Template-directed synthesis of a genetic polymer in a n

Nature 454, 122-125 DOI: 10.1038/nature07018

Citation Report

#	Article	IF	CITATIONS
1	Importance of Translation–Replication Balance for Efficient Replication by the Selfâ€Encoded Replicase. ChemBioChem, 2008, 9, 3023-3028.	1.3	24
2	Achievements and Challenges in Generating Protocell Models. ChemBioChem, 2008, 9, 2771-2772.	1.3	14
3	Sufficient conditions for emergent synchronization in protocell models. Journal of Theoretical Biology, 2008, 254, 741-751.	0.8	34
4	How leaky were primitive cells?. Nature, 2008, 454, 37-38.	13.7	64
5	A shock for Voyager 2. Nature, 2008, 454, 38-39.	13.7	15
6	Thermostability of model protocell membranes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13351-13355.	3.3	179
7	On the Origin of Life on Earth. Science, 2009, 323, 198-199.	6.0	28
8	Chemical Evolution of Amphiphiles: Glycerol Monoacyl Derivatives Stabilize Plausible Prebiotic Membranes. Astrobiology, 2009, 9, 979-987.	1.5	111
9	Evolution of Biological Catalysis: Ribozyme to RNP Enzyme. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 11-16.	2.0	29
10	The Role of Biomacromolecular Crowding, Ionic Strength, and Physicochemical Gradients in the Complexities of Life's Emergence. Microbiology and Molecular Biology Reviews, 2009, 73, 371-388.	2.9	126
11	Model Protocells from Single-Chain Lipids. International Journal of Molecular Sciences, 2009, 10, 835-843.	1.8	44
12	Multilevel Selection in Models of Prebiotic Evolution II: A Direct Comparison of Compartmentalization and Spatial Self-Organization. PLoS Computational Biology, 2009, 5, e1000542.	1.5	81
13	Reconstructing the Emergence of Cellular Life through the Synthesis of Model Protocells. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 47-54.	2.0	84
14	The dawn of the RNA World: Toward functional complexity through ligation of random RNA oligomers. Rna, 2009, 15, 743-749.	1.6	89
15	N2′→P3′ Phosphoramidate Glycerol Nucleic Acid as a Potential Alternative Genetic System. Journal of the American Chemical Society, 2009, 131, 2119-2121.	6.6	61
16	Cell Division: Breaking Up Is Easy toÂDo. Current Biology, 2009, 19, R327-R328.	1.8	21
18	Timeâ€Resolved Tracking of a Minimum Gene Expression System Reconstituted in Giant Liposomes. ChemBioChem, 2009, 10, 1640-1643.	1.3	78
19	Origins of life: Concepts, data, and debates. Complexity, 2010, 15, 7-10.	0.9	3

#	Article	IF	Citations
20	Spontaneous Formation of Giant Unilamellar Vesicles from Microdroplets of a Polyion Complex by Thermally Induced Phase Separation. Angewandte Chemie - International Edition, 2009, 48, 4613-4616.	7.2	50
21	Synthetic cells and organelles: compartmentalization strategies. BioEssays, 2009, 31, 1299-1308.	1.2	80
22	Adding to Hans Kuhn's thesis on the emergence of the genetic apparatus: Of the Darwinian advantage to be neither too soluble, nor too insoluble, neither too solid, nor completely liquid. Colloids and Surfaces B: Biointerfaces, 2009, 74, 419-425.	2.5	8
23	The problem of the emergence of functional diversity in prebiotic evolution. Biology and Philosophy, 2009, 24, 585-605.	0.7	30
24	Energy Transduction Inside of Amphiphilic Vesicles: Encapsulation of Photochemically Active Semiconducting Particles. Origins of Life and Evolution of Biospheres, 2009, 39, 127-140.	0.8	26
25	Protein-mediated Selective Enclosure of Early Replicators Inside of Membranous Vesicles: First Step Towards Cell Membranes. Origins of Life and Evolution of Biospheres, 2009, 39, 545-558.	0.8	3
26	Darwin's warm little pond revisited: from molecules to the origin of life. Die Naturwissenschaften, 2009, 96, 1265-1292.	0.6	72
27	Goethe's dream. EMBO Reports, 2009, 10, S28-32.	2.0	15
28	Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nature Chemistry, 2009, 1, 377-383.	6.6	189
29	The second wave of synthetic biology: from modules to systems. Nature Reviews Molecular Cell Biology, 2009, 10, 410-422.	16.1	1,015
30	Toward minimal bacterial cells: evolution vs. design. FEMS Microbiology Reviews, 2009, 33, 225-235.	3.9	97
31	Enantioselective reactions catalyzed by synthetic enzymes. A model for chemical evolution. Tetrahedron: Asymmetry, 2009, 20, 1709-1714.	1.8	32
32	Mathematical modeling of a minimal protocell with coordinated growth and division. Journal of Theoretical Biology, 2009, 260, 422-429.	0.8	15
33	The first peptides: The evolutionary transition between prebiotic amino acids and early proteins. Journal of Theoretical Biology, 2009, 261, 531-539.	0.8	74
34	Peptide membranes in chemical evolutionâ [~] †. Current Opinion in Chemical Biology, 2009, 13, 652-659.	2.8	52
35	Non-natural nucleic acids for synthetic biology. Current Opinion in Chemical Biology, 2009, 13, 687-696.	2.8	58
36	Chemical approaches to synthetic biology. Current Opinion in Biotechnology, 2009, 20, 492-497.	3.3	65
37	Passive competition between pairs of self-ordering proto-replicators and the effect of primitive membranes. BioSystems, 2009, 96, 44-57.	0.9	1

	CITATION RE	PORT	
#	Article	IF	CITATIONS
38	Generation of Long RNA Chains in Water. Journal of Biological Chemistry, 2009, 284, 33206-33216.	1.6	114
39	Efficient and Rapid Template-Directed Nucleic Acid Copying Using 2′-Amino-2′,3′-dideoxyribonucleosideâ^'5′-Phosphorimidazolide Monomers. Journal of the American Chemical Society, 2009, 131, 14560-14570.	6.6	102
40	Formation of Protocell-like Vesicles in a Thermal Diffusion Column. Journal of the American Chemical Society, 2009, 131, 9628-9629.	6.6	111
41	Extensive Bilayer Perforation Coupled with the Phase Transition Region of an Anionic Phospholipid. Langmuir, 2009, 25, 10083-10091.	1.6	39
42	Evolution and self-assembly of protocells. International Journal of Biochemistry and Cell Biology, 2009, 41, 274-284.	1.2	55
43	Self-assembly and function of primitive cell membranes. Research in Microbiology, 2009, 160, 449-456.	1.0	85
44	Permeation of Membranes by Ribose and Its Diastereomers. Journal of the American Chemical Society, 2009, 131, 10237-10245.	6.6	40
45	Coupled Growth and Division of Model Protocell Membranes. Journal of the American Chemical Society, 2009, 131, 5705-5713.	6.6	430
46	Role of Oxide Surface Chemistry and Phospholipid Phase on Adsorption and Self-Assembly: Isotherms and Atomic Force Microscopy. Journal of Physical Chemistry C, 2009, 113, 2187-2196.	1.5	40
47	Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab on A Chip, 2009, 9, 2003.	3.1	90
48	Polymer hydrogel capsules: en route toward synthetic cellular systems. Nanoscale, 2009, 1, 68.	2.8	171
49	Spontaneous formation of giant unilamellar vesicles from microdroplets of a polyion complex by focused infrared laser irradiation. , 2009, , .		0
50	Synthetic biology of minimal systems. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 223-242.	2.3	111
51	The challenging biology of transients. EMBO Reports, 2009, 10, S33-6.	2.0	6
52	Darwinian chemistry: towards the synthesis of a simple cell. Molecular BioSystems, 2009, 5, 686.	2.9	28
53	Can a cell be assembled from its constituents?. Paleontological Journal, 2010, 44, 715-727.	0.2	1
54	Non-linear protocell models: synchronization and chaos. European Physical Journal B, 2010, 77, 249-256.	0.6	17
55	The Role of the Formamide/Zirconia System in the Synthesis of Nucleobases and Biogenic Carboxylic Acid Derivatives. Journal of Molecular Evolution, 2010, 71, 100-110.	0.8	36

#	Article	IF	CITATIONS
56	The basic reproductive ratio of life. Journal of Theoretical Biology, 2010, 263, 317-327.	0.8	18
57	Defining Life: Conference Proceedings. Origins of Life and Evolution of Biospheres, 2010, 40, 119-120.	0.8	22
58	Which Way to Life?. Origins of Life and Evolution of Biospheres, 2010, 40, 161-167.	0.8	26
59	What is Life? Defining Life in the Context of Emergent Complexity. Origins of Life and Evolution of Biospheres, 2010, 40, 221-229.	0.8	16
61	Using Synthetic Biology to Understand the Evolution of Gene Expression. Current Biology, 2010, 20, R772-R779.	1.8	14
62	A Biomolecular "Shipâ€inâ€aâ€Bottleâ€i Continuous RNA Synthesis Within Hollow Polymer Hydrogel Assemblies. Advanced Materials, 2010, 22, 720-723.	11.1	51
65	DNAâ€Enden: Nur ein Anfang (Nobelâ€Aufsatz). Angewandte Chemie, 2010, 122, 7544-7563.	1.6	1
66	On the Origin of Primitive Cells: From Nutrient Intake to Elongation of Encapsulated Nucleotides. Angewandte Chemie - International Edition, 2010, 49, 3738-3750.	7.2	79
67	DNA Ends: Just the Beginning (Nobel Lecture). Angewandte Chemie - International Edition, 2010, 49, 7386-7404.	7.2	17
68	Building artificial cells and protocell models: Experimental approaches with lipid vesicles. BioEssays, 2010, 32, 296-303.	1.2	132
69	Xenobiology: A new form of life as the ultimate biosafety tool. BioEssays, 2010, 32, 322-331.	1.2	163
70	Interaction energies between oxide surfaces and multiple phosphatidylcholine bilayers from extended-DLVO theory. Journal of Colloid and Interface Science, 2010, 352, 316-326.	5.0	32
71	Microfluidic landscapes for evolution. Current Opinion in Chemical Biology, 2010, 14, 568-573.	2.8	7
72	Is the transition from chemistry to biology a mystery?. Journal of Systems Chemistry, 2010, 1, .	1.7	5
73	SELECTION, INTERPRETATION, AND THE EMERGENCE OF LIVING SYSTEMS. Zygon, 2010, 45, 361-366.	0.2	4
74	Protocell Research and Its Implications. Perspectives in Biology and Medicine, 2010, 53, 136-147.	0.3	2
75	Templating efficiency of naked DNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12074-12079.	3.3	62
76	The Origins of Cellular Life. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002212-a002212.	2.3	183

