584-606.	2.0	86
246	Differential Interactions of Fluorescent Agonists and Antagonists with the Yeast G Protein Coupled Receptor Ste2p. Journal of Molecular Biology, 2011, 409, 513-528.	2.0	23
247	Molecular Dynamics Simulations of the Effect of the G-Protein and Diffusible Ligands on the β2-Adrenergic Receptor. Journal of Molecular Biology, 2011, 414, 611-623.	2.0	33
248	Chapter 21. Investigating Mechanisms of Ligand Recognition, Activation and Oligomerization in GPCRs Using Enhanced Molecular Dynamics Methods. RSC Drug Discovery Series, 2011, , 401-428.	0.2	0
249	Progress in Structure Based Drug Design for G Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2011, 54, 4283-4311.	2.9	203
250	Characterizing and predicting the functional and conformational diversity of seven-transmembrane proteins. Methods, 2011, 55, 405-414.	1.9	16
251	Escaping the flatlands: new approaches for studying the dynamic assembly and activation of GPCR signaling complexes. Trends in Pharmacological Sciences, 2011, 32, 410-419.	4.0	35
252	Structural insights into RAMP modification of secretin family G protein-coupled receptors: implications for drug development. Trends in Pharmacological Sciences, 2011, 32, 591-600.	4.0	76
253	GPCR agonist binding revealed by modeling and crystallography. Trends in Pharmacological Sciences, 2011, 32, 637-643.	4.0	56
254	Open conformation of adipokinetic hormone receptor from the malaria mosquito facilitates hormone binding. Peptides, 2011, 32, 553-559.	1.2	12
255	Transmembrane signaling by GPCRs: Insight from rhodopsin and opsin structures. Neuropharmacology, 2011, 60, 52-57.	2.0	48
256	Sensing G protein-coupled receptor activation. Neuropharmacology, 2011, 60, 45-51.	2.0	26
257	Importance of Receptor Flexibility in Binding of Cyclam Compounds to the Chemokine Receptor CXCR4. Journal of Chemical Information and Modeling, 2011, 51, 139-147.	2.5	14
258	The Role of Conformational Ensembles in Ligand Recognition in G-Protein Coupled Receptors. Journal of the American Chemical Society, 2011, 133, 13197-13204.	6.6	72
259	Structure of an Agonist-Bound Human A _{2A} Adenosine Receptor. Science, 2011, 332, 322-327.	6.0	783
260	Identification of Essential Cannabinoid-binding Domains. Journal of Biological Chemistry, 2011, 286, 33422-33435.	1.6	55
261	Knowledge Based Membrane Protein Structure Prediction: From X-Ray Crystallography to Bioinformatics and Back to Molecular Biology. , 0, , .		1
262	Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences. Pharmaceuticals, 2011, 4, 652-664.	1.7	20

	CITATION R	EPORT	
#	Article	IF	Citations
263	Molecular Basis of Ligand Dissociation in \hat{I}^2 -Adrenergic Receptors. PLoS ONE, 2011, 6, e23815.	1.1	79
264	Virtual High Throughput Screening in New Lead Identification. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 840-860.	0.6	65
265	Homology Models in Docking and High-Throughput Docking. Current Topics in Medicinal Chemistry, 2011, 11, 1528-1534.	1.0	46
266	Pleasure Molecules. , 2011, , 140-167.		0
267	Man-Made Healers. , 2011, , 190-213.		0
268	How to Understand Lipid–Protein Interactions in Biological Membranes. , 2011, , 273-313.		1
269	Conformational selection or induced fit? 50 years of debate resolved. F1000 Biology Reports, 2011, 3, 19.	4.0	226
271	Alterations in the photoactivation pathway of rhodopsin mutants associated with retinitis pigmentosa. FEBS Journal, 2011, 278, 1493-1505.	2.2	9
272	Retinal dynamics underlie its switch from inverse agonist to agonist during rhodopsin activation. Nature Structural and Molecular Biology, 2011, 18, 392-394.	3.6	75
273	Structure of a nanobody-stabilized active state of the \hat{I}^22 adrenoceptor. Nature, 2011, 469, 175-180.	13.7	1,523
274	Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature, 2011, 469, 236-240.	13.7	741
275	The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature, 2011, 469, 241-244.	13.7	592
276	Crystal structure of metarhodopsin II. Nature, 2011, 471, 651-655.	13.7	620
277	The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature, 2011, 471, 656-660.	13.7	444
278	Overcoming barriers to membrane protein structure determination. Nature Biotechnology, 2011, 29, 335-340.	9.4	325
279	Binding the receptor at both ends. Nature, 2011, 469, 172-173.	13.7	21
280	Status of GPCR Modeling and Docking as Reflected by Community-wide GPCR Dock 2010 Assessment. Structure, 2011, 19, 1108-1126.	1.6	269
281	Ligand-Dependent Perturbation of the Conformational Ensemble for the GPCR β2 Adrenergic Receptor Revealed by HDX. Structure, 2011, 19, 1424-1432.	1.6	129

	CITATION REI	PORT	
#	Article	IF	CITATIONS
282	Identification of positions in the human neuropeptide Y/peptide YY receptor Y2 that contribute to pharmacological differences between receptor subtypes. Neuropeptides, 2011, 45, 293-300.	0.9	13
283	Structural insights into agonist-induced activation of G-protein-coupled receptors. Current Opinion in Structural Biology, 2011, 21, 541-551.	2.6	212
284	Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors. Current Opinion in Structural Biology, 2011, 21, 552-558.	2.6	87
285	Nanobody stabilization of G protein-coupled receptor conformational states. Current Opinion in Structural Biology, 2011, 21, 567-572.	2.6	204
286	The functional cycle of visual arrestins in photoreceptor cells. Progress in Retinal and Eye Research, 2011, 30, 405-430.	7.3	111
287	Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor. European Journal of Medicinal Chemistry, 2011, 46, 3721-3733.	2.6	12
288	Cannabinoid CB1 receptor ligand binding and function examined through mutagenesis studies of F200 and S383. European Journal of Pharmacology, 2011, 651, 9-17.	1.7	8
289	Strategies for the identification of allosteric modulators of G-protein-coupled receptors. Biochemical Pharmacology, 2011, 81, 691-702.	2.0	72
290	Structure selectivity relationship studies of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4′-pyridyl)carboxamido]morphinan derivatives toward the development of the mu opioid receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5625-5629.	1.0	15
291	Predicted Structures and Dynamics for Agonists and Antagonists Bound to Serotonin 5-HT2B and 5-HT2C Receptors. Journal of Chemical Information and Modeling, 2011, 51, 420-433.	2.5	28
292	Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature, 2011, 474, 521-525.	13.7	793
293	Methods of Protein Structure Comparison. Methods in Molecular Biology, 2011, 857, 231-257.	0.4	378
294	The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery. Pharmacological Reviews, 2011, 63, 901-937.	7.1	195
295	Differential Response to Morphine of the Oligomeric State of μ-Opioid in the Presence of δ-Opioid Receptors. Biochemistry, 2011, 50, 2829-2837.	1.2	39
296	Update 1 of: Computational Modeling Approaches to Structure–Function Analysis of G Protein-Coupled Receptors. Chemical Reviews, 2011, 111, PR438-PR535.	23.0	71
297	Chapter 9. Kinetics and Mechanisms of GPCR Activation. RSC Drug Discovery Series, 2011, , 199-216.	0.2	0
298	Chapter 15. Activation of G Protein-Coupled Receptor (GPCR) Kinases by GPCRs. RSC Drug Discovery Series, 2011, , 297-315.	0.2	1
299	Chapter 17. The Mechanics of Arrestin–Receptor Interaction: How GPCRs and Arrestins Talk to Each Other. RSC Drug Discovery Series, 2011, , 335-355.	0.2	0

#	Article	IF	CITATIONS
300	Snooker: A Structure-Based Pharmacophore Generation Tool Applied to Class A GPCRs. Journal of Chemical Information and Modeling, 2011, 51, 2277-2292.	2.5	56
301	Human Cannabinoid 1 GPCR C-Terminal Domain Interacts with Bilayer Phospholipids to Modulate the Structure of its Membrane Environment. AAPS Journal, 2011, 13, 92-98.	2.2	18
302	Protein Structure Determination by Solid-State NMR. Topics in Current Chemistry, 2011, 326, 187-213.	4.0	17
303	In silico identification of new ligands for GPR17: a promising therapeutic target for neurodegenerative diseases. Journal of Computer-Aided Molecular Design, 2011, 25, 743-752.	1.3	53
304	Modeling of ligand binding to G protein coupled receptors: cannabinoid CB1, CB2 and adrenergic β2AR. Journal of Molecular Modeling, 2011, 17, 2353-2366.	0.8	34
305	Conserved amino acids participate in the structure networks deputed to intramolecular communication in the lutropin receptor. Cellular and Molecular Life Sciences, 2011, 68, 1227-1239.	2.4	54
306	Light on the structure of thromboxane A2 receptor heterodimers. Cellular and Molecular Life Sciences, 2011, 68, 3109-3120.	2.4	23
307	Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis. Microbial Cell Factories, 2011, 10, 24.	1.9	35
308	Modeling GPCR active state conformations: The β ₂ â€adrenergic receptor. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1441-1457.	1.5	24
309	Predicted structures of agonist and antagonist bound complexes of adenosine A ₃ receptor. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1878-1897.	1.5	30
310	Retinal release from opsin in molecular dynamics simulations. Journal of Molecular Recognition, 2011, 24, 350-358.	1.1	33
311	Differential Virtual Screening (DVS) with Active and Inactive Molecular Models for Finding and Profiling GPCR Modulators: Case of the CCK1 Receptor. Molecular Informatics, 2011, 30, 345-358.	1.4	4
312	Mapping the Catechol Binding Site in Dopamine D ₁ Receptors: Synthesis and Evaluation of Two Parallel Series of Bicyclic Dopamine Analogues. ChemMedChem, 2011, 6, 1024-1040.	1.6	17
313	Substructureâ€Based Virtual Screening for Adenosine A _{2A} Receptor Ligands. ChemMedChem, 2011, 6, 2302-2311.	1.6	24
314	Applying in silico tools to the discovery of novel CXCR4 inhibitors. Drug Development Research, 2011, 72, 95-111.	1.4	4
315	Expression and biophysical analysis of a tripleâ€transmembrane domainâ€containing fragment from a yeast G proteinâ€coupled receptor. Biopolymers, 2011, 96, 757-771.	1.2	9
316	A Chimeric GPCR Model Mimicking the Ligand Binding Site of the Human Y1 Receptor Studied by NMR Spectroscopy. ChemBioChem, 2011, 12, 1690-1693.	1.3	5
317	Regulation of G-Protein-Coupled Receptor Signalling by the Scaffolding Proteins Spinophilin/Neurabin 2 and Neurabin 1. Current Chemical Biology, 2011, 5, .	0.2	0

