The ground state of embryonic stem cell self-renewal

Nature 453, 519-523 DOI: 10.1038/nature06968

Citation Report

#	Article	IF	CITATIONS
1	Stem Cells Use Distinct Self-renewal Programs at Different Ages. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 539-553.	2.0	42
2	A chemical approach to stem-cell biology and regenerative medicine. Nature, 2008, 453, 338-344.	13.7	313
4	Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics, 2008, 40, 1291-1299.	9.4	846
6	Proliferative control in Drosophila stem cells. Current Opinion in Cell Biology, 2008, 20, 699-706.	2.6	39
7	Promotion of Reprogramming to Ground State Pluripotency by Signal Inhibition. PLoS Biology, 2008, 6, e253.	2.6	728
8	Self-Renewal Made Simple. Cell Stem Cell, 2008, 3, 7-8.	5.2	1
9	The Origins of Blood: Induction of Hematopoietic Stem Cells from Different Sources. Cell Stem Cell, 2008, 3, 8-10.	5.2	2
10	Wnt Signaling Promotes Reprogramming of Somatic Cells to Pluripotency. Cell Stem Cell, 2008, 3, 132-135.	5.2	396
11	Genetic Modification-free Reprogramming to Induced Pluripotent Cells: Fantasy or Reality?. Cell Stem Cell, 2008, 3, 121-122.	5.2	10
12	Heterogeneity of Embryonic and Adult Stem Cells. Cell Stem Cell, 2008, 3, 480-483.	5.2	328
13	Develop-WNTs in Somatic Cell Reprogramming. Cell Stem Cell, 2008, 3, 465-466.	5.2	14
14	Guidelines and Techniques for the Generation of Induced Pluripotent Stem Cells. Cell Stem Cell, 2008, 3, 595-605.	5.2	439
15	Toward Stem Cell Systems Biology: From Molecules to Networks and Landscapes. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 211-215.	2.0	28
16	Germline Competent Embryonic Stem Cells Derived from Rat Blastocysts. Cell, 2008, 135, 1299-1310.	13.5	623
17	Capture of Authentic Embryonic Stem Cells from Rat Blastocysts. Cell, 2008, 135, 1287-1298.	13.5	725
18	Return to the Proliferative Pool. Science, 2008, 321, 1450-1451.	6.0	0
19	Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19756-19761.	3.3	179
20	Dissecting Signaling Pathways That Govern Self-renewal of Rabbit Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 35929-35940.	1.6	42

#	Article	IF	CITATIONS
21	Human neural crest cells display molecular and phenotypic hallmarks of stem cells. Human Molecular Genetics, 2008, 17, 3411-3425.	1.4	87
22	Gene Replacement Therapy for Sickle Cell Disease and Other Blood Disorders. Hematology American Society of Hematology Education Program, 2008, 2008, 193-196.	0.9	24
23	Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2008, 3, 641-654.	0.8	0
24	Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2008, 3, 791-798.	0.8	0
25	Wnt Signaling and Stem Cell Control. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 59-66.	2.0	203
27	Off with differentiation. Nature Reports Stem Cells, 2008, , .	0.1	0
28	Mechanisms of Stem Cell Self-renewal. , 2009, , 73-80.		1
31	Germline-Competent Mouse-Induced Pluripotent Stem Cell Lines Generated on Human Fibroblasts without Exogenous Leukemia Inhibitory Factor. PLoS ONE, 2009, 4, e6724.	1.1	29
32	Isolation of Oct4-Expressing Extraembryonic Endoderm Precursor Cell Lines. PLoS ONE, 2009, 4, e7216.	1.1	50
33	Human Embryonic Stem Cells with Maintenance under a Feeder-Free and Recombinant Cytokine-Free Condition. Cloning and Stem Cells, 2009, 11, 5-18.	2.6	7
34	Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development (Cambridge), 2009, 136, 3215-3222.	1.2	512
35	Molecular Bases of Pluripotency. , 2009, , 37-60.		2
36	Subcellular Localization of Glycogen Synthase Kinase 3Î ² Controls Embryonic Stem Cell Self-Renewal. Molecular and Cellular Biology, 2009, 29, 2092-2104.	1.1	95
37	The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle, 2009, 8, 3822-3830.	1.3	130
38	An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5187-5191.	3.3	374
39	Activin/Nodal signalling maintains pluripotency by controlling Nanog expression. Development (Cambridge), 2009, 136, 1339-1349.	1.2	379
40	Unique and Overlapping Functions of GSK-3 Isoforms in Cell Differentiation and Proliferation and Cardiovascular Development. Journal of Biological Chemistry, 2009, 284, 9643-9647.	1.6	118
41	Protocols for Generating ES Cell-Derived Dopamine Neurons. Advances in Experimental Medicine and Biology, 2009, 651, 101-111.	0.8	21

	Сітатіо	n Report	
#	ARTICLE	IF	CITATIONS
42	Pluripotent stem cells and other technologies will eventually open the door for straightforward gene targeting in the rat. DMM Disease Models and Mechanisms, 2009, 2, 341-343.	1.2	16
43	Somatic cell reprogramming control: Signaling pathway modulation versus transcription factor activities. Cell Cycle, 2009, 8, 1138-1144.	1.3	17
44	Transcriptional heterogeneity in mouse embryonic stem cells. Reproduction, Fertility and Development, 2009, 21, 67.	0.1	22
45	Regulated Fluctuations in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells. PLoS Biology, 2009, 7, e1000149.	2.6	498
46	Cellular reprogramming and pluripotency induction. British Medical Bulletin, 2009, 90, 19-35.	2.7	8
47	A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes and Development, 2009, 23, 837-848.	2.7	354
48	Pluripotent Chromatin State. Science, 2009, 323, 220-221.	6.0	50
49	Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Research, 2009, 3, 142-156.	0.3	150
50	A gene expression signature shared by human mature oocytes and embryonic stem cells. BMC Genomics, 2009, 10, 10.	1.2	119
51	Toll-like receptor triggering in cord blood mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 2009, 13, 3415-3426.	1.6	49
52	Pleiotropic function of FGFâ€4: Its role in development and stem cells. Developmental Dynamics, 2009, 238, 265-276.	0.8	37
53	Stable generation of serum―and feederâ€free embryonic stem cellâ€derived mice with full germlineâ€competency by using a CSK3 specific inhibitor. Genesis, 2009, 47, 414-422.	0.8	37
54	Keeping an eye on retinoblastoma control of human embryonic stem cells. Journal of Cellular Biochemistry, 2009, 108, 1023-1030.	1.2	38
55	Determinants of pluripotency: From avian, rodents, to primates. Journal of Cellular Biochemistry, 2010, 109, 16-25.	1.2	19
56	Design principles of pluripotency. EMBO Molecular Medicine, 2009, 1, 251-254.	3.3	10
57	Reprogramming cell fates: reconciling rarity with robustness. BioEssays, 2009, 31, 546-560.	1.2	275
58	Plasticity and regulatory mechanisms of Hox gene expression in mouse neural crest cells. Cell and Tissue Research, 2009, 337, 381-391.	1.5	17
59	New strategies to generate induced pluripotent stem cells. Current Opinion in Biotechnology, 2009, 20, 516-521.	3.3	55

#	Article	IF	CITATIONS
60	Induced pluripotent stem cell (iPS) technology: promises and challenges. Science Bulletin, 2009, 54, 2-8.	1.7	6
61	Novel STAT3 Target Genes Exert Distinct Roles in the Inhibition of Mesoderm and Endoderm Differentiation in Cooperation with Nanog. Stem Cells, 2009, 27, 1760-1771.	1.4	166
62	Smad, PI3K/Akt, and Wnt-Dependent Signaling Pathways Are Involved in BMP-4-Induced ESC Self-Renewal. Stem Cells, 2009, 27, 1858-1868.	1.4	71
63	A Complex Role for FGF-2 in Self-Renewal, Survival, and Adhesion of Human Embryonic Stem Cells. Stem Cells, 2009, 27, 1847-1857.	1.4	184
64	Nanog Regulates Proliferation During Early Fish Development. Stem Cells, 2009, 27, 2081-2091.	1.4	55
65	Abrogation of E-Cadherin-Mediated Cell–Cell Contact in Mouse Embryonic Stem Cells Results in Reversible LIF-Independent Self-Renewal. Stem Cells, 2009, 27, 2069-2080.	1.4	110
66	Smarcc1/Baf155 Couples Self-Renewal Gene Repression with Changes in Chromatin Structure in Mouse Embryonic Stem Cells. Stem Cells, 2009, 27, 2979-2991.	1.4	127
67	Heparan Sulfation–Dependent Fibroblast Growth Factor Signaling Maintains Embryonic Stem Cells Primed for Differentiation in a Heterogeneous State. Stem Cells, 2010, 28, 191-200.	1.4	122
68	Characterization of the Phosphoinositide 3-Kinase-Dependent Transcriptome in Murine Embryonic Stem Cells: Identification of Novel Regulators of Pluripotency. Stem Cells, 2009, 27, 764-775.	1.4	66
69	All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biology, 2009, 10, 57.	3.0	52
70	More synergetic cooperation of Yamanaka factors in induced pluripotent stem cells than in embryonic stem cells. Cell Research, 2009, 19, 1127-1138.	5.7	49
71	Oct4 to count 2. Cell Research, 2009, 19, 917-919.	5.7	0
72	A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature, 2009, 460, 118-122.	13.7	777
73	Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009, 460, 53-59.	13.7	660
74	Forcing cells to change lineages. Nature, 2009, 462, 587-594.	13.7	817
75	Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature, 2009, 462, 358-362.	13.7	277
76	Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nature Medicine, 2009, 15, 814-818.	15.2	188
77	GSK-3 is a master regulator of neural progenitor homeostasis. Nature Neuroscience, 2009, 12, 1390-1397.	7.1	355

#	Article	IF	CITATIONS
78	Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nature Reviews Genetics, 2009, 10, 878-883.	7.7	96
79	Systems biology of stem cell fate and cellular reprogramming. Nature Reviews Molecular Cell Biology, 2009, 10, 672-681.	16.1	330
80	Involvement of GSK-3 in Regulation of Murine Embryonic Stem Cell Self-Renewal Revealed by a Series of BisindolyImaleimides. Chemistry and Biology, 2009, 16, 15-27.	6.2	57
81	Stem Cells in Marine Organisms. , 2009, , .		18
82	Pluripotin Combined with Leukemia Inhibitory Factor Greatly Promotes the Derivation of Embryonic Stem Cell Lines from Refractory Strains. Stem Cells, 2009, 27, 383-389.	1.4	44
83	Protein kinase inhibitors: contributions from structure to clinical compounds. Quarterly Reviews of Biophysics, 2009, 42, 1-40.	2.4	228
84	Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development (Cambridge), 2009, 136, 1063-1069.	1.2	669
85	Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8912-8917.	3.3	363
86	Nanog Is the Gateway to the Pluripotent Ground State. Cell, 2009, 138, 722-737.	13.5	904
87	Identification of an ES cell pluripotent state-specific DUSP6 enhancer. Biochemical and Biophysical Research Communications, 2009, 378, 319-323.	1.0	3
88	Impact of drug discovery on stem cell biology. Biochemical and Biophysical Research Communications, 2009, 383, 275-279.	1.0	8
89	Genetic and epigenetic control of early mouse development. Current Opinion in Genetics and Development, 2009, 19, 113-121.	1.5	93
90	Generation of Rat and Human Induced Pluripotent Stem Cells by Combining Genetic Reprogramming and Chemical Inhibitors. Cell Stem Cell, 2009, 4, 16-19.	5.2	520
91	Wnt-Related Molecules and Signaling Pathway Equilibrium in Hematopoiesis. Cell Stem Cell, 2009, 4, 27-36.	5.2	153
92	The River of Stem Cells. Cell Stem Cell, 2009, 4, 100-102.	5.2	14
93	Exploring Pluripotency with Chemical Genetics. Cell Stem Cell, 2009, 4, 98-100.	5.2	13
94	Histone Deacetylase Inhibition Elicits an Evolutionarily Conserved Self-Renewal Program in Embryonic Stem Cells. Cell Stem Cell, 2009, 4, 359-369.	5.2	144
95	Generation of Rat and Human Induced Pluripotent Stem Cells by Combining Genetic Reprogramming and Chemical Inhibitors. Cell Stem Cell, 2009, 4, 370.	5.2	8

#	Article	IF	CITATIONS
96	Molecules that Promote or Enhance Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. Cell Stem Cell, 2009, 4, 301-312.	5.2	357
97	Stem Cell States, Fates, and the Rules of Attraction. Cell Stem Cell, 2009, 4, 387-397.	5.2	307
98	Metastable Pluripotent States in NOD-Mouse-Derived ESCs. Cell Stem Cell, 2009, 4, 513-524.	5.2	318
99	Naive and Primed Pluripotent States. Cell Stem Cell, 2009, 4, 487-492.	5.2	1,579
100	Oct4 and LIF/Stat3 Additively Induce Krüppel Factors to Sustain Embryonic Stem Cell Self-Renewal. Cell Stem Cell, 2009, 5, 597-609.	5.2	341
101	p66ShcA adaptor molecule accelerates ES cell neural induction. Molecular and Cellular Neurosciences, 2009, 41, 74-84.	1.0	8
102	Transcription Dynamics. Molecular Cell, 2009, 35, 741-753.	4.5	424
103	Epigenetic reprogramming and induced pluripotency. Development (Cambridge), 2009, 136, 509-523.	1.2	478
104	Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reproductive BioMedicine Online, 2009, 18, 17-27.	1.1	144
105	Generation of Pig Induced Pluripotent Stem Cells with a Drug-Inducible System. Journal of Molecular Cell Biology, 2009, 1, 46-54.	1.5	346
106	Mechanisms of Stem Cell Self-Renewal. Annual Review of Cell and Developmental Biology, 2009, 25, 377-406.	4.0	503
107	Regulation of Stem Cell Pluripotency and Differentiation Involves a Mutual Regulatory Circuit of the Nanog, OCT4, and SOX2 Pluripotency Transcription Factors With Polycomb Repressive Complexes and Stem Cell microRNAs. Stem Cells and Development, 2009, 18, 1093-1108.	1.1	375
108	Development and Engineering of Dopamine Neurons. Advances in Experimental Medicine and Biology, 2009, , .	0.8	6
109	Application of induced pluripotent stem cells to hematologic disease. Cytotherapy, 2009, 11, 980-989.	0.3	23
110	The Cell Cycle and Myc Intersect with Mechanisms that Regulate Pluripotency and Reprogramming. Cell Stem Cell, 2009, 5, 141-149.	5.2	244
111	2008: year of the rat for stem cell research. Cell Research, 2009, 19, 149-151.	5.7	2
112	Characterization and development of novel small-molecules inhibiting GSK3 and activating Wnt signaling. Molecular BioSystems, 2009, 5, 1356.	2.9	34
113	The effects of low oxygen on self-renewal and differentiation of embryonic stem cells. Current Opinion in Organ Transplantation, 2009, 14, 694-700.	0.8	64

#	Article	IF	CITATIONS
114	In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood, 2009, 114, 459-468.	0.6	93
115	The use of SC1 (Pluripotin) to Support mESC Self-renewal in the Absence of LIF. Journal of Visualized Experiments, 2009, , .	0.2	4
116	Control of Stemness by Fibroblast Growth Factor Signaling in Stem Cells and Cancer Stem Cells. Current Stem Cell Research and Therapy, 2009, 4, 9-15.	0.6	61
117	Epigenetic regulation of reprogramming factors towards pluripotency in mouse preimplantation development. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 500-506.	1.2	5
118	Zebrafish Pou5f1â€dependent transcriptional networks in temporal control of early development. Molecular Systems Biology, 2010, 6, 354.	3.2	77
119	<i>Erythro</i> -9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells. Biochemical Journal, 2010, 432, 575-599.	1.7	6
120	The ground state of pluripotency. Biochemical Society Transactions, 2010, 38, 1027-1032.	1.6	323
121	Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Archives of Toxicology, 2010, 84, 825-889.	1.9	330
122	The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host–parasite interaction. Medical Microbiology and Immunology, 2010, 199, 247-259.	2.6	58
123	Cellular models for disease exploring and drug screening. Protein and Cell, 2010, 1, 355-362.	4.8	9
124	Pluripotency maintenance mechanism of embryonic stem cells and reprogramming. International Journal of Hematology, 2010, 91, 360-372.	0.7	8
125	BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 416-430.	0.7	70
126	Enhanced effects of secreted soluble factor preserve better pluripotent state of embryonic stem cell culture in a membrane-based compartmentalized micro-bioreactor. Biomedical Microdevices, 2010, 12, 1097-1105.	1.4	7
127	Inhibition of GSK3β enhances both adhesive and signalling activities of β atenin in mouse embryonic stem cells. Biology of the Cell, 2010, 102, 549-564.	0.7	60
128	Different stages of pluripotency determine distinct patterns of proliferation, metabolism, and lineage commitment of embryonic stem cells under hypoxia. Stem Cell Research, 2010, 5, 76-89.	0.3	42
129	Inhibition of ERK1/2 prevents neural and mesendodermal differentiation and promotes human embryonic stem cell self-renewal. Stem Cell Research, 2010, 5, 157-169.	0.3	67
130	High content screening: seeing is believing. Trends in Biotechnology, 2010, 28, 237-245.	4.9	356
131	Gene targeting in the rat: advances and opportunities. Trends in Genetics, 2010, 26, 510-518.	2.9	89

#	Article	IF	CITATIONS
132	Molecular characterisation of MEK1/2- and MKK3/6-like mitogen-activated protein kinase kinases (MAPKK) from the fox tapeworm Echinococcus multilocularis. International Journal for Parasitology, 2010, 40, 555-567.	1.3	42
133	Non-cell-autonomous stimulation of stem cell proliferation following ablation of Tcf3. Experimental Cell Research, 2010, 316, 1050-1060.	1.2	6
134	Pluripotent stem cells: private obsession and public expectation. EMBO Molecular Medicine, 2010, 2, 113-116.	3.3	10
135	FGF signalling as a mediator of lineage transitions—Evidence from embryonic stem cell differentiation. Journal of Cellular Biochemistry, 2010, 110, 10-20.	1.2	32
136	Optimizing stem cell culture. Journal of Cellular Biochemistry, 2010, 111, 801-807.	1.2	67
137	Dissecting the role of Fgf signaling during gastrulation and leftâ€right axis formation in mouse embryos using chemical inhibitors. Developmental Dynamics, 2010, 239, 1768-1778.	0.8	20
138	Three inhibitors of FGF receptor, ERK, and GSK3 establishes germlineâ€competent embryonic stem cells of C57BL/6N mouse strain with high efficiency and stability. Genesis, 2010, 48, 317-327.	0.8	91
139	Threeâ€dimensional cell culture microarray for highâ€throughput studies of stem cell fate. Biotechnology and Bioengineering, 2010, 106, 106-118.	1.7	92
140	Adventures in time and space: Nonlinearity and complexity of cytokine effects on stem cell fate decisions. Biotechnology and Bioengineering, 2010, 106, 173-182.	1.7	12
141	Generation of neural crest progenitors from human embryonic stem cells. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 95-103.	0.6	10
142	Distinguishing Between Mouse and Human Pluripotent Stem Cell Regulation: The Best Laid Plans of Mice and Men. Stem Cells, 2010, 28, 419-430.	1.4	76
143	DNA Damage-Induced Degradation of Cdc25A Does Not Lead to Inhibition of Cdk2 Activity in Mouse Embryonic Stem Cells. Stem Cells, 2010, 28, 450-461.	1.4	15
144	The Role of SMAD4 in Human Embryonic Stem Cell Self-Renewal and Stem Cell Fate. Stem Cells, 2010, 28, N/A-N/A.	1.4	38
145	Neural Induction Intermediates Exhibit Distinct Roles of Fgf Signaling. Stem Cells, 2010, 28, 1772-1781.	1.4	35
146	Canonical Wnt/β-Catenin Regulation of Liver Receptor Homolog-1 Mediates Pluripotency Gene Expression Â. Stem Cells, 2010, 28, 1794-1804.	1.4	120
147	Neuronatin Promotes Neural Lineage in ESCs via Ca2+ Signaling. Stem Cells, 2010, 28, 1950-1960.	1.4	79
148	Extrinsic regulation of pluripotent stem cells. Nature, 2010, 465, 713-720.	13.7	282
149	Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature, 2010, 467, 211-213.	13.7	258

ARTICLE IF CITATIONS Enter the rat. Nature, 2010, 467, 161-163. 150 13.7 19 The cost of feedback control. Nature, 2010, 467, 163-164. 13.7 A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 153 9.0 243 2010, 7, 989-994. A protocol describing the genetic correction of somatic human cells and subsequent generation of 154 iPS cells. Nature Protocols, 2010, 5, 647-660. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Development 155 0.6 135 Growth and Differentiation, 2010, 52, 27-41. Embryonic and adult stem cell systems in mammals: Ontology and regulation. Development Growth and Differentiation, 2010, 52, 115-129. Mouse ES cell culture system as a model of development. Development Growth and Differentiation, 157 0.6 44 2010, 52, 275-283. Direct reprogramming 101. Development Growth and Differentiation, 2010, 52, 319-333. 158 0.6 Induction of neural crest cells from mouse embryonic stem cells in a serum-free monolayer culture. 159 0.3 30 International Journal of Developmental Biology, 2010, 54, 1287-1294. Feeder- and serum-free establishment and expansion of human induced pluripotent stem cells. International Journal of Developmental Biology, 2010, 54, 877-886. Functional Heterogeneity of Embryonic Stem Cells Revealed through Translational Amplification of 161 219 2.6 an Early Endodermal Transcript. PLoS Biology, 2010, 8, e1000379. Cell Lineage Determination in State Space: A Systems View Brings Flexibility to Dogmatic Canonical 2.6 Rules. PLoS Biology, 2010, 8, e10003'80. Abrogation of E-Cadherin-Mediated Cellular Aggregation Allows Proliferation of Pluripotent Mouse 163 1.1 50 Embryonic Stem Cells in Shake Flask Bioreactors. PLoS ONE, 2010, 5, e12921. Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions. PLoS ONE, 2010, 5, e15655. 164 1.1 286 An ES-Like Pluripotent State in FGF-Dependent Murine iPS cells. PLoS ONE, 2010, 5, e16092. 165 1.1 17 Dissecting hematopoietic differentiation using the embryonic stem cell differentiation model. International Journal of Developmental Biology, 2010, 54, 991-1002. A genome-wide screen in EpiSCs identifies Nr5a nuclear receptors as potent inducers of ground state 167 1.2 147 pluripotency. Development (Cambridge), 2010, 137, 3185-3192. Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell 1.2 differentiation. Development (Cambridge), 2010, 137, 881-890.

#	Article	IF	CITATIONS
169	Distinct functions of BMP4 during different stages of mouse ES cell neural commitment. Development (Cambridge), 2010, 137, 2095-2105.	1.2	115
170	Modulation of Calcium-Activated Potassium Channels Induces Cardiogenesis of Pluripotent Stem Cells and Enrichment of Pacemaker-Like Cells. Circulation, 2010, 122, 1823-1836.	1.6	102
171	Deletion of <i>TDP-43</i> down-regulates <i>Tbc1d1</i> , a gene linked to obesity, and alters body fat metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16320-16324.	3.3	255
172	Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state. Development (Cambridge), 2010, 137, 2279-2287.	1.2	133
174	TIF1β regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10926-10931.	3.3	73
175	Nodal Signaling Regulates the Bone Morphogenic Protein Pluripotency Pathway in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2010, 285, 19747-19756.	1.6	54
176	GABA _A and GABA _B receptors of distinct properties affect oppositely the proliferation of mouse embryonic stem cells through synergistic elevation of intracellular Ca ²⁺ . FASEB Journal, 2010, 24, 1218-1228.	0.2	42
177	Glycogen Synthase Kinase-3β Regulates Post–Myocardial Infarction Remodeling and Stress-Induced Cardiomyocyte Proliferation In Vivo. Circulation Research, 2010, 106, 1635-1645.	2.0	108
178	Effect of Different Culture Conditions on Establishment of Embryonic Stem Cells from BALB/cAJ and NZB/BINJ Mice. Cellular Reprogramming, 2010, 12, 679-688.	0.5	14
179	The Efficient Generation of Cell Lines from Bovine Parthenotes. Cellular Reprogramming, 2010, 12, 571-579.	0.5	29
180	Generation and genetic modification of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2010, 10, 1089-1103.	1.4	21
181	Porcine Skin-Derived Progenitor (SKP) Spheres and Neurospheres: Distinct "Stemness―Identified by Microarray Analysis. Cellular Reprogramming, 2010, 12, 329-345.	0.5	8
182	The identification of FGF-dependent phosphorylation events in embryonic stem cells using mass spectrometry. Bioscience Horizons, 2010, 3, 21-28.	0.6	1
183	Cancer stem cells: a reality, a myth, a fuzzy concept or a misnomer? An analysis. Carcinogenesis, 2010, 31, 149-158.	1.3	74
184	Conversion of Mouse Epiblast Stem Cells to an Earlier Pluripotency State by Small Molecules. Journal of Biological Chemistry, 2010, 285, 29676-29680.	1.6	107
185	Heparan Sulfate Is Required for Embryonic Stem Cells to Exit from Self-renewal. Journal of Biological Chemistry, 2010, 285, 5907-5916.	1.6	89
186	Phosphatidylinositol 3-Kinase (PI3K) Signaling via Glycogen Synthase Kinase-3 (Gsk-3) Regulates DNA Methylation of Imprinted Loci. Journal of Biological Chemistry, 2010, 285, 41337-41347.	1.6	80
187	Differentiation of Embryonic Stem Cells 1 (Dies1) Is a Component of Bone Morphogenetic Protein 4 (BMP4) Signaling Pathway Required for Proper Differentiation of Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2010, 285, 7776-7783.	1.6	47

#	Article	IF	CITATIONS
188	A Model for Genetic and Epigenetic Regulatory Networks Identifies Rare Pathways for Transcription Factor Induced Pluripotency. PLoS Computational Biology, 2010, 6, e1000785.	1.5	49
189	Mapping Dynamic Histone Acetylation Patterns to Gene Expression in Nanog-Depleted Murine Embryonic Stem Cells. PLoS Computational Biology, 2010, 6, e1001034.	1.5	23
190	Novel Strategies of Regenerative Medicine Using Chemical Compounds. Current Medicinal Chemistry, 2010, 17, 4134-4149.	1.2	2
191	Sweetness and light: perspectives for rodent models of type 1 diabetes. DMM Disease Models and Mechanisms, 2010, 3, 426-429.	1.2	1
192	FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development (Cambridge), 2010, 137, 715-724.	1.2	486
193	The role of FGF/Erk signaling in pluripotent cells. Development (Cambridge), 2010, 137, 3351-3360.	1.2	349
194	The Potential Landscape of Genetic Circuits Imposes the Arrow of Time in Stem Cell Differentiation. Biophysical Journal, 2010, 99, 29-39.	0.2	208
195	Human pluripotent stem cells: From biology to cell therapy. World Journal of Stem Cells, 2010, 2, 24.	1.3	12
196	Production of Cloned Mice from Somatic Cells, ES Cells, and Frozen Bodies. Methods in Enzymology, 2010, 476, 151-169.	0.4	10
197	Phosphorylation states of STAT3 and ERKs in mouse embryonic stem cells. Cell Biology International, 2010, 34, 485-492.	1.4	3
198	Generation of genetically modified rats from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14223-14228.	3.3	99
199	Controlling Destiny through Chemistry: Small-Molecule Regulators of Cell Fate. ACS Chemical Biology, 2010, 5, 15-34.	1.6	65
200	Ronin/Hcf-1 binds to a hyperconserved enhancer element and regulates genes involved in the growth of embryonic stem cells. Genes and Development, 2010, 24, 1479-1484.	2.7	106
201	A Simple Procedure for the Efficient Derivation of Mouse ES Cells. Methods in Enzymology, 2010, 476, 265-283.	0.4	10
202	Establishment of Embryonic Stem Cells from Rat Blastocysts. Methods in Molecular Biology, 2010, 597, 169-177.	0.4	15
203	Resolution of Cell Fate Decisions Revealed by Single-Cell Gene Expression Analysis from Zygote to Blastocyst. Developmental Cell, 2010, 18, 675-685.	3.1	753
204	Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation. Biochemical and Biophysical Research Communications, 2010, 392, 311-316.	1.0	8
205	Characterizing Light-Regulated Retinal MicroRNAs Reveals Rapid Turnover asÂa Common Property of Neuronal MicroRNAs. Cell, 2010, 141, 618-631.	13.5	431

#	Article	IF	CITATIONS
206	Generation of Rat Pancreas in Mouse by Interspecific Blastocyst Injection of Pluripotent Stem Cells. Cell, 2010, 142, 787-799.	13.5	494
207	Pluripotency and Cellular Reprogramming: Facts, Hypotheses, Unresolved Issues. Cell, 2010, 143, 508-525.	13.5	635
208	Conserved and Divergent Roles of FGF Signaling in Mouse Epiblast Stem Cells and Human Embryonic Stem Cells. Cell Stem Cell, 2010, 6, 215-226.	5.2	308
209	Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis. Cell Stem Cell, 2010, 6, 468-478.	5.2	479
210	Insightful Tales from Single Embryonic Cells. Cell Stem Cell, 2010, 6, 397-398.	5.2	7
211	A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts. Cell Stem Cell, 2010, 7, 51-63.	5.2	1,038
212	A Murine ESC-like State Facilitates Transgenesis and Homologous Recombination in Human Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 535-546.	5.2	194
213	Stat3 Activation Is Limiting for Reprogramming to Ground State Pluripotency. Cell Stem Cell, 2010, 7, 319-328.	5.2	215
214	Different Flavors of Pluripotency, MolecularÂMechanisms, and Practical Implications. Cell Stem Cell, 2010, 7, 559-564.	5.2	37
215	The use of signalling pathway inhibitors and chromatin modifiers for enhancing pluripotency. Theriogenology, 2010, 74, 525-533.	0.9	7
216	Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends in Pharmacological Sciences, 2010, 31, 36-45.	4.0	175
217	Wnt signaling in stem and cancer stem cells. Seminars in Cell and Developmental Biology, 2010, 21, 855-863.	2.3	201
218	The role of FGF-signaling in early neural specification of human embryonic stem cells. Developmental Biology, 2010, 340, 450-458.	0.9	37
219	Survival and death of epiblast cells during embryonic stem cell derivation revealed by long-term live-cell imaging with an Oct4 reporter system. Developmental Biology, 2010, 346, 90-101.	0.9	20
220	Production of Mouse Chimeras by Aggregating Pluripotent Stem Cells with Embryos. Methods in Enzymology, 2010, 476, 123-149.	0.4	16
221	Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9222-9227.	3.3	755
222	Derivation of embryonic stem cells from Brown Norway rats blastocysts. Journal of Genetics and Genomics, 2010, 37, 467-473.	1.7	21
223	Modulation of embryonic stem cell fate and somatic cell reprogramming by small molecules. Reproductive BioMedicine Online, 2010, 21, 26-36.	1.1	9

#	Article	IF	CITATIONS
224	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	2.7	678
225	Master Stem Cell Transcription Factors and Signaling Regulation. Cellular Reprogramming, 2010, 12, 3-13.	0.5	47
226	FGF signalling: diverse roles during early vertebrate embryogenesis. Development (Cambridge), 2010, 137, 3731-3742.	1.2	248
227	Small Molecules and Stem Cells. Potency and Lineage Commitment: The New Quest for the Fountain of Youth. Journal of Medicinal Chemistry, 2010, 53, 3439-3453.	2.9	33
228	Small molecule modulation of stem cells in regenerative medicine: recent applications and future direction. MedChemComm, 2010, 1, 16.	3.5	16
230	The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, 2010, , .	0.8	3
232	Rat traps: filling the toolbox for manipulating the rat genome. Genome Biology, 2010, 11, 217.	3.8	12
233	Integrative genome-wide approaches in embryonic stem cell research. Integrative Biology (United) Tj ETQq1 1 0.7	784314 rg 0.6	BT ₇ /Overlock
234	Genome-wide mapping of SMAD target genes reveals the role of BMP signaling in embryonic stem cell fate determination. Genome Research, 2010, 20, 36-44.	2.4	108
235	Maintenance of Murine Embryonic Stem Cells' Self-Renewal and Pluripotency with Increase in Proliferation Rate by a Bovine Granulosa Cell Line-Conditioned Medium. Stem Cells and Development, 2011, 20, 1439-1449.	1.1	12
236	Study of Pluripotency Markers in Zebrafish Embryos and Transient Embryonic Stem Cell Cultures. Zebrafish, 2011, 8, 57-63.	0.5	35
237	Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochemical Journal, 2011, 438, 11-23.	1.7	164
238	Wnt: What's Needed To maintain pluripotency?. Nature Cell Biology, 2011, 13, 1024-1026.	4.6	39
239	An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nature Communications, 2011, 2, 167.	5.8	152
240	Discovering small molecules to control stem cell fate. Future Medicinal Chemistry, 2011, 3, 1539-1549.	1.1	10
241	Activin/TGF-beta signaling regulates Nanog expression in the epiblast during gastrulation. Mechanisms of Development, 2011, 128, 268-278.	1.7	30
243	Genomic Approaches to Deconstruct Pluripotency. Annual Review of Genomics and Human Genetics, 2011, 12, 165-185.	2.5	33
244	Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nature Cell Biology, 2011, 13, 753-761.	4.6	224

#	Article	IF	CITATIONS
246	Epigenetics and Disease. , 2011, , .		5
247	Small Molecules in Cellular Reprogramming and Differentiation. , 2011, 67, 253-266.		24
248	Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nature Cell Biology, 2011, 13, 762-770.	4.6	274
249	Gene Targeting and Subsequent Site-Specific Transgenesis at the β-actin(ACTB) Locus in Common Marmoset Embryonic Stem Cells. Stem Cells and Development, 2011, 20, 1587-1599.	1.1	24
250	Gene Expression/Phenotypic Abnormalities in Placental Tissues of Sheep Clones: Insurmountable Block in Cloning Progress?. Epigenetics and Human Health, 2011, , 85-96.	0.2	0
252	The Function of E-Cadherin in Stem Cell Pluripotency and Self-Renewal. Genes, 2011, 2, 229-259.	1.0	68
253	Embryonic Stem Cells: Derivation and Properties. , 2011, , 199-214.		1
254	Advanced Protocols for Animal Transgenesis. Springer Protocols, 2011, , .	0.1	21
255	Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nature Cell Biology, 2011, 13, 1070-1075.	4.6	413
256	Pluripotency Factors in Embryonic Stem Cells Regulate Differentiation into Germ Layers. Cell, 2011, 145, 875-889.	13.5	487
257	Chromatin Connections to Pluripotency and Cellular Reprogramming. Cell, 2011, 145, 835-850.	13.5	356
258	Reconstitution of the Mouse Germ Cell Specification Pathway in Culture by Pluripotent Stem Cells. Cell, 2011, 146, 519-532.	13.5	1,156
259	Primitive Endoderm Differentiates via a Three-Step Mechanism Involving Nanog and RTK Signaling. Developmental Cell, 2011, 21, 1005-1013.	3.1	236
260	Switching stem cell state through programmed germ cell reprogramming. Differentiation, 2011, 81, 281-291.	1.0	10
262	Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming. Antioxidants and Redox Signaling, 2011, 15, 1799-1820.	2.5	31
263	Culture Adaptation of Pluripotent Stem Cells: Challenges and Opportunities. , 2011, , 265-276.		0
264	Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochemistry International, 2011, 59, 432-444.	1.9	22
265	Targeting CSK-3 family members in the heart: A very sharp double-edged sword. Journal of Molecular and Cellular Cardiology, 2011, 51, 607-613.	0.9	61

# 266	ARTICLE iPS cells: A source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2011, 50, 327-332.	IF 0.9	CITATIONS
267	Calcineurin-NFAT Signaling Critically Regulates Early Lineage Specification in Mouse Embryonic Stem Cells and Embryos. Cell Stem Cell, 2011, 8, 46-58.	5.2	89
268	β-Catenin Enhances Oct-4 Activity and Reinforces Pluripotency through a TCF-Independent Mechanism. Cell Stem Cell, 2011, 8, 214-227.	5.2	205
269	Isolation of Epiblast Stem Cells from Preimplantation Mouse Embryos. Cell Stem Cell, 2011, 8, 318-325.	5.2	161
270	A Precarious Balance: Pluripotency Factors as Lineage Specifiers. Cell Stem Cell, 2011, 8, 363-369.	5.2	222
271	Indefinite Self-Renewal of ESCs through Myc/Max Transcriptional Complex-Independent Mechanisms. Cell Stem Cell, 2011, 9, 37-49.	5.2	64
272	Pluripotency without Max. Cell Stem Cell, 2011, 9, 4-6.	5.2	1
273	Historical Origins of Transdifferentiation and Reprogramming. Cell Stem Cell, 2011, 9, 504-516.	5.2	171
274	Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology, 2011, 75, 513-526.	0.9	69
275	A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology, 2011, 76, 133-142.	0.9	29
276	Integrating Physiological Regulation with Stem Cell and Tissue Homeostasis. Neuron, 2011, 70, 703-718.	3.8	67
277	Experience Dictates Stem Cell Fate in the Adult Hippocampus. Neuron, 2011, 70, 908-923.	3.8	183
278	Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide promote the genesis of calcium currents in differentiating mouse embryonic stem cells. Neuroscience, 2011, 199, 103-115.	1.1	9
279	Derivation of haploid embryonic stem cells from mouse embryos. Nature, 2011, 479, 131-134.	13.7	221
280	Coupling mitochondrial and cell division. Nature Cell Biology, 2011, 13, 1026-1027.	4.6	42
281	Current Progress and Potential Practical Application for Human Pluripotent Stem Cells. International Review of Cell and Molecular Biology, 2011, 292, 153-196.	1.6	10
282	Human Pluripotent Stem Cells: Decoding the NaÃ⁻ve State. Science Translational Medicine, 2011, 3, 76ps10.	5.8	9
283	Of Stem Cells and Germ Cells. Reproduction in Domestic Animals, 2011, 46, 53-59.	0.6	1

#	Article	IF	CITATIONS
284	The Coupling of X-Chromosome Inactivation to Pluripotency. Annual Review of Cell and Developmental Biology, 2011, 27, 611-629.	4.0	35
285	Transforming Growth Factor-Beta Superfamily in Mouse Embryonic Stem Cell Self-Renewal. Vitamins and Hormones, 2011, 87, 341-365.	0.7	1
286	A WNTer Revisit: New Faces of \hat{I}^2 -Catenin and TCFs in Pluripotency. Science Signaling, 2011, 4, pe41.	1.6	20
287	Factors Regulating Pluripotency and Differentiation in Early Mammalian Embryos and Embryo-derived Stem Cells. Vitamins and Hormones, 2011, 87, 1-37.	0.7	11
288	Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18283-18288.	3.3	224
289	Controlling embryonic stem cell proliferation and pluripotency: the role of PI3K- and GSK-3-dependent signalling. Biochemical Society Transactions, 2011, 39, 674-678.	1.6	31
290	Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Developmental Biology, 2011, 356, 323-336.	0.9	46
291	The Molecular Circuitry Underlying Pluripotency in Embryonic Stem Cells and iPS Cells. , 2011, , 87-94.		0
292	The LIF/STAT3 Pathway in ES Cell Self-renewal. , 0, , .		0
293	Rat Embryonic Stem Cells: Establishment and Their Use for Transgenesis. , 0, , .		3
294	Chemicals Regulating Cardiomyocyte Differentiation. , 2011, , .		1
295	Retinoid Signaling is a Context-Dependent Regulator of Embryonic Stem Cells. , 0, , .		1
296	Molecular Mechanisms of Pluripotency in Murine Embryonic Stem Cells. , 2011, , .		0
297	Embryonic Stem Cells and the Germ Cell Lineage. , 2011, , .		4
298	Cancer Stem Cells in Drug Resistance and Drug Screening: Can We Exploit the Cancer Stem Cell Paradigm in Search for New Antitumor Agents?. , 2011, , .		0
299	Induced Pluripotent Stem Cells. , 2011, , 241-252.		2
300	The Role of the Leukemia Inhibitory Factor (LIF) — Pathway in Derivation and Maintenance of Murine Pluripotent Stem Cells. Genes, 2011, 2, 280-297.	1.0	59
302	Potential Landscape and Flux Framework of Nonequilibrium Biological Networks. Annual Reports in Computational Chemistry, 2011, , 3.	0.9	5

#	Article	IF	CITATIONS
303	Loss of Function of E-Cadherin in Embryonic Stem Cells and the Relevance to Models of Tumorigenesis. Journal of Oncology, 2011, 2011, 1-19.	0.6	48
304	Functions of CSK-3 Signaling in Development of the Nervous System. Frontiers in Molecular Neuroscience, 2011, 4, 44.	1.4	97
305	Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution. Stem Cells International, 2011, 2011, 1-15.	1.2	33
306	Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development. Genes, 2011, 2, 298-312.	1.0	2
307	A Virus-Free Poly-Promoter Vector Induces Pluripotency in Quiescent Bovine Cells under Chemically Defined Conditions of Dual Kinase Inhibition. PLoS ONE, 2011, 6, e24501.	1.1	68
308	A General Model for Binary Cell Fate Decision Gene Circuits with Degeneracy: Indeterminacy and Switch Behavior in the Absence of Cooperativity. PLoS ONE, 2011, 6, e19358.	1.1	54
309	Derivation, Characterization, and Stable Transfection of Induced Pluripotent Stem Cells from Fischer344 Rats. PLoS ONE, 2011, 6, e27345.	1.1	26
310	Genetic manipulations in the rat: progress and prospects. Current Opinion in Nephrology and Hypertension, 2011, 20, 391-399.	1.0	25
312	Regeneration in an evolutionarily primitive brain – the planarian <i>Dugesia japonica</i> model. European Journal of Neuroscience, 2011, 34, 863-869.	1.2	49
313	Understanding the first steps in embryonic stem cell exit from the pluripotent state. Transfusion, 2011, 51, 118S-124S.	0.8	6
314	The transcriptional and signalling networks of pluripotency. Nature Cell Biology, 2011, 13, 490-496.	4.6	284
315	LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nature Cell Biology, 2011, 13, 13-21.	4.6	121
316	Generating gene knockout rats by homologous recombination in embryonic stem cells. Nature Protocols, 2011, 6, 827-844.	5.5	74
317	Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature Reviews Molecular Cell Biology, 2011, 12, 79-89.	16.1	567
318	Eed/Sox2 regulatory loop controls ES cell self-renewal through histone methylation and acetylation. EMBO Journal, 2011, 30, 2190-2204.	3.5	28
319	Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death and Differentiation, 2011, 18, 383-395.	5.0	79
320	Calcium-Activated Potassium Channels, Cardiogenesis of Pluripotent Stem Cells, and Enrichment of Pacemaker-Like Cells. Trends in Cardiovascular Medicine, 2011, 21, 74-83.	2.3	15
321	Distinct regulation of mitogen-activated protein kinase activities is coupled with enhanced cardiac differentiation of human embryonic stem cells. Stem Cell Research, 2011, 7, 198-209.	0.3	34