#	ARTICLE	IF	CITATIONS
77	Membrane Transport in Primitive Cells. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002188-a002188.	2.3	90
78	ENVIRONMENT: a computational platform to stochastically simulate reacting and self-reproducing lipid compartments. Physical Biology, 2010, 7, 036002.	0.8	30
79	Marginally Stable Chemical Systems as Precursors of Life. Physical Review Letters, 2010, 105, 058102.	2.9	20
80	Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5288-5293.	3.3	55
81	Constructing Partial Models of Cells. Cold Spring Harbor Perspectives in Biology, 2010, 2, a004945-a004945.	2.3	40
82	Natural - synthetic - artificial!. Artificial DNA, PNA & XNA, 2010, 1, 58-59.	1.4	3
83	Primitive Genetic Polymers. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002196-a002196.	2.3	81
84	Expanding Roles for Diverse Physical Phenomena During the Origin of Life. Annual Review of Biophysics, 2010, 39, 245-263.	4.5	137
85	Self-Reproduction of Fatty Acid Vesicles: A Combined Experimental andÂSimulation Study. Biophysical Journal, 2010, 99, 1520-1528.	0.2	50
87	Cellular Compartment Model for Exploring the Effect of the Lipidic Membrane on the Kinetics of Encapsulated Biochemical Reactions. Langmuir, 2010, 26, 8544-8551.	1.6	60
88	Membrane Disk and Sphere: Controllable Mesoscopic Structures for the Capture and Release of a Targeted Object. Journal of the American Chemical Society, 2010, 132, 10528-10532.	6.6	74
89	Effect of Stalling after Mismatches on the Error Catastrophe in Nonenzymatic Nucleic Acid Replication. Journal of the American Chemical Society, 2010, 132, 5880-5885.	6.6	106
90	Chemical Primer Extension at Submillimolar Concentration of Deoxynucleotides. Journal of Organic Chemistry, 2010, 75, 3945-3952.	1.7	24
91	From Self-Assembled Vesicles to Protocells. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002170-a002170.	2.3	205
92	Polymersomes: A Synthetic Biological Approach to Encapsulation and Delivery. Advances in Polymer Science, 2010, , 115-154.	0.4	57
93	Historical Development of Origins Research. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002089-a002089.	2.3	58
94	Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chemical Communications, 2010, 46, 3639.	2.2	204
95	Compartment size dependence of performance of polymerase chain reaction inside giant vesicles. Soft Matter, 2011, 7, 3750.	1.2	29

#	ARTICLE	IF	CITATIONS
96	Cell-like systems with riboswitch controlled gene expression. Chemical Communications, 2011, 47, 10734.	2.2	63
97	Prebiotically relevant mixed fatty acid vesicles support anionic solute encapsulation and photochemically catalyzed trans-membrane charge transport. Chemical Science, 2011, 2, 661.	3.7	62
98	Materials chemistry in the emerging field of synthetic biology. Journal of Materials Chemistry, 2011, 21, 18865.	6.7	1
99	Synthetic Toxicology: Where Engineering Meets Biology and Toxicology. Toxicological Sciences, 2011, 120, S204-S224.	1.4	26
100	Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. Journal of Materials Chemistry, 2011, 21, 18887.	6.7	135
101	Stepwise Synthesis of Giant Unilamellar Vesicles on a Microfluidic Assembly Line. Journal of the American Chemical Society, 2011, 133, 2798-2800.	6.6	178
102	Vocabulary of Definitions of Life Suggests a Definition. Journal of Biomolecular Structure and Dynamics, 2011, 29, 259-266.	2.0	149
103	Physical effects underlying the transition from primitive to modern cell membranes. Proceedings of the United States of America, 2011, 108, 5249-5254.	3.3	216
104	The Minimal Cell. , 2011, , .		23
106	Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology, 2011, 11, 725-735.	1.5	71
106 107	Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology, 2011, 11, 725-735. Osmolite. , 2011, , 1191-1191.	1.5	71
106 107 108	Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology, 2011, 11, 725-735. Osmolite., 2011, , 1191-1191. On the Construction of Minimal Cell Models in Synthetic Biology and Origins of Life Studies., 2011, , 337-368.	1.5	71 O 5
106 107 108 109	Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology, 2011, 11, 725-735. Osmolite., 2011,, 1191-1191. On the Construction of Minimal Cell Models in Synthetic Biology and Origins of Life Studies., 2011,, 337-368. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chemistry, 2011, 3, 603-608.	1.5	71 0 5 129
106 107 108 109	Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology, 2011, 11, 725-735.Osmolite., 2011,, 1191-1191.On the Construction of Minimal Cell Models in Synthetic Biology and Origins of Life Studies., 2011,, 337-368.Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chemistry, 2011, 3, 603-608.Oligopeptide., 2011,, 1174-1174.	1.5 6.6	71 0 5 129 0
106 107 108 109 110	Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology, 2011, 11, 725-735. Osmolite. , 2011, , 1191-1191. On the Construction of Minimal Cell Models in Synthetic Biology and Origins of Life Studies. , 2011, , 377-368. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chemistry, 2011, 3, 603-608. Oligopeptide. , 2011, , 1174-1174. Lethal Mutants and Truncated Selection Together Solve a Paradox of the Origin of Life. PLoS ONE, 2011, 6, e21904.	1.5	 71 0 5 129 0 25
106 107 108 109 110 111	Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology, 2011, 11, 725-735.Osmolite. , 2011, , 1191-1191.On the Construction of Minimal Cell Models in Synthetic Biology and Origins of Life Studies. , 2011, , 337-368.Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chemistry, 2011, 3, 603-608.Oligopeptide. , 2011, , 1174-1174.Lethal Mutants and Truncated Selection Together Solve a Paradox of the Origin of Life. PLoS ONE, 2011, 6, e21904.Synthetic biology: An emerging research field in China. Biotechnology Advances, 2011, 29, 804-814.	1.5 6.6 1.1 6.0	 71 0 5 129 0 25 22
 106 107 108 109 110 111 112 113 	Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology, 2011, 11, 725-735. Osmolite. , 2011, , 1191-1191. On the Construction of Minimal Cell Models in Synthetic Biology and Origins of Life Studies. , 2011, , 377-368. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nature Chemistry, 2011, 3, 603-608. Oligopeptide. , 2011, , 1174-1174. Lethal Mutants and Truncated Selection Together Solve a Paradox of the Origin of Life. PLoS ONE, 2011, 6, e21904. Synthetic biology: An emerging research field in China. Biotechnology Advances, 2011, 29, 804-814. Peptide〓 nucleotide microdroplets as a step towards a membrane-free protocell model. Nature Chemistry, 2011, 3, 720-724.	1.5 6.6 1.1 6.0 6.6	 71 0 5 129 0 25 22 469

ARTICLE IF CITATIONS # Minimal cell mimicry. Nature Chemistry, 2011, 3, 755-756. 6.6 46 115 Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated 6.6 DNA. Nature Chemistry, 2011, 3, 775-781. Origin of Evolution versus Origin of Life: A Shift of Paradigm. International Journal of Molecular 117 1.8 37 Sciences, 2011, 12, 3445-3458. The Role of Natural Selection in the Origin of Life. Origins of Life and Evolution of Biospheres, 2011, 118 41, 3-16. Toward Understanding Protocell Mechanosensation. Origins of Life and Evolution of Biospheres, 119 0.8 5 2011, 41, 281-304. Links Between Hydrothermal Environments, Pyrophosphate, Na+, and Early Evolution. Origins of Life and Evolution of Biospheres, 2011, 41, 483-493. 0.8 121 Intravesicle Isothermal DNA Replication. BMC Research Notes, 2011, 4, 128. 0.6 6 Interactions between Catalysts and Amphiphilic Structures and their Implications for a Protocell 1.0 26 Model. ChemPhysChem, 2011, 12, 828-835. Cytoskeletalâ€like Supramolecular Assembly and Nanoparticleâ€Based Motors in a Model Protocell. 124 7.2 57 Angewandte Chemie - International Edition, 2011, 50, 9343-9347. Exploring the Role of Chirality in Nucleic Acid Recognition. Chemistry and Biodiversity, 2011, 8, 373-413. 1.0 Spontaneous Crowding of Ribosomes and Proteins inside Vesicles: A Possible Mechanism for the 126 1.3 69 Origin of Cell Metabolism. ChemBioChem, 2011, 12, 2325-2330. Marginal stability in chemical systems and its relevance in the origin of life. Physical Review E, 2011, 84, 0.8 031931. An optimal degree of physical and chemical heterogeneity for the origin of life?. Philosophical 128 1.8 98 Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2894-2901. Prebiotic chemistry: a new <i>modus operandi</i>. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2870-2877. 129 1.8 118 Membrane Self-Assembly Processes: Steps Toward the First Cellular Life., 2011, , 123-151. 130 2 The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Research, 2011, 39, 8135-8147. Primitive Membrane Formation, Characteristics and Roles in the Emergent Properties of a Protocell. 132 1.1 15 Entropy, 2011, 13, 466-484. On the Growth Rate of Non-Enzymatic Molecular Replicators. Entropy, 2011, 13, 1882-1903. 1.1

#	Article	IF	CITATIONS
134	The Stochastic Evolution of a Protocell: The Gillespie Algorithm in a Dynamically Varying Volume. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-13.	0.7	15
135	Membranes, Murchison, and Mars: An Encapsulated Life in Science. Astrobiology, 2012, 12, 616-617.	1.5	5
136	Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5942-5947.	3.3	148
137	Non-enzymatic Polymerization of Nucleic Acids from Monomers: Monomer Self- Condensation and Template-Directed Reactions. Current Organic Synthesis, 2012, 9, 735-763.	0.7	15
138	The Value of Artefactual Organisms. Environmental Values, 2012, 21, 43-61.	0.7	17
139	Effects of Compartment Size on the Kinetics of Intracompartmental Multimeric Protein Synthesis. ACS Synthetic Biology, 2012, 1, 431-437.	1.9	27
141	Systems of Creation: The Emergence of Life from Nonliving Matter. Accounts of Chemical Research, 2012, 45, 2131-2141.	7.6	204
142	Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polymer Chemistry, 2012, 3, 2217.	1.9	44
143	Open Questions on the Origin of Life at Anoxic Geothermal Fields. Origins of Life and Evolution of Biospheres, 2012, 42, 507-516.	0.8	22
144	Ocean–Atmosphere Interactions in the Emergence of Complexity in Simple Chemical Systems. Accounts of Chemical Research, 2012, 45, 2106-2113.	7.6	62
145	Aqueous Phase Separation as a Possible Route to Compartmentalization of Biological Molecules. Accounts of Chemical Research, 2012, 45, 2114-2124.	7.6	335
146	Nonreplicating Protocells. Accounts of Chemical Research, 2012, 45, 2125-2130.	7.6	16
147	Polycyclic Aromatic Hydrocarbons as Plausible Prebiotic Membrane Components. Origins of Life and Evolution of Biospheres, 2012, 42, 295-306.	0.8	55
148	Cellular imitations. Current Opinion in Chemical Biology, 2012, 16, 586-592.	2.8	38
149	Aggregation behavior of two separate polymers confined between two membranes. Soft Matter, 2012, 8, 1901.	1.2	1
150	Liquid crystalline nanostructures: organizing matrices for non-enzymatic nucleic acid polymerization. Chemical Society Reviews, 2012, 41, 5375.	18.7	36
151	Monoacylglycerols as transmembrane Clâ^ anion transporters. Chemical Communications, 2012, 48, 4432.	2.2	32
152	Polymer/nucleotide droplets as bio-inspired functional micro-compartments. Soft Matter, 2012, 8, 6004.	1.2	89