#	Article	IF	CITATIONS
318	Molecular Pharmacology, Physiology, and Structure of the P2Y Receptors. Advances in Pharmacology, 2011, 61, 373-415.	1.2	109
319	Multiscale computational methods for mapping conformational ensembles of C-protein-coupled receptors. Advances in Protein Chemistry and Structural Biology, 2011, 85, 253-280.	1.0	6
320	The Hinge Region of the TSH Receptor Stabilizes Ligand Binding and Determines Different Signaling Profiles of Human and Bovine TSH. Endocrinology, 2011, 152, 3986-3996.	1.4	12
321	Oligomerization of G Protein-Coupled Receptors: Computational Methods. Current Medicinal Chemistry, 2011, 18, 4588-4605.	1.2	35
322	Drug Design of GPCR Ligands Using Physicogenetics and Chemogenomics - Principles and Case Studies. Current Topics in Medicinal Chemistry, 2011, 11, 1882-1901.	1.0	13
323	G Protein-Coupled Receptor Transmembrane Binding Pockets and their Applications in GPCR Research and Drug Discovery: A Survey. Current Topics in Medicinal Chemistry, 2011, 11, 1902-1924.	1.0	19
324	The Extreme C-Terminal Region of Gαs Differentially Couples to the Luteinizing Hormone and β2-Adrenergic Receptors. Molecular Endocrinology, 2011, 25, 1416-1430.	3.7	9
325	Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18690-18695.	3.3	80
326	Solid-state ² H NMR relaxation illuminates functional dynamics of retinal cofactor in membrane activation of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8263-8268.	3.3	57
327	A Structural Insight into the Reorientation of Transmembrane Domains 3 and 5 during Family A G Protein-Coupled Receptor Activation. Molecular Pharmacology, 2011, 79, 262-269.	1.0	58
328	GPCR Conformations: Implications for Rational Drug Design. Pharmaceuticals, 2011, 4, 7-43.	1.7	16
329	Role of Bulk Water in Hydrolysis of the Rhodopsin Chromophore. Journal of Biological Chemistry, 2011, 286, 18930-18937.	1.6	51
330	Mutually Opposite Signal Modulation by Hypothalamic Heterodimerization of Ghrelin and Melanocortin-3 Receptors. Journal of Biological Chemistry, 2011, 286, 39623-39631.	1.6	90
331	Activation mechanism of the <i>β</i> ₂ -adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18684-18689.	3.3	539
332	Arrestin-Rhodopsin Binding Stoichiometry in Isolated Rod Outer Segment Membranes Depends on the Percentage of Activated Receptors. Journal of Biological Chemistry, 2011, 286, 7359-7369.	1.6	43
333	From Molecular Details of the Interplay between Transmembrane Helices of the Thyrotropin Receptor to General Aspects of Signal Transduction in Family A G-protein-coupled Receptors (GPCRs). Journal of Biological Chemistry, 2011, 286, 25859-25871.	1.6	24
334	Recognition in the Face of Diversity: Interactions of Heterotrimeric G proteins and G Protein-coupled Receptor (GPCR) Kinases with Activated GPCRs. Journal of Biological Chemistry, 2011, 286, 7715-7721.	1.6	54
335	Two distinct conformations of helix 6 observed in antagonist-bound structures of a <i>β</i> ₁ -adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8228-8232.	3.3	172

#	Article	IF	CITATIONS
336	Successful prediction of the intra- and extracellular loops of four G-protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8275-8280.	3.3	61
337	A novel rhodopsin-like gene expressed in zebrafish retina. Visual Neuroscience, 2011, 28, 325-335.	0.5	55
340	Ligand-Induced Modulation of the Free-Energy Landscape of G Protein-Coupled Receptors Explored by Adaptive Biasing Techniques. PLoS Computational Biology, 2011, 7, e1002193.	1.5	79
341	GPCRs Revisited: New Insights Lead to Novel Drugs. Pharmaceuticals, 2011, 4, 244-272.	1.7	17
342	The Structure of the Adenosine Receptors. Advances in Pharmacology, 2011, 61, 1-40.	1.2	9
343	Ligand-Dependent Conformations and Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven Oligomerization Properties. PLoS Computational Biology, 2012, 8, e1002473.	1.5	96
344	A Key Agonist-induced Conformational Change in the Cannabinoid Receptor CB1 Is Blocked by the Allosteric Ligand Org 27569. Journal of Biological Chemistry, 2012, 287, 33873-33882.	1.6	44
345	Effect of channel mutations on the uptake and release of the retinal ligand in opsin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5247-5252.	3.3	71
346	Pleiotropic functions of the transmembrane domain 6 of human melanocortin-4 receptor. Journal of Molecular Endocrinology, 2012, 49, 237-248.	1.1	32
347	Structure-Based Design in the GPCR Target Space. Current Medicinal Chemistry, 2012, 19, 544-556.	1.2	22
348	The G-protein Coupled Receptor Family: Actors with Many Faces. Current Pharmaceutical Design, 2012, 18, 175-185.	0.9	35
349	Ice breaking in GPCR structural biology. Acta Pharmacologica Sinica, 2012, 33, 324-334.	2.8	41
350	Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone receptor homomers. Nature Communications, 2012, 3, 1007.	5.8	33
351	Allostery. Methods in Molecular Biology, 2012, , .	0.4	5
352	Turning Receptors On and Off with Intracellular Pepducins: New Insights into G-protein-coupled Receptor Drug Development. Journal of Biological Chemistry, 2012, 287, 12787-12796.	1.6	135
353	Molecular Pharmacology of CXCR4 Inhibition. , 2012, , 23-35.		2
354	Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nature Communications, 2012, 3, 995.	5.8	69
355	Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 119-124.	3.3	226

#	Article	IF	CITATIONS
356	Ligand-mimicking Receptor Variant Discloses Binding and Activation Mode of Prolactin-releasing Peptide*. Journal of Biological Chemistry, 2012, 287, 32181-32194.	1.6	8
357	PheVI:09 (Phe6.44) as a Sliding Microswitch in Seven-transmembrane (7TM) G Protein-coupled Receptor Activation. Journal of Biological Chemistry, 2012, 287, 43516-43526.	1.6	31
358	Evolution of Class A G-Protein-Coupled Receptors: Implications for Molecular Modeling. Current Medicinal Chemistry, 2012, 19, 1110-1118.	1.2	14
359	Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies. Current Medicinal Chemistry, 2012, 19, 1090-1109.	1.2	395
360	Insights into the activation mechanism of the visual receptor rhodopsin. Biochemical Society Transactions, 2012, 40, 389-393.	1.6	15
361	9.8 G Protein Coupled Receptors. , 2012, , 123-148.		0
362	Oligomerization of polytopic α-helical membrane proteins: causes and consequences. Biological Chemistry, 2012, 393, 1215-1230.	1.2	21
363	Allosteric Modulation of Seven Transmembrane Spanning Receptors: Theory, Practice, and Opportunities for Central Nervous System Drug Discovery. Journal of Medicinal Chemistry, 2012, 55, 1445-1464.	2.9	212
364	Homology Modeling of Cannabinoid Receptors: Discovery of Cannabinoid Analogues for Therapeutic Use. Methods in Molecular Biology, 2012, 819, 595-613.	0.4	8
365	Crystal Structure of a Lipid G Protein–Coupled Receptor. Science, 2012, 335, 851-855.	6.0	600
366	Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and Guidelines. Journal of Chemical Information and Modeling, 2012, 52, 3263-3277.	2.5	86
367	New Insights for Drug Design from the X-Ray Crystallographic Structures of G-Protein-Coupled Receptors. Molecular Pharmacology, 2012, 82, 361-371.	1.0	77
368	Rapid Release of Retinal from a Cone Visual Pigment following Photoactivation. Biochemistry, 2012, 51, 4117-4125.	1.2	41
369	Structural Transitions of Transmembrane Helix 6 in the Formation of Metarhodopsin I. Journal of Physical Chemistry B, 2012, 116, 10477-10489.	1.2	18
370	Diversity and modularity of G protein-coupled receptor structures. Trends in Pharmacological Sciences, 2012, 33, 17-27.	4.0	403
371	Opsin gene duplication and divergence in ray-finned fish. Molecular Phylogenetics and Evolution, 2012, 62, 986-1008.	1.2	99
372	Conformational switches in the VPAC ₁ receptor. British Journal of Pharmacology, 2012, 166, 79-84.	2.7	7
373	Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors. Journal of Medicinal Chemistry, 2012, 55, 8164-8177.	2.9	27

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
374	Ensemble of G Protein-Coupled Receptor Active States. Current Medicinal Chemistry, 2012, 19, 1146-1154	. 1.2	42
375	Vibrationally assisted electron transfer mechanism of olfaction: myth or reality?. Physical Chemistry Chemical Physics, 2012, 14, 13861.	1.3	53
376	Comparative Modeling of Lipid Receptors. , 2012, 914, 207-218.		2
377	Structure Prediction of G Protein-Coupled Receptors and Their Ensemble of Functionally Important Conformations. Methods in Molecular Biology, 2012, 914, 237-254.	0.4	23
378	Dopamine D ₁ receptor and serotonin 5-HT _{1A} receptor agonist effects of the natural product (–)-stepholidine: molecular modelling and dynamics simulations. Molecular Simulation, 2012, 38, 970-979.	0.9	2
379	Maximizing Detergent Stability and Functional Expression of a GPCR by Exhaustive Recombination and Evolution. Journal of Molecular Biology, 2012, 422, 414-428.	2.0	55
380	Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 225-233.	1.4	87
381	Molecular simulations and solid-state NMR investigate dynamical structure in rhodopsin activation. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 241-251.	1.4	29
382	Structure and activation of rhodopsin. Acta Pharmacologica Sinica, 2012, 33, 291-299.	2.8	59
383	Large multiple transmembrane domain fragments of a G proteinâ€coupled receptor: Biosynthesis, purification, and biophysical studies. Biopolymers, 2012, 98, 485-500.	1.2	6
384	A minimal ligand binding pocket within a network of correlated mutations identified by multiple sequence and structural analysis of G protein coupled receptors. BMC Biophysics, 2012, 5, 13.	4.4	7
385	Structure–Function Studies of Muscarinic Acetylcholine Receptors. Handbook of Experimental Pharmacology, 2012, , 29-48.	0.9	16
386	Engineering of an Artificial Light-Modulated Potassium Channel. PLoS ONE, 2012, 7, e43766.	1.1	16
387	IR and X-ray time-resolved simultaneous experiments:Âan opportunity to investigate the dynamics of complex systems and non-equilibrium phenomena using third-generation synchrotron radiation sources. Journal of Synchrotron Radiation, 2012, 19, 892-904.	1.0	18
388	Non-HLA-antibodies targeting Angiotensin type 1 receptor and antibody mediated rejection. Human Immunology, 2012, 73, 1282-1286.	1.2	43
389	Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: Facts and models. Progress in Retinal and Eye Research, 2012, 31, 442-466.	7.3	91
390	Agonist-bound structures of G protein-coupled receptors. Current Opinion in Structural Biology, 2012, 22, 482-490.	2.6	91
391	Modeling the Structural Communication in Supramolecular Complexes Involving GPCRs. Methods in Molecular Biology, 2012, 914, 319-336.	0.4	4