#	Article	IF	CITATIONS
322	Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. , 2011, 129, 290-306.		43
323	Nanog Overcomes Reprogramming Barriers and Induces Pluripotency in Minimal Conditions. Current Biology, 2011, 21, 65-71.	1.8	154
324	Phagocytosis: Coupling of Mitochondrial Uncoupling andÂEngulfment. Current Biology, 2011, 21, R852-R854.	1.8	4
325	Blimp1 Expression Predicts Embryonic Stem Cell Development InÂVitro. Current Biology, 2011, 21, 1759-1765.	1.8	43
326	Embryonic Stem Cells: Testing the Germ-Cell Theory. Current Biology, 2011, 21, R850-R852.	1.8	2
327	Gene expression heterogeneities in embryonic stem cell populations: origin and function. Current Opinion in Cell Biology, 2011, 23, 650-656.	2.6	96
328	The Death of the Cancer Cell. Cancer Research, 2011, 71, 4334-4337.	0.4	52
329	Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biology, 2011, 13, 838-845.	4.6	475
330	The origin and identity of embryonic stem cells. Development (Cambridge), 2011, 138, 3-8.	1.2	183
331	Stem cell culture engineering – process scale up and beyond. Biotechnology Journal, 2011, 6, 1317-1329.	1.8	54
332	Clycosaminoglycans as regulators of stem cell differentiation. Biochemical Society Transactions, 2011, 39, 383-387.	1.6	59
333	Expression patterns of germ line specific genes in mouse and human pluripotent stem cells are associated with regulation of ground and primed state of pluripotency. Russian Journal of Developmental Biology, 2011, 42, 355-375.	0.1	7
334	Generation of Chimeras by Aggregation of Embryonic Stem Cells with Diploid or Tetraploid Mouse Embryos. Methods in Molecular Biology, 2011, 693, 37-56.	0.4	39
335	Developing defined culture systems for human pluripotent stem cells. Regenerative Medicine, 2011, 6, 623-634.	0.8	36
336	Regulation of Mesenchymal Stem Cell Activity by Endothelial Cells. Stem Cells and Development, 2011, 20, 391-403.	1.1	66
337	Studying Therapy Response and Resistance in Mouse Models for BRCA1-Deficient Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 41-50.	1.0	19
338	Pluripotency of Male Germline Stem Cells. Molecules and Cells, 2011, 32, 113-122.	1.0	4
339	Gene-manipulated embryonic stem cells for rat transgenesis. Cellular and Molecular Life Sciences, 2011, 68, 1911-1915.	2.4	13

#	Article	IF	CITATIONS
340	The use of leukemia inhibitory factor immobilized on virus-derived polyhedra to support the proliferation of mouse embryonic and induced pluripotent stem cells. Biomaterials, 2011, 32, 3555-3563.	5.7	30
341	Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts. Stem Cell Reviews and Reports, 2011, 7, 693-702.	5.6	213
342	Wnt/β-catenin Signaling in Embryonic Stem Cell Self-renewal and Somatic Cell Reprogramming. Stem Cell Reviews and Reports, 2011, 7, 836-846.	5.6	129
343	Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in rats. Reproductive Medicine and Biology, 2011, 10, 231-238.	1.0	1
344	Responsiveness of genes to manipulation of transcription factors in ES cells is associated with histone modifications and tissue specificity. BMC Genomics, 2011, 12, 102.	1.2	12
345	The Apical Polarity Determinant Crumbs 2 Is a Novel Regulator of ESC-Derived Neural Progenitors. Stem Cells, 2011, 29, 193-205.	1.4	29
346	Pramel7 Mediates LIF/STAT3-Dependent Self-Renewal in embryoniC Stem Cells. Stem Cells, 2011, 29, 474-485.	1.4	40
347	Self-Renewal Versus Lineage Commitment of Embryonic Stem Cells: Protein Kinase C Signaling Shifts the Balance. Stem Cells, 2011, 29, 618-628.	1.4	77
348	Specific Glycosaminoglycans Modulate Neural Specification of Mouse Embryonic Stem Cells. Stem Cells. Stem Cells, 2011, 29, 629-640.	1.4	68
349	CC Chemokine Ligand 2 and Leukemia Inhibitory Factor Cooperatively Promote Pluripotency in Mouse Induced Pluripotent Cells. Stem Cells, 2011, 29, 1196-1205.	1.4	17
350	Distinct Developmental Ground States of Epiblast Stem Cell Lines Determine Different Pluripotency Features. Stem Cells, 2011, 29, 1496-1503.	1.4	98
351	Phosphatase and Tensin Homolog Regulates the Pluripotent State and Lineage Fate Choice in Human Embryonic Stem Cells. Stem Cells, 2011, 29, 1952-1962.	1.4	38
352	Derivation and characterization of ovine embryonic stemâ€like cell lines in semiâ€defined medium without feeder cells. Journal of Experimental Zoology, 2011, 315A, 639-648.	1.2	16
353	Isolation of rat embryonic stemâ€like cells: A tool for stem cell research and drug discovery. Developmental Dynamics, 2011, 240, 2482-2494.	0.8	7
354	Effect of dualâ€specificity protein phosphatase 5 on pluripotency maintenance and differentiation of mouse embryonic stem cells. Journal of Cellular Biochemistry, 2011, 112, 3185-3193.	1.2	6
356	Chemical Control of Stem Cell Fate and Developmental Potential. Angewandte Chemie - International Edition, 2011, 50, 200-242.	7.2	124
357	Rapid validation of cancer genes in chimeras derived from established genetically engineered mouse models. BioEssays, 2011, 33, 701-710.	1.2	36
358	Regenerative Chemical Biology: Current Challenges and Future Potential. Chemistry and Biology, 2011, 18, 413-424.	6.2	25

ARTICLE IF CITATIONS # Long-term survival of exogenous embryonic stem cells in adult bone marrow. Cell Research, 2011, 21, 360 5.7 6 1148-1151. The heterogeneity and dynamic equilibrium of rat embryonic stem cells. Cell Research, 2011, 21, 5.7 1143-1147 Effect of hypoxia on proliferation and neural commitment of embryonic stem cells at different stages 362 1 of pluripotency., 2011, , . Mapping the networks for pluripotency. Philosophical Transactions of the Royal Society B: Biological 1.8 Sciences, 2011, 366, 2238-2246. The evolving biology of small molecules: controlling cell fate and identity. Philosophical 364 1.8 74 Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2208-2221. Paracrine and Epigenetic Control of Trophectoderm Differentiation from Human Embryonic Stem Cells: The Role of Bone Morphogenic Protein 4 and Histone Deacetylases. Stem Cells and Development, 1.1 44 2011, 20, 1601-1614. Maintaining embryonic stem cell pluripotency with Wnt signaling. Development (Cambridge), 2011, 138, 366 1.2 211 4341-4350. The evolving biology of cell reprogramming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2183-2197. 1.8 28 Transcription factor heterogeneity and epiblast pluripotency. Philosophical Transactions of the Royal 368 1.8 30 Society B: Biological Sciences, 2011, 366, 2230-2237. ERK signaling controls blastema cell differentiation during planarian regeneration. Development 1.2 (Cambridge), 2011, 138, 2417-2427. Fluid shear stress primes mouse embryonic stem cells for differentiation in a selfâ€renewing 370 0.2 113 environment <i>via</i> heparan sulfate proteoglycans transduction. FASEB Journal, 2011, 25, 1208-1217. Mouse pluripotent stem cells at a glance. Journal of Cell Science, 2011, 124, 3727-3732. 371 1.2 Histone H4K20me3 and HP1 $\hat{1}$ are late heterochromatin markers in development, but present in 372 1.2 79 undifferentiated embryonic stem cells. Journal of Cell Science, 2011, 124, 1878-1890. Cell culture systems for stem cell research., 2011, , 372-396. Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique 374 1.2 69 homeodomain. Development (Cambridge), 2011, 138, 4853-4865. A genome-wide RNAi screen in mouse embryonic stem cells identifies Mp1 as a key mediator of 24 differentiation. Journal of Experimental Medicine, 2011, 208, 2675-2689. Cardiomyocytes Obtained From Induced Pluripotent Stem Cells With Long-QT Syndrome 3 Recapitulate 376 2.0 116 Typical Disease-Specific Features In Vitro. Circulation Research, 2011, 109, 841-847. High-Content Screening for Chemical Modulators of Embryonal Carcinoma Cell Differentiation and 377 Survival. Journal of Biomolecular Screening, 2011, 16, 603-617.

#	Article	IF	CITATIONS
378	Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells. Development (Cambridge), 2011, 138, 4363-4374.	1.2	83
379	microRNAs modulate iPS cell generation. Rna, 2011, 17, 1451-1460.	1.6	114
380	The different shades of mammalian pluripotent stem cells. Human Reproduction Update, 2011, 17, 254-271.	5.2	47
381	Cooperation between both Wnt/β-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes and Development, 2011, 25, 1928-1942.	2.7	154
382	Fibroblast growth factor-1-induced ERK1/2 signaling reciprocally regulates proliferation and smooth muscle cell differentiation of ligament-derived endothelial progenitor cell-like cells. International Journal of Molecular Medicine, 2011, 29, 357-64.	1.8	22
383	Beyond knockout rats. Cell Cycle, 2011, 10, 1059-1066.	1.3	34
384	Generation of Stable Pluripotent Stem Cells From NOD Mouse Tail-Tip Fibroblasts. Diabetes, 2011, 60, 1393-1398.	0.3	20
385	esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nature Cell Biology, 2011, 13, 903-913.	4.6	238
386	A homozygous mutant embryonic stem cell bank applicable for phenotype-driven genetic screening. Nature Methods, 2011, 8, 1071-1077.	9.0	36
387	FBXW5 controls centrosome number. Nature Cell Biology, 2011, 13, 888-890.	4.6	10
388	esBAF safeguards Stat3 binding to maintain pluripotency. Nature Cell Biology, 2011, 13, 886-888.	4.6	7
389	Switching on pluripotency: a perspective on the biological requirement of Nanog. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2222-2229.	1.8	35
390	Differentiation of an embryonic stem cell to hemogenic endothelium by defined factors: essential role of bone morphogenetic protein 4. Development (Cambridge), 2011, 138, 2833-2843.	1.2	35
391	Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics. Cell Research, 2011, 21, 884-894.	5.7	84
392	The Liberation of Embryonic Stem Cells. PLoS Genetics, 2011, 7, e1002019.	1.5	84
393	Chromatin regulation landscape of embryonic stem cell identity. Bioscience Reports, 2011, 31, 77-86.	1.1	3
394	GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS. Frontiers in Molecular Neuroscience, 2011, 4, 32.	1.4	274
395	A Genome-Wide RNAi Screen Reveals MAP Kinase Phosphatases as Key ERK Pathway Regulators during Embryonic Stem Cell Differentiation. PLoS Genetics, 2012, 8, e1003112.	1.5	72

~	~	
(ΊΤΔΤ	Repoi	DT
CHAL	NEPU	× 1

#	Article	IF	CITATIONS
396	New Treatment Modalities by Disease-Specific and Patient-Specific Induced Pluripotent Stem Cells. , 2012, , 199-225.		0
397	Imaging, quantification and visualization of spatio-temporal patterning in mESC colonies under different culture conditions. Bioinformatics, 2012, 28, i556-i561.	1.8	25
398	Histone H2A Mono-Ubiquitination Is a Crucial Step to Mediate PRC1-Dependent Repression of Developmental Genes to Maintain ES Cell Identity. PLoS Genetics, 2012, 8, e1002774.	1.5	233
399	Functions of the Drosophila JAK-STAT pathway. Jak-stat, 2012, 1, 176-183.	2.2	23
400	Ubiquitin-mediated regulation of JAK-STAT signaling in embryonic stem cells. Jak-stat, 2012, 1, 168-175.	2.2	20
401	Generation of Porcine-Induced Pluripotent Stem Cells by Using OCT4 and KLF4 Porcine Factors. Cellular Reprogramming, 2012, 14, 505-513.	0.5	40
402	Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Research, 2012, 40, 3364-3377.	6.5	84
403	Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Research, 2012, 40, 8993-9007.	6.5	43
404	Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development (Cambridge), 2012, 139, 129-139.	1.2	143
405	Human Amnion–Derived Cells as a Reliable Source of Stem Cells. Current Molecular Medicine, 2012, 12, 1340-1349.	0.6	20
406	Tracing the Conversion Process from Primordial Germ Cells to Pluripotent Stem Cells in Mice1. Biology of Reproduction, 2012, 86, 182.	1.2	15
407	Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature, 2012, 487, 254-258.	13.7	136
409	The signaling requirements for mouse embryonic stem cells. Cell Cycle, 2012, 11, 207-208.	1.3	3
410	Mechanisms of Cardiogenesis in Cardiovascular Progenitor Cells. International Review of Cell and Molecular Biology, 2012, 293, 195-267.	1.6	12
411	Reconciling the different roles of Gsk3β in "naÃ⁻ve―and "primed―pluripotent stem cells. Cell Cycle, 20 11, 2991-2996.	12. 1.3	27
412	Axing Wnt signals. Cell Research, 2012, 22, 9-11.	5.7	5
413	Cyclin A ₁ Is Essential for Setting the Pluripotent State and Reducing Tumorigenicity of Induced Pluripotent Stem Cells. Stem Cells and Development, 2012, 21, 2891-2899.	1.1	19
414	Induction of alternative fate other than default neuronal fate of embryonic stem cells in a membrane-based two-chambered microbioreactor by cell-secreted BMP4. Biomicrofluidics, 2012, 6, 014117.	1.2	2

#	Article	IF	CITATIONS
415	<i>Zfhx1b</i> Induces a Definitive Neural Stem Cell Fate in Mouse Embryonic Stem Cells. Stem Cells and Development, 2012, 21, 2838-2851.	1.1	14
416	Undersulfation of Heparan Sulfate Restricts Differentiation Potential of Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2012, 287, 10853-10862.	1.6	67
417	Germline potential of parthenogenetic haploid mouse embryonic stem cells. Development (Cambridge), 2012, 139, 3301-3305.	1.2	70
418	Stem cell powwow in Squaw Valley. Development (Cambridge), 2012, 139, 2457-2461.	1.2	0
419	Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. Journal of Molecular Endocrinology, 2012, 49, R89-R111.	1.1	69
420	Simple and Efficient Derivation of Mouse Embryonic Stem Cell Lines Using Differentiation Inhibitors or Proliferation Stimulators. Stem Cells and Development, 2012, 21, 373-383.	1.1	23
421	A Mathematical Model of Cancer Stem Cell Lineage Population Dynamics with Mutation Accumulation and Telomere Length Hierarchies. Mathematical Modelling of Natural Phenomena, 2012, 7, 136-165.	0.9	14
422	TRIM6 interacts with c-Myc and maintains pluripotency of mouse embryonal stem cells. Journal of Cell Science, 2012, 125, 1544-55.	1.2	35
423	Human pluripotency: A difficult state to make smart choices. Cell Cycle, 2012, 11, 2411-2412.	1.3	3
424	Global DNA Hypomethylation Prevents Consolidation of Differentiation Programs and Allows Reversion to the Embryonic Stem Cell State. PLoS ONE, 2012, 7, e52629.	1.1	34
425	ES cell differentiation system recapitulates the establishment of imprinted gene expression in a cell-type-specific manner. Human Molecular Genetics, 2012, 21, 1391-1401.	1.4	17
426	Heparan Sulfate Biosynthesis Enzymes in Embryonic Stem Cell Biology. Journal of Histochemistry and Cytochemistry, 2012, 60, 943-949.	1.3	10
427	Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 835-840.	3.3	83
428	Optimal Ratio of Transcription Factors for Somatic Cell Reprogramming. Journal of Biological Chemistry, 2012, 287, 36273-36282.	1.6	29
429	MiR-25 Regulates Wwp2 and Fbxw7 and Promotes Reprogramming of Mouse Fibroblast Cells to iPSCs. PLoS ONE, 2012, 7, e40938.	1.1	65
430	Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development. Human Reproduction, 2012, 27, 2146-2159.	0.4	59
431	Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Human Reproduction, 2012, 27, 2312-2324.	0.4	11
432	A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Scientific Reports, 2012, 2, 213.	1.6	57

#	Article	IF	CITATIONS
433	Establishment of Self-renewing Porcine Embryonic Stem Cell-like Cells by Signal Inhibition. Journal of Reproduction and Development, 2012, 58, 707-716.	0.5	43
434	Cell fate regulation in early mammalian development. Physical Biology, 2012, 9, 045002.	0.8	33
435	Role of Nuclear Receptor Coactivator 3 (Ncoa3) in Pluripotency Maintenance. Journal of Biological Chemistry, 2012, 287, 38295-38304.	1.6	43
436	Modulation of Pluripotency in the Porcine Embryo and iPS Cells. PLoS ONE, 2012, 7, e49079.	1.1	78
437	Somatic cell lineage is required for differentiation and not maintenance of germline stem cells in <i>Drosophila</i> testes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18477-18481.	3.3	67
438	ERK1 and ERK2 regulate embryonic stem cell self-renewal through phosphorylation of Klf4. Nature Structural and Molecular Biology, 2012, 19, 283-290.	3.6	147
439	OCT4/SOX2-independent <i>Nanog</i> autorepression modulates heterogeneous <i>Nanog</i> gene expression in mouse ES cells. EMBO Journal, 2012, 31, 4547-4562.	3.5	125
440	Proteomic Analysis of Stem Cell Differentiation and Early Development. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008177-a008177.	2.3	27
441	The Harmonies Played by TGF-Î ² in Stem Cell Biology. Cell Stem Cell, 2012, 11, 751-764.	5.2	165
442	Towards a statistical mechanics of cell fate decisions. Current Opinion in Genetics and Development, 2012, 22, 619-626.	1.5	69
443	Control of ground-state pluripotency by allelic regulation of Nanog. Nature, 2012, 483, 470-473.	13.7	210
444	Developmental Plasticity Is Bound by Pluripotency and the Fgf and Wnt Signaling Pathways. Cell Reports, 2012, 2, 756-765.	2.9	82
445	Microwell Regulation of Pluripotent Stem Cell Self-Renewal and Differentiation. BioNanoScience, 2012, 2, 266-276.	1.5	16
446	Generation of rabbit pluripotent stem cell lines. Theriogenology, 2012, 78, 1774-1786.	0.9	19
447	MEK Is a Key Regulator of Gliogenesis in the Developing Brain. Neuron, 2012, 75, 1035-1050.	3.8	145
448	Insulin Increases Epiblast Cell Number of In Vitro Cultured Mouse Embryos via the PI3K/GSK3/p53 Pathway. Stem Cells and Development, 2012, 21, 2430-2441.	1.1	21
449	Cellular Heterogeneity During Embryonic Stem Cell Differentiation to Epiblast Stem Cells Is Revealed by the ShcD/RaLP Adaptor Protein. Stem Cells, 2012, 30, 2423-2436.	1.4	21
450	Optimization of Protocols for Derivation of Mouse Embryonic Stem Cell Lines from Refractory Strains, Including the Non Obese Diabetic Mouse. Stem Cells and Development, 2012, 21, 1688-1700.	1.1	5

#	Article	IF	CITATIONS
451	BMP4 Signaling Acts via Dual-Specificity Phosphatase 9 to Control ERK Activity in Mouse Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 171-182.	5.2	134
452	Signaling Network Crosstalk in Human Pluripotent Cells: A Smad2/3-Regulated Switch that Controls the Balance between Self-Renewal and Differentiation. Cell Stem Cell, 2012, 10, 312-326.	5.2	305
453	Efficient Derivation of Purified Lung and Thyroid Progenitors from Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 398-411.	5.2	358
454	Epiblast Stem Cell-Based System Reveals Reprogramming Synergy of Germline Factors. Cell Stem Cell, 2012, 10, 425-439.	5.2	134
455	Where PI3K/Akt Meets Smads: The Crosstalk Determines Human Embryonic Stem Cell Fate. Cell Stem Cell, 2012, 10, 231-232.	5.2	28
456	NuRD Suppresses Pluripotency Gene Expression to Promote Transcriptional Heterogeneity and Lineage Commitment. Cell Stem Cell, 2012, 10, 583-594.	5.2	207
457	The Germ Cell Determinant Blimp1 Is Not Required for Derivation of Pluripotent Stem Cells. Cell Stem Cell, 2012, 11, 110-117.	5.2	23
458	Importance of culture conditions during the morula-to-blastocyst period on capacity of inner cell-mass cells of bovine blastocysts for establishment of self-renewing pluripotent cells. Theriogenology, 2012, 78, 1243-1251.e2.	0.9	23
459	Pluripotency in the Embryo and in Culture. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008128-a008128.	2.3	256
460	Nuclear Functions of the Janus Kinases. , 2012, , 27-46.		0
460 461		0.2	0
	Nuclear Functions of the Janus Kinases. , 2012, , 27-46. Aging in the Mouse and Perspectives of Rejuvenation Through Induced Pluripotent Stem Cells (iPSCs).	0.2	
461	Nuclear Functions of the Janus Kinases. , 2012, , 27-46. Aging in the Mouse and Perspectives of Rejuvenation Through Induced Pluripotent Stem Cells (iPSCs). Results and Problems in Cell Differentiation, 2012, 55, 413-427. The retinoblastoma tumor suppressor and stem cell biology. Genes and Development, 2012, 26,		5
461 463	Nuclear Functions of the Janus Kinases. , 2012, , 27-46. Aging in the Mouse and Perspectives of Rejuvenation Through Induced Pluripotent Stem Cells (iPSCs). Results and Problems in Cell Differentiation, 2012, 55, 413-427. The retinoblastoma tumor suppressor and stem cell biology. Genes and Development, 2012, 26, 1409-1420. Fibroblast Growth Factor Receptor 2 Homodimerization Rapidly Reduces Transcription of the Pluripotency Gene Nanog without Dissociation of Activating Transcription Factors*. Journal of	2.7	5 99
461 463 464	Nuclear Functions of the Janus Kinases., 2012, , 27-46. Aging in the Mouse and Perspectives of Rejuvenation Through Induced Pluripotent Stem Cells (iPSCs). Results and Problems in Cell Differentiation, 2012, 55, 413-427. The retinoblastoma tumor suppressor and stem cell biology. Genes and Development, 2012, 26, 1409-1420. Fibroblast Growth Factor Receptor 2 Homodimerization Rapidly Reduces Transcription of the Pluripotency Gene Nanog without Dissociation of Activating Transcription Factors*. Journal of Biological Chemistry, 2012, 287, 30507-30517. Mouse and Human Pluripotent Stem Cells and the Means of Their Myogenic Differentiation. Results	2.7 1.6	5 99 21
461 463 464 465	Nuclear Functions of the Janus Kinases. , 2012, , 27-46. Aging in the Mouse and Perspectives of Rejuvenation Through Induced Pluripotent Stem Cells (iPSCs). Results and Problems in Cell Differentiation, 2012, 55, 413-427. The retinoblastoma tumor suppressor and stem cell biology. Genes and Development, 2012, 26, 1409-1420. Fibroblast Growth Factor Receptor 2 Homodimerization Rapidly Reduces Transcription of the Pluripotency Gene Nanog without Dissociation of Activating Transcription Factors*. Journal of Biological Chemistry, 2012, 287, 30507-30517. Mouse and Human Pluripotent Stem Cells and the Means of Their Myogenic Differentiation. Results and Problems in Cell Differentiation, 2012, 55, 321-356.	2.7 1.6 0.2	5 99 21 15
461 463 464 465	Nuclear Functions of the Janus Kinases. , 2012, , 27-46. Aging in the Mouse and Perspectives of Rejuvenation Through Induced Pluripotent Stem Cells (iPSCs). Results and Problems in Cell Differentiation, 2012, 55, 413-427. The retinoblastoma tumor suppressor and stem cell biology. Genes and Development, 2012, 26, 1409-1420. Fibroblast Growth Factor Receptor 2 Homodimerization Rapidly Reduces Transcription of the Pluripotency Gene Nanog without Dissociation of Activating Transcription Factors*. Journal of Biological Chemistry, 2012, 287, 30507-30517. Mouse and Human Pluripotent Stem Cells and the Means of Their Myogenic Differentiation. Results and Problems in Cell Differentiation, 2012, 55, 321-356. Regulation of self-renewal and reprogramming by TCF factors. Cell Cycle, 2012, 11, 39-47. Wnt Pathway Regulation of Embryonic Stem Cell Self-Renewal. Cold Spring Harbor Perspectives in	2.7 1.6 0.2 1.3	5 99 21 15 11

#	Article	IF	CITATIONS
470	Mitotic and mitogenic Wnt signalling. EMBO Journal, 2012, 31, 2705-2713.	3.5	251
471	Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. Rna, 2012, 18, 253-264.	1.6	84
472	Retake the Center Stage – New Development of Rat Genetics. Journal of Genetics and Genomics, 2012, 39, 261-268.	1.7	18
473	Selection of RNA aptamers against mouse embryonic stem cells. Biochimie, 2012, 94, 250-257.	1.3	26
474	Cell-Surface Proteomics Identifies Lineage-Specific Markers of Embryo-Derived Stem Cells. Developmental Cell, 2012, 22, 887-901.	3.1	134
475	The Transcriptional and Epigenomic Foundations of Ground State Pluripotency. Cell, 2012, 149, 590-604.	13.5	774
476	Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem Cells. Cell, 2012, 149, 605-617.	13.5	168
477	Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche. Cell, 2012, 150, 351-365.	13.5	257
478	Transcriptional Activation by Oct4 Is Sufficient for the Maintenance and Induction of Pluripotency. Cell Reports, 2012, 1, 99-109.	2.9	61
479	Using genetically engineered mouse models to validate candidate cancer genes and test new therapeutic approaches. Current Opinion in Genetics and Development, 2012, 22, 21-27.	1.5	24
480	Accessing naÃ ⁻ ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	1.5	92
481	Regulation of gene transcription by the oncoprotein MYC. Gene, 2012, 494, 145-160.	1.0	118
482	A Screen for Enhancers of Clearance Identifies Huntingtin as a Heat Shock Protein 90 (Hsp90) Client Protein. Journal of Biological Chemistry, 2012, 287, 1406-1414.	1.6	84
483	Generation of Mouse Mutants by Genotype-Driven Mutagenesis. , 2012, , 91-114.		0
484	Controlling the Stem Cell Compartment and Regeneration In Vivo: The Role of Pluripotency Pathways. Physiological Reviews, 2012, 92, 75-99.	13.1	33
485	G Protein Beta/Gamma. , 2012, , 702-710.		0
486	Embryonic and induced pluripotent stem cell differentiation as a tool in neurobiology. Biotechnology Journal, 2012, 7, 1156-1168.	1.8	9
487	E-cadherin and, in Its Absence, N-cadherin Promotes Nanog Expression in Mouse Embryonic Stem Cells via STAT3 Phosphorylation. Stem Cells, 2012, 30, 1842-1851.	1.4	66

#	Article	IF	CITATIONS
488	Modulating Glypican4 Suppresses Tumorigenicity of Embryonic Stem Cells While Preserving Self-Renewal and Pluripotency. Stem Cells, 2012, 30, 1863-1874.	1.4	47
489	ZO-1 Regulates Erk, Smad1/5/8, Smad2, and RhoA Activities to Modulate Self-Renewal and Differentiation of Mouse Embryonic Stem Cells. Stem Cells, 2012, 30, 1885-1900.	1.4	23
490	A shRNA Functional Screen Reveals Nme6 and Nme7 Are Crucial for Embryonic Stem Cell Renewal. Stem Cells, 2012, 30, 2199-2211.	1.4	25
491	Wnt/beta-catenin signaling in embryonic stem cell converted tumor cells. Journal of Translational Medicine, 2012, 10, 196.	1.8	4
492	Probing the role of stochasticity in a model of the embryonic stem cell – heterogeneous gene expression and reprogramming efficiency. BMC Systems Biology, 2012, 6, 98.	3.0	39
493	Pluripotency and its layers of complexity. Cell Regeneration, 2012, 1, 1:7.	1.1	5
494	Jak/Stat3 Signaling Promotes Somatic Cell Reprogramming by Epigenetic Regulation. Stem Cells, 2012, 30, 2645-2656.	1.4	76
495	Androgenetic haploid embryonic stem cells produce live transgenic mice. Nature, 2012, 490, 407-411.	13.7	149
496	Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming. Journal of Cell Science, 2012, 125, 5609-5620.	1.2	142
497	Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocrine Reviews, 2012, 33, 378-455.	8.9	2,413
498	Histone Deacetylase Inhibitors Stimulate Dedifferentiation of Human Breast Cancer Cells Through WNT/β atenin Signaling. Stem Cells, 2012, 30, 2366-2377.	1.4	100
499	Correlations Between the Levels of Oct4 and Nanog as a Signature for NaÃ ⁻ ve Pluripotency in Mouse Embryonic Stem Cells. Stem Cells, 2012, 30, 2683-2691.	1.4	48
500	ESSA1 embryonic stem like cells from gilthead seabream: A new tool to study mesenchymal cell lineage differentiation in fish. Differentiation, 2012, 84, 240-251.	1.0	11
501	Combinatorial control of cell fate and reprogramming in the mammalian germline. Current Opinion in Genetics and Development, 2012, 22, 466-474.	1.5	36
502	Esrrb Is a Pivotal Target of the Gsk3/Tcf3 Axis Regulating Embryonic Stem Cell Self-Renewal. Cell Stem Cell, 2012, 11, 491-504.	5.2	348
503	Esrrb Is a Direct Nanog Target Gene that Can Substitute for Nanog Function in Pluripotent Cells. Cell Stem Cell, 2012, 11, 477-490.	5.2	304
504	Capturing epidermal stemness for regenerative medicine. Seminars in Cell and Developmental Biology, 2012, 23, 937-944.	2.3	54
505	Identification of Rat Rosa26 Locus Enables Generation of Knock-In Rat Lines Ubiquitously Expressing tdTomato. Stem Cells and Development, 2012, 21, 2981-2986.	1.1	51

#	Article	IF	CITATIONS
507	Microenvironment-mediated reversion of epiblast stem cells by reactivation of repressed JAK–STAT signaling. Integrative Biology (United Kingdom), 2012, 4, 1367.	0.6	12
508	GC-A. , 2012, , 769-769.		0
509	G Protein Alpha Transducin. , 2012, , 698-702.		0
510	Strategies of Regenerative Medicine. , 2012, , 229-260.		0
511	Microbioreactor Arrays for Full Factorial Screening of Exogenous and Paracrine Factors in Human Embryonic Stem Cell Differentiation. PLoS ONE, 2012, 7, e52405.	1.1	47
512	New Insights into Cell Cycle Regulation and DNA Damage Response in Embryonic Stem Cells. International Review of Cell and Molecular Biology, 2012, 299, 161-198.	1.6	11
513	Efficient and User-Friendly Pluripotin-based Derivation of Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 768-778.	5.6	18
514	Effect of Small Molecule Supplements during In Vitro Culture of Mouse Zygotes and Parthenogenetic Embryos on Hypoblast Formation and Stem Cell Derivation. Stem Cell Reviews and Reports, 2012, 8, 1088-1097.	5.6	1
515	Optimization of chemical and physical factors toward clinically enabling culture of pluripotent stem cells. , 2012, , .		0
516	Induced Pluripotent Stem Cells. SpringerBriefs in Stem Cells, 2012, , .	0.1	2
518	Nuclear Reprogramming and Stem Cells. , 2012, , .		1
519	LIF-Dependent Signaling: New Pieces in the Lego. Stem Cell Reviews and Reports, 2012, 8, 1-15.	5.6	79
520	Human and Mouse Induced Pluripotent Stem Cells Are Differentially Reprogrammed in Response to Kinase Inhibitors. Stem Cells and Development, 2012, 21, 1287-1298.	1.1	21
521	Generation of Functional Primordial Germ Cells from Pluripotent Stem Cells. Journal of Mammalian Ova Research, 2012, 29, 2-10.	0.1	3
522	Primordial Germ Cells in Mice. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008375-a008375.	2.3	308
523	Nanog-dependent feedback loops regulate murine embryonic stem cell heterogeneity. Nature Cell Biology, 2012, 14, 1139-1147.	4.6	141
524	The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology, 2012, 78, 1749-1762.	0.9	48
525	The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development (Cambridge), 2012, 139, 871-882.	1.2	230

#	Article	IF	CITATIONS
526	Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application. Cellular and Molecular Life Sciences, 2012, 69, 3419-3428.	2.4	33
527	Gene Targeting. , 2012, , 19-35.		5
528	Human foreskin fibroblast produces interleukin-6 to support derivation and self-renewal of mouse embryonic stem cells. Stem Cell Research and Therapy, 2012, 3, 29.	2.4	9
529	Differential Coupling of Self-Renewal Signaling Pathways in Murine Induced Pluripotent Stem Cells. PLoS ONE, 2012, 7, e30234.	1.1	12
530	Pleiotropy of Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Self-Renewal of Embryonic Stem Cells from Refractory Mouse Strains. PLoS ONE, 2012, 7, e35892.	1.1	68
531	New Insights into the Mechanisms of Embryonic Stem Cell Self-Renewal under Hypoxia: A Multifactorial Analysis Approach. PLoS ONE, 2012, 7, e38963.	1.1	23
532	Glycogen Synthase Kinase 3 (CSK3) Inhibitor, SB-216763, Promotes Pluripotency in Mouse Embryonic Stem Cells. PLoS ONE, 2012, 7, e39329.	1.1	40
533	Dental Pulp Stem Cells Differentiation Reveals New Insights in Oct4A Dynamics. PLoS ONE, 2012, 7, e41774.	1.1	52
534	X-Chromosome Inactivation in Rett Syndrome Human Induced Pluripotent Stem Cells. Frontiers in Psychiatry, 2012, 3, 24.	1.3	41
535	Troika of the Mouse Blastocyst: Lineage Segregation and Stem Cells. Current Stem Cell Research and Therapy, 2012, 7, 78-91.	0.6	26
536	GSK3 as a Sensor Determining Cell Fate in the Brain. Frontiers in Molecular Neuroscience, 2012, 5, 4.	1.4	75
537	Establishment of ES Cells from Inbred Strain Mice by Dual Inhibition (2i). Journal of Reproduction and Development, 2012, 58, 77-83.	0.5	9
538	Concise Review: A Chemical Approach to Control Cell Fate and Function. Stem Cells, 2012, 30, 61-68.	1.4	88
539	The molecular circuitry underlying pluripotency in embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 443-456.	6.6	12
540	Cnot1, Cnot2, and Cnot3 Maintain Mouse and Human ESC Identity and Inhibit Extraembryonic Differentiation. Stem Cells, 2012, 30, 910-922.	1.4	63
541	Dual Inhibition of Src and GSK3 Maintains Mouse Embryonic Stem Cells, Whose Differentiation Is Mechanically Regulated by Src Signaling. Stem Cells, 2012, 30, 1394-1404.	1.4	49
542	High Basal γH2AX Levels Sustain Self-Renewal of Mouse Embryonic and Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 1414-1423.	1.4	75
543	HIFâ€2α Suppresses p53 to Enhance the Stemness and Regenerative Potential of Human Embryonic Stem Cells. Stem Cells, 2012, 30, 1685-1695.	1.4	68

# 544	ARTICLE Sirt1, p53, and p38 ^{MAPK} Are Crucial Regulators of Detrimental Phenotypes of Embryonic Stem Cells with <i>Max</i> Expression Ablation. Stem Cells, 2012, 30, 1634-1644.	IF 1.4	CITATIONS
545	Specification of Midbrain Dopamine Neurons from Primate Pluripotent Stem Cells. Stem Cells, 2012, 30, 1655-1663.	1.4	182
546	The Path from Skin to Brain: Generation of Functional Neurons from Fibroblasts. Molecular Neurobiology, 2012, 45, 586-595.	1.9	36
547	Chemical biology in stem cell research. Archives of Pharmacal Research, 2012, 35, 281-297.	2.7	7
548	Stemness as a cell default state. EMBO Reports, 2012, 13, 396-397.	2.0	16
549	Human pre-implantation embryo development. Development (Cambridge), 2012, 139, 829-841.	1.2	289
550	Derivation and Characterization of Embryonic Stem Cells Lines Derived from Transgenic Fischer 344 and Dark Agouti Rats. Stem Cells and Development, 2012, 21, 1571-1586.	1.1	16
551	Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development (Cambridge), 2012, 139, 2866-2877.	1.2	87
552	Ability of tetraploid rat blastocysts to support fetal development after complementation with embryonic stem cells. Molecular Reproduction and Development, 2012, 79, 402-412.	1.0	12
553	Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors. Molecular Reproduction and Development, 2012, 79, 461-477.	1.0	30
554	Hypoxic priming of mESCs accelerates vascularâ€lineage differentiation through HIF1â€mediated inverse regulation of Oct4 and VEGF. EMBO Molecular Medicine, 2012, 4, 924-938.	3.3	54
555	Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature, 2012, 487, 57-63.	13.7	925
556	microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays, 2012, 34, 670-680.	1.2	70
557	Delineating nuclear reprogramming. Protein and Cell, 2012, 3, 329-345.	4.8	3
558	HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO Journal, 2012, 31, 2103-2116.	3.5	480
559	Generation of Induced Pluripotent Stem Cells from the Prairie Vole. PLoS ONE, 2012, 7, e38119.	1.1	20
560	Fine-tune of intrinsic ERK activity by extrinsic BMP signaling in mouse embryonic stem cells. Protein and Cell, 2012, 3, 401-404.	4.8	6
561	The reciprocal relationship between primordial germ cells and pluripotent stem cells. Journal of Molecular Medicine, 2012, 90, 753-761.	1.7	14

CITATION REPORT ARTICLE IF CITATIONS Derivation of rat embryonic stem cells and generation of protease-activated receptor-2 knockout 1.3 37 rats. Transgenic Research, 2012, 21, 743-755. Mouse ES cells maintained in different pluripotency-promoting conditions differ in their neural differentiation propensity. In Vitro Cellular and Developmental Biology - Animal, 2012, 48, 143-148. Simultaneous Suppression of TGF-Î² and ERK Signaling Contributes to the Highly Efficient and Reproducible Generation of Mouse Embryonic Stem Cells from Previously Considered Refractory and 5.6 41 Non-permissive Strains. Stem Cell Reviews and Reports, 2012, 8, 472-481. RNA plasticity and selectivity applicable to therapeutics and novel biosensor development. Genes To 0.5 Cells, 2012, 17, 344-364. Self-organizing circuitry and emergent computation in mouse embryonic stem cells. Stem Cell 0.3 21 Research, 2012, 8, 324-333. WNTing embryonic stem cells. Trends in Cell Biology, 2012, 22, 159-168. 3.6 64 Human hypoblast formation is not dependent on FGF signalling. Developmental Biology, 2012, 361, 0.9 208 358-363. Mapping mouse hemangioblast maturation from headfold stages. Developmental Biology, 2012, 365, 1-13. Oxidative stress-induced biomarkers for stem cell-based chemical screening. Preventive Medicine, 2012, 1.6 16 54, S42-S49. Livestock Induced Pluripotent Stem Cells. Reproduction in Domestic Animals, 2012, 47, 72-76. Recent Advances in Stem and Germ Cell Research: Implications for the Derivation of Pig Pluripotent 12 0.6 Cells. Reproduction in Domestic Animals, 2012, 47, 98-106. Generation of rat-induced pluripotent stem cells: Reprogramming and culture medium. Cell and Tissue Biology, 2012, 6, 115-121. PI3K/Aktâ€dependent functions of TFIIâ€I transcription factors in mouse embryonic stem cells. Journal of 1.2 11 Cellular Biochemistry, 2012, 113, 1122-1131. Integrating postâ€transcriptional regulation into the embryonic stem cell gene regulatory network. Journal of Cellular Physiology, 2012, 227, 439-449. An Automated High Throughput Screening-Compatible Assay to Identify Regulators of Stem Cell Neural 1.3 14 Differentiation. Molecular Biotechnology, 2012, 50, 171-180. Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture 33 conditions. Protein and Cell, 2012, 3, 71-79.