#	Article	IF	CITATIONS
153	Definition of Life: Navigation through Uncertainties. Journal of Biomolecular Structure and Dynamics, 2012, 29, 647-650.	2.0	26
154	Origin of first cells at terrestrial, anoxic geothermal fields. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E821-30.	3.3	341
155	Activated Ribonucleotides Undergo a Sugar Pucker Switch upon Binding to a Single-Stranded RNA Template. Journal of the American Chemical Society, 2012, 134, 3691-3694.	6.6	42
156	Phototriggered DNA Phosphoramidate Ligation in a Tandem 5′-Amine Deprotection/3′-Imidazole Activated Phosphate Coupling Reaction. Bioconjugate Chemistry, 2012, 23, 2014-2019.	1.8	4
157	Synthesizing artificial cells from giant unilamellar vesicles: Stateâ€ofâ€ŧhe art in the development of microfluidic technology. BioEssays, 2012, 34, 992-1001.	1.2	57
158	Stochastic simulations of minimal cells: the Ribocell model. BMC Bioinformatics, 2012, 13, S10.	1.2	33
159	Concentration-Driven Growth of Model Protocell Membranes. Journal of the American Chemical Society, 2012, 134, 20812-20819.	6.6	114
160	Constructive Approaches for the Origin of Life. Cellular Origin and Life in Extreme Habitats, 2012, , 289-303.	0.3	1
161	Mathematical Models of Prebiotic Replication of Informational Molecules. Cellular Origin and Life in Extreme Habitats, 2012, , 67-88.	0.3	0
163	Cell-Free Protein Synthesis inside Giant Unilamellar Vesicles Analyzed by Flow Cytometry. Langmuir, 2012, 28, 8426-8432.	1.6	124
164	Designs for life: protocell models in the laboratory. Chemical Society Reviews, 2012, 41, 79-85.	18.7	263
165	Model Systems of Precursor Cellular Membranes: Long-Chain Alcohols Stabilize Spontaneously Formed Oleic Acid Vesicles. Biophysical Journal, 2012, 102, 278-286.	0.2	52
168	Computer Simulation on the Cooperation of Functional Molecules during the Early Stages of Evolution. PLoS ONE, 2012, 7, e35454.	1.1	23
169	Viability Conditions for a Compartmentalized Protometabolic System: A Semi-Empirical Approach. PLoS ONE, 2012, 7, e39480.	1.1	23
171	The eightfold path to non-enzymatic RNA replication. Journal of Systems Chemistry, 2012, 3, .	1.7	261
172	Genetics first or metabolism first? The formamide clue. Chemical Society Reviews, 2012, 41, 5526.	18.7	181
174	Templateâ€Directed Synthesis in 3′―and 5′â€Direction with Reversible Termination. Angewandte Chemie - International Edition, 2012, 51, 8299-8303.	7.2	24
175	Giant Vesicles "Colonies†A Model for Primitive Cell Communities. ChemBioChem, 2012, 13, 1497-1502.	1.3	95

#	Article	IF	CITATIONS
176	The early evolution of lipid membranes and the three domains of life. Nature Reviews Microbiology, 2012, 10, 507-515.	13.6	249
177	Photochemically driven redox chemistry induces protocell membrane pearling and division. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9828-9832.	3.3	107
178	Studies on Molecular Mechanisms of Prebiotic Systems. Foundations of Science, 2012, 17, 277-289.	0.4	2
179	The Phylogenomic Roots of Modern Biochemistry: Origins of Proteins, Cofactors and Protein Biosynthesis. Journal of Molecular Evolution, 2012, 74, 1-34.	0.8	73
180	Importance of Parasite RNA Species Repression for Prolonged Translation-Coupled RNA Self-Replication. Chemistry and Biology, 2012, 19, 478-487.	6.2	48
181	Approaches to chemical synthetic biology. FEBS Letters, 2012, 586, 2138-2145.	1.3	15
182	Programmable bacterial catalysis – designing cells for biosynthesis of valueâ€added compounds. FEBS Letters, 2012, 586, 2184-2190.	1.3	12
183	Synthetic biology, inspired by synthetic chemistry. FEBS Letters, 2012, 586, 2146-2156.	1.3	31
184	Formamide and the origin of life. Physics of Life Reviews, 2012, 9, 84-104.	1.5	226
185	Autonomy in evolution: from minimal to complex life. SynthÈse, 2012, 185, 21-52.	0.6	77
186	Is artefactualness a value-relevant property of living things?. SynthÃ^se, 2012, 185, 89-102.	0.6	5
187	Synthetic Biology: Challenging Life in Order to Grasp, Use, or Extend It. Biological Theory, 2013, 8, 376-382.	0.8	19
188	Single Particle Tracking. , 2013, , 2326-2327.		0
189	Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience. Lab on A Chip, 2013, 13, 3613.	3.1	17
190	Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nature Communications, 2013, 4, 2239.	5.8	418
191	Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nature Nanotechnology, 2013, 8, 602-608.	15.6	215
192	Sensory Rhodopsin II: Signal Development and Transduction. , 2013, , 2312-2315.		0
193	Evaluating the Plausibility of Prebiotic Multistage Syntheses. Astrobiology, 2013, 13, 784-789.	1.5	12

#	Article	IF	CITATIONS
194	The good of non-sentient entities: Organisms, artifacts, and synthetic biology. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2013, 44, 697-705.	0.8	15
195	A Remarkable Selfâ€Organization Process as the Origin of Primitive Functional Cells. Angewandte Chemie - International Edition, 2013, 52, 13397-13400.	7.2	62
196	Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13272-13276.	3.3	100
197	Self-Assembling Cages from Coiled-Coil Peptide Modules. Science, 2013, 340, 595-599.	6.0	451
198	Permeation of Aldopentoses and Nucleosides Through Fatty Acid and Phospholipid Membranes: Implications to the Origins of Life. Astrobiology, 2013, 13, 177-188.	1.5	13
199	Small-molecule uptake in membrane-free peptide/nucleotide protocells. Soft Matter, 2013, 9, 7647.	1.2	62
200	Probing into Homopolymer Self-Assembly: How Does Hydrogen Bonding Influence Morphology?. Macromolecules, 2013, 46, 194-203.	2.2	101
201	Theoretical conditions for the stationary reproduction of model protocells. Integrative Biology (United Kingdom), 2013, 5, 324-341.	0.6	37
202	Fast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17732-17737.	3.3	71
203	ATP Sequestration by a Synthetic ATP-Binding Protein Leads to Novel Phenotypic Changes inEscherichia coli. ACS Chemical Biology, 2013, 8, 451-463.	1.6	7
205	The Origins of Life: Old Problems, New Chemistries. Angewandte Chemie - International Edition, 2013, 52, 155-162.	7.2	151
206	Tailored Host–Guest Lipidic Cubic Phases: A Protocell Model Exhibiting Nucleic Acid Recognition. Chemistry - A European Journal, 2013, 19, 1262-1267.	1.7	17
207	Why Cells are Microscopic: A Transport-Time Perspective. Journal of Physical Chemistry Letters, 2013, 4, 861-865.	2.1	21
208	Light Scattering. , 2013, , 1236-1236.		0
209	Lipid Raft. , 2013, , 1286-1286.		0
210	Self-Assembled Protein Fibrils. , 2013, , 2309-2309.		0
211	Single Fluorophore Photobleaching. , 2013, , 2324-2326.		1
212	Nucleotide-Based Copying of Nucleic Acid Sequences without Enzymes. Journal of Organic Chemistry, 2013, 78, 793-799.	1.7	24

#	Article	IF	CITATIONS
213	Single-Molecule High-Resolution Imaging with Photobleaching (SHRImP). , 2013, , 2337-2339.		0
214	Lac Carrier Protein. , 2013, , 1225-1225.		0
215	Spin-Labeling EPR of Proteins: Dynamics and Water Accessibility of Spin-Label Side Chains. , 2013, , 2439-2447.		2
216	Natural or synthetic nucleic acids encapsulated in a closed cavity of amphiphiles. RSC Advances, 2013, 3, 8618.	1.7	2
217	Stimulated Emission Depletion (STED) Microscopy. , 2013, , 2470-2475.		1
218	Surface Passivation for Single Molecule Detection. , 2013, , 2531-2536.		0
219	Synthesis of N3′-P5′-linked Phosphoramidate DNA by Nonenzymatic Template-Directed Primer Extension. Journal of the American Chemical Society, 2013, 135, 924-932.	6.6	46
220	Artificial Cytoskeletal Structures Within Enzymatically Active Bioâ€inorganic Protocells. Small, 2013, 9, 357-362.	5.2	49
221	Linear Prediction in NMR Spectroscopy. , 2013, , 1249-1250.		1
222	Selection for Replicases in Protocells. PLoS Computational Biology, 2013, 9, e1003051.	1.5	27
223	Evolving protocells to prototissues: rational design of a missing link. Biochemical Society Transactions, 2013, 41, 1159-1165.	1.6	18
224	Laser Processing of Biomaterials and Cells. , 2013, , 1226-1233.		0
225	Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. Nature Communications, 2013, 4, 2494.	5.8	147
228	Piecing Together Cell-like Systems. Current Organic Chemistry, 2013, 17, 1751-1757.	0.9	7
229	Synthetic Biology: opportunities for Chilean bioindustry and education. Biological Research, 2013, 46, 383-393.	1.5	3
230	Origin of Cell Scenarios Supported by Dynamics of Lipid Membranes. Seibutsu Butsuri, 2013, 53, 134-139.	0.0	0
231	Oligomerization of Nucleic Acids and Peptides under the Primitive Earth Conditions. , 0, , .		3
232	Organelle-mimicking liposome dissociates G-quadruplexes and facilitates transcription. Nucleic Acids Research, 2014, 42, 12949-12959.	6.5	6