#	Article	IF	CITATIONS
392	UV–Visible and Infrared Methods for Investigating Lipid–Rhodopsin Membrane Interactions. Methods in Molecular Biology, 2012, 914, 127-153.	0.4	12
393	Structural Determinants of the Supramolecular Organization of G Protein-Coupled Receptors in Bilayers. Journal of the American Chemical Society, 2012, 134, 10959-10965.	6.6	199
394	Neuroendocrine GPCR Signaling. , 2012, , 21-53.		4
395	Computational Drug Discovery and Design. Methods in Molecular Biology, 2012, , .	0.4	30
396	Identification of Anti-Malarial Compounds as Novel Antagonists to Chemokine Receptor CXCR4 in Pancreatic Cancer Cells. PLoS ONE, 2012, 7, e31004.	1.1	57
397	Comparative Analysis of the Heptahelical Transmembrane Bundles of G Protein-Coupled Receptors. PLoS ONE, 2012, 7, e35802.	1.1	8
398	Small Molecules with Similar Structures Exhibit Agonist, Neutral Antagonist or Inverse Agonist Activity toward Angiotensin II Type 1 Receptor. PLoS ONE, 2012, 7, e37974.	1.1	23
399	Leu1283.43 (L128) and Val2476.40 (V247) of CXCR1 Are Critical Amino Acid Residues for G Protein Coupling and Receptor Activation. PLoS ONE, 2012, 7, e42765.	1.1	17
400	Activation Biosensor for G Protein-Coupled Receptors: A FRET-Based m1 Muscarinic Activation Sensor That Regulates Gq. PLoS ONE, 2012, 7, e45651.	1.1	12
401	Virus Immune Evasion: New Mechanism and Implications in Disease Outcome. Advances in Virology, 2012, 2012, 1-1.	0.5	3
402	Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors—A Consequence of Evolutionary Pressure?. Advances in Virology, 2012, 2012, 1-15.	0.5	14
403	Molecular Modeling and Simulation of Membrane Lipid-Mediated Effects on GPCRs. Current Medicinal Chemistry, 2012, 20, 22-38.	1.2	26
404	GPCRs and G Protein Activation. , 0, , .		1
405	The Cytoplasmic Rhodopsin-Protein Interface: Potential for Drug Discovery. Current Drug Targets, 2012, 13, 3-14.	1.0	4
406	Human serotonin 5â€HT _{2C} G proteinâ€coupled receptor homology model from the β ₂ adrenoceptor structure: Ligand docking and mutagenesis studies. International Journal of Quantum Chemistry, 2012, 112, 140-149.	1.0	10
407	Bihelix: Towards <i>de novo</i> structure prediction of an ensemble of Gâ€protein coupled receptor conformations. Proteins: Structure, Function and Bioinformatics, 2012, 80, 505-518.	1.5	44
408	Do crystal structures obviate the need for theoretical models of GPCRs for structureâ€based virtual screening?. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1503-1521.	1.5	27
409	Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights intoagonist binding and activation. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1948-1961.	1.5	32

#	Article	IF	CITATIONS
410	Molecular determinants for ligand binding at serotonin 5â€HT _{2A} and 5â€HT _{2C} GPCRs: Experimental affinity results analyzed by molecular modeling and ligand docking studies. International Journal of Quantum Chemistry, 2012, 112, 3807-3814.	1.0	17
411	Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature, 2012, 485, 321-326.	13.7	1,202
412	Chemistry and Biology of Vision. Journal of Biological Chemistry, 2012, 287, 1612-1619.	1.6	238
413	Conserved activation pathways in G-protein-coupled receptors. Biochemical Society Transactions, 2012, 40, 383-388.	1.6	43
414	Evaluation of Molecular Modeling of Agonist Binding in Light of the Crystallographic Structure of an Agonist-Bound A2A Adenosine Receptor. Journal of Medicinal Chemistry, 2012, 55, 538-552.	2.9	36
415	Molecular Dynamics Simulations of G Protein oupled Receptors. Molecular Informatics, 2012, 31, 222-230.	1.4	15
417	Biosynthesis and Spectroscopic Characterization of 2â€TM Fragments Encompassing the Sequence of a Human GPCR, the Y4 Receptor. ChemBioChem, 2012, 13, 818-828.	1.3	6
418	Impact of Helix Irregularities on Sequence Alignment and Homology Modeling of G Proteinâ€Coupled Receptors. ChemBioChem, 2012, 13, 1393-1399.	1.3	40
419	Investigation of D ₂ Receptor–Agonist Interactions Using a Combination of Pharmacophore and Receptor Homology Modeling. ChemMedChem, 2012, 7, 471-482.	1.6	13
420	Allostery and the Monod-Wyman-Changeux Model After 50 Years. Annual Review of Biophysics, 2012, 41, 103-133.	4.5	329
421	Allosteric Mechanisms of G Protein-Coupled Receptor Signaling: A Structural Perspective. Methods in Molecular Biology, 2012, 796, 133-174.	0.4	13
422	Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews, 2012, 64, 299-336.	7.1	279
423	Structural modelling and dynamics of proteins for insights into drug interactions. Advanced Drug Delivery Reviews, 2012, 64, 323-343.	6.6	32
424	Lifting the lid on GPCRs: the role of extracellular loops. British Journal of Pharmacology, 2012, 165, 1688-1703.	2.7	242
425	Activation and molecular recognition of the GPCR rhodopsin – Insights from time-resolved fluorescence depolarisation and single molecule experiments. European Journal of Cell Biology, 2012, 91, 300-310.	1.6	26
426	Binding sites in membrane proteins – Diversity, druggability and prospects. European Journal of Cell Biology, 2012, 91, 326-339.	1.6	7
427	Structure and function of membrane-integral receptors. European Journal of Cell Biology, 2012, 91, 225.	1.6	0
428	G protein-coupled receptors in the hypothalamic paraventricular and supraoptic nuclei $\hat{a} \in $ serpentine gateways to neuroendocrine homeostasis. Frontiers in Neuroendocrinology, 2012, 33, 45-66.	2.5	66

#	Article	IF	CITATIONS
429	Facilities for macromolecular crystallography at theÂHelmholtz-Zentrum Berlin. Journal of Synchrotron Radiation, 2012, 19, 442-449.	1.0	376
430	Classification of rhodopsin structures by modern methods of structural bioinformatics. Biochemistry (Moscow), 2012, 77, 435-443.	0.7	6
431	Prediction of a Ligandâ€Binding Niche within a Human Olfactory Receptor by Combining Siteâ€Directed Mutagenesis with Dynamic Homology Modeling. Angewandte Chemie - International Edition, 2012, 51, 1274-1278.	7.2	83
432	Three "hotspots―important for adenosine A2B receptor activation: a mutational analysis of transmembrane domains 4 and 5 and the second extracellular loop. Purinergic Signalling, 2012, 8, 23-38.	1.1	19
433	Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers. Progress in Molecular Biology and Translational Science, 2013, 117, 105-142.	0.9	14
434	Attractive asymmetric inclusions in elastic membranes under tension: cluster phases and membrane invaginations. Soft Matter, 2013, 9, 7804.	1.2	24
435	In vitro modification of substituted cysteines as tool to study receptor functionality and structure–activity relationships. Analytical Biochemistry, 2013, 439, 173-183.	1.1	3
436	Production of GPCR and GPCR complexes for structure determination. Current Opinion in Structural Biology, 2013, 23, 381-392.	2.6	37
437	Minireview: Toward the Establishment of a Link between Melatonin and Glucose Homeostasis: Association of Melatonin MT ₂ Receptor Variants with Type 2 Diabetes. Molecular Endocrinology, 2013, 27, 1217-1233.	3.7	46
438	Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor. Journal of Computer-Aided Molecular Design, 2013, 27, 277-291.	1.3	3
439	Modeling Complexes of Transmembrane Proteins: Systematic Analysis of ProteinProtein Docking Tools. Molecular Informatics, 2013, 32, 717-733.	1.4	27
440	Precision vs Flexibility in GPCR signaling. Journal of the American Chemical Society, 2013, 135, 12305-12312.	6.6	45
441	Molecular modeling studies give hint for the existence of a symmetric hβ2R-Gαβγ-homodimer. Journal of Molecular Modeling, 2013, 19, 4443-4457.	0.8	7
442	The Role of a Sodium Ion Binding Site in the Allosteric Modulation of the A2A Adenosine G Protein-Coupled Receptor. Structure, 2013, 21, 2175-2185.	1.6	118
443	Opsin, a Structural Model for Olfactory Receptors?. Angewandte Chemie - International Edition, 2013, 52, 11021-11024.	7.2	66
444	Network Analysis to Uncover the Structural Communication in GPCRs. Methods in Cell Biology, 2013, 117, 43-61.	0.5	19
445	Unlocking the secrets of the gatekeeper: Methods for stabilizing and crystallizing GPCRs. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2583-2591.	1.4	32
446	4th International Conference on Biomedical Engineering in Vietnam. IFMBE Proceedings, 2013, , .	0.2	3

#	Article	IF	CITATIONS
447	Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of G Protein-Coupled Receptors. Methods in Enzymology, 2013, 522, 365-389.	0.4	9
448	GPCR activation: protonation and membrane potential. Protein and Cell, 2013, 4, 747-760.	4.8	26
449	GPCR: G protein complexes—the fundamental signaling assembly. Amino Acids, 2013, 45, 1303-1314.	1.2	38
450	A Strategy Combining Differential Lowâ€Throughput Screening and Virtual Screening (DLSâ€VS) Accelerating the Discovery of new Modulators for the Orphan GPR34 Receptor. Molecular Informatics, 2013, 32, 213-229.	1.4	11
451	Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction. Endocrine Reviews, 2013, 34, 691-724.	8.9	118
452	The Role of Hydrophobic Amino Acids in the Structure and Function of the Rhodopsin Family of G Protein-Coupled Receptors. Methods in Enzymology, 2013, 520, 99-115.	0.4	11
453	Conopeptide ϕTIA Defines a New Allosteric Site on the Extracellular Surface of the α1B-Adrenoceptor. Journal of Biological Chemistry, 2013, 288, 1814-1827.	1.6	23
454	Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 942-947.	3.3	98
455	Molecular basis for dramatic changes in cannabinoid CB1 G protein oupled receptor activation upon single and double point mutations. Protein Science, 2013, 22, 101-113.	3.1	39
456	Asymmetry of the rhodopsin dimer in complex with transducin. FASEB Journal, 2013, 27, 1572-1584.	0.2	58
457	Molecular signatures of G-protein-coupled receptors. Nature, 2013, 494, 185-194.	13.7	1,298
458	Computationallyâ€predicted CB1 cannabinoid receptor mutants show distinct patterns of saltâ€bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1304-1317.	1.5	36
459	Structure-Function of the G Protein–Coupled Receptor Superfamily. Annual Review of Pharmacology and Toxicology, 2013, 53, 531-556.	4.2	907
460	The role of Cysteine 6.47 in class A GPCRs. BMC Structural Biology, 2013, 13, 3.	2.3	36
461	Endogenous lipid activated G protein-coupled receptors: Emerging structural features from crystallography and molecular dynamics simulations. Chemistry and Physics of Lipids, 2013, 169, 46-56.	1.5	36
462	Improved Conformational Stability of the Visual G Proteinâ€Coupled Receptor Rhodopsin by Specific Interaction with Docosahexaenoic Acid Phospholipid. ChemBioChem, 2013, 14, 639-644.	1.3	29
463	Kinetic, Energetic, and Mechanical Differences between Dark-State Rhodopsin and Opsin. Structure, 2013, 21, 426-437.	1.6	47
464	Optimising the combination of thermostabilising mutations in the neurotensin receptor for structure determination. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1293-1301.	1.4	33