579	Application of Epigenomeâ€Modifying Small Molecules in Induced Pluripotent Stem Cells. Medicinal Research Reviews, 2013, 33, 790-822.	5.0	14
580	"Smart―microspheres for self-renewal of embryonic stem cells. Macromolecular Research, 2013, 21,	1.0	3

#

563

564

565

566

567

569

571

573

574

575

576

577

	CITATION	REPORT	
#	Article	IF	CITATIONS
581	Allele-specific detection of single mRNA molecules in situ. Nature Methods, 2013, 10, 869-871.	9.0	64
582	The positional identity of mouse ES cell-generated neurons is affected by BMP signaling. Cellular and Molecular Life Sciences, 2013, 70, 1095-1111.	2.4	29
583	Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals. Veterinary Journal, 2013, 197, 128-142.	0.6	34
584	Statistical Mechanics of Pluripotency. Cell, 2013, 154, 484-489.	13.5	159
585	Induction of mouse germ-cell fate by transcription factors in vitro. Nature, 2013, 501, 222-226.	13.7	277
586	Vitalism and the Scientific Image in Post-Enlightenment Life Science, 1800-2010. History, Philosophy and Theory of the Life Sciences, 2013, , .	0.4	47
587	Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature, 2013, 500, 217-221.	13.7	369
588	Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nature Protocols, 2013, 8, 1513-1524.	5.5	188
589	Tuning of β-catenin activity is required to stabilize self-renewal of rat embryonic stem cells. Stem Cells, 2013, 31, 2104-2115.	1.4	40
590	Toward directed reprogramming through exogenous factors. Current Opinion in Genetics and Development, 2013, 23, 519-525.	1.5	13
591	Whole-Genome Bisulfite Sequencing of Two Distinct Interconvertible DNA Methylomes of Mouse Embryonic Stem Cells. Cell Stem Cell, 2013, 13, 360-369.	5.2	424
592	The Hippo Pathway Member Nf2 Is Required for Inner Cell Mass Specification. Current Biology, 2013, 23, 1195-1201.	1.8	186
593	Suppression of malignancy by Smad3 in mouse embryonic stem cell formed teratoma. Stem Cell Reviews and Reports, 2013, 9, 709-720.	5.6	12
594	Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency. Stem Cell Research, 2013, 11, 1250-1263.	0.3	25
595	A Protocol for Construction of Gene Targeting Vectors and Generation of Homologous Recombinant Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1064, 337-354.	0.4	9
596	The role of pluripotency gene regulatory network components in mediating transitions between pluripotent cell states. Current Opinion in Genetics and Development, 2013, 23, 504-511.	1.5	48
597	Characterization of Oct4â€GFP spermatogonial stem cell line and its application in the reprogramming studies. Journal of Cellular Biochemistry, 2013, 114, 920-928.	1.2	11
598	The Effects of Nuclear Reprogramming on Mitochondrial DNA Replication. Stem Cell Reviews and Reports, 2013, 9, 1-15.	5.6	48

#	Article	IF	CITATIONS
599	Expression of TGFβ family factors and FGF2 in mouse and human embryonic stem cells maintained in different culture systems. Russian Journal of Developmental Biology, 2013, 44, 7-18.	0.1	2
600	Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nature Communications, 2013, 4, 2171.	5.8	90
601	A retrospective analysis of germline competence in rat embryonic stem cell lines. Transgenic Research, 2013, 22, 411-416.	1.3	14
602	Virus-Host Interactions. Methods in Molecular Biology, 2013, , .	0.4	2
603	Chemical Approaches to Stem Cell Biology and Therapeutics. Cell Stem Cell, 2013, 13, 270-283.	5.2	156
604	DNA Demethylation in Pluripotency and Reprogramming: The Role of Tet Proteins and Cell Division. Cell Stem Cell, 2013, 13, 265-269.	5.2	64
605	A chemical logic for reprogramming to pluripotency. Cell Research, 2013, 23, 1337-1338.	5.7	4
606	Isolation and Culture of Rabbit Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1074, 39-49.	0.4	4
607	Modulation of β-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nature Communications, 2013, 4, 2403.	5.8	139
608	Chromatin Position Effects Assayed by Thousands of Reporters Integrated in Parallel. Cell, 2013, 154, 914-927.	13.5	283
609	Totipotent Embryonic Stem Cells Arise in Ground-State Culture Conditions. Cell Reports, 2013, 3, 1945-1957.	2.9	207
610	Synergistic Mechanisms of DNA Demethylation during Transition to Ground-State Pluripotency. Stem Cell Reports, 2013, 1, 518-531.	2.3	115
611	FGF Signaling Inhibition in ESCs Drives Rapid Genome-wide Demethylation to the Epigenetic Ground State of Pluripotency. Cell Stem Cell, 2013, 13, 351-359.	5.2	371
612	The self-renewal of mouse embryonic stem cells is regulated by cell–substratum adhesion and cell spreading. International Journal of Biochemistry and Cell Biology, 2013, 45, 2698-2705.	1.2	41
613	Induced Neural Stem Cells Generated from Rat Fibroblasts. Genomics, Proteomics and Bioinformatics, 2013, 11, 312-319.	3.0	13
614	Inhibition of MEK and GSK3 Supports ES Cell-like Domed Colony Formation from Avian and Reptile Embryos. Zoological Science, 2013, 30, 543.	0.3	9
615	A Mesodermal Factor, T, Specifies Mouse Germ Cell Fate by Directly Activating Germline Determinants. Developmental Cell, 2013, 27, 516-529.	3.1	206
616	Tumorigenic Potential of miR-18A* in Glioma Initiating Cells Requires NOTCH-1 Signaling. Stem Cells, 2013, 31, 1252-1265.	1.4	40

#	Article	IF	CITATIONS
617	Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO Journal, 2013, 32, 2548-2560.	3.5	176
618	Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Research, 2013, 23, 1119-1132.	5.7	116
619	Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO Journal, 2013, 32, 2561-2574.	3.5	199
620	A competitive protein interaction network buffers Oct4â€mediated differentiation to promote pluripotency in embryonic stem cells. Molecular Systems Biology, 2013, 9, 694.	3.2	41
621	Transcription Factor Network in Embryonic Stem Cells: Heterogeneity under the Stringency. Biological and Pharmaceutical Bulletin, 2013, 36, 166-170.	0.6	17
622	Germ-Line–Competent Embryonic Stem Cells of the Chinese Kunming Mouse Strain with Long-Term Self-Renewal Ability. Cellular Reprogramming, 2013, 15, 179-184.	0.5	6
623	Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504, 282-286.	13.7	924
624	Accelerating Cancer Modeling with RNAi and Nongermline Genetically Engineered Mouse Models. Cold Spring Harbor Protocols, 2013, 2013, pdb.top069856.	0.2	17
625	Identifying Division Symmetry of Mouse Embryonic Stem Cells: Negative Impact of DNA Methyltransferases on Symmetric Self-Renewal. Stem Cell Reports, 2013, 1, 360-369.	2.3	13
626	CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression. Experimental Cell Research, 2013, 319, 2684-2699.	1.2	38
627	Tsix RNA and the Germline Factor, PRDM14, Link X Reactivation and Stem Cell Reprogramming. Molecular Cell, 2013, 52, 805-818.	4.5	96
628	Gene Targeting and Site-Specific Recombination in Mouse ES Cells. Methods in Enzymology, 2013, 533, 133-155.	0.4	11
629	Dual Kinase Inhibition Promotes Pluripotency in Finite Bovine Embryonic Cell Lines. Stem Cells and Development, 2013, 22, 1728-1742.	1.1	29
630	Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds. Science, 2013, 341, 651-654.	6.0	1,179
631	Neural induction and early patterning in vertebrates. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 479-498.	5.9	71
632	Stem Cells from Early Mammalian Embryos. , 2013, , 41-57.		0
633	Potential for pharmacological manipulation of human embryonic stem cells. British Journal of Pharmacology, 2013, 169, 269-289.	2.7	11
634	The aging of the 2000 and 2011 Hallmarks of Cancer reviews: A critique. Journal of Biosciences, 2013, 38, 651-663.	0.5	91

#	Article	IF	CITATIONS
635	The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells. Genome Biology, 2013, 14, R98.	13.9	48
636	Murine esBAF chromatin remodeling complex subunits BAF250a and Brg1 are necessary to maintain and reprogram pluripotency-specific replication timing of select replication domains. Epigenetics and Chromatin, 2013, 6, 42.	1.8	27
637	Haploid genomes illustrate epigenetic constraints and gene dosage effects in mammals. Epigenetics and Chromatin, 2013, 6, 41.	1.8	6
639	DNA methylation: a matter of culture. Nature Structural and Molecular Biology, 2013, 20, 249-251.	3.6	1
640	Isolation and Culture of Bovine Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1074, 111-123.	0.4	2
641	Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development (Cambridge), 2013, 140, 4165-4176.	1.2	57
642	Robust Self-Renewal of Rat Embryonic Stem Cells Requires Fine-Tuning ofÂGlycogen Synthase Kinase-3 Inhibition. Stem Cell Reports, 2013, 1, 209-217.	2.3	61
643	Nonviral Cell Labeling and Differentiation Agent for Induced Pluripotent Stem Cells Based on Mesoporous Silica Nanoparticles. ACS Nano, 2013, 7, 8423-8440.	7.3	78
644	Combining small molecules for cell reprogramming through an interatomic analysis. Molecular BioSystems, 2013, 9, 2741.	2.9	2
645	Concise Review: Pursuing Self-Renewal and Pluripotency with the Stem Cell Factor Nanog. Stem Cells, 2013, 31, 1227-1236.	1.4	87
646	Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium. International Journal of Developmental Biology, 2013, 57, 715-724.	0.3	18
647	The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth. Nature Communications, 2013, 4, 1398.	5.8	21
648	Characteristics of stem cells. , 2013, , 1-32.		0
649	The Identity and Fate Decision Control of Spermatogonial Stem Cells. Current Topics in Developmental Biology, 2013, 102, 61-95.	1.0	34
650	Pivots of pluripotency: The roles of non-coding RNA in regulating embryonic and induced pluripotent stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2385-2394.	1.1	31
651	PRDM14 Ensures Naive Pluripotency through Dual Regulation of Signaling and Epigenetic Pathways in Mouse Embryonic Stem Cells. Cell Stem Cell, 2013, 12, 368-382.	5.2	266
652	Generation of integration-free neural progenitor cells from cells in human urine. Nature Methods, 2013, 10, 84-89.	9.0	184
653	The transcriptional regulation of pluripotency. Cell Research, 2013, 23, 20-32.	5.7	110

#	Article	IF	CITATIONS
654	The transition of mouse pluripotent stem cells from the naÃ⁻ve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody. Biochemical and Biophysical Research Communications, 2013, 430, 1175-1181.	1.0	21
655	Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 2013, 494, 100-104.	13.7	455
656	Functions of BMP signaling in embryonic stem cell fate determination. Experimental Cell Research, 2013, 319, 113-119.	1.2	29
657	Leukemia Inhibitory Factor-Induced Stat3 Signaling Suppresses Fibroblast Growth Factor 1-Induced Erk1/2 Activation to Inhibit the Downstream Differentiation in Mouse Embryonic Stem Cells. Stem Cells and Development, 2013, 22, 1190-1197.	1.1	12
658	FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development (Cambridge), 2013, 140, 267-279.	1.2	226
659	Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development (Cambridge), 2013, 140, 43-55.	1.2	147
660	A germline-competent embryonic stem cell line from NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ (NSC) mice. Transgenic Research, 2013, 22, 179-185.	1.3	9
661	Naive pluripotency is associated with global DNA hypomethylation. Nature Structural and Molecular Biology, 2013, 20, 311-316.	3.6	465
662	Activin A is essential for Feederâ€free culture of human induced pluripotent stem cells. Journal of Cellular Biochemistry, 2013, 114, 584-588.	1.2	9
663	TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports, 2013, 1, 248-265.	2.3	72
663 664	TBX3 Directs Cell-Fate Decision toward Mesendoderm. Stem Cell Reports, 2013, 1, 248-265. Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484.	2.3 2.9	72 56
664	Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity	2.9	56
664 665	Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells. Stem Cell Reports, 2013, 1, 532-544. Activation of protein kinase C delta by Ï'ÎRACK peptide promotes embryonic stem cell proliferation	2.9 2.3	56 129
664 665 666	Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells. Stem Cell Reports, 2013, 1, 532-544. Activation of protein kinase C delta by Ï'ÎRACK peptide promotes embryonic stem cell proliferation through ERK 1/2. Journal of Proteomics, 2013, 94, 497-512. Competitive Interactions Eliminate Unfit Embryonic Stem Cells at the Onset of Differentiation.	2.9 2.3 1.2	56 129 7
664 665 666	 Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells. Stem Cell Reports, 2013, 1, 532-544. Activation of protein kinase C delta by rrRACK peptide promotes embryonic stem cell proliferation through ERK 1/2. Journal of Proteomics, 2013, 94, 497-512. Competitive Interactions Eliminate Unfit Embryonic Stem Cells at the Onset of Differentiation. Developmental Cell, 2013, 26, 19-30. Requirement of B-Raf, C-Raf, and A-Raf for the growth and survival of mouse embryonic stem cells. 	 2.9 2.3 1.2 3.1 	56 129 7 199
6664 6665 6667 6668	Tcf15 Primes Pluripotent Cells for Differentiation. Cell Reports, 2013, 3, 472-484. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells. Stem Cell Reports, 2013, 1, 532-544. Activation of protein kinase C delta by Ï'ÎRACK peptide promotes embryonic stem cell proliferation through ERK 1/2. Journal of Proteomics, 2013, 94, 497-512. Competitive Interactions Eliminate Unfit Embryonic Stem Cells at the Onset of Differentiation. Developmental Cell, 2013, 26, 19-30. Requirement of B-Raf, C-Raf, and A-Raf for the growth and survival of mouse embryonic stem cells. Experimental Cell Research, 2013, 319, 2801-2811. Context-Dependent Wiring of Sox2 Regulatory Networks for Self-Renewal of Embryonic and	 2.9 2.3 1.2 3.1 1.2 	 56 129 7 199 11

#	Article	IF	CITATIONS
672	Pluripotency of Induced Pluripotent Stem Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 299-303.	3.0	12
673	An improved method for the derivation of high quality iPSCs in the absence of c-Myc. Experimental Cell Research, 2013, 319, 3190-3200.	1.2	11
674	Gene expression profiling reveals the heterogeneous transcriptional activity of Oct3/4 and its possible interaction with Gli2 in mouse embryonic stem cells. Genomics, 2013, 102, 456-467.	1.3	9
675	Efficient Derivation of Lateral Plate and Paraxial Mesoderm Subtypes from Human Embryonic Stem Cells Through GSKi-Mediated Differentiation. Stem Cells and Development, 2013, 22, 1893-1906.	1.1	90
676	Dynamic Migration and Cell-Cell Interactions of Early Reprogramming Revealed by High-Resolution Time-Lapse Imaging. Stem Cells, 2013, 31, 895-905.	1.4	28
677	Minireview: The Diverse Roles of Nuclear Receptors in the Regulation of Embryonic Stem Cell Pluripotency. Molecular Endocrinology, 2013, 27, 864-878.	3.7	16
678	TGF-β-Superfamily Signaling Regulates Embryonic Stem Cell Heterogeneity: Self-Renewal as a Dynamic and Regulated Equilibrium. Stem Cells, 2013, 31, 48-58.	1.4	48
679	Gata4 Blocks Somatic Cell Reprogramming By Directly Repressing Nanog. Stem Cells, 2013, 31, 71-82.	1.4	18
680	A Localized Wnt Signal Orients Asymmetric Stem Cell Division in Vitro. Science, 2013, 339, 1445-1448.	6.0	296
681	The Molecular Circuitry Underlying Pluripotency in Embryonic Stem Cells and iPS Cells. , 2013, , 29-35.		0
682	Mechanisms of Stem Cell Self-Renewal. , 2013, , 67-76.		0
683	Induced Pluripotent Stem Cells. , 2013, , 227-235.		2
684	Embryonic Stem Cells. , 2013, , 275-286.		2
685	Gene Regulatory Networks Mediating Canonical Wnt Signal-Directed Control of Pluripotency and Differentiation in Embryo Stem Cells. Stem Cells, 2013, 31, 2667-2679.	1.4	89
686	Longâ€ŧerm liveâ€cell imaging of mammalian preimplantation development and derivation process of pluripotent stem cells from the embryos. Development Growth and Differentiation, 2013, 55, 378-389.	0.6	14
687	Tcf7l1 prepares epiblast cells in the gastrulating mouse embryo for lineage specification. Development (Cambridge), 2013, 140, 1665-1675.	1.2	62
688	Embryonic stem cell-derived trophoblast differentiation: a comparative review of the biology, function, and signaling mechanisms. Journal of Endocrinology, 2013, 216, R33-R45.	1.2	23
689	The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2268-2279.	1.1	64

#	Article	IF	CITATIONS
690	Inhibition of MAP2K and GSK3 Signaling Promotes Bovine Blastocyst Development and Epiblast-Associated Expression of Pluripotency Factors1. Biology of Reproduction, 2013, 88, 74.	1.2	34
691	Exit from Pluripotency Is Gated by Intracellular Redistribution of the bHLH Transcription Factor Tfe3. Cell, 2013, 153, 335-347.	13.5	296
692	The Regenerative Activity of Interleukin-6. Methods in Molecular Biology, 2013, 982, 59-77.	0.4	28
693	Reprogramming and the Pluripotent Stem Cell Cycle. Current Topics in Developmental Biology, 2013, 104, 223-241.	1.0	19
694	Guards at the Gate to Embryonic Stem Cell Differentiation. Cell, 2013, 153, 281-283.	13.5	4
695	Primordial Germ-Cell Development and Epigenetic Reprogramming in Mammals. Current Topics in Developmental Biology, 2013, 104, 149-187.	1.0	109
696	The expression of Sox17 identifies and regulates haemogenic endothelium. Nature Cell Biology, 2013, 15, 502-510.	4.6	143
697	A New Chemical Approach to the Efficient Generation of Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2013, 997, 13-22.	0.4	12
698	Humanized Medium (h7H) Allows Long-Term Primary Follicular Thyroid Cultures From Human Normal Thyroid, Benign Neoplasm, and Cancer. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2431-2441.	1.8	20
699	Reduced Oct4 Expression Directs a Robust Pluripotent State with Distinct Signaling Activity and Increased Enhancer Occupancy by Oct4 and Nanog. Cell Stem Cell, 2013, 12, 531-545.	5.2	171
700	Isolation and Characterization of Intestinal Stem Cells Based on Surface Marker Combinations and Colony-Formation Assay. Gastroenterology, 2013, 145, 383-395.e21.	0.6	172
701	Facile and Efficient Reprogramming of Ciliary Body Epithelial Cells into Induced Pluripotent Stem Cells. Stem Cells and Development, 2013, 22, 2543-2550.	1.1	11
702	Cryopreservation and long-term maintenance of bovine embryo-derived cell lines. Reproduction, Fertility and Development, 2013, 25, 707.	0.1	15
703	Uncovering the true identity of na \tilde{A} ve pluripotent stem cells. Trends in Cell Biology, 2013, 23, 442-448.	3.6	29
704	Stem cells and small molecule screening: haploid embryonic stem cells as a new tool. Acta Pharmacologica Sinica, 2013, 34, 725-731.	2.8	3
705	The impact of culture on epigenetic properties of pluripotent stem cells and pre-implantation embryos. Biochemical Society Transactions, 2013, 41, 711-719.	1.6	25
706	Signaling pathways during maintenance and definitive endoderm differentiation of embryonic stem cells. International Journal of Developmental Biology, 2013, 57, 1-12.	0.3	41
707	The role of redox environment in neurogenic development. Archives of Biochemistry and Biophysics, 2013, 534, 44-54.	1.4	26

#	Article	IF	CITATIONS
708	On the role of Wnt/l²-catenin signaling in stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2297-2306.	1.1	79
709	Conversion of rat embryonic stem cells into neural precursors in chemical-defined medium. Biochemical and Biophysical Research Communications, 2013, 431, 783-787.	1.0	8
710	A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nature Cell Biology, 2013, 15, 579-590.	4.6	195
712	miRâ€21 modulates the ERK–MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation. Journal of Cellular Biochemistry, 2013, 114, 1374-1384.	1.2	123
713	Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature, 2013, 500, 222-226.	13.7	715
714	Porcn-dependent Wnt signaling is not required prior to mouse gastrulation. Development (Cambridge), 2013, 140, 2961-2971.	1.2	55
715	iPSCs and small molecules: a reciprocal effort towards better approaches for drug discovery. Acta Pharmacologica Sinica, 2013, 34, 765-776.	2.8	36
716	Biallelic Expression of Nanog Protein in Mouse Embryonic Stem Cells. Cell Stem Cell, 2013, 13, 12-13.	5.2	86
717	Single-Cell Analysis Reveals that Expression of Nanog Is Biallelic and Equally Variable as that of Other Pluripotency Factors in Mouse ESCs. Cell Stem Cell, 2013, 13, 23-29.	5.2	98
718	X Chromosome Inactivation and Epigenetic Responses to Cellular Reprogramming. Annual Review of Genomics and Human Genetics, 2013, 14, 85-110.	2.5	81
719	Embryonic Stem Cells: A Signalling Perspective. , 2013, , 49-68.		1
720	Polycomb Determines Responses to Smad2/3 Signaling in Embryonic Stem Cell Differentiation and in Reprogramming. Stem Cells, 2013, 31, 1488-1497.	1.4	7
721	Protein Kinase C Signaling in Embryonic Stem Cell Self Renewal and Cardiac Differentiation. , 2013, , 103-110.		0
722	Roles of small molecules in somatic cell reprogramming. Acta Pharmacologica Sinica, 2013, 34, 719-724.	2.8	18
723	Rebuilding Pluripotency from Primordial Germ Cells. Stem Cell Reports, 2013, 1, 66-78.	2.3	63
724	Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells, 2013, 31, 2024-2030.	1.4	81
725	Zscan4 restores the developmental potency of embryonic stem cells. Nature Communications, 2013, 4, 1966.	5.8	94
726	A short G1 phase is an intrinsic determinant of naÃ ⁻ ve embryonic stem cell pluripotency. Stem Cell Research, 2013, 10, 118-131.	0.3	229

#	Article	IF	CITATIONS
727	Roles for MYC in the Establishment and Maintenance of Pluripotency. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a014381-a014381.	2.9	97
728	Expanding Mouse Ventricular Cardiomyocytes Through GSKâ€3 Inhibition. Current Protocols in Cell Biology, 2013, 61, 23.9.1-23.9.10.	2.3	9
729	Learning the molecular mechanisms of the reprogramming factors: let's start from microRNAs. Molecular BioSystems, 2013, 9, 10-17.	2.9	31
730	The Histone Methyltransferase Inhibitor BIX01294 Enhances the Cardiac Potential of Bone Marrow Cells. Stem Cells and Development, 2013, 22, 654-667.	1.1	29
731	Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency. Biology Open, 2013, 2, 1049-1056.	0.6	29
732	Effects of thein vitromanipulation of stem cells: epigenetic mechanisms as mediators of induced metabolic fluctuations. Epigenomics, 2013, 5, 429-437.	1.0	8
733	Inhibition of Protein Kinase C Signaling Maintains Rat Embryonic Stem Cell Pluripotency*. Journal of Biological Chemistry, 2013, 288, 24351-24362.	1.6	38
734	Molecular Mechanisms Underlying Pluripotency. , 0, , .		0
735	Qualitative modeling identifies IL-11 as a novel regulator in maintaining self-renewal in human pluripotent stem cells. Frontiers in Physiology, 2013, 4, 303.	1.3	15
736	Single Cell Visualization of Yeast Gene Expression Shows Correlation of Epigenetic Switching between Multiple Heterochromatic Regions through Multiple Generations. PLoS Biology, 2013, 11, e1001601.	2.6	27
737	Distinct Allelic Patterns of Nanog Expression Impart Embryonic Stem Cell Population Heterogeneity. PLoS Computational Biology, 2013, 9, e1003140.	1.5	8
738	Cell Reprogramming Requires Silencing of a Core Subset of Polycomb Targets. PLoS Genetics, 2013, 9, e1003292.	1.5	59
739	A liaison between intrinsic and extrinsic regulators of pluripotency. EMBO Journal, 2013, 32, 2531-2532.	3.5	7
740	A membrane-associated β-catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Development (Cambridge), 2013, 140, 1171-1183.	1.2	113
741	Wnt Signaling Regulates the Lineage Differentiation Potential of Mouse Embryonic Stem Cells through Tcf3 Down-Regulation. PLoS Genetics, 2013, 9, e1003424.	1.5	76
742	Threonine metabolism and embryonic stem cell self-renewal. Current Opinion in Clinical Nutrition and Metabolic Care, 2013, 17, 1.	1.3	22
743	Cell signalling regulates dynamics of Nanog distribution in embryonic stem cell populations. Journal of the Royal Society Interface, 2013, 10, 20120525.	1.5	33
744	Wnt/β-catenin pathway represses let-7 microRNAs expression via transactivation of Lin28 to augment breast cancer stem cell expansion. Journal of Cell Science, 2013, 126, 2877-89.	1.2	112

#	Article	IF	CITATIONS
745	Conversion of Primordial Germ Cells to Pluripotent Stem Cells: Methods for Cell Tracking and Culture Conditions. Methods in Molecular Biology, 2013, 1052, 49-56.	0.4	6
746	Deep Proteome Coverage Based on Ribosome Profiling Aids Mass Spectrometry-based Protein and Peptide Discovery and Provides Evidence of Alternative Translation Products and Near-cognate Translation Initiation Events*. Molecular and Cellular Proteomics, 2013, 12, 1780-1790.	2.5	154
747	A continuum of transcriptional identities visualized by combinatorial fluorescent <i>in situ</i> hybridization. Development (Cambridge), 2013, 140, 216-225.	1.2	22
748	Proliferation Rate of Somatic Cells Affects Reprogramming Efficiency. Journal of Biological Chemistry, 2013, 288, 9767-9778.	1.6	48
749	A genetic and developmental pathway from STAT3 to the OCT4–NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes and Development, 2013, 27, 1378-1390.	2.7	151
750	MYC/MAX control ERK signaling and pluripotency by regulation of dual-specificity phosphatases 2 and 7. Genes and Development, 2013, 27, 725-733.	2.7	75
751	Heparan sulfate: a key regulator of embryonic stem cell fate. Biological Chemistry, 2013, 394, 741-751.	1.2	66
752	Early cell fate decisions in the mouse embryo. Reproduction, 2013, 145, R65-R80.	1.1	82
753	AICAR Sustains J1 Mouse Embryonic Stem Cell Self-Renewal and Pluripotency by Regulating Transcription Factor and Epigenetic Modulator Expression. Cellular Physiology and Biochemistry, 2013, 32, 459-475.	1.1	17
754	Using Human-Induced Pluripotent Stem Cells to Model Monogenic Metabolic Disorders of the Liver. Seminars in Liver Disease, 2013, 32, 298-306.	1.8	13
755	A Comparative Study of Protocols for Mouse Embryonic Stem Cell Culturing. PLoS ONE, 2013, 8, e81156.	1.1	83
756	Concise Review: The Sox2-Oct4 Connection: Critical Players in a Much Larger Interdependent Network Integrated at Multiple Levels. Stem Cells, 2013, 31, 1033-1039.	1.4	96
757	Artd1/Parp1 regulates reprogramming by transcriptional regulation of Fgf4 via Sox2 ADP-ribosylation. Stem Cells, 2013, 31, 2364-2373.	1.4	25
758	Enhanced generation of human embryonic stem cells from single blastomeres of fair and poor-quality cleavage embryos via inhibition of glycogen synthase kinase β and Rho-associated kinase signaling. Human Reproduction, 2013, 28, 2661-2671.	0.4	16
759	Disease modelling using induced pluripotent stem cells: Status and prospects. BioEssays, 2013, 35, 271-280.	1.2	16
760	Glycogen synthase kinaseÂ3 substrates in mood disorders and schizophrenia. FEBS Journal, 2013, 280, 5213-5227.	2.2	58
761	SMAD7 Directly Converts Human Embryonic Stem Cells to Telencephalic Fate by a Default Mechanism. Stem Cells, 2013, 31, 35-47.	1.4	35
762	Hes1 Desynchronizes Differentiation of Pluripotent Cells by Modulating STAT3 Activity. Stem Cells, 2013, 31, 1511-1522.	1.4	36

#	Article	IF	CITATIONS
763	Matrix Remodeling Maintains Embryonic Stem Cell Self-Renewal by Activating Stat3. Stem Cells, 2013, 31, 1097-1106.	1.4	26
764	Gene Targeting in Mice: A Review. Methods in Molecular Biology, 2013, 1064, 315-336.	0.4	128
765	Four decades of leadingâ€edge research in the reproductive and developmental sciences: The Infant Primate Research Laboratory at the University of Washington National Primate Research Center. American Journal of Primatology, 2013, 75, 1063-1083.	0.8	16
766	A double take on bivalent promoters. Genes and Development, 2013, 27, 1318-1338.	2.7	699
767	Chemical approaches to studying stem cell biology. Cell Research, 2013, 23, 81-91.	5.7	32
768	BMP Induces Cochlin Expression to Facilitate Self-renewal and Suppress Neural Differentiation of Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2013, 288, 8053-8060.	1.6	28
769	Diploid, but not haploid, human embryonic stem cells can be derived from microsurgically repaired tripronuclear human zygotes. Cell Cycle, 2013, 12, 302-311.	1.3	8
770	JAK-STAT3 and somatic cell reprogramming. Jak-stat, 2013, 2, e24935.	2.2	30
771	Lamin A/C is Expressed in Pluripotent Mouse Embryonic Stem Cells. Nucleus, 2013, 4, 53-60.	0.6	93
772	Gbx2, a LIF/Stat3 target, promotes reprogramming to and retention of the pluripotent ground state. Journal of Cell Science, 2013, 126, 1093-1098.	1.2	102
773	Epigenetic regulation of the neuroblastoma genes, Arid3b and Mycn. Oncogene, 2013, 32, 2640-2648.	2.6	26
774	ATP citrate lyase knockdown impacts cancer stem cells in vitro. Cell Death and Disease, 2013, 4, e696-e696.	2.7	78
775	Multiple coagulation factor deficiency protein 2 contains the ability to support stem cell selfâ€renewal. FASEB Journal, 2013, 27, 3298-3305.	0.2	7
776	Would the real human embryonic stem cell please stand up?. BioEssays, 2013, 35, 632-638.	1.2	10
777	Maintenance of pluripotency in mouse ES cells without Trp53. Scientific Reports, 2013, 3, 2944.	1.6	21
778	Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17802-17807.	3.3	22
779	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
781	The metabolic framework of pluripotent stem cells and potential mechanisms of regulation. , 0, , 164-179.		3

	CHAIL	ON REPORT	
#	Article	IF	Citations
782	Small Molecules in Stem Cell Research. Current Pharmaceutical Biotechnology, 2013, 14, 36-45.	0.9	0
783	<i>Prdm14</i> promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Reports, 2013, 14, 629-637.	2.0	145
785	RNAi-mediated Knockdown of <i>Xist</i> Does Not Rescue the Impaired Development of Female Cloned Mouse Embryos. Journal of Reproduction and Development, 2013, 59, 231-237.	0.5	24
786	Bioimaging of Transgenic Rats Established at Jichi Medical University: Applications in Transplantation Research. Cell Medicine, 2013, 5, 45-51.	5.0	0
787	A Survey of the Molecular Basis for the Generation of Functional Dopaminergic Neurons from Pluripotent Stem Cells: Insights from Regenerative Biology and Regenerative Medicine. , 0, , .		0
788	Multiple Paths to Reprogramming. , 2013, , .		0
789	Molecular Mechanisms of Embryonic Stem Cell Pluripotency. , 2013, , .		1
790	Signaling pathways dictating pluripotency in embryonic stem cells. International Journal of Developmental Biology, 2013, 57, 667-675.	0.3	13
791	ERK2 Suppresses Self-Renewal Capacity of Embryonic Stem Cells, but Is Not Required for Multi-Lineage Commitment. PLoS ONE, 2013, 8, e60907.	1.1	29
792	A Genetic Screen Using the PiggyBac Transposon in Haploid Cells Identifies Parp1 as a Mediator of Olaparib Toxicity. PLoS ONE, 2013, 8, e61520.	1.1	147
793	Î ² -Catenin Functions Pleiotropically in Differentiation and Tumorigenesis in Mouse Embryo-Derived Stem Cells. PLoS ONE, 2013, 8, e63265.	1.1	15
794	Epiblast Ground State Is Controlled by Canonical Wnt/β-Catenin Signaling in the Postimplantation Mouse Embryo and Epiblast Stem Cells. PLoS ONE, 2013, 8, e63378.	1.1	97
795	Silencing BRE Expression in Human Umbilical Cord Perivascular (HUCPV) Progenitor Cells Accelerates Osteogenic and Chondrogenic Differentiation. PLoS ONE, 2013, 8, e67896.	1.1	18
796	Sox2 Expression Is Regulated by a Negative Feedback Loop in Embryonic Stem Cells That Involves AKT Signaling and FoxO1. PLoS ONE, 2013, 8, e76345.	1.1	36
797	Activation of GSK3β by Sirt2 Is Required for Early Lineage Commitment of Mouse Embryonic Stem Cell. PLoS ONE, 2013, 8, e76699.	1.1	33
798	DNA-Dependent Protein Kinase Is a Context Dependent Regulator of Lmx1a and Midbrain Specification. PLoS ONE, 2013, 8, e78759.	1.1	3
799	Microbioreactor Array Screening of Wnt Modulators and Microenvironmental Factors in Osteogenic Differentiation of Mesenchymal Progenitor Cells. PLoS ONE, 2013, 8, e82931.	1.1	15
800	PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix. ELife, 2013, 2, e00806.	2.8	32

#	Article	IF	CITATIONS
801	Decoding the Pluripotency Network: The Emergence of New Transcription Factors. Biomedicines, 2013, 1, 49-78.	1.4	16
802	Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. ELife, 2013, 2, e00036.	2.8	72
803	Embryonic stem cells. , 0, , 3-18.		1
804	Regulation of Cell Fate in the Brain by GSK3. , 0, , .		1
805	Conditions and Techniques for Mouse Embryonic Stem Cell Derivation and Culture. , 2013, , .		3
806	The biology and therapeutic potential of embryonic stem cells. , 0, , 364-373.		0
807	Vitamin A/Retinol and Maintenance of Pluripotency of Stem Cells. Nutrients, 2014, 6, 1209-1222.	1.7	47
808	Beta-Catenin Is Vital for the Integrity of Mouse Embryonic Stem Cells. PLoS ONE, 2014, 9, e86691.	1.1	26
809	A Model-Based Analysis of Culture-Dependent Phenotypes of mESCs. PLoS ONE, 2014, 9, e92496.	1.1	32
810	An Optimized and Simplified System of Mouse Embryonic Stem Cell Cardiac Differentiation for the Assessment of Differentiation Modifiers. PLoS ONE, 2014, 9, e93033.	1.1	11
811	KSR-Based Medium Improves the Generation of High-Quality Mouse iPS Cells. PLoS ONE, 2014, 9, e105309.	1.1	19
812	Improved Derivation Efficiency and Pluripotency of Stem Cells from the Refractory Inbred C57BL/6 Mouse Strain by Small Molecules. PLoS ONE, 2014, 9, e106916.	1.1	4
813	Live Cell Imaging of the Nascent Inactive X Chromosome during the Early Differentiation Process of Naive ES Cells towards Epiblast Stem Cells. PLoS ONE, 2014, 9, e116109.	1.1	19
815	Genomic Instability in Embryonic Stem Cell: A Mechanism for Adaptation and Pluripotency Maintenance. Journal of Fertilization in Vitro IVF Worldwide Reproductive Medicine Genetics & Stem Cell Biology, 2014, 03, .	0.2	0
816	Recapitulating Inner Ear Development with Pluripotent Stem Cells. , 2014, , 213-247.		2
818	Pluripotent cells will not dosage compensate. Worm, 2014, 3, e29051.	1.0	0
819	Derivation of naÃ ⁻ ve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4484-4489.	3.3	415
820	Embryonic Stem Cells. , 2014, , 387-398.		2

# 821	ARTICLE MicroRNA-mediated regulation of extracellular matrix formation modulates somatic cell reprogramming. Rna, 2014, 20, 1900-1915.	IF 1.6	CITATIONS
822	Naive embryonic stem cells: the future of stem cell research?. Regenerative Medicine, 2014, 9, 401-403.	0.8	6
823	HTS/HCS to Screen Molecules Able to Maintain Embryonic Stem Cell Self-Renewal or to Induce Differentiation: Overview of Protocols. Stem Cell Reviews and Reports, 2014, 10, 802-819.	5.6	5
824	Brachyury cooperates with Wnt/β-catenin signalling to elicit primitive-streak-like behaviour in differentiating mouse embryonic stem cells. BMC Biology, 2014, 12, 63.	1.7	74
825	Induced Pluripotent Stem Cells. , 2014, , 581-594.		6
826	Understanding the roadmaps to induced pluripotency. Cell Death and Disease, 2014, 5, e1232-e1232.	2.7	25
827	Generation of Mammalian Offspring by Haploid Embryonic Stem Cells Microinjection. Current Protocols in Stem Cell Biology, 2014, 31, 1A.6.1-15.	3.0	5
828	Stem Cell Transcriptional Networks. Methods in Molecular Biology, 2014, , .	0.4	6
829	Convergent Regulation of Neuronal Differentiation and Erk and Akt Kinases in Human Neural Progenitor Cells by Lysophosphatidic Acid, Sphingosine 1-Phosphate, and LIF: Specific Roles for the LPA1 Receptor. ASN Neuro, 2014, 6, 175909141455841.	1.5	14
830	Zfp322a Regulates Mouse ES Cell Pluripotency and Enhances Reprogramming Efficiency. PLoS Genetics, 2014, 10, e1004038.	1.5	21
831	TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation. Nucleic Acids Research, 2014, 42, 8592-8604.	6.5	79
832	Bovine Induced Pluripotent Stem Cells Are More Resistant to Apoptosis than Testicular Cells in Response to Mono-(2-ethylhexyl) Phthalate. International Journal of Molecular Sciences, 2014, 15, 5011-5031.	1.8	22
833	Chromatin Landscapes of Retroviral and Transposon Integration Profiles. PLoS Genetics, 2014, 10, e1004250.	1.5	80
834	The States of Pluripotency: Pluripotent Lineage Development in the Embryo and in the Dish. ISRN Stem Cells, 2014, 2014, 1-19.	1.8	5
835	Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development (Cambridge), 2014, 141, 1001-1010.	1.2	146
836	An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biology Open, 2014, 3, 614-626.	0.6	55
837	H3K36 Histone Methyltransferase Setd2 Is Required for Murine Embryonic Stem Cell Differentiation toward Endoderm. Cell Reports, 2014, 8, 1989-2002.	2.9	67
839	Tuning Differentiation Signals for Efficient Propagation and In Vitro Validation of Rat Embryonic Stem Cell Cultures. Methods in Molecular Biology, 2014, 1212, 73-85.	0.4	2

		CITATION REPORT		
#	Article		IF	CITATIONS
840	3D niche microarrays for systems-level analyses of cell fate. Nature Communications, 2	2014, 5, 4324.	5.8	210
841	A <i>Sox2</i> distal enhancer cluster regulates embryonic stem cell differentiation por and Development, 2014, 28, 2699-2711.	cential. Genes	2.7	158
842	Treatment of human embryos with the TGFÂ inhibitor SB431542 increases epiblast pro permits successful human embryonic stem cell derivation. Human Reproduction, 2014		0.4	25
843	Rapid target gene validation in complex cancer mouse models using reâ€derived embr EMBO Molecular Medicine, 2014, 6, 212-225.	yonic stem cells.	3.3	78
844	Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature, 2014,	516, 56-61.	13.7	343
845	Human Stem Cells for Craniomaxillofacial Reconstruction. Stem Cells and Developmer 1437-1451.	t, 2014, 23,	1.1	9
846	Surfaceome Profiling Reveals Regulators of Neural Stem Cell Function. Stem Cells, 201	.4, 32, 258-268.	1.4	22
847	Perspectives of germ cell development in vitro in mammals. Animal Science Journal, 20	14, 85, 617-626.	0.6	26
848	Celsr1 is required for the generation of polarity at multiple levels of the mouse oviduct (Cambridge), 2014, 141, 4558-4568.	. Development	1.2	92
849	STAT3 Phosphorylation at Tyrosine 705 and Serine 727 Differentially Regulates Mouse Cells, 2014, 32, 1149-1160.	ESC Fates. Stem	1.4	127
850	Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty tran Nature Protocols, 2014, 9, 773-793.	sposons.	5.5	57
851	Insulin-Like Growth Factor 1 Receptor and p38 Mitogen-Activated Protein Kinase Signa Regulate Signal Transducer and Activator of Transcription 3 Activity to Control Human Stem Cell Quiescence, Propagation, and Differentiation. Stem Cells and Development,	ı Dental Pulp	1.1	33
852	Transcriptional mechanisms of cell fate decisions revealed by single cell expression pro BioEssays, 2014, 36, 419-426.	filing.	1.2	24
853	BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation Death and Differentiation, 2014, 21, 1950-1960.	embryos. Cell	5.0	67
854	Chemical approaches to cell reprogramming. Current Opinion in Genetics and Develop 50-56.	ment, 2014, 28,	1.5	46
855	Excessive versus Physiologically Relevant Levels of Retinoic Acid in Embryonic Stem Ce Differentiation. Stem Cells, 2014, 32, 1451-1458.	II	1.4	16
856	Identification of Ccr4-Not Complex Components as Regulators of Transition from Part Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 2170-2179.	al to Genuine	1.1	9
857	Concentration-dependent lamin assembly and its roles in the localization of other nucl Molecular Biology of the Cell, 2014, 25, 1287-1297.	ear proteins.	0.9	61

#	Article	IF	CITATIONS
858	The molecular underpinnings of totipotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130549.	1.8	31
859	Mapping the route from naive pluripotency to lineage specification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130540.	1.8	183
860	The birth of embryonic pluripotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130541.	1.8	48
861	The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals. Genes and Development, 2014, 28, 463-478.	2.7	63
862	Serum Inter-α-inhibitor Activates the Yes Tyrosine Kinase and YAP/TEAD Transcriptional Complex in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2014, 289, 33492-33502.	1.6	13
863	Erk Signaling Suppresses Embryonic Stem Cell Self-Renewal to Specify Endoderm. Cell Reports, 2014, 9, 2056-2070.	2.9	96
864	Metabostemness: A New Cancer Hallmark. Frontiers in Oncology, 2014, 4, 262.	1.3	95
865	Maintenance and Neuronal Differentiation of Chicken Induced Pluripotent Stem-Like Cells. Stem Cells International, 2014, 2014, 1-14.	1.2	13
866	Gene Targeting in Embryonic Stem Cells, I. , 2014, , 109-139.		2
867	PRMT5 Protects Genomic Integrity during Global DNA Demethylation in Primordial Germ Cells and Preimplantation Embryos. Molecular Cell, 2014, 56, 564-579.	4.5	122
868	Homologous recombination efficiency enhanced by inhibition of <scp>MEK</scp> and <scp>GSK</scp> 3l². Genesis, 2014, 52, 889-896.	0.8	3
869	Out-of-frame start codons prevent translation of truncated nucleo-cytosolic cathepsin L in vivo. Nature Communications, 2014, 5, 4931.	5.8	18
870	Construction and Validation of a Regulatory Network for Pluripotency and Self-Renewal of Mouse Embryonic Stem Cells. PLoS Computational Biology, 2014, 10, e1003777.	1.5	88
871	The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development (Cambridge), 2014, 141, 1022-1035.	1.2	166
872	Brf1 posttranscriptionally regulates pluripotency and differentiation responses downstream of Erk MAP kinase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1740-8.	3.3	22
873	PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome. Nucleic Acids Research, 2014, 42, 235-248.	6.5	72
874	Differences in chimera formation and germline transmission between E14 and C2J embryonic stem cells in mice. Zygote, 2014, 22, 182-186.	0.5	1
875	Zrf1 is required to establish and maintain neural progenitor identity. Genes and Development, 2014, 28, 182-197.	2.7	29

#	Article	IF	CITATIONS
876	Pax6 Mediates ß-Catenin Signaling for Self-Renewal and Neurogenesis by Neocortical Radial Clial Stem Cells. Stem Cells, 2014, 32, 45-58.	1.4	47
877	Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates. Biotechnology and Bioengineering, 2014, 111, 618-631.	1.7	66
878	Isolation of Human Induced Pluripotent Stem Cell-Derived Dopaminergic Progenitors by Cell Sorting for Successful Transplantation. Stem Cell Reports, 2014, 2, 337-350.	2.3	373
880	Role of STIM1 in survival and neural differentiation of mouse embryonic stem cells independent of Orai1-mediated Ca2+ entry. Stem Cell Research, 2014, 12, 452-466.	0.3	23
881	Generation and characterization of bat-induced pluripotent stem cells. Theriogenology, 2014, 82, 283-293.	0.9	22
882	Derivation and Maintenance of Murine Trophoblast Stem Cells under Defined Conditions. Stem Cell Reports, 2014, 2, 232-242.	2.3	82
883	Erk1/2 Activity Promotes Chromatin Features and RNAPII Phosphorylation at Developmental Promoters in Mouse ESCs. Cell, 2014, 156, 678-690.	13.5	144
884	NANOG Amplifies STAT3 Activation and They Synergistically Induce the Naive Pluripotent Program. Current Biology, 2014, 24, 340-346.	1.8	60
885	Success in Academic Surgery: Basic Science. Success in Academic Surgery, 2014, , .	0.1	0
886	Totipotency and lineage segregation in the human embryo. Molecular Human Reproduction, 2014, 20, 599-618.	1.3	55
887	Integrative framework for identification of key cell identity genes uncovers determinants of ES cell identity and homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1581-90.	3.3	26
888	Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials, 2014, 35, 3945-3955.	5.7	110
889	Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nature Protocols, 2014, 9, 559-574.	5.5	143
890	Induced pluripotent stem cell technology and aquatic animal species. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 163, 3-13.	1.3	5
891	GSK-3 – at the crossroads of cell death and survival. Journal of Cell Science, 2014, 127, 1369-1378.	1.2	157
892	Effect of Gsk3 inhibitor CHIR99021 on aneuploidy levels in rat embryonic stem cells. In Vitro Cellular and Developmental Biology - Animal, 2014, 50, 572-579.	0.7	10
893	Stem Cell Epigenetics: Insights from Studies on Embryonic, Induced Pluripotent, and Germline Stem Cells. Current Pathobiology Reports, 2014, 2, 1-9.	1.6	2
894	Rapid identification of targeted transgene integrations in ES cells by fluorescence detection. Transgenic Research, 2014, 23, 469-475.	1.3	0

#	Article	IF	CITATIONS
895	Evidence for self-maintaining pluripotent murine stem cells in embryoid bodies. Stem Cell Reviews and Reports, 2014, 10, 1-15.	5.6	7
896	Novel Insights into Embryonic Stem Cell Selfâ€Renewal Revealed Through Comparative Human and Mouse Systems Biology Networks. Stem Cells, 2014, 32, 1161-1172.	1.4	15
897	Two miRNA Clusters Reveal Alternative Paths in Late-Stage Reprogramming. Cell Stem Cell, 2014, 14, 617-631.	5.2	74
898	OCT4: Dynamic DNA binding pioneers stem cell pluripotency. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 138-154.	0.9	123
899	Auxetic nuclei in embryonic stem cells exiting pluripotency. Nature Materials, 2014, 13, 638-644.	13.3	145
900	Locust bean gum as an alternative polymeric coating for embryonic stem cell culture. Materials Science and Engineering C, 2014, 40, 336-344.	3.8	19
901	Efficient Induction of Pluripotency in Primordial Germ Cells by Dual Inhibition of TGF-β and ERK Signaling Pathways. Stem Cells and Development, 2014, 23, 1050-1061.	1.1	18
902	Establishment of Bovine Trophoblast Stem-Like Cells from In Vitro <i>-</i> Produced Blastocyst-Stage Embryos Using Two Inhibitors. Stem Cells and Development, 2014, 23, 1501-1514.	1.1	26
904	Determining cell division symmetry through the dissection of dividing cells using single-cell expression analysis. Nature Protocols, 2014, 9, 505-516.	5.5	4
905	PRDM14: a unique regulator for pluripotency and epigenetic reprogramming. Trends in Biochemical Sciences, 2014, 39, 289-298.	3.7	58
906	Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nature Genetics, 2014, 46, 558-566.	9.4	271
907	A centrosomal route for cancer genome instability. Nature Cell Biology, 2014, 16, 504-506.	4.6	27
908	Embryonic stem cell identity grounded in the embryo. Nature Cell Biology, 2014, 16, 502-504.	4.6	17
909	The ability of inner-cell-mass cells to self-renew asÂembryonic stem cells is acquired following epiblastÂspecification. Nature Cell Biology, 2014, 16, 513-525.	4.6	386
910	Transcription regulation and chromatin structure in the pluripotent ground state. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 129-137.	0.9	33
911	Inhibition of TGFÎ ² Signaling Promotes Ground State Pluripotency. Stem Cell Reviews and Reports, 2014, 10, 16-30.	5.6	60
912	Signaling Roadmap Modulating Naive and Primed Pluripotency. Stem Cells and Development, 2014, 23, 193-208.	1.1	48
913	Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nature Biotechnology, 2014, 32, 171-178.	9.4	415