~	_	
	DEDC	DT
CHAD	NLFU	VIC I

#	Article	IF	CITATIONS
233	Spontaneous Encapsulation and Concentration of Biological Macromolecules in Liposomes: An Intriguing Phenomenon and Its Relevance in Origins of Life. Journal of Molecular Evolution, 2014, 79, 179-192.	0.8	36
234	An Origin-of-Life Reactor to Simulate Alkaline Hydrothermal Vents. Journal of Molecular Evolution, 2014, 79, 213-227.	0.8	152
235	A Bioenergetic Basis for Membrane Divergence in Archaea and Bacteria. PLoS Biology, 2014, 12, e1001926.	2.6	84
236	Chain-Length Heterogeneity Allows for the Assembly of Fatty Acid Vesicles in Dilute Solutions. Biophysical Journal, 2014, 107, 1582-1590.	0.2	73
237	Optically Controlled Pore Formation in Self‣ealing Giant Porphyrin Vesicles. Small, 2014, 10, 1184-1193.	5.2	17
238	Nanoparticle-Based Membrane Assembly and Silicification in Coacervate Microdroplets as a Route to Complex Colloidosomes. Langmuir, 2014, 30, 14591-14596.	1.6	27
239	The engineering of artificial cellular nanosystems using synthetic biology approaches. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 369-383.	3.3	27
240	Dry Polymerization of 3′,5′ yclic GMP to Long Strands of RNA. ChemBioChem, 2014, 15, 879-883.	1.3	60
241	The strength of the template effect attracting nucleotides to naked DNA. Nucleic Acids Research, 2014, 42, 7409-7420.	6.5	51
242	Design and synthesis of nucleolipids as possible activated precursors for oligomer formation via intramolecular catalysis: stability study and supramolecular organization. Journal of Systems Chemistry, 2014, 5, 5.	1.7	11
243	Das PhÃ ¤ omen Leben. , 2014, , .		10
244	Growth and Division in a Dynamic Protocell Model. Life, 2014, 4, 837-864.	1.1	23
245	Synthetic Biology: A Bridge between Artificial and Natural Cells. Life, 2014, 4, 1092-1116.	1.1	36
246	Recent Theoretical Approaches to Minimal Artificial Cells. Entropy, 2014, 16, 2488-2511.	1.1	19
247	Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 964-981.	0.5	78
248	Motility at the Origin of Life: Its Characterization and a Model. Artificial Life, 2014, 20, 55-76.	1.0	33
249	Molecular tools for the construction of peptide-based materials. Chemical Society Reviews, 2014, 43, 2743.	18.7	95
250	Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chemical Reviews, 2014, 114, 285-366.	23.0	674

#	Article	IF	CITATIONS
252	DNA Amplification in Neutral Liposomes for Safe and Efficient Gene Delivery. ACS Nano, 2014, 8, 4257-4267.	7.3	32
253	Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nature Chemistry, 2014, 6, 527-533.	6.6	314
254	Multifunctional Porous Microspheres Based on Peptide–Porphyrin Hierarchical Coâ€Assembly. Angewandte Chemie - International Edition, 2014, 53, 2366-2370.	7.2	161
255	Controlled Growth of Filamentous Fatty Acid Vesicles under Flow. Langmuir, 2014, 30, 14916-14925.	1.6	27
256	Micro-size cell-like vesicles based on gemini-like amphiphilic peptide. RSC Advances, 2014, 4, 14993.	1.7	1
257	Identification of giant unilamellar vesicles with permeability to small charged molecules. RSC Advances, 2014, 4, 35224.	1.7	23
258	Micelle and vesicle formation from supramolecular complexes based on proton-transfer hydrogen bonding. RSC Advances, 2014, 4, 11216-11218.	1.7	5
259	Self-assembly of fatty acids: from foams to protocell vesicles. New Journal of Chemistry, 2014, 38, 5142-5148.	1.4	36
260	Spontaneous Structuration in Coacervateâ€Based Protocells by Polyoxometalateâ€Mediated Membrane Assembly. Small, 2014, 10, 1830-1840.	5.2	82
261	The Persistent Contributions of RNA to Eukaryotic Gen(om)e Architecture and Cellular Function. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016089-a016089.	2.3	10
262	Synthesis and Nonenzymatic Template-Directed Polymerization of 2′-Amino-2′-deoxythreose Nucleotides. Journal of the American Chemical Society, 2014, 136, 2033-2039.	6.6	32
263	Synthetic cellularity based on non-lipid micro-compartments and protocell models. Current Opinion in Chemical Biology, 2014, 22, 1-11.	2.8	153
264	Thermally Triggered Frameâ€Guided Assembly. Angewandte Chemie - International Edition, 2014, 53, 13468-13470.	7.2	54
265	A hydrophobic disordered peptide spontaneously anchors a covalently bound RNA hairpin to giant lipidic vesicles. Organic and Biomolecular Chemistry, 2014, 12, 6363-6373.	1.5	13
266	Compartmentalised chemistry: from studies on the origin of life to engineered biochemical systems. New Journal of Chemistry, 2014, 38, 5135-5141.	1.4	31
267	Spontaneous Growth and Division in Selfâ€Reproducing Inorganic Colloidosomes. Small, 2014, 10, 3291-3298.	5.2	80
268	A stochastic model of catalytic reaction networks in protocells. Natural Computing, 2014, 13, 367-377.	1.8	15
269	"Single–Single―Amphiphilic Janus Dendrimers Self-Assemble into Uniform Dendrimersomes with Predictable Size. ACS Nano, 2014, 8, 1554-1565.	7.3	91

#	Article	IF	CITATIONS
270	Membrane-mediated cascade reactions by enzyme–polymer proteinosomes. Chemical Communications, 2014, 50, 6278-6280.	2.2	95
271	Progress Toward Synthetic Cells. Annual Review of Biochemistry, 2014, 83, 615-640.	5.0	254
272	A Synthetic Cell Division System: Effect of Nonbilayer-forming Lipid on Division of Liposomal Membranes. Chemistry Letters, 2014, 43, 811-813.	0.7	1
274	Amphiphilic Nanoparticles Control the Growth and Stability of Lipid Bilayers with Open Edges. Angewandte Chemie - International Edition, 2015, 54, 10816-10820.	7.2	14
275	Towards Selfâ€Assembled Hybrid Artificial Cells: Novel Bottomâ€Up Approaches to Functional Synthetic Membranes. Chemistry - A European Journal, 2015, 21, 12564-12570.	1.7	40
277	Using Small Molecules to Prepare Vesicles with Designable Shapes and Sizes via Frame uided Assembly Strategy. Small, 2015, 11, 3768-3771.	5.2	33
278	Preparation of Artificial Cells Using Eggs with Sphingosine-DNA. Journal of Chemical Engineering & Process Technology, 2015, 07, .	0.1	0
279	Current Ideas about Prebiological Compartmentalization. Life, 2015, 5, 1239-1263.	1.1	125
280	Man creation had began since the creation of the first biological material very likely in Clay. International Journal of Modern Anthropology, 2015, 1, 49.	0.3	2
281	The systems perspective at the crossroads between chemistry and biology. Journal of Theoretical Biology, 2015, 381, 11-22.	0.8	37
282	Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochemistry (Moscow), 2015, 80, 495-516.	0.7	64
283	From Formamide to RNA, the Path Is Tenuous but Continuous. Life, 2015, 5, 372-384.	1.1	28
284	The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells. Life, 2015, 5, 467-505.	1.1	17
285	pH-controlled DNA- and RNA-templated assembly of short oligomers. Chemical Science, 2015, 6, 542-547.	3.7	21
286	Filamentation as primitive growth mode?. Physical Biology, 2015, 12, 066024.	0.8	4
287	Stochasticity in Gene Expression in a Cell-Sized Compartment. ACS Synthetic Biology, 2015, 4, 566-576.	1.9	53
288	Generation of Functional RNAs from Inactive Oligonucleotide Complexes by Non-enzymatic Primer Extension. Journal of the American Chemical Society, 2015, 137, 483-489.	6.6	24
289	Untemplated Nonenzymatic Polymerization of 3′,5′cGMP: A Plausible Route to 3′,5′-Linked Oligonucleotides in Primordia. Journal of Physical Chemistry B, 2015, 119, 2979-2989.	1.2	29

#	Article	IF	CITATIONS
290	Heat flux across an open pore enables the continuous replication and selection of oligonucleotides towards increasing length. Nature Chemistry, 2015, 7, 203-208.	6.6	151
291	Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells. Biology Direct, 2015, 10, 28.	1.9	18
292	An embryo of protocells: The capsule of graphene with selective ion channels. Scientific Reports, 2015, 5, 10258.	1.6	11
293	Creation of Simple Biochemical Systems to Study Early Cellular Life. Origins of Life and Evolution of Biospheres, 2015, 45, 359-360.	0.8	3
294	Template-directed nonenzymatic oligonucleotide synthesis: lessons from synthetic chemistry. Pure and Applied Chemistry, 2015, 87, 205-218.	0.9	8
295	Coacervation—A Method for Drug Delivery. Lecture Notes in Bioengineering, 2015, , 379-386.	0.3	4
296	Recent Biophysical Issues About the Preparation of Solute-Filled Lipid Vesicles. Mechanics of Advanced Materials and Structures, 2015, 22, 748-759.	1.5	31
297	Freeze–thaw cycles as drivers of complex ribozyme assembly. Nature Chemistry, 2015, 7, 502-508.	6.6	113
298	<i>Omne Vivum Ex Vivo … Omne</i> ? How to Feed an Inanimate Evolvable Chemical System so as to Let it Selfâ€evolve into Increased Complexity and Lifeâ€like Behaviour. Israel Journal of Chemistry, 2015, 55, 851-864.	1.0	18
299	Biological Autonomy. History, Philosophy and Theory of the Life Sciences, 2015, , .	0.4	215
299 300	Biological Autonomy. History, Philosophy and Theory of the Life Sciences, 2015, , . Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life, 2015, 5, 969-996.	0.4	215 25
299 300 301	Biological Autonomy. History, Philosophy and Theory of the Life Sciences, 2015, , . Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life, 2015, 5, 969-996. The RNA World as a Model System to Study the Origin of Life. Current Biology, 2015, 25, R953-R963.	0.4 1.1 1.8	215 25 114
299 300 301 302	Biological Autonomy. History, Philosophy and Theory of the Life Sciences, 2015, , . Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life, 2015, 5, 969-996. The RNA World as a Model System to Study the Origin of Life. Current Biology, 2015, 25, R953-R963. Mechanistic Insights into Two-Phase Radical C–H Arylations. ACS Central Science, 2015, 1, 456-462.	0.4 1.1 1.8 5.3	215 25 114 29
299 300 301 302	Biological Autonomy. History, Philosophy and Theory of the Life Sciences, 2015, , . Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life, 2015, 5, 969-996. The RNA World as a Model System to Study the Origin of Life. Current Biology, 2015, 25, R953-R963. Mechanistic Insights into Two-Phase Radical C–H Arylations. ACS Central Science, 2015, 1, 456-462. Modulation of Reactivity in the Cavity of Liposomes Promotes the Formation of Peptide Bonds. Journal of the American Chemical Society, 2015, 137, 12269-12275.	0.4 1.1 1.8 5.3 6.6	215 25 114 29 39
299 300 301 302 303	Biological Autonomy. History, Philosophy and Theory of the Life Sciences, 2015, . Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life, 2015, 5, 969-996. The RNA World as a Model System to Study the Origin of Life. Current Biology, 2015, 25, R953-R963. Mechanistic Insights into Two-Phase Radical C–H Arylations. ACS Central Science, 2015, 1, 456-462. Modulation of Reactivity in the Cavity of Liposomes Promotes the Formation of Peptide Bonds. Journal of the American Chemical Society, 2015, 137, 12269-12275. Experiments on and Numerical Modeling of the Capture and Concentration of Transcription-Translation Machinery inside Vesicles. Artificial Life, 2015, 21, 445-463.	0.4 1.1 1.8 5.3 6.6 1.0	215 25 114 29 39 23
299 300 301 302 303 304	Biological Autonomy. History, Philosophy and Theory of the Life Sciences, 2015, , . Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life, 2015, 5, 969-996. The RNA World as a Model System to Study the Origin of Life. Current Biology, 2015, 25, R953-R963. Mechanistic Insights into Two-Phase Radical C–H Arylations. ACS Central Science, 2015, 1, 456-462. Modulation of Reactivity in the Cavity of Liposomes Promotes the Formation of Peptide Bonds. Journal of the American Chemical Society, 2015, 137, 12269-12275. Experiments on and Numerical Modeling of the Capture and Concentration of Transcription-Translation Machinery inside Vesicles. Artificial Life, 2015, 21, 445-463. Biochemistry of Early Life. , 2016, , 29-35.	0.4 1.1 1.8 5.3 6.6 1.0	215 25 114 29 39 23 0
 299 300 301 302 303 304 305 306 	Biological Autonomy. History, Philosophy and Theory of the Life Sciences, 2015, , . Physical Routes to Primitive Cells: An Experimental Model Based on the Spontaneous Entrapment of Enzymes inside Micrometer-Sized Liposomes. Life, 2015, 5, 969-996. The RNA World as a Model System to Study the Origin of Life. Current Biology, 2015, 25, R953-R963. Mechanistic Insights into Two-Phase Radical CâC"H Arylations. ACS Central Science, 2015, 1, 456-462. Modulation of Reactivity in the Cavity of Liposomes Promotes the Formation of Peptide Bonds. Journal of the American Chemical Society, 2015, 137, 12269-12275. Experiments on and Numerical Modeling of the Capture and Concentration of Transcription-Translation Machinery inside Vesicles. Artificial Life, 2015, 21, 445-463. Biochemistry of Early Life., 2016, , 29-35. Structural insights into RNA duplexes with multiple 2â62-5â62-linkages. Nucleic Acids Research, 2016, 45, ghv1307.	0.4 1.1 1.8 5.3 6.6 1.0	215 25 114 29 39 23 23 0