ARTICLE IF CITATIONS Antagonist binding and induced conformational dynamics of GPCR A_{2A} adenosine 1.5 20 465 receptor. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1399-1410. Crystal structure of oligomeric β1-adrenergic G protein–coupled receptors in ligand-free basal state. 3.6 Nature Structural and Molecular Biology, 2013, 20, 419-425. A homology modeling study toward the understanding of three-dimensional structure and putative pharmacological profile of the G-protein coupled receptor GPR55. Journal of Molecular Graphics and 467 1.3 24 Modelling, 2013, 39, 50-60. GPCR activation: a mutagenic spotlight on crystal structures. Trends in Pharmacological Sciences, 468 2013, 34, 67-84. Molecular Dynamics Simulations of the Adenosine A2a Receptor: Structural Stability, Sampling, and 469 2.5 42 Convergence. Journal of Chemical Information and Modeling, 2013, 53, 1168-1178. X-ray structural information of GPCRs in drug design: what are the limitations and where do we go?. 2.5 Expert Opinion on Drug Discovery, 2013, 8, 607-620. 471 Reaction Paths and Rates., 2013, , 2186-2191. 0 Conformational Flexibility and Structural Dynamics in GPCR-Mediated G Protein Activation: A 472 2.0 Perspective. Journal of Molecular Biology, 2013, 425, 2288-2298. 473 Raman Imaging of Biological Samples., 2013, , 2169-2169. 0 474 Raman Spectroscopy and Microscopy of Cells and Tissues., 2013, , 2178-2185. Common and distinct mechanisms of activation of rhodopsin and other G protein-coupled receptors. 475 5 1.6 Scientific Reports, 2013, 3, 1844. Retinal Conformation Governs p<i>K</i>_a of Protonated Schiff Base in Rhodopsin 6.6 44 Activation. Journal of the American Chemical Society, 2013, 135, 9391-9398. 477 RNA Polymerases and Transcription., 2013, 2264-2273. 0 Binding site exploration of CCR5 using in silico methodologies: a 3D-QSAR approach. Archives of 2.7 Pharmacal Research, 2013, 36, 6-31. From Atomic Structures to Neuronal Functions of G Protein–Coupled Receptors. Annual Review of 479 5.038 Neuroscience, 2013, 36, 139-164. G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR 480 spectroscopy. Biochemical Journal, 2013, 450, 443-457. Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO 481 2.0 79 Reports, 2013, 14, 520-526. The Structural Basis of Gâ€Proteinâ€Coupled Receptor Signaling (Nobel Lecture). Angewandte Chemie -International Edition, 2013, 52, 6380-6388.

#	Article	IF	CITATIONS
483	Virtual Screening of CB ₂ Receptor Agonists from Bayesian Network and Highâ€Throughput Docking: Structural Insights into Agonistâ€Modulated GPCR Features. Chemical Biology and Drug Design, 2013, 81, 442-454.	1.5	19
484	Mutagenesis and Computational Modeling of Human G-Protein-Coupled Receptor Y2 for Neuropeptide Y and Peptide YY. Biochemistry, 2013, 52, 7987-7998.	1.2	23
485	Structural Determinants of Arrestin Functions. Progress in Molecular Biology and Translational Science, 2013, 118, 57-92.	0.9	62
486	Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A _{2A} receptor. MedChemComm, 2013, 4, 52-67.	3.5	25
487	Reassessment of the Unique Mode of Binding between Angiotensin II Type 1 Receptor and Their Blockers. PLoS ONE, 2013, 8, e79914.	1.1	14
489	Detailed analysis of biased histamine <scp>H</scp> <scp>₄</scp> receptor signalling by <scp>JNJ</scp> 7777120 analogues. British Journal of Pharmacology, 2013, 170, 78-88.	2.7	34
490	Activation and dynamic network of the M2 muscarinic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10982-10987.	3.3	210
491	A Constitutively Activating Mutation Alters the Dynamics and Energetics of a Key Conformational Change in a Ligand-free G Protein-coupled Receptor. Journal of Biological Chemistry, 2013, 288, 28207-28216.	1.6	38
492	Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13351-13355.	3.3	29
493	Die strukturelle Grundlage der Signaltransduktion mit Gâ€Proteinâ€gekoppelten Rezeptoren (Nobelâ€Aufsatz). Angewandte Chemie, 2013, 125, 6508-6517.	1.6	12
495	Computational Approaches for Ligand Discovery and Design in Class-A G Protein- Coupled Receptors. Current Pharmaceutical Design, 2013, 19, 2216-2236.	0.9	17
496	Full and Partial Agonists of Thromboxane Prostanoid Receptor Unveil Fine Tuning of Receptor Superactive Conformation and G Protein Activation. PLoS ONE, 2013, 8, e60475.	1.1	12
497	Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches. PLoS ONE, 2014, 9, e91595.	1.1	31
499	GPCR A2AAR Agonist Binding and Induced Conformation Changes of Functional Switches. Chinese Journal of Chemical Physics, 2014, 27, 29-38.	0.6	1
500	Chemistry and Biology of the Initial Steps in Vision: The Friedenwald Lecture. , 2014, 55, 6651.		51
501	Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods. Advances in Experimental Medicine and Biology, 2014, 796, 95-125.	0.8	15
502	Differential Light-induced Responses in Sectorial Inherited Retinal Degeneration. Journal of Biological Chemistry, 2014, 289, 35918-35928.	1.6	32
503	Intramolecular Interactions That Induce Helical Rearrangement upon Rhodopsin Activation. Journal of Biological Chemistry, 2014, 289, 13792-13800.	1.6	11

#	Article	IF	CITATIONS
504	A missense mutation inmelanocortin 1 receptoris associated with the red coat colour in donkeys. Animal Genetics, 2014, 45, 878-880.	0.6	17
505	Discovery of GPCR ligands for probing signal transduction pathways. Frontiers in Pharmacology, 2014, 5, 255.	1.6	31
506	Alpha-Bulges in G Protein-Coupled Receptors. International Journal of Molecular Sciences, 2014, 15, 7841-7864.	1.8	34
507	G Protein-Coupled Receptors and G Protein and Arrestin Signaling. , 2014, , 253-299.		0
508	Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation. Journal of Molecular Modeling, 2014, 20, 2491.	0.8	2
509	Insights into the Role of Asp79 ^{2.50} in β ₂ Adrenergic Receptor Activation from Molecular Dynamics Simulations. Biochemistry, 2014, 53, 7283-7296.	1.2	67
510	Rebuilding a macromolecular membrane complex at the atomic scale: Case of the Kir6.2 potassium channel coupled to the muscarinic acetylcholine receptor M2. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1694-1707.	1.5	4
511	Structure-based simulations reveal concerted dynamics of GPCR activation. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2538-2551.	1.5	6
512	Global fold of human cannabinoid type 2 receptor probed by solidâ€state ¹³ Câ€; ¹⁵ Nâ€MAS NMR and molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2014, 82, 452-465.	1.5	19
513	Structure-Based Drug Design for G Protein-Coupled Receptors. Progress in Medicinal Chemistry, 2014, 53, 1-63.	4.1	62
514	Structure and Dynamics of G-Protein Coupled Receptors. Advances in Experimental Medicine and Biology, 2014, 796, 37-54.	0.8	23
515	Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E655-62.	3.3	197
516	Structural-Functional Analysis of the Third Transmembrane Domain of the Corticotropin-releasing Factor Type 1 Receptor. Journal of Biological Chemistry, 2014, 289, 18966-18977.	1.6	16
517	The functional importance of co-evolving residues in proteins. Cellular and Molecular Life Sciences, 2014, 71, 673-682.	2.4	12
518	Structural features of the C-protein/GPCR interactions. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 16-33.	1.1	100
519	Single-Molecule Observation of the Ligand-Induced Population Shift of Rhodopsin, A G-Protein-Coupled Receptor. Biophysical Journal, 2014, 106, 915-924.	0.2	16
520	Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 6398.	1.3	74
521	Divergent Positive Selection in Rhodopsin from Lake and Riverine Cichlid Fishes. Molecular Biology and Evolution, 2014, 31, 1149-1165.	3.5	71

#	Article	IF	CITATIONS
523	G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharmacological Reviews, 2014, 66, 413-434.	7.1	497
524	Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chemical Reviews, 2014, 114, 126-163.	23.0	897
525	G Protein-Coupled Receptors - Modeling and Simulation. Advances in Experimental Medicine and Biology, 2014, , .	0.8	7
526	Amino acid conservation and interactions in rhodopsin: Probing receptor activation by NMR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 683-693.	0.5	16
527	Retinal Ligand Mobility Explains Internal Hydration and Reconciles Active Rhodopsin Structures. Biochemistry, 2014, 53, 376-385.	1.2	51
528	Relevance of rhodopsin studies for GPCR activation. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 674-682.	0.5	53
529	Molecular control of δ-opioid receptor signalling. Nature, 2014, 506, 191-196.	13.7	432
530	Functions, Therapeutic Applications, and Synthesis of Retinoids and Carotenoids. Chemical Reviews, 2014, 114, 1-125.	23.0	277
531	Crucial Positively Charged Residues for Ligand Activation of the GPR35 Receptor. Journal of Biological Chemistry, 2014, 289, 3625-3638.	1.6	20
532	Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nature Communications, 2014, 5, 4801.	5.8	149
533	Aromatic interactions impact ligand binding and function at serotonin 5-HT _{2C} G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies. Molecular Physics, 2014, 112, 398-407.	0.8	13
534	A Functional Selectivity Mechanism at the Serotonin-2A GPCR Involves Ligand-Dependent Conformations of Intracellular Loop 2. Journal of the American Chemical Society, 2014, 136, 16044-16054.	6.6	72
535	Direct imaging electron microscopy (EM) methods in modern structural biology: Overview and comparison with Xâ€ray crystallography and singleâ€particle cryoâ€EM reconstruction in the studies of large macromolecules. Biology of the Cell, 2014, 106, 323-345.	0.7	3
536	Mapping of Allosteric Druggable Sites in Activationâ€Associated Conformers of the M2 Muscarinic Receptor. Chemical Biology and Drug Design, 2014, 83, 237-246.	1.5	43
537	Constitutive Activities in the Thyrotropin Receptor. Advances in Pharmacology, 2014, 70, 81-119.	1.2	25
538	The Receptor Concept in 3D: From Hypothesis and Metaphor to GPCR–Ligand Structures. Neurochemical Research, 2014, 39, 1850-1861.	1.6	6
539	One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3036-3051.	1.4	16
540	Invited review GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Biopolymers, 2014, 102, 223-243.	1.2	8

