Pluripotent stem cells induced from adult neural stem of factors

Nature 454, 646-650 DOI: 10.1038/nature07061

Citation Report

#	Article	IF	CITATIONS
1	Induced pluripotent stem (iPS) cells as in vitro models of human neurogenetic disorders. Neurogenetics, 2008, 9, 227-235.	0.7	55
2	Retroviral vector silencing during iPS cell induction: An epigenetic beacon that signals distinct pluripotent states. Journal of Cellular Biochemistry, 2008, 105, 940-948.	1.2	142
3	Neural stem cells: Mechanisms of fate specification and nuclear reprogramming in regenerative medicine. Biotechnology Journal, 2008, 3, 1521-1538.	1.8	11
4	Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 2008, 26, 1269-1275.	9.4	1,249
5	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	9.4	1,275
6	Epidermal cells rev up reprogramming. Nature Biotechnology, 2008, 26, 1243-1244.	9.4	5
7	Nanotubes light up protein arrays. Nature Biotechnology, 2008, 26, 1244-1246.	9.4	22
9	The promise of human induced pluripotent stem cells for research and therapy. Nature Reviews Molecular Cell Biology, 2008, 9, 725-729.	16.1	388
10	Mouse Meningiocytes Express Sox2 and Yield High Efficiency of Chimeras after Nuclear Reprogramming with Exogenous Factors. Journal of Biological Chemistry, 2008, 283, 33730-33735.	1.6	38
11	Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biology, 2008, 6, e253.	2.6	728
12	Cardiovascular stem cells in regenerative medicine: ready for prime time?. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 201-207.	0.5	11
13	Viral and non-viral gene delivery and its role in pluripotent stem cell engineering. Drug Discovery Today: Technologies, 2008, 5, e107-e115.	4.0	12
14	Orchestrating brain-cell renewal: the role of immune cells in adult neurogenesis in health and disease. Trends in Molecular Medicine, 2008, 14, 471-478.	3.5	57
15	The Incredible Elastic Brain: How Neural Stem Cells Expand Our Minds. Neuron, 2008, 60, 420-429.	3.8	59
16	Genetic Modification-free Reprogramming to Induced Pluripotent Cells: Fantasy or Reality?. Cell Stem Cell, 2008, 3, 121-122.	5.2	10
17	Periodic Activation of Wnt/β-Catenin Signaling Enhances Somatic Cell Reprogramming Mediated by Cell Fusion. Cell Stem Cell, 2008, 3, 493-507.	5.2	136
18	Extreme Makeover: Converting One Cell into Another. Cell Stem Cell, 2008, 3, 382-388.	5.2	249
19	Guidelines and Techniques for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2008, 3, 595-605.	5.2	439

\sim	T A T I	ON	DEDO	DT
			REDU	
<u> </u>	/		ILLI U	- C - L

#	Article	IF	CITATIONS
20	Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Oct4 and Klf4 with Small-Molecule Compounds. Cell Stem Cell, 2008, 3, 568-574.	5.2	837
21	Induced Pluripotency of Mouse and Human Somatic Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 157-162.	2.0	24
22	Reprogramming of Somatic Cell Identity. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 147-155.	2.0	34
23	Faith, heresy and the cancer stem cell hypothesis. Future Oncology, 2008, 4, 585-589.	1.1	15
24	Mapping Key Features of Transcriptional Regulatory Circuitry in Embryonic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 183-193.	2.0	34
26	Induced pluripotent stem cells: advances to applications. Stem Cells and Cloning: Advances and Applications, 2010, 3, 29.	2.3	21
27	Emerging molecular approaches in stem cell biology. BioTechniques, 2009, 46, 367-371.	0.8	1
28	Germline-Competent Mouse-Induced Pluripotent Stem Cell Lines Generated on Human Fibroblasts without Exogenous Leukemia Inhibitory Factor. PLoS ONE, 2009, 4, e6724.	1.1	29
29	Two Factor Reprogramming of Human Neural Stem Cells into Pluripotency. PLoS ONE, 2009, 4, e7044.	1.1	60
30	Reprogramming of 3′ Untranslated Regions of mRNAs by Alternative Polyadenylation in Generation of Pluripotent Stem Cells from Different Cell Types. PLoS ONE, 2009, 4, e8419.	1.1	245
31	Embryonic and Induced Pluripotent Stem Cells as a Model for Liver Disease. Critical Reviews in Biomedical Engineering, 2009, 37, 377-398.	0.5	8
32	Gene Expression in Stem Cells. Critical Reviews in Eukaryotic Gene Expression, 2009, 19, 289-300.	0.4	10
33	Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. Journal of Cell Science, 2009, 122, 3502-3510.	1.2	309
34	Pluripotent Stem Cells Derived From Adult Human Testes. Stem Cells and Development, 2009, 18, 1115-1125.	1.1	198
35	Molecular Bases of Pluripotency. , 2009, , 37-60.		2
36	Cell therapies for therapeutic angiogenesis: back to the bench. Vascular Medicine, 2009, 14, 153-166.	0.8	104
37	Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10993-10998.	3.3	434
38	Transcriptional Changes in Somatic Cells Recovered From Embryonic Stem–Somatic Heterokaryons. Stem Cells and Development, 2009, 18, 1361-1368.	1.1	18

#	Article	IF	CITATIONS
39	Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 808-813.	3.3	244
41	Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8918-8922.	3.3	235
42	DERIVATION AND THERAPEUTIC POTENTIALS OF INDUCED PLURIPOTENT STEM CELLS. Gene Therapy and Regulation, 2009, 04, 81-104.	0.3	0
43	Induced pluripotent stem cells: reprogrammed without a trace. Regenerative Medicine, 2009, 4, 333-335.	0.8	13
44	Upping the Ante: Recent Advances in Direct Reprogramming. Molecular Therapy, 2009, 17, 947-953.	3.7	63
45	Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Human Molecular Genetics, 2009, 18, 4340-4349.	1.4	166
46	Cellular reprogramming and pluripotency induction. British Medical Bulletin, 2009, 90, 19-35.	2.7	8
47	Cell transplantation strategies for retinal repair. Progress in Brain Research, 2009, 175, 3-21.	0.9	87
48	Notch signaling downstream of <i>foxD5</i> promotes neural ectodermal transcription factors that inhibit neural differentiation. Developmental Dynamics, 2009, 238, 1358-1365.	0.8	14
49	Cord blood for tissue regeneration. Journal of Cellular Biochemistry, 2009, 108, 762-768.	1.2	20
50	Spermatogonial stem cells: Mouse and human comparisons. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 27-34.	3.6	120
51	Gene regulatory networks in embryonic stem cells and brain development. Birth Defects Research Part C: Embryo Today Reviews, 2009, 87, 182-191.	3.6	1
52	Reprogramming cell fates: reconciling rarity with robustness. BioEssays, 2009, 31, 546-560.	1.2	275
53	Cenomic analysis of induced pluripotent stem (iPS) cells: routes to reprogramming. BioEssays, 2009, 31, 134-138.	1.2	8
54	The possible use of stem cells in regenerative medicine: dream or reality?. Langenbeck's Archives of Surgery, 2009, 394, 985-997.	0.8	50
55	Strategies for future histocompatible stem cell therapy. Biogerontology, 2009, 10, 339-376.	2.0	11
56	The Molecular Mechanism of Induced Pluripotency: A Two-Stage Switch. Stem Cell Reviews and Reports, 2009, 5, 204-223.	5.6	46
57	Current progress and prospects of induced pluripotent stem cells. Science in China Series C: Life Sciences, 2009, 52, 622-636.	1.3	27

#	Article	IF	CITATIONS
58	Nuclear reprogramming by nuclear transplantation and defined transcription factors. Science Bulletin, 2009, 54, 14-18.	1.7	4
59	Generation and application of human iPS cells. Science Bulletin, 2009, 54, 9-13.	1.7	5
60	Induced pluripotent stem cell (iPS) technology: promises and challenges. Science Bulletin, 2009, 54, 2-8.	1.7	6
61	Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors. Frontiers of Agriculture in China, 2009, 3, 199-208.	0.2	Ο
62	Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming. Cellular and Molecular Life Sciences, 2009, 66, 3403-3420.	2.4	10
63	Role of SoxB1 transcription factors in development. Cellular and Molecular Life Sciences, 2009, 66, 3675-3684.	2.4	40
64	Multipotent Progenitor Cells in Regenerative Cardiovascular Medicine. Pediatric Cardiology, 2009, 30, 690-698.	0.6	25
65	Adult Palatum as a Novel Source of Neural Crest-Related Stem Cells. Stem Cells, 2009, 27, 1899-1910.	1.4	141
66	Introducing Transcription Factors to Multipotent Mesenchymal Stem Cells: Making Transdifferentiation Possible. Stem Cells, 2009, 27, 2509-2515.	1.4	105
67	Generation of Parthenogenetic Induced Pluripotent Stem Cells from Parthenogenetic Neural Stem Cells. Stem Cells, 2009, 27, 2962-2968.	1.4	13
68	Activated Spinal Cord Ependymal Stem Cells Rescue Neurological Function. Stem Cells, 2009, 27, 733-743.	1.4	147
69	Generation of Human-Induced Pluripotent Stem Cells in the Absence of Exogenous <i>Sox2</i> . Stem Cells, 2009, 27, 2992-3000.	1.4	297
70	Oct4 and Klf4 Reprogram Dermal Papilla Cells into Induced Pluripotent Stem Cells. Stem Cells, 2010, 28, 221-228.	1.4	125
71	Conversion of Ancestral Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells, 2010, 28, 213-220.	1.4	29
72	Polycistronic Lentiviral Vector for "Hit and Run―Reprogramming of Adult Skin Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells, 2009, 27, 1042-1049.	1.4	186
73	Sox2 and Octâ€3/4: a versatile pair of master regulators that orchestrate the selfâ€renewal and pluripotency of embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 228-236.	6.6	136
74	Adult neural stem cells and their role in brain pathology. Journal of Pathology, 2009, 217, 242-253.	2.1	23
76	Induced pluripotent stem cells and the stability of the differentiated state. EMBO Reports, 2009, 10, 714-721.	2.0	33

#	Apticie	IE	CITATIONS
π 77	piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458, 766-770.	13.7	1,662
78	iPS cells produce viable mice through tetraploid complementation. Nature, 2009, 461, 86-90.	13.7	737
79	Direct reprogramming of human neural stem cells by OCT4. Nature, 2009, 461, 649-653.	13.7	652
80	Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 2009, 27, 743-745.	9.4	811
81	Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 2009, 11, 197-203.	4.6	428
82	Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nature Genetics, 2009, 41, 968-976.	9.4	385
83	Generation of induced pluripotent stem cells from neural stem cells. Nature Protocols, 2009, 4, 1464-1470.	5.5	79
84	AN INCLUSIVE ETHICS FOR THE TWENTYâ€FIRST CENTURY: IMPLICATIONS FOR STEM CELL RESEARCH. Journal of Religious Ethics, 2009, 37, 683-722.	0.1	1
85	Magnetic resonance imaging of cells in experimental disease models. Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, 55, 61-77.	3.9	42
86	Non-viral gene transfer by nucleofection allows stable gene expression in human neural progenitor cells. Journal of Neuroscience Methods, 2009, 178, 15-23.	1.3	17
87	Molecular variability of FLT3/ITD mutants and their impact on the differentiation program of 32D cells: Implications for the biological properties of AML blasts. Leukemia Research, 2009, 33, 1409-1416.	0.4	5
88	Role of MEF feeder cells in direct reprogramming of mousetailâ€ŧip fibroblasts. Cell Biology International, 2009, 33, 1268-1273.	1.4	12
89	Multipotent skin-derived precursors: from biology to clinical translation. Current Opinion in Biotechnology, 2009, 20, 522-530.	3.3	61
90	Induced pluripotent stem cells. Russian Journal of Genetics, 2009, 45, 139-146.	0.2	2
91	Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development (Cambridge), 2009, 136, 1063-1069.	1.2	669
92	Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells <i>in vitro</i> . FASEB Journal, 2009, 23, 4168-4180.	0.2	119
93	Can nitric oxide enhance Oct-4 expression and induce pluripotency in adult neural stem cells?. Bioscience Hypotheses, 2009, 2, 272-273.	0.2	0
94	Reprogrammed induced pluripotent stem cells: how suitable could they be in reproductive medicine?. Fertility and Sterility, 2009, 91, 971-974.	0.5	4

#	Article	IF	CITATIONS
95	The TRIM-NHL Protein TRIM32 Activates MicroRNAs and Prevents Self-Renewal in Mouse Neural Progenitors. Cell, 2009, 136, 913-925.	13.5	372
96	Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell, 2009, 136, 411-419.	13.5	858
97	A Fresh Look at iPS Cells. Cell, 2009, 137, 13-17.	13.5	636
98	Nanog Is the Gateway to the Pluripotent Ground State. Cell, 2009, 138, 722-737.	13.5	904
99	Embryonic stem cell markers expression in cancers. Biochemical and Biophysical Research Communications, 2009, 383, 157-162.	1.0	219
100	Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochemical and Biophysical Research Communications, 2009, 390, 1334-1339.	1.0	99
101	Molecules that Promote or Enhance Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 4, 301-312.	5.2	357
102	Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins. Cell Stem Cell, 2009, 4, 381-384.	5.2	1,652
103	Induction of Pluripotency in Adult Unipotent Germline Stem Cells. Cell Stem Cell, 2009, 5, 87-96.	5.2	246
104	iPS Cells Can Support Full-Term Development of Tetraploid Blastocyst-Complemented Embryos. Cell Stem Cell, 2009, 5, 135-138.	5.2	431
105	Hypoxia Enhances the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 5, 237-241.	5.2	687
106	Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell, 2009, 5, 353-357.	5.2	392
107	Regulatory circuits underlying pluripotency and reprogramming. Trends in Pharmacological Sciences, 2009, 30, 296-302.	4.0	61
109	Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends in Molecular Medicine, 2009, 15, 59-68.	3.5	333
110	Epigenetic reprogramming and induced pluripotency. Development (Cambridge), 2009, 136, 509-523.	1.2	478
111	Patient-specific pluripotent stem cells: promises and challenges. Nature Reviews Endocrinology, 2009, 5, 195-203.	4.3	30
112	Brain Tumor Stem Cell Markers. , 2009, , 713-728.		0
113	Transcriptome transfer produces a predictable cellular phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7624-7629.	3.3	86