ARTICLE IF CITATIONS Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale 308 5.8 60 density fluctuations. Nature Communications, 2016, 7, 11575. Sequestration of Proteins by Fatty Acid Coacervates for Their Encapsulation within Vesicles. 309 1.6 Angewandte Chemie, 2016, 128, 13673-13677. Multifaceted polymersome platforms: Spanning from self-assembly to drug delivery and protocells. 310 11.8 87 Progress in Polymer Science, 2016, 60, 51-85. Artificial cells: from basic science to applications. Materials Today, 2016, 19, 516-532. 311 Prebiotic synthesis of nucleic acids and their building blocks at the atomic level – merging models 312 and mechanisms from advanced computations and experiments. Physical Chemistry Chemical Physics, 1.3 48 2016, 18, 20047-20066. Probing of molecular replication and accumulation in shallow heat gradients through numerical simulations. Physical Chemistry Chemical Physics, 2016, 18, 20153-20159. 1.3 Advances in Artificial Life, Evolutionary Computation and Systems Chemistry. Communications in 314 0.4 2 Computer and Information Science, 2016, , Phenotypic Novelty in EvoDevo: The Distinction Between Continuous and Discontinuous Variation and Its Importance in Évolutionary Theory. Evolutionary Biology, 2016, 43, 314-335. The New Worlds of Synthetic Biologyâ€"Synopsis. Wissenschaftsethik Und Technikfolgenbeurteilung, 316 0.8 0 2016, , 1-25. Effect of terminal 3â€²-hydroxymethyl modification of an RNA primer on nonenzymatic primer extension. 2.2 Chemical Communications, 2016, 52, 11905-11907. Sequestration of Proteins by Fatty Acid Coacervates for Their Encapsulation within Vesicles. 318 7.2 71 Angewandte Chemie - International Edition, 2016, 55, 13475-13479. Programmable Modulation of Membrane Permeability of Proteinosome upon Multiple Stimuli 319 2.3 Responses. ACS Macro Letters, 2016, 5, 961-966. Natural pH Gradients in Hydrothermal Alkali Vents Were Unlikely to Have Played a Role in the Origin 320 0.8 38 of Life. Journal of Molecular Evolution, 2016, 83, 1-11. The Astrobiology Primer v2.0. Astrobiology, 2016, 16, 561-653. 1.5 133 <i>N</i>/i>-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for 322 Functionalization of Protocell Membranes. Journal of the American Chemical Society, 2016, 138, 6.6 45 16669-16676. Pore Model in the Melting Regime of a Lyotropic Biomembrane with an Anionic Phospholipid. Langmuir, 2016, 32, 13556-13565. Synthetic transitions: towards a new synthesis. Philosophical Transactions of the Royal Society B: 324 1.8 30 Biological Sciences, 2016, 371, 20150438. The physiology and habitat of the last universal common ancestor. Nature Microbiology, 2016, 1, 16116.

#	Article	IF	Citations
326	Proton Transfer Pathways of 2,2′-Bipyridine-3,3′-diol in pH Responsive Fatty Acid Self-Assemblies: Multiwavelength Fluorescence Lifetime Imaging in a Single Vesicle. Langmuir, 2016, 32, 13284-13295.	1.6	15
327	Compartmentalization Approaches in Soft Matter Science: From Nanoreactor Development to Organelle Mimics. Advanced Materials, 2016, 28, 1109-1128.	11.1	250
328	Stimuli-responsive polymersomes and nanoreactors. Journal of Materials Chemistry B, 2016, 4, 4632-4647.	2.9	179
329	Monodisperse Uni- and Multicompartment Liposomes. Journal of the American Chemical Society, 2016, 138, 7584-7591.	6.6	207
331	Influence of the UV Environment on the Synthesis of Prebiotic Molecules. Astrobiology, 2016, 16, 68-88.	1.5	106
332	Bioactive cell-like hybrids coassembled from (glyco)dendrimersomes with bacterial membranes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1134-41.	3.3	69
333	The plasma membrane as a capacitor for energy and metabolism. American Journal of Physiology - Cell Physiology, 2016, 310, C181-C192.	2.1	57
334	What do we not know about mitochondrial potassium channels?. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1247-1257.	0.5	110
335	Dopamine modulated ionic permeability in mesoporous silica sphere based biomimetic compartment. Colloids and Surfaces B: Biointerfaces, 2016, 142, 266-271.	2.5	1
336	Sustainable proliferation of liposomes compatible with inner RNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 590-595.	3.3	46
337	Control of vesicle membrane permeability with catalytic particles. Materials Horizons, 2016, 3, 41-46.	6.4	21
338	Engineering Functional Polymer Capsules toward Smart Nanoreactors. Chemical Reviews, 2016, 116, 1053-1093.	23.0	337
339	Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells. Biomaterials, 2017, 121, 55-63.	5.7	18
340	Vesikel in der Natur und im Labor: die AufklĤung der biologischen Eigenschaften und die Synthese zunehmend komplexer synthetischer Vesikel. Angewandte Chemie, 2017, 129, 3188-3208.	1.6	10
341	Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles. Colloids and Surfaces B: Biointerfaces, 2017, 152, 199-213.	2.5	73
342	Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly. Scientific Reports, 2017, 7, 43418.	1.6	37
343	Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application. Reviews in Chemical Engineering, 2017, 33, .	2.3	73
344	Microviscosity, encapsulation, and permeability of 2-ketooctanoic acid vesicle membranes. Soft Matter, 2017, 13, 3514-3520.	1.2	9

#	Article	IF	CITATIONS
345	Partitioning of Small Molecules in Hydrogen-Bonding Complex Coacervates of Poly(acrylic acid) and Poly(ethylene glycol) or Pluronic Block Copolymer. Macromolecules, 2017, 50, 3818-3830.	2.2	37
346	Nonenzymatic Oligomerization of 3′,5′â€Cyclic CMP Induced by Proton and UV Irradiation Hints at a Nonfastidious Origin of RNA. ChemBioChem, 2017, 18, 1535-1543.	1.3	16
347	Permeability-driven selection in a semi-empirical protocell model: the roots of prebiotic systems evolution. Scientific Reports, 2017, 7, 3141.	1.6	30
348	The Narrow Road to the Deep Past: In Search of the Chemistry of the Origin of Life. Angewandte Chemie - International Edition, 2017, 56, 11037-11043.	7.2	118
349	Der schmale Pfad tief in die Vergangenheit: auf der Suche nach der Chemie der AnfÄ ¤ ge des Lebens. Angewandte Chemie, 2017, 129, 11182-11189.	1.6	28
350	Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biology, 2017, 7, 170050.	1.5	71
351	Cogenerating Synthetic Parts toward a Self-Replicating System. ACS Synthetic Biology, 2017, 6, 1327-1336.	1.9	40
352	Nucleic acids: function and potential for abiogenesis. Quarterly Reviews of Biophysics, 2017, 50, e4.	2.4	53
353	Highly oriented photosynthetic reaction centers generate a proton gradient in synthetic protocells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3837-3842.	3.3	102
354	Understanding Life: A Bioinformatics Perspective. European Review, 2017, 25, 231-245.	0.4	7
355	Two-Dimensional Self-Assembled Structures of Highly Ordered Bioactive Crystalline-Based Block Copolymers. Macromolecules, 2017, 50, 8544-8553.	2.2	66
356	The Biophysics of Cell Membranes. Springer Series in Biophysics, 2017, , .	0.4	9
357	Compartmentalizing Supramolecular Hydrogels Using Aqueous Multiâ€phase Systems. Angewandte Chemie, 2017, 129, 15119-15123.	1.6	14
358	Catanionic Coacervate Droplets as a Surfactantâ€Based Membraneâ€Free Protocell Model. Angewandte Chemie, 2017, 129, 13877-13881.	1.6	22
359	Catanionic Coacervate Droplets as a Surfactantâ€Based Membraneâ€Free Protocell Model. Angewandte Chemie - International Edition, 2017, 56, 13689-13693.	7.2	65
360	Compartmentalized Assembly of Motor Protein Reconstituted on Protocell Membrane toward Highly Efficient Photophosphorylation. ACS Nano, 2017, 11, 10175-10183.	7.3	41
361	Primordial membranes: more than simple container boundaries. Current Opinion in Chemical Biology, 2017, 40, 78-86.	2.8	36
362	Compartmentalizing Supramolecular Hydrogels Using Aqueous Multiâ€phase Systems. Angewandte Chemie - International Edition, 2017, 56, 14923-14927.	7.2	32