	CITATION REI	ORI	
#	Article	IF	CITATIONS
541	Constitutively Active Rhodopsin and Retinal Disease. Advances in Pharmacology, 2014, 70, 1-36.	1.2	55
542	Constitutive Activity of Bitter Taste Receptors (T2Rs). Advances in Pharmacology, 2014, 70, 303-326.	1.2	22
543	Mercury-Induced Dark-State Instability and Photobleaching Alterations of the Visual G-Protein Coupled Receptor Rhodopsin. Chemical Research in Toxicology, 2014, 27, 1219-1226.	1.7	1
544	The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Current Opinion in Cell Biology, 2014, 27, 136-143.	2.6	204
545	Unifying Family A GPCR Theories of Activation. , 2014, 143, 51-60.		169
546	Computational insights into the binding mechanism of antagonists with neuropeptide B/W receptor 1. Molecular BioSystems, 2014, 10, 2236.	2.9	2
547	Binding Specificity of Retinal Analogs to Photoactivated Visual Pigments Suggest Mechanism for Fine-Tuning GPCR-Ligand Interactions. Chemistry and Biology, 2014, 21, 369-378.	6.2	15
549	Characterization of the Simultaneous Decay Kinetics of Metarhodopsin States II and III in Rhodopsin by Solutionâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 2078-2084.	7.2	24
550	Time-resolved structural studies with serial crystallography: A new light on retinal proteins. Structural Dynamics, 2015, 2, 041718.	0.9	22
551	Effectiveness of AMD3100 in treatment of leukemia and solid tumors: from original discovery to use in current clinical practice. Experimental Hematology and Oncology, 2015, 5, 19.	2.0	44
552	Micelleâ€Enhanced Bioorthogonal Labeling of Genetically Encoded Azido Groups on the Lipidâ€Embedded Surface of a GPCR. ChemBioChem, 2015, 16, 1314-1322.	1.3	18
553	Unwinding of the Câ€Terminal Residues of Neuropeptideâ€Y is critical for Y ₂ Receptor Binding and Activation. Angewandte Chemie - International Edition, 2015, 54, 7446-7449.	7.2	74
554	Investigation of the conformational dynamics of the apo A _{2A} adenosine receptor. Protein Science, 2015, 24, 1004-1012.	3.1	11
555	Structural characterization of triple transmembrane domain containing fragments of a yeast G proteinâ€coupled receptor in an organic : aqueous environment by solutionâ€state NMR spectroscopy. Journal of Peptide Science, 2015, 21, 212-222.	0.8	3
557	Visual system evolution and the nature of the ancestral snake. Journal of Evolutionary Biology, 2015, 28, 1309-1320.	0.8	72
558	Structural Studies of G Protein-Coupled Receptors. Molecules and Cells, 2015, 38, 836-842.	1.0	87
559	Sequence, Structure and Ligand Binding Evolution of Rhodopsin-Like G Protein-Coupled Receptors: A Crystal Structure-Based Phylogenetic Analysis. PLoS ONE, 2015, 10, e0123533.	1.1	44
560	Long time molecular dynamic simulation on the agonist binding and activation of the β ₂ -adrenergic receptor. Molecular Simulation, 2015, 41, 564-571.	0.9	1

#	Article	IF	CITATIONS
562	Functional elements of the gastric inhibitory polypeptide receptor: Comparison between secretin- and rhodopsin-like G protein-coupled receptors. Biochemical Pharmacology, 2015, 96, 237-246.	2.0	17
564	Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins. Biology Direct, 2015, 10, 63.	1.9	36
565	An ensemble classifier based prediction of G-protein-coupled receptor classes in low homology. Neurocomputing, 2015, 154, 110-118.	3.5	14
566	Conformational Selection and Equilibrium Governs the Ability of Retinals to Bind Opsin. Journal of Biological Chemistry, 2015, 290, 4304-4318.	1.6	26
567	Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions. Molecular Diversity, 2015, 19, 321-332.	2.1	29
568	Activation of Corticotropin-Releasing Factor 1 Receptor: Insights from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2015, 119, 2806-2817.	1.2	25
569	Predicted Structures for Kappa Opioid G-Protein Coupled Receptor Bound to Selective Agonists. Journal of Chemical Information and Modeling, 2015, 55, 614-627.	2.5	16
570	(4-(Bis(4-Fluorophenyl)Methyl)Piperazin-1-yl)(Cyclohexyl)Methanone Hydrochloride (LDK1229): A New Cannabinoid CB1Receptor Inverse Agonist from the Class of Benzhydryl Piperazine Analogs. Molecular Pharmacology, 2015, 87, 197-206.	1.0	3
571	Methodological advances: the unsung heroes of the GPCR structural revolution. Nature Reviews Molecular Cell Biology, 2015, 16, 69-81.	16.1	175
572	Extracellular Surface Residues of the <i>α</i> _{1B} -Adrenoceptor Critical for G Protein–Coupled Receptor Function. Molecular Pharmacology, 2015, 87, 121-129.	1.0	9
573	Single Molecule Analysis of Functionally Asymmetric G Protein-coupled Receptor (GPCR) Oligomers Reveals Diverse Spatial and Structural Assemblies. Journal of Biological Chemistry, 2015, 290, 3875-3892.	1.6	105
574	Retinal Conformation Changes Rhodopsin's Dynamic Ensemble. Biophysical Journal, 2015, 109, 608-617.	0.2	6
575	Structural insights into µ-opioid receptor activation. Nature, 2015, 524, 315-321.	13.7	743
576	Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy. Biochemistry, 2015, 54, 4507-4518.	1.2	32
577	Explaining the mobility of retinal in activated rhodopsin and opsin. Photochemical and Photobiological Sciences, 2015, 14, 1952-1964.	1.6	3
578	Characterization of G protein coupling mediated by the conserved D134 ^{3.49} of DRY motif, M241 ^{6.34} , and F251 ^{6.44} residues on human CXCR1. FEBS Open Bio, 2015, 5, 182-190	. ^{1.0}	18
579	Selective Protonation of Acidic Residues Triggers Opsin Activation. Journal of Physical Chemistry B, 2015, 119, 9510-9519.	1.2	15
580	Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 2015, 523, 561-567.	13.7	683

#	Article	IF	CITATIONS
581	Characterizing rhodopsin signaling by EPR spectroscopy: from structure to dynamics. Photochemical and Photobiological Sciences, 2015, 14, 1586-1597.	1.6	14
582	Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics. Journal of Biological Chemistry, 2015, 290, 15785-15798.	1.6	33
583	Conformational activation of visual rhodopsin in native disc membranes. Science Signaling, 2015, 8, ra26.	1.6	37
584	Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Frontiers in Pharmacology, 2015, 6, 66.	1.6	55
585	Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2015, 253, 111-118.	1.2	11
586	Structure-Based Biophysical Analysis of the Interaction of Rhodopsin with G Protein and Arrestin. Methods in Enzymology, 2015, 556, 563-608.	0.4	19
587	Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5702-5707.	3.3	38
588	An insight into antagonist binding and induced conformational dynamics of class B GPCR corticotropin-releasing factor receptor 1. Molecular BioSystems, 2015, 11, 2042-2050.	2.9	8
589	Crystallization of Proteins from Crude Bovine Rod Outer Segments. Methods in Enzymology, 2015, 557, 439-458.	0.4	8
590	Peptide ligand recognition by G protein-coupled receptors. Frontiers in Pharmacology, 2015, 6, 48.	1.6	27
591	Two disparate ligand-binding sites in the human P2Y1 receptor. Nature, 2015, 520, 317-321.	13.7	305
592	Allosteric Effects of Sodium Ion Binding on Activation of the M3 Muscarinic G-Protein-Coupled Receptor. Biophysical Journal, 2015, 108, 1796-1806.	0.2	79
593	Structural Dynamics and Thermostabilization of Neurotensin Receptor 1. Journal of Physical Chemistry B, 2015, 119, 4917-4928.	1.2	31
594	Multiâ€Component Protein – Protein Docking Based Protocol with External Scoring for Modeling Dimers of G Proteinâ€Coupled Receptors. Molecular Informatics, 2015, 34, 246-255.	1.4	15
595	Biased Gs Versus Gq Proteins and β-Arrestin Signaling in the NK1 Receptor Determined by Interactions in the Water Hydrogen Bond Network. Journal of Biological Chemistry, 2015, 290, 24495-24508.	1.6	31
596	Functions of DPLIY motif and helix 8 of human melanocortin-3 receptor. Journal of Molecular Endocrinology, 2015, 55, 107-117.	1.1	15
597	The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation. Structure, 2015, 23, 2358-2364.	1.6	31
598	Helical rearrangement of photoactivated rhodopsin in monomeric and dimeric forms probed by high-angle X-ray scattering. Photochemical and Photobiological Sciences, 2015, 14, 1965-1973.	1.6	10

#	Article	IF	CITATIONS
599	Structure and function of G protein oupled receptor oligomers: implications for drug discovery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 408-427.	3.3	22
600	Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2CG protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results. Molecular Physics, 2015, 113, 348-358.	0.8	3
601	Hologram Quantitative Structure Activity Relationship, Docking, and Molecular Dynamics Studies of Inhibitors for <scp>CXCR</scp> 4. Chemical Biology and Drug Design, 2015, 85, 119-136.	1.5	17
602	Monte Carlo loop refinement and virtual screening of the thyroid-stimulating hormone receptor transmembrane domain. Journal of Biomolecular Structure and Dynamics, 2015, 33, 1140-1152.	2.0	22
603	Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83. PLoS ONE, 2016, 11, e0168260.	1.1	16
604	Where Biology Meets Physics—A Converging View on Membrane Microdomain Dynamics. Current Topics in Membranes, 2016, 77, 27-65.	0.5	23
605	The Molecular Switching Mechanism at the Conserved D(E)RY Motif in Class-A GPCRs. Biophysical Journal, 2016, 111, 79-89.	0.2	19
606	Free backbone carbonyls mediate rhodopsin activation. Nature Structural and Molecular Biology, 2016, 23, 738-743.	3.6	14
607	The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor. Scientific Reports, 2016, 6, 22639.	1.6	77
608	A structural snapshot of the rhodopsin–arrestin complex. FEBS Journal, 2016, 283, 816-821.	2.2	16
609	Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Nature Reviews Molecular Cell Biology, 2016, 17, 439-450.	16.1	28
610	Structure network analysis to gain insights into GPCR function. Biochemical Society Transactions, 2016, 44, 613-618.	1.6	21
611	Successful Strategies to Determine High-Resolution Structures of GPCRs. Trends in Pharmacological Sciences, 2016, 37, 1055-1069.	4.0	63
612	Regulation, Signaling, and Physiological Functions of G-Proteins. Journal of Molecular Biology, 2016, 428, 3850-3868.	2.0	306
613	Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates. Biochemistry, 2016, 55, 4864-4870.	1.2	3
614	A study on the conformational space of the all-trans retinal deprotonated Schiff base. Computational and Theoretical Chemistry, 2016, 1094, 1-7.	1.1	0
615	Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor. Journal of Biological Chemistry, 2016, 291, 16375-16389.	1.6	67
616	Mechanistic insights into GPCR–G protein interactions. Current Opinion in Structural Biology, 2016, 41, 247-254.	2.6	112