#	Article	IF	CITATIONS
114	Efficient Genetic Reprogramming of Unmodified Somatic Neural Progenitors Uncovers the Essential Requirement of Oct4 and Klf4. Stem Cells and Development, 2009, 18, 707-716.	1.1	26
115	Cell Therapy for Heart Disease: Great Expectations, As Yet Unmet. Heart Lung and Circulation, 2009, 18, 245-256.	0.2	39
116	Stem Cells and Cell Replacement Therapy for Parkinson's Disease. , 2009, , 287-299.		2
117	Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells. Regenerative Medicine, 2009, 4, 759-769.	0.8	52
118	Reprogramming of murine and human somatic cells using a single polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 157-162.	3.3	453
119	Spermatogonial stem cells: unlimited potential. Reproduction, Fertility and Development, 2009, 21, 15.	0.1	41
120	Stem cells in gastroenterology and hepatology. Nature Reviews Gastroenterology and Hepatology, 2009, 6, 724-737.	8.2	112
121	Repair of Acute Myocardial Infarction by Human Stemness Factors Induced Pluripotent Stem Cells. Circulation, 2009, 120, 408-416.	1.6	444
122	Progress and future challenges in stem cell-derived liver technologies. American Journal of Physiology - Renal Physiology, 2009, 297, G241-G248.	1.6	76
123	Stem cell biology and cell transplantation therapy in the retina. Biotechnology and Genetic Engineering Reviews, 2009, 26, 297-334.	2.4	26
124	Cloning from stem cells: different lineages, different species, same story. Reproduction, Fertility and Development, 2009, 21, 83.	0.1	22
126	Towards personalized cell-replacement therapies for brain repair. Personalized Medicine, 2009, 6, 293-313.	0.8	1
127	Transplantation tolerance in an age of induced pluripotency. Current Opinion in Organ Transplantation, 2009, 14, 321-325.	0.8	14
128	Stem Cell Migration in Health and Disease. Translational Research in Biomedicine, 2009, , 7-27.	0.4	0
129	Production of Pancreatic Beta-Cells from Stem Cells. Current Diabetes Reviews, 2010, 6, 184-190.	0.6	33
130	Reprogramming adult hematopoietic cells. Current Opinion in Hematology, 2010, 17, 271-275.	1.2	23
131	Inducible pluripotent stem cells: not quite ready for prime time?. Current Opinion in Organ Transplantation, 2010, 15, 61-67.	0.8	33
132	Stem Cells in Normal Mammary Gland and Breast Cancer. American Journal of the Medical Sciences, 2010, 339, 366-370.	0.4	20

		CITATION REPOR	Т
#	Article	IF	CITATION
133	Emerging use of stem cells in regenerative medicine. Biochemical Journal, 2010, 428, 11-23.	1.7	92
134	Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming witho genetic manipulation. Blood, 2010, 116, 386-395.	out 0.6	217
135	The Epigenome and Its Relevance to Somatic Cell Nuclear Transfer and Nuclear Reprogramming. , 2 291-316.	2010, ,	0
136	The Programmable Cell of Monocytic Origin (PCMO): A Potential Adult Stem/Progenitor Cell Sourc for the Generation of Islet Cells. Advances in Experimental Medicine and Biology, 2010, 654, 667-6	e 0.8 82.	10
137	Tungsten carbide cobalt nanoparticles exert hypoxia-like effects on the gene expression level in human keratinocytes. BMC Genomics, 2010, 11, 65.	1.2	42
138	Promising New Sources for Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010, 6, 15-26.	5.6	58
139	Advances in Reprogramming Somatic Cells to Induced Pluripotent Stem Cells. Stem Cell Reviews a Reports, 2010, 6, 367-380.	nd 5.6	179
140	Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: Unraveling the genome to understand the mind. Neurobiology of Disease, 2010, 39, 73-84.	2.1	132
141	Genetic instability and diminished differentiation capacity in long-term cultured mouse neurospher cells. Mechanisms of Ageing and Development, 2010, 131, 124-132.	e 2.2	31
142	DNA methylation and cellular reprogramming. Trends in Cell Biology, 2010, 20, 609-617.	3.6	193
143	Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogrammir technologies. Trends in Biotechnology, 2010, 28, 214-223.	וg 4.9	72
144	Strategies for the Derivation of Pluripotent Cells from Farm Animals. Reproduction in Domestic Animals, 2010, 45, 25-31.	0.6	4
145	Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic diseas treatment. Biotechnology Advances, 2010, 28, 715-724.	se 6.0	7
146	Generation of human induced pluripotent stem cells from oral mucosa. Journal of Bioscience and Bioengineering, 2010, 110, 345-350.	1.1	92
147	A DNA transposon-based approach to functional screening in neural stem cells. Journal of Biotechnology, 2010, 150, 11-21.	1.9	8
148	Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment. Toxicology, 2010, 270, 18-34.	2.0	48
149	Challenges of using pluripotent stem cells for safety assessments of substances. Toxicology, 2010, 270, 10-17.	2.0	32
150	Transient in vitro epigenetic reprogramming of skin fibroblasts into multipotent cells. Biomaterials, 2010, 31, 2779-2787.	5.7	31

#	Article	IF	CITATIONS
151	Autologous blood cell therapies from pluripotent stem cells. Blood Reviews, 2010, 24, 27-37.	2.8	61
152	Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters. BMC Cell Biology, 2010, 11, 46.	3.0	31
153	Combination stem cell therapy for heart failure. International Archive of Medicine, 2010, 3, 5.	1.2	38
154	No Evidence for Clonal Selection Due to Lentiviral Integration Sites in Human Induced Pluripotent Stem Cells. Stem Cells, 2010, 28, 687-694.	1.4	36
155	The Senescence-Related Mitochondrial/Oxidative Stress Pathway is Repressed in Human Induced Pluripotent Stem Cells. Stem Cells, 2010, 28, 721-733.	1.4	548
156	E-Cadherin-Mediated Cell–Cell Contact Is Critical for Induced Pluripotent Stem Cell Generation Â. Stem Cells, 2010, 28, 1315-1325.	1.4	207
157	Comparison of Reprogramming Efficiency Between Transduction of Reprogramming Factors, Cell–Cell Fusion, and Cytoplast Fusion A. Stem Cells, 2010, 28, 1338-1348.	1.4	29
158	Neural Induction Intermediates Exhibit Distinct Roles of Fgf Signaling. Stem Cells, 2010, 28, 1772-1781.	1.4	35
159	Epigenetic control of neural precursor cell fate during development. Nature Reviews Neuroscience, 2010, 11, 377-388.	4.9	327
160	Loss of a cohesin-linked suppressor APRIN (Pds5b) disrupts stem cell programs in embryonal carcinoma: an emerging cohesin role in tumor suppression. Oncogene, 2010, 29, 3446-3452.	2.6	21
161	Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 2010, 465, 175-181.	13.7	727
162	Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nature Biotechnology, 2010, 28, 848-855.	9.4	1,080
163	Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nature Protocols, 2010, 5, 811-820.	5.5	94
164	The challenge of immunogenicity in the quest for induced pluripotency. Nature Reviews Immunology, 2010, 10, 868-875.	10.6	72
165	Molecular physiology of cardiac regeneration. Annals of the New York Academy of Sciences, 2010, 1211, 113-126.	1.8	18
166	Direct reprogramming 101. Development Growth and Differentiation, 2010, 52, 319-333.	0.6	17
167	Usefulness of a Non-invasive Reporter System for Monitoring Reprogramming State in Pig Cells: Results of a Cell Fusion Experiment. Journal of Reproduction and Development, 2010, 56, 363-369.	0.5	5
168	Challenges and strategies for generating therapeutic patient-specific hemangioblasts and hematopoietic stem cells from human pluripotent stem cells. International Journal of Developmental Biology, 2010, 54, 965-990.	0.3	29

#	Article	IF	CITATIONS
169	Neuro-Muscular Differentiation of Adult Porcine Skin Derived Stem Cell-Like Cells. PLoS ONE, 2010, 5, e8968.	1.1	25
170	The Efficient Generation of Induced Pluripotent Stem (iPS) Cells from Adult Mouse Adipose Tissue-Derived and Neural Stem Cells. Cell Transplantation, 2010, 19, 525-536.	1.2	70
171	Generation of Genome Integration-free Induced Pluripotent Stem Cells from Fibroblasts of C57BL/6 Mice without c-Myc Transduction. Journal of Biological Chemistry, 2010, 285, 26384-26389.	1.6	17
172	Progress toward the clinical application of patient-specific pluripotent stem cells. Journal of Clinical Investigation, 2010, 120, 51-59.	3.9	310
173	The genetics of induced pluripotency. Reproduction, 2010, 139, 35-44.	1.1	59
174	p53: Guardian of reprogramming. Cell Cycle, 2010, 9, 3887-3891.	1.3	81
175	Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3846-3851.	3.3	189
176	Generation of Human Induced Pluripotent Stem Cells from Umbilical Cord Matrix and Amniotic Membrane Mesenchymal Cells. Journal of Biological Chemistry, 2010, 285, 11227-11234.	1.6	161
177	Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19467-19472.	3.3	41
178	Involvement of a novel preimplantation-specific gene encoding the high mobility group box protein Hmgpi in early embryonic development. Human Molecular Genetics, 2010, 19, 480-493.	1.4	14
180	Brain tumor stem cells. Biological Chemistry, 2010, 391, 607-17.	1.2	9
181	Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Molecular Human Reproduction, 2010, 16, 856-868.	1.3	71
182	Differentiation of Porcine Inner Cell Mass Cells Into Proliferating Neural Cells. Stem Cells and Development, 2010, 19, 61-70.	1.1	24
183	Gene-delivery systems for iPS cell generation. Expert Opinion on Biological Therapy, 2010, 10, 231-242.	1.4	43
184	Generation and genetic modification of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2010, 10, 1089-1103.	1.4	21
185	An efficient method for generation of neural-like cells from adult human bone marrow-derived mesenchymal stem cells. Regenerative Medicine, 2010, 5, 891-900.	0.8	37
186	Generation of Human-Induced Pluripotent Stem Cells from Gut Mesentery-Derived Cells by Ectopic Expression of OCT4/SOX2/NANOG. Cellular Reprogramming, 2010, 12, 237-247.	0.5	24
187	Alternative Sources of Pluripotent Stem Cells: Ethical and Scientific Issues Revisited. Stem Cells and Development, 2010, 19, 1121-1129.	1.1	32

#	Article	IF	CITATIONS
188	FM19G11, a New Hypoxia-inducible Factor (HIF) Modulator, Affects Stem Cell Differentiation Status. Journal of Biological Chemistry, 2010, 285, 1333-1342.	1.6	99
189	Mouse and human induced pluripotent stem cells as a source for multipotent Isl1 ⁺ cardiovascular progenitors. FASEB Journal, 2010, 24, 700-711.	0.2	110
190	Recent Stem Cell Advances: Induced Pluripotent Stem Cells for Disease Modeling and Stem Cell–Based Regeneration. Circulation, 2010, 122, 80-87.	1.6	166
191	<i>De Novo</i> Myocardial Regeneration: Advances and Pitfalls. Antioxidants and Redox Signaling, 2010, 13, 1867-1877.	2.5	4
192	Roadblocks en route to the clinical application of induced pluripotent stem cells. Journal of Cell Science, 2010, 123, 643-651.	1.2	37
193	Viable iPSC mice: a step closer to therapeutic applications in humans?. Molecular Human Reproduction, 2010, 16, 57-62.	1.3	5
194	Induced Pluripotent Stem Cells: The Dragon Awakens. BioScience, 2010, 60, 278-285.	2.2	10
195	The Mighty Mice Prove Pluripotency for iPSCs. Journal of Molecular Cell Biology, 2010, 2, 171-172.	1.5	0
196	From Dolly to hiPS: New insights into reprogramming. Cell Cycle, 2010, 9, 1231-1240.	1.3	0
197	Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale. Cell Cycle, 2010, 9, 937-946.	1.3	80
198	Amniotic Fluid Cells Are More Efficiently Reprogrammed to Pluripotency Than Adult Cells. Cellular Reprogramming, 2010, 12, 117-125.	0.5	85
199	Tinkering with Transcription Factors Uncovers Plasticity of Somatic Cells. Genes and Cancer, 2010, 1, 1089-1099.	0.6	6
200	CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Modern Pathology, 2010, 23, 450-457.	2.9	147
202	Ex Vivo Transduction and Transplantation of Bone Marrow Cells for Liver Gene Delivery of α1-Antitrypsin. Molecular Therapy, 2010, 18, 1553-1558.	3.7	17
203	Myc transcription factors: key regulators behind establishment and maintenance of pluripotency. Regenerative Medicine, 2010, 5, 947-959.	0.8	49
204	Generation of Induced Pluripotent Stem Cells by Efficient Reprogramming of Adult Bone Marrow Cells. Stem Cells and Development, 2010, 19, 229-238.	1.1	65
205	Enhanced Reprogramming and Cardiac Differentiation of Human Keratinocytes Derived from Plucked Hair Follicles, Using a Single Excisable Lentivirus. Cellular Reprogramming, 2010, 12, 665-678.	0.5	77
206	Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics Journal, 2010, 10, 105-113.	0.9	112

#	Article	IF	CITATIONS
207	Restorative approaches in Parkinson's Disease: Which cell type wins the race?. Journal of the Neurological Sciences, 2010, 289, 93-103.	0.3	59
208	Translation of stem cell therapy for neurological diseases. Translational Research, 2010, 156, 155-160.	2.2	80
209	Induced Pluripotent Stem Cells—A New Foundation in Medicine. Journal of Experimental and Clinical Medicine, 2010, 2, 202-217.	0.2	17
210	Functional Recapitulation of Smooth Muscle Cells Via Induced Pluripotent Stem Cells From Human Aortic Smooth Muscle Cells. Circulation Research, 2010, 106, 120-128.	2.0	100
211	The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 155-163.	1.8	145
212	Induced pluripotent stem cells: A new era for hepatology. Journal of Hepatology, 2010, 53, 738-751.	1.8	77
213	Neuropotent self-renewing neural stem (NS) cells derived from mouse induced pluripotent stem (iPS) cells. Molecular and Cellular Neurosciences, 2010, 43, 287-295.	1.0	55
214	Proteomics identifies multipotent and low oncogenic risk stem cells of the spleen. International Journal of Biochemistry and Cell Biology, 2010, 42, 1651-1660.	1.2	16
215	Effective culture conditions for the induction of pluripotent stem cells. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 956-963.	1.1	41
216	Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming. Cell, 2010, 141, 943-955.	13.5	357
217	The stem cell journey: From paradise to purgatory. Neuropharmacology, 2010, 58, 833-834.	2.0	0
218	Apoptotic Caspases Regulate Induction of iPSCs from Human Fibroblasts. Cell Stem Cell, 2010, 7, 508-520.	5.2	96
219	Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends in Pharmacological Sciences, 2010, 31, 36-45.	4.0	175
220	iPS Cells Reprogrammed From Human Mesenchymal-Like Stem/Progenitor Cells of Dental Tissue Origin. Stem Cells and Development, 2010, 19, 469-480.	1.1	298
221	Induced Pluripotent Stem Cells at Nanoscale. Stem Cells and Development, 2010, 19, 615-620.	1.1	35
222	How far are induced pluripotent stem cells from the clinic?. Ageing Research Reviews, 2010, 9, 257-264.	5.0	35
223	Can controlled cellular reprogramming be achieved using microRNAs?. Ageing Research Reviews, 2010, 9, 475-483.	5.0	15
224	Induced pluripotent stem cells – alchemist's tale or clinical reality?. Expert Reviews in Molecular Medicine, 2010, 12, 25.	1.6	16