#	Article	IF	CITATIONS
914	Nanog Is Dispensable for the Generation of Induced Pluripotent Stem Cells. Current Biology, 2014, 24, 347-350.	1.8	69
915	Activation-Induced Deaminase-Coupled DNA Demethylation Is Not Crucial for the Generation of Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 209-218.	1.1	10
918	Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Nature Communications, 2014, 5, 3070.	5.8	58
919	Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell, 2014, 14, 13-26.	5.2	297
920	Mechanisms of Pluripotency In Vivo and In Vitro. Current Topics in Developmental Biology, 2014, 107, 1-37.	1.0	46
921	Cancer Stem Cells, Pluripotency, and Cellular Heterogeneity. Current Topics in Developmental Biology, 2014, 107, 373-404.	1.0	40
922	Reversing DNA Methylation: Mechanisms, Genomics, and Biological Functions. Cell, 2014, 156, 45-68.	13.5	914
923	From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130542.	1.8	28
924	Signaling pathways in induced naÃ ⁻ ve pluripotency. Current Opinion in Genetics and Development, 2014, 28, 10-15.	1.5	20
925	Differential effects of Akt isoforms on somatic cell reprogramming. Journal of Cell Science, 2014, 127, 3998-4008.	1.2	26
926	Topologically associating domains are stable units of replication-timing regulation. Nature, 2014, 515, 402-405.	13.7	779
927	Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Research, 2014, 42, e38-e38.	6.5	66
928	Increased MAP Kinase Inhibition Enhances Epiblast-Specific Gene Expression in Bovine Blastocysts1. Biology of Reproduction, 2014, 91, 49.	1.2	26
929	Dax1 and Nanog act in parallel to stabilize mouse embryonic stem cells and induced pluripotency. Nature Communications, 2014, 5, 5042.	5.8	55
930	Primitive endoderm differentiation: from specification to epithelium formation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130537.	1.8	36
931	Haploid embryonic stem cells serve as a new tool for mammalian genetic study. Stem Cell Research and Therapy, 2014, 5, 20.	2.4	13
932	The pluripotency transcription factor network at work in reprogramming. Current Opinion in Genetics and Development, 2014, 28, 25-31.	1.5	34
933	Blocking autocrine VEGF signaling by sunitinib, an anti-cancer drug, promotes embryonic stem cell self-renewal and somatic cell reprogramming. Cell Research, 2014, 24, 1121-1136.	5.7	38

#	Article	IF	CITATIONS
934	Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development (Cambridge), 2014, 141, 3637-3648.	1.2	176
935	5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nature Chemistry, 2014, 6, 1049-1055.	6.6	431
936	Generation of Naive Induced Pluripotent Stem Cells from Rhesus Monkey Fibroblasts. Cell Stem Cell, 2014, 15, 488-497.	5.2	110
937	Resetting Transcription Factor Control Circuitry toward Ground-State Pluripotency in Human. Cell, 2014, 158, 1254-1269.	13.5	784
938	Nonviral Minicircle Generation of Induced Pluripotent Stem Cells Compatible with Production of Chimeric Chickens. Cellular Reprogramming, 2014, 16, 366-378.	0.5	19
939	C-terminal Domain (CTD) Small Phosphatase-like 2 Modulates the Canonical Bone Morphogenetic Protein (BMP) Signaling and Mesenchymal Differentiation via Smad Dephosphorylation. Journal of Biological Chemistry, 2014, 289, 26441-26450.	1.6	32
940	DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: An emerging complex story. Genomics, 2014, 104, 324-333.	1.3	135
941	YAP/TAZ Incorporation in the \hat{l}^2 -Catenin Destruction Complex Orchestrates the Wnt Response. Cell, 2014, 158, 157-170.	13.5	873
942	BMP4 promotes SSEAâ€1 ⁺ <scp>hUC</scp> â€MSC differentiation into male germâ€like cells <i>in vitro</i> . Cell Proliferation, 2014, 47, 299-309.	2.4	24
943	Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency. Development (Cambridge), 2014, 141, 2770-2779.	1.2	120
944	Otx2 and Oct4 Drive Early Enhancer Activation during Embryonic Stem Cell Transition from Naive Pluripotency. Cell Reports, 2014, 7, 1968-1981.	2.9	117
945	CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. Scientific Reports, 2014, 4, 5228.	1.6	21
946	Efficient germ-line transmission obtained with transgene-free induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10678-10683.	3.3	21
947	Genome-wide Functional Analysis Reveals Factors Needed at the Transition Steps of Induced Reprogramming. Cell Reports, 2014, 8, 327-337.	2.9	63
948	Validation of noise models for single-cell transcriptomics. Nature Methods, 2014, 11, 637-640.	9.0	685
949	Antibody approaches to prepare clinically transplantable cells from human embryonic stem cells: Identification of human embryonic stem cell surface markers by monoclonal antibodies. Biotechnology Journal, 2014, 9, 915-920.	1.8	11
950	β-Catenin Fluctuates in Mouse ESCs and Is Essential for Nanog-Mediated Reprogramming of Somatic Cells to Pluripotency. Cell Reports, 2014, 8, 1686-1696.	2.9	50
951	The Nature of Embryonic Stem Cells. Annual Review of Cell and Developmental Biology, 2014, 30, 647-675.	4.0	371

#	Article	IF	CITATIONS
952	Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency. Cell Stem Cell, 2014, 15, 471-487.	5.2	702
953	The Differential Effects of 2% Oxygen Preconditioning on the Subsequent Differentiation of Mouse and Human Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 1910-1922.	1.1	18
954	Rapid selection of XO embryonic stem cells using Y chromosome-linked GFP transgenic mice. Transgenic Research, 2014, 23, 757-765.	1.3	5
955	Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). Journal of Neurodevelopmental Disorders, 2014, 6, 26.	1.5	55
956	Induction of the G2/M transition stabilizes haploid embryonic stem cells. Development (Cambridge), 2014, 141, 3842-3847.	1.2	45
957	A Genome-wide RNAi Screen Identifies Opposing Functions of Snai1 and Snai2 on the Nanog Dependency in Reprogramming. Molecular Cell, 2014, 56, 140-152.	4.5	59
958	β-Catenin in Pluripotency. International Review of Cell and Molecular Biology, 2014, 312, 53-78.	1.6	24
959	An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 2014, 346, 1248012.	6.0	1,060
960	Regulatory Principles of Pluripotency: From the Ground State Up. Cell Stem Cell, 2014, 15, 416-430.	5.2	334
961	Suppression of transforming growth factor \hat{I}^2 signaling promotes ground state pluripotency from single blastomeres. Human Reproduction, 2014, 29, 1739-1748.	0.4	27
962	From pluripotency to forebrain patterning: an in vitro journey astride embryonic stem cells. Cellular and Molecular Life Sciences, 2014, 71, 2917-2930.	2.4	23
963	Sphere Formation Permits Oct4 Reprogramming of Ciliary Body Epithelial Cells into Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 3065-3071.	1.1	9
964	iPS cell technologies: significance and applications to CNS regeneration and disease. Molecular Brain, 2014, 7, 22.	1.3	204
965	A mutually assured destruction mechanism attenuates light signaling in <i>Arabidopsis</i> . Science, 2014, 344, 1160-1164.	6.0	220
966	Optimization of Culture Conditions for Maintaining Porcine Induced Pluripotent Stem Cells. DNA and Cell Biology, 2014, 33, 1-11.	0.9	27
967	Exploiting the power of LINE-1 retrotransposon mutagenesis for identification of genes involved in embryonic stem cell differentiation. Stem Cell Reviews and Reports, 2014, 10, 408-416.	5.6	1
968	The Generation of Definitive Endoderm from Human Embryonic Stem Cells is Initially Independent from Activin A but Requires Canonical Wnt-Signaling. Stem Cell Reviews and Reports, 2014, 10, 480-493.	5.6	56
969	Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reproductive Medicine and Biology, 2014, 13, 203-215.	1.0	62

#	Article	IF	CITATIONS
970	Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors. BMC Research Notes, 2014, 7, 273.	0.6	92
971	3D mouse embryonic stem cell culture for generating inner ear organoids. Nature Protocols, 2014, 9, 1229-1244.	5.5	124
972	The Naive State of Human Pluripotent Stem Cells: A Synthesis of Stem Cell and Preimplantation Embryo Transcriptome Analyses. Cell Stem Cell, 2014, 15, 410-415.	5.2	134
973	JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity. Stem Cell Research, 2014, 12, 139-152.	0.3	23
974	Germâ€cell culture conditions facilitate the production of mouse embryonic stem cells. Molecular Reproduction and Development, 2014, 81, 794-804.	1.0	0
975	Primordial Dwarfism Gene Maintains Lin28 Expression to Safeguard Embryonic Stem Cells from Premature Differentiation. Cell Reports, 2014, 7, 735-746.	2.9	24
976	ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Research, 2014, 13, 1-11.	0.3	91
977	InÂVivo and InÂVitro Dynamics of Undifferentiated Embryonic Cell Transcription Factor 1. Stem Cell Reports, 2014, 2, 245-252.	2.3	13
978	Mouse embryonic stem cells cultured under serum- and feeder-free conditions maintain their self-renewal capacity on hydroxyapatite. Materials Science and Engineering C, 2014, 34, 214-220.	3.8	6
979	Recent identification of an ERK signal gradient governing planarian regeneration. Zoology, 2014, 117, 161-162.	0.6	19
980	Platform for Induction and Maintenance of Transgene-free hiPSCs Resembling Ground State Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 366-381.	2.3	142
981	Gene targeting in rats using transcription activator-like effector nucleases. Methods, 2014, 69, 102-107.	1.9	8
982	The Two Active X Chromosomes in Female ESCs Block Exit from the Pluripotent State by Modulating the ESC Signaling Network. Cell Stem Cell, 2014, 14, 203-216.	5.2	149
983	The role of Importinâ€Î²s in the maintenance and lineage commitment of mouse embryonic stem cells. FEBS Open Bio, 2014, 4, 112-120.	1.0	16
984	Fine-Tuning of iPSC Derivation by an Inducible Reprogramming System at the Protein Level. Stem Cell Reports, 2014, 2, 721-733.	2.3	14
985	Study of Wnt2 secreted by A-549 cells in paracrine activation of β-catenin in co-cultured mesenchymal stem cells. Biochemistry (Moscow), 2014, 79, 524-530.	0.7	2
986	Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development (Cambridge), 2014, 141, 2376-2390.	1.2	79
987	A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cellular and Molecular Life Sciences, 2014, 71, 3327-3338.	2.4	49

	CHAIL	ON REPORT	
#	Article	IF	CITATIONS
988	Klf2 Is an Essential Factor that Sustains Ground State Pluripotency. Cell Stem Cell, 2014, 14, 864-872.	5.2	111
989	Epigenomic Comparison Reveals Activation of "Seed―Enhancers during Transition from Naive to Primed Pluripotency. Cell Stem Cell, 2014, 14, 854-863.	5.2	137
990	Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development (Cambridge), 2014, 141, 2173-2181.	1.2	171
991	Defining an essential transcription factor program for naÃ ⁻ ve pluripotency. Science, 2014, 344, 1156-1160.	. 6.0	362
992	Single-Cell Gene Expression Profiles Define Self-Renewing, Pluripotent, and Lineage Primed States of Human Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 881-895.	2.3	78
993	Development of FGF2-dependent pluripotent stem cells showing naive state characteristics from murine preimplantation inner cell mass. Stem Cell Research, 2014, 13, 75-87.	0.3	7
994	Reprogramming the Methylome: Erasing Memory and Creating Diversity. Cell Stem Cell, 2014, 14, 710-719	. 5.2	301
995	Role of cell–cell adhesion complexes in embryonic stem cell biology. Journal of Cell Science, 2014, 127, 2603-2613.	1.2	115
996	Signals Controlling Unâ€Differentiated States in Embryonic Stem and Cancer Cells: Role of the Phosphatidylinositol 3′ Kinase Pathway. Journal of Cellular Physiology, 2014, 229, 1312-1322.	2.0	18
997	Stepwise Differentiation of Pluripotent Stem Cells into Osteoblasts Using Four Small Molecules under Serum-free and Feeder-free Conditions. Stem Cell Reports, 2014, 2, 751-760.	2.3	80
998	Genetic Exploration of the Exit from Self-Renewal Using Haploid Embryonic Stem Cells. Cell Stem Cell, 2014, 14, 385-393.	5.2	170
999	MBD3/NuRD Facilitates Induction of Pluripotency in a Context-Dependent Manner. Cell Stem Cell, 2014, 15, 102-110.	5.2	152
1000	Neural stem cells derived from epiblast stem cells display distinctive properties. Stem Cell Research, 2014, 12, 506-516.	0.3	13
1001	A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data. Stem Cell Reports, 2014, 2, 382-397.	2.3	108
1002	Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer. Oncogene, 2014, 33, 2513-2519.	2.6	37
1003	Endothelial Smad4 restrains the transition to hematopoietic progenitors via suppression of ERK activation. Blood, 2014, 123, 2161-2171.	0.6	21
1004	BMP signaling balances murine myeloid potential through SMAD-independent p38MAPK and NOTCH pathways. Blood, 2014, 124, 393-402.	0.6	14
1005	Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression. Genome Biology, 2015, 16, 112.	3.8	150

#	Article	IF	CITATIONS
1006	Reprogramming rat embryonic fibroblasts into induced pluripotent stem cells using transposon vectors and their chondrogenic differentiation in vitro. Molecular Medicine Reports, 2015, 11, 989-994.	1.1	8
1007	The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biology, 2015, 5, 150092.	1.5	21
1008	In search of principles for a Theory of Organisms. Journal of Biosciences, 2015, 40, 955-968.	0.5	48
1009	Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genomeâ€wide expression analysis. Glia, 2015, 63, 1452-1468.	2.5	215
1010	Challenges in Retinal Circuit Regeneration. Biological and Pharmaceutical Bulletin, 2015, 38, 341-357.	0.6	7
1011	DAZL regulates Tet1 translation in murine embryonic stem cells. EMBO Reports, 2015, 16, 791-802.	2.0	24
1012	Co-existence of intact stemness and priming of neural differentiation programs in mES cells lacking Trim71. Scientific Reports, 2015, 5, 11126.	1.6	39
1013	Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass. Scientific Reports, 2015, 5, 18572.	1.6	41
1014	The bimodally expressed micro <scp>RNA</scp> miRâ€142 gatesÂexit from pluripotency. Molecular Systems Biology, 2015, 11, 850.	3.2	26
1015	Heterogeneous lineage marker expression in naive embryonic stem cells is mostly due to spontaneous differentiation. Scientific Reports, 2015, 5, 13339.	1.6	21
1016	Involvement of the Wnt signaling pathway in feeder-free culture of human induced pluripotent stem cells. Molecular Medicine Reports, 2015, 12, 6797-6800.	1.1	1
1017	Comparative, transcriptome analysis of self-organizing optic tissues. Scientific Data, 2015, 2, 150030.	2.4	11
1018	Cell cycle reactivation of cochlear progenitor cells in neonatal FUCCI mice by a GSK3 small molecule inhibitor. Scientific Reports, 2015, 5, 17886.	1.6	22
1019	In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Scientific Reports, 2015, 5, 13559.	1.6	10
1020	Dzip3 regulates developmental genes in mouse embryonic stem cells by reorganizing 3D chromatin conformation. Scientific Reports, 2015, 5, 16567.	1.6	25
1021	Secreted Ephrin Receptor A7 Promotes Somatic Cell Reprogramming by Inducing ERK Activity Reduction. Stem Cell Reports, 2015, 5, 480-489.	2.3	11
1022	Establishment of leukemia inhibitory factor (LIF)-independent iPS cells with potentiated Oct4. Stem Cell Research, 2015, 15, 469-480.	0.3	5
1023	Bcl3 Bridges LIF-STAT3 to Oct4 Signaling in the Maintenance of NaÃ ⁻ ve Pluripotency. Stem Cells, 2015, 33, 3468-3480.	1.4	31

#	Article	IF	Citations
 1024	Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm. Stem Cell Reports, 2015, 5, 97-110.	2.3	52
1025	Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regeneration, 2015, 4, 4:10.	1.1	71
1026	β2-Adrenoreceptor-Mediated Proliferation Inhibition of Embryonic Pluripotent Stem Cells. Journal of Cellular Physiology, 2015, 230, 2640-2646.	2.0	5
1027	Derivation of chondrocyte and osteoblast reporter mouse embryonic stem cell lines. Genesis, 2015, 53, 294-298.	0.8	4
1028	Alternative Routes to Induce NaÃ ⁻ ve Pluripotency in Human Embryonic Stem Cells. Stem Cells, 2015, 33, 2686-2698.	1.4	118
1029	Leukemia Inhibitory Factor and Fibroblast Growth Factor 2 Critically and Mutually Sustain Pluripotency of Rabbit Embryonic Stem Cells. Cell Transplantation, 2015, 24, 319-338.	1.2	11
1030	Core Pluripotency Factors Directly Regulate Metabolism in Embryonic Stem Cell to Maintain Pluripotency. Stem Cells, 2015, 33, 2699-2711.	1.4	89
1031	Chemical Approaches to Controlling Cell Fate. , 2015, , 59-76.		2
1032	In quest of genomic treasure. Journal of Reproduction and Development, 2015, 61, 489-493.	0.5	6
1033	IL-10 regulates adult neurogenesis by modulating ERK and STAT3 activity. Frontiers in Cellular Neuroscience, 2015, 9, 57.	1.8	64
1034	Induced Pluripotent Stem Cells Generated from PO-Cre;Z/EG Transgenic Mice. PLoS ONE, 2015, 10, e0138620.	1.1	2
1035	Variations in Glycogen Synthesis in Human Pluripotent Stem Cells with Altered Pluripotent States. PLoS ONE, 2015, 10, e0142554.	1.1	18
1036	Tetraploid Embryonic Stem Cells Maintain Pluripotency and Differentiation Potency into Three Germ Layers. PLoS ONE, 2015, 10, e0130585.	1.1	13
1037	Canine Pluripotent Stem Cells: Are They Ready for Clinical Applications?. Frontiers in Veterinary Science, 2015, 2, 41.	0.9	20
1038	Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells. Stem Cells International, 2015, 2015, 1-10.	1.2	15
1039	Reprogramming with Small Molecules instead of Exogenous Transcription Factors. Stem Cells International, 2015, 2015, 1-11.	1.2	63
1040	Targeted Knockdown of RNA-Binding Protein TIAR for Promoting Self-Renewal and Attenuating Differentiation of Mouse Embryonic Stem Cells. Stem Cells International, 2015, 2015, 1-10.	1.2	5
1041	Cell Cycle-Driven Heterogeneity: On the Road to Demystifying the Transitions between "Poised―and "Restricted―Pluripotent Cell States. Stem Cells International, 2015, 2015, 1-9.	1.2	15

#	Article	IF	CITATIONS
1042	Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells International, 2015, 2015, 1-12.	1.2	13
1043	Stem cell maintenance by manipulating signaling pathways: past, current and future. BMB Reports, 2015, 48, 668-676.	1.1	18
1044	Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. Journal of Biological Chemistry, 2015, 290, 13053-13063.	1.6	24
1045	Personalized Epigenetics. , 2015, , 123-150.		0
1046	Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems. Current Opinion in Genetics and Development, 2015, 31, 42-49.	1.5	16
1047	Application Of Small Molecules Favoring NaÃ⁻ve Pluripotency during Human Embryonic Stem Cell Derivation. Cellular Reprogramming, 2015, 17, 170-180.	0.5	16
1049	Gene dynamics of core transcription factors for pluripotency in embryonic stem cells. Journal of Bioscience and Bioengineering, 2015, 119, 406-409.	1.1	7
1050	Successful Reprogramming of Epiblast Stem Cells by Blocking Nuclear Localization of β-Catenin. Stem Cell Reports, 2015, 4, 103-113.	2.3	32
1051	Primed and ready: understanding lineage commitment through single cell analysis. Trends in Cell Biology, 2015, 25, 459-467.	3.6	72
1052	Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation. Molecular and Cellular Biology, 2015, 35, 2716-2728.	1.1	74
1053	Sexually dimorphic gene expression emerges with embryonic genome activation and is dynamic throughout development. BMC Genomics, 2015, 16, 295.	1.2	90
1054	Gene activation-associated long noncoding RNAs function in mouse preimplantation development. Development (Cambridge), 2015, 142, 910-20.	1.2	92
1055	Fetal Mammalian Heart Generates a Robust Compensatory Response to Cell Loss. Circulation, 2015, 132, 109-121.	1.6	72
1056	A Bmp Reporter Transgene Mouse Embryonic Stem Cell Model as a Tool to Identify and Characterize Chemical Teratogens. Toxicological Sciences, 2015, 146, 374-385.	1.4	11
1057	Mechanisms of pluripotency and epigenetic reprogramming in primordial germ cells: lessons for the conversion of other cell types into the stem cell lineage. Turkish Journal of Biology, 2015, 39, 187-193.	2.1	4
1058	Xist localization and function: new insights from multiple levels. Genome Biology, 2015, 16, 166.	3.8	151
1059	The function of chromatin modifiers in lineage commitment and cell fate specification. FEBS Journal, 2015, 282, 1692-1702.	2.2	36
1060	Mouse and human blastocyst-derived stem cells: vive les differences. Development (Cambridge), 2015, 142, 9-12.	1.2	112

#	Article	IF	CITATIONS
1061	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	2.3	72
1062	Mechanism and Reconstitution In Vitro of Germ Cell Development in Mammals. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 147-154.	2.0	23
1063	Dynamic Reorganization of Extremely Long-Range Promoter-Promoter Interactions between Two States of Pluripotency. Cell Stem Cell, 2015, 17, 748-757.	5.2	179
1064	Studying Lineage Decision-Making In Vitro: Emerging Concepts and Novel Tools. Annual Review of Cell and Developmental Biology, 2015, 31, 317-345.	4.0	41
1065	How Low Cholesterol Is Good for Anti-viral Immunity. Cell, 2015, 163, 1572-1574.	13.5	23
1066	A Stepping Stone to Pluripotency. Cell, 2015, 163, 1570-1572.	13.5	2
1067	X chromosome reactivation in reprogramming and in development. Current Opinion in Cell Biology, 2015, 37, 75-83.	2.6	55
1068	Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology, 2015, 12, 45.	0.9	73
1069	Derivation of Rabbit Embryonic Stem Cells from Vitrified–Thawed Embryos. Cellular Reprogramming, 2015, 17, 453-462.	0.5	6
1070	Set1 and MLL1/2 Target Distinct Sets of Functionally Different Genomic Loci InÂVivo. Cell Reports, 2015, 13, 2741-2755.	2.9	56
1071	Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biology, 2015, 16, 149.	3.8	104
1072	A Simple and Robust Method for Establishing Homogeneous Mouse Epiblast Stem Cell Lines by Wnt Inhibition. Stem Cell Reports, 2015, 4, 744-757.	2.3	65
1073	PGC Reversion to Pluripotency Involves Erasure of DNA Methylation from Imprinting Control Centers followed by Locus-Specific Re-methylation. Stem Cell Reports, 2015, 5, 337-349.	2.3	16
1074	LIF signal in mouse embryonic stem cells. Jak-stat, 2015, 4, 1-9.	2.2	44
1075	Exploring standards for industrializing human induced pluripotent stem cells. Pharmaceutical Bioprocessing, 2015, 3, 199-213.	0.8	1
1076	Initiation and maintenance of pluripotency gene expression in the absence of cohesin. Genes and Development, 2015, 29, 23-38.	2.7	32
1077	Heterogeneity in ERK activity as visualized by in vivo FRET imaging of mammary tumor cells developed in MMTV-Neu mice. Oncogene, 2015, 34, 1051-1057.	2.6	28
1078	Forced Expression of Nanog or Esrrb Preserves the ESC Status in the Absence of Nucleostemin Expression. Stem Cells, 2015, 33, 1089-1101.	1.4	6

			0
#	ARTICLE	IF	CITATIONS
1079	Single-Cell Transcriptome Analysis Reveals Dynamic Changes in IncRNA Expression during Reprogramming. Cell Stem Cell, 2015, 16, 88-101.	5.2	146
1080	A Regulatory Network Involving β-Catenin, e-Cadherin, PI3k/Akt, and Slug Balances Self-Renewal and Differentiation of Human Pluripotent Stem Cells In Response to Wnt Signaling. Stem Cells, 2015, 33, 1419-1433.	1.4	69
1081	Ex Uno Plures: Molecular Designs for Embryonic Pluripotency. Physiological Reviews, 2015, 95, 245-295.	13.1	30
1082	Inhibition of Transforming Growth Factor β (TGF-β) Signaling can Substitute for Oct4 Protein in Reprogramming and Maintain Pluripotency. Journal of Biological Chemistry, 2015, 290, 4500-4511.	1.6	42
1083	Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nature Communications, 2015, 6, 6188.	5.8	34
1084	Activin/Nodal signalling in stem cells. Development (Cambridge), 2015, 142, 607-619.	1.2	147
1085	Nuclear transcriptome profiling of induced pluripotent stem cells and embryonic stem cells identify non-coding loci resistant to reprogramming. Cell Cycle, 2015, 14, 1148-1155.	1.3	14
1086	The Sm protein methyltransferase <scp>PRMT</scp> 5 is not required for primordial germ cell specification in mice. EMBO Journal, 2015, 34, 748-758.	3.5	41
1087	Imageâ€based quantification and mathematical modeling of spatial heterogeneity in ESC colonies. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 481-490.	1.1	13
1088	Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cellular and Molecular Life Sciences, 2015, 72, 1741-1757.	2.4	121
1089	<i>Cdx2</i> Efficiently Induces Trophoblast Stem-Like Cells in NaÃ⁻ve, but Not Primed, Pluripotent Stem Cells. Stem Cells and Development, 2015, 24, 1352-1365.	1.1	25
1090	New insights into mechanisms that regulate DNA methylation patterning. Journal of Experimental Biology, 2015, 218, 14-20.	0.8	49
1091	A Me6Age for pluripotency. Science, 2015, 347, 614-615.	6.0	6
1092	Stemistry: The Control of Stem Cells in Situ Using Chemistry. Journal of Medicinal Chemistry, 2015, 58, 2863-2894.	2.9	25
1093	Dynamic Switching of Active Promoter and Enhancer Domains Regulates <i>Tet1</i> and <i>Tet2</i> Expression during Cell State Transitions between Pluripotency and Differentiation. Molecular and Cellular Biology, 2015, 35, 1026-1042.	1.1	43
1094	Acute Loss of Cited2 Impairs Nanog Expression and Decreases Self-Renewal of Mouse Embryonic Stem Cells. Stem Cells, 2015, 33, 699-712.	1.4	21
1095	Generation of Intermediate Porcine iPS Cells Under Culture Condition Favorable for Mesenchymal-to-Epithelial Transition. Stem Cell Reviews and Reports, 2015, 11, 24-38.	5.6	42
1096	The differential activation of intracellular signaling pathways confers the permissiveness of embryonic stem cell derivation from different mouse strains. Development (Cambridge), 2015, 142, 431-7.	1.2	17

		CITATION R	EPORT	
#	Article		IF	Citations
1097	Lineage specificity of primary cilia in the mouse embryo. Nature Cell Biology, 2015, 17,	113-122.	4.6	150
1098	GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime inhibit microRNA matura embryonic stem cells. Scientific Reports, 2015, 5, 8666.	ation in mouse	1.6	27
1099	SPREDs (Sprouty Related Proteins with EVH1 Domain) promote selfâ€renewal and inhi differentiation in murine embryonic stem cells. Developmental Dynamics, 2015, 244, 5		0.8	4
1100	Chromatin Fibers Are Formed by Heterogeneous Groups of Nucleosomes InÂVivo. Cell, 1145-1158.	2015, 160,	13.5	560
1101	How are pluripotent cells captured in culture?. Reproductive Medicine and Biology, 202	15, 14, 85-98.	1.0	4
1102	Pausing of RNA Polymerase II Regulates Mammalian Developmental Potential through Signaling Networks. Molecular Cell, 2015, 58, 311-322.	Control of	4.5	155
1103	Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplembryos. Genome Biology, 2015, 16, 148.	antation	13.9	369
1104	Generation of Naivetropic Induced Pluripotent Stem Cells from Parkinson's Disease Par High-Efficiency Genetic Manipulation and Disease Modeling. Stem Cells and Developm 2591-2604.	tients for ent, 2015, 24,	1.1	19
1105	Gata6 potently initiates reprograming of pluripotent and differentiated cells to extraen endoderm stem cells. Genes and Development, 2015, 29, 1239-1255.	nbryonic	2.7	120
1106	TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science,	2015, 349, 650-655.	6.0	419
1107	Heterogeneities in Nanog Expression Drive Stable Commitment to Pluripotency in the Blastocyst. Cell Reports, 2015, 10, 1508-1520.	Mouse	2.9	101
1108	Simultaneous live imaging of the transcription and nuclear position of specific genes. N Research, 2015, 43, e127-e127.	Nucleic Acids	6.5	89
1109	Multiple cell and population-level interactions with mouse embryonic stem cell heterog Development (Cambridge), 2015, 142, 2840-9.	çeneity.	1.2	25
1110	Generation of stomach tissue from mouse embryonic stem cells. Nature Cell Biology, 2	.015, 17, 984-993.	4.6	90
1111	Ground State Conditions Induce Rapid Reorganization of Core Pluripotency Factor Bin Global Epigenetic Reprogramming. Cell Stem Cell, 2015, 17, 462-470.	ding before	5.2	104
1112	Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular o Nature Biotechnology, 2015, 33, 962-969.	lystrophy.	9.4	339
1113	Constraint of gene expression by chromatin remodelling protein CHD4 facilitates linea specification. Development (Cambridge), 2015, 142, 2586-97.	ge	1.2	61
1114	WNT/Î ² -Catenin Signaling Affects Cell Lineage and Pluripotency-Specific Gene Expression Blastocysts: Prospects for Bovine Embryonic Stem Cell Derivation. Stem Cells and Deve 24, 2437-2454.	on in Bovine elopment, 2015,	1.1	29

#	Article	IF	CITATIONS
1115	WNT3 and membrane-associated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Molecular Human Reproduction, 2015, 21, 711-722.	1.3	33
1116	New insights into the conserved mechanism of pluripotency maintenance. Current Opinion in Genetics and Development, 2015, 34, 1-9.	1.5	3
1117	Hesx1 enhances pluripotency by working downstream of multiple pluripotency-associated signaling pathways. Biochemical and Biophysical Research Communications, 2015, 464, 936-942.	1.0	6
1118	Thermoresponsive hydrogel maintains the mouse embryonic stem cell "naÃ⁻ve―pluripotency phenotype. Biomaterials Science, 2015, 3, 1371-1375.	2.6	8
1119	Choosing Cell Fate Through a Dynamic Cell Cycle. Current Stem Cell Reports, 2015, 1, 129-138.	0.7	15
1120	Robust InÂVitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 178-194.	5.2	428
1121	Stem Cell Renewal and Cell-Cell Communication. Methods in Molecular Biology, 2015, 1212, v.	0.4	0
1122	Generation of fertile offspring from Kitw/Kitwv mice through differentiation of gene corrected nuclear transfer embryonic stem cells. Cell Research, 2015, 25, 851-863.	5.7	17
1123	5-Formylcytosine can be a stable DNA modification in mammals. Nature Chemical Biology, 2015, 11, 555-557.	3.9	225
1124	The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology. Human Reproduction Update, 2015, 21, 616-626.	5.2	17
1125	Computational modelling of embryonic stem-cell fate control. Development (Cambridge), 2015, 142, 2250-2260.	1.2	52
1126	LIF signaling in stem cells and development. Development (Cambridge), 2015, 142, 2230-2236.	1.2	103
1127	Mitochondrial E3 ligase March5 maintains stemness of mouse ES cells via suppression of ERK signalling. Nature Communications, 2015, 6, 7112.	5.8	34
1128	Destabilization of pluripotency in the absence of Mad2l2. Cell Cycle, 2015, 14, 1596-1610.	1.3	13
1129	Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials, 2015, 54, 201-212.	5.7	27
1130	A novel autoregulatory loop between the Gcn2-Atf4 pathway and L-Proline metabolism controls stem cell identity. Cell Death and Differentiation, 2015, 22, 1094-1105.	5.0	51
1131	A mRNA landscape of bovine embryos after standard and MAPK-inhibited culture conditions: a comparative analysis. BMC Genomics, 2015, 16, 277.	1.2	20
1132	Optimized Culture System to Induce Neurite Outgrowth From Retinal Ganglion Cells in Three-Dimensional Retinal Aggregates Differentiated From Mouse and Human Embryonic Stem Cells. Current Eye Research, 2015, 41, 1-11.	0.7	45

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1133	Architectural hallmarks of the pluripotent genome. FEBS Letters, 2015, 589, 2905-291	.3.	1.3	21
1134	Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-l Nature Communications, 2015, 6, 7095.	ike pluripotency.	5.8	137
1135	Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming Biology, 2015, 17, 715-725.	. Nature Cell	4.6	81
1136	Preimplantation Embryo Development and Primordial Germ Cell Lineage Specification.	, 2015, , 233-265.		3
1137	A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analys Single-Cell Mass Cytometry. Cell Stem Cell, 2015, 16, 323-337.	sis of	5.2	187
1138	Development of Teratocarcinomas and Teratomas in Severely Immunodeficient NOD.C ll2rgtm1Wjl/Szj (NSG) Mice. Stem Cells and Development, 2015, 24, 1515-1520.	g-Prkdcscid	1.1	6
1139	An alternative pluripotent state confers interspecies chimaeric competency. Nature, 20	015, 521, 316-321.	13.7	215
1140	Comparing mouse and human pluripotent stem cell derived cardiac cells: Both systems advantages for pharmacological and toxicological screening. Journal of Pharmacologica Toxicological Methods, 2015, 74, 17-25.		0.3	2
1141	Ras/ERK1/2 pathway regulates the self-renewal of dairy goat spermatogonia stem cells 2015, 149, 445-452.	. Reproduction,	1.1	26
1142	The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleose and <i>de novo</i> DNA methylation at repeat sequences. Nucleic Acids Research, 20	ome density 15, 43, 1444-1455.	6.5	66
1143	Akt suppresses DLK for maintaining self-renewal of mouse embryonic stem cells. Cell C 1207-1217.	Sycle, 2015, 14,	1.3	24
1144	Maintenance, Transgene Delivery, and Pluripotency Measurement of Mouse Embryonic Methods in Molecular Biology, 2015, 1341, 295-319.	s Stem Cells.	0.4	Ο
1145	Present and future challenges of induced pluripotent stem cells. Philosophical Transact Royal Society B: Biological Sciences, 2015, 370, 20140367.	tions of the	1.8	118
1146	Moving Toward the Ground State. Cell Stem Cell, 2015, 17, 375-376.		5.2	4
1147	MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nature Revi 15, 577-592.	iews Cancer, 2015,	12.8	461
1148	Histone H3 Lysine 36 Trimethylation Is Established over the <i>Xist</i> Promoter by Ar <i>Tsix</i> Transcription and Contributes to Repressing <i>Xist</i> Expression. Molect Cellular Biology, 2015, 35, 3909-3920.		1.1	27
1149	Klf2 and Tfcp2l1, Two Wnt/β-Catenin Targets, Act Synergistically to Induce and Mainta Pluripotency. Stem Cell Reports, 2015, 5, 314-322.	ain Naive	2.3	85
1150	Network plasticity of pluripotency transcription factors in embryonic stem cells. Nature Biology, 2015, 17, 1235-1246.	e Cell	4.6	130

#	Article	IF	CITATIONS
1151	Hallmarks of pluripotency. Nature, 2015, 525, 469-478.	13.7	338
1152	Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Progress in Neurobiology, 2015, 134, 161-177.	2.8	26
1153	Selection of Antibodies Interfering with Cell Surface Receptor Signaling Using Embryonic Stem Cell Differentiation. Methods in Molecular Biology, 2015, 1341, 111-132.	0.4	5
1154	The pluripotent state in mouse and human. Development (Cambridge), 2015, 142, 3090-3099.	1.2	136
1155	Atypical PKC-iota Controls Stem Cell Expansion via Regulation of the Notch Pathway. Stem Cell Reports, 2015, 5, 866-880.	2.3	16
1156	Transient bursts of Zscan4 expression are accompanied by the rapid derepression of heterochromatin in mouse embryonic stem cells. DNA Research, 2015, 22, 307-318.	1.5	75
1157	TET1 is controlled by pluripotency-associated factors in ESCs and downmodulated by PRC2 in differentiated cells and tissues. Nucleic Acids Research, 2015, 43, 6814-6826.	6.5	37
1158	Efficient derivation of embryonic stem cells from NOD-scid Il2rg â^'/â^' mice. Protein and Cell, 2015, 6, 916-918.	4.8	7
1159	Dynamic Pluripotent Stem Cell States and Their Applications. Cell Stem Cell, 2015, 17, 509-525.	5.2	133
1160	Generation of primitive neural stem cells from human fibroblasts using a defined set of factors. Biology Open, 2015, 4, 1595-1607.	0.6	12
1161	Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nature Communications, 2015, 6, 8715.	5.8	571
1162	Signal Inhibition Reveals JAK/STAT3 Pathway as Critical for Bovine Inner Cell Mass Development1. Biology of Reproduction, 2015, 93, 132.	1.2	39
1163	Verification of chicken Nanog as an epiblast marker and identification of chicken PouV as Pou5f3 by newly raised antibodies. Development Growth and Differentiation, 2015, 57, 251-263.	0.6	14
1164	Leukemia inhibitory factor (LIF). Cytokine and Growth Factor Reviews, 2015, 26, 533-544.	3.2	320
1165	Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5936-43.	3.3	88
1166	Using the GEMM-ESC strategy to study gene function in mouse models. Nature Protocols, 2015, 10, 1755-1785.	5.5	41
1167	The Current State of Na \tilde{A} ve Human Pluripotency. Stem Cells, 2015, 33, 3181-3186.	1.4	33
1168	A developmental framework for induced pluripotency. Development (Cambridge), 2015, 142, 3274-3285.	1.2	94

#	Article	IF	CITATIONS
1169	LIF supports primitive endoderm expansion during pre-implantation development. Development (Cambridge), 2015, 142, 3488-99.	1.2	52
1170	Acellular Lung Scaffolds Direct Differentiation of Endoderm to Functional Airway Epithelial Cells: Requirement of Matrix-Bound HS Proteoglycans. Stem Cell Reports, 2015, 4, 419-430.	2.3	91
1171	Inhibition of β-catenin–TCF1 interaction delays differentiation of mouse embryonic stem cells. Journal of Cell Biology, 2015, 211, 39-51.	2.3	32
1172	Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation. Cell Stem Cell, 2015, 17, 471-485.	5.2	505
1173	Imaging Pluripotency: Time-Lapse Analysis of Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1341, 87-100.	0.4	1
1174	Pluripotent Stem Cells from the Early Embryo. , 2015, , 1-23.		0
1175	Jarid2 Coordinates Nanog Expression and PCP/Wnt Signaling Required for Efficient ESC Differentiation and Early Embryo Development. Cell Reports, 2015, 12, 573-586.	2.9	43
1176	X Inactivation Lessons from Differentiating Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 2015, 11, 699-705.	5.6	12
1177	Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cellular and Molecular Life Sciences, 2015, 72, 4157-4172.	2.4	136
1178	Establishing the human naÃ ⁻ ve pluripotent state. Current Opinion in Genetics and Development, 2015, 34, 35-45.	1.5	23
1179	Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development (Cambridge), 2015, 142, 3151-65.	1.2	343
1180	Maximizing Clonal Embryonic Stem Cell Derivation by ERK Pathway Inhibition. Methods in Molecular Biology, 2015, 1341, 1-13.	0.4	1
1181	ETS-related Transcription Factors ETV4 and ETV5 Are Involved in Proliferation and Induction of Differentiation-associated Genes in Embryonic Stem (ES) Cells. Journal of Biological Chemistry, 2015, 290, 22460-22473.	1.6	58
1182	Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Seminars in Cell and Developmental Biology, 2015, 47-48, 101-109.	2.3	32
1183	Hyperglycemia impairs left–right axis formation and thereby disturbs heart morphogenesis in mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5300-E5307.	3.3	29
1184	The Daxx/Atrx Complex Protects Tandem Repetitive Elements during DNA Hypomethylation by Promoting H3K9 Trimethylation. Cell Stem Cell, 2015, 17, 273-286.	5.2	118
1185	Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells. Histochemistry and Cell Biology, 2015, 144, 429-441.	0.8	5
1186	Epigenetic gene regulation and stem cell function. , 2015, , 149-181.		0

#	Article	IF	CITATIONS
1187	Wnt/β-catenin and LIF/Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. Journal of Cell Science, 2016, 129, 269-76.	1.2	43
1188	Metabolic exit from naive pluripotency. Nature Cell Biology, 2015, 17, 1519-1521.	4.6	19
1189	Lineage-Specific Profiling Delineates the Emergence and Progression of Naive Pluripotency in Mammalian Embryogenesis. Developmental Cell, 2015, 35, 366-382.	3.1	383
1190	Biological Networks Governing the Acquisition, Maintenance, and Dissolution of Pluripotency: Insights from Functional Genomics Approaches. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 189-198.	2.0	2
1191	Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development (Cambridge), 2015, 143, 24-34.	1.2	37
1192	Integrative Analysis of the Acquisition of Pluripotency in PGCs Reveals the Mutually Exclusive Roles of Blimp-1 and AKT Signaling. Stem Cell Reports, 2015, 5, 111-124.	2.3	13
1193	A mediumâ€ŧhroughput analysis of signaling pathways involved in early stages of stem cell reprogramming. Biotechnology and Bioengineering, 2015, 112, 209-219.	1.7	5
1194	SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate. Cell, 2015, 160, 253-268.	13.5	687
1195	Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. BioEssays, 2015, 37, 52-59.	1.2	19
1196	Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 1390-1404.	1.4	22
1197	Epigenetic Mechanisms in Cellular Reprogramming. Epigenetics and Human Health, 2015, , .	0.2	2
1198	Differential Histone Modification Status of Spermatozoa in Relation to Fertility of Buffalo Bulls. Journal of Cellular Biochemistry, 2015, 116, 743-753.	1.2	19
1199	Functional Compensation Between Myc and PI3K Signaling Supports Self-Renewal of Embryonic Stem Cells. Stem Cells, 2015, 33, 713-725.	1.4	13
1200	Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature, 2015, 518, 413-416.	13.7	772
1201	Gro/TLE enables embryonic stem cell differentiation by repressing pluripotent gene expression. Developmental Biology, 2015, 397, 56-66.	0.9	25
1202	Comparative FAIRE-seq Analysis Reveals Distinguishing Features of the Chromatin Structure of Ground State- and Primed-Pluripotent Cells. Stem Cells, 2015, 33, 378-391.	1.4	17
1203	Selfâ€renewal of hepatoblasts under chemically defined conditions by iterative growth factor and chemical screening. Hepatology, 2015, 61, 337-347.	3.6	21
1204	Agonism of Wnt- <i>β</i> -catenin signalling promotes mesenchymal stem cell (MSC) expansion. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E13-E26.	1.3	41