		CITATION REPORT		
# 617	ARTICLE High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature, 201	6, 540, 602-606.	IF 13.7	Citations 345
618	Dimerization of visual pigments in vivo. Proceedings of the National Academy of Scienc United States of America, 2016, 113, 9093-9098.	ces of the	3.3	29
619	Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Rece a Channel-Like Structure. Journal of Medicinal Chemistry, 2016, 59, 7152-7166.	ptor Dimers via	2.9	49
620	Use of network model to explore dynamic and allosteric properties of three GPCR hom Advances, 2016, 6, 106327-106339.	odimers. RSC	1.7	12
621	Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants. N Communications, 2016, 7, 12832.	ature	5.8	54
622	Transmembrane Helices Tilt, Bend, Slide, Torque, and Unwind between Functional Stat Scientific Reports, 2016, 6, 34129.	es of Rhodopsin.	1.6	24
623	Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism activation. Nature Communications, 2016, 7, 12683.	ı for	5.8	41
624	Powdered G-Protein-Coupled Receptors. Journal of Physical Chemistry Letters, 2016, 7	, 4230-4235.	2.1	11
625	Conformational Heterogeneity of Intracellular Loop 3 of the μ-opioid G-protein Coupl Journal of Physical Chemistry B, 2016, 120, 11897-11904.	ed Receptor.	1.2	8
626	Functional map of arrestin binding to phosphorylated opsin, with and without agonist. Reports, 2016, 6, 28686.	Scientific	1.6	26
627	Molecular dynamics simulations and structure-based network analysis reveal structura functional aspects of G-protein coupled receptor dimer interactions. Journal of Compu Molecular Design, 2016, 30, 489-512.		1.3	26
628	Role of Annular Lipids in the Functional Properties of Leucine Transporter LeuT Proteor Biochemistry, 2016, 55, 850-859.	nicelles.	1.2	12
629	Computational Prediction and Biochemical Analyses of New Inverse Agonists for the C Journal of Chemical Information and Modeling, 2016, 56, 201-212.	B1 Receptor.	2.5	4
630	Backbone NMR reveals allosteric signal transduction networks in the $\hat{1}^21$ -adrenergic red 2016, 530, 237-241.	ceptor. Nature,	13.7	155
631	In silico prediction of the G-protein coupled receptors expressed during the metamorpl Sagmariasus verreauxi (Crustacea: Decapoda) by mining transcriptomic data: RNA-seq General and Comparative Endocrinology, 2016, 228, 111-127.		0.8	65
632	Olfactory receptor signaling. Methods in Cell Biology, 2016, 132, 127-145.		0.5	33
633	Molecular modelling of human 5-hydroxytryptamine receptor (5-HT _{2A}) ar screening studies towards the identification of agonist and antagonist molecules. Jour Biomolecular Structure and Dynamics, 2016, 34, 952-970.		2.0	33
634	Gonadotropin-Releasing Hormones. , 2016, , 2003-2022.e7.			1

#	Article	IF	CITATIONS
635	Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chemical Reviews, 2017, 117, 186-245.	23.0	104
636	The signaling pathway of dopamine D2 receptor (D2R) activation using normal mode analysis (NMA) and the construction of pharmacophore models for D2R ligands. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2040-2048.	2.0	13
637	Methods used to study the oligomeric structure of G-protein-coupled receptors. Bioscience Reports, 2017, 37, .	1.1	54
638	Membrane cholesterol access into a G-protein-coupled receptor. Nature Communications, 2017, 8, 14505.	5.8	129
639	7 × 7 RMSD matrix: A new method for quantitative comparison of the transmembrane domain structures in the G-protein coupled receptors. Journal of Structural Biology, 2017, 199, 87-101.	1.3	4
640	On the Origin of Complex Adaptive Traits: Progress Since the Darwin Versus Mivart Debate. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 304-320.	0.6	16
641	Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chemical Reviews, 2017, 117, 156-185.	23.0	50
642	G Protein-Coupled Receptors Contain Two Conserved Packing Clusters. Biophysical Journal, 2017, 112, 2315-2326.	0.2	18
643	An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease. FEBS Letters, 2017, 591, 1720-1731.	1.3	14
644	Measurement of Slow Spontaneous Release ofÂ11-cis-Retinal from Rhodopsin. Biophysical Journal, 2017, 112, 153-161.	0.2	14
645	Functional roles of T3.37 and S5.46 in the activation mechanism of the dopamine D1 receptor. Journal of Molecular Modeling, 2017, 23, 142.	0.8	2
646	The DRY motif and the four corners of the cubic ternary complex model. Cellular Signalling, 2017, 35, 16-23.	1.7	14
647	Photocyclic behavior of rhodopsin induced by an atypical isomerization mechanism. Proceedings of the United States of America, 2017, 114, E2608-E2615.	3.3	28
648	Beta2-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1445-1455.	1.4	27
649	Nanobodies to Study G Protein–Coupled Receptor Structure and Function. Annual Review of Pharmacology and Toxicology, 2017, 57, 19-37.	4.2	201
650	Review for chiral-at-metal complexes and metal-organic framework enantiomorphs. Science Bulletin, 2017, 62, 1344-1354.	4.3	28
651	Recent advances in biophysical studies of rhodopsins – Oligomerization, folding, and structure. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1512-1521.	1.1	27
652	Structure, Pharmacology and Roles in Physiology of the P2Y12 Receptor. Advances in Experimental Medicine and Biology, 2017, 1051, 123-138.	0.8	26

#	Article	IF	CITATIONS
653	Flavonoid allosteric modulation of mutated visual rhodopsin associated with retinitis pigmentosa. Scientific Reports, 2017, 7, 11167.	1.6	28
654	Probing Self-Assembly of G Protein-Coupled Receptor Oligomers in Membranes Using Molecular Dynamics Modeling and Experimental Approaches. , 2017, , 385-414.		1
655	Class A GPCR: Di/Oligomerization of Glycoprotein Hormone Receptors. , 2017, , 207-231.		2
656	The Energetics of Chromophore Binding in the Visual Photoreceptor Rhodopsin. Biophysical Journal, 2017, 113, 60-72.	0.2	16
658	Isolation and structure–function characterization of a signaling-active rhodopsin–G protein complex. Journal of Biological Chemistry, 2017, 292, 14280-14289.	1.6	22
659	GPCR Dynamics: Structures in Motion. Chemical Reviews, 2017, 117, 139-155.	23.0	561
660	Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction. Methods in Enzymology, 2017, 593, 449-490.	0.4	11
661	Structures of Non-rhodopsin GPCRs Elucidated Through X-Ray Crystallography. Topics in Medicinal Chemistry, 2017, , 1-26.	0.4	0
662	G-Protein coupled receptors: answers from simulations. Beilstein Journal of Organic Chemistry, 2017, 13, 1071-1078.	1.3	17
663	Expression, Purification, and Monitoring of Conformational Changes of hCB2 TMH67H8 in Different Membrane-Mimetic Lipid Mixtures Using Circular Dichroism and NMR Techniques. Membranes, 2017, 7, 10.	1.4	2
664	Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Frontiers in Endocrinology, 2017, 8, 86.	1.5	73
665	Crystal Structure of Glyceraldehyde-3-Phosphate Dehydrogenase from the Gram-Positive Bacterial Pathogen A. vaginae, an Immunoevasive Factor that Interacts with the Human C5a Anaphylatoxin. Frontiers in Microbiology, 2017, 8, 541.	1.5	24
666	Ligand modulation of sidechain dynamics in a wild-type human GPCR. ELife, 2017, 6, .	2.8	75
667	Mini-G proteins: Novel tools for studying GPCRs in their active conformation. PLoS ONE, 2017, 12, e0175642.	1.1	206
668	Water permeation through the internal water pathway in activated GPCR rhodopsin. PLoS ONE, 2017, 12, e0176876.	1.1	14
669	Conformational biosensors reveal allosteric interactions between heterodimeric AT1 angiotensin and prostaglandin F21± receptors. Journal of Biological Chemistry, 2017, 292, 12139-12152.	1.6	29
670	G _i - and G _s -coupled GPCRs show different modes of G-protein binding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2383-2388.	3.3	64
671	Ligand-Triggered Structural Changes in the M ₂ Muscarinic Acetylcholine Receptor. Journal of Chemical Information and Modeling, 2018, 58, 1074-1082.	2.5	7

#	Article	IF	CITATIONS
672	Lipids Alter Rhodopsin Function via Ligand-like and Solvent-like Interactions. Biophysical Journal, 2018, 114, 355-367.	0.2	43
673	The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin. Journal of Biological Chemistry, 2018, 293, 4403-4410.	1.6	9
674	High-throughput in situ X-ray screening of and data collection from protein crystals at room temperature and under cryogenic conditions. Nature Protocols, 2018, 13, 260-292.	5.5	46
675	Ligand channel in pharmacologically stabilized rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3640-3645.	3.3	34
676	The structure and function of cell membranes studied by atomic force microscopy. Seminars in Cell and Developmental Biology, 2018, 73, 31-44.	2.3	38
677	Spatial Intensity Distribution Analysis: Studies of G Protein-Coupled Receptor Oligomerisation. Trends in Pharmacological Sciences, 2018, 39, 175-186.	4.0	24
678	Ligand-induced action of the W2866.48 rotamer toggle switch in the β2-adrenergic receptor. Physical Chemistry Chemical Physics, 2018, 20, 581-594.	1.3	6
679	Insight into the chromophore of rhodopsin and its Meta-II photointermediate by ¹⁹ F solid-state NMR and chemical shift tensor calculations. Physical Chemistry Chemical Physics, 2018, 20, 30174-30188.	1.3	4
680	A Rationale for Mesoscopic Domain Formation in Biomembranes. Biomolecules, 2018, 8, 104.	1.8	12
681	Structural biology of G proteinâ€coupled receptor signaling complexes. Protein Science, 2019, 28, 487-501.	3.1	41
682	Crystal structure of rhodopsin in complex with a mini-G _o sheds light on the principles of G protein selectivity. Science Advances, 2018, 4, eaat7052.	4.7	65
683	Structures of the Human PGD2 Receptor CRTH2 Reveal Novel Mechanisms for Ligand Recognition. Molecular Cell, 2018, 72, 48-59.e4.	4.5	53
684	Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nature Structural and Molecular Biology, 2018, 25, 488-495.	3.6	58
685	A novel small molecule chaperone of rod opsin and its potential therapy for retinal degeneration. Nature Communications, 2018, 9, 1976.	5.8	48
686	A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness. IScience, 2018, 4, 1-19.	1.9	50
687	Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter. Biomolecules, 2018, 8, 31.	1.8	37
688	Dynamic States of the Ligand-Free Class A G Protein-Coupled Receptor Extracellular Side. Biochemistry, 2018, 57, 4767-4775.	1.2	2
689	Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Journal of Biological Chemistry, 2019, 294, 14215-14230.	1.6	64