#	Article	IF	CITATIONS
225	Pluripotency of human embryonic and induced pluripotent stem cells for cardiac and vascular regeneration. Thrombosis and Haemostasis, 2010, 104, 23-29.	1.8	13
226	Dental Pulp Cells for Induced Pluripotent Stem Cell Banking. Journal of Dental Research, 2010, 89, 773-778.	2.5	200
227	Dormancy of metastatic melanoma. Pigment Cell and Melanoma Research, 2010, 23, 41-56.	1.5	109
228	Induced Pluripotent Stem Cells: Characteristics and Perspectives. , 2010, 123, 107-126.		9
229	Function of EWS-POU5F1 in Sarcomagenesis and Tumor Cell Maintenance. American Journal of Pathology, 2010, 176, 1973-1982.	1.9	13
230	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	2.7	678
231	Induced Pluripotent Stem Cells. Methods in Enzymology, 2010, 476, 309-325.	0.4	16
232	Small Molecules and Stem Cells. Potency and Lineage Commitment: The New Quest for the Fountain of Youth. Journal of Medicinal Chemistry, 2010, 53, 3439-3453.	2.9	33
233	Regulatory considerations for the development of autologous induced pluripotent stem cell therapies. Regenerative Medicine, 2010, 5, 569-579.	0.8	24
234	Disparate Companions: Tissue Engineering Meets Cancer Research. Cells Tissues Organs, 2010, 192, 141-157.	1.3	6
236	Manipulating the Cell Differentiation Through Lentiviral Vectors. Methods in Molecular Biology, 2010, 614, 149-160.	0.4	3
237	Experimental approaches for the generation of induced pluripotent stem cells. Stem Cell Research and Therapy, 2010, 1, 26.	2.4	32
238	Bioreactor Systems for Tissue Engineering II. , 2010, , .		2
239	Lentivirus Gene Engineering Protocols. Methods in Molecular Biology, 2010, , .	0.4	4
240	Stem cells for the treatment of neurodegenerative diseases. Stem Cell Research and Therapy, 2010, 1, 37.	2.4	82
241	Recent advances and novel approaches in deriving neurons from stem cells. Molecular BioSystems, 2010, 6, 324-328.	2.9	3
242	Pluripotent Human Stem Cells. BioDrugs, 2010, 24, 99-108.	2.2	22
243	Regenerative Medicine Using Pregnancy-Specific Biological Substances. , 2011, , .		6

#	Article	IF	Citations
244	Uses of cardiomyocytes generated from induced pluripotent stem cells. Stem Cell Research and Therapy, 2011, 2, 44.	2.4	7
245	Prospects of Induced Pluripotent Stem Cell Technology in Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2011, 17, 115-124.	2.5	29
246	Simple Generation of Human Induced Pluripotent Stem Cells Using Poly-Î ² -amino Esters As the Non-viral Gene Delivery System. Journal of Biological Chemistry, 2011, 286, 12417-12428.	1.6	68
247	Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Research, 2011, 21, 486-501.	5.7	165
248	Human Pluripotent Stem Cell-Based Approaches for Myocardial Repair: From the Electrophysiological Perspective. Molecular Pharmaceutics, 2011, 8, 1495-1504.	2.3	48
249	Cryopreservation of Stem Cells. , 2011, , 481-488.		0
250	Magnetic Resonance Imaging Tracking of Stem Cells in Vivo Using Iron Oxide Nanoparticles as a Tool for the Advancement of Clinical Regenerative Medicine. Chemical Reviews, 2011, 111, 253-280.	23.0	385
251	Tissue Engineering in Regenerative Medicine. , 2011, , .		7
252	Regenerating the Heart. , 2011, , .		2
253	Pluripotent Reprogramming of Fibroblasts by Lentiviralmediated Insertion of SOX2, C-MYC, and TCL-1A. Stem Cells and Development, 2011, 20, 169-180.	1.1	32
254	Stem Cells & amp; Regenerative Medicine. Pancreatic Islet Biology, 2011, , .	0.1	6
255	Epigenetics and Disease. , 2011, , .		5
256	Small Molecules in Cellular Reprogramming and Differentiation. , 2011, 67, 253-266.		24
257	Oct4-Enhanced Green Fluorescent Protein Transgenic Pigs: A New Large Animal Model for Reprogramming Studies. Stem Cells and Development, 2011, 20, 1563-1575.	1.1	49
258	Toward Regeneration of Retinal Function Using Pluripotent Stem Cells. , 2011, , 155-175.		0
260	Pluripotency Factors in Embryonic Stem Cells Regulate Differentiation into Germ Layers. Cell, 2011, 145, 875-889.	13.5	487
261	Impact of induced pluripotent stem cells on the study of central nervous system disease. Current Opinion in Genetics and Development, 2011, 21, 354-361.	1.5	33
262	Induced pluripotent stem cells' self-renewal and pluripotency is maintained by a bovine granulosa cell line-conditioned medium. Biochemical and Biophysical Research Communications, 2011, 410, 252-257.	1.0	7

#	ARTICLE	IF	CITATIONS
263	Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming. Antioxidants and Redox Signaling, 2011, 15, 1799-1820.	2.5	31
264	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2011, , 445-468.		0
265	Role of COX-2 in Tumorospheres Derived from a Breast Cancer Cell Line. Journal of Surgical Research, 2011, 168, e39-e49.	0.8	51
266	Effects of Salvia miltorrhiza in neural differentiation of rat mesenchymal stem cells with optimized protocol. Journal of Ethnopharmacology, 2011, 136, 334-340.	2.0	13
267	Induced Pluripotent Stem Cells. , 2011, , 187-205.		0
268	Expression of Pluripotency and Multipotency Factors in Human Ocular Surface Tissues. Current Eye Research, 2011, 36, 1086-1097.	0.7	25
269	Current Progress and Potential Practical Application for Human Pluripotent Stem Cells. International Review of Cell and Molecular Biology, 2011, 292, 153-196.	1.6	10
270	Cardiac Cell Therapies: The Next Generation. Cardiovascular Therapeutics, 2011, 29, 2-16.	1.1	18
271	The Efficiency of Cell Fusion-Based Reprogramming Is Affected by the Somatic Cell Type and the <i>In Vitro</i> Age of Somatic Cells. Cellular Reprogramming, 2011, 13, 331-344.	0.5	15
272	Embryonic Stem Cells and iPS Cells: Sources and Characteristics. Veterinary Clinics of North America Equine Practice, 2011, 27, 233-242.	0.3	26
273	Molecular Biomarkers of Embryonic Stem Cells. , 2011, , .		0
274	Human Pluripotent Stem Cells in Cardiovascular Research and Regenerative Medicine. , 2011, , .		0
275	Pluripotent Stem Cells from Testis. , 0, , .		0
276	Battle for Pluripotency: Derivation of Induced Pluripotent Stem Cells. Recent Patents on Regenerative Medicine, 2011, 1, 123-130.	0.4	0
277	Application of Magnet-based Nanofection in Embryonic Stem Cell Research. , 2011, , .		0
278	Patient-Specific Pluripotent Stem Cells in Neurological Diseases. Stem Cells International, 2011, 2011, 1-17.	1.2	34
279	A Virus-Free Poly-Promoter Vector Induces Pluripotency in Quiescent Bovine Cells under Chemically Defined Conditions of Dual Kinase Inhibition. PLoS ONE, 2011, 6, e24501.	1.1	68
280	Estimating the Quality of Reprogrammed Cells Using ES Cell Differentiation Expression Patterns. PLoS ONE, 2011, 6, e15336.	1.1	2

#	Article	IF	CITATIONS
281	Oct4-Induced Reprogramming Is Required for Adult Brain Neural Stem Cell Differentiation into Midbrain Dopaminergic Neurons. PLoS ONE, 2011, 6, e19926.	1.1	39
282	Quality, patient safety, and culture: â€~We have met the enemy and he is us'—Pogo (Walt Kelly, 1971)*. Critical Care Medicine, 2011, 39, 1196-1197.	0.4	3
283	Red blood cells from induced pluripotent stem cells: hurdles and developments. Current Opinion in Hematology, 2011, 18, 249-253.	1.2	40
284	Passing the bug—Translocation, bacteremia, and sepsis in the intensive care unit patient: Is intestinal decontamination the answer?*. Critical Care Medicine, 2011, 39, 1202-1203.	0.4	19
285	Palliative care makes intensive care units intensive care and intensive caring units*. Critical Care Medicine, 2011, 39, 1204-1205.	0.4	2
286	Biomarkers in fever and neutropenia: A solution in search of a problem?*. Critical Care Medicine, 2011, 39, 1205-1206.	0.4	3
287	The family experience with intensive care unit care: More than mere satisfaction*. Critical Care Medicine, 2011, 39, 1207-1208.	0.4	2
288	Making progress with the egress*. Critical Care Medicine, 2011, 39, 1208-1209.	0.4	1
289	Providing a good death*. Critical Care Medicine, 2011, 39, 1235-1236.	0.4	2
290	Page the critical care epidemiologist, STAT!*. Critical Care Medicine, 2011, 39, 1219-1220.	0.4	0
291	Do-not-resuscitate orders in evolution: Matching medical interventions with patient goals*. Critical Care Medicine, 2011, 39, 1213-1214.	0.4	4
292	From mice to men: Treating sepsis with heparin*. Critical Care Medicine, 2011, 39, 1225-1226.	0.4	4
293	Opening the lungs: Do it slowly, please*. Critical Care Medicine, 2011, 39, 1221-1222.	0.4	0
294	The brain boggles the mind*. Critical Care Medicine, 2011, 39, 1224.	0.4	0
295	Putting intensive care unit data into the public domain—And using it effectively*. Critical Care Medicine, 2011, 39, 1200-1201.	0.4	0
296	Has extracorporeal membrane oxygenation finally arrived for resuscitation and stabilization of critically ill patients?*. Critical Care Medicine, 2011, 39, 1218-1219.	0.4	2
297	Induced Pluripotent Stem (iPS) Cell Research Overview. Cell Transplantation, 2011, 20, 15-19.	1.2	28
298	THE FUTURE OF STEM CELL APPLICATIONS: CHARTING THE SEA OF OPPORTUNITY. Technology and Innovation, 2011, 13, 63-74.	0.2	1

#	Article	IF	CITATIONS
299	The Cancer Stem Cell Hypothesis: Failures and Pitfalls. Neurosurgery, 2011, 68, 531-545.	0.6	119
300	Beta-blockers: Essential heart failure therapy*. Critical Care Medicine, 2011, 39, 1198-1199.	0.4	Ο
301	Ten years later, still "gene in a haystack?â€*. Critical Care Medicine, 2011, 39, 1231-1232.	0.4	0
302	Yes, SIRS—I think we have come full circle*. Critical Care Medicine, 2011, 39, 1232-1233.	0.4	1
303	Pulmonary morbidity of catheter-related pediatric venous thromboembolism: Old problem, new worry*. Critical Care Medicine, 2011, 39, 1234-1235.	0.4	0
304	Surviving fulminant myocarditis: Is the head the heart of the matter?*. Critical Care Medicine, 2011, 39, 1211-1213.	0.4	0
305	Mortality prediction in adult respiratory distress syndrome: Get real*. Critical Care Medicine, 2011, 39, 1210-1211.	0.4	0
306	Stemming electrical outage in myocardial infarction*. Critical Care Medicine, 2011, 39, 1222-1223.	0.4	0
307	From the bedside to the bench: How to improve the care of critically ill pregnant patients with influenza*. Critical Care Medicine, 2011, 39, 1199-1200.	0.4	2
308	Visualizing the cortical microcirculation in patients with stroke*. Critical Care Medicine, 2011, 39, 1228-1230.	0.4	1
309	Late Passage Human Fibroblasts Induced to Pluripotency Are Capable of Directed Neuronal Differentiation. Cell Transplantation, 2011, 20, 193-204.	1.2	16
310	Experimental studies on ischemic neuroprotection: Criteria for translational significance*. Critical Care Medicine, 2011, 39, 1230-1231.	0.4	0
311	"Sepsis—lt ain't so much what you don't know that gets you into trouble, it's what you know for su that just ain't so.â€â€"with apologies to Mark Twain*. Critical Care Medicine, 2011, 39, 1214-1215.	^{ге} 0.4	0
312	Targeted temperature management: The jury returns with a verdict*. Critical Care Medicine, 2011, 39, 1226-1228.	0.4	0
313	Development Unchained: How Cellular Reprogramming is Redefining Our View of Cell Fate and Identity. Science Progress, 2011, 94, 298-322.	1.0	5
314	Stem Cells Therapies in Basic Science and Translational Medicine: Current Status and Treatment Monitoring Strategies. Current Pharmaceutical Biotechnology, 2011, 12, 469-487.	0.9	9
315	Regulation of Neural Stem Cells in the Human SVZ by Trophic and Morphogenic Factors. Current Signal Transduction Therapy, 2011, 6, 320-326.	0.3	10
316	Optimization of Lentiviral Vectors Generation for Biomedical and Clinical Research Purposes: Contemporary Trends in Technology Development and Applications. Current Gene Therapy, 2011, 11, 144-153.	0.9	42

#	Article	IF	CITATIONS
317	SNCA Triplication Parkinson's Patient's iPSC-derived DA Neurons Accumulate α-Synuclein and Are Susceptible to Oxidative Stress. PLoS ONE, 2011, 6, e26159.	1.1	257
318	Potential Application of Induced Pluripotent Stem Cells in Cell Replacement Therapy for Parkinsons Disease. CNS and Neurological Disorders - Drug Targets, 2011, 10, 449-458.	0.8	35
319	Feeder-Free Derivation of Induced Pluripotent Stem Cells from Human Immature Dental Pulp Stem Cells. Cell Transplantation, 2011, 20, 1707-1719.	1.2	91
320	Potential of Tissue Engineering and Neural Stem Cells in the Understanding and Treatment of Neurodegenerative Diseases. , 2011, , 321-345.		0
321	From skin to the treatment of diseases - the possibilities of iPS cell research in dermatology. Experimental Dermatology, 2011, 20, 523-528.	1.4	27
322	Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. Journal of Periodontal Research, 2011, 46, 438-447.	1.4	112
323	Methods for making induced pluripotent stem cells: reprogramming à la carte. Nature Reviews Genetics, 2011, 12, 231-242.	7.7	415
324	Ontological aspects of pluripotency and stemness gene expression pattern in the rhesus monkey. Gene Expression Patterns, 2011, 11, 285-298.	0.3	2
325	The generation of iPS cells using non-viral magnetic nanoparticlebased transfection. Biomaterials, 2011, 32, 6683-6691.	5.7	88
326	Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic disease treatment. Biotechnology Advances, 2011, 29, 1-10.	6.0	26
327	Human Induced Pluripotent Stem Cells Derived from Fetal Neural Stem Cells Successfully Undergo Directed Differentiation into Cartilage. Stem Cells and Development, 2011, 20, 1099-1112.	1.1	82
328	Transduction of Human Adipose-Derived Mesenchymal Stem Cells by Recombinant Adeno-Associated Virus Vectors. Tissue Engineering - Part C: Methods, 2011, 17, 949-959.	1.1	10
329	Embryonic stem cell extracts: use in differentiation and reprogramming. Regenerative Medicine, 2011, 6, 215-227.	0.8	3
330	Advancements in reprogramming strategies for the generation of induced pluripotent stem cells. Journal of Assisted Reproduction and Genetics, 2011, 28, 291-301.	1.2	30
331	Cell therapeutic options in liver diseases: cell types, medical devices and regulatory issues. Journal of Materials Science: Materials in Medicine, 2011, 22, 1087-1099.	1.7	2
332	Optimal time for passaging neurospheres based on primary neural stem cell cultures. Cytotechnology, 2011, 63, 621-631.	0.7	22
333	Stem cells in colon cancer. A new era in cancer theory begins. International Journal of Colorectal Disease, 2011, 26, 1-11.	1.0	58
334	Stem cell-based therapies in Parkinson's disease: future hope or current treatment option?. Journal of Neurology, 2011, 258, 346-353.	1.8	11