#	Article	IF	CITATIONS
364	Proton gradients and pH oscillations emerge from heat flow at the microscale. Nature Communications, 2017, 8, 1897.	5.8	47
365	The Origin of Life on Earth and the Design of Alternative Life Forms. Molecular Frontiers Journal, 2017, 01, 121-131.	0.9	9
366	Cell-free protein synthesis in micro compartments: building a minimal cell from biobricks. New Biotechnology, 2017, 39, 199-205.	2.4	50
367	Single-step fabrication of multi-compartmentalized biphasic proteinosomes. Chemical Communications, 2017, 53, 8537-8540.	2.2	26
368	Encapsulation of Nucleic Acids into Giant Unilamellar Vesicles by Freeze-Thaw: a Way Protocells May Form. Origins of Life and Evolution of Biospheres, 2017, 47, 499-510.	0.8	16
369	New evolutionary insights into the nonâ€enzymatic origin of <scp>RNA</scp> oligomers. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1400.	3.2	14
370	Vesicles in Nature and the Laboratory: Elucidation of Their Biological Properties and Synthesis of Increasingly Complex Synthetic Vesicles. Angewandte Chemie - International Edition, 2017, 56, 3142-3160.	7.2	65
371	Crude phosphorylation mixtures containing racemic lipid amphiphiles self-assemble to give stable primitive compartments. Scientific Reports, 2017, 7, 18106.	1.6	31
372	Chemical systems, chemical contiguity and the emergence of life. Beilstein Journal of Organic Chemistry, 2017, 13, 1551-1563.	1.3	5
373	The Role of Lipid Membranes in Life's Origin. Life, 2017, 7, 5.	1.1	153
374	Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments. Life, 2017, 7, 37.	1.1	10
375	The Impact of Salts on Single Chain Amphiphile Membranes and Implications for the Location of the Origin of Life. Life, 2017, 7, 44.	1.1	21
376			
	Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research. Beilstein Journal of Organic Chemistry, 2017, 13, 1388-1395.	1.3	13
377	Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research. Beilstein Journal of Organic Chemistry, 2017, 13, 1388-1395. What Does "the RNA World―Mean to "the Origin of Life�. Life, 2017, 7, 49.	1.3 1.1	13
377 378	 Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research. Beilstein Journal of Organic Chemistry, 2017, 13, 1388-1395. What Does "the RNA World―Mean to "the Origin of Life�. Life, 2017, 7, 49. Origin and evolution of transporter substrate specificity within the NPF family. ELife, 2017, 6, . 	1.3 1.1 2.8	13 12 100
377 378 379	 Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research. Beilstein Journal of Organic Chemistry, 2017, 13, 1388-1395. What Does "the RNA World―Mean to "the Origin of Life�. Life, 2017, 7, 49. Origin and evolution of transporter substrate specificity within the NPF family. ELife, 2017, 6, . Preparation, Purification, and Use of Fatty Acid-containing Liposomes. Journal of Visualized Experiments, 2018, . 	1.3 1.1 2.8 0.2	13 12 100 11
377 378 379 380	 Framing major prebiotic transitions as stages of protocell development: three challenges for origins-of-life research. Beilstein Journal of Organic Chemistry, 2017, 13, 1388-1395. What Does "the RNA Worldâ€-Mean to "the Origin of Lifeâ€?. Life, 2017, 7, 49. Origin and evolution of transporter substrate specificity within the NPF family. ELife, 2017, 6, . Preparation, Purification, and Use of Fatty Acid-containing Liposomes. Journal of Visualized Experiments, 2018, , . Fatty Acid/Phospholipid Blended Membranes: A Potential Intermediate State in Protocellular Evolution. Small, 2018, 14, e1704077. 	1.3 1.1 2.8 0.2 5.2	13 12 100 11 69

#	Article	IF	CITATIONS
382	Hypothesis on the Synchronistic Evolution of Autotrophy and Heterotrophy. Trends in Biochemical Sciences, 2018, 43, 402-411.	3.7	12
383	Aqueous magnesium as an environmental selection pressure in the evolution of phospholipid membranes on early earth. Geochimica Et Cosmochimica Acta, 2018, 223, 216-228.	1.6	24
384	RNAâ€Templated Concatenation of Triplet Nucleicâ€Acid Probe. ChemBioChem, 2018, 19, 674-678.	1.3	9
385	Rewarming the Primordial Soup: Revisitations and Rediscoveries in Prebiotic Chemistry. ChemBioChem, 2018, 19, 22-25.	1.3	9
386	Copying of Mixed-Sequence RNA Templates inside Model Protocells. Journal of the American Chemical Society, 2018, 140, 5171-5178.	6.6	80
387	Self-Assembly Mechanism of a Peptide-Based Drug Delivery Vehicle. ACS Omega, 2018, 3, 3143-3155.	1.6	39
388	ls defining life pointless? Operational definitions at the frontiers of biology. SynthÈse, 2018, 195, 3919-3946.	0.6	47
389	Templated Self-Assembly of Dynamic Peptide Nucleic Acids. Biochemistry, 2018, 57, 160-172.	1.2	7
390	Origins of building blocks of life: A review. Geoscience Frontiers, 2018, 9, 1117-1153.	4.3	292
391	Microfluidic formation of proteinosomes. Chemical Communications, 2018, 54, 287-290.	2.2	46
392	Ship in a bottle: confinement-promoted self-assembly. Chemical Science, 2018, 9, 1760-1768.	3.7	6
394	Vesicle Self-Assembly of Monoalkyl Amphiphiles under the Effects of High Ionic Strength, Extreme pH, and High Temperature Environments. Langmuir, 2018, 34, 15560-15568.	1.6	30
396	Robustness and Autonomy in Biological Systems: How Regulatory Mechanisms Enable Functional Integration, Complexity and Minimal Cognition Through the Action of Second-Order Control Constraints. History, Philosophy and Theory of the Life Sciences, 2018, , 123-147.	0.4	8
397	Highly Stable Artificial Cells from Galactopyranose-Derived Single-Chain Amphiphiles. Journal of the American Chemical Society, 2018, 140, 17356-17360.	6.6	23
398	Soft and dispersed interface-rich aqueous systems that promote and guide chemical reactions. Nature Reviews Chemistry, 2018, 2, 306-327.	13.8	92
399	Nonenzymatic Polymerization into Long Linear RNA Templated by Liquid Crystal Self-Assembly. ACS Nano, 2018, 12, 9750-9762.	7.3	35
400	Circular RNAs as Therapeutic Agents and Targets. Frontiers in Physiology, 2018, 9, 1262.	1.3	134
401	Künstliche, gelbasierte Organellen für die rämliche Organisation von zellfreien Genexpressionsreaktionen. Angewandte Chemie, 2018, 130, 17491-17495.	1.6	6

#	Article	IF	CITATIONS
402	Artificial Gelâ€Based Organelles for Spatial Organization of Cellâ€Free Gene Expression Reactions. Angewandte Chemie - International Edition, 2018, 57, 17245-17248.	7.2	63
403	Protocells and RNA Self-Replication. Cold Spring Harbor Perspectives in Biology, 2018, 10, a034801.	2.3	190
404	Enzymeâ€Free Replication with Two or Four Bases. Angewandte Chemie - International Edition, 2018, 57, 8911-8915.	7.2	33
405	Enzymeâ€Free Replication with Two or Four Bases. Angewandte Chemie, 2018, 130, 9049-9053.	1.6	6
407	DNA Oligonucleotide-Functionalized Liposomes: Bioconjugate Chemistry, Biointerfaces, and Applications. Langmuir, 2018, 34, 15000-15013.	1.6	41
408	Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nature Catalysis, 2018, 1, 616-623.	16.1	77
409	Crossover from picosecond collective to single particle dynamics defines the mechanism of lateral lipid diffusion. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2446-2455.	1.4	16
410	Template-Directed Replication of Nucleic Acids Mediated by Viscous Environments. Nucleic Acids and Molecular Biology, 2018, , 199-225.	0.2	0
411	Minimizing Context Dependency of Gene Networks Using Artificial Cells. ACS Applied Materials & Interfaces, 2018, 10, 30137-30146.	4.0	61
412	Chemomimesis and Molecular Darwinism in Action: From Abiotic Generation of Nucleobases to Nucleosides and RNA. Life, 2018, 8, 24.	1.1	15
413	Prebiotic Chemistry and Chemical Evolution of Nucleic Acids. Nucleic Acids and Molecular Biology, 2018, , .	0.2	6
414	The hallmarks of living systems: towards creating artificial cells. Interface Focus, 2018, 8, 20180023.	1.5	111
415	Macromolecularly Crowded Protocells from Reversibly Shrinking Monodisperse Liposomes. Journal of the American Chemical Society, 2018, 140, 7399-7402.	6.6	72
416	Lipid vesicles chaperone an encapsulated RNA aptamer. Nature Communications, 2018, 9, 2313.	5.8	47
417	Genetically Encoded Membranes for Bottomâ€Up Biology. ChemSystemsChem, 2019, 1, e1900016.	1.1	11
418	Encapsulation of hydrophobic components in dendrimersomes and decoration of their surface with proteins and nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15378-15385.	3.3	41
419	Functions and Potential Applications of Circular RNAs in Cancer Stem Cells. Frontiers in Oncology, 2019, 9, 500.	1.3	21
420	Mimicking Cellular Compartmentalization in a Hierarchical Protocell through Spontaneous Spatial Organization. ACS Central Science, 2019, 5, 1360-1365.	5.3	101