#	Article	IF	CITATIONS
690	Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural Perspective. Frontiers in Endocrinology, 2019, 10, 515.	1.5	24
691	Toward Understanding the Impact of Dimerization Interfaces in Angiotensin II Type 1 Receptor. Journal of Chemical Information and Modeling, 2019, 59, 4314-4327.	2.5	13
692	Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation. Molecular Cell, 2019, 75, 781-790.e3.	4.5	74
693	Proteinâ€like Enwrapped Perylene Bisimide Chromophore as a Bright Microcrystalline Emitter Material. Angewandte Chemie - International Edition, 2019, 58, 13385-13389.	7.2	38
694	Mechanism of Phosphatidylglycerol Activation Catalyzed by Prolipoprotein Diacylglyceryl Transferase. Journal of Physical Chemistry B, 2019, 123, 7092-7102.	1.2	11
695	Conformational Differences among Metarhodopsin I, Metarhodopsin II, and Opsin Probed by Wide-Angle X-ray Scattering. Journal of Physical Chemistry B, 2019, 123, 9134-9142.	1.2	1
696	Proteinâ€like Enwrapped Perylene Bisimide Chromophore as a Bright Microcrystalline Emitter Material. Angewandte Chemie, 2019, 131, 13519-13523.	1.6	11
697	G protein-coupled receptors of class A harness the energy of membrane potential to increase their sensitivity and selectivity. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 183051.	1.4	10
699	Studying the collective motions of the adenosine A2A receptor as a result of ligand binding using principal component analysis. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4685-4700.	2.0	11
700	Light-activated chimeric GPCRs: limitations and opportunities. Current Opinion in Structural Biology, 2019, 57, 196-203.	2.6	28
701	Protein Lipidation. Methods in Molecular Biology, 2019, , .	0.4	1
702	Purification of the Rhodopsin–Transducin Complex for Structural Studies. Methods in Molecular Biology, 2019, 2009, 307-315.	0.4	2
703	A benchmark study of loop modeling methods applied to G protein-coupled receptors. Journal of Computer-Aided Molecular Design, 2019, 33, 573-595.	1.3	17
704	Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. , 2019, 200, 148-178.		100
705	GPCR interaction as a possible way for allosteric control between receptors. Molecular and Cellular Endocrinology, 2019, 486, 89-95.	1.6	31
706	Ligand Binding Mechanisms in Human Cone Visual Pigments. Trends in Biochemical Sciences, 2019, 44, 629-639.	3.7	9
707	A Computational Approach to the Study of the Binding Mode of S1P ₁ R Agonists Based on the Active-Like Receptor Model. Journal of Chemical Information and Modeling, 2019, 59, 1624-1633.	2.5	6
708	Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation. Journal of Biological Chemistry, 2019, 294, 8101-8122.	1.6	27

#	ARTICLE Does the Lipid Bilayer Orchestrate Access and Binding of Ligands to Transmembrane	IF	CITATIONS
709	Orthosteric/Allosteric Sites of G Protein-Coupled Receptors?. Molecular Pharmacology, 2019, 96, 527-541.	1.0	45
710	Influence of Cholesterol and Its Stereoisomers on Members of the Serotonin Receptor Family. Journal of Molecular Biology, 2019, 431, 1633-1649.	2.0	12
711	Advances in Engineering and Application of Optogenetic Indicators for Neuroscience. Applied Sciences (Switzerland), 2019, 9, 562.	1.3	32
712	Specificity of the chromophore-binding site in human cone opsins. Journal of Biological Chemistry, 2019, 294, 6082-6093.	1.6	11
713	Emerging Diversity in Lipid–Protein Interactions. Chemical Reviews, 2019, 119, 5775-5848.	23.0	299
714	The Retinoid and Non-Retinoid Ligands of the Rod Visual G Protein-Coupled Receptor. International Journal of Molecular Sciences, 2019, 20, 6218.	1.8	16
715	GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nature Reviews Drug Discovery, 2019, 18, 59-82.	21.5	179
716	Seeing and sensing single G protein-coupled receptors by atomic force microscopy. Current Opinion in Cell Biology, 2019, 57, 25-32.	2.6	18
717	Conducting Nanomaterial Sensor Using Natural Receptors. Chemical Reviews, 2019, 119, 36-93.	23.0	159
718	Structural basis for ligand recognition of the human thromboxane A2 receptor. Nature Chemical Biology, 2019, 15, 27-33.	3.9	49
719	Recent achievements in developing selective G _q inhibitors. Medicinal Research Reviews, 2020, 40, 135-157.	5.0	26
720	Progress in GPCR structure determination. , 2020, , 3-22.		4
721	Prediction and targeting of GPCR oligomer interfaces. Progress in Molecular Biology and Translational Science, 2020, 169, 105-149.	0.9	13
722	Opsin3 Downregulation Induces Apoptosis of Human Epidermal Melanocytes <i>via </i> Mitochondrial Pathway. Photochemistry and Photobiology, 2020, 96, 83-93.	1.3	32
723	Supramolecular structure of opsins. , 2020, , 81-95.		1
724	Contact with the environment: sight. , 2020, , 149-228.		0
725	Exploring the Activation Mechanism of a Metabotropic Glutamate Receptor Homodimer via Molecular Dynamics Simulation. ACS Chemical Neuroscience, 2020, 11, 133-145.	1.7	12
726	Exploring the role of the membrane bilayer in the recognition of candesartan by its GPCR AT1 receptor. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183142.	1.4	15

#	Article	IF	Citations
π 727	The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors. Journal of Photochemistry and Photobiology B: Biology, 2020, 212, 112024.	1.7	13
728	Unique Retinal Binding Pocket of Primate Blue-Sensitive Visual Pigment. Biochemistry, 2020, 59, 2602-2607.	1.2	4
729	Structural Complexity and Plasticity of Signaling Regulation at the Melanocortin-4 Receptor. International Journal of Molecular Sciences, 2020, 21, 5728.	1.8	12
730	Experimental and computational analysis of biased agonism on full-length and a C-terminally truncated adenosine A2A receptor. Computational and Structural Biotechnology Journal, 2020, 18, 2723-2732.	1.9	20
731	Low-dose angiotensin AT1 receptor β-arrestin-biased ligand, TRV027, protects against cisplatin-induced nephrotoxicity. Pharmacological Reports, 2020, 72, 1676-1684.	1.5	5
732	Mechanisms of Light-Induced Deformations in Photoreceptors. Biophysical Journal, 2020, 119, 1481-1488.	0.2	21
733	Light Dynamics of the Retinalâ€Diseaseâ€Relevant G90D Bovine Rhodopsin Mutant. Angewandte Chemie, 2020, 132, 15786-15794.	1.6	2
734	Computational Studies towards the Identification of Novel Rhodopsin-Binding Compounds as Chemical Chaperones for Misfolded Opsins. Molecules, 2020, 25, 4904.	1.7	11
735	Lipid-Protein Interactions Are a Unique Property and Defining Feature of G Protein-Coupled Receptors. Biophysical Journal, 2020, 118, 1887-1900.	0.2	61
736	Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition. Biomolecules, 2020, 10, 454.	1.8	21
737	Light Dynamics of the Retinalâ€Diseaseâ€Relevant G90D Bovine Rhodopsin Mutant. Angewandte Chemie - International Edition, 2020, 59, 15656-15664.	7.2	5
738	Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes. PLoS ONE, 2020, 15, e0226123.	1.1	4
739	Integrated structural modeling and super-resolution imaging resolve GPCR oligomers. Progress in Molecular Biology and Translational Science, 2020, 169, 151-179.	0.9	5
740	Impact of GPCR Structures on Drug Discovery. Cell, 2020, 181, 81-91.	13.5	229
741	Activation of the Gâ€Protein oupled Receptor Rhodopsin by Water. Angewandte Chemie - International Edition, 2021, 60, 2288-2295.	7.2	16
742	Activation of the Gâ€Proteinâ€Coupled Receptor Rhodopsin by Water. Angewandte Chemie, 2021, 133, 2318-2325.	1.6	3
743	Light-induced difference FTIR spectroscopy of primate blue-sensitive visual pigment at 163 K. Biophysics and Physicobiology, 2021, 18, 40-49.	0.5	4
744	Supramolecular organization of rhodopsin in rod photoreceptor cell membranes. Pflugers Archiv European Journal of Physiology, 2021, 473, 1361-1376.	1.3	4

#	Article		CITATIONS
745	Identification of OPN3 as associated with non-syndromic oligodontia in a Japanese population. Journal of Human Genetics, 2021, 66, 769-775.	1.1	4
746	Development of Generic G Protein Peptidomimetics Able to Stabilize Active State G s Proteinâ€Coupled Receptors for Application in Drug Discovery. Angewandte Chemie, 2021, 133, 10335-10342.	1.6	0
747	Identification of additional outer segment targeting signals in zebrafish rod opsin. Journal of Cell Science, 2021, 134, .	1.2	3
748	Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Archiv European Journal of Physiology, 2021, 473, 1339-1359.	1.3	9
749	Development of Generic G Protein Peptidomimetics Able to Stabilize Active State G _s Protein oupled Receptors for Application in Drug Discovery. Angewandte Chemie - International Edition, 2021, 60, 10247-10254.	7.2	11
750	Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor. Journal of Physical Chemistry B, 2021, 125, 4286-4298.	1.2	4
753	Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biological Chemistry, 2021, .	1.2	4
754	Residue 6.43 defines receptor function in class F GPCRs. Nature Communications, 2021, 12, 3919.	5.8	14
755	Polyphenols and Visual Health: Potential Effects on Degenerative Retinal Diseases. Molecules, 2021, 26, 3407.	1.7	10
756	Membrane binding properties of the C-terminal segment of retinol dehydrogenase 8. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183605.	1.4	3
757	Deconstructing the transmembrane core of class A G protein–coupled receptors. Trends in Biochemical Sciences, 2021, 46, 1017-1029.	3.7	13
758	Introducing P ep McConst —A userâ€friendly peptide modeler for biophysical applications. Journal of Computational Chemistry, 2021, 42, 572-580.	1.5	8
759	Mechanism of GPCR-Directed Autoantibodies in Diseases. Advances in Experimental Medicine and Biology, 2012, 749, 187-199.	0.8	22
760	The G Protein-Coupled Receptor Rhodopsin: A Historical Perspective. Methods in Molecular Biology, 2015, 1271, 3-18.	0.4	16
761	Mammalian Expression, Purification, and Crystallization of Rhodopsin Variants. Methods in Molecular Biology, 2015, 1271, 39-54.	0.4	4
762	Homology Modeling of GPCRs. Methods in Molecular Biology, 2009, 552, 97-113.	0.4	9
763	Critical Review of General Guidelines for Membrane Proteins Model Building and Analysis. Methods in Molecular Biology, 2010, 654, 363-385.	0.4	3
764	The Family of G Protein-Coupled Receptors: An Example of Membrane Proteins. Methods in Molecular Biology, 2010, 654, 441-454.	0.4	6

	CITATION	Report	
#	Article	IF	Citations
765	Advances in Structure Determination of G Protein-Coupled Receptors by SFX. , 2018, , 301-329.		2
766	Functional and Structural Studies of TRP Channels Heterologously Expressed in Budding Yeast. Advances in Experimental Medicine and Biology, 2011, 704, 25-40.	0.8	15
767	The GPCR Crystallography Boom: Providing an Invaluable Source of Structural Information and Expanding the Scope of Homology Modeling. Advances in Experimental Medicine and Biology, 2014, 796, 3-13.	0.8	23
768	Modeling of G Protein-Coupled Receptors Using Crystal Structures: From Monomers to Signaling Complexes. Advances in Experimental Medicine and Biology, 2014, 796, 15-33.	0.8	11
769	How the Dynamic Properties and Functional Mechanisms of GPCRs Are Modulated by Their Coupling to the Membrane Environment. Advances in Experimental Medicine and Biology, 2014, 796, 55-74.	0.8	23
770	Coarse-Grained Molecular Dynamics Provides Insight into the Interactions of Lipids and Cholesterol with Rhodopsin. Advances in Experimental Medicine and Biology, 2014, 796, 75-94.	0.8	27
771	Biochemical Cascade of Phototransduction. , 2011, , 394-410.		9
772	Chapter 8. Uncovering GPCR and G Protein Function by Protein Structure Network Analysis. Chemical Biology, 0, , 198-220.	0.1	1
773	3.1 Molecular Pharmacology of the Dopamine Receptors. , 2009, , 63-87.		10
774	Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4. PLoS Computational Biology, 2016, 12, e1005169.	1.5	75
775	Principles and Determinants of G-Protein Coupling by the Rhodopsin-Like Thyrotropin Receptor. PLoS ONE, 2010, 5, e9745.	1.1	54
776	Chemogenomic Analysis of G-Protein Coupled Receptors and Their Ligands Deciphers Locks and Keys Governing Diverse Aspects of Signalling. PLoS ONE, 2011, 6, e16811.	1.1	26
777	The Roles of Transmembrane Domain Helix-III during Rhodopsin Photoactivation. PLoS ONE, 2011, 6, e17398.	1.1	6
778	Multidimensional Scaling Reveals the Main Evolutionary Pathways of Class A G-Protein-Coupled Receptors. PLoS ONE, 2011, 6, e19094.	1.1	32
779	The E92K Melanocortin 1 Receptor Mutant Induces cAMP Production and Arrestin Recruitment but Not ERK Activity Indicating Biased Constitutive Signaling. PLoS ONE, 2011, 6, e24644.	1.1	27
780	Structural and Energetic Effects of A2A Adenosine Receptor Mutations on Agonist and Antagonist Binding. PLoS ONE, 2014, 9, e108492.	1.1	46
781	Crystallographic Study of the LUMI Intermediate of Squid Rhodopsin. PLoS ONE, 2015, 10, e0126970.	1.1	11
782	Structure-Activity Relationship Studies of N- and C-Terminally Modified Secretin Analogs for the Human Secretin Receptor. PLoS ONE, 2016, 11, e0149359.	1.1	7