#	Article	IF	CITATIONS
335	Cell Cultures from Marine Invertebrates: New Insights for Capturing Endless Stemness. Marine Biotechnology, 2011, 13, 345-354.	1.1	70
336	Characterization of a Novel Umbilical Cord Lining Cell with CD227 Positivity and Unique Pattern of P63 Expression and Function. Stem Cell Reviews and Reports, 2011, 7, 624-638.	5.6	33
337	Generation of Pig iPS Cells: A Model for Cell Therapy. Journal of Cardiovascular Translational Research, 2011, 4, 121-130.	1.1	84
338	Nuclear Reprogramming Strategy Modulates Differentiation Potential of Induced Pluripotent Stem Cells. Journal of Cardiovascular Translational Research, 2011, 4, 131-137.	1.1	24
339	Molecular marks for epigenetic identification of developmental and cancer stem cells. Clinical Epigenetics, 2011, 2, 27-53.	1.8	34
340	Reprogrammed mouse astrocytes retain a "memory―of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts. Protein and Cell, 2011, 2, 128-140.	4.8	29
341	Reprogrammed astrocytes with old â€~memories' blossom into region-specific neurons. Protein and Cell, 2011, 2, 87-89.	4.8	1
342	In vitro induction of mouse meningeal-derived ips cells into neural-like cells. Science Bulletin, 2011, 56, 1556-1561.	1.7	1
343	Therapeutic potential of stem cell in liver regeneration. Frontiers of Medicine, 2011, 5, 26-32.	1.5	18
344	Comparative analysis of neural transcriptomes and functional implication of unannotated intronic expression. BMC Genomics, 2011, 12, 494.	1.2	3
345	Pluripotent stem cell heterogeneity and the evolving role of proteomic technologies in stem cell biology. Proteomics, 2011, 11, 3947-3961.	1.3	20
346	Brief Report: Combined Chemical Treatment Enables <i>Oct4</i> -Induced Reprogramming from Mouse Embryonic Fibroblasts. Stem Cells, 2011, 29, 549-553.	1.4	121
347	<i>MyoD</i> Gene Suppression by Oct4 Is Required for Reprogramming in Myoblasts to Produce Induced Pluripotent Stem Cells. Stem Cells, 2011, 29, 505-516.	1.4	40
348	Single Transcription Factor Reprogramming of Hair Follicle Dermal Papilla Cells to Induced Pluripotent Stem Cells. Stem Cells, 2011, 29, 964-971.	1.4	84
349	Concise Review: Non-cell Autonomous Reprogramming: A Nucleic Acid-Free Approach to Induction of Pluripotency. Stem Cells, 2011, 29, 1013-1020.	1.4	9
350	Neural Stem Cells Maintain Their Stemness through Protein Kinase C ζ-Mediated Inhibition of TRIM32. Stem Cells, 2011, 29, 1437-1447.	1.4	44
351	Two-Phase Analysis of Molecular Pathways Underlying Induced Pluripotent Stem Cell Induction. Stem Cells, 2011, 29, 1963-1974.	1.4	15
352	Mechanistic insights into reprogramming to induced pluripotency. Journal of Cellular Physiology, 2011, 226, 868-878.	2.0	45

#	Article	IF	CITATIONS
353	The requirement for proteomics to unravel stem cell regulatory mechanisms. Journal of Cellular Physiology, 2011, 226, 2478-2483.	2.0	13
354	Genomeâ€wide analysis of the POU genes in medaka, focusing on expression in the optic tectum. Developmental Dynamics, 2011, 240, 2354-2363.	0.8	10
355	Functional Multipotency of Stem Cells: A Conceptual Review of Neurotrophic Factor-Based Evidence and Its Role in Translational Research. Current Neuropharmacology, 2011, 9, 574-585.	1.4	45
357	The evolving biology of cell reprogramming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2183-2197.	1.8	28
358	Reprogramming of Skeletal Myoblasts for Induction of Pluripotency for Tumor-Free Cardiomyogenesis in the Infarcted Heart. Circulation Research, 2011, 109, 60-70.	2.0	96
359	Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming. Molecular Therapy, 2011, 19, 782-789.	3.7	224
360	Central Nervous System Tissue Engineering: Current Considerations and Strategies. Synthesis Lectures on Tissue Engineering, 2011, 3, 1-120.	0.3	7
361	Efficient Derivation of Pluripotent Stem Cells from siRNA-Mediated <i>Cdx2</i> -Deficient Mouse Embryos. Stem Cells and Development, 2011, 20, 485-493.	1.1	7
362	Nuclear Orphan Receptor TLX Induces Oct-3/4 for the Survival and Maintenance of Adult Hippocampal Progenitors upon Hypoxia. Journal of Biological Chemistry, 2011, 286, 9393-9404.	1.6	42
363	T-cell factor 3 (Tcf3) deletion increases somatic cell reprogramming by inducing epigenome modifications. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11912-11917.	3.3	49
364	Establishment of induced pluripotent stem cells from aged mice using bone marrow-derived myeloid cells. Journal of Molecular Cell Biology, 2011, 3, 91-98.	1.5	53
365	Modeling Neurological Disorders by Human Induced Pluripotent Stem Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	12
366	Culture Environment-Induced Pluripotency of SACK-Expanded Tissue Stem Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-12.	3.0	5
367	Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells. PLoS Biology, 2011, 9, e1001099.	2.6	50
368	Biology of the Mi-2/NuRD Complex in SLAC (Stemness, Longevity/Ageing, and Cancer). Gene Regulation and Systems Biology, 2011, 5, GRSB.S6510.	2.3	19
369	A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine. Journal of Molecular Cell Biology, 2012, 4, 190-196.	1.5	10
370	Advances in MicroRNA-Mediated Reprogramming Technology. Stem Cells International, 2012, 2012, 1-4.	1.2	16
371	Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4. Cell Death and Differentiation, 2012, 19, 1268-1276.	5.0	20

#	Article	IF	CITATIONS
372	Toward Personalized Cell Therapies by Using Stem Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	3
373	Basic principles in generating induced pluripotent stem cells. , 2012, , 49-63.		1
374	Human Amnion–Derived Cells as a Reliable Source of Stem Cells. Current Molecular Medicine, 2012, 12, 1340-1349.	0.6	20
375	Pushing the Reset Button: Chemical-Induced Conversion of Amniotic Fluid Stem Cells Into a Pluripotent State. Molecular Therapy, 2012, 20, 1839-1841.	3.7	5
376	Isolation and characterization of neural progenitor cells from adult canine brains. American Journal of Veterinary Research, 2012, 73, 1963-1968.	0.3	12
377	Rat Embryonic Fibroblasts Improve Reprogramming of Human Keratinocytes into Induced Pluripotent Stem Cells. Stem Cells and Development, 2012, 21, 965-976.	1.1	58
378	Polycomb Group Protein Bmi1 Promotes Hematopoietic Cell Development from Embryonic Stem Cells. Stem Cells and Development, 2012, 21, 121-132.	1.1	22
379	Methods of Cell Purification: A Critical Juncture for Laboratory Research and Translational Science. Cells Tissues Organs, 2012, 195, 26-40.	1.3	27
380	Stem Cells in Drug Screening for Neurodegenerative Disease. Korean Journal of Physiology and Pharmacology, 2012, 16, 1.	0.6	19
381	The Stability of the Induced Epigenetic Programs. Comparative and Functional Genomics, 2012, 2012, 1-9.	2.0	3
382	MiR-25 Regulates Wwp2 and Fbxw7 and Promotes Reprogramming of Mouse Fibroblast Cells to iPSCs. PLoS ONE, 2012, 7, e40938.	1.1	65
383	Human Menstrual Blood-Derived Mesenchymal Cells as a Cell Source of Rapid and Efficient Nuclear Reprogramming. Cell Transplantation, 2012, 21, 2215-2224.	1.2	29
384	Bladder Cancer and Stem Cells. Current Signal Transduction Therapy, 2012, 7, 209-219.	0.3	0
385	Repopulation of the Heart with New Cardiomyocytes. , 2012, , 105-217.		2
386	microRNA-based cancer cell reprogramming technology. Experimental and Therapeutic Medicine, 2012, 4, 8-14.	0.8	11
388	Cell sources for trachea tissue engineering: past, present and future. Regenerative Medicine, 2012, 7, 851-863.	0.8	16
389	Reprogramming cell fates: insights from combinatorial approaches. Annals of the New York Academy of Sciences, 2012, 1266, 7-17.	1.8	19
390	Epithelial–mesenchymal transition and mesenchymal–epithelial transition are essential for the acquisition of stem cell properties in hTERTâ€immortalised oral epithelial cells. Biology of the Cell, 2012, 104, 476-489	0.7	23

#	Article	IF	CITATIONS
391	Embryonic Stem Cell Markers. Molecules, 2012, 17, 6196-6236.	1.7	157
392	Reprogramming to pluripotency is an ancient trait of vertebrate Oct4 and Pou2 proteins. Nature Communications, 2012, 3, 1279.	5.8	64
393	A poor imitation of a natural process. Cell Cycle, 2012, 11, 4536-4544.	1.3	13
394	Reprogramming of Human Fibroblasts into Pluripotent Cells: Role of Lentiviral Mediated Transcription Factors. , 2012, , 201-211.		0
395	Inducible pluripotent stem cells for the treatment of ischemic stroke: current status and problems. Reviews in the Neurosciences, 2012, 23, 393-402.	1.4	12
397	Reprogramming and the mammalian germline: the Weismann barrier revisited. Current Opinion in Cell Biology, 2012, 24, 716-723.	2.6	43
398	Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Research and Therapy, 2012, 3, 8.	2.4	8
399	New windows to enhance direct reprogramming of somatic cells towards induced pluripotent stem cells. Biochemistry and Cell Biology, 2012, 90, 115-123.	0.9	8
400	Histone variant macroH2A marks embryonic differentiation <i>in vivo</i> and acts as an epigenetic barrier to induced pluripotency. Journal of Cell Science, 2012, 125, 6094-6104.	1.2	92
401	Innovative therapy for Classic Galactosemia — Tale of two HTS. Molecular Genetics and Metabolism, 2012, 105, 44-55.	0.5	48
402	Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Research, 2012, 40, 5368-5377.	6.5	178
403	Reprogramming mammalian somatic cells. Theriogenology, 2012, 78, 1869-1886.	0.9	92
404	Phylogenomics meets neuroscience: How many times might complex brains have evolved?. Acta Biologica Hungarica, 2012, 63, 3-19.	0.7	29
405	Human Amniotic Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells May Generate a Universal Source of Cardiac Cells. Stem Cells and Development, 2012, 21, 2798-2808.	1.1	42
406	Inhibition of LDH-A by lentivirus-mediated small interfering RNA suppresses intestinal-type gastric cancer tumorigenicity through the downregulation of Oct4. Cancer Letters, 2012, 321, 45-54.	3.2	51
407	Controlling the Stem Cell Compartment and Regeneration In Vivo: The Role of Pluripotency Pathways. Physiological Reviews, 2012, 92, 75-99.	13.1	33
408	FM19G11 Favors Spinal Cord Injury Regeneration and Stem Cell Self-Renewal by Mitochondrial Uncoupling and Glucose Metabolism Induction. Stem Cells, 2012, 30, 2221-2233.	1.4	29
409	Progress and bottleneck in induced pluripotency. Cell Regeneration, 2012, 1, 1:5.	1.1	4

#	Article	IF	CITATIONS
410	Reprogramming of Somatic Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 51-82.	0.9	14
411	The Impact of Gingival Fibroblast-Derived iPS Cells in Dentistry. , 2012, , 9-13.		Ο
412	Increased Reprogramming Capacity of Mouse Liver Progenitor Cells, Compared With Differentiated Liver Cells, Requires the BAF Complex. Gastroenterology, 2012, 142, 907-917.	0.6	47
413	TATVHL peptide-grafted alginate/poly(γ-glutamic acid) scaffolds with inverted colloidal crystal topology for neuronal differentiation of iPS cells. Biomaterials, 2012, 33, 8955-8966.	5.7	48
414	Avian-Induced Pluripotent Stem Cells Derived Using Human Reprogramming Factors. Stem Cells and Development, 2012, 21, 394-403.	1.1	62
416	Overcoming barriers to the clinical utilization of iPSCs: reprogramming efficiency, safety and quality. Protein and Cell, 2012, 3, 834-845.	4.8	15
417	Generation of Corneal Epithelial Cells from Induced Pluripotent Stem Cells Derived from Human Dermal Fibroblast and Corneal Limbal Epithelium. PLoS ONE, 2012, 7, e45435.	1.1	135
418	Genetic Variations in Stem Cell-Related Genes and Colorectal Cancer Prognosis. Journal of Gastrointestinal Cancer, 2012, 43, 584-593.	0.6	5
420	Regenerative Therapy Using Blood-Derived Stem Cells. , 2012, , .		2
421	Neural Development and Stem Cells. , 2012, , .		Ο
422	Nuclear Reprogramming and Stem Cells. , 2012, , .		1
425	Zfp296 Is a Novel, Pluripotent-Specific Reprogramming Factor. PLoS ONE, 2012, 7, e34645.	1.1	37
426	Dental Pulp Stem Cells Differentiation Reveals New Insights in Oct4A Dynamics. PLoS ONE, 2012, 7, e41774.	1.1	52
427	Human Pluripotent Stem Cell-Derived Cardiomyocytes: Response to TTX and Lidocain Reveals Strong Cell to Cell Variability. PLoS ONE, 2012, 7, e45963.	1.1	49
428	Recent Advances and Applications of Transgenic Animal Technology. , 2012, , .		2
429	Neural and Dopaminergic Differentiation of Human Pluripotent Stem Cells. , 2012, , 265-287.		0
430			
	Differentiation Efficiency of Induced Pluripotent Stem Cells Depends on the Number of Reprogramming Factors. Stem Cells, 2012, 30, 570-579.	1.4	60

#	Article	IF	CITATIONS
432	A comparative study of induced pluripotent stem cells generated from frozen, stocked bone marrow- and adipose tissue-derived mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 261-271.	1.3	21
433	The molecular circuitry underlying pluripotency in embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 443-456.	6.6	12
434	miR-290 Cluster Modulates Pluripotency by Repressing Canonical NF-κB Signaling. Stem Cells, 2012, 30, 655-664.	1.4	56
435	DNA Hypermethylation in Somatic Cells Correlates with Higher Reprogramming Efficiency. Stem Cells, 2012, 30, 1696-1702.	1.4	17
436	Cell and Tissue Therapy in Regenerative Medicine. Advances in Experimental Medicine and Biology, 2012, 741, 89-102.	0.8	21
437	Stem Cell Sources for Vascular Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2012, 18, 405-425.	2.5	81
438	The genomic stability of induced pluripotent stem cells. Protein and Cell, 2012, 3, 271-277.	4.8	14
439	Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all–iPS cell mice from terminally differentiated B cells. Nature Genetics, 2012, 44, 398-405.	9.4	250
440	Chondrogenic Differentiation in vitro of Murine Two-Factor Induced Pluripotent Stem Cells is Comparable to Murine Embryonic Stem Cells. Cells Tissues Organs, 2012, 196, 481-489.	1.3	3
441	Reprogramming the kidney: a novel approach for regeneration. Kidney International, 2012, 82, 138-146.	2.6	32
442	Emerging Methods for Preparing iPS Cells. Japanese Journal of Clinical Oncology, 2012, 42, 773-779.	0.6	36
443	Induction of Vascular Progenitor Cells From Endothelial Cells Stimulates Coronary Collateral Growth. Circulation Research, 2012, 110, 241-252.	2.0	43
444	Neural stem cells, adult neurogenesis, and galectinâ€1: From bench to bedside. Developmental Neurobiology, 2012, 72, 1059-1067.	1.5	29
445	Pluripotent stem cellâ€based heart regeneration: From the developmental and immunological perspectives. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 98-108.	3.6	9
446	The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481, 295-305.	13.7	976
447	Potential of Pluripotent Stem Cells for Diabetes Therapy. Current Diabetes Reports, 2012, 12, 490-498.	1.7	13
448	Buffalo (Bubalus bubalis) Fetal Skin Derived Fibroblast Cells Exhibit Characteristics of Stem Cells. Agricultural Research, 2012, 1, 175-182.	0.9	16
449	Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	44