#	Article	IF	CITATIONS
421	Prebiotic Protocell Model Based on Dynamic Protein Membranes Accommodating Anabolic Reactions. Langmuir, 2019, 35, 9593-9610.	1.6	39
422	Bottom-up Creation of an Artificial Cell Covered with the Adhesive Bacterionanofiber Protein AtaA. Journal of the American Chemical Society, 2019, 141, 19058-19066.	6.6	7
423	Stretchable and Reactive Membranes of Metal–Organic Framework Nanosurfactants on Liquid Droplets Enable Dynamic Control of Selfâ€Propulsion, Cargo Pickâ€Up, and Dropâ€Off. Advanced Intelligent Systems, 2019, 1, 1900065.	3.3	5
424	Selectively Permeable Double Emulsions. Small, 2019, 15, e1903054.	5.2	11
425	Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation. Nano-Micro Letters, 2019, 11, 83.	14.4	17
426	DNA polymerase activity on synthetic N3′→P5′ phosphoramidate DNA templates. Nucleic Acids Research, 2019, 47, 8941-8949.	6.5	11
427	Building blocks for recognition-encoded oligoesters that form H-bonded duplexes. Chemical Science, 2019, 10, 2444-2451.	3.7	21
428	Polydimethylsiloxane-Based Giant Glycosylated Polymersomes with Tunable Bacterial Affinity. Biomacromolecules, 2019, 20, 1297-1307.	2.6	14
429	An Improved Relevance Index Method to Search Important Structures in Complex Systems. Communications in Computer and Information Science, 2019, , 3-16.	0.4	0
430	Nonenzymatic Template-Directed Synthesis of Mixed-Sequence 3′-NP-DNA up to 25 Nucleotides Long Inside Model Protocells. Journal of the American Chemical Society, 2019, 141, 10481-10488.	6.6	37
431	Adaptive Polymersome Nanoreactors. ChemNanoMat, 2019, 5, 1092-1109.	1.5	70
432	Investigating Prebiotic Protocells for a Comprehensive Understanding of the Origins of Life: A Prebiotic Systems Chemistry Perspective. Life, 2019, 9, 49.	1.1	57
433	DNA Length-dependent Division of a Giant Vesicle-based Model Protocell. Scientific Reports, 2019, 9, 6916.	1.6	24
434	Stabilization of Allâ€inâ€Water Emulsions To Form Capsules as Artificial Cells. ChemBioChem, 2019, 20, 2546-2552.	1.3	26
435	Sequence information transfer using covalent template-directed synthesis. Chemical Science, 2019, 10, 5258-5266.	3.7	32
436	Polyelectrolyte–micelle coacervates: intrapolymer-dominant <i>vs.</i> interpolymer-dominant association, solute uptake and rheological properties. Soft Matter, 2019, 15, 3043-3054.	1.2	17
437	Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry - A European Journal, 2019, 25, 7798-7814.	1.7	44
438	How Prebiotic Chemistry and Early Life Chose Phosphate. Life, 2019, 9, 26.	1.1	44

ARTICLE IF CITATIONS # Nanozyme atalyzed Cascade Reactions for Mitochondriaâ€Mimicking Oxidative Phosphorylation. 439 7.2 104 Angewandte Chemie - International Edition, 2019, 58, 5572-5576. Nanozymeâ€Catalyzed Cascade Reactions for Mitochondriaâ€Mimicking Oxidative Phosphorylation. 440 1.6 Angewandte Chemie, 2019, 131, 5628-5632. Length-Selective Synthesis of Acylglycerol-Phosphates through Energy-Dissipative Cycling. Journal of 441 6.6 62 the American Chemical Society, 2019, 141, 3934-3939. Thermodynamics of Duplication Thresholds in Synthetic Protocell Systems. Life, 2019, 9, 9. 1.1 The miraculous dynamism of the Qur'an: An example of a modern reading reveals a DNA designation. 443 0.3 0 International Journal of Modern Anthropology, 2019, 2, 15. Molecular Communications in the Context of "Synthetic Cells―Research. IEEE Transactions on 2.2 Nanobioscience, 2019, 18, 43-50. Electrochemistry at Deepâ€Sea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force 445 1.7 22 towards the Autotrophic Origin of Life. ChemElectroChem, 2019, 6, 1316-1323. Progress in synthesizing protocells. Experimental Biology and Medicine, 2019, 244, 304-313. 1.1 446 Proton-consumed nanoarchitectures toward sustainable and efficient photophosphorylation. 447 5.0 17 Journal of Colloid and Interface Science, 2019, 535, 325-330. Self assembly in an aqueous gemini surfactant containing sugar based (isosorbide) spacer. Arabian 448 2.3 Journal of Chemistry, 2020, 13, 1848-1857. Cyclophospholipids Increase Protocellular Stability to Metal Ions. Small, 2020, 16, e1903381. 449 5.2 32 Protocells programmed through artificial reaction networks. Chemical Science, 2020, 11, 631-642. 3.7 450 Halogenation-Dependent Effects of the Chlorosulfolipids of <i>Ochromonas danica</i> 451 1.6 3 Bilayers. ACS Chemical Biology, 2020, 15, 2986-2995. Nonenzymatic Metabolic Reactions and Life's Origins. Chemical Reviews, 2020, 120, 7708-7744. 23.0 154 Prebiological Membranes and Their Role in the Emergence of Early Cellular Life. Journal of Membrane 453 1.0 33 Biology, 2020, 253, 589-608. Growth of Giant Peptide Vesicles Driven by Compartmentalized Transcriptionâ€"Translation Activity. Chemistry - A European Journal, 2020, 26, 17356-17360. Activation chemistry drives the emergence of functionalised protocells. Chemical Science, 2020, 11, 456 3.7 34 10688-10697. Stability and robustness of asymptotic autocatalytic systems. Scientific Reports, 2020, 10, 15498. 1.6

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
458	The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. Astrobiology, 2020, 20, 1076-1096.	1.5	16
459	How to Build a Biological Machine Using Engineering Materials and Methods. Biomimetics, 2020, 5, 35.	1.5	9
460	Pre-Darwinian Evolution Before LUCA. Biological Theory, 2020, 15, 175-179.	0.8	0
461	Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: unveiling the role of fatty acids as a model protocell membrane. Biophysical Reviews, 2020, 12, 1117-1131.	1.5	19
462	Functional and morphological adaptation in DNA protocells via signal processing prompted by artificial metalloenzymes. Nature Nanotechnology, 2020, 15, 914-921.	15.6	76
463	Direct Visualization of Vesicle Disassembly and Reassembly Using Photocleavable Dendrimers Elucidates Cargo Release Mechanisms. ACS Nano, 2020, 14, 7398-7411.	7.3	27
464	Artificial chaperones: From materials designs to applications. Biomaterials, 2020, 254, 120150.	5.7	20
465	Templateâ€Directed Copying of RNA by Nonâ€enzymatic Ligation. Angewandte Chemie, 2020, 132, 15812-1581	71.6	13
466	Templateâ€Directed Copying of RNA by Nonâ€enzymatic Ligation. Angewandte Chemie - International Edition, 2020, 59, 15682-15687.	7.2	39
467	Compositional heterogeneity confers selective advantage to model protocellular membranes during the origins of cellular life. Scientific Reports, 2020, 10, 4483.	1.6	26
468	A biointerface effect on the self-assembly of ribonucleic acids: a possible mechanism of RNA polymerisation in the self-replication cycle. Nanoscale, 2020, 12, 6691-6698.	2.8	6
469	Biomimicry of Cellular Motility and Communication Based on Synthetic Softâ€Architectures. Small, 2020, 16, e1907680.	5.2	58
470	The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life, 2020, 10, 20.	1.1	63
471	Primary cell wall inspired micro containers as a step towards a synthetic plant cell. Nature Communications, 2020, 11, 958.	5.8	19
472	Semipermeable Mixed Phospholipid-Fatty Acid Membranes Exhibit K+/Na+ Selectivity in the Absence of Proteins. Life, 2020, 10, 39.	1.1	11
473	Interfacing Living and Synthetic Cells as an Emerging Frontier in Synthetic Biology. Angewandte Chemie, 2021, 133, 5662-5671.	1.6	14
474	Sugar and Nitrate Sensing: A Multi-Billion-Year Story. Trends in Plant Science, 2021, 26, 352-374.	4.3	55
475	Prebiotic Peptide Synthesis and Spontaneous Amyloid Formation Inside a Proto ellular Compartment. Angewandte Chemie - International Edition, 2021, 60, 5561-5568.	7.2	9

#	Article	IF	CITATIONS
476	Greenalite Nanoparticles in Alkaline Vent Plumes as Templates for the Origin of Life. Astrobiology, 2021, 21, 246-259.	1.5	13
477	Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. Advanced Materials, 2021, 33, e2002635.	11.1	50
478	Interfacing Living and Synthetic Cells as an Emerging Frontier in Synthetic Biology. Angewandte Chemie - International Edition, 2021, 60, 5602-5611.	7.2	84
479	Use of artificial cells as drug carriers. Materials Chemistry Frontiers, 2021, 5, 6672-6692.	3.2	20
480	Forced Crowding of Colloids by Thermophoresis and Convection in a Custom Liquid Clusius–Dickel Microdevice. Langmuir, 2021, 37, 675-682.	1.6	3
481	PrÃbiotische Peptidâ€Synthese und spontane Amyloidâ€Bildung im Inneren eines protozelluläen Kompartiments. Angewandte Chemie, 2021, 133, 5621-5629.	1.6	2
482	Nonenzymatic polymerase-like template-directed synthesis of acyclic l-threoninol nucleic acid. Nature Communications, 2021, 12, 804.	5.8	11
483	Population-Level Membrane Diversity Triggers Growth and Division of Protocells. Jacs Au, 2021, 1, 560-568.	3.6	18
484	Immobilization of Proteins of Cell Extract to Hydrogel Networks Enhances the Longevity of Cell-Free Protein Synthesis and Supports Gene Networks. ACS Synthetic Biology, 2021, 10, 749-755.	1.9	7
487	Assumption and Criticism on RNA World Hypothesis from Ribozymes to Functional Cells. Bioengineering and Bioscience, 2021, 8, 1-12.	0.2	0
488	2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions. Nature Communications, 2021, 12, 3018.	5.8	24
489	Influence of Wet–Dry Cycling on the Selfâ€Assembly and Physicochemical Properties of Model Protocellular Membrane Systems. ChemSystemsChem, 2021, 3, e2100014.	1.1	13
490	Programmable Aggregation of Artificial Cells with DNA Signals. ACS Synthetic Biology, 2021, 10, 1268-1276.	1.9	7
491	Oriented arrangement of simple monomers enabled by confinement: towards living supramolecular polymerization. Nature Communications, 2021, 12, 2596.	5.8	10
492	Fast bilayer-micelle fusion mediated by hydrophobic dipeptides. Biophysical Journal, 2021, 120, 2330-2342.	0.2	4
493	The Origin(s) of Cell(s): Pre-Darwinian Evolution from FUCAs to LUCA. Journal of Molecular Evolution, 2021, 89, 427-447.	0.8	1
494	Bioinspired Selfâ€Assembling Materials for Modulating Enzyme Functions. Advanced Functional Materials, 2021, 31, 2104819.	7.8	21
495	Pearling and helical nanostructures of model protocell membranes. Nano Research, 2022, 15, 659.	5.8	2