#	Article		CITATIONS
783	Computational Approaches for Modeling GPCR Dimerization. Current Pharmaceutical Biotechnology, 2014, 15, 996-1006.	0.9	18
784	Recent Trends and Future Prospects in Computational GPCR Drug Discovery: From Virtual Screening to Polypharmacology. Current Topics in Medicinal Chemistry, 2013, 13, 1069-1097.	1.0	27
785	Bivalent Ligands Targeting Chemokine Receptor Dimerization: Molecular Design and Functional Studies. Current Topics in Medicinal Chemistry, 2014, 14, 1606-1618.	1.0	16
786	In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Current Neuropharmacology, 2018, 16, 786-848.	1.4	18
787	Studies of the Activation Steps Concurrent to Ligand Binding in Î′OR and κOR Opioid Receptors Based on Molecular Dynamics Simulations. The Open Structural Biology Journal, 2009, 3, 51-63.	0.1	6
788	G protein-coupled receptors: the evolution of structural insight. AIMS Biophysics, 2017, 4, 491-527.	0.3	56
789	A Novel Val286Ala Polymorphism in the NPXXY Motif of the Sphingosine-1-Phosphate Receptor S1PR2 Associates with the Incidence and Age of Onset of Diabetes. Journal of Diabetes & Metabolism, 2010, 01,	0.2	3
790	FRET Sensors Reveal the Retinal Entry Pathway in the G Protein-Coupled Receptor Rhodopsin. SSRN Electronic Journal, 0, , .	0.4	1
791	Structures of active melanocortin-4 receptor–Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Research, 2021, 31, 1176-1189.	5.7	40
792	Modeling the Heterodimer Interfaces of Melatonin Receptors. Frontiers in Cellular Neuroscience, 2021, 15, 725296.	1.8	2
793	Recent Advances in the Crystallographic Study of Rhodopsin and Other G Protein-coupled Receptors. Nihon Kessho Gakkaishi, 2008, 50, 359-364.	0.0	0
794	G-protein-coupled receptor structure: what can we learn?. F1000 Biology Reports, 2009, 1, 11.	4.0	2
795	Family A G-protein coupled receptors. An overview of structure-function relationships. . Annual Review of Biomedical Sciences, 2009, 11, .	0.5	1
796	Traditional GPCR Pharmacology and Beyond. , 2010, , 3-24.		Ο
797	Gonadotropin-Releasing Hormones. , 2010, , 2098-2117.		0
798	Hormone Signaling Via G Protein–Coupled Receptors. , 2010, , 83-105.		1
799	Regulation of G-Protein-Coupled Receptor Signalling by the Scaffolding Proteins Spinophilin/Neurabin 2 and Neurabin 1. Current Chemical Biology, 2011, 5, 130-141.	0.2	0
800	Role of Conserved Transmembrane Domain Cysteines in Activation of Metabotropic Glutamate Receptor Subtype 6. , 2012, 02, .		0

#	Article	IF	CITATIONS
801	Activation of Adrenergic β Receptor by Free FattyAcid Composition. Journal of Computer Chemistry Japan, 2012, 11, 121-124.	0.0	0
802	Rhodopsin Chromophore Formation and Thermal Stabilities in the Opsin Mutant E134Q/M257Y. Journal of Life Science, 2012, 22, 863-870.	0.2	0
803	Active Structure of G Protein Coupled Receptors. Seibutsu Butsuri, 2013, 53, 034-036.		0
804	Protein–Protein Interactions in the Solid State: The Troubles of Crystallizing Protein–Protein Complexes. , 2013, , 113-134.		1
805	Rhodopsin Activation Based on Solid-State NMR Spectroscopy. , 2013, , 2231-2243.		0
806	G Protein-Coupled Receptors. Endocrinology, 2016, , 1-37.	0.1	0
807	Solid-State Deuterium NMR Spectroscopy of Rhodopsin. , 2017, , 1-20.		0
808	Solid-State Deuterium NMR Spectroscopy of Rhodopsin. , 2018, , 1251-1270.		0
809	G Protein-Coupled Receptors. Endocrinology, 2018, , 85-120.	0.1	3
810	A Historical Perspective of G Protein-Coupled Receptor Structural Biology. , 2019, , 31-47.		0
814	Rhodopsin Activation in Lipid Membranes Based on Solid-State NMR Spectroscopy. , 2020, , 1-16.		0
818	Magic angle spinning NMR of G protein-coupled receptors. Progress in Nuclear Magnetic Resonance Spectroscopy, 2022, 128, 25-43.	3.9	3
819	Expansion of the "Sodium World―through Evolutionary Time and Taxonomic Space. Biochemistry (Moscow), 2020, 85, 1518-1542.	0.7	4
820	ĐĐºÑĐ¿Đ°Đ½ÑĐ,ѕ«ĐаÑ,Ñ€Đ,ĐµĐ²Đ¾Đ3Đ¾ Đ¼Đ,Ñ€Đ°Â» ÑĐºĐ²Đ¾Đ·ÑŒ ÑĐ²Đ¾Đ»ÑŽÑ†Đ,Đ¾Đ½Đ½	Ð3∕ø₽նµ в	Ñ⊕Dı∕4Ñ-
821	Rhodopsin Activation in Lipid Membranes Based on Solid-State NMR Spectroscopy. , 2020, , 1-16.		1
822	Characteristic structural difference between inactive and active states of orexin 2 receptor determined using molecular dynamics simulations. Biophysical Reviews, 2022, 14, 221-231.	1.5	2
828	Binding of rhodopsin and rhodopsin analogues to transducin, rhodopsin kinase and arrestin-1. World Journal of Biological Chemistry, 2014, 5, 254-68.	1.7	1
829	Molecular determinants of ligand binding at the human histamine H receptor: Site-directed mutagenesis results analyzed with ligand docking and molecular dynamics studies at H homology and crystal structure models. Journal of Chemical and Pharmaceutical Research, 2012, 4, 2937-2951.	1.0	11

#	Article	IF	CITATIONS
833	Conformational insights into the C-terminal mutations of human rhodopsin in retinitis pigmentosa. Journal of Molecular Graphics and Modelling, 2022, 110, 108076.	1.3	1
834	Naturally occurring mutations in G protein-coupled receptors associated with obesity and type 2 diabetes mellitus. , 2022, 234, 108044.		13
835	Probing Allosteric Regulation Mechanism of W7.35 on Agonist-Induced Activity for μOR by Mutation Simulation. Journal of Chemical Information and Modeling, 2022, 62, 5120-5135.	2.5	6
836	Lipopeptide Pepducins as Therapeutic Agents. Methods in Molecular Biology, 2022, 2383, 307-333.	0.4	4
837	Dimeric Rhodopsin R135L Mutant-Transducin-like Complex Sheds Light on Retinitis Pigmentosa Misfunctions. Journal of Physical Chemistry B, 2021, 125, 12958-12971.	1.2	0
838	Rhodopsin as a Molecular Target to Mitigate Retinitis Pigmentosa. Advances in Experimental Medicine and Biology, 2021, , 61-77.	0.8	4
839	New insights into the molecular mechanism of rhodopsin retinitis pigmentosa from the biochemical and functional characterization of G90V, Y102H and I307N mutations. Cellular and Molecular Life Sciences, 2022, 79, 58.	2.4	4
840	Phospholipid Scrambling by G Protein–Coupled Receptors. Annual Review of Biophysics, 2022, 51, 39-61.	4.5	24
842	Integration and Spatial Organization of Signaling by G Protein-Coupled Receptor Homo- and Heterodimers. Biomolecules, 2021, 11, 1828.	1.8	5
843	Angiotensin and Endothelin Receptor Structures With Implications for Signaling Regulation and Pharmacological Targeting. Frontiers in Endocrinology, 2022, 13, 880002.	1.5	7
844	CHAPTER 6. A Unifying Approach to the Duality of "Energetic―Versus "Conformational―Formulations of Allosteric Coupling: Mechanistic Implications for GPCR Allostery. , 0, , 131-155.		0
848	Accelerating GPCR Drug Discovery With Conformation-Stabilizing VHHs. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	17
850	Isorhodopsin: An Undervalued Visual Pigment Analog. Colorants, 2022, 1, 256-279.	0.9	2
851	Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Frontiers in Chemistry, 0, 10, .	1.8	17
852	Characterizing Conformational Diversity of G Protein-coupled Receptors by Solution NMR Spectroscopy. New Developments in NMR, 2022, , 346-382.	0.1	0
853	19F NMR: A promising tool for dynamic conformational studies of G protein-coupled receptors. Structure, 2022, 30, 1372-1384.	1.6	5
854	Interdisciplinary biophysical studies of membrane proteins bacteriorhodopsin and rhodopsin. Biophysical Reviews, 2023, 15, 111-125.	1.5	3
855	Rhodopsin, light-sensor of vision. Progress in Retinal and Eye Research, 2023, 93, 101116.	7.3	17

		CHATION	LEPUKI	
#	Article		IF	Citations
858	Generalizing the isothermal efficiency by using Gaussian distributions. PLoS ONE, 2023,	18, e0279758.	1.1	0
859	New simulation insights on the structural transition mechanism of Bovine Rhodopsin act Proteins: Structure, Function and Bioinformatics, 0, , .	ivation.	1.5	0
860	G Protein-Coupled Receptors: Conformational "Gatekeepers―of Transmembrane Sig and Diversification. , 2011, , 188-229.	nal Transduction		0
861	Structure-based Drug Discovery and Advances in Protein Receptor Crystallography. , 201	7, , 45-72.		0
862	Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled R Biochemistry (Moscow), 2023, 88, S192-S226.	eceptors.	0.7	0
863	Investigating the Role of Rhodopsin <i>F45L</i> Mutation in Mouse Rod Photoreceptor Si Survival. ENeuro, 2023, 10, ENEURO.0330-22.2023.	gnaling and	0.9	0
864	Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77ÂK. Biochemistry, 202	3, 62, 1347-1359.	1.2	0