#	Article	IF	Citations
450	SWI/SNF Chromatin Remodeling Complex: A New Cofactor in Reprogramming. Stem Cell Reviews and Reports, 2012, 8, 128-136.	5.6	11
451	Autologous Pluripotent Stem Cells Generated from Adult Mouse Testicular Biopsy. Stem Cell Reviews and Reports, 2012, 8, 435-444.	5.6	22
452	Material-driven differentiation of induced pluripotent stem cells in neuron growth factor-grafted poly(ε-caprolactone)-poly(β-hydroxybutyrate) scaffolds. Biomaterials, 2012, 33, 5672-5682.	5.7	44
453	Stem cells and veterinary medicine: Tools to understand diseases and enable tissue regeneration and drug discovery. Veterinary Journal, 2012, 191, 19-27.	0.6	16
454	Reprogramming of gastrointestinal cancer cells. Cancer Science, 2012, 103, 393-399.	1.7	10
455	Livestock Induced Pluripotent Stem Cells. Reproduction in Domestic Animals, 2012, 47, 72-76.	0.6	5
456	GGF2 (Nrg1â€Î²3) treatment enhances NG2 ⁺ cell response and improves functional recovery after spinal cord injury. Glia, 2012, 60, 281-294.	2.5	32
457	Application of Epigenomeâ€Modifying Small Molecules in Induced Pluripotent Stem Cells. Medicinal Research Reviews, 2013, 33, 790-822.	5.0	14
458	Induced pluripotent stem cells and hepatic differentiation. Journal of the Chinese Medical Association, 2013, 76, 599-605.	0.6	13
459	Establishment of totipotency does not depend onÂOct4A. Nature Cell Biology, 2013, 15, 1089-1097.	4.6	99
460	Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers. Cell Stem Cell, 2013, 13, 341-350.	5.2	137
461	Induced Pluripotent Stem Cells from Human Hair Follicle Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2013, 9, 451-460.	5.6	54
462	Is aging a barrier to reprogramming? Lessons from induced pluripotent stem cells. Biogerontology, 2013, 14, 591-602.	2.0	16
463	In Vitro Expansion of Fetal Neural Progenitors as Adherent Cell Lines. Methods in Molecular Biology, 2013, 1059, 13-24.	0.4	23
464	SILAC Proteomics of Planarians Identifies Ncoa5 as a Conserved Component of Pluripotent Stem Cells. Cell Reports, 2013, 5, 1142-1155.	2.9	44
465	ΔNp63 regulates select routes of reprogramming via multiple mechanisms. Cell Death and Differentiation, 2013, 20, 1698-1708.	5.0	22
466	Class IIa Histone Deacetylases and Myocyte Enhancer Factor 2 Proteins Regulate the Mesenchymal-to-Epithelial Transition of Somatic Cell Reprogramming. Journal of Biological Chemistry, 2013, 288, 12022-12031.	1.6	11
467	Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12172-12179.	3.3	117

#	Article	IF	Citations
468	Disclosing the crosstalk among DNA methylation, transcription factors, and histone marks in human pluripotent cells through discovery of DNA methylation motifs. Genome Research, 2013, 23, 2013-2029.	2.4	32
469	Induced pluripotent stem cells: origins, applications, and future perspectives. Journal of Zhejiang University: Science B, 2013, 14, 1059-1069.	1.3	25
470	Direct Reprogramming of Adult Somatic Cells into other Lineages: Past Evidence and Future Perspectives. Cell Transplantation, 2013, 22, 921-944.	1.2	20
471	A Hierarchy in Reprogramming Capacity in Different Tissue Microenvironments: What We Know and What We Need to Know. Stem Cells and Development, 2013, 22, 695-706.	1.1	22
472	Characteristics of stem cells. , 2013, , 1-32.		0
473	Predicting stem cell fate changes by differential cell cycle progression patterns. Development (Cambridge), 2013, 140, 459-470.	1.2	128
474	Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Research, 2013, 23, 92-106.	5.7	124
475	DNA Repair in Normal Stem Cells. , 2013, , 53-87.		2
476	Induced pluripotent stem cells for spinal cord injury therapy: current status and perspective. Neurological Sciences, 2013, 34, 11-17.	0.9	15
477	Steps Toward Safe Cell Therapy Using Induced Pluripotent Stem Cells. Circulation Research, 2013, 112, 523-533.	2.0	371
478	Profiling pluripotent stem cells and organelles using synchrotron radiation infrared microspectroscopy. Journal of Biophotonics, 2013, 6, 60-72.	1.1	35
479	SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. Journal of Neuroscience Research, 2013, 91, 196-210.	1.3	34
480	Clinical Grade iPS Cells: Need for Versatile Small Molecules and Optimal Cell Sources. Chemistry and Biology, 2013, 20, 1311-1322.	6.2	27
481	Guided differentiation of induced pluripotent stem cells into neuronal lineage in alginate–chitosan–gelatin hydrogels with surface neuron growth factor. Colloids and Surfaces B: Biointerfaces, 2013, 104, 194-199.	2.5	32
482	Reprogramming of fetal cells by avian EE for generation of pluripotent stem cell like cells in caprine. Research in Veterinary Science, 2013, 95, 638-643.	0.9	3
483	A unique Oct4 interface is crucial for reprogramming to pluripotency. Nature Cell Biology, 2013, 15, 295-301.	4.6	135
484	Epigenetic Reprogramming of the Germ Cell Nuclear Factor Gene Is Required for Proper Differentiation of Induced Pluripotent Cells. Stem Cells, 2013, 31, 2659-2666.	1.4	9
485	Sources for skeletal muscle repair: from satellite cells to reprogramming. Journal of Cachexia, Sarcopenia and Muscle, 2013, 4, 125-136.	2.9	31

	CITATION R	EPORT	
#	Article	IF	CITATIONS
486	Regulation of Lung Cancer Metastasis by Klf4-Numb–like Signaling. Cancer Research, 2013, 73, 2695-2705.	0.4	56
487	Introduction to Stem Cells and Regenerative Medicine. Respiration, 2013, 85, 3-10.	1.2	301
488	Accelerated nerve regeneration using induced pluripotent stem cells in chitin–chitosan–gelatin scaffolds with inverted colloidal crystal geometry. Colloids and Surfaces B: Biointerfaces, 2013, 103, 595-600.	2.5	42
489	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0
490	Expansion and Differentiation of Germline-Derived Pluripotent Stem Cells on Biomaterials. Tissue Engineering - Part A, 2013, 19, 1067-1080.	1.6	4
491	Facile and Efficient Reprogramming of Ciliary Body Epithelial Cells into Induced Pluripotent Stem Cells. Stem Cells and Development, 2013, 22, 2543-2550.	1.1	11
492	Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases. Protein and Cell, 2013, 4, 415-424.	4.8	5
493	New Balance in Pluripotency: Reprogramming with Lineage Specifiers. Cell, 2013, 153, 939-940.	13.5	9
494	Induced neural stem cells (iNSCs) in neurodegenerative diseases. Journal of Neural Transmission, 2013, 120, 19-25.	1.4	28
495	A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Research, 2013, 23, 33-48.	5.7	108
496	Neural stem cells as tools for drug discovery: novel platforms and approaches. Expert Opinion on Drug Discovery, 2013, 8, 1083-1094.	2.5	19
497	Inverted colloidal crystal scaffolds with induced pluripotent stem cells for nerve tissue engineering. Colloids and Surfaces B: Biointerfaces, 2013, 102, 789-794.	2.5	21
498	Effects of TET1 knockdown on gene expression and DNA methylation in porcine induced pluripotent stem cells. Reproduction, 2013, 146, 569-579.	1.1	15
499	Widespread resetting of DNA methylation in glioblastoma-initiating cells suppresses malignant cellular behavior in a lineage-dependent manner. Genes and Development, 2013, 27, 654-669.	2.7	121
500	Calcium signalling of human pluripotent stem cellâ€derived cardiomyocytes. Journal of Physiology, 2013, 591, 5279-5290.	1.3	70
501	Sustained Knockdown of a Disease-Causing Gene in Patient-Specific Induced Pluripotent Stem Cells Using Lentiviral Vector-Based Gene Therapy. Stem Cells Translational Medicine, 2013, 2, 641-654.	1.6	36
502	Induction of Pluripotent Stem Cells from Primordial Germ Cells by Single Reprogramming Factors. Stem Cells, 2013, 31, 479-487.	1.4	15
503	TRIM32-dependent transcription in adult neural progenitor cells regulates neuronal differentiation. Cell Death and Disease, 2013, 4, e976-e976.	2.7	38

ARTICLE IF CITATIONS # Reprogramming of Mouse Cochlear Cells by Transcription Factors to Generate Induced Pluripotent 504 0.5 14 Stem Cells. Cellular Reprogramming, 2013, 15, 514-519. Breaking through an epigenetic wall. Epigenetics, 2013, 8, 164-176. 1.3 TAM Receptors Affect Adult Brain Neurogenesis by Negative Regulation of Microglial Cell Activation. 506 0.4 99 Journal of Immunology, 2013, 191, 6165-6177. Induced Pluripotent Stem Cells., 2013, , 1-19. Small Molecules in Stem Cell Research. Current Pharmaceutical Biotechnology, 2013, 14, 36-45. 508 0.9 0 Induced Pluripotent Stem Cells and Their Potential for Basic and Clinical Sciences. Current 509 0.6 Cardiology Reviews, 2013, 9, 63-72. Over-Expression of hNGF in Adult Human Olfactory Bulb Neural Stem Cells Promotes Cell Growth and 510 1.1 21 Oligodendrocytic Differentiation. PLoS ONE, 2013, 8, e82206. Animal Models of Regenerative Medicine., 2013, , 219-234. 512 Induced pluripotent stem cellsÂ: from history to applications. Hematologie, 2013, 19, 20-32. 0.0 0 Regulatory Issues in the Therapeutic Use of Stem Cells., 0,,. Pituitary Stem/Progenitor Cells: Their Enigmatic Roles in Embryogenesis and Pituitary Neoplasia - A 514 0.1 0 Review Article. Journal of Neurological Disorders, 2013, 02, . Multiple Paths to Reprogramming., 2013,,. Effects of Erythropoietin in Murine-Induced Pluripotent Cell-Derived Panneural Progenitor Cells. 516 1.9 0 Molecular Medicine, 2013, 19, 399-408. Impaired Neural Differentiation of Induced Pluripotent Stem Cells Generated from a Mouse Model of Sandhoff Disease. PLoS ONE, 2013, 8, e55856. 1.1 Reprogramming to Pluripotency through a Somatic Stem Cell Intermediate. PLoS ONE, 2013, 8, e85138. 518 1.1 13 Induced pluripotent stem cells., 0, , 19-33. Thinking outside the liver: Induced pluripotent stem cells for hepatic applications. World Journal of 520 29 1.4 Gastroenterology, 2013, 19, 3385. Direct Reprogramming into Desired Cell Types by Defined Factors. Keio Journal of Medicine, 2013, 62, 74-82.

		CITATION REF	PORT	
#	ARTICLE		IF	CITATIONS
322	Stem and Progenitor Cens in Regenerative Pharmacology, , 2015, , 75-120.			3
523	Fluctuating levels of reprogramming factor expression in cultured human undifferentiat keratinocytes. African Journal of Biotechnology, 2013, 12, 5389-5394.	ted	0.3	0
524	Efficient Reprogramming of NaÃ⁻ve-Like Induced Pluripotent Stem Cells from Porcine A Stem Cells with a Feeder-Independent and Serum-Free System. PLoS ONE, 2014, 9, e85	dipose-Derived 1089.	1.1	45
525	Generation of Rat-Induced Pluripotent Stem Cells from a New Model of Metabolic Synd ONE, 2014, 9, e104462.	rome. PLoS	1.1	10
526	Establishment of a Rabbit Oct4 Promoter-Based EGFP Reporter System. PLoS ONE, 201	4, 9, e109728.	1.1	8
527	Influence of the extracellular matrix on endogenous and transplanted stem cells after b Frontiers in Cellular Neuroscience, 2014, 8, 219.	rain damage.	1.8	56
528	Survival and Differentiation of Adenovirus-Generated Induced Pluripotent Stem Cells Tr into the Rat Striatum. Cell Transplantation, 2014, 23, 1407-1423.	ansplanted	1.2	17
529	Zfp322a Regulates Mouse ES Cell Pluripotency and Enhances Reprogramming Efficienc 2014, 10, e1004038.	y. PLoS Genetics,	1.5	21
530	MC3 Mucoepidermoid carcinoma cell line enriched cancer stem-like cells following cher Oncology Letters, 2014, 7, 1569-1575.	notherapy.	0.8	5
531	Isolation and characterization of neural stem cells from buffalo. International Journal of Neuroscience, 2014, 124, 450-456.		0.8	7
532	Nanog induces hyperplasia without initiating tumors. Stem Cell Research, 2014, 13, 30	0-315.	0.3	21
533	Transient folate deprivation facilitates the generation of mouseâ€induced pluripotent s Biology International, 2014, 38, 571-576.	tem cells. Cell	1.4	1
534	Generation of iPS Cells from Granulosa Cells. Methods in Molecular Biology, 2014, 135	7, 451-464.	0.4	5
535	CD99 Drives Terminal Differentiation of Osteosarcoma Cells by Acting as a Spatial Regul/2. Journal of Bone and Mineral Research, 2014, 29, 1295-1309.	ulator of ERK	3.1	37
536	The Neural Stem Cell Lineage Reveals Novel Relationships Among Spermatogonial Gern Other Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 767-778.	ו Stem Cells and	1.1	3
537	Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (Development (Cambridge), 2014, 141, 962-973.	INTACT).	1.2	45
538	Somatic Cells, Stem Cells, and Induced Pluripotent Stem Cells: How Do They Now Cont Conservation?. Advances in Experimental Medicine and Biology, 2014, 753, 385-427.	ribute to	0.8	18
539	Potential and Limitation of HLA-Based Banking of Human Pluripotent Stem Cells for Ce Journal of Immunology Research, 2014, 2014, 1-6.	l Therapy.	0.9	67

ARTICLE IF CITATIONS # Generation of induced pluripotent stem cells from neonatal mouse cochlear cells. Differentiation, 540 1.0 4 2014, 87, 127-133. Generation of Mouse Induced Pluripotent Stem Cells by Protein Transduction. Tissue Engineering -541 1.1 Part C: Methods, 2014, 20, 383-392. The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and 542 5.6 53 Regenerative Medicine. Stem Cell Reviews and Reports, 2014, 10, 177-190. Generation of induced pluripotent stem cells from conjunctiva. Graefe's Archive for Clinical and 543 1.0 Experimental Ophthalmology, 2014, 252, 423-431. The use of small molecules in somatic-cell reprogramming. Trends in Cell Biology, 2014, 24, 179-187. 544 3.6 60 Comparison of Reprogramming Genes in Induced Pluripotent Stem Cells and Nuclear Transfer Cloned 5.6 Embryos. Stem Cell Reviews and Reports, 2014, 10, 548-560. Counteracting Activities of OCT4 and KLF4 during Reprogramming to Pluripotency. Stem Cell Reports, 546 2.311 2014, 2, 351-365. Efficient Induction of Pluripotent Stem Cells from Granulosa Cells by <i>Oct4</i> and <i>Sox2</i>. 1.1 21 Stem Cells and Development, 2014, 23, 779-789. 548 Stem Cells and Cell Therapy. Cell Engineering, 2014, , . 0.4 4 549 Nonstochastic Reprogramming from a Privileged Somatic Cell State. Cell, 2014, 156, 649-662. 13.5 168 Altered miRNA expression is associated with neuronal fate in G93A-SOD1 ependymal stem progenitor 550 31 2.0 cells. Experimental Neurology, 2014, 253, 91-101. Reactivation of inactive X chromosome and post-transcriptional reprogramming of Xist in induced 1.2 pluripotent stem cells. Journal of Cell Science, 2014, 128, 81-7. GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS 552 1.0 11 cells. Differentiation, 2014, 87, 193-199. Reprogramming Somatic Cells to a Kidney Fate. Seminars in Nephrology, 2014, 34, 462-480. 0.6 Finding degrees of separation: Experimental approaches for astroglial and oligodendroglial cell 554 1.3 13 isolation and genetic targeting. Journal of Neuroscience Methods, 2014, 236, 125-147. All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation. Stem Cells and Development, 2014, 23, 1285-1300. The Polycomb Protein Ezh2 Impacts on Induced Pluripotent Stem Cell Generation. Stem Cells and 556 1.1 52 Development, 2014, 23, 931-940. Improved retroviral episome transfer of transcription factors enables sustained cell fate 2.3 modification. Gene Therapy, 2014, 21, 938-949.