	CIARC	ON REPORT	
#	ARTICLE	IF	Citations
1205	Pluripotency in the light of the developmental hourglass. Biological Reviews, 2015, 90, 428-443.	4.7	6
1206	SMN is required for the maintenance of embryonic stem cells and neuronal differentiation in mice. Brain Structure and Function, 2015, 220, 1539-1553.	1.2	14
1207	The double inhibition of endogenously produced BMP and <scp>W</scp> nt factors synergistically triggers dorsal telencephalic differentiation of mouse ES cells. Developmental Neurobiology, 2015, 75, 66-79.	1.5	16
1208	Generation of induced pluripotent stem cells without genetic defects by small molecules. Biomaterials, 2015, 39, 47-58.	5.7	18
1209	CRISPR/Cas9 Nuclease-Mediated Gene Knock-In in Bovine-Induced Pluripotent Cells. Stem Cells and Development, 2015, 24, 393-402.	1.1	66
1210	Epigenetic mechanisms of tumorigenicity manifesting in stem cells. Oncogene, 2015, 34, 2288-2296.	2.6	19
1211	Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Oncogene, 2015, 34, 3164-3175.	2.6	36
1212	Inhibition of Transforming Growth Factor β Signaling Promotes Epiblast Formation in Mouse Embryos. Stem Cells and Development, 2015, 24, 497-506.	1.1	8
1213	Sonic hedgehog increases the skin woundâ€healing ability of mouse embryonic stem cells through the micro <scp>RNA</scp> 200 family. British Journal of Pharmacology, 2015, 172, 815-828.	2.7	20
1214	Low-molecular-weight inhibitors of cell differentiation enable efficient growth of mouse iPS cells under feeder-free conditions. Cytotechnology, 2015, 67, 191-197.	0.7	6
1215	The paradox of Foxd3: how does it function in pluripotency and differentiation of embryonic stem cells?. Stem Cell Investigation, 2016, 3, 73-73.	1.3	7
1216	Inhibition of JAK-STAT ERK/MAPK and Glycogen Synthase Kinase-3 Induces a Change in Gene Expression Profile of Bovine Induced Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	8
1217	Metaboloepigenetic Regulation of Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-15.	1.2	50
1218	Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901. Stem Cells International, 2016, 2016, 1-12.	1.2	11
1219	Pluripotency Factors on Their Lineage Move. Stem Cells International, 2016, 2016, 1-16.	1.2	12
1220	Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells. Stem Cells International, 2016, 2016, 1-13.	1.2	32
1221	Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	33
1222	Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells International, 2016, 2016, 1-20.	1.2	111

#	Article	IF	CITATIONS
1223	Describing the Stem Cell Potency: The Various Methods of Functional Assessment and In silico Diagnostics. Frontiers in Cell and Developmental Biology, 2016, 4, 134.	1.8	58
1224	Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules. Stem Cells International, 2016, 2016, 1-11.	1.2	52
1225	An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. ELife, 2016, 5, .	2.8	228
1226	Src Family Kinases and p38 Mitogen-Activated Protein Kinases Regulate Pluripotent Cell Differentiation in Culture. PLoS ONE, 2016, 11, e0163244.	1.1	12
1227	Cell Fate Decision as High-Dimensional Critical State Transition. PLoS Biology, 2016, 14, e2000640.	2.6	298
1228	p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification. PLoS Genetics, 2016, 12, e1006243.	1.5	26
1229	Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS ONE, 2016, 11, e0146281.	1.1	9
1230	Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming. PLoS ONE, 2016, 11, e0150715.	1.1	29
1231	CHIR99021 enhances Klf4 Expression through β-Catenin Signaling and miR-7a Regulation in J1 Mouse Embryonic Stem Cells. PLoS ONE, 2016, 11, e0150936.	1.1	18
1232	Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling. PLoS ONE, 2016, 11, e0155743.	1.1	16
1233	Visualization of the Epiblast and Visceral Endodermal Cells Using Fgf5-P2A-Venus BAC Transgenic Mice and Epiblast Stem Cells. PLoS ONE, 2016, 11, e0159246.	1.1	14
1234	States of Pluripotency: NaÃ $$ ve and Primed Pluripotent Stem Cells. , 2016, , .		6
1235	Small Molecules. , 2016, , 87-110.		3
1236	Novel triblock co-polymer nanofibre system as an alternative support for embryonic stem cells growth and pluripotency. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E467-E476.	1.3	4
1237	Advancing haematopoietic stem and progenitor cell biology through single ell profiling. FEBS Letters, 2016, 590, 4052-4067.	1.3	6
1238	Teratoma: from spontaneous tumors to the pluripotency/malignancy assay. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 186-209.	5.9	46
1239	Fast and Efficient Transfection of Mouse Embryonic Stem Cells Using Non-Viral Reagents. Stem Cell Reviews and Reports, 2016, 12, 584-591.	5.6	15
1240	In need of good neighbours: transcription factors require local <scp>DNA</scp> hypomethylation for target binding. EMBO Journal, 2016, 35, 374-375.	3.5	1

#	Article	IF	CITATIONS
1241	Stem Cell Niche. , 2016, , 57-85.		3
1242	The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. Progress in Biophysics and Molecular Biology, 2016, 122, 16-23.	1.4	39
1243	Regulation of amino acid transporters in pluripotent cell populations in the embryo and in culture; novel roles for sodium-coupled neutral amino acid transporters. Mechanisms of Development, 2016, 141, 32-39.	1.7	12
1244	Effects of Activin in Embryoid Bodies Expressing Fibroblast Growth Factor 5. Cellular Reprogramming, 2016, 18, 171-186.	0.5	2
1245	Directed Assembly and Development of Materialâ€Free Tissues with Complex Architectures. Advanced Materials, 2016, 28, 4032-4039.	11.1	54
1246	Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for <scp>ESC</scp> selfâ€renewal and early development. EMBO Journal, 2016, 35, 1550-1564.	3.5	84
1247	Wnt Signaling in Normal and Malignant Stem Cells. Current Stem Cell Reports, 2016, 2, 379-387.	0.7	34
1248	Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst. Nature Communications, 2016, 7, 13463.	5.8	122
1250	Stem cells and interspecies chimaeras. Nature, 2016, 540, 51-59.	13.7	134
1251	Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. EMBO Journal, 2016, 35, 618-634.	3.5	155
1252	Strategies for the Gene Modification of Megakaryopoiesis and Platelets. , 2016, , 421-460.		0
1253	OTX2 impedes self–renewal of porcine iPS cells through downregulation of NANOG expression. Cell Death Discovery, 2016, 2, 16090.	2.0	4
1254	Proteome Analysis of Ground State Pluripotency. Scientific Reports, 2016, 5, 17985.	1.6	31
1255	p53 and p73 Regulate Apoptosis but Not Cell-Cycle Progression in Mouse Embryonic Stem Cells upon DNA Damage and Differentiation. Stem Cell Reports, 2016, 7, 1087-1098.	2.3	28
1256	Reduced levels of dopamine and altered metabolism in brains of HPRT knock-out rats: a new rodent model of Lesch-Nyhan Disease. Scientific Reports, 2016, 6, 25592.	1.6	20
1257	InÂVitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells. Cell Reports, 2016, 17, 2789-2804.	2.9	136
1258	Distinct Enhancer Activity of Oct4 in Naive and Primed Mouse Pluripotency. Stem Cell Reports, 2016, 7, 911-926.	2.3	63
1259	Stem cell toxicology: a powerful tool to assess pollution effects on human health. National Science Review, 2016, 3, 430-450.	4.6	22

#	Article	IF	CITATIONS
1260	Nac1 Coordinates a Sub-network of Pluripotency Factors to Regulate Embryonic Stem Cell Differentiation. Cell Reports, 2016, 14, 1181-1194.	2.9	29
1261	The Role of microRNAs in Animal Cell Reprogramming. Stem Cells and Development, 2016, 25, 1035-1049.	1.1	8
1262	praja2 regulates KSR1 stability and mitogenic signaling. Cell Death and Disease, 2016, 7, e2230-e2230.	2.7	22
1263	Immuno- and gene expression analysis of EGFR and Nestin during mice skin development. Tissue and Cell, 2016, 48, 274-281.	1.0	1
1264	Acquired Tissue-Specific Promoter Bivalency Is a Basis for PRC2 Necessity in Adult Cells. Cell, 2016, 165, 1389-1400.	13.5	101
1265	An overview of mammalian pluripotency. Development (Cambridge), 2016, 143, 1644-1648.	1.2	29
1266	Editor's Highlight: Identification and Characterization of Teratogenic Chemicals Using Embryonic Stem Cells Isolated From a Wnt/β-Catenin-Reporter Transgenic Mouse Line. Toxicological Sciences, 2016, 152, 382-394.	1.4	5
1267	Establishment and Characterization of NaÃ⁻ve Pluripotency in Human Embryonic Stem Cells. Methods in Molecular Biology, 2016, 1516, 13-46.	0.4	6
1268	Decoding the Epigenetic Heterogeneity of Human Pluripotent Stem Cells with Seamless Gene Editing. Methods in Molecular Biology, 2016, 1516, 153-169.	0.4	1
1269	Zygotic Genome Activators, Developmental Timing, and Pluripotency. Current Topics in Developmental Biology, 2016, 116, 273-297.	1.0	26
1270	In Vitro Corticogenesis from Embryonic Stem Cells Recapitulates the In Vivo Epigenetic Control of Imprinted Gene Expression. Cerebral Cortex, 2017, 27, bhw102.	1.6	18
1271	Selective InÂVitro Propagation of Nephron Progenitors Derived from Embryos and Pluripotent Stem Cells. Cell Reports, 2016, 15, 801-813.	2.9	87
1272	Activation of Wnt/ß-catenin signaling in ESC promotes rostral forebrain differentiation in vitro. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 374-382.	0.7	9
1273	Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming. Cell Stem Cell, 2016, 18, 611-624.	5.2	112
1274	Cellular Dynamics of Mouse Trophoblast Stem Cells: Identification of a Persistent Stem Cell Type1. Biology of Reproduction, 2016, 94, 122.	1.2	14
1275	Dissecting Transcriptional Heterogeneity in Pluripotency: Single Cell Analysis of Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2016, 1516, 101-119.	0.4	4
1276	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
1277	Developmental Competence for Primordial Germ Cell Fate. Current Topics in Developmental Biology, 2016, 117, 471-496.	1.0	16

#	Article	IF	CITATIONS
1278	Forced expression of Hnf1b/Foxa3 promotes hepatic fate of embryonic stem cells. Biochemical and Biophysical Research Communications, 2016, 474, 199-205.	1.0	15
1279	The pluripotency factor <i>Nanog</i> regulates pericentromeric heterochromatin organization in mouse embryonic stem cells. Genes and Development, 2016, 30, 1101-1115.	2.7	50
1280	Function of Polycomb repressive complexes in stem cells. Frontiers in Biology, 2016, 11, 65-74.	0.7	1
1281	MicroRNAs of the miR-290–295 Family Maintain Bivalency in Mouse Embryonic Stem Cells. Stem Cell Reports, 2016, 6, 635-642.	2.3	24
1282	Tet Enzymes Regulate Telomere Maintenance and Chromosomal Stability of Mouse ESCs. Cell Reports, 2016, 15, 1809-1821.	2.9	67
1283	Converging disease genes in ICF syndrome: <i>ZBTB24</i> controls expression of <i>CDCA7</i> ii) mammals. Human Molecular Genetics, 2016, 25, 4041-4051.	1.4	49
1284	Cellular Metabolism and Induced Pluripotency. Cell, 2016, 166, 1371-1385.	13.5	133
1285	Comparative Principles of DNA Methylation Reprogramming during Human and Mouse InÂVitro Primordial Germ Cell Specification. Developmental Cell, 2016, 39, 104-115.	3.1	102
1286	Sirtuin 1 Promotes Deacetylation of Oct4 andÂMaintenance of Naive Pluripotency. Cell Reports, 2016, 17, 809-820.	2.9	32
1287	Tankyrase inhibition promotes a stable human naÃ⁻ve pluripotent state with improved functionality. Development (Cambridge), 2016, 143, 4368-4380.	1.2	64
1288	Dissecting stem cell differentiation using single cell expression profiling. Current Opinion in Cell Biology, 2016, 43, 78-86.	2.6	20
1289	Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency. Stem Cell Reports, 2016, 7, 177-191.	2.3	55
1290	Wnt Regulates Proliferation and Neurogenic Potential of Müller Glial Cells via a Lin28/let-7 miRNA-Dependent Pathway in Adult Mammalian Retinas. Cell Reports, 2016, 17, 165-178.	2.9	124
1291	Enhancer priming by H3K4 methyltransferase MLL4 controls cell fate transition. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11871-11876.	3.3	172
1292	Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naÃ⁻ve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6382-E6390.	3.3	98
1293	Inhibition of <scp>FGF</scp> Signalling Pathway Augments the Expression of Pluripotency and Trophoblast Lineage Marker Genes in Porcine Parthenogenetic Blastocyst. Reproduction in Domestic Animals, 2016, 51, 649-656.	0.6	4
1294	Induced Pluripotent Stem Cells with Six Reprogramming Factors from Prairie Vole, Which is an Animal Model for Social Behaviors. Cell Transplantation, 2016, 25, 783-796.	1.2	20
1295	A Panel of Embryonic Stem Cell Lines Reveals the Variety and Dynamic of Pluripotent States in Rabbits. Stem Cell Reports, 2016, 7, 383-398.	2.3	17

#	Article	IF	Citations
1296	OCT4 Acts as an Integrator of Pluripotency and Signal-Induced Differentiation. Molecular Cell, 2016, 63, 647-661.	4.5	66
1297	Carcinogenesis explained within the context of a theory of organisms. Progress in Biophysics and Molecular Biology, 2016, 122, 70-76.	1.4	80
1298	Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex. Development (Cambridge), 2016, 143, 3074-84.	1.2	53
1300	Chemical Modulation of Cell Fate in Stem Cell Therapeutics and Regenerative Medicine. Cell Chemical Biology, 2016, 23, 893-916.	2.5	43
1301	FGF9, activin and TGFβ promote testicular characteristics in an XX gonad organ culture model. Reproduction, 2016, 152, 529-543.	1.1	19
1302	Capturing Identity and Fate Ex Vivo. Current Topics in Developmental Biology, 2016, 120, 361-400.	1.0	8
1303	TRIM32 ubiquitin E3 ligase, one enzyme for several pathologies: From muscular dystrophy to tumours. International Journal of Biochemistry and Cell Biology, 2016, 79, 469-477.	1.2	48
1304	Live imaging of X chromosome reactivation dynamics in early mouse development can discriminate naÃīve from primed pluripotent stem cells. Development (Cambridge), 2016, 143, 2958-64.	1.2	18
1305	Capturing the ephemeral human pluripotent state. Developmental Dynamics, 2016, 245, 762-773.	0.8	10
1306	A Primitive Growth Factor, NME7AB, Is Sufficient to Induce Stable NaÃ ⁻ ve State Human Pluripotency; Reprogramming in This Novel Growth Factor Confers Superior Differentiation. Stem Cells, 2016, 34, 847-859.	1.4	25
1307	Jun-Mediated Changes in Cell Adhesion Contribute to Mouse Embryonic Stem Cell Exit from Ground State Pluripotency. Stem Cells, 2016, 34, 1213-1224.	1.4	14
1308	Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks. Stem Cells, 2016, 34, 1427-1436.	1.4	105
1309	Generation and application of mammalian haploid embryonic stem cells. Journal of Internal Medicine, 2016, 280, 236-245.	2.7	22
1310	Specification and epigenetic programming of the human germ line. Nature Reviews Genetics, 2016, 17, 585-600.	7.7	352
1311	Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development (Cambridge), 2016, 143, 3050-3060.	1.2	803
1312	Modeling heterogeneity in the pluripotent state: A promising strategy for improving the efficiency and fidelity of stem cell differentiation. BioEssays, 2016, 38, 758-768.	1.2	7
1313	A developmental coordinate of pluripotency among mice, monkeys and humans. Nature, 2016, 537, 57-62.	13.7	419
1314	Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential. EMBO Journal, 2016, 35, 2285-2300.	3.5	40

#	Article	IF	CITATIONS
1316	Cell type-dependent Erk-Akt pathway crosstalk regulates the proliferation of fetal neural progenitor cells. Scientific Reports, 2016, 6, 26547.	1.6	36
1317	Inhibition of mTOR induces a paused pluripotent state. Nature, 2016, 540, 119-123.	13.7	191
1318	The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nature Communications, 2016, 7, 13594.	5.8	72
1319	Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells. Developmental Cell, 2016, 39, 87-103.	3.1	106
1320	Enhancer Remodeling During Early Mammalian Embryogenesis: Lessons for Somatic Reprogramming, Rejuvenation, and Aging. Current Stem Cell Reports, 2016, 2, 263-272.	0.7	0
1321	Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues. Development (Cambridge), 2016, 143, 3914-3925.	1.2	30
1322	Metabolism of pluripotent stem cells. Frontiers in Biology, 2016, 11, 355-365.	0.7	0
1323	Cell fate conversion—from the viewpoint of small molecules and lineage specifiers. Diabetes, Obesity and Metabolism, 2016, 18, 3-9.	2.2	3
1324	Inhibition of the integrin signal constitutes a mouse iPS cell niche. Development Growth and Differentiation, 2016, 58, 586-599.	0.6	2
1325	Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Developmental Dynamics, 2016, 245, 976-990.	0.8	27
1326	Small-Molecule Induction of Canine Embryonic Stem Cells Toward NaÃ⁻ve Pluripotency. Stem Cells and Development, 2016, 25, 1208-1222.	1.1	11
1328	Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature, 2016, 539, 299-303.	13.7	470
1329	Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nature Communications, 2016, 7, 11124.	5.8	223
1330	Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. Journal of Cell Biology, 2016, 215, 345-355.	2.3	70
1331	A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nature Communications, 2016, 7, 11903.	5.8	53
1332	Epigenetics in Development, Differentiation and Reprogramming. , 2016, , 421-448.		0
1333	Expanding the Circuitry of Pluripotency by Selective Isolation of Chromatin-Associated Proteins. Molecular Cell, 2016, 64, 624-635.	4.5	84
1334	Systems Biology and Stem Cell Pluripotency: Revisiting the Discovery of Induced Pluripotent Stem Cell. , 2016, , 127-154.		2

ARTICLE IF CITATIONS Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nature 1335 5.8 68 Communications, 2016, 7, 11056. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nature 5.8 Communications, 2016, 7, 11471. 1337 Dysfunctional mitochondrial fission impairs cell reprogramming. Cell Cycle, 2016, 15, 3240-3250. 1.3 36 Nono, a Bivalent Domain Factor, Regulates Erk Signaling and Mouse Embryonic Stem Cell Pluripotency. 2.9 Cell Reports, 2016, 17, 997-1007. Generation of human organs in pigs via interspecies blastocyst complementation. Reproduction in 1340 0.6 21 Domestic Animals, 2016, 51, 18-24. 1342 Chromatin Starts to Come Clean. Molecular Cell, 2016, 64, 439-441. 4.5 Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in 1343 1.6 53 High Density Microbioreactor Arrays. Scientific Reports, 2016, 6, 24637. The transcriptomes of novel marmoset monkey embryonic stem cell lines reflect distinct genomic 1344 1.6 16 features. Scientific Reports, 2016, 6, 29122. 1345 Single-cell pluripotency regulatory networks. Proteomics, 2016, 16, 2303-2312. 1.3 8 Convergence of cMyc and $\hat{l}^2 \hat{a} \in \hat{c}$ atenin on Tcf7l1 enables endoderm specification. EMBO Journal, 2016, 35, 1346 3.5 356-368 Generation of ESC-derived Mouse Airway Epithelial Cells Using Decellularized Lung Scaffolds. Journal 1347 0.2 5 of Visualized Experiments, 2016, , . The mammalian blastocyst. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 210-232. 1348 5.9 50 Supplementation With Cell-Penetrating Peptide-Conjugated Estrogen-Related Receptor Î² Improves the 1349 Formation of the Inner Cell Mass and the Development of Vitrified/Warmed Mouse Embryos. 1.1 4 Reproductive Sciences, 2016, 23, 1509-1517. Co-repressor CBFA2T2 regulates pluripotency and germline development. Nature, 2016, 534, 387-390. 1350 13.7 61 Construction of a Defined Biomimetic Matrix for Long-Term Maintenance of Mouse Induced 1351 7 1.8 Pluripotent Stem Cells. Bioconjugate Chemistry, 2016, 27, 1599-1605. Setdb1-mediated H3K9 methylation is enriched on the inactive X and plays a role in its epigenetic 1.8 63 silencing. Epigenetics and Chromatin, 2016, 9, 16. Is the Canonical RAF/MEK/ERK Signaling Pathway aÂTherapeutic Target in SCLC?. Journal of Thoracic 1353 0.5 44 Oncology, 2016, 11, 1233-1241. Functional spermatid-like cells derived from the ground-state embryonic stem cells in vitro. Science 1354 2.3 China Life Sciences, 2016, 59, 436-437.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1355	Bone Morphogenetic Proteins. Cold Spring Harbor Perspectives in Biology, 2016, 8, a0	21899.	2.3	356
1356	Non-neural and cardiac differentiating properties of Tbx6-expressing mouse embryonic Regenerative Therapy, 2016, 3, 1-6.	stem cells.	1.4	1
1357	Forced expression of Hnf4a induces hepatic gene activation through directed different Biochemical and Biophysical Research Communications, 2016, 476, 313-318.	iation.	1.0	6
1358	Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stag Reports, 2016, 15, 787-800.	ge EpiSCs. Cell	2.9	28
1359	Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell, 2016, 18, 721-735.		5.2	160
1360	Toward precision medicine of breast cancer. Theoretical Biology and Medical Modelling	g, 2016, 13, 7.	2.1	48
1361	RISC-mediated control of selected chromatin regulators stabilizes ground state pluripo mouse embryonic stem cells. Genome Biology, 2016, 17, 94.	itency of	3.8	12
1362	Oestrogen receptor \hat{l}^2 regulates epigenetic patterns at specific genomic loci through ir thymine DNA glycosylase. Epigenetics and Chromatin, 2016, 9, 7.	nteraction with	1.8	25
1363	Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripoter Regeneration, 2016, 5, 5:2.	ıcy. Cell	1.1	25
1364	ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embry and modulates differentiation outcomes in a context-dependent manner. SpringerPlus		1.2	7
1365	Loss of the Otx2-Binding Site in the Nanog Promoter Affects the Integrity of Embryonia Subtypes and Specification of Inner Cell Mass-Derived Epiblast. Cell Reports, 2016, 15,	2 Stem Cell 2651-2664.	2.9	59
1366	SMT and TOFT: Why and How They are Opposite and Incompatible Paradigms. Acta Bio 64, 221-239.	otheoretica, 2016,	0.7	22
1367	Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylati Embryonic Stem Cells. Molecular Cell, 2016, 62, 848-861.	on in Naive	4.5	189
1368	Transient Expression of WNT2 Promotes Somatic Cell Reprogramming by Inducing Î ² -C Accumulation. Stem Cell Reports, 2016, 6, 834-843.	Catenin Nuclear	2.3	24
1369	f-divergence cutoff index to simultaneously identify differential expression in the integ transcriptome and proteome. Nucleic Acids Research, 2016, 44, e97-e97.	rated	6.5	7
1370	Ino80 is essential for proximal-distal axis asymmetry in part by regulating Bmp4 expres Biology, 2016, 14, 18.	sion. BMC	1.7	22
1371	When Myc's asleep, embryonic stem cells are dormant. EMBO Journal, 2016, 35, 801-8	302.	3.5	2
1372	Different Concentrations of FGF Ligands, FGF2 or FGF8 Determine Distinct States of W Presomitic Mesoderm. Stem Cells, 2016, 34, 1790-1800.	/NT-Induced	1.4	23

#	Article	IF	CITATIONS
1373	Human neural crest cells contribute to coat pigmentation in interspecies chimeras after in utero injection into mouse embryos. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1570-1575.	3.3	50
1374	Single-Cell Genomics and Epigenomics. Series in Bioengineering, 2016, , 257-301.	0.3	2
1375	Serum-Based Culture Conditions Provoke Gene Expression Variability in Mouse Embryonic Stem Cells as Revealed by Single-Cell Analysis. Cell Reports, 2016, 14, 956-965.	2.9	73
1376	BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Krüppel-like Factors. Stem Cell Reports, 2016, 6, 64-73.	2.3	61
1377	Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death and Disease, 2016, 7, e2050-e2050.	2.7	46
1378	A dual role of Erk signaling in embryonic stem cells. Experimental Hematology, 2016, 44, 151-156.	0.2	33
1379	lsolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nature Protocols, 2016, 11, 327-346.	5.5	32
1380	Essentials of Single-Cell Analysis. Series in Bioengineering, 2016, , .	0.3	29
1381	Highly efficient generation of biallelic reporter gene knock-in mice via CRISPR-mediated genome editing of ESCs. Protein and Cell, 2016, 7, 152-156.	4.8	7
1382	Pluripotent Stem Cells from Domesticated Mammals. Annual Review of Animal Biosciences, 2016, 4, 223-253.	3.6	85
1383	YAP Induces Human Naive Pluripotency. Cell Reports, 2016, 14, 2301-2312.	2.9	157
1384	In vitro culture of stem-like cells derived from somatic cell nuclear transfer bovine embryos of the Korean beef cattle species, HanWoo. Reproduction, Fertility and Development, 2016, 28, 1762.	0.1	8
1385	The role of GSK-3 in treatment-resistant depression and links with the pharmacological effects of lithium and ketamine: A review of the literature. L'Encephale, 2016, 42, 156-164.	0.3	44
1386	WNT/β-catenin and p27/FOXL2 differentially regulate supporting cell proliferation in the developing ovary. Developmental Biology, 2016, 412, 250-260.	0.9	43
1387	The role of Ca2+ signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium, 2016, 59, 67-74.	1.1	34
1388	<i>SLC52A3</i> , A Brown–Vialetto–van Laere syndrome candidate gene is essential for mouse development, but dispensable for motor neuron differentiation. Human Molecular Genetics, 2016, 25, 1814-1823.	1.4	12
1389	Rat Blastocysts from Nuclear Injection and Time-Lagged Enucleation and Their Commitment to Embryonic Stem Cells. Cellular Reprogramming, 2016, 18, 108-115.	0.5	2
1390	Dissecting the role of redox signaling in neuronal development. Journal of Neurochemistry, 2016, 137, 506-517.	2.1	59

#	Article	IF	Citations
1391	Zscan4 Is Activated after Telomere Shortening in Mouse Embryonic StemÂCells. Stem Cell Reports, 2016, 6, 483-495.	2.3	44
1392	A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 2016, 17, 183-193.	16.1	684
1393	5-Hydroxymethylcytosine Marks Sites of DNA Damage and Promotes Genome Stability. Cell Reports, 2016, 14, 1283-1292.	2.9	152
1394	Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 2016, 164, 668-680.	13.5	209
1395	Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nature Reviews Molecular Cell Biology, 2016, 17, 155-169.	16.1	490
1396	Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chemical Biology, 2016, 23, 137-157.	2.5	263
1397	Snapshots of Pluripotency. Stem Cell Reports, 2016, 6, 163-167.	2.3	8
1398	Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts. Transgenic Research, 2016, 25, 375-384.	1.3	16
1399	C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 andÂBrd4. Nature Cell Biology, 2016, 18, 371-381.	4.6	94
1400	Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells InÂVitro. Cell Stem Cell, 2016, 18, 330-340.	5.2	327
1401	Novel chemical attempts at ex vivo hematopoietic stem cell expansion. International Journal of Hematology, 2016, 103, 519-529.	0.7	30
1402	Functional Analysis of CP2-Like Domain and SAM-Like Domain in TFCP2L1, Novel Pluripotency Factor of Embryonic Stem Cells. Applied Biochemistry and Biotechnology, 2016, 179, 650-658.	1.4	4
1403	Calcium signaling in human pluripotent stem cells. Cell Calcium, 2016, 59, 117-123.	1.1	25
1404	Conditional mutation of <i>Smc5</i> in mouse embryonic stem cells perturbs condensin localization and mitotic progression. Journal of Cell Science, 2016, 129, 1619-34.	1.2	20
1405	Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports, 2016, 6, 437-446.	2.3	310
1406	Key Signaling Events for Committing Mouse Pluripotent Stem Cells to the Germline Fate1. Biology of Reproduction, 2016, 94, 24.	1.2	6
1407	NaÃ ⁻ ve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Stem Cells Translational Medicine, 2016, 5, 8-19.	1.6	59
1408	Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Research, 2016, 26, 350-366.	5.7	59

#	Article	IF	CITATIONS
1409	NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature, 2016, 529, 403-407.	13.7	148
1410	Foxd3 Promotes Exit from Naive Pluripotency through Enhancer Decommissioning and Inhibits Germline Specification. Cell Stem Cell, 2016, 18, 118-133.	5.2	73
1411	Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Research, 2016, 26, 34-45.	5.7	62
1412	3D high throughput screening and profiling of embryoid bodies in thermoformed microwell plates. Lab on A Chip, 2016, 16, 734-742.	3.1	63
1413	BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment. Cytokine and Growth Factor Reviews, 2016, 27, 55-63.	3.2	8
1415	The triumph of chemically enhanced cellular reprogramming: a patent review. Expert Opinion on Therapeutic Patents, 2016, 26, 265-280.	2.4	7
1416	Parthenogenetic haploid embryonic stem cells efficiently support mouse generation by oocyte injection. Cell Research, 2016, 26, 131-134.	5.7	38
1417	Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 39-65.	5.9	18
1418	The effect of lithium on hematopoietic, mesenchymal and neural stem cells. Pharmacological Reports, 2016, 68, 224-230.	1.5	47
1419	Nuclear Reprogramming by Defined Factors: Quantity Versus Quality. Trends in Cell Biology, 2016, 26, 65-75.	3.6	22
1420	Update of neurotrophic factors in neurobiology of addiction and future directions. Neurobiology of Disease, 2017, 97, 189-200.	2.1	48
1421	Effect of tyrosine kinase inhibitors on stemness in normal and chronic myeloid leukemia cells. Leukemia, 2017, 31, 65-74.	3.3	11
1422	Identifying the Biphasic Role of Calcineurin/NFAT Signaling Enables Replacement of Sox2 in Somatic Cell Reprogramming. Stem Cells, 2017, 35, 1162-1175.	1.4	12
1423	lcaritin enhances mESC self-renewal through upregulating core pluripotency transcription factors mediated by ERα. Scientific Reports, 2017, 7, 40894.	1.6	13
1424	Activin A in combination with <scp>ERK</scp> 1/2 <scp>MAPK</scp> pathway inhibition sustains propagation of mouse embryonic stem cells. Genes To Cells, 2017, 22, 189-202.	0.5	7
1425	Jmjd2c/Kdm4c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation. Development (Cambridge), 2017, 144, 567-579.	1.2	24
1426	Primate embryogenesis predicts the hallmarks of human naÃ⁻ve pluripotency. Development (Cambridge), 2017, 144, 175-186.	1.2	106
1427	The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells. Nature Communications, 2017, 8, 14126.	5.8	28

#	Article	IF	CITATIONS
1428	Spatial and temporal signal processing and decision making by MAPK pathways. Journal of Cell Biology, 2017, 216, 317-330.	2.3	89
1429	Exploring early differentiation and pluripotency in domestic animals. Reproduction, Fertility and Development, 2017, 29, 101.	0.1	4
1430	Characterization of goat inner cell mass derived cells in double kinase inhibition condition. Biochemical and Biophysical Research Communications, 2017, 483, 325-331.	1.0	3
1431	Cooperative Binding of Transcription Factors Orchestrates Reprogramming. Cell, 2017, 168, 442-459.e20.	13.5	432
1432	The Role of RNA Interference in Stem Cell Biology: Beyond the Mutant Phenotypes. Journal of Molecular Biology, 2017, 429, 1532-1543.	2.0	17
1433	TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022186.	2.3	101
1434	Formative pluripotency: the executive phase in a developmental continuum. Development (Cambridge), 2017, 144, 365-373.	1.2	345
1435	Genome-wide piggyBac transposon mediated screening reveals genes related to reprogramming. Protein and Cell, 2017, 8, 134-139.	4.8	0
1436	Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self-Renewal Growth Signaling in Mouse Embryonic Stem Cells. Cell Reports, 2017, 18, 933-946.	2.9	19
1437	Pluripotency of embryo-derived stem cells from rodents, lagomorphs, and primates: Slippery slope, terrace and cliff. Stem Cell Research, 2017, 19, 104-112.	0.3	20
1438	Does <scp>MAX</scp> open up a new avenue for meiotic research?. Development Growth and Differentiation, 2017, 59, 61-69.	0.6	5
1439	<i>Dicer</i> , a new regulator of pluripotency exit and <scp>LINE</scp> â€1 elements in mouse embryonic stem cells. FEBS Open Bio, 2017, 7, 204-220.	1.0	37
1440	Dynamics and Context-Dependent Roles of DNA Methylation. Journal of Molecular Biology, 2017, 429, 1459-1475.	2.0	126
1441	PDGFRα+ Cells in Embryonic Stem Cell Cultures Represent the InÂVitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports, 2017, 8, 318-333.	2.3	26
1442	Chromatin states shape insertion profiles of the piggyBac, Tol2 and Sleeping Beauty transposons and murine leukemia virus. Scientific Reports, 2017, 7, 43613.	1.6	46
1443	Feederâ€independent canine induced pluripotent stem cells maintained under serumâ€free conditions. Molecular Reproduction and Development, 2017, 84, 329-339.	1.0	19
1444	Significant differences of function and expression of microRNAs between ground state and serum-cultured pluripotent stem cells. Journal of Genetics and Genomics, 2017, 44, 179-189.	1.7	12
1445	Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells. Stem Cell Research, 2017, 20, 21-29.	0.3	17

ARTICLE IF CITATIONS # Dynamic regulation of nuclear architecture and mechanicsâ€"a rheostatic role for the nucleus in 1446 0.6 42 tailoring cellular mechanosensitivity. Nucleus, 2017, 8, 287-300. Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells. Scientific 1447 1.6 Reports, 2017, 7, 41833. Tracking the embryonic stem cell transition from ground state pluripotency. Development 1448 1.2 226 (Cambridge), 2017, 144, 1221-1234. G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nature Cell 1449 Biology, 2017, 19, 177-188. Metabolic remodeling during the loss and acquisition of pluripotency. Development (Cambridge), 2017, 1450 1.2 141 144, 541-551. EpCAM Intracellular Domain Promotes Porcine Cell Reprogramming by Upregulation of Pluripotent Gene Expression via Beta-catenin Signaling. Scientific Reports, 2017, 7, 46315. 1.6 16 CRISPR-Cas9-mediated genome editing in one blastomere of two-cell embryos reveals a novel Tet3 1452 5.7 35 function in regulating neocortical development. Cell Research, 2017, 27, 815-829. Direct comparison of distinct naive pluripotent states in human embryonic stem cells. Nature 1453 5.8 60 Communications, 2017, 8, 15055. Three-dimensional system enabling the maintenance and directed differentiation of pluripotent stem 1454 4.7 47 cells under defined conditions. Science Advances, 2017, 3, e1602875. Flexible adaptation of male germ cells from female iPSCs of endangered <i>Tokudaia osimensis</i>. 1455 4.7 28 Science Advances, 2017, 3, e1602179. Lineage-specific functions of TET1 in the postimplantation mouse embryo. Nature Genetics, 2017, 49, 1456 9.4 96 1061-1072. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression. Genes and Development, 2017, 31, 787-801. Akt3 is responsible for the survival and proliferation of embryonic stem cells. Biology Open, 2017, 6, 1458 0.6 24 850-861. GSK-3 as a novel prognostic indicator in leukemia. Advances in Biological Regulation, 2017, 65, 26-35. 1459 1.4 2i Maintains a Naive Ground State in ESCs through Two Distinct Epigenetic Mechanisms. Stem Cell 1460 2.355 Reports, 2017, 8, 1312-1328. Protein Kinases in Pluripotencyâ€"Beyond the Usual Suspects. Journal of Molecular Biology, 2017, 429, 1461 2.0 1504-1520. KAT-Independent Gene Regulation by Tip60 Promotes ESC Self-Renewal but Not Pluripotency. Cell 1462 2.9 29 Reports, 2017, 19, 671-679. A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk 1463 3.1 Development. Developmental Cell, 2017, 41, 243-261.e7.

	CHAHON		
#	Article	IF	CITATIONS
1464	Properties of embryoid bodies. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e259.	5.9	76
1465	Development of reproductive engineering techniques at the RIKEN BioResource Center. Experimental Animals, 2017, 66, 1-16.	0.7	3
1466	The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Developmental Biology, 2017, 17, 7.	2.1	132
1467	Inhibition of Wnt/Ĵ²-catenin signaling by IWR1 induces expression of Foxd3 to promote mouse epiblast stem cell self-renewal. Biochemical and Biophysical Research Communications, 2017, 490, 616-622.	1.0	11
1468	Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology. Biophysical Journal, 2017, 112, 2641-2652.	0.2	20
1469	Cellâ€Engineered Nanovesicle as a Surrogate Inducer of Contactâ€Dependent Stimuli. Advanced Healthcare Materials, 2017, 6, 1700381.	3.9	9
1470	The contribution of homology arms to nuclease-assisted genome engineering. Nucleic Acids Research, 2017, 45, 8105-8115.	6.5	23
1471	YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Genome Research, 2017, 27, 1139-1152.	2.4	249
1472	Activation of Lineage Regulators and Transposable Elements across aÂPluripotent Spectrum. Stem Cell Reports, 2017, 8, 1645-1658.	2.3	58
1473	The Art of Capturing Pluripotency: Creating the Right Culture. Stem Cell Reports, 2017, 8, 1457-1464.	2.3	39
1474	Brd4â€Brd2 isoform switching coordinates pluripotent exit and Smad2â€dependent lineage specification. EMBO Reports, 2017, 18, 1108-1122.	2.0	26
1475	Mechanism of human somatic reprogramming to iPS cell. Laboratory Investigation, 2017, 97, 1152-1157.	1.7	54
1476	Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2. Developmental Cell, 2017, 41, 496-510.e5.	3.1	131
1477	Capturing Human NaÃ ⁻ ve Pluripotency in the Embryo and in the Dish. Stem Cells and Development, 2017, 26, 1141-1161.	1.1	29
1478	Control of cell death and mitochondrial fission by <scp>ERK</scp> 1/2 <scp>MAP</scp> kinase signalling. FEBS Journal, 2017, 284, 4177-4195.	2.2	147
1479	Characterization of the single-cell derived bovine induced pluripotent stem cells. Tissue and Cell, 2017, 49, 521-527.	1.0	40
1480	<i>In vitro</i> expansion of mouse primordial germ cellâ€like cells recapitulates an epigenetic blank slate. EMBO Journal, 2017, 36, 1888-1907.	3.5	92
1481	PIM2 regulates stemness through phosphorylation of 4E-BP1. Science Bulletin, 2017, 62, 679-685.	4.3	3

	Сітаті	on Report	
# 1482	ARTICLE Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 2017, 169, 985-999.	IF 13.5	Citations 2,998
1483	Surface Markers Guide the Journey toward Naive Pluripotency. Cell Stem Cell, 2017, 20, 737-738.	5.2	0
1484	Long Noncoding RNA Moderates MicroRNA Activity to Maintain Self-Renewal in Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 108-121.	2.3	47
1485	Disrupting Interactions Between \hat{l}^2 -Catenin and Activating TCFs Reconstitutes Ground State Pluripotency in Mouse Embryonic Stem Cells. Stem Cells, 2017, 35, 1924-1933.	1.4	4
1486	Pramel7 mediates ground-state pluripotency through proteasomal–epigenetic combined pathways. Nature Cell Biology, 2017, 19, 763-773.	4.6	33
1487	Directed Differentiation of Mouse Embryonic Stem Cells Into Inner Ear Sensory Epithelia in 3D Culture. Methods in Molecular Biology, 2017, 1597, 67-83.	0.4	18
1488	Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells. Cell and Tissue Research, 2017, 369, 353-368.	1.5	7
1489	Ethics and Governance of Stem Cell Banks. Methods in Molecular Biology, 2017, 1590, 99-112.	0.4	4
1490	High-resolution RNA allelotyping along the inactive X chromosome: evidence of RNA polymerase III in regulating chromatin configuration. Scientific Reports, 2017, 7, 45460.	1.6	10
1491	Manipulation of Pluripotent Stem Cell Metabolism for Clinical Application. Current Stem Cell Reports, 2017, 3, 28-34.	0.7	7
1492	Disconnect between alcohol-induced alterations in chromatin structure and gene transcription in a mouse embryonic stem cell model of exposure. Alcohol, 2017, 60, 121-133.	0.8	18
1493	Derivation of Pluripotent Stem Cells with InÂVivo Embryonic and Extraembryonic Potency. Cell, 2017, 169, 243-257.e25.	13.5	382
1494	Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency. Cell Reports, 2017, 19, 20-35.	2.9	53
1495	Trimethylation and Acetylation of β-Catenin at Lysine 49 Represent Key Elements in ESC Pluripotency. Cell Reports, 2017, 18, 2815-2824.	2.9	42
1496	Single-Cell 5-Formylcytosine Landscapes of Mammalian Early Embryos and ESCs at Single-Base Resolution. Cell Stem Cell, 2017, 20, 720-731.e5.	5.2	135
1497	Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors. Molecular Reproduction and Development, 2017, 84, 468-485.	1.0	8
1498	MAD2L2 Promotes Open Chromatin in Embryonic Stem Cells andÂDerepresses the Dppa3 Locus. Stem Ce Reports, 2017, 8, 813-821.	ll 2.3	10
1499	NANOG overexpression and its correlation with stem cell and differentiation markers in meningiomas of different WHO grades. Molecular Carcinogenesis, 2017, 56, 1953-1964.	1.3	27

#	Article	IF	CITATIONS
1501	DUSP9 Modulates DNA Hypomethylation in Female Mouse Pluripotent Stem Cells. Cell Stem Cell, 2017, 20, 706-719.e7.	5.2	63
1502	Depletion of <i>Tcf3</i> and <i>Lef1</i> maintains mouse embryonic stem cell self-renewal. Biology Open, 2017, 6, 511-517.	0.6	17
1503	The metabolic programming of stem cells. Genes and Development, 2017, 31, 336-346.	2.7	243
1504	Multiscale microenvironmental perturbation of pluripotent stem cell fate and self-organization. Scientific Reports, 2017, 7, 44711.	1.6	33
1505	Efficient Generation of Chemically Induced Mesenchymal Stem Cells from Human Dermal Fibroblasts. Scientific Reports, 2017, 7, 44534.	1.6	26
1506	Effect of small molecules on cell reprogramming. Molecular BioSystems, 2017, 13, 277-313.	2.9	19
1507	The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthritis and Cartilage, 2017, 25, 616-624.	0.6	17
1508	<i>Nat1</i> promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 340-345.	3.3	81
1509	Charting Developmental Dissolution of Pluripotency. Journal of Molecular Biology, 2017, 429, 1441-1458.	2.0	9
1510	Isolation of Mouse Embryonic Stem Cell Lines in the Study of ERK1/2 MAP Kinase Signaling. Methods in Molecular Biology, 2017, 1487, 243-253.	0.4	1
1511	Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics, 2017, 18, 180-191.	7.7	131
1512	New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell, 2017, 20, 18-28.	5.2	210
1513	The Epigenetic Paradox of Pluripotent ES Cells. Journal of Molecular Biology, 2017, 429, 1476-1503.	2.0	35
1514	LIN28 phosphorylation by MAPK/ERK couples signalling to the post-transcriptional control ofÂpluripotency. Nature Cell Biology, 2017, 19, 60-67.	4.6	59
1515	Activin‧MAD signaling is required for maintenance of porcine iPS cell selfâ€renewal through upregulation of <i>NANOG</i> and <i>OCT4</i> expression. Journal of Cellular Physiology, 2017, 232, 2253-2262.	2.0	11
1516	Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cellular and Molecular Life Sciences, 2017, 74, 1805-1817.	2.4	22
1517	Dormant Pluripotent Cells Emerge during Neural Differentiation of Embryonic Stem Cells in a FoxO3-Dependent Manner. Molecular and Cellular Biology, 2017, 37, .	1.1	7
1518	Hypertranscription in Development, Stem Cells, and Regeneration. Developmental Cell, 2017, 40, 9-21.	3.1	87