#	Article	IF	CITATIONS
496	Fatty Acid Vesicles and Coacervates as Model Prebiotic Protocells. ChemSystemsChem, 2021, 3, e2100024.	1.1	30
497	Directing Transition of Synthetic Protocell Models via Physicochemical Cuesâ€Triggered Interfacial Dynamic Covalent Chemistry. Advanced Science, 2021, 8, e2101187.	5.6	13
498	System concentration shift as a regulator of transcription-translation system within liposomes. IScience, 2021, 24, 102859.	1.9	7
499	Phenylalanine Interacts with Oleic Acid-Based Vesicle Membrane. Understanding the Molecular Role of Fibril–Vesicle Interaction under the Context of Phenylketonuria. Journal of Physical Chemistry B, 2021, 125, 9776-9793.	1.2	9
500	Designing Artificial Cells towards a New Generation of Biosensors. Trends in Biotechnology, 2021, 39, 927-939.	4.9	37
501	Functional Multivesicular Structures with Controlled Architecture from 3Dâ€Printed Droplet Networks. ChemSystemsChem, 2022, 4, e2100036.	1.1	10
502	Molecular Transformation for Self-reproducing Vesicles and Underlying Analysis Methods. Chemical and Pharmaceutical Bulletin, 2021, 69, 947-952.	0.6	0
503	System Concentration Shift as a Regulator of Transcription-Translation System within Liposomes. SSRN Electronic Journal, 0, , .	0.4	0
507	Stochastic Simulations of Mixed-Lipid Compartments: From Self-Assembling Vesicles to Self-Producing Protocells. Advances in Experimental Medicine and Biology, 2011, 696, 689-696.	0.8	4
508	On RAF Sets and Autocatalytic Cycles in Random Reaction Networks. Communications in Computer and Information Science, 2014, , 113-126.	0.4	5
509	Spontaneous Generation Revisited at the Molecular Level. , 2009, , 3-22.		3
510	Bottom–Up Protocell Design: Gaining Insights in the Emergence of Complex Functions. , 2013, , 81-94.		3
511	RNA as Major Components in Chemical Evolvable Systems. , 2014, , 1-24.		2
512	An Introduction to Synthetic Biology. , 2009, , 23-48.		3
513	Towards a Minimal Cytoplasm. , 2011, , 3-30.		7
514	Theoretical Approaches to Ribocell Modeling. , 2011, , 255-273.		3
516	Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. , 0, .		1
517	Oil droplets mimic early life. Nature, 0, , .	13.7	2

#	Article	IF	CITATIONS
518	Self-reproducing catalytic micelles as nanoscopic protocell precursors. Nature Reviews Chemistry, 2021, 5, 870-878.	13.8	30
519	A protocell with fusion and division. Biochemical Society Transactions, 2019, 47, 1909-1919.	1.6	14
520	Lipid constituents of model protocell membranes. Emerging Topics in Life Sciences, 2019, 3, 537-542.	1.1	22
521	Multifaceted cell mimicry in coacervate-based synthetic cells. Emerging Topics in Life Sciences, 2019, 3, 567-571.	1.1	20
522	Complexity, self-organization and the origin of life: The happy liaison?. , 2009, , .		9
525	Toward Intelligent Materials. , 2012, , 1-36.		2
526	Adenosine Monophosphate Forms Ordered Arrays in Multilamellar Lipid Matrices: Insights into Assembly of Nucleic Acid for Primitive Life. PLoS ONE, 2013, 8, e62810.	1.1	52
527	Non-Enzymatic Oligomerization of 3', 5' Cyclic AMP. PLoS ONE, 2016, 11, e0165723.	1.1	19
528	Prebiotic selection for motifs in a model of template-free elongation of polymers within compartments. PLoS ONE, 2017, 12, e0180208.	1.1	6
529	Semiotics is Fundamental Science. Advances in Knowledge Acquisition, Transfer and Management Book Series, 2014, , 76-125.	0.1	7
530	Nonlinear Dynamical Systems as Models of Development of Inorganic Cells (iCHELLs) & their Simple Assemblies. American Journal of Bioinformatics Research, 2012, 2, 92-101.	0.3	3
531	The detection of intermediate-level emergent structures and patterns. , 0, , .		18
533	A three-tiered colloidosomal microreactor for continuous flow catalysis. Nature Communications, 2021, 12, 6113.	5.8	39
534	Thermally Driven Membrane Phase Transitions Enable Content Reshuffling in Primitive Cells. Journal of the American Chemical Society, 2021, 143, 16589-16598.	6.6	29
535	Minimal Cell Model to Understand Origin of Life and Evolution. , 2009, , 23-50.		1
536	Approaches to Building Chemical Cells/Chells: Examples of Relevant Mechanistic †Couples'. , 2011, , 153-170.		0
537	Wet Artificial Life: The Construction of Artificial Living Systems. The Frontiers Collection, 2011, , 261-280.	0.1	1
538	On the Transition from Prebiotic to Proto-biological Membranes: From â€~Self-assembly' to â€~Self-production'. Lecture Notes in Computer Science, 2011, , 256-264.	1.0	0

		CITATION REPORT		
#	Article		IF	Citations
539	Optically Controlled Opening of Self-Sealing Giant Unilamellar Vesicles. , 2012, , .			0
540	The Synthetic Approach in Biology: Epistemic Notes for Synthetic Biology. Cellular Origin and Extreme Habitats, 2012, , 523-537.	Life in	0.3	3
541	Toward Intelligent Materials. , 2012, , 17-52.			0
543	Zelle. , 2014, , 51-87.			0
545	Origin of Life. , 2014, , 1-9.			0
546	Cell Models. , 2014, , 1-5.			0
547	Synthetic Biology and Darwinism. , 2015, , 413-441.			1
548	Cell Models. , 2015, , 410-413.			0
549	Evolution: The Historical Dimension of Autonomy. History, Philosophy and Theory of the Life 2015, , 111-139.	Sciences,	0.4	0
550	Chiral Symmetry Breaking Induced by Temperature Fluctuation in an Open System to Mimic (Evolution in Nature. , 0, , .	Chirality		0
551	Protocell. , 2015, , 2040-2042.			0
552	Origin of Life. , 2015, , 1791-1799.			0
553	Zelle. , 2016, , 59-101.			0
555	Minimal Cellular Models for Origins-of-Life Studies and Biotechnology. Springer Series in Biop 2017, , 177-219.	hysics,	0.4	0
559	Lipid Vesicles and Other Polymolecular Aggregates—From Basic Studies of Polar Lipids to In Applications. Applied Sciences (Switzerland), 2021, 11, 10345.	novative	1.3	14
560	Capsule-like DNA Hydrogels with Patterns Formed by Lateral Phase Separation of DNA Nanos Jacs Au, 2022, 2, 159-168.	tructures.	3.6	26
561	Supramolecular assembly-enabled homochiral polymerization of short (dA) _{<i>n</i>oligonucleotides. Chemical Communications, 2021, 57, 13602-13605.}	۶dı	2.2	3
562	Dynamic Electrochemiluminescence Imaging of Single Giant Liposome Opening at Polarized I Analytical Chemistry, 2022, 94, 1686-1696.	Electrodes.	3.2	14

#	Article	IF	CITATIONS
564	Prebiotic Protocell Membranes Retain Encapsulated Contents during Flocculation, and Phospholipids Preserve Encapsulation during Dehydration. Langmuir, 2022, 38, 1304-1310.	1.6	12
565	Lipid membranes modulate the activity of RNA through sequence-dependent interactions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
566	Contagious Aggregation: Transmittable Protein Aggregation in Cellular Communities Initiated by Synthetic Cells. Journal of the American Chemical Society, 2022, 144, 5067-5073.	6.6	6
567	Proteinâ€Encoding Freeâ€Standing RNA Hydrogel for Subâ€Compartmentalized Translation. Advanced Materials, 2022, 34, e2110424.	11.1	11
568	Microfluidic production of liposomes through liquid-liquid phase separation in ternary droplets. Frontiers of Chemical Science and Engineering, 0, , 1.	2.3	2
569	From building blocks to cells. , 2022, , 111-133.		2
570	CHAPTER 12. Investigating Prebiotic Protocells for an Understanding of the Origin of Life: A Comprehensive Perspective Combining the Chemical, Evolutionary and Historical Aspects. Chemical Biology, 2022, , 347-378.	0.1	0
571	A scenario for the origin of life: Volume regulation by bacteriorhodopsin required extremely voltage sensitive Naâ€channels and very selective Kâ€channels. BioEssays, 2022, 44, .	1.2	3
572	Engineering coacervate droplets towards the building of multiplex biomimetic protocells. , 2022, 1, 100019.		10
573	DNA nanotubes in coacervate microdroplets as biomimetic cytoskeletons modulate the liquid fluidic properties of protocells. Journal of Materials Chemistry B, 2022, 10, 8322-8329.	2.9	3
574	Prebiotic Vesicles Retain Solutes and Grow by Micelle Addition after Brief Cooling below the Membrane Melting Temperature. Langmuir, 2022, 38, 13407-13413.	1.6	1
575	Evolution of Proliferative Model Protocells Highly Responsive to the Environment. Life, 2022, 12, 1635.	1.1	3
576	Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells. Chemical Engineering Science, 2022, 264, 118186.	1.9	4
577	Plausible Sources of Membrane-Forming Fatty Acids on the Early Earth: A Review of the Literature and an Estimation of Amounts. ACS Earth and Space Chemistry, 2023, 7, 11-27.	1.2	6
578	Model Atmospheric Aerosols Convert to Vesicles upon Entry into Aqueous Solution. ACS Earth and Space Chemistry, 2023, 7, 252-259.	1.2	2
579	Beginnings of life on Earth. , 2023, , 115-166.		0
580	Cell-sized asymmetric phospholipid-amphiphilic protein vesicles with growth, fission, and molecule transportation. IScience, 2023, 26, 106086.	1.9	1
581	Towards an RNA/Peptides World by the Direct RNA Template Mechanism: The Emergence of Membrane-Stabilizing Peptides in RNA-Based Protocells. Life, 2023, 13, 523.	1.1	О

#	Article	IF	CITATIONS
582	Organic carbon generation in 3.5-billion-year-old basalt-hosted seafloor hydrothermal vent systems. Science Advances, 2023, 9, .	4.7	3
583	Confinement effect on hydrolysis in small lipid vesicles. Chemical Science, 2023, 14, 2616-2623.	3.7	0
584	Minimizing Product Inhibition in DNA Selfâ€Replication: Insights for Prebiotic Replication from the Role of the Enzyme in Lesionâ€Induced DNA Amplification. Chemistry - A European Journal, 0, , .	1.7	0
585	Systematic comparison of unilamellar vesicles reveals that archaeal core lipid membranes are more permeable than bacterial membranes. PLoS Biology, 2023, 21, e3002048.	2.6	6
586	Scientific progress, normative discussions, and the pragmatic account of definitions of life. SynthÃ^se, 2023, 201, .	0.6	0
587	Dynamical Behaviors of Oscillating Metallosurfactant Coacervate Microdroplets under Redox Stress. Advanced Materials, 2023, 35, .	11.1	3
590	Cell Models. , 2023, , 516-519.		0
591	Origin of Life. , 2023, , 2186-2193.		0
592	Protocell. , 2023, , 2487-2488.		0
593	Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. Advances in Biochemical Engineering/Biotechnology, 2023, , .	0.6	0
599	The Lipid Membrane: Encapsulating Life. , 2023, , 87-95.		0
600	The Advent of Proteins. , 2023, , 155-169.		0
604	On the Evolutionary Development of Biological Organization from Complex Prebiotic Chemistry. History, Philosophy and Theory of the Life Sciences, 2024, , 187-218.	0.4	0