#	Article	IF	CITATIONS
558	Reprogramming by lineage specifiers: blurring the lines between pluripotency and differentiation. Current Opinion in Genetics and Development, 2014, 28, 57-63.	1.5	6
559	Reptin Regulates Pluripotency of Embryonic Stem Cells and Somatic Cell Reprogramming Through Oct4-Dependent Mechanism. Stem Cells, 2014, 32, 3126-3136.	1.4	10
560	Reprogramming Sertoli Cells into Pluripotent Stem Cells. Cellular Reprogramming, 2014, 16, 196-205.	0.5	11
561	Continuous release of bFGF from multilayer nanofilm to maintain undifferentiated human iPS cell cultures. Integrative Biology (United Kingdom), 2014, 6, 1196-1200.	0.6	13
562	Reproductive Sciences in Animal Conservation. Advances in Experimental Medicine and Biology, 2014, , .	0.8	17
563	iPS cell derived neuronal cells for drug discovery. Trends in Pharmacological Sciences, 2014, 35, 510-519.	4.0	57
564	Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. Journal of Hematology and Oncology, 2014, 7, 50.	6.9	36
565	Generation of Induced Pluripotent Stem Cells from Hair Follicle Bulge Neural Crest Stem Cells. Cellular Reprogramming, 2014, 16, 307-313.	0.5	3
566	Sodium Butyrate Efficiently Converts Fully Reprogrammed Induced Pluripotent Stem Cells from Mouse Partially Reprogrammed Cells. Cellular Reprogramming, 2014, 16, 345-354.	0.5	12
567	Sphere Formation Permits Oct4 Reprogramming of Ciliary Body Epithelial Cells into Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 3065-3071.	1.1	9
568	Fibroblast Growth Factor 4 Is Required but not Sufficient for the Astrocyte Dedifferentiation. Molecular Neurobiology, 2014, 50, 997-1012.	1.9	21
569	Transitions between epithelial and mesenchymal states during cell fate conversions. Protein and Cell, 2014, 5, 580-591.	4.8	44
570	Embryonic Stem Cells and Induced Pluripotent Stem Cells for Skeletal Regeneration. Tissue Engineering - Part B: Reviews, 2014, 20, 381-391.	2.5	29
571	A promising approach to iPSC-based cell therapy for diabetic wound treatment: Direct lineage reprogramming. Molecular and Cellular Endocrinology, 2014, 393, 8-15.	1.6	11
572	Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing. Journal of Clinical Medicine, 2014, 3, 39-87.	1.0	25
573	Application of Induced Pluripotent Stem Cells in Liver Diseases. Cell Medicine, 2014, 7, 1-13.	5.0	15
574	The development of a malignant tumor is due to a desperate asexual self-cloning process in which cancer stem cells develop the ability to mimic the genetic program of germline cells. Intrinsically Disordered Proteins, 2014, 2, e29997.	1.9	29
575	Oct4â€induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO Journal, 2015, 34, 2971-2983.	3.5	49

	CITATION	REPORT	
#	Article	IF	CITATIONS
576	Regenerative Medicine for Parkinson's Disease. Neurologia Medico-Chirurgica, 2015, 55, 113-123.	1.0	8
577	Selective influence of Sox2 on <scp>POU</scp> transcription factor binding in embryonic and neural stem cells. EMBO Reports, 2015, 16, 1177-1191.	2.0	52
578	Lost in translation: pluripotent stem cellâ€derived hematopoiesis. EMBO Molecular Medicine, 2015, 7, 1388-1402.	3.3	76
579	The dosage of Patz1 modulates reprogramming process. Scientific Reports, 2014, 4, 7519.	1.6	20
580	E-Ras improves the efficiency of reprogramming by facilitating cell cycle progression through JNK–Sp1 pathway. Stem Cell Research, 2015, 15, 481-494.	0.3	9
581	Characterization of mesenchymal progenitor cells in the crown and root pulp of primary teeth . Biomedical Research, 2015, 36, 31-45.	0.3	16
582	Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2015, 16, 18894-18922.	1.8	41
583	Cell-based therapies of liver diseases: age-related challenges. Clinical Interventions in Aging, 2015, 10, 1909.	1.3	14
584	Generation of Highly Purified Human Cardiomyocytes from Peripheral Blood Mononuclear Cell-Derived Induced Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0126596.	1,1	46
585	Generation of NaÃ ⁻ ve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE, 2015, 10, e0135403.	1.1	54
586	KLF4 Genome: A double edged sword. Journal of Solid Tumors, 2015, 5, .	0.1	5
587	Concise Review: Are Stimulated Somatic Cells Truly Reprogrammed into an ES/iPS-Like Pluripotent State? Better Understanding by Ischemia-Induced Multipotent Stem Cells in a Mouse Model of Cerebral Infarction. Stem Cells International, 2015, 2015, 1-6.	1.2	12
588	The Current Status of Directed Differentiation Technology. Hanyang Medical Reviews, 2015, 35, 215.	0.4	1
589	Mitochondrial Mechanisms of Metabolic Reprogramming in Proliferating Cells. Current Medicinal Chemistry, 2015, 22, 2493-2504.	1.2	15
590	The homeobox gene DLX4 promotes generation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 7283.	1.6	20
591	Cloning and characterization of rabbit POU5F1, SOX2, KLF4, C-MYC and NANOG pluripotency-associated genes. Gene, 2015, 566, 148-157.	1.0	12
592	Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems. Current Opinion in Genetics and Development, 2015, 31, 42-49.	1.5	16
593	Differential effect of Activin A and WNT3a on definitive endoderm differentiation on electrospun nanofibrous PCL scaffold. Cell Biology International, 2015, 39, 591-599.	1.4	15

#	Article	IF	CITATIONS
594	Role of Zscan4 in secondary murine iPSC derivation mediated by protein extracts of ESC or iPSC. Biomaterials, 2015, 59, 102-115.	5.7	6
595	Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming. Stem Cell Reports, 2015, 5, 1119-1127.	2.3	16
596	Induction of Pluripotency in Astrocytes through a Neural Stem Cell-like State. Journal of Biological Chemistry, 2015, 290, 31173-31188.	1.6	13
597	Computational Biology Methods for Characterization of Pluripotent Cells. Methods in Molecular Biology, 2015, 1357, 195-220.	0.4	1
598	Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research. Current Protocols in Stem Cell Biology, 2015, 32, 4A.8.1-4A.8.17.	3.0	75
599	The role of purinergic receptors in stem cell differentiation. Computational and Structural Biotechnology Journal, 2015, 13, 75-84.	1.9	57
600	Cord Blood Content. , 2015, , 9-26.		0
601	Inducing pluripotency <i>in vitro</i> : recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Proliferation, 2015, 48, 140-156.	2.4	34
602	Role of Nanotechnology in Epigenetic Reprogramming. Stem Cells and Development, 2015, 24, 535-549.	1.1	4
603	Derivation and High Engraftment of Patient-Specific Cardiomyocyte Sheet Using Induced Pluripotent Stem Cells Generated From Adult Cardiac Fibroblast. Circulation: Heart Failure, 2015, 8, 156-166.	1.6	81
604	Adipose Stromal Cells are a More Efficient Source than Adipose Stem Cells in Retrovirus-Mediated iPS Induction. Cellular and Molecular Bioengineering, 2015, 8, 224-235.	1.0	2
605	Brain Vascular Pericytes Following Ischemia Have Multipotential Stem Cell Activity to Differentiate Into Neural and Vascular Lineage Cells. Stem Cells, 2015, 33, 1962-1974.	1.4	190
607	Direct transcriptional reprogramming to nephron progenitors. Current Opinion in Genetics and Development, 2015, 34, 10-16.	1.5	6
608	Murine hematopoietic stem cell dormancy controlled by induction of a novel short form of PSF1 by histone deacetylase inhibitors. Experimental Cell Research, 2015, 334, 183-193.	1.2	3
609	Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine. International Journal of Molecular Sciences, 2015, 16, 4043-4067.	1.8	20
610	Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells. Stem Cells and Development, 2015, 24, 2634-2648.	1.1	21
611	Granulosa cell-derived induced pluripotent stem cells exhibit pro-trophoblastic differentiation potential. Stem Cell Research and Therapy, 2015, 6, 14.	2.4	10
612	Macrophage Migration Inhibitory Factor as a Chaperone Inhibiting Accumulation of Misfolded SOD1. Neuron, 2015, 86, 218-232.	3.8	98

#	ARTICLE	IF	CITATIONS
613	Cell Type-Specific Expression Profile and Signaling Requirements in Early Hematopoletic Reprogramming. Stem Cells and Development, 2015, 24, 1483-1492.	1.1	0
614	Direct Cardiac Reprogramming. Circulation Research, 2015, 116, 1378-1391.	2.0	118
615	Molecular cloning and production of caprine recombinant Oct4 protein for generation induced pluripotent stem cells. Molecular Biology Reports, 2015, 42, 1583-1591.	1.0	4
616	<i><scp>OCT</scp>â€4</i> and <i><scp>DAZL</scp></i> expression in precancerous lesions of the human uterine cervix. Journal of Obstetrics and Gynaecology Research, 2015, 41, 763-767.	0.6	5
617	Inducible Lentivirus-Mediated Expression of the <i>Oct4</i> Gene Affects Multilineage Differentiation of Adult Human Bone Marrow–Derived Mesenchymal Stem Cells. Cellular Reprogramming, 2015, 17, 347-359.	0.5	8
618	Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica, 2015, 100, 32-41.	1.7	67
619	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	2.3	84
620	Deregulated proliferation and differentiation in brain tumors. Cell and Tissue Research, 2015, 359, 225-254.	1.5	28
621	Generation of pluripotent stem cells without the use of genetic material. Laboratory Investigation, 2015, 95, 26-42.	1.7	62
622	SOX2-Dependent Regulation of Pluripotent Stem Cells. , 2016, , 163-185.		4
623	Current status of stem cell therapy: opportunities and limitations. Turkish Journal of Biology, 2016, 40, 955-967.	2.1	10
624	Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities. Oncotarget, 2016, 7, 38999-39016.	0.8	56
625	High-Fidelity Reprogrammed Human IPSCs Have a High Efficacy of DNA Repair and Resemble hESCs in Their MYC Transcriptional Signature. Stem Cells International, 2016, 2016, 1-14.	1.2	8
626	Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors. Stem Cells International, 2016, 2016, 1-6.	1.2	5
627	Transformation to Inducible Pluripotent Stem Cells. , 2016, , 243-265.		0
628	Effects of STAT3 inhibitors on neural functional recovery after spinal cord injury in rats. BioScience Trends, 2016, 10, 460-466.	1.1	14
629	Cellular Ontogeny and Hierarchy Influence the Reprogramming Efficiency of Human B Cells into Induced Pluripotent Stem Cells. Stem Cells, 2016, 34, 581-587.	1.4	18
630	Induced pluripotent stem cells in Alzheimer's disease: applications for disease modeling and cell-replacement therapy. Molecular Neurodegeneration, 2016, 11, 39.	4.4	57

#	Article	IF	CITATIONS
631	Melatonin improves reprogramming efficiency and proliferation of bovineâ€induced pluripotent stem cells. Journal of Pineal Research, 2016, 61, 154-167.	3.4	34
632	Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage. Stem Cell Reports, 2016, 6, 302-311.	2.3	19
633	Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell and Tissue Research, 2016, 365, 295-307.	1.5	10
634	Reprogramming cancer cells: overview & current progress. Expert Opinion on Biological Therapy, 2016, 16, 941-951.	1.4	12
635	Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells. Cell and Tissue Research, 2016, 366, 89-99.	1.5	17
636	Disease modelling using human iPSCs. Human Molecular Genetics, 2016, 25, R173-R181.	1.4	26
637	Looking to the future following 10 years of induced pluripotent stem cell technologies. Nature Protocols, 2016, 11, 1579-1585.	5.5	31
638	The Effect of Fetal Bovine Serum (FBS) on Efficacy of Cellular Reprogramming for Induced Pluripotent Stem Cell (iPSC) Generation. Cell Transplantation, 2016, 25, 1025-1042.	1.2	29
640	Defining the Cardiac Fibroblast. Circulation Journal, 2016, 80, 2269-2276.	0.7	201
641	Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency. Epigenomics, 2016, 8, 1131-1149.	1.0	21
642	Reprogramming bladder cancer cells for studying cancer initiation and progression. Tumor Biology, 2016, 37, 13237-13245.	0.8	16
643	Dental Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	2
644	Sox2: regulation of expression and contribution to brain tumors. CNS Oncology, 2016, 5, 159-173.	1.2	29
645	Genome-wide gene expression analyses reveal unique cellular characteristics related to the amenability of HPC/HSCs into high-quality induced pluripotent stem cells. Stem Cell Research and Therapy, 2016, 7, 40.	2.4	4
646	Biomaterials control of pluripotent stem cell fate for regenerative therapy. Progress in Materials Science, 2016, 82, 234-293.	16.0	40
647	Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 893-907.	1.3	44
648	LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer. Biochemical and Biophysical Research Communications, 2016, 469, 985-992.	1.0	57
649	Nestin-positive/SOX2â^'negative cells mediate adult neurogenesis of nigral dopaminergic neurons in mice. Neuroscience Letters, 2016, 615, 50-54.	1.0	28