#	Article	IF	CITATIONS
1519	Functional Antagonism between OTX2 and NANOG Specifies a Spectrum ofÂHeterogeneous Identities in Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 1642-1659.	2.3	20
1520	Scalable Cardiac Differentiation of Pluripotent Stem Cells Using Specific Growth Factors and Small Molecules. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 39-69.	0.6	20
1521	β-catenin coordinates with Jup and the TCF1/GATA6 axis to regulate human embryonic stem cell fate. Developmental Biology, 2017, 431, 272-281.	0.9	12
1522	Glycosylation status of bone sialoprotein and its role in mineralization. Experimental Cell Research, 2017, 360, 413-420.	1.2	9
1523	<i>Nanog</i> Expression in Embryonic Stem Cells – An Ideal Model System to Dissect Enhancer Function. BioEssays, 2017, 39, 1700086.	1.2	16
1524	Baf53a is involved in survival of mouse ES cells, which can be compensated by Baf53b. Scientific Reports, 2017, 7, 14059.	1.6	17
1525	Distinct Cell-Cycle Control in Two Different States of Mouse Pluripotency. Cell Stem Cell, 2017, 21, 449-455.e4.	5.2	61
1526	Tfcp2l1 represses multiple lineage commitment of mouse embryonic stem cells through MTA1 and LEF1. Journal of Cell Science, 2017, 130, 3809-3817.	1.2	11
1527	Establishment of mouse expanded potential stem cells. Nature, 2017, 550, 393-397.	13.7	223
1528	Insulin fine-tunes self-renewal pathways governing naive pluripotency and extra-embryonic endoderm. Nature Cell Biology, 2017, 19, 1164-1177.	4.6	67
1529	Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations. Nature Communications, 2017, 8, 690.	5.8	50
1530	Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation. Genes and Development, 2017, 31, 1732-1737.	2.7	68
1531	KDM4B-mediated reduction of H3K9me3 and H3K36me3 levels improves somatic cell reprogramming into pluripotency. Scientific Reports, 2017, 7, 7514.	1.6	32
1532	Totipotency segregates between the sister blastomeres of two-cell stage mouse embryos. Scientific Reports, 2017, 7, 8299.	1.6	52
1533	Stem Cell Differentiation as a Non-Markov Stochastic Process. Cell Systems, 2017, 5, 268-282.e7.	2.9	178
1534	Gene Editing in Rat Embryonic Stem Cells to Produce InÂVitro Models and InÂVivo Reporters. Stem Cell Reports, 2017, 9, 1262-1274.	2.3	10
1535	Rat embryonic stem cells produce fertile offspring through tetraploid complementation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11974-11979.	3.3	15
1536	Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nature Communications, 2017, 8, 1096.	5.8	156

#	Article	IF	CITATIONS
1537	Zscan4 Inhibits Maintenance DNA Methylation to Facilitate Telomere Elongation in Mouse Embryonic Stem Cells. Cell Reports, 2017, 20, 1936-1949.	2.9	81
1538	Derivation of Stem Cell Lines from Mouse Preimplantation Embryos. Journal of Visualized Experiments, 2017, , .	0.2	0
1539	Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening. Cell Reports, 2017, 20, 2227-2237.	2.9	33
1540	Cytoplasmic and Nuclear TAZ Exert Distinct Functions in Regulating PrimedÂPluripotency. Stem Cell Reports, 2017, 9, 732-741.	2.3	24
1541	Low Focal Adhesion Signaling Promotes Ground State Pluripotency of Mouse Embryonic Stem Cells. Journal of Proteome Research, 2017, 16, 3585-3595.	1.8	23
1542	PARI Regulates Stalled Replication Fork Processing To Maintain Genome Stability upon Replication Stress in Mice. Molecular and Cellular Biology, 2017, 37, .	1.1	11
1543	Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports, 2017, 9, 1275-1290.	2.3	12
1544	Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature, 2017, 549, 543-547.	13.7	146
1545	Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Krüppel-like factors. Stem Cell Research, 2017, 24, 106-117.	0.3	18
1546	Pluripotency Surveillance by Myc-Driven Competitive Elimination of Differentiating Cells. Developmental Cell, 2017, 42, 585-599.e4.	3.1	78
1547	The TAF10-containing TFIID and SAGA transcriptional complexes are dispensable for early somitogenesis in the mouse embryo. Development (Cambridge), 2017, 144, 3808-3818.	1.2	14
1548	Reduced expression of Paternally Expressed Gene-3 enhances somatic cell reprogramming through mitochondrial activity perturbation. Scientific Reports, 2017, 7, 9705.	1.6	10
1549	Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. Laboratory Investigation, 2017, 97, 1133-1141.	1.7	33
1550	Holding of bovine blastocysts at suprazero temperatures using small molecules. Scientific Reports, 2017, 7, 9490.	1.6	3
1551	DNA binding drives the association of BRG1/hBRM bromodomains with nucleosomes. Nature Communications, 2017, 8, 16080.	5.8	61
1552	Pluri-IQ: Quantification of Embryonic Stem Cell Pluripotency through anÂlmage-Based Analysis Software. Stem Cell Reports, 2017, 9, 697-709.	2.3	19
1553	The Tissue-Reconstructing Ability of Colon CSCs Is Enhanced by FK506 and Suppressed by GSK3 Inhibition. Molecular Cancer Research, 2017, 15, 1455-1466.	1.5	9
1554	NODAL Secures Pluripotency upon Embryonic Stem Cell Progression fromÂthe Ground State. Stem Cell Reports, 2017, 9, 77-91.	2.3	74

#	Article	IF	CITATIONS
1555	From engineering to editing the rat genome. Mammalian Genome, 2017, 28, 302-314.	1.0	55
1556	An extended model for culture-dependent heterogenous gene expression and proliferation dynamics in mouse embryonic stem cells. Npj Systems Biology and Applications, 2017, 3, 19.	1.4	23
1557	Expansion of human midbrain floor plate progenitors from induced pluripotent stem cells increases dopaminergic neuron differentiation potential. Scientific Reports, 2017, 7, 6036.	1.6	34
1558	Transcriptional and epigenetic control in mouse pluripotency: lessons from in vivo and in vitro studies. Current Opinion in Genetics and Development, 2017, 46, 114-122.	1.5	13
1559	Epigenetic resetting of human pluripotency. Development (Cambridge), 2017, 144, 2748-2763.	1.2	225
1560	Artificial acceleration of mammalian cell reprogramming by bacterial proteins. Genes To Cells, 2017, 22, 918-928.	0.5	4
1561	A Hyper-Crosslinked Carbohydrate Polymer Scaffold Facilitates Lineage Commitment and Maintains a Reserve Pool of Proliferating Cardiovascular Progenitors. Transplantation Direct, 2017, 3, e153.	0.8	8
1562	Signaling networks in the control of pluripotency. Current Opinion in Genetics and Development, 2017, 46, 141-148.	1.5	16
1563	Generating Genetically Modified Mice: A Decision Guide. Methods in Molecular Biology, 2017, 1642, 1-19.	0.4	15
1564	Wnt ligand presentation and reception: from the stem cell niche to tissue engineering. Open Biology, 2017, 7, 170140.	1.5	25
1565	The interplay of epigenetic marks during stem cell differentiation and development. Nature Reviews Genetics, 2017, 18, 643-658.	7.7	414
1566	A Chemical-Genetic Approach Reveals the Distinct Roles of GSK3α and GSK3Î ² in Regulating Embryonic Stem Cell Fate. Developmental Cell, 2017, 43, 563-576.e4.	3.1	29
1567	Derivation of ground-state female ES cells maintaining gamete-derived DNA methylation. Nature, 2017, 548, 224-227.	13.7	153
1568	Specification of murine ground state pluripotent stem cells to regional neuronal populations. Scientific Reports, 2017, 7, 16001.	1.6	7
1569	Programming asynchronous replication in stem cells. Nature Structural and Molecular Biology, 2017, 24, 1132-1138.	3.6	10
1570	A fast and efficient size separation method for haploid embryonic stem cells. Biomicrofluidics, 2017, 11, 054117.	1.2	9
1571	Transcription pausing regulates mouse embryonic stem cell differentiation. Stem Cell Research, 2017, 25, 250-255.	0.3	16
1572	OCT4 supports extended LIF-independent self-renewal and maintenance of transcriptional and epigenetic networks in embryonic stem cells. Scientific Reports, 2017, 7, 16360.	1.6	10

#	Article	IF	CITATIONS
1573	Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature, 2017, 552, 239-243.	13.7	193
1574	Serine 347 Phosphorylation by JNKs Negatively Regulates OCT4 Protein Stability in Mouse Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 2050-2064.	2.3	17
1575	Naive-like ESRRB+ iPSCs with the Capacity for Rapid Neural Differentiation. Stem Cell Reports, 2017, 9, 1825-1838.	2.3	16
1576	Small RNA Sequencing Reveals Dlk1-Dio3 Locus-Embedded MicroRNAs as Major Drivers of Ground-State Pluripotency. Stem Cell Reports, 2017, 9, 2081-2096.	2.3	45
1577	Structure-function Studies in Mouse Embryonic Stem Cells Using Recombinase-mediated Cassette Exchange. Journal of Visualized Experiments, 2017, , .	0.2	4
1578	Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera. Stem Cell Reports, 2017, 9, 1706-1720.	2.3	30
1579	Self-patterning of rostral-caudal neuroectoderm requires dual role of Fgf signaling for localized Wnt antagonism. Nature Communications, 2017, 8, 1339.	5.8	36
1580	Noise-processing by signaling networks. Scientific Reports, 2017, 7, 532.	1.6	14
1581	Small molecules for reprogramming and transdifferentiation. Cellular and Molecular Life Sciences, 2017, 74, 3553-3575.	2.4	84
1582	A Phenotype-Based RNAi Screening for Ras-ERK/MAPK Signaling-Associated Stem Cell Regulators in C. elegans. Methods in Molecular Biology, 2017, 1622, 207-221.	0.4	6
1583	Defects in dosage compensation impact global gene regulation in the mouse trophoblast. Development (Cambridge), 2017, 144, 2784-2797.	1.2	31
1585	Next-generation mammalian genetics toward organism-level systems biology. Npj Systems Biology and Applications, 2017, 3, 15.	1.4	16
1586	Reprogramming human cells to naÃ⁻ve pluripotency: how close are we?. Current Opinion in Genetics and Development, 2017, 46, 58-65.	1.5	14
1587	Constructing cellular niche properties by localized presentation of Wnt proteins on synthetic surfaces. Nature Protocols, 2017, 12, 1498-1512.	5.5	18
1588	PHLDA3 impedes somatic cell reprogramming by activating Akt-GSK3Î ² pathway. Scientific Reports, 2017, 7, 2832.	1.6	12
1589	Single cell transcriptomics of pluripotent stem cells: reprogramming and differentiation. Current Opinion in Genetics and Development, 2017, 46, 66-76.	1.5	17
1590	Role of alpha―and betaâ€∎drenergic receptors in cardiomyocyte differentiation from murineâ€induced pluripotent stem cells. Cell Proliferation, 2017, 50, .	2.4	5
1591	CFTR- Î ² -catenin interaction regulates mouse embryonic stem cell differentiation and embryonic development. Cell Death and Differentiation, 2017, 24, 98-110.	5.0	28

#	Article	IF	CITATIONS
1592	Microparticleâ€Mediated Delivery of BMP4 for Generation of Meiosis ompetent Germ Cells from Embryonic Stem Cells. Macromolecular Bioscience, 2017, 17, 1600284.	2.1	25
1593	The double life of cardiac mesenchymal cells: Epimetabolic sensors and therapeutic assets for heart regeneration. , 2017, 171, 43-55.		12
1594	Signaling pathways in mammalian preimplantation development: Linking cellular phenotypes to lineage decisions. Developmental Dynamics, 2017, 246, 245-261.	0.8	23
1595	Jak1/Stat3 signaling acts as a positive regulator of pluripotency in chicken pre-gastrula embryos. Developmental Biology, 2017, 421, 43-51.	0.9	7
1596	Concise Review: Lessons from NaÃ ⁻ ve Human Pluripotent Cells. Stem Cells, 2017, 35, 35-41.	1.4	46
1597	Zeb2 Regulates Cell Fate at the Exit from Epiblast State in Mouse Embryonic Stem Cells. Stem Cells, 2017, 35, 611-625.	1.4	41
1598	Efficient Induction and Isolation of Human Primordial Germ Cell-Like Cells from Competent Human Pluripotent Stem Cells. Methods in Molecular Biology, 2017, 1463, 217-226.	0.4	26
1599	Germline Stem Cells. Methods in Molecular Biology, 2017, , .	0.4	0
1600	p38 <scp>MAPK</scp> pathway is essential for selfâ€renewal of mouse male germline stem cells (<scp>mGSC</scp> s). Cell Proliferation, 2017, 50, .	2.4	17
1601	Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes. Genome Research, 2017, 27, 246-258.	2.4	146
1602	Linking Telomere Regulation to Stem Cell Pluripotency. Trends in Genetics, 2017, 33, 16-33.	2.9	50
1603	LIF activated Jak signaling determines Esrrb expression during late-stage reprogramming. Biology Open, 2018, 7, .	0.6	13
1604	Promotive effects of human induced pluripotent stem cell-conditioned medium on the proliferation and migration of dermal fibroblasts. Biotechnology and Bioprocess Engineering, 2017, 22, 561-568.	1.4	15
1605	SC1 Promotes MiR124-3p Expression to Maintain the Self-Renewal of Mouse Embryonic Stem Cells by Inhibiting the MEK/ERK Pathway. Cellular Physiology and Biochemistry, 2017, 44, 2057-2072.	1.1	7
1606	Mechanisms of gene regulation in human embryos and pluripotent stem cells. Development (Cambridge), 2017, 144, 4496-4509.	1.2	63
1607	Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. Development (Cambridge), 2017, 144, 4313-4321.	1.2	34
1608	Trim33 regulates early maturation of mouse embryoid bodies in vitro. Biochemistry and Biophysics Reports, 2017, 12, 185-192.	0.7	6
1609	Alternative dominance of the parental genomes in hybrid cells generated through the fusion of mouse embryonic stem cells with fibroblasts. Scientific Reports, 2017, 7, 18094.	1.6	5

#	Article	IF	CITATIONS
1610	An improved Red/ET recombineering system and mouse ES cells culture conditions for the generation of targeted mutant mice. Experimental Animals, 2017, 66, 125-136.	0.7	4
1611	An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers. Nucleic Acids Research, 2017, 45, e174-e174.	6.5	7
1612	Phenotypic Screen Identifies a Small Molecule Modulating ERK2 and Promoting Stem Cell Proliferation. Frontiers in Pharmacology, 2017, 8, 726.	1.6	3
1613	Multiple Roles of MYC in Integrating Regulatory Networks of Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2017, 5, 7.	1.8	39
1614	In vitro Culture of NaÃ ⁻ ve Human Bone Marrow Mesenchymal Stem Cells: A Stemness Based Approach. Frontiers in Cell and Developmental Biology, 2017, 5, 69.	1.8	38
1615	DNMT1 mutations found in HSANIE patients affect interaction with UHRF1 and neuronal differentiation. Human Molecular Genetics, 2017, 26, 1522-1534.	1.4	40
1616	Dynamic Changes in DNA Modifications During Key Embryonic Transitions. , 2017, , 261-275.		0
1617	Huntingtin Is Required for Neural But Not Cardiac/Pancreatic Progenitor Differentiation of Mouse Embryonic Stem Cells In vitro. Frontiers in Cellular Neuroscience, 2017, 11, 33.	1.8	19
1618	Ctbp2-mediated β-catenin regulation is required for exit from pluripotency. Experimental and Molecular Medicine, 2017, 49, e385-e385.	3.2	15
1619	Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression. ELife, 2017, 6, .	2.8	120
1620	A lncRNA fine tunes the dynamics of a cell state transition involving Lin28, let-7 and de novo DNA methylation. ELife, 2017, 6, .	2.8	35
1621	Nanog Dynamics in Mouse Embryonic Stem Cells: Results from Systems Biology Approaches. Stem Cells International, 2017, 2017, 1-14.	1.2	27
1622	Neural Differentiation Is Inhibited through HIF1α/β-Catenin Signaling in Embryoid Bodies. Stem Cells International, 2017, 2017, 1-12.	1.2	10
1623	Distinct SoxB1 networks are required for na \tilde{A} ve and primed pluripotency. ELife, 2017, 6, .	2.8	17
1624	Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells. Nature, 2017, 548, 219-223.	13.7	211
1625	Early embryos kept in check. Nature, 2017, 552, 178-179.	13.7	0
1626	Rbm46 regulates mouse embryonic stem cell differentiation by targeting \hat{l}^2 -Catenin mRNA for degradation. PLoS ONE, 2017, 12, e0172420.	1.1	8
1627	Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b. Epigenetics and Chromatin, 2017, 10, 36.	1.8	55

#	Article	IF	CITATIONS
1628	Stellar cannibalism in fits and starts. Nature, 2017, 552, 179-180.	13.7	0
1629	Transcriptional and Epigenetic Control of Astrogliogenesis. , 2017, , 177-195.		1
1630	Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states. ELife, 2017, 6, .	2.8	42
1631	RAS Regulates the Transition from Naive to Primed Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 1088-1101.	2.3	27
1632	Suppression of the ERK–SRF axis facilitates somatic cell reprogramming. Experimental and Molecular Medicine, 2018, 50, e448-e448.	3.2	17
1633	Feedback control of pluripotency in embryonic stem cells: Signaling, transcription and epigenetics. Stem Cell Research, 2018, 29, 180-188.	0.3	23
1634	The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output. Cell Stem Cell, 2018, 22, 369-383.e8.	5.2	75
1635	Ube2s stabilizes β-Catenin through K11-linked polyubiquitination to promote mesendoderm specification and colorectal cancer development. Cell Death and Disease, 2018, 9, 456.	2.7	43
1636	Brd4-independence in ground state pluripotency. Nature Cell Biology, 2018, 20, 513-515.	4.6	0
1637	Suspended graphene oxide nanosheets maintain the self-renewal of mouse embryonic stem cells via down-regulating the expression of Vinculin. Biomaterials, 2018, 171, 1-11.	5.7	22
1638	Pluripotency factors functionally premark cell-type-restricted enhancers in ES cells. Nature, 2018, 556, 510-514.	13.7	42
1639	Identifying Human NaÃ⁻ve Pluripotent Stem Cells â^' Evaluating Stateâ€Specific Reporter Lines and Cellâ€Surface Markers. BioEssays, 2018, 40, e1700239.	1.2	26
1640	Chromatin Accessibility Dynamics during Chemical Induction of Pluripotency. Cell Stem Cell, 2018, 22, 529-542.e5.	5.2	75
1641	Contrasting epigenetic states of heterochromatin in the different types of mouse pluripotent stem cells. Scientific Reports, 2018, 8, 5776.	1.6	34
1642	ERF deletion rescues RAS deficiency in mouse embryonic stem cells. Genes and Development, 2018, 32, 568-576.	2.7	13
1643	Comparative analysis of naive, primed and ground state pluripotency in mouse embryonic stem cells originating from the same genetic background. Scientific Reports, 2018, 8, 5884.	1.6	54
1644	Homozygous TAF8 mutation in a patient with intellectual disability results in undetectable TAF8 protein, but preserved RNA polymerase II transcription. Human Molecular Genetics, 2018, 27, 2171-2186.	1.4	22
1645	Haploid embryonic stem cells can be enriched and maintained by simple filtration. Journal of Biological Chemistry, 2018, 293, 5230-5235.	1.6	7

#	Article	IF	CITATIONS
1646	Reduced Self-Diploidization and Improved Survival of Semi-cloned Mice Produced from Androgenetic Haploid Embryonic Stem Cells through Overexpression of Dnmt3b. Stem Cell Reports, 2018, 10, 477-493.	2.3	24
1647	Fine Tuning of Canonical Wnt Stimulation Enhances Differentiation of Pluripotent Stem Cells Independent of β-Catenin-Mediated T-Cell Factor Signaling. Stem Cells, 2018, 36, 822-833.	1.4	12
1648	An Mll4/COMPASS-Lsd1 epigenetic axis governs enhancer function and pluripotency transition in embryonic stem cells. Science Advances, 2018, 4, eaap8747.	4.7	55
1649	Imaging of native transcription factors and histone phosphorylation at high resolution in live cells. Journal of Cell Biology, 2018, 217, 1537-1552.	2.3	35
1650	RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73. Nature Communications, 2018, 9, 424.	5.8	72
1651	GSK-3 Inhibitors: A Double-Edged Sword? – An Update on Tideglusib. Drug Research, 2018, 68, 436-443.	0.7	14
1652	Modeling signalingâ€dependent pluripotency with Boolean logic to predict cell fate transitions. Molecular Systems Biology, 2018, 14, e7952.	3.2	49
1653	Effects of various culture conditions on pluripotent stem cell derivation from chick embryos. Journal of Cellular Biochemistry, 2018, 119, 6325-6336.	1.2	10
1654	Insoluble Microenvironment Facilitating the Generation and Maintenance of Pluripotency. Tissue Engineering - Part B: Reviews, 2018, 24, 267-278.	2.5	5
1655	Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2090-2095.	3.3	181
1656	Capturing the interactome of newly transcribed RNA. Nature Methods, 2018, 15, 213-220.	9.0	170
1657	TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discovery, 2018, 4, 1.	3.1	97
1658	Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human preimplantation epiblast. Development (Cambridge), 2018, 145, .	1.2	155
1659	Phosphorylation of ULK1 by AMPK is essential for mouse embryonic stem cell self-renewal and pluripotency. Cell Death and Disease, 2018, 9, 38.	2.7	37
1660	Preferable in vitro condition for maintaining faithful <scp>DNA</scp> methylation imprinting in mouse embryonic stem cells. Genes To Cells, 2018, 23, 146-160.	0.5	11
1661	Parallel derivation of isogenic human primed and naive induced pluripotent stem cells. Nature Communications, 2018, 9, 360.	5.8	104
1662	Pluripotency Deconstructed. Development Growth and Differentiation, 2018, 60, 44-52.	0.6	72
1663	VE-Cadherin regulates the self-renewal of mouse embryonic stem cells via LIF/Stat3 signaling pathway. Biomaterials, 2018, 158, 34-43.	5.7	16

#	Article	IF	CITATIONS
1664	From Otic Induction to Hair Cell Production: Pax2 ^{EGFP} Cell Line Illuminates Key Stages of Development in Mouse Inner Ear Organoid Model. Stem Cells and Development, 2018, 27, 237-251.	1.1	32
1665	Wnt Signaling in Stem Cells and Cancer Stem Cells: A Tale of Two Coactivators. Progress in Molecular Biology and Translational Science, 2018, 153, 209-244.	0.9	40
1666	GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports, 2018, 10, 287-299.	2.3	27
1667	Cell surface markers for the identification and study of human naive pluripotent stem cells. Stem Cell Research, 2018, 26, 36-43.	0.3	39
1668	Differentiation of female Oct4â€GFP embryonic stem cells into germ lineage cells. Cell Biology International, 2018, 42, 488-494.	1.4	1
1669	Allele-specific repression of Sox2 through the long non-coding RNA Sox2ot. Scientific Reports, 2018, 8, 386.	1.6	21
1670	Silencing of the IncRNA Zeb2-NAT facilitates reprogramming of aged fibroblasts and safeguards stem cell pluripotency. Nature Communications, 2018, 9, 94.	5.8	49
1671	Network Features and Dynamical Landscape of Naive and Primed Pluripotency. Biophysical Journal, 2018, 114, 237-248.	0.2	11
1672	TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochimica Et Biophysica Sinica, 2018, 50, 68-73.	0.9	27
1673	Blastocyst-like structures generated solely from stem cells. Nature, 2018, 557, 106-111.	13.7	366
1675	GSK-3 promotes S phase entry and progression in <i>C. elegans</i> germline stem cells to maintain tissue output. Development (Cambridge), 2018, 145, .	1.2	13
1676	Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discovery, 2018, 4, 21.	2.0	40
1677	The principles that govern transcription factor network functions in stem cells. Development (Cambridge), 2018, 145, .	1.2	64
1678	Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy, 2018, 20, 670-686.	0.3	31
1679	Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition. Journal of Biological Chemistry, 2018, 293, 4445-4455.	1.6	16
1680	Polymersome nanoparticles for delivery of Wnt-activating small molecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1267-1277.	1.7	15
1681	Deconstructing the pluripotency gene regulatory network. Nature Cell Biology, 2018, 20, 382-392.	4.6	79
1682	Zeb1-Hdac2-eNOS circuitry identifies early cardiovascular precursors in naive mouse embryonic stem cells. Nature Communications, 2018, 9, 1281.	5.8	14

#	Article	IF	Citations
1683	Inhibition of BET selectively eliminates undifferentiated pluripotent stem cells. Science Bulletin, 2018, 63, 477-487.	4.3	4
1684	CRISPR/Cas9-edited Pax6-GFP reporter system facilitates the generationÂof mouse neural progenitor cells during differentiation. Journal of Genetics and Genomics, 2018, 45, 277-280.	1.7	4
1685	A mathematical model for the virus medical imaging technique. International Journal of Geometric Methods in Modern Physics, 2018, 15, 1850121.	0.8	6
1686	KLF4 Nuclear Export Requires ERK Activation and Initiates Exit from Naive Pluripotency. Stem Cell Reports, 2018, 10, 1308-1323.	2.3	38
1687	Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Molecular Neurobiology, 2018, 55, 3351-3371.	1.9	85
1688	Chick derived induced pluripotent stem cells by the polyâ€cistronic transposon with enhanced transcriptional activity. Journal of Cellular Physiology, 2018, 233, 990-1004.	2.0	15
1689	Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 2018, 14, 262-276.	5.6	16
1690	Small Molecule Antagonist of Cell Surface Glycosaminoglycans Restricts Mouse Embryonic Stem Cells in a Pluripotent State. Stem Cells, 2018, 36, 45-54.	1.4	14
1691	Esrrb, an estrogenâ€related receptor involved in early development, pluripotency, and reprogramming. FEBS Letters, 2018, 592, 852-877.	1.3	59
1693	Noncoding RNAs in the Regulation of Pluripotency and Reprogramming. Stem Cell Reviews and Reports, 2018, 14, 58-70.	5.6	28
1694	Application of genome editing technologies in rats for human disease models. Journal of Human Genetics, 2018, 63, 115-123.	1.1	13
1696	Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis. Cell Research, 2018, 28, 126-129.	5.7	46
1697	Anti-Scarring Drug Screening with Near-Infrared Molecular Probes Targeting Fibroblast Activation Protein-α. ACS Applied Bio Materials, 2018, 1, 2054-2061.	2.3	11
1698	Embryonic Stem Cells Derived Kidney Organoids as Faithful Models to Target Programmed Nephrogenesis. Scientific Reports, 2018, 8, 16618.	1.6	18
1699	A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Developmental Cell, 2018, 47, 509-523.e5.	3.1	66
1700	Klf5 suppresses ERK signaling in mouse pluripotent stem cells. PLoS ONE, 2018, 13, e0207321.	1.1	17
1701	βcatenin is a marker of poor clinical characteristics and suppressed immune infiltration in testicular germ cell tumors. BMC Cancer, 2018, 18, 1062.	1.1	20
1702	Gain of CTCF-Anchored Chromatin Loops Marks the Exit from Naive Pluripotency. Cell Systems, 2018, 7, 482-495.e10.	2.9	62

#	Article	IF	CITATIONS
1703	Histone Acetyltransferase KAT2A Stabilizes Pluripotency with Control of Transcriptional Heterogeneity. Stem Cells, 2018, 36, 1828-1838.	1.4	35
1704	Activation of Hes1 and Msx1 in Transgenic Mouse Embryonic Stem Cells Increases Differentiation into Neural Crest Derivatives. International Journal of Molecular Sciences, 2018, 19, 4025.	1.8	6
1705	Metabolic Signaling into Chromatin Modifications in the Regulation of Gene Expression. International Journal of Molecular Sciences, 2018, 19, 4108.	1.8	21
1706	Screening-Based Chemical Approaches to Unravel Stem Cell Biology. Stem Cell Reports, 2018, 11, 1312-1323.	2.3	7
1707	Interactome determination of a Long Noncoding RNA implicated in Embryonic Stem Cell Self-Renewal. Scientific Reports, 2018, 8, 17568.	1.6	14
1708	Basic Characteristics of Muse Cells. Advances in Experimental Medicine and Biology, 2018, 1103, 13-41.	0.8	23
1709	Honey bee Royalactin unlocks conserved pluripotency pathway in mammals. Nature Communications, 2018, 9, 5078.	5.8	22
1710	Analyzing bovine OCT4 and NANOG enhancer activity in pluripotent stem cells using fluorescent protein reporters. PLoS ONE, 2018, 13, e0203923.	1.1	2
1711	Live-Cell Imaging and Functional Dissection of Xist RNA Reveal Mechanisms of X Chromosome Inactivation and Reactivation. IScience, 2018, 8, 1-14.	1.9	22
1712	LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. Journal of Cell Science, 2018, 131, .	1.2	4
1713	Integrative Omics for Interactomes. , 2018, , 39-49.		3
1714	Esrrb extinction triggers dismantling of naÃ ⁻ ve pluripotency and marks commitment to differentiation. EMBO Journal, 2018, 37, .	3.5	25
1715	A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell, 2018, 174, 391-405.e19.	13.5	381
1716	Polymer Thin Film–Induced Tumor Spheroids Acquire Cancer Stem Cell–like Properties. Cancer Research, 2018, 78, 6890-6902.	0.4	20
1717	Quantitative subcellular proteomics using SILAC reveals enhanced metabolic buffering in the pluripotent ground state. Stem Cell Research, 2018, 33, 135-145.	0.3	8
1718	PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex. Nature Communications, 2018, 9, 4300.	5.8	46
1719	Biology and manipulation technologies of male germline stem cells in mammals. Reproductive Medicine and Biology, 2018, 17, 398-406.	1.0	9
1720	Screening for Factors Involved in X Chromosome Inactivation Using Haploid ESCs. Methods in Molecular Biology, 2018, 1861, 1-18.	0.4	2

0.			D	
	ТАТ	$1 \cap N$	RFL	PORT

#	Article	IF	CITATIONS
1721	Live Imaging of X-Chromosome Inactivation and Reactivation Kinetics. Methods in Molecular Biology, 2018, 1861, 73-89.	0.4	4
1722	Fbxo2 mouse and embryonic stem cell reporter lines delineate in vitro-generated inner ear sensory epithelia cells and enable otic lineage selection and Cre-recombination. Developmental Biology, 2018, 443, 64-77.	0.9	13
1723	Targeted DamID reveals differential binding of mammalian pluripotency factors. Development (Cambridge), 2018, 145, .	1.2	43
1724	Transcription Factors Drive Tet2-Mediated Enhancer Demethylation to Reprogram Cell Fate. Cell Stem Cell, 2018, 23, 727-741.e9.	5.2	156
1725	The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Research, 2018, 46, 11502-11513.	6.5	40
1726	Single-cell RNA-sequencing reveals the existence of naive and primed pluripotency in pre-implantation rhesus monkey embryos. Genome Research, 2018, 28, 1481-1493.	2.4	25
1727	Genomic integrity of groundâ€state pluripotency. Journal of Cellular Biochemistry, 2018, 119, 9781-9789.	1.2	0
1728	CARIP-Seq and ChIP-Seq: Methods to Identify Chromatin-Associated RNAs and Protein-DNA Interactions in Embryonic Stem Cells. Journal of Visualized Experiments, 2018, , .	0.2	2
1729	MTF2 recruits Polycomb Repressive Complex 2 by helical-shape-selective DNA binding. Nature Genetics, 2018, 50, 1002-1010.	9.4	147
1730	Reconstitution of Germ Cell Development In Vitro. , 2018, , 1-19.		0
1730 1731	Reconstitution of Germ Cell Development In Vitro. , 2018, , 1-19. Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation. Journal of Molecular Biology, 2018, 430, 2734-2746.	2.0	0
	Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome	2.0	
1731	Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation. Journal of Molecular Biology, 2018, 430, 2734-2746. Exit from Naive Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males. Cell		4
1731 1732	Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation. Journal of Molecular Biology, 2018, 430, 2734-2746. Exit from Naive Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males. Cell Stem Cell, 2018, 22, 919-928.e6. Inductive and Selective Effects of GSK3 and MEK Inhibition on Nanog Heterogeneity in Embryonic Stem	5.2	4 40
1731 1732 1733	Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation. Journal of Molecular Biology, 2018, 430, 2734-2746. Exit from Naive Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males. Cell Stem Cell, 2018, 22, 919-928.e6. Inductive and Selective Effects of GSK3 and MEK Inhibition on Nanog Heterogeneity in Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 58-69. An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem	5.2 2.3	4 40 25
1731 1732 1733 1734	Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation. Journal of Molecular Biology, 2018, 430, 2734-2746. Exit from Naive Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males. Cell Stem Cell, 2018, 22, 919-928.e6. Inductive and Selective Effects of GSK3 and MEK Inhibition on Nanog Heterogeneity in Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 58-69. An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell Stem Cell, 2018, 22, 851-864.e5. Modulation of STAT3 phosphorylation by PTPN2 inhibits naÃ-ve pluripotency of embryonic stem cells.	5.2 2.3 5.2	4 40 25 47
1731 1732 1733 1734 1735	Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation. Journal of Molecular Biology, 2018, 430, 2734-2746. Exit from Naive Pluripotency Induces a Transient X Chromosome Inactivation-like State in Males. Cell Stem Cell, 2018, 22, 919-928.e6. Inductive and Selective Effects of GSK3 and MEK Inhibition on Nanog Heterogeneity in Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 58-69. An Intermediate Pluripotent State Controlled by MicroRNAs Is Required for the Naive-to-Primed Stem Cell Transition. Cell Stem Cell, 2018, 22, 851-864.e5. Modulation of STAT3 phosphorylation by PTPN2 inhibits naÃ ⁻ ve pluripotency of embryonic stem cells. FEBS Letters, 2018, 592, 2227-2237.	5.2 2.3 5.2 1.3	4 40 25 47 8

#	Article	IF	CITATIONS
1739	Pluripotent stem cells: induction and self-renewal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170213.	1.8	28
1740	The Tumor Suppressor CIC Directly Regulates MAPK Pathway Genes via Histone Deacetylation. Cancer Research, 2018, 78, 4114-4125.	0.4	56
1741	Postembryonic Axis Formation in Planarians. Diversity and Commonality in Animals, 2018, , 743-761.	0.7	1
1742	Inverse agonism of retinoic acid receptors directs epiblast cells into the paraxial mesoderm lineage. Stem Cell Research, 2018, 30, 85-95.	0.3	2
1743	GSK3 inhibition, but not epigenetic remodeling, mediates efficient derivation of germline embryonic stem cells from nonobese diabetic mice. Stem Cell Research, 2018, 31, 5-10.	0.3	4
1744	SOXF factors regulate murine satellite cell self-renewal and function through inhibition of \hat{l}^2 -catenin activity. ELife, 2018, 7, .	2.8	17
1745	States and Origins of Mammalian Embryonic Pluripotency In Vivo and in a Dish. Current Topics in Developmental Biology, 2018, 128, 151-179.	1.0	9
1746	SC1 inhibits the differentiation of F9 embryonic carcinoma cells induced by retinoic acid. Acta Biochimica Et Biophysica Sinica, 2018, 50, 793-799.	0.9	1
1747	A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Developmental Biology, 2018, 441, 104-126.	0.9	45
1748	Capturing and Interconverting Embryonic Cell Fates in a Dish. Current Topics in Developmental Biology, 2018, 128, 181-202.	1.0	5
1749	The polycomb group protein Yaf2 regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner. Journal of Biological Chemistry, 2018, 293, 12793-12804.	1.6	9
1750	Telomeric noncoding RNA promotes mouse embryonic stem cell self-renewal through inhibition of TCF3 activity. American Journal of Physiology - Cell Physiology, 2018, 314, C712-C720.	2.1	9
1751	Stem Cell-Derived Spermatozoa. , 2018, , 315-345.		2
1752	Directed Evolution of Reprogramming Factors by Cell Selection andÂSequencing. Stem Cell Reports, 2018, 11, 593-606.	2.3	18
1753	Neural stem cell differentiation into mature neurons: Mechanisms of regulation and biotechnological applications. Biotechnology Advances, 2018, 36, 1946-1970.	6.0	106
1754	Production of Transgenic Livestock: Overview of Transgenic Technologies. , 2018, , 95-121.		5
1755	Mammalian embryo comparison identifies novel pluripotency genes associated with the naÃ ⁻ ve or primed state. Biology Open, 2018, 7, .	0.6	32
1756	Construction of Discrete Model of Human Pluripotency in Predicting Lineage-Specific Outcomes and Targeted Knockdowns of Essential Genes. Scientific Reports, 2018, 8, 11031.	1.6	3

#	Article	IF	CITATIONS
1758	The Pleiotropic Effects of the Canonical Wnt Pathway in Early Development and Pluripotency. Genes, 2018, 9, 93.	1.0	54
1759	Wnt Signaling and Its Impact on Mitochondrial and Cell Cycle Dynamics in Pluripotent Stem Cells. Genes, 2018, 9, 109.	1.0	35
1760	Feeders facilitate telomere maintenance and chromosomal stability of embryonic stem cells. Nature Communications, 2018, 9, 2620.	5.8	33
1761	In vitro generation of mouse polarized embryo-like structures from embryonic and trophoblast stem cells. Nature Protocols, 2018, 13, 1586-1602.	5.5	30
1762	LincU Preserves NaÃ ⁻ ve Pluripotency by Restricting ERK Activity in Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 395-409.	2.3	18
1763	Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution. Cell Reports, 2018, 24, 489-502.	2.9	77
1764	Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2018, 1816, 55-66.	0.4	4
1765	A Simplified and Efficient Protocol for Derivation and Maintenance of Highâ€Quality Mouse Primed Pluripotent Stem Cells Using Wnt Inhibition. Current Protocols in Stem Cell Biology, 2018, 46, e60.	3.0	0
1767	Embryonic Stem Cells. , 2018, , 1-51.		1
1768	Distinct requirements for the maintenance and establishment of mouse embryonic stem cells. Stem Cell Research, 2018, 31, 55-61.	0.3	1
1769	2i, or Not 2i: The Soliloquy of Nanog-Negative Mouse Embryonic Stem Cells. Stem Cell Reports, 2018, 11, 1-3.	2.3	12
1770	PRDM14 Is a Unique Epigenetic Regulator Stabilizing Transcriptional Networks for Pluripotency. Frontiers in Cell and Developmental Biology, 2018, 6, 12.	1.8	30
1771	Cycling to Meet Fate: Connecting Pluripotency to the Cell Cycle. Frontiers in Cell and Developmental Biology, 2018, 6, 57.	1.8	35
1772	Insulin signaling acts in adult adipocytes via GSK-3β and independently of FOXO to control Drosophila female germline stem cell numbers. Developmental Biology, 2018, 440, 31-39.	0.9	48
1773	ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast. Stem Cell Research and Therapy, 2018, 9, 2.	2.4	15
1774	JAK/STAT3 regulated global gene expression dynamics during late-stage reprogramming process. BMC Genomics, 2018, 19, 183.	1.2	22
1775	Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naÃ ⁻ ve embryonic stem cells. Epigenetics and Chromatin, 2018, 11, 7.	1.8	39

	Сітатіог	CITATION REPORT	
#	Article	IF	CITATIONS
1778	Pluripotency—What Does Cell Polarity Have to Do With It?. , 2018, , 31-60.		4
1779	Laser-assisted cell removing (LACR) technology contributes to the purification process of the undifferentiated cell fraction during pluripotent stem cell culture. Biochemical and Biophysical Research Communications, 2018, 503, 3114-3120.	1.0	1
1780	Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming. Cell Reports, 2018, 24, 1977-1985.e7.	2.9	31
1781	Single cell analysis reveals a biophysical aspect of collective cell-state transition in embryonic stem cell differentiation. Scientific Reports, 2018, 8, 11965.	1.6	11
1782	Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. Cell Stem Cell, 2018, 23, 412-425.e10.	5.2	59
1783	MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science, 2018, 361, 1389-1392.	6.0	207
1784	Tbx6 Induces Nascent Mesoderm from Pluripotent Stem Cells and Temporally Controls Cardiac versus Somite Lineage Diversification. Cell Stem Cell, 2018, 23, 382-395.e5.	5.2	53
1785	Pluripotency in avian species. International Journal of Developmental Biology, 2018, 62, 245-255.	0.3	4
1787	Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6369-6374.	3.3	29
1788	Small-Molecule Inhibitors Disrupt let-7 Oligouridylation and Release the Selective Blockade of let-7 Processing by LIN28. Cell Reports, 2018, 23, 3091-3101.	2.9	81
1789	Epigenome regulation during germ cell specification and development from pluripotent stem cells. Current Opinion in Genetics and Development, 2018, 52, 57-64.	1.5	27
1790	Esrrb Unlocks Silenced Enhancers for Reprogramming to Naive Pluripotency. Cell Stem Cell, 2018, 23, 266-275.e6.	5.2	79
1791	Negative feedback via RSK modulates Erkâ€dependent progression from naÃ⁻ve pluripotency. EMBO Reports, 2018, 19, .	2.0	28
1792	What Can Stem Cell Models Tell Us About Human Germ Cell Biology?. Current Topics in Developmental Biology, 2018, 129, 25-65.	1.0	18
1793	Enhancement of neuronal differentiation by using small molecules modulating Nodal/Smad, Wnt/β-catenin, and FGF signaling. Biochemical and Biophysical Research Communications, 2018, 503, 352-358.	1.0	10
1794	Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency. Journal of Visualized Experiments, 2018, , .	0.2	13
1795	Induction of fetal primary oocytes and the meiotic prophase from mouse pluripotent stem cells. Methods in Cell Biology, 2018, 144, 409-429.	0.5	8
1796	An Alternative Culture Method to Maintain Genomic Hypomethylation of Mouse Embryonic Stem Cells Using MEK Inhibitor PD0325901 and Vitamin C. Journal of Visualized Experiments, 2018, , .	0.2	0

#	Article	IF	CITATIONS
1797	Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation. Protein and Cell, 2019, 10, 20-30.	4.8	16
1798	Efficient derivation of extended pluripotent stem cells from NOD-scid Il2rgâ^'/â^' mice. Protein and Cell, 2019, 10, 31-42.	4.8	6
1799	Chimeric analysis with newly established EGFP/DsRed2-tagged ES cells identify HYDIN as essential for spermiogenesis in mice. Experimental Animals, 2019, 68, 25-34.	0.7	14
1800	Superhero Rictor promotes cellular differentiation of mouse embryonic stem cells. Cell Death and Differentiation, 2019, 26, 958-968.	5.0	19
1801	Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation. Stem Cells International, 2019, 2019, 1-10.	1.2	10
1802	Transient Treatment of Human Pluripotent Stem Cells with DMSO to Promote Differentiation. Journal of Visualized Experiments, 2019, , .	0.2	7
1803	BART-Seq: cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis. Genome Biology, 2019, 20, 155.	3.8	19
1804	Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1464.	6.6	11
1805	Distinct Molecular Trajectories Converge to Induce Naive Pluripotency. Cell Stem Cell, 2019, 25, 388-406.e8.	5.2	33
1806	Pluripotency reprogramming by competent and incompetent POU factors uncovers temporal dependency for Oct4 and Sox2. Nature Communications, 2019, 10, 3477.	5.8	60
1807	Generation of Induced Pluripotent Cancer Cells from Glioblastoma Multiform Cell Lines. Cellular Reprogramming, 2019, 21, 238-248.	0.5	3
1808	Efficient establishment of induced pluripotent stem cells from various animals Journal of Animal Genetics, 2019, 47, 11-20.	0.5	0
1809	Expanded potential stem cell media as a tool to study human developmental hematopoiesis in vitro. Experimental Hematology, 2019, 76, 1-12.e5.	0.2	9
1810	Glutamine independence is a selectable feature of pluripotent stem cells. Nature Metabolism, 2019, 1, 676-687.	5.1	46
1811	Epigenetic Regulation of Transition Among Different Pluripotent States: Concise Review. Stem Cells, 2019, 37, 1372-1380.	1.4	24
1812	Wnt Signaling Modulates Routes of Retinoic Acid-Induced Differentiation of Embryonic Stem Cells. Stem Cells and Development, 2019, 28, 1334-1345.	1.1	5
1813	Gaining Insights into the Function of Post-Translational Protein Modification Using Genome Engineering and Molecular Cell Biology. Journal of Molecular Biology, 2019, 431, 3920-3932.	2.0	3
1814	Roles of MicroRNAs in Establishing and Modulating Stem Cell Potential. International Journal of Molecular Sciences, 2019, 20, 3643.	1.8	19

ARTICLE IF CITATIONS Long noncoding RNA CCDC144NL-AS1 knockdown induces naÃ-ve-like state conversion of human 1815 2.4 9 pluripotent stem cells. Stem Cell Research and Therapy, 2019, 10, 220. Pluripotent stem cell-derived organogenesis in the rat model system. Transgenic Research, 2019, 28, 1.3 287-297. Recent advances of induced pluripotent stem cells application in neurodegenerative diseases. 1817 2.519 Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 95, 109674. Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture 2.4 system. Stem Cell Research and Therapy, 2019, 10, 193. Epiblast Formation by TEAD-YAP-Dependent Expression of Pluripotency Factors and Competitive 1819 3.1 92 Elimination of Unspecified Cells. Developmental Cell, 2019, 50, 139-154.e5. Defining Human Pluripotency. Cell Stem Cell, 2019, 25, 9-22. 5.2 A Revolution in Reprogramming: Small Molecules. Current Molecular Medicine, 2019, 19, 77-90. 1821 0.6 14 The Pluripotency Continuum and Interspecies Chimeras. Current Protocols in Stem Cell Biology, 2019, 50, e87. Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell, 2019, 1823 13.5 175 179, 687-702.e18. Suppression of PRPF4 regulates pluripotency, proliferation, and differentiation in mouse embryonic 1824 1.4 stem cells. Cell Biochemistry and Function, 2019, 37, 608-617. The critical role of calcineurin/NFAT (C/N) pathways and effective antitumor prospect for colorectal 1825 1.2 11 cancers. Journal of Cellular Biochemistry, 2019, 120, 19254-19273. Adenomatous Polyposis Coli as a Major Regulator of Human Embryonic Stem Cells Self-Renewal. Stem 1.4 Cells, 2019, 37, 1505-1515. Interplay between Metabolites and the Epigenome in Regulating Embryonic and Adult Stem Cell Potency 1827 2.3 38 and Maintenance. Stem Cell Reports, 2019, 13, 573-589. N-cadherin stabilises neural identity by dampening anti-neural signals. Development (Cambridge), 2019, 1.2 146,. Cooperation of FGF/MEK/ERK and Wnt/l2-catenin pathway regulators to promote the proliferation and pluripotency of mouse embryonic stem cells in serum- and feeder-free conditions. Bioresources and 1829 2.0 5 Bioprocessing, 2019, 6, . Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells. Nature Medicine, 2019, 25, 1691-1698. 69 A Functional Link between Nuclear RNA Decay and Transcriptional Control Mediated by the Polycomb 1831 2.9 32 Repressive Complex 2. Cell Reports, 2019, 29, 1800-1811.e6. Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive 2.3 Pluripotency. Stem Cell Reports, 2019, 13, 1083-1098.