#	Article	IF	CITATIONS
650	Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis. Nature Medicine, 2016, 22, 397-403.	15.2	112
652	Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Research, 2016, 26, 34-45.	5.7	62
653	Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules. Stem Cell Reviews and Reports, 2016, 12, 73-89.	5.6	5
654	Zfp553 Is Essential for Maintenance and Acquisition of Pluripotency. Stem Cells and Development, 2016, 25, 55-67.	1.1	5
655	Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2017, 13, 532-541.	5.6	1
656	Peptide-Decorated Nanofibrous Niche Augments In Vitro Directed Osteogenic Conversion of Human Pluripotent Stem Cells. Biomacromolecules, 2017, 18, 587-598.	2.6	36
657	EpEX/EpCAM and Oct4 or Klf4 alone are sufficient to generate induced pluripotent stem cells through STAT3 and HIF2α. Scientific Reports, 2017, 7, 41852.	1.6	42
658	Nanotubes impregnated human olfactory bulb neural stem cells promote neuronal differentiation in Trimethyltinâ€induced neurodegeneration rat model. Journal of Cellular Physiology, 2017, 232, 3586-3597.	2.0	30
659	Krüppel-like factors in mammalian stem cells and development. Development (Cambridge), 2017, 144, 737-754.	1.2	99
660	Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Research, 2017, 20, 1-9.	0.3	5
661	Pluripotent stem cells to hepatocytes, the journey so far. Biomedical Reports, 2017, 6, 367-373.	0.9	39
662	Multilayer Nanofilms via Inkjet Printing for Stabilizing Growth Factor and Designing Desired Cell Developments. Advanced Healthcare Materials, 2017, 6, 1700216.	3.9	8
663	The potential of miR-183 family expression in inner ear for regeneration, treatment, diagnosis and prognosis of hearing loss. Journal of Otology, 2017, 12, 55-61.	0.4	5
664	Changing <scp>POU</scp> dimerization preferences converts Oct6 into a pluripotency inducer. EMBO Reports, 2017, 18, 319-333.	2.0	42
665	Derivation of Human Induced Pluripotent Stem Cell (iPSC) Lines and Mechanism of Pluripotency: Historical Perspective and Recent Advances. Stem Cell Reviews and Reports, 2017, 13, 757-773.	5.6	25
666	Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials, 2017, 147, 116-132.	5.7	38
667	Induced Pluripotent Stem Cell Therapy and Safety Concerns in Age-Related Chronic Neurodegenerative Diseases. Stem Cells in Clinical Applications, 2017, , 23-65.	0.4	0
668	Reduced expression of Paternally Expressed Gene-3 enhances somatic cell reprogramming through mitochondrial activity perturbation. Scientific Reports, 2017, 7, 9705.	1.6	10

#	Article	IF	CITATIONS
669	First study of sperm mediated gene transfer in Egyptian river buffalo. Journal of Genetic Engineering and Biotechnology, 2017, 15, 475-482.	1.5	3
670	Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication, 2017, 9, 032001.	3.7	26
671	Safety, Ethics and Regulations. Stem Cells in Clinical Applications, 2017, , .	0.4	1
672	Bioengineered Cardiac Tissue Based on Human Stem Cells for Clinical Application. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 117-146.	0.6	1
673	The Differentiation Stage of Transplanted Stem Cells Modulates Nerve Regeneration. Scientific Reports, 2017, 7, 17401.	1.6	50
674	Cell Therapy for Parkinson's Disease. Cell Transplantation, 2017, 26, 1551-1559.	1.2	70
675	Selinexor-induced thrombocytopenia results from inhibition of thrombopoietin signaling in early megakaryopoiesis. Blood, 2017, 130, 1132-1143.	0.6	55
676	Reprogramming Enhancers in Somatic Cell Nuclear Transfer, iPSC Technology, and Direct Conversion. Stem Cell Reviews and Reports, 2017, 13, 24-34.	5.6	20
677	Alkaline phosphatase and <scp>OCT</scp> â€3/4 as useful markers for predicting susceptibility of human deciduous teethâ€derived dental pulp cells to reprogramming factorâ€induced iPS cells. Journal of Investigative and Clinical Dentistry, 2017, 8, e12236.	1.8	18
678	Establishment of Novel Limbus-Derived, Highly Proliferative ABCG2 ⁺ /ABCB5 ⁺ Limbal Epithelial Stem Cell Cultures. Stem Cells International, 2017, 2017, 1-12.	1.2	12
679	Roles of gangliosides in the differentiation of mouse pluripotent stem cells to neural stem cells and neural cells. Molecular Medicine Reports, 2017, 16, 987-993.	1.1	12
680	Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investigation, 2017, 4, 67-67.	1.3	30
681	Cellular Dedifferentiation and Regenerative Medicine. , 2018, , .		0
682	Dedifferentiation and Skin Regeneration. , 2018, , 117-131.		1
683	Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming. Cellular and Molecular Life Sciences, 2018, 75, 1587-1612.	2.4	55
684	Application of induced pluripotency in cancer studies. Reports of Practical Oncology and Radiotherapy, 2018, 23, 207-214.	0.3	14
685	The principles that govern transcription factor network functions in stem cells. Development (Cambridge), 2018, 145, .	1.2	64
686	Proliferative Cells Isolated from the Adult Human Peripheral Retina only Transiently Upregulate Key Retinal Markers upon Induced Differentiation. Current Eye Research, 2018, 43, 340-349.	0.7	6

#	Article	IF	CITATIONS
687	Induced Pluripotent Stem Cells for Duchenne Muscular Dystrophy Modeling and Therapy. Cells, 2018, 7, 253.	1.8	31
688	Methyl 3,4-Dihydroxybenzoate Induces Neural Stem Cells to Differentiate Into Cholinergic Neurons in vitro. Frontiers in Cellular Neuroscience, 2018, 12, 478.	1.8	6
689	Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ, 2018, 6, e4370.	0.9	129
690	8. Patient-specific induced pluripotent stem cells for cardiac disease modeling. , 2018, , 146-172.		7
691	Conclusive Evidence for <i>OCT4</i> Transcription in Human Cancer Cell Lines: Possible Role of a Small OCT4-Positive Cancer Cell Population. Stem Cells, 2018, 36, 1341-1354.	1.4	7
692	Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Reviews and Reports, 2018, 14, 642-667.	5.6	34
693	Reprogramming of Mouse Calvarial Osteoblasts into Induced Pluripotent Stem Cells. Stem Cells International, 2018, 2018, 1-11.	1.2	0
694	The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Research and Therapy, 2018, 9, 201.	2.4	32
695	Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. Journal of Diabetes Research, 2018, 2018, 1-16.	1.0	49
696	Ash2l interacts with Oct4-stemness circuitry to promote super-enhancer-driven pluripotency network. Nucleic Acids Research, 2019, 47, 10115-10133.	6.5	20
697	The virtuous cycle of human genetics and mouse models in drug discovery. Nature Reviews Drug Discovery, 2019, 18, 255-272.	21.5	44
698	The effect of <i>Xenopus laevis</i> egg extracts with/without BRG1 on the development of preimplantation cloned mouse embryos. Zygote, 2019, 27, 143-152.	0.5	1
699	Filling the Gap: Neural Stem Cells as A Promising Therapy for Spinal Cord Injury. Pharmaceuticals, 2019, 12, 65.	1.7	64
700	From embryonic stem cells to induced pluripotent stem cells—Ready for clinical therapy?. Clinical Transplantation, 2019, 33, e13573.	0.8	12
701	Identification and Characterization of the <i>OCT4</i> Upstream Regulatory Region in <i>Sus scrofa</i> . Stem Cells International, 2019, 2019, 1-11.	1.2	5
702	Protein Chimera-based Ca2+ Rewiring as a Treatment Modality for Neurodegeneration. Current Psychopharmacology, 2019, 8, 27-40.	0.1	0
703	Engineering the niche for hair regeneration — A critical review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 70-85.	1.7	32
704	Dental pulp stem cells in serum-free medium for regenerative medicine. Journal of the Royal Society of New Zealand, 2020, 50, 80-90.	1.0	4

#	Article	IF	CITATIONS
705	Cell therapies for spinal cord injury regeneration. , 2020, , 157-186.		2
706	Functions of p53 in pluripotent stem cells. Protein and Cell, 2020, 11, 71-78.	4.8	50
707	Essential Current Concepts in Stem Cell Biology. Learning Materials in Biosciences, 2020, , .	0.2	2
708	Modeling Brain Disorders Using Induced Pluripotent Stem Cells. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035659.	2.3	28
709	Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 2020, 16, 3-32.	1.7	292
710	Overexpression of Krüppel-Like Factor 4 Suppresses Migration and Invasion of Non-Small Cell Lung Cancer Through c-Jun-NH2-Terminal Kinase/Epithelial-Mesenchymal Transition Signaling Pathway. Frontiers in Pharmacology, 2020, 10, 1512.	1.6	12
711	Modelling multiple sclerosis using induced pluripotent stem cells. Journal of Neuroimmunology, 2020, 349, 577425.	1.1	7
712	"Betwixt Mine Eye and Heart a League Is Took― The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. International Journal of Molecular Sciences, 2020, 21, 6997.	1.8	5
713	Double sperm cloning (DSC) is a promising strategy in mammalian genetic engineering and stem cell research. Stem Cell Research and Therapy, 2020, 11, 388.	2.4	6
714	Prospects of Directly Reprogrammed Adult Human Neurons for Neurodegenerative Disease Modeling and Drug Discovery: iN vs. iPSCs Models. Frontiers in Neuroscience, 2020, 14, 546484.	1.4	11
715	Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. Neurobiology of Pain (Cambridge, Mass), 2020, 8, 100055.	1.0	27
716	Cellular Reprogramming—A Model for Melanoma Cellular Plasticity. International Journal of Molecular Sciences, 2020, 21, 8274.	1.8	14
717	Utilizing Organoid and Air-Liquid Interface Models as a Screening Method in the Development of New Host Defense Peptides. Frontiers in Cellular and Infection Microbiology, 2020, 10, 228.	1.8	31
718	RXRα and MRTFâ€A have a synergistic effect in the retinoic acidâ€induced neuralâ€like differentiation of adult bone marrowâ€derived mesenchymal stem cells. Cell Biology International, 2020, 44, 1373-1381.	1.4	3
719	Development and Differentiation of Midbrain Dopaminergic Neuron: From Bench to Bedside. Cells, 2020, 9, 1489.	1.8	30
720	Glycogen synthase kinase $3\hat{l}^2$ inhibitor- CHIR 99021 augments the differentiation potential of mesenchymal stem cells. Cytotherapy, 2020, 22, 91-105.	0.3	20
721	Therapeutic Plasticity of Neural Stem Cells. Frontiers in Neurology, 2020, 11, 148.	1.1	65
722	Selinexor, selective inhibitor of nuclear export: Unselective bullet for blood cancers. Blood Reviews, 2021 46 100758	2.8	8

# 723	ARTICLE Induced pluripotent stem cell derivation from myoblasts. , 2021, , 37-55.	IF	CITATIONS 3
724	Recent Research and Development in Stem Cell Therapy for Cancer Treatment. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 514-533.	0.1	1
725	Convergence of human pluripotent stem cell, organoid, and genome editing technologies. Experimental Biology and Medicine, 2021, 246, 861-875.	1.1	5
726	Npac Is A Co-factor of Histone H3K36me3 and Regulates Transcriptional Elongation in Mouse Embryonic Stem Cells. Genomics, Proteomics and Bioinformatics, 2022, 20, 110-128.	3.0	4
727	Modeling Metabolic Diseases with Organoids: A Review. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 272-279.	0.1	1
728	Enhanced Osteogenic Differentiation of Pluripotent Stem Cells via Î ³ -Secretase Inhibition. International Journal of Molecular Sciences, 2021, 22, 5215.	1.8	8
729	Porcine <i>OCT4</i> Reporter System Can Monitor Species-Specific Pluripotency During Somatic Cell Reprogramming. Cellular Reprogramming, 2021, 23, 168-179.	0.5	5
730	Potential of Induced Pluripotent Stem Cells for Use in Gene Therapy: History, Molecular Bases, and Medical Perspectives. Biomolecules, 2021, 11, 699.	1.8	6
731	Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancreas in the Treatment of Type 1 Diabetes. Cells, 2021, 10, 1544.	1.8	11
733	Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Science Translational Medicine, 2021, 13, .	5.8	37
734	LDHâ€A negatively regulates dMMR in colorectal cancer. Cancer Science, 2021, 112, 3050-3063.	1.7	14
735	Current status and future prospects of patient-derived induced pluripotent stem cells. Human Cell, 2021, 34, 1601-1616.	1.2	6
736	An Alternative Cell Therapy for Cancers: Induced Pluripotent Stem Cell (iPSC)-Derived Natural Killer Cells. Biomedicines, 2021, 9, 1323.	1.4	7
737	Reprogramming lineage identity through cell–cell fusion. Current Opinion in Genetics and Development, 2021, 70, 15-23.	1.5	9
738	Cell type diversity in scallop adductor muscles revealed by single-cell RNA-Seq. Genomics, 2021, 113, 3582-3598.	1.3	16
739	Induced pluripotency and intrinsic reprogramming factors. , 2022, , 117-145.		0
740	Efficient and Safe Method of Generating Induced Pluripotent Stem Cells from Human Skin Fibroblasts and Subsequent Differentiation into Functional Cardiomyocytes. Methods in Molecular Biology, 2021, , 197-212.	0.4	1
741	Induced pluripotent stem cells for vascular tissue engineering. , 2021, , 77-97.		0

#	Article	IF	CITATIONS
742	Longâ€Term Multilayer Adherent Network (MAN) Expansion, Maintenance, and Characterization, Chemical and Genetic Manipulation, and Transplantation of Human Fetal Forebrain Neural Stem Cells. Current Protocols in Stem Cell Biology, 2009, 9, Unit2D.3.	3.0	14
743	Viral Manipulation of Neural Stem/Precursor Cells. Neuromethods, 2014, , 269-288.	0.2	1
744	Neural Progenitors. Human Cell Culture, 2009, , 1-44.	0.1	2
745	Properties of Mesenchymal Stem Cells to Consider for Cancer Cell Therapy. , 2009, , 79-98.		2
746	Alternative Embryonic Stem Cell Sources. , 2009, , 101-143.		1
747	Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. Journal of Clinical Investigation, 2011, 121, 640-657.	3.9	139
748	Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. Journal of Clinical Investigation, 2011, 121, 2326-2335.	3.9	211
749	Transcriptional Signature and Memory Retention of Human-Induced Pluripotent Stem Cells. PLoS ONE, 2009, 4, e7076.	1.1	276
750	Epigenetic Signatures Associated with Different Levels of Differentiation Potential in Human Stem Cells. PLoS ONE, 2009, 4, e7809.	1.1	96
751	Initial Colony Morphology-Based Selection for iPS Cells Derived from Adult Fibroblasts Is Substantially Improved by Temporary UTF1-Based Selection. PLoS ONE, 2010, 5, e9580.	1.1	28
752	Constitutive Expression of Pluripotency-Associated Genes in Mesodermal Progenitor Cells (MPCs). PLoS ONE, 2010, 5, e9861.	1.1	43
753	Purified Mesenchymal Stem Cells Are an Efficient Source for iPS Cell Induction. PLoS ONE, 2011, 6, e17610.	1.1	53
754	A Resource for Discovering Specific and Universal Biomarkers for Distributed Stem Cells. PLoS ONE, 2011, 6, e22077.	1.1	21
755	Genetic and Epigenetic Modifications of Sox2 Contribute to the Invasive Phenotype of Malignant Gliomas. PLoS ONE, 2011, 6, e26740.	1.1	187
756	Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process. PLoS ONE, 2012, 7, e30759.	1.1	6
757	Intercellular Transport of Oct4 in Mammalian Cells: A Basic Principle to Expand a Stem Cell Niche?. PLoS ONE, 2012, 7, e32287.	1.1	24
758	Stemness of the Organ of Corti Relates to the Epigenetic Status of Sox2 Enhancers. PLoS ONE, 2012, 7, e36066.	1.1	25
759	Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors. PLoS ONE, 2012, 7, e42838.	1.1	32

#	Article	IF	CITATIONS
760	Genetically Matched Human iPS Cells Reveal that Propensity for Cartilage and Bone Differentiation Differs with Clones, not Cell Type of Origin. PLoS ONE, 2013, 8, e53771.	1.1	49
761	Efficient Production of Retroviruses Using PLGA/bPEI-DNA Nanoparticles and Application for Reprogramming Somatic Cells. PLoS ONE, 2013, 8, e76875.	1.1	10
762	mRNA Transfection of Mouse and Human Neural Stem Cell Cultures. PLoS ONE, 2013, 8, e83596.	1.1	27
763	Molecular and Cellular Features of Murine Craniofacial and Trunk Neural Crest Cells as Stem Cell-Like Cells. PLoS ONE, 2014, 9, e84072.	1.1	15
764	Adult Limbal Neurosphere Cells: A Potential Autologous Cell Resource for Retinal Cell Generation. PLoS ONE, 2014, 9, e108418.	1.1	5
765	Efficient Differentiation of Steroidogenic and Germ-Like Cells from Epigenetically-Related iPSCs Derived from Ovarian Granulosa Cells. PLoS ONE, 2015, 10, e0119275.	1.1	19
766	Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression. PLoS ONE, 2015, 10, e0132566.	1.1	59
767	The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histology and Histopathology, 2009, 24, 1343-55.	0.5	70
768	Human Adult Stem Cells as the Target Cells for the Initiation of Carcinogenesis and for the Generation of "Cancer Stem Cells― International Journal of Stem Cells, 2008, 1, 8-26.	0.8	25
769	Somatic Cell Dedifferentiation/Reprogramming for Regenerative Medicine. International Journal of Stem Cells, 2009, 2, 18-27.	0.8	9
770	Evolution of Energy Metabolism, Stem Cells and Cancer Stem Cells: How the Warburg and Barker Hypotheses Might Be Linked. International Journal of Stem Cells, 2012, 5, 39-56.	0.8	28
771	Pluripotent Stem Cells, Endogenous versus Reprogrammed, a Review. MOJ Orthopedics & Rheumatology, 2014, 1, .	0.2	7
772	Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Current Stem Cell Research and Therapy, 2020, 15, 321-331.	0.6	32
773	The Art of Human Induced Pluripotent Stem Cells: The Past, the Present and the Future. Open Stem Cell Journal, 2010, 2, 2-7.	2.0	8
774	Stem Cells of Adult Organisms in Biology and Medicine. Advances in Cell Biology, 2010, 2, 155-166.	1.5	1
775	Modern Alchemy: Cellular Reprogramming and Transdifferentiation. , 2016, 1, 1-19.		2
777	Induced Pluripotent Stem Cells(iPS Cells):Current Status and Future Prospect*. Progress in Biochemistry and Biophysics, 2009, 2009, 950-960.	0.3	4
778	Transduction of Cell-Penetrating Peptides into Induced Pluripotent Stem Cells. Cell Transplantation, 2010, 19, 901-909.	1.2	24

#	Article	IF	CITATIONS
779	Cellular reprogramming and hepatocellular carcinoma development. World Journal of Gastroenterology, 2013, 19, 8850.	1.4	31
780	Stem cell therapy in neurodegenerative diseases: From principles to practice. Neural Regeneration Research, 2012, 7, 1822-31.	1.6	38
781	Induced Pluripotent Stem Cells: Next Generation Cells for Tissue Regeneration. Journal of Biomedical Science and Engineering, 2016, 09, 226-244.	0.2	49
782	Reprogramming mouse ear mesenchymal stem cells (EMSC) expressing the Dlk1-Dio3 imprinted gene cluster. Stem Cell Discovery, 2013, 03, 64-71.	0.5	1
783	Recent advances in stem cell research for the treatment of diabetes. World Journal of Stem Cells, 2009, 1, 36.	1.3	6
784	Epigenetic regulation of stemness maintenance in the neurogenic niches. World Journal of Stem Cells, 2015, 7, 700.	1.3	11
785	iPS cells generation: an overview of techniques and methods. Journal of Stem Cells and Regenerative Medicine, 2013, 9, 2-8.	2.2	9
786	Potential Clinical Applications of Embryonic Stem Cells. , 0, , .		1
787	Single cell RNA-seq identifies the origins of heterogeneity in efficient cell transdifferentiation and reprogramming. ELife, 2019, 8, .	2.8	44
788	Neonatal Porcine Germ Cells Dedifferentiate and Display Osteogenic and Pluripotency Properties. Cells, 2021, 10, 2816.	1.8	0
789	Recent advance in induced pluripotent stem cells. Inflammation and Regeneration, 2008, 28, 510-515.	1.5	0
791	Reprogramming of Somatic Cells: Generation of iPS from Adult Cells. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 208-225.	0.1	0
792	Reprogramming of Somatic Cells: Generation of iPS from Adult Cells. Reproductive Medicine and Assisted Reproductive Techniques Series, 2009, , 208-225.	0.1	0
793	Gene Expression Arrays in Pancreatic Cancer Drug Discovery Research. , 2010, , 113-134.		0
794	Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells: Viral and Non-viral Approaches. , 2011, , 159-179.		0
795	Stem Cells in Tissue Engineering and Cell Therapies of Urological Defects. , 2011, , 345-362.		0
796	Cells and Vascular Tissue Engineering. , 2011, , 261-295.		0
797	Direct Reprogramming of Human Neural Stem Cells by the Single Transcription Factor OCT4. Pancreatic Islet Biology, 2011, , 439-447.	0.1	0

# 798	ARTICLE Induced Pluripotent Stem Cells: On the Road Toward Clinical Applications. Pancreatic Islet Biology, 2011, , 427-438.	IF 0.1	CITATIONS
799	Cartilage Repair with Stem Cells. , 2010, , 477-502.		0
801	Stem Cell Therapy for Heart Failure Using Cord Blood. , 2011, , 221-236.		0
802	Cryopreservation of Stem Cells. , 2011, , 149-156.		0
803	Induced Pluripotent Cells for Myocardial Infarction Repair. , 2011, , 263-280.		0
804	Current Status of Induced Pluripotent Stem Cells. , 2011, , 39-52.		0
806	Nuclear reprogramming to treat retinal degenerative diseases. Inflammation and Regeneration, 2011, 31, 33-49.	1.5	3
809	Progress and Future Challenges of Human Induced Pluripotents Stem Cell in Regenerative Medicine. Indonesian Biomedical Journal, 2011, 3, 76.	0.2	0
810	Epigenetic Reprogramming Induced Pluripotency. Indonesian Biomedical Journal, 2011, 3, 93.	0.2	0
811	Induced Pluripotent Stem Cells from Blood. , 2012, , 87-95.		0
812	Stem Cell Research and Minipigs. , 2011, , 431-444.		0
813	iPS Cells: Born-Again Stem Cells for Biomedical Applications. , 0, , .		0
814	Potential Therapeutic Targets for Cerebral Resuscitation After Global Ischemia. , 2012, , 417-450.		0
815	Cellular Reprogramming and Fate Conversion. , 2012, , 211-225.		0
816	Generation of Patient Specific Stem Cells: A Human Model System. , 0, , .		1
817	Generate Induced Pluripotent Stem Cells by Three Factors under Feeder-Free Condition with Higher Efficiencies. Journal of Animal and Veterinary Advances, 2012, 11, 2110-2115.	0.1	0
818	Induced Pluripotent Stem Cells: Basics and the Application in Disease Model and Regenerative Medicine. , 2013, , 147-168.		0
819	Alternative Future Therapies for Lysosomal Storage Diseases: Embryonic Stem Cell- and Induced Pluripotent Stem Cell Therapy. Pancreatic Islet Biology, 2013, , 139-158.	0.1	0

#	Article	IF	Citations
820	Primary evaluation of induced pluripotent stem cells using flow cytometry. Inflammation and Regeneration, 2013, 33, 003-012.	1.5	0
821	Induced Pluripotent Stem Cells: New Advances in Cardiac Regenerative Medicine. , 2013, , 225-249.		0
822	Human-Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Their Cardiomyocyte Derivatives: An Overview. , 2013, , 321-345.		0
823	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2013, , 505-528.		0
824	Induced Cardiomyocytes. , 2013, , 258-275.		0
825	Reprogramming and Regenerative Medicine. , 2013, , 35-58.		0
827	Blood Cell Bioprocessing: The Haematopoietic System and Current Status of In-Vitro Production of Red Blood Cells. Cell Engineering, 2014, , 97-128.	0.4	0
828	Pluripotent Stem Cells. , 2014, , 287-303.		0
830	The Use of SHED in Cellular Therapy and Disease Modeling. JBR Journal of Interdisciplinary Medicine and Dental Science, 2014, 02, .	0.1	0
831	Advances in Stem Cell Research for Parkinson Disease. , 2014, , 653-690.		0
832	Pluripotency of iPSC and the Underlining Mechanism. Springer Theses, 2014, , 53-74.	0.0	0
833	The Use of Stem Cells in Treating Huntington's Disease. , 2014, , 20-55.		0
834	The Minipig $\hat{a} \in$ " A New Tool in Stem Cell Research. , 0, , .		0
836	Induced Pluripotent Stem-cell Lines in the Clinic - Still a Long Road Ahead. Journal of Human Virology & Retrovirology, 2015, 2, .	0.1	0
837	Pluripotent Stem Cells for Kidney Diseases. Pancreatic Islet Biology, 2016, , 69-84.	0.1	0
838	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2016, , 41-64.		0
839	Future Perspectives in Dental Stem Cell Engineering and the Ethical Considerations. Pancreatic Islet Biology, 2016, , 289-307.	0.1	0
840	Human iPS Cells are Capable of Differentiating into Ameloblasts, Odontoblasts, and Cementoblasts. Journal of the Society of Powder Technology, Japan, 2017, 54, 183-188.	0.0	0

		Citation Ref	PORT	
#	Article		IF	CITATIONS
841	Induced Pluripotent Stem Cells (iPSCs) and Nuclear Reprogramming. , 2017, , 71-91.			0
843	Naturwissenschaftliche Grundlagen im Kontext einer klinischen Anwendung von humanen induzierten pluripotenten Stammzellen. VerĶffentlichungen Des Instituts Fļr Deutsches, EuropĤches Und Internationales Medizinrecht, Gesundheitsrecht Und Bioethik Der UniversitĤen Heidelberg Und Mannheim. 2020 19-127.		0.2	4
844	Induced Pluripotent Stem Cells. Learning Materials in Biosciences, 2020, , 123-136.		0.2	1
846	Establishment of Induced Pluripotent Stem Cells from Dedifferentiated Adipocytes. Journal of the Nihon University Medical Association, 2020, 79, 275-286.		0.0	0
847	Regulation of scleral fibroblast differentiation by bone morphogenetic protein-2. International Journal of Ophthalmology, 2014, 7, 152-6.		0.5	9
848	Induced Pluripotent Stem Cells: Problems and Advantages when Applying them in Regenerative Medicine. Acta Naturae, 2010, 2, 18-28.		1.7	81
850	Metastatic cancer stem cells: from the concept to therapeutics. American Journal of Stem Cells, 20 3, 46-62.	14,	0.4	55
851	Research on induced pluripotent stem cells and the application in ocular tissues. International Journal of Ophthalmology, 2015, 8, 818-25.		0.5	1
852	Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells. American Journal of Translational Research (discontinued), 2016, 8, 4982-4993.		0.0	1
853	Regenerative Medicine, Disease Modeling, and Drug Discovery in Human Pluripotent Stem Cell-deri Kidney Tissue. European Medical Journal Reproductive Health, 2017, 3, 57-67.	ved	1.0	4
854	How induced pluripotent stem cells changed the research status of polycystic ovary syndrome. , 20 , 127-156.	22,		0
855	Tissue-Nonspecific Alkaline Phosphatase, a Possible Mediator of Cell Maturation: Towards a New Paradigm. Cells, 2021, 10, 3338.		1.8	9
856	Biological characteristics of dental pulp stem cells and their potential use in regenerative medicine. Journal of Oral Biosciences, 2022, 64, 26-36.		0.8	9
857	Tissue-Restricted Stem Cells as Starting Cell Source for Efficient Generation of Pluripotent Stem Cells: An Overview. Advances in Experimental Medicine and Biology, 2021, , 151-180.		0.8	8
858	Rat-Induced Pluripotent Stem Cells-Derived Cardiac Myocytes in a Cell Culture Dish. Methods in Molecular Biology, 2021, , 1.		0.4	0
859	Proteomic approach for creation of the protein marker panels to control the quality of human induced pluripotent stem cells. , 2022, , 451-482.			0
860	Immunomodulation of Skin Repair: Cell-Based Therapeutic Strategies for Skin Replacement (A) Tj E	[Qq0 0 0 rgBT]	Overlock 1.4	10 Tf 50 10
	Functional genomic approaches in acute myeloid leukemia: Insights into disease models and the			

	0		/	(
4	thoropoutic potential	~	frontogramming Ca	near Lattore 2022	522	215570
		U	i reprogramming. Ca	IICEI LELLEIS, ZUZZ,	555,	2133/3.

3.2 2

#	Article	IF	CITATIONS
863	Toll-like receptors 2 and 4 differentially regulate the self-renewal and differentiation of spinal cord neural precursor cells. Stem Cell Research and Therapy, 2022, 13, 117.	2.4	3
866	HAp Thermosensitive Nanohydrogel Cavities Act as Brood Pouches to Incubate and Controlâ€Release NSCs for Rapid Spinal Cord Injury Therapy. Advanced Functional Materials, 0, , 2203492.	7.8	4
867	Stem cell therapy for insulin-dependent diabetes: Are we still on the road?. World Journal of Stem Cells, 2022, 14, 503-512.	1.3	2
868	The regulatory roles of the E3 ubiquitin ligase NEDD4 family in DNA damage response. Frontiers in Physiology, 0, 13, .	1.3	5
869	Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
870	Rapid establishment of Oct4: EGFP transgenic zebrafish homozygote through gynogenesis for monitoring the pluripotency during induction of pluripotent stem cells. Reproduction and Breeding, 2022, 2, 106-111.	0.8	3
871	The Establishment of In-Vitro Human Induced Pluripotent Stem Cell-Derived Neurons. SSRN Electronic Journal, 0, , .	0.4	0
872	Probing cell identity hierarchies by fate titration and collision during direct reprogramming. Molecular Systems Biology, 2022, 18, .	3.2	9
874	Recent Emerging Trend in Stem Cell Therapy Risk Factors. Current Stem Cell Research and Therapy, 2023, 18, 1076-1089.	0.6	2
875	Current Application of iPS Cells in the Dental Tissue Regeneration. Biomedicines, 2022, 10, 3269.	1.4	1
876	Early life substance abuse and epigenetic programming. , 2023, , 273-298.		0
877	Exploring the reprogramming potential of B cells and comprehending its clinical and therapeutic perspective. Transplant Immunology, 2023, 78, 101804.	0.6	0
880	Regenerative Medicine, Disease Modelling, and Drug Discovery in Human Pluripotent Stem Cell-Derived Kidney Tissue. European Medical Journal Reproductive Health, 0, , 57-67.	1.0	2
881	Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells, 2023, 12, 538.	1.8	1
882	Comparative analysis of the cardiomyocyte differentiation potential of induced pluripotent stem cells reprogrammed from human atrial or ventricular fibroblasts. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	1
883	Reprogramming of Normal Cells into Human Pluripotent Stem Cells. , 2023, , 45-56.		0