#	Article	IF	Citations
1833	SigHotSpotter: scRNA-seq-based computational tool to control cell subpopulation phenotypes for cellular rejuvenation strategies. Bioinformatics, 2020, 36, 1963-1965.	1.8	11
1834	DNA Methylation Directs Polycomb-Dependent 3D Genome Re-organization in Naive Pluripotency. Cell Reports, 2019, 29, 1974-1985.e6.	2.9	76
1835	Integrative and perturbation based analysis of the transcriptional dynamics of TGFÎ ² /BMP system components in transition from embryonic stem cells to neural progenitors. Stem Cells, 2019, 38, 202-217.	1.4	6
1836	The paradox of metabolism in quiescent stem cells. FEBS Letters, 2019, 593, 2817-2839.	1.3	54
1837	Multifactorial Modeling Reveals a Dominant Role of Wnt Signaling in Lineage Commitment of Human Pluripotent Stem Cells. Bioengineering, 2019, 6, 71.	1.6	6
1838	Nac1 facilitates pluripotency gene activation for establishing somatic cell reprogramming. Biochemical and Biophysical Research Communications, 2019, 518, 253-258.	1.0	4
1839	Elucidating Cysteine-Assisted Synthesis of Indirubin by a Flavin-Containing Monooxygenase. ACS Catalysis, 2019, 9, 9539-9544.	5.5	11
1840	The cell cycle in stem cell proliferation, pluripotency and differentiation. Nature Cell Biology, 2019, 21, 1060-1067.	4.6	233
1841	Profiling chromatin states using single-cell itChIP-seq. Nature Cell Biology, 2019, 21, 1164-1172.	4.6	109
1842	Optogenetic stimulation inhibits the self-renewal of mouse embryonic stem cells. Cell and Bioscience, 2019, 9, 73.	2.1	6
1843	Ectopic activation of WNT signaling in human embryonal carcinoma cells and its effects in short- and long-term in vitro culture. Scientific Reports, 2019, 9, 11928.	1.6	6
1844	Improved methods for the differentiation of hypothalamic vasopressin neurons using mouse induced pluripotent stem cells. Stem Cell Research, 2019, 40, 101572.	0.3	8
1845	Quantitative Multiplexed ChIP Reveals Global Alterations that Shape Promoter Bivalency in Ground State Embryonic Stem Cells. Cell Reports, 2019, 28, 3274-3284.e5.	2.9	21
1846	A Chemically Defined Feeder-free System for the Establishment and Maintenance of the Human Naive Pluripotent State. Stem Cell Reports, 2019, 13, 612-626.	2.3	24
1847	Epigenetic control of transcriptional regulation in pluripotency and early differentiation. Development (Cambridge), 2019, 146, .	1.2	53
1848	Identification of a novel selective and potent inhibitor of glycogen synthase kinase-3. American Journal of Physiology - Cell Physiology, 2019, 317, C1289-C1303.	2.1	27
1849	Recent insights into the naÃ ⁻ ve state of human pluripotency and its applications. Experimental Cell Research, 2019, 385, 111645.	1.2	30
1850	Connecting the molecular function of microRNAs to cell differentiation dynamics. Journal of the Royal Society Interface, 2019, 16, 20190437.	1.5	3

#	Article	IF	CITATIONS
1851	A tunable dual-input system for on-demand dynamic gene expression regulation. Nature Communications, 2019, 10, 4481.	5.8	33
1852	Segregation of the mouse germline and soma. Cell Cycle, 2019, 18, 3064-3071.	1.3	7
1853	Inhibition of Human Y Chromosome Gene, <i>SRY</i> , Promotes NaÃ⁻ve State of Human Pluripotent Stem Cells. Journal of Proteome Research, 2019, 18, 4254-4261.	1.8	5
1854	Effect of single and combined treatments with MPF or MAPK inhibitors on parthenogenetic haploid activation of bovine oocytes. Reproductive Biology, 2019, 19, 386-393.	0.9	8
1855	Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Developmental Cell, 2019, 48, 135-150.	3.1	80
1856	Tissue-Specific <i>Trans</i> Regulation of the Mouse Epigenome. Genetics, 2019, 211, 831-845.	1.2	15
1857	Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell, 2019, 176, 928-943.e22.	13.5	411
1858	De Novo PITX1 Expression Controls Bi-Stable Transcriptional Circuits to Govern Self-Renewal and Differentiation in Squamous Cell Carcinoma. Cell Stem Cell, 2019, 24, 390-404.e8.	5.2	31
1859	Activated MEK/ERK Pathway Drives Widespread and Coordinated Overexpression of UHRF1 and DNMT1 in Cancer cells. Scientific Reports, 2019, 9, 907.	1.6	26
1860	A novel chemically defined serum―and feederâ€free medium for undifferentiated growth of porcine pluripotent stem cells. Journal of Cellular Physiology, 2019, 234, 15380-15394.	2.0	9
1861	A regulatory circuitry locking pluripotent stemness to embryonic stem cell: Interaction between threonine catabolism and histone methylation. Seminars in Cancer Biology, 2019, 57, 72-78.	4.3	18
1862	Wnt/β-catenin signaling pathway safeguards epigenetic stability and homeostasis of mouse embryonic stem cells. Scientific Reports, 2019, 9, 948.	1.6	31
1863	Distinct dormancy progression depending on embryonic regions during mouse embryonic diapauseâ€. Biology of Reproduction, 2019, 100, 1204-1214.	1.2	18
1864	Induced Pluripotent Stem Cells Reprogrammed with Three Inhibitors Show Accelerated Differentiation Potentials with High Levels of 2-Cell Stage Marker Expression. Stem Cell Reports, 2019, 12, 305-318.	2.3	10
1865	Inhibitor mediated WNT and MEK/ERK signalling affects apoptosis and the expression of quality related genes in bovine inÂvitro obtained blastocysts. Biochemical and Biophysical Research Communications, 2019, 510, 403-408.	1.0	2
1866	ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state. Biochemical and Biophysical Research Communications, 2019, 510, 78-84.	1.0	7
1867	<p>Notch pathway is involved in the suppression of colorectal cancer by embryonic stem cell microenvironment</p> . OncoTargets and Therapy, 2019, Volume 12, 2869-2878.	1.0	8
1868	Derivation of novel naiveâ€like porcine embryonic stem cells by a reprogramming factorâ€assisted strategy. FASEB Journal, 2019, 33, 9350-9361.	0.2	12

#	Article	IF	CITATIONS
1869	Generation of ERKâ€Independent Human and Nonâ€Human Primate Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2019, 49, e85.	3.0	2
1870	How to continually make the case for fundamental science: from the perspective of a protein kinase. Biochemistry and Cell Biology, 2019, 97, 665-669.	0.9	1
1871	Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells. Cell Reports, 2019, 27, 3500-3510.e4.	2.9	60
1872	Id1 Stabilizes Epiblast Identity by Sensing Delays in Nodal Activation and Adjusting the Timing of Differentiation. Developmental Cell, 2019, 50, 462-477.e5.	3.1	12
1873	TET enzymes, DNA demethylation and pluripotency. Biochemical Society Transactions, 2019, 47, 875-885.	1.6	76
1874	Dynamical Reorganization of Transcriptional Events Governs Robust Nanog Heterogeneity. Journal of Physical Chemistry B, 2019, 123, 5246-5255.	1.2	4
1875	The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science, 2019, 364, 1156-1162.	6.0	166
1876	Inhibition of Phosphoinositide-3-Kinase Signaling Promotes the Stem Cell State of Trophoblast. Stem Cells, 2019, 37, 1307-1318.	1.4	10
1877	Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sciences, 2019, 232, 116598.	2.0	23
1878	The Complexity of PRC2 Subcomplexes. Trends in Cell Biology, 2019, 29, 660-671.	3.6	178
1878 1880	The Complexity of PRC2 Subcomplexes. Trends in Cell Biology, 2019, 29, 660-671. Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and Postimplantation Embryos in Serum-Free Conditions. Methods in Molecular Biology, 2019, 2005, 29-36.	3.6 0.4	178 1
	Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and		
1880	Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and Postimplantation Embryos in Serum-Free Conditions. Methods in Molecular Biology, 2019, 2005, 29-36. Pig Chimeric Model with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005,	0.4	1
1880 1881	Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and Postimplantation Embryos in Serum-Free Conditions. Methods in Molecular Biology, 2019, 2005, 29-36. Pig Chimeric Model with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005, 101-124. Establishment of induced pluripotent stem cells from common marmoset fibroblasts by RNA-based	0.4 0.4	1
1880 1881 1882	 Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and Postimplantation Embryos in Serum-Free Conditions. Methods in Molecular Biology, 2019, 2005, 29-36. Pig Chimeric Model with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005, 101-124. Establishment of induced pluripotent stem cells from common marmoset fibroblasts by RNA-based reprogramming. Biochemical and Biophysical Research Communications, 2019, 515, 593-599. Kras promotes myeloid differentiation through Wnt/βâ€catenin signaling. FASEB BioAdvances, 2019, 1, 	0.4 0.4 1.0	1 4 17
1880 1881 1882 1883	Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and Postimplantation Embryos in Serum-Free Conditions. Methods in Molecular Biology, 2019, 2005, 29-36. Pig Chimeric Model with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005, 101-124. Establishment of induced pluripotent stem cells from common marmoset fibroblasts by RNA-based reprogramming. Biochemical and Biophysical Research Communications, 2019, 515, 593-599. Kras promotes myeloid differentiation through Wnt/βâ€catenin signaling. FASEB BioAdvances, 2019, 1, 435-449. Stk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation. Journal of	0.4 0.4 1.0 1.3	1 4 17 5
1880 1881 1882 1883 1884	Highly Efficient Derivation of Pluripotent Stem Cells from Mouse Preimplantation and Postimplantation Embryos in Serum-Free Conditions. Methods in Molecular Biology, 2019, 2005, 29-36. Pig Chimeric Model with Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2005, 101-124. Establishment of induced pluripotent stem cells from common marmoset fibroblasts by RNA-based reprogramming. Biochemical and Biophysical Research Communications, 2019, 515, 593-599. Kras promotes myeloid differentiation through Wht/βà€catenin signaling. FASEB BioAdvances, 2019, 1, 435-449. Stk40 deletion elevates c-JUN protein level and impairs mesoderm differentiation. Journal of Biological Chemistry, 2019, 294, 9959-9972. A distal enhancer maintaining Hoxa1 expression orchestrates retinoic acid-induced early ESCs	0.4 0.4 1.0 1.3 1.6	1 4 17 5 5

#	Article	IF	CITATIONS
1888	Cell cycle dynamics of mouse embryonic stem cells in the ground state and during transition to formative pluripotency. Scientific Reports, 2019, 9, 8051.	1.6	22
1889	The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. International Journal of Molecular Sciences, 2019, 20, 2667.	1.8	13
1890	bHLH Transcription Factor Math6 Antagonizes TGF-β Signalling in Reprogramming, Pluripotency and Early Cell Fate Decisions. Cells, 2019, 8, 529.	1.8	8
1891	ZIC3 Controls the Transition from Naive to Primed Pluripotency. Cell Reports, 2019, 27, 3215-3227.e6.	2.9	47
1892	Live imaging of ERK signaling dynamics in differentiating mouse embryonic stem cells. Development (Cambridge), 2019, 146, .	1.2	22
1893	Automated Formal Reasoning to Uncover Molecular Programs of Self-Renewal. Methods in Molecular Biology, 2019, 1975, 79-105.	0.4	2
1894	Non-invasive detection of DNA methylation states in carcinoma and pluripotent stem cells using Raman microspectroscopy and imaging. Scientific Reports, 2019, 9, 7014.	1.6	24
1895	Liquid-type non-thermal atmospheric plasma ameliorates vocal fold scarring by modulating vocal fold fibroblast. Experimental Biology and Medicine, 2019, 244, 824-833.	1.1	7
1896	Intracellular Ca2+ Homeostasis and Nuclear Export Mediate Exit from Naive Pluripotency. Cell Stem Cell, 2019, 25, 210-224.e6.	5.2	24
1897	Effect of embryo cryopreservation on derivation efficiency, pluripotency, and differentiation capacity of mouse embryonic stem cells. Journal of Cellular Physiology, 2019, 234, 21962-21972.	2.0	7
1898	Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Cell Systems, 2019, 8, 427-445.e10.	2.9	111
1899	Germ cell reprogramming. Current Topics in Developmental Biology, 2019, 135, 91-125.	1.0	36
1900	Modulation of adhesion microenvironment using mesh substrates triggers self-organization and primordial germ cell-like differentiation in mouse ES cells. APL Bioengineering, 2019, 3, 016102.	3.3	4
1901	FGF/ERK signaling pathway: how it operates in mammalian preimplantation embryos and embryo-derived stem cells. International Journal of Developmental Biology, 2019, 63, 171-186.	0.3	14
1902	Activation-Induced Cytidine Deaminase Regulates Fibroblast Growth Factor/Extracellular Signal-Regulated Kinases Signaling to Achieve the NaÃ⁻ve Pluripotent State During Reprogramming. Stem Cells, 2019, 37, 1003-1017.	1.4	5
1903	Pluripotent Stem Cell Heterogeneity. Advances in Experimental Medicine and Biology, 2019, 1123, 71-94.	0.8	34
1904	Evolutionary view of pluripotency seen from early development of non-mammalian amniotes. Developmental Biology, 2019, 452, 95-103.	0.9	2
1905	Epigenetic modulation of a hardwired 3D chromatin landscape in two naive states of pluripotency. Nature Cell Biology, 2019, 21, 568-578.	4.6	55

#	Article	IF	CITATIONS
1906	Advanced Therapies: Clinical, Non-clinical and Quality Considerations. , 2019, , 357-402.		1
1907	Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency. Cell Stem Cell, 2019, 24, 785-801.e7.	5.2	85
1908	From embryonic stem cells to induced pluripotent stem cells—Ready for clinical therapy?. Clinical Transplantation, 2019, 33, e13573.	0.8	12
1909	Beyond the mouse: non-rodent animal models for study of early mammalian development and biomedical research. International Journal of Developmental Biology, 2019, 63, 187-201.	0.3	31
1910	Deep Learning Neural Networks Highly Predict Very Early Onset of Pluripotent Stem Cell Differentiation. Stem Cell Reports, 2019, 12, 845-859.	2.3	82
1911	Mammalian haploid stem cells: establishment, engineering and applications. Cellular and Molecular Life Sciences, 2019, 76, 2349-2367.	2.4	7
1912	TSA restores hair follicle-inductive capacity of skin-derived precursors. Scientific Reports, 2019, 9, 2867.	1.6	18
1913	Role of Î ² -Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes, 2019, 10, 176.	1.0	28
1914	A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nature Communications, 2019, 10, 1368.	5.8	53
1915	Inhibitory action of an ERK1/2 inhibitor on primitive endoderm cell differentiation from mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2019, 512, 399-404.	1.0	1
1916	The molecular logic of Nanog-induced self-renewal in mouse embryonic stem cells. Nature Communications, 2019, 10, 1109.	5.8	88
1917	Unexpected genomic rearrangements at targeted loci associated with CRISPR/Cas9-mediated knock-in. Scientific Reports, 2019, 9, 3486.	1.6	23
1918	Allele-specific RNA-seq expression profiling of imprinted genes in mouse isogenic pluripotent states. Epigenetics and Chromatin, 2019, 12, 14.	1.8	11
1919	Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nature Communications, 2019, 10, 1598.	5.8	50
1920	Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Reports, 2019, 27, 442-454.e5.	2.9	37
1921	Embryonic stem cells become mechanoresponsive upon exit from ground state of pluripotency. Open Biology, 2019, 9, 180203.	1.5	16
1922	Programming of ES cells and reprogramming of fibroblasts into renal lineage-like cells. Experimental Cell Research, 2019, 379, 225-234.	1.2	2
1923	Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development (Cambridge), 2019, 146, .	1.2	77

#	Article	IF	CITATIONS
1924	Threonine Catabolism: An Unexpected Epigenetic Regulator of Mouse Embryonic Stem Cells. , 2019, , 1585-1604.		0
1925	Forward and Reverse Epigenomics in Embryonic Stem Cells. , 2019, , 2269-2288.		0
1926	Proteotyping pluripotency with mass spectrometry. Expert Review of Proteomics, 2019, 16, 391-400.	1.3	0
1927	Propagation and Maintenance of Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2019, 1940, 33-45.	0.4	6
1928	CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells. Methods in Molecular Biology, 2019, 1960, 1-21.	0.4	3
1929	Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Research, 2019, 47, 3711-3727.	6.5	53
1930	Machine Learning of Stem Cell Identities From Single-Cell Expression Data via Regulatory Network Archetypes. Frontiers in Genetics, 2019, 10, 2.	1.1	14
1931	Resveratrol enhances pluripotency of mouse embryonic stem cells by activating AMPK/Ulk1 pathway. Cell Death Discovery, 2019, 5, 61.	2.0	31
1932	Combining CRISPR/Cas9-mediated knockout with genetic complementation for in-depth mechanistic studies in human ES cells. BioTechniques, 2019, 66, 23-27.	0.8	3
1933	Metabolic signatures of cancer cells and stem cells. Nature Metabolism, 2019, 1, 177-188.	5.1	215
1934	Interaction Between Sympk and Oct4 Promotes Mouse Embryonic Stem Cell Proliferation. Stem Cells, 2019, 37, 743-753.	1.4	2
1935	Kat6b Modulates Oct4 and Nanog Binding to Chromatin in Embryonic Stem Cells and Is Required for Efficient Neural Differentiation. Journal of Molecular Biology, 2019, 431, 1148-1159.	2.0	26
1936	A single-cell molecular map of mouse gastrulation and early organogenesis. Nature, 2019, 566, 490-495.	13.7	658
1937	The transcription factor TFCP2L1 induces expression of distinct target genes and promotes self-renewal of mouse and human embryonic stem cells. Journal of Biological Chemistry, 2019, 294, 6007-6016.	1.6	42
1938	Resolving Cell Fate Decisions during Somatic Cell Reprogramming by Single-Cell RNA-Seq. Molecular Cell, 2019, 73, 815-829.e7.	4.5	79
1939	Acid stimulation-induced semi-pluripotent characteristics in human somatic cells. Acta Oto-Laryngologica, 2019, 139, 146-152.	0.3	0
1940	Loss of Emp2 compromises cardiogenic differentiation in mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2019, 511, 173-178.	1.0	4
1941	Nanog regulates Pou3f1 expression at the exit from pluripotency during gastrulation. Biology Open, 2019, 8, .	0.6	11

#	Article	IF	CITATIONS
1942	A gene regulatory network controls the balance between mesendoderm and ectoderm at pluripotency exit. Molecular Systems Biology, 2019, 15, e9043.	3.2	20
1943	Chromatin establishes an immature version of neuronal protocadherin selection during the naive-to-primed conversion of pluripotent stem cells. Nature Genetics, 2019, 51, 1691-1701.	9.4	27
1944	NaÃ⁻ve human pluripotent stem cells respond to Wnt, Nodal, and LIF signalling to produce expandable naÃ⁻ve extra-embryonic endoderm. Development (Cambridge), 2019, 146, .	1.2	95
1945	TGFβ Family Signaling Pathways in Pluripotent and Teratocarcinoma Stem Cells' Fate Decisions: Balancing Between Self-Renewal, Differentiation, and Cancer. Cells, 2019, 8, 1500.	1.8	29
1946	Generation of Functional CX26–Gapâ€Junctionâ€Plaqueâ€Forming Cells with Spontaneous Ca 2+ Transients via a Gap Junction Characteristic of Developing Cochlea. Current Protocols in Stem Cell Biology, 2019, 51, e100.	3.0	2
1947	Transcriptomic profiling of porcine pluripotency identifies species-specific reprogramming requirements for culturing iPSCs. Stem Cell Research, 2019, 41, 101645.	0.3	8
1948	Genetic Deletion of Hesx1 Promotes Exit from the Pluripotent State and Impairs Developmental Diapause. Stem Cell Reports, 2019, 13, 970-979.	2.3	9
1949	MLL1 Inhibition and Vitamin D Signaling Cooperate to Facilitate the Expanded Pluripotency State. Cell Reports, 2019, 29, 2659-2671.e6.	2.9	8
1950	Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Developmental Cell, 2019, 51, 698-712.e8.	3.1	157
1951	Profiling embryonic stem cell differentiation by MALDI TOF mass spectrometry: development of a reproducible and robust sample preparation workflow. Analyst, The, 2019, 144, 6371-6381.	1.7	9
1952	Self-Assembling Scaffolds Supported Long-Term Growth of Human Primed Embryonic Stem Cells and Upregulated Core and NaÃ ⁻ ve Pluripotent Markers. Cells, 2019, 8, 1650.	1.8	10
1953	Stat3 activation is critical for pluripotency maintenance. Journal of Cellular Physiology, 2019, 234, 1044-1051.	2.0	29
1954	Increasing maternal age of blastocyst affects on efficient derivation and behavior of mouse embryonic stem cells. Journal of Cellular Biochemistry, 2019, 120, 3716-3726.	1.2	8
1955	AMPK activators contribute to maintain naÃ ⁻ ve pluripotency in mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2019, 509, 24-31.	1.0	9
1956	Clathrin-Mediated Endocytosis Regulates a Balance between Opposing Signals to Maintain the Pluripotent State of Embryonic Stem Cells. Stem Cell Reports, 2019, 12, 152-164.	2.3	23
1957	In vitro breeding: application of embryonic stem cells to animal productionâ€. Biology of Reproduction, 2019, 100, 885-895.	1.2	39
1958	Bioenergetic Changes Underline Plasticity of Murine Embryonic Stem Cells. Stem Cells, 2019, 37, 463-475.	1.4	4
1959	Regulation of Kit Expression in Early Mouse Embryos and ES Cells. Stem Cells, 2019, 37, 332-344.	1.4	9

щ		IF	CITATION
#	ARTICLE Longâ€Term Perfusion Culture of Monoclonal Embryonic Stem Cells in 3D Hydrogel Beads for	IF	CITATIONS
1960	Continuous Optical Analysis of Differentiation. Small, 2019, 15, e1804576.	5.2	35
1961	Dppa3 is critical for Lin28a-regulated ES cells naÃ⁻ve–primed state conversion. Journal of Molecular Cell Biology, 2019, 11, 474-488.	1.5	19
1962	Dppa3 in pluripotency maintenance of ES cells and early embryogenesis. Journal of Cellular Biochemistry, 2019, 120, 4794-4799.	1.2	15
1963	Single blastomeres as a source of mouse embryonic stem cells: effect of genetic background, medium supplements, and signaling modulators on derivation efficiency. Journal of Assisted Reproduction and Genetics, 2019, 36, 99-111.	1.2	3
1964	Modern Ways of Obtaining Stem Cells. , 2019, , 17-36.		3
1965	Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cellular and Molecular Life Sciences, 2019, 76, 873-892.	2.4	29
1966	Integrative Proteomic Profiling Reveals PRC2-Dependent Epigenetic Crosstalk Maintains Ground-State Pluripotency. Cell Stem Cell, 2019, 24, 123-137.e8.	5.2	90
1967	In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nature Protocols, 2019, 14, 350-378.	5.5	21
1968	Hydrodynamic shear stress promotes epithelial-mesenchymal transition by downregulating ERK and GSK3β activities. Breast Cancer Research, 2019, 21, 6.	2.2	65
1969	Derivation of Haploid Trophoblast Stem Cells via Conversion InÂVitro. IScience, 2019, 11, 508-518.	1.9	24
1970	CD44s is a crucial ATG7 downstream regulator for stem-like property, invasion, and lung metastasis of human bladder cancer (BC) cells. Oncogene, 2019, 38, 3301-3315.	2.6	37
1971	Defective CFTR promotes intestinal proliferation via inhibition of the hedgehog pathway during cystic fibrosis. Cancer Letters, 2019, 446, 15-24.	3.2	10
1972	X-Chromosome Dosage Modulates Multiple Molecular and Cellular Properties of Mouse Pluripotent Stem Cells Independently of Global DNA Methylation Levels. Stem Cell Reports, 2019, 12, 333-350.	2.3	28
1973	Arrayed functional genetic screenings in pluripotency reprogramming and differentiation. Stem Cell Research and Therapy, 2019, 10, 24.	2.4	3
1974	<i>Xist</i> Intron 1 Repression by Transcriptional-Activator-Like Effectors Designer Transcriptional Factor Improves Somatic Cell Reprogramming in Mice. Stem Cells, 2019, 37, 599-608.	1.4	7
1975	Creating Genetically Modified Marmosets. , 2019, , 335-353.		4
1976	Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metabolism, 2019, 29, 979-992.e4.	7.2	72
1977	A common molecular logic determines embryonic stem cell selfâ€renewal and reprogramming. EMBO Journal, 2019, 38, .	3.5	34

#	Article	IF	CITATIONS
1978	Chemical induced conversion of mouse fibroblasts and human adipose-derived stem cells into skeletal muscle-like cells. Biomaterials, 2019, 193, 30-46.	5.7	23
1979	Metabolic regulation of pluripotency and germ cell fate through αâ€ketoglutarate. EMBO Journal, 2019, 38, .	3.5	77
1980	In Vitro Spermatogenesis From Pluripotent Stem Cells. , 2019, , 105-128.		1
1981	The special stemness functions of Tbx3 in stem cells and cancer development. Seminars in Cancer Biology, 2019, 57, 105-110.	4.3	26
1982	Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials, 2019, 196, 31-45.	5.7	33
1983	Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Seminars in Cell and Developmental Biology, 2019, 87, 79-94.	2.3	24
1984	Current advances in haploid stem cells. Protein and Cell, 2020, 11, 23-33.	4.8	9
1985	Positive transcription elongation factor b and its regulators in development. International Journal of Transgender Health, 2020, 13, 23-33.	1.1	0
1986	GSK-3 signaling is involved in proliferation of chicken primordial germ cells. Theriogenology, 2020, 141, 62-67.	0.9	6
1987	SOX17 in cellular reprogramming and cancer. Seminars in Cancer Biology, 2020, 67, 65-73.	4.3	41
1988	Transgenic Mouse. Methods in Molecular Biology, 2020, , .	0.4	2
1989	Regulation of Cell Fate Decisions in Early Mammalian Embryos. Annual Review of Animal Biosciences, 2020, 8, 377-393.	3.6	23
1990	GP130 signaling and the control of naÃ⁻ve pluripotency in humans, monkeys, and pigs. Experimental Cell Research, 2020, 386, 111712.	1.2	6
1991	Simple differentiation method using FBS identifies DUSP6 as a marker for fine-tuning of FGF-ERK signaling activity in human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2020, 521, 375-382.	1.0	3
1992	Induction of the germ cell fate from pluripotent stem cells in cynomolgus monkeysâ€. Biology of Reproduction, 2020, 102, 620-638.	1.2	40
1993	Specification of the First Mammalian Cell Lineages In Vivo and In Vitro. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035634.	2.3	18
1994	Cancerâ€associated missense mutations enhance the pluripotency reprogramming activity of OCT4 and SOX17. FEBS Journal, 2020, 287, 122-144.	2.2	11
1995	Maternal factor NELFA drives a 2C-like state in mouse embryonic stem cells. Nature Cell Biology, 2020, 22, 175-186.	4.6	72

#	Article	IF	CITATIONS
1996	FLOW-MAP: a graph-based, force-directed layout algorithm for trajectory mapping in single-cell time course datasets. Nature Protocols, 2020, 15, 398-420.	5.5	17
1997	Livestock pluripotency is finally captured in vitro. Reproduction, Fertility and Development, 2020, 32, 11.	0.1	25
1998	A Stem Cell Reporter for Investigating Pluripotency and Self-Renewal in the Rat. Stem Cell Reports, 2020, 14, 154-166.	2.3	6
1999	Choice of factors and medium impinge on success of ESC to TSC conversion. Placenta, 2020, 90, 128-137.	0.7	6
2000	Characterization of geneticâ€originâ€dependent monoallelic expression in mouse embryonic stem cells. Genes To Cells, 2020, 25, 54-64.	0.5	1
2001	A Versatile ES Cell–Based Melanoma Mouse Modeling Platform. Cancer Research, 2020, 80, 912-921.	0.4	11
2002	SETDB1-Mediated Cell Fate Transition between 2C-Like and Pluripotent States. Cell Reports, 2020, 30, 25-36.e6.	2.9	64
2003	MicroRNA-124a inhibits endoderm lineage commitment by targeting Sox17 and Gata6 in mouse embryonic stem cells. Stem Cells, 2020, 38, 504-515.	1.4	5
2004	HBO1 is required for the maintenance of leukaemia stem cells. Nature, 2020, 577, 266-270.	13.7	105
2005	Assisted Reproductive Technologies and Genetic Modifications in Rats. , 2020, , 181-213.		3
2006	The application of cell surface markers to demarcate distinct human pluripotent states. Experimental Cell Research, 2020, 387, 111749.	1.2	9
2007	Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 2020, 16, 3-32.	1.7	292
2008	Standing on the shoulders of giants: The changing landscape of pluripotent stem cells in research. Anatomical Record, 2020, 303, 2597-2602.	0.8	1
2009	Rbm14 maintains the integrity of genomic DNA during early mouse embryogenesis via mediating alternative splicing. Cell Proliferation, 2020, 53, e12724.	2.4	10
2010	Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation. Experimental Cell Research, 2020, 387, 111747.	1.2	3
2011	Mucin-type <i>O</i> -glycosylation controls pluripotency in mouse embryonic stem cells via Wnt receptor endocytosis. Journal of Cell Science, 2020, 133, .	1.2	6
2012	Hypermethylation and reduced expression of Gtl2, Rian and Mirg at the Dlk1-Dio3 imprinted locus as a marker for poor developmental potential of mouse embryonic stem cells. Stem Cell Research, 2020, 48, 101931.	0.3	3
2013	Wnt pathway modulation generates blastomere-derived mouse embryonic stem cells with different pluripotency features. Journal of Assisted Reproduction and Genetics, 2020, 37, 2967-2979.	1.2	3

#	Article	IF	CITATIONS
2014	DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27365-27373.	3.3	43
2015	COL2A1 Is a Novel Biomarker of Melanoma Tumor Repopulating Cells. Biomedicines, 2020, 8, 360.	1.4	8
2016	Live Visualization of ERK Activity in the Mouse Blastocyst Reveals Lineage-Specific Signaling Dynamics. Developmental Cell, 2020, 55, 341-353.e5.	3.1	67
2017	Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains. Mammalian Genome, 2020, 31, 263-286.	1.0	0
2018	Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Scientific Reports, 2020, 10, 12066.	1.6	13
2019	A novel GSK3 inhibitor that promotes self-renewal in mouse embryonic stem cells. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2113-2120.	0.6	5
2020	Critical Role for P53 in Regulating the Cell Cycle of Ground State Embryonic Stem Cells. Stem Cell Reports, 2020, 14, 175-183.	2.3	22
2021	Overcoming Autocrine FGF Signaling-Induced Heterogeneity in Naive Human ESCs Enables Modeling of Random X Chromosome Inactivation. Cell Stem Cell, 2020, 27, 482-497.e4.	5.2	32
2022	\hat{l}^2 -Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. Science Advances, 2020, 6, eaba1593.	4.7	10
2023	Regulation of ERK basal and pulsatile activity control proliferation and exit from the stem cell compartment in mammalian epidermis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17796-17807.	3.3	50
2024	The chemotherapeutic agent CX-5461 irreversibly blocks RNA polymerase I initiation and promoter release to cause nucleolar disruption, DNA damage and cell inviability. NAR Cancer, 2020, 2, zcaa032.	1.6	42
2025	β-Catenin and Associated Proteins Regulate Lineage Differentiation in Ground State Mouse Embryonic Stem Cells. Stem Cell Reports, 2020, 15, 662-676.	2.3	11
2026	The epigenetics of pluripotent stem cells. , 2020, , 25-74.		0
2027	Manipulating the Mediator complex to induce naà ve pluripotency. Experimental Cell Research, 2020, 395, 112215.	1.2	2
2028	Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 2020, 1, 403-415.	6.2	315
2029	ABHD11 Is Critical for Embryonic Stem Cell Expansion, Differentiation and Lipid Metabolic Homeostasis. Frontiers in Cell and Developmental Biology, 2020, 8, 570.	1.8	6
2030	Critical Roles of Translation Initiation and RNA Uridylation in Endogenous Retroviral Expression and Neural Differentiation in Pluripotent Stem Cells. Cell Reports, 2020, 31, 107715.	2.9	21
2031	Trophoblast lineage specification in the mammalian preimplantation embryo. Reproductive Medicine and Biology, 2020, 19, 209-221.	1.0	10

#	Article	IF	CITATIONS
2032	Inhibition of protein kinase D by CID755673 promotes maintenance of the pluripotency of embryonic stem cells. Development (Cambridge), 2020, 147, .	1.2	4
2033	Application of double network of gellan gum and pullulan for bone marrow stem cells differentiation towards chondrogenesis by controlling viscous substrates. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1592-1603.	1.3	13
2034	Naive Pluripotent Stem Cells Exhibit Phenotypic Variability that Is Driven by Genetic Variation. Cell Stem Cell, 2020, 27, 470-481.e6.	5.2	38
2035	Differential Histone Distribution Patterns in Induced Asymmetrically Dividing Mouse Embryonic Stem Cells. Cell Reports, 2020, 32, 108003.	2.9	31
2036	Mapping the Effects of Genetic Variation on Chromatin State and Gene Expression Reveals Loci That Control Ground State Pluripotency. Cell Stem Cell, 2020, 27, 459-469.e8.	5.2	31
2037	MicroRNA-dependent inhibition of PFN2 orchestrates ERK activation and pluripotent state transitions by regulating endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20625-20635.	3.3	12
2038	Canonical Wnt Pathway Controls mESC Self-Renewal Through Inhibition of Spontaneous Differentiation via β-Catenin/TCF/LEF Functions. Stem Cell Reports, 2020, 15, 646-661.	2.3	24
2039	Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell Stem Cell, 2020, 27, 523-531.	5.2	602
2040	Cell Signaling Coordinates Global PRC2 Recruitment and Developmental Gene Expression in Murine Embryonic Stem Cells. IScience, 2020, 23, 101646.	1.9	10
2041	Wnt/Beta-catenin/Esrrb signalling controls the tissue-scale reorganization and maintenance of the pluripotent lineage during murine embryonic diapause. Nature Communications, 2020, 11, 5499.	5.8	35
2042	The Key Role of MicroRNAs in Self-Renewal and Differentiation of Embryonic Stem Cells. International Journal of Molecular Sciences, 2020, 21, 6285.	1.8	21
2043	Fineâ€ŧuning Nanog expression heterogeneity in embryonic stem cells by regulating a Nanog transcriptâ€specific microRNA. FEBS Letters, 2020, 594, 4292-4306.	1.3	4
2044	Characterization and mitigation of gene expression burden in mammalian cells. Nature Communications, 2020, 11, 4641.	5.8	92
2045	Transient exposure to miRâ€203 enhances the differentiation capacity of established pluripotent stem cells. EMBO Journal, 2020, 39, e104324.	3.5	16
2046	The molecular and cellular features of 2-cell-like cells: a reference guide. Development (Cambridge), 2020, 147, .	1.2	62
2047	From pluripotency to totipotency: an experimentalist's guide to cellular potency. Development (Cambridge), 2020, 147, .	1.2	47
2048	Revealing Instability: Genetic Variation Underlies Variability in mESC Pluripotency. Cell Stem Cell, 2020, 27, 347-349.	5.2	0
2049	Drug-Induced NaÃ ⁻ ve iPS Cells Exhibit Better Performance than Primed iPS Cells with Respect to the Ability to Differentiate into Pancreatic β-Cell Lineage. Journal of Clinical Medicine, 2020, 9, 2838.	1.0	5

#	Article	IF	CITATIONS
2050	STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biology, 2020, 21, 243.	3.8	48
2051	Polyploidy of semi-cloned embryos generated from parthenogenetic haploid embryonic stem cells. PLoS ONE, 2020, 15, e0233072.	1.1	3
2052	Stem cells and new intervention measures as emerging therapy in cardiac surgery. Kardiochirurgia I Torakochirurgia Polska, 2020, 17, 1-7.	0.1	0
2053	Pluripotent Stem Cells for Transgenesis in the Rabbit: A Utopia?. Applied Sciences (Switzerland), 2020, 10, 8861.	1.3	0
2054	Formation of Osteochondral Organoids from Murine Induced Pluripotent Stem Cells. Tissue Engineering - Part A, 2021, 27, 1099-1109.	1.6	26
2055	Embryonic Stem Cell Differentiation Is Regulated by SET through Interactions with p53 and \hat{l}^2 -Catenin. Stem Cell Reports, 2020, 15, 1260-1274.	2.3	4
2056	Etv5 safeguards trophoblast stem cells differentiation from mouse EPSCs by regulating fibroblast growth factor receptor 2. Molecular Biology Reports, 2020, 47, 9259-9269.	1.0	2
2057	Inhibition of LTÎ ² R signalling activates WNT-induced regeneration in lung. Nature, 2020, 588, 151-156.	13.7	81
2058	Comparative Metabolomic Profiling of Rat Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2020, 16, 1256-1265.	1.7	4
2059	In vitro capture and characterization of embryonic rosette-stage pluripotency between naive and primed states. Nature Cell Biology, 2020, 22, 534-545.	4.6	91
2060	Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal. Nature Communications, 2020, 11, 2420.	5.8	29
2061	BMP4 resets mouse epiblast stem cells to naive pluripotency through ZBTB7A/B-mediated chromatin remodelling. Nature Cell Biology, 2020, 22, 651-662.	4.6	34
2062	Shh-Mediated Increase in β-Catenin Levels Maintains Cerebellar Granule Neuron Progenitors in Proliferation. Cerebellum, 2020, 19, 645-664.	1.4	3
2063	Inherent mitochondrial activity influences specification of the germ line in pluripotent stem cells. Heliyon, 2020, 6, e03651.	1.4	4
2064	Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. Science Advances, 2020, 6, eaaz0298.	4.7	44
2065	Role of cyclins and cyclin-dependent kinases in pluripotent stem cells and their potential as a therapeutic target. Seminars in Cell and Developmental Biology, 2020, 107, 63-71.	2.3	14
2066	Differential regulation of lineage commitment in human and mouse primed pluripotent stem cells by the nucleosome remodelling and deacetylation complex. Stem Cell Research, 2020, 46, 101867.	0.3	11
2067	Dppa2 and Dppa4 counteract de novo methylation to establish a permissive epigenome for development. Nature Structural and Molecular Biology, 2020, 27, 706-716.	3.6	51

#	Article	IF	CITATIONS
2068	ERK signalling: a master regulator of cell behaviour, life and fate. Nature Reviews Molecular Cell Biology, 2020, 21, 607-632.	16.1	535
2069	Microfluidic platform for 3D cell culture with live imaging and clone retrieval. Lab on A Chip, 2020, 20, 2580-2591.	3.1	17
2070	Persistent DNA Damage and Senescence in the Placenta Impacts Developmental Outcomes of Embryos. Developmental Cell, 2020, 54, 333-347.e7.	3.1	23
2071	Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells. Science Advances, 2020, 6, eaaz6699.	4.7	66
2072	The Problem of Stem Cell Definition. Cell and Tissue Biology, 2020, 14, 169-177.	0.2	3
2073	Functional Categorization of <i>BRCA1</i> Variants of Uncertain Clinical Significance in Homologous Recombination Repair Complementation Assays. Clinical Cancer Research, 2020, 26, 4559-4568.	3.2	19
2074	Novel venom-based peptides (P13 and its derivative—M6) to maintain self-renewal of human embryonic stem cells by activating FGF and TGFβ signaling pathways. Stem Cell Research and Therapy, 2020, 11, 243.	2.4	4
2075	DNA methylation and the core pluripotency network. Developmental Biology, 2020, 464, 145-160.	0.9	15
2076	Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem Cell Reviews and Reports, 2020, 16, 511-523.	1.7	27
2077	Identification of ALPPL2 as a Naive Pluripotent State-Specific Surface Protein Essential for Human Naive Pluripotency Regulation. Cell Reports, 2020, 30, 3917-3931.e5.	2.9	28
2078	Energy Metabolism Regulates Stem Cell Pluripotency. Frontiers in Cell and Developmental Biology, 2020, 8, 87.	1.8	134
2079	STAT3 for Cardiac Regenerative Medicine: Involvement in Stem Cell Biology, Pathophysiology, and Bioengineering. International Journal of Molecular Sciences, 2020, 21, 1937.	1.8	18
2080	Lrig1 expression prospectively identifies stem cells in the ventricular-subventricular zone that are neurogenic throughout adult life. Neural Development, 2020, 15, 3.	1.1	15
2081	Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naÃ ⁻ ve pluripotency. Experimental Cell Research, 2020, 390, 111935.	1.2	13
2082	Yes-Associated Protein and PDZ Binding Motif: A Critical Signaling Pathway in the Control of Human Pluripotent Stem Cells Self-Renewal and Differentiation. Cellular Reprogramming, 2020, 22, 55-61.	0.5	8
2083	The effect of dual inhibition of Ras–MEK–ERK and GSK3β pathways on development of in vitro cultured rabbit embryos. Zygote, 2020, 28, 183-190.	0.5	4
2084	Chemical-defined medium supporting the expansion of human mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 125.	2.4	15
2085	MicroRNAs organize intrinsic variation into stem cell states. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6942-6950.	3.3	19

#	Article	IF	CITATIONS
2086	Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling. Nature Cell Biology, 2020, 22, 389-400.	4.6	24
2087	Phosphoproteomics identifies a bimodal EPHA2 receptor switch that promotes embryonic stem cell differentiation. Nature Communications, 2020, 11, 1357.	5.8	12
2088	Emerging Methods for Enhancing Pluripotent Stem Cell Expansion. Frontiers in Cell and Developmental Biology, 2020, 8, 70.	1.8	28
2089	Exonuclease combinations reduce noises in 3D genomics technologies. Nucleic Acids Research, 2020, 48, e44-e44.	6.5	6
2090	Induced Pluripotent Stem Cells Derived From Two Idiopathic Azoospermia Patients Display Compromised Differentiation Potential for Primordial Germ Cell Fate. Frontiers in Cell and Developmental Biology, 2020, 8, 432.	1.8	10
2091	CGC Repeat Expansion, and Elevated Fmr1 Transcription and Mitochondrial Copy Number in a New Fragile X PM Mouse Embryonic Stem Cell Model. Frontiers in Cell and Developmental Biology, 2020, 8, 482.	1.8	4
2092	Histone Acetyltransferase MOF Blocks Acquisition of Quiescence in Ground-State ESCs through Activating Fatty Acid Oxidation. Cell Stem Cell, 2020, 27, 441-458.e10.	5.2	37
2093	Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21, 571-584.	16.1	1,082
2094	Signaling Inhibitors Accelerate the Conversion of mouse iPS Cells into Cancer Stem Cells in the Tumor Microenvironment. Scientific Reports, 2020, 10, 9955.	1.6	18
2095	STAT3 modulates reprogramming efficiency of human somatic cells; Insights from autosomal dominant Hyper IgE syndrome caused by STAT3 mutations. Biology Open, 2020, 9, .	0.6	3
2096	Activation of transcription factor circuity in 2i-induced ground state pluripotency is independent of repressive global epigenetic landscapes. Nucleic Acids Research, 2020, 48, 7748-7766.	6.5	5
2097	YAP Non-cell-autonomously Promotes Pluripotency Induction in Mouse Cells. Stem Cell Reports, 2020, 14, 730-743.	2.3	19
2099	What is the role of PIWI family proteins in adult pluripotent stem cells? Insights from asexually reproducing animals, planarians. Development Growth and Differentiation, 2020, 62, 407-422.	0.6	8
2100	Tumor Microenvironments in Organs. Advances in Experimental Medicine and Biology, 2020, , .	0.8	2
2101	Reprogramming of chimpanzee fibroblasts into a multipotent cancerous but not fully pluripotent state by transducing iPSC factors in 2i/LIF culture. Differentiation, 2020, 112, 67-76.	1.0	6
2102	Pten-mediated Gsk3β modulates the naÃ⁻ve pluripotency maintenance in embryonic stem cells. Cell Death and Disease, 2020, 11, 107.	2.7	12
2103	IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nature Communications, 2020, 11, 764.	5.8	41
2104	FGF Signaling Pathway: A Key Regulator of Stem Cell Pluripotency. Frontiers in Cell and Developmental Biology, 2020, 8, 79.	1.8	160

#	Article	IF	CITATIONS
2105	Metabolic switch and epithelial–mesenchymal transition cooperate to regulate pluripotency. EMBO Journal, 2020, 39, e102961.	3.5	27
2106	Defined Stem Cell Culture Conditions to Model Mouse Blastocyst Development. Current Protocols in Stem Cell Biology, 2020, 52, e105.	3.0	6
2107	Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and chimeric competency in rabbits. Experimental Cell Research, 2020, 389, 111908.	1.2	4
2108	Inhibition of MACEA2 regulates pluripotency, proliferation, apoptosis, and differentiation in mouse embryonic stem cells. Journal of Cellular Biochemistry, 2020, 121, 4667-4679.	1.2	2
2109	Regulatory Dynamics of Tet1 and Oct4 Resolve Stages of Global DNA Demethylation and Transcriptomic Changes in Reprogramming. Cell Reports, 2020, 30, 2150-2169.e9.	2.9	9
2110	Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Experimental and Molecular Medicine, 2020, 52, 213-226.	3.2	55
2111	A cytokine screen using CRISPR-Cas9 knock-in reporter pig iPS cells reveals that Activin A regulates NANOG. Stem Cell Research and Therapy, 2020, 11, 67.	2.4	5
2112	Overexpression of Nuclear Receptor 5A1 Induces and Maintains an Intermediate State of Conversion between Primed and Naive Pluripotency. Stem Cell Reports, 2020, 14, 506-519.	2.3	11
2113	The two splice variant forms of Cdc42 exert distinct and essential functions in neurogenesis. Journal of Biological Chemistry, 2020, 295, 4498-4512.	1.6	18
2114	HIFâ€1α/Actl6a/H3K9ac axis is critical for pluripotency and lineage differentiation of human induced pluripotent stem cells. FASEB Journal, 2020, 34, 5740-5753.	0.2	14
2115	Coordination of germ layer lineage choice by TET1 during primed pluripotency. Genes and Development, 2020, 34, 598-618.	2.7	7
2116	Identification and functional comparison of Bcl2 splicing isoforms in mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2020, 524, 502-509.	1.0	0
2117	Landscape inferred from gene expression data governs pluripotency in embryonic stem cells. Computational and Structural Biotechnology Journal, 2020, 18, 366-374.	1.9	6
2118	Signal regulators of human naÃ ⁻ ve pluripotency. Experimental Cell Research, 2020, 389, 111924.	1.2	16
2119	Mitochondrial dynamics and metabolism in induced pluripotency. Experimental Gerontology, 2020, 133, 110870.	1.2	15
2120	Activin A and BMP4 Signaling Expands Potency of Mouse Embryonic Stem Cells in Serum-Free Media. Stem Cell Reports, 2020, 14, 241-255.	2.3	13
2121	ZGLP1 is a determinant for the oogenic fate in mice. Science, 2020, 367, .	6.0	69
2122	Advancing Stem Cell Research through Multimodal Single-Cell Analysis. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035725.	2.3	7

#	Article	IF	CITATIONS
2123	β-catenin stimulates Tcf7l1 degradation through recruitment of casein kinase 2 in mouse embryonic stem cells. Biochemical and Biophysical Research Communications, 2020, 524, 280-287.	1.0	2
2124	A Dimeric Structural Scaffold for PRC2-PCL Targeting to CpG Island Chromatin. Molecular Cell, 2020, 77, 1265-1278.e7.	4.5	60
2125	A transcriptome-wide antitermination mechanism sustaining identity of embryonic stem cells. Nature Communications, 2020, 11, 361.	5.8	20
2126	Glycogen synthase kinase 3β inhibitor- CHIR 99021 augments the differentiation potential of mesenchymal stem cells. Cytotherapy, 2020, 22, 91-105.	0.3	20
2127	Wnt signaling associated small molecules improve the viability of pPSCs in a PI3K/Akt pathway dependent way. Journal of Cellular Physiology, 2020, 235, 5811-5822.	2.0	5
2129	MLL1 combined with GSK3 and MAP2K inhibition improves the development of inÂvitro-fertilized embryos. Theriogenology, 2020, 146, 58-70.	0.9	8
2130	Thymus Regeneration and Future Challenges. Stem Cell Reviews and Reports, 2020, 16, 239-250.	1.7	8
2131	WNT signalling supported by MEK/ERK inhibition is essential to maintain pluripotency in bovine preimplantation embryo. Developmental Biology, 2020, 463, 63-76.	0.9	10
2132	The translational landscape of ground state pluripotency. Nature Communications, 2020, 11, 1617.	5.8	18
2133	Intravital imaging of mouse embryos. Science, 2020, 368, 181-186.	6.0	70
2134	Induction and maintenance of specific multipotent progenitor stem cells synergistically mediated by Activin A and BMP4 signaling. Journal of Cellular Physiology, 2020, 235, 8640-8652.	2.0	2
2135	Ethyl-p-methoxycinnamate enhances oct4 expression and reinforces pluripotency through the NF-ήB signaling pathway. Biochemical Pharmacology, 2020, 177, 113984.	2.0	6
2136	Specialized cytonemes induce self-organization of stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7236-7244.	3.3	37
2137	The levels of reprogramming factors influence the induction and maintenance of pluripotency: the case of CD1 mouse strain cells. International Journal of Developmental Biology, 2021, 65, 365-376.	0.3	0
2138	Cyclosporin A and FGF signaling support the proliferation/survival of mouse primordial germ cell-like cells in vitroâ€. Biology of Reproduction, 2021, 104, 344-360.	1.2	12
2139	BMP signalling is required for extra-embryonic ectoderm development during pre-to-post-implantation transition of the mouse embryo. Developmental Biology, 2021, 470, 84-94.	0.9	10
2140	Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell Fate. Cell Stem Cell, 2021, 28, 273-284.e6.	5.2	104
2141	TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nature Structural and Molecular Biology, 2021, 28, 62-70.	3.6	42

CITAT	ION.	DEDODT
CHAI	IUN	Report

#	Article	IF	CITATIONS
2142	Stem-cell-based embryo models for fundamental research and translation. Nature Materials, 2021, 20, 132-144.	13.3	86
2143	Diverse Routes toward Early Somites in the Mouse Embryo. Developmental Cell, 2021, 56, 141-153.e6.	3.1	49
2144	pH variation impacts molecular pathways associated with somatic cell reprogramming and differentiation of pluripotent stem cells. Reproductive Medicine and Biology, 2021, 20, 20-26.	1.0	4
2145	Embryonic Stem Cell-Derived Extracellular Vesicles Maintain ESC Stemness by Activating FAK. Developmental Cell, 2021, 56, 277-291.e6.	3.1	43
2146	A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Reviews and Reports, 2021, 17, 748-776.	1.7	13
2147	Histological and Physiological Studies of the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Bleomycin Induced Lung Fibrosis in Adult Albino Rats. Tissue Engineering and Regenerative Medicine, 2021, 18, 127-141.	1.6	19
2148	Epigenome reprogramming in the male and female germ line. , 2021, , 3-25.		1
2149	Clycogen synthase kinaseâ€3ß supports serotonin transporter function and trafficking in a phosphorylationâ€dependent manner. Journal of Neurochemistry, 2021, 156, 445-464.	2.1	8
2150	Generation of chimeric mice with spermatozoa fully derived from embryonic stem cells using a triple-target CRISPR method for <i>Nanos3</i> â€. Biology of Reproduction, 2021, 104, 223-233.	1.2	13
2151	Kap1 regulates the self-renewal of embryonic stem cells and cellular reprogramming by modulating Oct4 protein stability. Cell Death and Differentiation, 2021, 28, 685-699.	5.0	12
2152	FGF primes angioblast formation by inducing ETV2 and LMO2 via FGFR1/BRAF/MEK/ERK. Cellular and Molecular Life Sciences, 2021, 78, 2199-2212.	2.4	3
2153	Organization of the Pluripotent Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040204.	2.3	13
2154	Signaling pathways influencing stem cell self-renewal and differentiation. , 2021, , 69-87.		0
2155	Advances in Female Germ Cell Induction from Pluripotent Stem Cells. Stem Cells International, 2021, 2021, 1-13.	1.2	7
2157	Identification of ALP+/CD73+ defining markers for enhanced osteogenic potential in human adipose-derived mesenchymal stromal cells by mass cytometry. Stem Cell Research and Therapy, 2021, 12, 7.	2.4	8
2158	Artificially produced gametes in mice, humans and other species. Reproduction, Fertility and Development, 2021, 33, 91.	0.1	6
2159	<i>LIN28A</i> inhibits <i>DUSP</i> family phosphatases and activates MAPK signaling pathway to maintain pluripotency in porcine induced pluripotent stem cells. Zoological Research, 2021, 42, 377-388.	0.9	14
2160	Bovine iPSC and applications in precise genome engineering. , 2021, , 129-148.		0

#	Article	IF	CITATIONS
2161	Gradual centriole maturation associates with the mitotic surveillance pathway in mouse development. EMBO Reports, 2021, 22, e51127.	2.0	14
2162	Evaluating totipotency using criteria of increasing stringency. Nature Cell Biology, 2021, 23, 49-60.	4.6	121
2163	Establishment of induced pluripotent stem cells from prairie vole-derived fibroblast. , 2021, , 165-186.		0
2164	Network pharmacology modeling identifies synergistic interaction of therapeutic and toxicological mechanisms for Tripterygium hypoglaucum Hutch. BMC Complementary Medicine and Therapies, 2021, 21, 38.	1.2	2
2165	Epigenetic regulationâ^'The guardian of cellular homeostasis and lineage commitment. Biocell, 2021, 45, 501-515.	0.4	3
2166	Extraneous E-Cadherin Engages the Deterministic Process of Somatic Reprogramming through Modulating STAT3 and Erk1/2 Activity. Cells, 2021, 10, 284.	1.8	4
2167	Mammalian SWI/SNF Chromatin Remodeling Complexes in Embryonic Stem Cells: Regulating the Balance Between Pluripotency and Differentiation. Frontiers in Cell and Developmental Biology, 2020, 8, 626383.	1.8	13
2168	Feeder-Dependent/Independent Mouse Embryonic Stem Cell Culture Protocol. Methods in Molecular Biology, 2021, , 1.	0.4	3
2169	Naked mole rat iPSCs and their noncanonical features: a novel tool for aging research. , 2021, , 205-220.		0
2170	Regulatory Functions of Heparan Sulfate in Stem Cell Self-Renewal and Differentiation. Biology of Extracellular Matrix, 2021, , 95-110.	0.3	1
2171	The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson's disease. Stem Cell Research and Therapy, 2021, 12, 5.	2.4	30
2172	Epigenetic regulation of satellite cell fate during skeletal muscle regeneration. Skeletal Muscle, 2021, 11, 4.	1.9	40
2175	Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Frontiers in Cell and Developmental Biology, 2021, 9, 637309.	1.8	25
2176	Pluripotency state regulates cytoneme selectivity and self-organization of embryonic stem cells. Journal of Cell Biology, 2021, 220, .	2.3	8
2177	Repressing Ago2 mRNA translation by Trim71 maintains pluripotency through inhibiting let-7 microRNAs. ELife, 2021, 10, .	2.8	19
2178	TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation. ELife, 2021, 10, .	2.8	26
2179	Generation of Sex-Reversed Female Clonal Mice via CRISPR-Cas9-Mediated Y Chromosome Deletion in Male Embryonic Stem Cells. CRISPR Journal, 2021, 4, 147-154.	1.4	0
2180	Pluripotent stem cells for the study of early human embryology. Development Growth and Differentiation, 2021, 63, 104-115.	0.6	13

		N KLPORT	
# 2181	ARTICLE Metabolic control of DNA methylation in naive pluripotent cells. Nature Genetics, 2021, 53, 215-229.	IF 9.4	CITATIONS
2182	SALL4 controls cell fate in response to DNA base composition. Molecular Cell, 2021, 81, 845-858.e8.	4.5	29
2183	A β-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. ELife, 2021, 10, .	2.8	32
2184	Gastruloid Development Competence Discriminates Different States of Pluripotency. Stem Cell Reports, 2021, 16, 354-369.	2.3	36
2185	Npac Is A Co-factor of Histone H3K36me3 and Regulates Transcriptional Elongation in Mouse Embryonic Stem Cells. Genomics, Proteomics and Bioinformatics, 2022, 20, 110-128.	3.0	4
2186	Culture bovine prospermatogonia with 2i medium. Andrologia, 2021, 53, e14056.	1.0	4
2188	Protein interaction potential landscapes for yeast replicative aging. Scientific Reports, 2021, 11, 7143.	1.6	4
2189	A plug and play microfluidic platform for standardized sensitive low-input chromatin immunoprecipitation. Genome Research, 2021, 31, 919-933.	2.4	4
2190	TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. Npj Regenerative Medicine, 2021, 6, 12.	2.5	25
2191	LCDM medium supports the derivation of bovine extended pluripotent stem cells with embryonic and extraembryonic potency in bovine–mouse chimeras from iPSCs and bovine fetal fibroblasts. FEBS Journal, 2021, 288, 4394-4411.	2.2	16
2192	Dynamics of transcription-mediated conversion from euchromatin to facultative heterochromatin at the Xist promoter by Tsix. Cell Reports, 2021, 34, 108912.	2.9	9
2193	Human ES Cell Culture Conditions Fail to Preserve the Mouse Epiblast State. Stem Cells International, 2021, 2021, 1-12.	1.2	1
2194	The deubiquitinase Usp9x regulates PRC2-mediated chromatin reprogramming during mouse development. Nature Communications, 2021, 12, 1865.	5.8	11
2195	Dissection of two routes to naÃ⁻ve pluripotency using different kinase inhibitors. Nature Communications, 2021, 12, 1863.	5.8	15
2196	Cooperative genetic networks drive embryonic stem cell transition from naÃ ⁻ ve to formative pluripotency. EMBO Journal, 2021, 40, e105776.	3.5	31
2198	A Dimension Reduction Approach for Energy Landscape: Identifying Intermediate States in Metabolismâ€EMT Network. Advanced Science, 2021, 8, 2003133.	5.6	24
2199	Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR Journal, 2020, 61, 286-303.	1.8	12
2200	Directed Evolution of an Enhanced POU Reprogramming Factor for Cell Fate Engineering. Molecular Biology and Evolution, 2021, 38, 2854-2868.	3.5	11

щ		IF	Citations
# 2202	ARTICLE DNMTs Play an Important Role in Maintaining the Pluripotency of Leukemia Inhibitory	IF 2.3	12
2202	Factor-Dependent Embryonic Stem Cells. Stem Cell Reports, 2021, 16, 582-596.	2.0	12
2203	Arid4b physically interacts with Tfap2c in mouse embryonic stem cells. Turkish Journal of Biology, 2021, 45, 162-170.	2.1	4
2204	G1-phase progression in pluripotent stem cells. Cellular and Molecular Life Sciences, 2021, 78, 4507-4519.	2.4	6
2205	Bdh2 Deficiency Promotes Endoderm-Biased Early Differentiation of Mouse Embryonic Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 655145.	1.8	2
2206	Activin/Nodal/TGF-Î ² Pathway Inhibitor Accelerates BMP4-Induced Cochlear Gap Junction Formation During in vitro Differentiation of Embryonic Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 602197.	1.8	2
2207	Stability of Imprinting and Differentiation Capacity in NaÃ ⁻ ve Human Cells Induced by Chemical Inhibition of CDK8 and CDK19. Cells, 2021, 10, 876.	1.8	0
2209	Prolactin from Pluripotency to Central Nervous System Development. Neuroendocrinology, 2022, 112, 201-214.	1.2	6
2210	Establishment of bovine expanded potential stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
2211	Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells. Biology of Reproduction, 2021, 105, 52-63.	1.2	12
2212	Mammalian Germ Cell Development: From Mechanism to InÂVitro Reconstitution. Stem Cell Reports, 2021, 16, 669-680.	2.3	20
2213	The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Reports, 2021, 22, e51803.	2.0	83
2214	Identification of X-chromosomal genes that drive sex differences in embryonic stem cells through a hierarchical CRISPR screening approach. Genome Biology, 2021, 22, 110.	3.8	28
2216	Retinoic acid induces NELFAâ€mediated 2Câ€like state of mouse embryonic stem cells associates with epigenetic modifications and metabolic processes in chemically defined media. Cell Proliferation, 2021, 54, e13049.	2.4	13
2217	Agarose microgel culture delineates lumenogenesis in naive and primed human pluripotent stem cells. Stem Cell Reports, 2021, 16, 1347-1362.	2.3	16
2218	YY2 in Mouse Preimplantation Embryos and in Embryonic Stem Cells. Cells, 2021, 10, 1123.	1.8	3
2219	Strategy to Establish Embryo-Derived Pluripotent Stem Cells in Cattle. International Journal of Molecular Sciences, 2021, 22, 5011.	1.8	2
2220	A Rho Kinase (ROCK) Inhibitor, Y-27632, Inhibits the Dissociation-Induced Cell Death of Salivary Gland Stem Cells. Molecules, 2021, 26, 2658.	1.7	7
2221	Fatty acid oxidation is required for embryonic stem cell survival during metabolic stress. EMBO Reports, 2021, 22, e52122.	2.0	14

#	Article	IF	CITATIONS
2222	MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells. Nature Communications, 2021, 12, 3034.	5.8	35
2224	Running the full human developmental clock in interspecies chimeras using alternative human stem cells with expanded embryonic potential. Npj Regenerative Medicine, 2021, 6, 25.	2.5	7
2225	Self-organized signaling in stem cell models of embryos. Stem Cell Reports, 2021, 16, 1065-1077.	2.3	13
2226	Direct repression of <i>Nanog</i> and <i>Oct4</i> by OTX2 modulates the contribution of epiblast-derived cells to germline and somatic lineage. Development (Cambridge), 2021, 148, .	1.2	8
2227	Induced Tissue-Specific Stem Cells (iTSCs): Their Generation and Possible Use in Regenerative Medicine. Pharmaceutics, 2021, 13, 780.	2.0	3
2228	Conserved features of non-primate bilaminar disc embryos and the germline. Stem Cell Reports, 2021, 16, 1078-1092.	2.3	21
2229	All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports, 2021, 16, 1117-1141.	2.3	24
2231	Oncostatin M Maintains NaÃ ⁻ ve Pluripotency of mESCs by Tetraploid Embryo Complementation (TEC) Assay. Frontiers in Cell and Developmental Biology, 2021, 9, 675411.	1.8	1
2232	Multivariate meta-analysis reveals global transcriptomic signatures underlying distinct human naive-like pluripotent states. PLoS ONE, 2021, 16, e0251461.	1.1	3
2233	Non-autonomous regulation of germline stem cell proliferation by somatic MPK-1/MAPK activity in C.Âelegans. Cell Reports, 2021, 35, 109162.	2.9	10
2234	HelPredictor models single-cell transcriptome to predict human embryo lineage allocation. Briefings in Bioinformatics, 2021, 22, .	3.2	6
2235	Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Molecular Metabolism, 2021, 47, 101164.	3.0	4
2236	Totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage. Scientific Reports, 2021, 11, 11167.	1.6	18
2238	The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development (Cambridge), 2021, 148, .	1.2	25
2240	mSWI/SNF promotes Polycomb repression both directly and through genome-wide redistribution. Nature Structural and Molecular Biology, 2021, 28, 501-511.	3.6	50
2241	CloneSeq: A highly sensitive analysis platform for the characterization of 3D-cultured single-cell-derived clones. Developmental Cell, 2021, 56, 1804-1817.e7.	3.1	4
2243	HIF-1α Affects the Neural Stem Cell Differentiation of Human Induced Pluripotent Stem Cells via MFN2-Mediated Wnt/β-Catenin Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 671704.	1.8	15
2244	The FOXO signaling axis displays conjoined functions in redox homeostasis and stemness. Free Radical Biology and Medicine, 2021, 169, 224-237.	1.3	12

#	Article	IF	CITATIONS
2245	Layer-Number-Dependent Effects of Graphene Oxide on the Pluripotency of Mouse Embryonic Stem Cells Through the Regulation of the Interaction Between the Extracellular Matrix and Integrins. International Journal of Nanomedicine, 2021, Volume 16, 3819-3832.	3.3	7
2247	Generation of macrophages with altered viral sensitivity from genome-edited rhesus macaque iPSCs to model human disease. Molecular Therapy - Methods and Clinical Development, 2021, 21, 262-273.	1.8	5
2248	INO80 promotes H2A.Z occupancy to regulate cell fate transition in pluripotent stem cells. Nucleic Acids Research, 2021, 49, 6739-6755.	6.5	15
2249	Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell, 2021, 28, 1040-1056.e6.	5.2	201
2250	Residual pluripotency is required for inductive germ cell segregation. EMBO Reports, 2021, 22, e52553.	2.0	5
2251	Precise CAG repeat contraction in a Huntington's Disease mouse model is enabled by gene editing with SpCas9-NG. Communications Biology, 2021, 4, 771.	2.0	20
2252	Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Reports, 2021, 35, 109233.	2.9	28
2253	The pluripotency transcription factor OCT4 represses heme oxygenaseâ€1 gene expression. FEBS Letters, 2021, 595, 1949-1961.	1.3	2
2254	Generation of mouse–human chimeric embryos. Nature Protocols, 2021, 16, 3954-3980.	5.5	5
2255	Generation of ovarian follicles from mouse pluripotent stem cells. Science, 2021, 373, .	6.0	88
2257	Homologous recombination is reduced in female embryonic stem cells by two active X chromosomes. EMBO Reports, 2021, 22, e52190.	2.0	3
2258	Translational control of stem cell function. Nature Reviews Molecular Cell Biology, 2021, 22, 671-690.	16.1	69
2259	Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation. Genome Biology, 2021, 22, 197.	3.8	40
2260	Phosphorylation of the HP1β hinge region sequesters KAP1 in heterochromatin and promotes the exit from naà ve pluripotency. Nucleic Acids Research, 2021, 49, 7406-7423.	6.5	9
2261	The cancer puzzle: Welcome to organicism. Progress in Biophysics and Molecular Biology, 2021, 165, 114-119.	1.4	10
2262	AMPK activation reverts mouse epiblast stem cells to naive state. IScience, 2021, 24, 102783.	1.9	6
2263	Germ Cell Derivation from Pluripotent Stem Cells for Understanding In Vitro Gametogenesis. Cells, 2021, 10, 1889.	1.8	9
2264	MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules, 2021, 11, 1074.	1.8	9

#	Article	IF	CITATIONS
2265	Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 708318.	1.8	11
2266	Three-dimensional geometry controls division symmetry in stem cell colonies. Journal of Cell Science, 2021, 134, .	1.2	6
2267	Continuous expression of reprogramming factors induces and maintains mouse pluripotency without specific growth factors and signaling inhibitors. Cell Proliferation, 2021, 54, e13090.	2.4	1
2268	Pluripotency-State-Dependent Role of Dax1 in Embryonic Stem Cells Self-Renewal. Stem Cells International, 2021, 2021, 1-11.	1.2	3
2269	SUMO conjugation susceptibility of Akt/protein kinase B affects the expression of the pluripotency transcription factor Nanog in embryonic stem cells. PLoS ONE, 2021, 16, e0254447.	1.1	3
2270	SS18 regulates pluripotent-somatic transition through phase separation. Nature Communications, 2021, 12, 4090.	5.8	14
2272	Elevated retrotransposon activity and genomic instability in primed pluripotent stem cells. Genome Biology, 2021, 22, 201.	3.8	11
2273	The Presence or Absence of Alkaline Phosphatase Activity to Discriminate Pluripotency Characteristics in Porcine Epiblast Stem Cell-Like Cells. Cellular Reprogramming, 2021, 23, 221-238.	0.5	2
2274	The BTB-domain transcription factor ZBTB2 recruits chromatin remodelers and a histone chaperone during the exit from pluripotency. Journal of Biological Chemistry, 2021, 297, 100947.	1.6	8
2275	Lineages of embryonic stem cells show non-Markovian state transitions. IScience, 2021, 24, 102879.	1.9	6
2276	Derivation of Mouse Parthenogenetic Advanced Stem Cells. International Journal of Molecular Sciences, 2021, 22, 8976.	1.8	1
2277	Building Pluripotency Identity in the Early Embryo and Derived Stem Cells. Cells, 2021, 10, 2049.	1.8	6
2278	Survivable potential of germ cells after trehalose cryopreservation of bovine testicular tissues. Cryobiology, 2021, 101, 105-114.	0.3	2
2280	B1 lymphocytes develop independently of Notch signaling during mouse embryonic development. Development (Cambridge), 2021, 148, .	1.2	6
2281	Differential localization patterns of pyruvate kinase isoforms in murine naÃ ⁻ ve, formative, and primed pluripotent states. Experimental Cell Research, 2021, 405, 112714.	1.2	6
2282	Establishment of Mouse Primed Stem Cells by Combination of Activin and LIF Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 713503.	1.8	2
2284	Genome-wide and sister chromatid-resolved profiling of protein occupancy in replicated chromatin with ChOR-seq and SCAR-seq. Nature Protocols, 2021, 16, 4446-4493.	5.5	11
2285	Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell, 2021, 28, 1549-1565.e12.	5.2	78

#	Article	IF	CITATIONS
2286	TCF/LEF regulation of the topologically associated domain ADI promotes mESCs to exit the pluripotent ground state. Cell Reports, 2021, 36, 109705.	2.9	4
2287	The combined action of Esrrb and Nr5a2 is essential for murine na¬ve pluripotency. Development (Cambridge), 2021, 148, .	1.2	26
2288	Sweat Gland Organoids Originating from Reprogrammed Epidermal Keratinocytes Functionally Recapitulated Damaged Skin. Advanced Science, 2021, 8, e2103079.	5.6	18
2289	Assessing the Wnt-reactivity of cytonemes of mouse embryonic stem cells using a bioengineering approach. STAR Protocols, 2021, 2, 100813.	0.5	0
2290	The transcription factor Tfcp2l1 promotes primordial germ cell–like cell specification of pluripotent stem cells. Journal of Biological Chemistry, 2021, 297, 101217.	1.6	13
2291	Establishment of Bovine-Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 10489.	1.8	14
2292	Statistically derived geometrical landscapes capture principles of decision-making dynamics during cell fate transitions. Cell Systems, 2022, 13, 12-28.e3.	2.9	66
2293	Discovery of Klf2 interactors in mouse embryonic stem cells by immunoprecipitation-mass spectrometry utilizing exogenously expressed bait. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140672.	1.1	0
2294	YAP establishes epiblast responsiveness to inductive signals for germ cell fate. Development (Cambridge), 2021, 148, .	1.2	10
2295	Depletion of nuclear LINE1 RNA in mouse ESCs and embryos. STAR Protocols, 2021, 2, 100726.	0.5	3
2296	InÂvitro reconstitution of the whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell, 2021, 28, 2167-2179.e9.	5.2	75
2297	An optimized proliferation system of embryonic stem cells for generating the rat model with large fragment modification. Biochemical and Biophysical Research Communications, 2021, 571, 8-13.	1.0	0
2298	Small-molecule suppression of calpastatin degradation reduces neuropathology in models of Huntington's disease. Nature Communications, 2021, 12, 5305.	5.8	21
2299	Stepwise conversion methods between ground states pluripotency from naÃ ⁻ ve to primed. Biochemical and Biophysical Research Communications, 2021, 574, 70-77.	1.0	1
2300	The ETS transcription factor ERF controls the exit from the naÃ⁻ve pluripotent state in a MAPK-dependent manner. Science Advances, 2021, 7, eabg8306.	4.7	6
2301	Mammalian in vitro gametogenesis. Science, 2021, 374, eaaz6830.	6.0	77
2302	Culturing pluripotent stem cells: State of the art, challenges and future opportunities. Current Opinion in Systems Biology, 2021, 28, 100364.	1.3	3
2303	The extracellular signal-regulated kinase signaling pathway in biology of pluripotent stem cells. , 2022, , 285-301.		0

#	Article	IF	CITATIONS
2304	The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2021, 22, 1168.	1.8	2
2305	Establishment and Use of Mouse Haploid ES Cells. Current Protocols in Mouse Biology, 2015, 5, 155-185.	1.2	15
2306	A glimpse into molecular mechanisms of embryonic stem cells pluripotency: Current status and future perspective. Journal of Cellular Physiology, 2020, 235, 6377-6392.	2.0	12
2307	Transcriptional Regulation in Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 2010, 695, 76-91.	0.8	16
2308	Efficient Library Preparation for Next-Generation Sequencing Analysis of Genome-Wide Epigenetic and Transcriptional Landscapes in Embryonic Stem Cells. Methods in Molecular Biology, 2014, 1150, 3-20.	0.4	17
2309	Conversion of Epiblast Stem Cells to Embryonic Stem Cells Using Growth Factors and Small Molecule Inhibitors. Methods in Molecular Biology, 2014, 1150, 215-226.	0.4	4
2310	Generation of Induced Pluripotent Stem Cells Using Chemical Inhibition and Three Transcription Factors. Methods in Molecular Biology, 2014, 1150, 227-236.	0.4	3
2311	Generating Chimeric Mice from Embryonic Stem Cells via Vial Coculturing or Hypertonic Microinjection. Methods in Molecular Biology, 2014, 1194, 77-111.	0.4	2
2312	The Generation and Maintenance of Rat Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2014, 1210, 143-150.	0.4	7
2313	Mathematical Models of Pluripotent Stem Cells: At the Dawn of Predictive Regenerative Medicine. Methods in Molecular Biology, 2016, 1386, 331-350.	0.4	14
2314	Embryoid Body Formation: Recent Advances in Automated Bioreactor Technology. Methods in Molecular Biology, 2011, 690, 135-149.	0.4	8
2315	Derivation and Culture of Canine Embryonic Stem Cells. Methods in Molecular Biology, 2013, 1074, 69-83.	0.4	8
2316	Cancer Stem Cell Niche and Immune-Active Tumor Microenvironment in Testicular Germ Cell Tumors. Advances in Experimental Medicine and Biology, 2020, 1226, 111-121.	0.8	16
2317	Threonine Catabolism: an Unexpected Epigenetic Regulator of Mouse Embryonic Stem Cells. , 2017, , 1-20.		2
2319	Induced Pluripotency: Generation of iPS Cells from Mouse Embryonic Fibroblasts. Springer Protocols, 2011, , 477-500.	0.1	1
2320	PRC1-Mediated Gene Silencing in Pluripotent ES Cells: Function and Evolution. Epigenetics and Human Health, 2015, , 141-166.	0.2	1
2321	The Importance of Mouse ES Cell Line Selection. Springer Protocols, 2011, , 327-356.	0.1	1
2322	Combining ES Cells with Embryos. Springer Protocols, 2011, , 377-430.	0.1	3

#	Article	IF	Citations
2323	Derivation of Murine ES Cell Lines. Springer Protocols, 2011, , 431-455.	0.1	4
2324	Induced Pluripotency: Generation of iPS Cells from Mouse Embryonic Fibroblasts. Springer Protocols, 2011, , 477-500.	0.1	1
2326	Cell Dynamics in Early Embryogenesis and Pluripotent Embryonic Cell Lines: From Sea Urchin to Mammals. , 2009, , 215-244.		1
2327	Alternative Embryonic Stem Cell Sources. , 2009, , 101-143.		1
2328	Unanticipated Trends Stemming from Initial Events in the History of Cell Culture: Vitalism in 2013?. History, Philosophy and Theory of the Life Sciences, 2013, , 293-309.	0.4	2
2329	The Role of Nuclear Receptors in Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 287-306.	0.8	6
2330	Epigenetic processes and DNA repair in embryonic stem cells. , 2020, , 1-23.		1
2331	The cost of perpetual youth. Nature, 2017, 548, 165-166.	13.7	3
2332	Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases. Nature Cell Biology, 2020, 22, 1223-1238.	4.6	35
2333	Induced pluripotent stem cells from farm animals. Journal of Animal Science, 2020, 98, .	0.2	30
2376	Toll-like receptor triggering in cord blood mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 0, 13, 3415-3426.	1.6	43
2377	Pivotal role for glycogen synthase kinase–3 in hematopoietic stem cell homeostasis in mice. Journal of Clinical Investigation, 2009, 119, 3519-29.	3.9	109
2378	<i>Klf5</i> maintains the balance of primitive endoderm to epiblast specification during mouse embryonic development by suppression of <i>Fgf4</i> . Development (Cambridge), 2017, 144, 3706-3718.	1.2	24
2379	<i>Cdk8</i> is required for establishment of H3K27me3 and gene repression by <i>Xist</i> and mouse development. Development (Cambridge), 2020, 147, .	1.2	19
2380	Generation of Embryonic Stem Cells and Mice for Duchenne Research. PLOS Currents, 2013, 5, .	1.4	8
2381	Efficient Generation of Germ Line Transmitting Chimeras from C57BL/6N ES Cells by Aggregation with Outbred Host Embryos. PLoS ONE, 2010, 5, e11260.	1.1	102
2382	Role of the Epigenetic Regulator HP1γ in the Control of Embryonic Stem Cell Properties. PLoS ONE, 2010, 5, e15507.	1.1	23
2383	Characterisation and Germline Transmission of Cultured Avian Primordial Germ Cells. PLoS ONE, 2010, 5, e15518.	1.1	149

#	Article	IF	CITATIONS
2384	Short-Term Serum-Free Culture Reveals that Inhibition of Gsk3Î ² Induces the Tumor-Like Growth of Mouse Embryonic Stem Cells. PLoS ONE, 2011, 6, e21355.	1.1	11
2385	E-Cadherin Acts as a Regulator of Transcripts Associated with a Wide Range of Cellular Processes in Mouse Embryonic Stem Cells. PLoS ONE, 2011, 6, e21463.	1.1	26
2386	Generation of Germline-Competent Rat Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e22008.	1.1	67
2387	Ectopic Expression of Neurogenin 2 Alone is Sufficient to Induce Differentiation of Embryonic Stem Cells into Mature Neurons. PLoS ONE, 2012, 7, e38651.	1.1	70
2388	Activation of Wnt/Î ² -Catenin Signalling Affects Differentiation of Cells Arising from the Cerebellar Ventricular Zone. PLoS ONE, 2012, 7, e42572.	1.1	7
2389	Establishment of Mouse Teratocarcinomas Stem Cells Line and Screening Genes Responsible for Malignancy. PLoS ONE, 2012, 7, e43955.	1.1	5
2390	Fragments of HdhQ150 Mutant Huntingtin Form a Soluble Oligomer Pool That Declines with Aggregate Deposition upon Aging. PLoS ONE, 2012, 7, e44457.	1.1	21
2391	Cross-Species Genome Wide Expression Analysis during Pluripotent Cell Determination in Mouse and Rat Preimplantation Embryos. PLoS ONE, 2012, 7, e47107.	1.1	12
2392	Apoptosis-Related Gene Expression Profiles of Mouse ESCs and maGSCs: Role of Fgf4 and Mnda in Pluripotent Cell Responses to Genotoxicity. PLoS ONE, 2012, 7, e48869.	1.1	4
2393	Generating Embryonic Stem Cells from the Inbred Mouse Strain DBA/2J, a Model of Glaucoma and Other Complex Diseases. PLoS ONE, 2012, 7, e50081.	1.1	8
2394	Generation and Characterization of a Novel Mouse Embryonic Stem Cell Line with a Dynamic Reporter of Nanog Expression. PLoS ONE, 2013, 8, e59928.	1.1	52
2395	Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells. PLoS ONE, 2013, 8, e60020.	1.1	81
2396	Glycogen Synthase Kinase-3 Inhibition Enhances Translation of Pluripotency-Associated Transcription Factors to Contribute to Maintenance of Mouse Embryonic Stem Cell Self-Renewal. PLoS ONE, 2013, 8, e60148.	1.1	16
2397	Ectopic Î ³ -catenin Expression Partially Mimics the Effects of Stabilized Î ² -catenin on Embryonic Stem Cell Differentiation. PLoS ONE, 2013, 8, e65320.	1.1	18
2398	MicroRNA-200a Regulates Grb2 and Suppresses Differentiation of Mouse Embryonic Stem Cells into Endoderm and Mesoderm. PLoS ONE, 2013, 8, e68990.	1.1	20
2399	Zscan4 Is Regulated by PI3-Kinase and DNA-Damaging Agents and Directly Interacts with the Transcriptional Repressors LSD1 and CtBP2 in Mouse Embryonic Stem Cells. PLoS ONE, 2014, 9, e89821.	1.1	27
2400	Foxm1 Mediates LIF/Stat3-Dependent Self-Renewal in Mouse Embryonic Stem Cells and Is Essential for the Generation of Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e92304.	1.1	17
2401	A Comprehensive System for Generation and Evaluation of Induced Pluripotent Stem Cells Using piggyBac Transposition. PLoS ONE, 2014, 9, e92973.	1.1	23

#	Article	IF	CITATIONS
2402	A Modified EpiSC Culture Condition Containing a GSK3 Inhibitor Can Support Germline-Competent Pluripotency in Mice. PLoS ONE, 2014, 9, e95329.	1.1	47
2403	Karyotype Characterization of In Vivo- and In Vitro-Derived Porcine Parthenogenetic Cell Lines. PLoS ONE, 2014, 9, e97974.	1.1	6
2404	Establishment of Trophoblast Stem Cells under Defined Culture Conditions in Mice. PLoS ONE, 2014, 9, e107308.	1.1	57
2405	MEK and TGF-beta Inhibition Promotes Reprogramming without the Use of Transcription Factor. PLoS ONE, 2015, 10, e0127739.	1.1	7
2406	Zinc Chloride Transiently Maintains Mouse Embryonic Stem Cell Pluripotency by Activating Stat3 Signaling. PLoS ONE, 2016, 11, e0148994.	1.1	19
2407	In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells. PLoS ONE, 2016, 11, e0154268.	1.1	10
2408	Characterization of bovine embryos cultured under conditions appropriate for sustaining human naìve pluripotency. PLoS ONE, 2017, 12, e0172920.	1.1	17
2409	Microarray analysis of embryo-derived bovine pluripotent cells: The vulnerable state of bovine embryonic stem cells. PLoS ONE, 2017, 12, e0173278.	1.1	6
2410	Different regulation of limb development by p63 transcript variants. PLoS ONE, 2017, 12, e0174122.	1.1	4
2411	Synthesis of orotic acid derivatives and their effects on stem cell proliferation. Open Chemistry, 2020, 18, 620-627.	1.0	2
2412	The Nucleosome Remodelling and Deacetylation complex suppresses transcriptional noise during lineage commitment. EMBO Journal, 2019, 38, .	3.5	45
2413	<scp>BAZ</scp> 2A safeguards genome architecture of groundâ€state pluripotent stem cells. EMBO Journal, 2020, 39, e105606.	3.5	14
2414	Pja2 Inhibits Wnt/β-catenin Signaling by Reducing the Level of TCF/LEF1. International Journal of Stem Cells, 2018, 11, 242-247.	0.8	12
2415	Derivation of sheep embryonic stem cells under optimized conditions. Reproduction, 2020, 160, 761-772.	1.1	24
2416	Hormone-responsive organoids from domestic mare and endangered Przewalski's horse endometrium. Reproduction, 2020, 160, 819-831.	1.1	15
2417	Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity. Frontiers of Agricultural Science and Engineering, 2014, 1, 46.	0.9	32
2418	Progress, problems and prospects of porcine pluripotent stem cells. Frontiers of Agricultural Science and Engineering, 2014, 1, 6.	0.9	7
2419	Stat3 phosphorylation is required for embryonic stem cells ground state maintenance in 2i culture media. Oncotarget, 2017, 8, 31227-31237.	0.8	6

#	Article	IF	CITATIONS
2420	Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma. Oncotarget, 2017, 8, 82217-82230.	0.8	35
2421	Quantitative phosphoproteome analysis of embryonic stem cell differentiation toward blood. Oncotarget, 2015, 6, 10924-10939.	0.8	7
2422	Wnt-beta-catenin pathway signals metastasis-associated tumor cell phenotypes in triple negative breast cancers. Oncotarget, 2016, 7, 43124-43149.	0.8	52
2423	MEK inhibitor PD0325901 and vitamin C synergistically induce hypomethylation of mouse embryonic stem cells. Oncotarget, 2016, 7, 39730-39739.	0.8	9
2424	Genetic Analysis of Type 1 Diabetes: Embryonic Stem Cells as New Tools to Unlock Biological Mechanisms in Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 137-147.	0.5	2
2425	Comparative Genetics: Synergizing Human and NOD Mouse Studies for Identifying Genetic Causation of Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 169-187.	0.5	32
2426	ECM-Body: A Cell-Free 3D Biomimetic Scaffold Derived from Intact Planarian Body. Zoological Science, 2020, 37, 307.	0.3	3
2427	Pluripotency-Regulating Networks Provide Basis for Reprogramming. Current Molecular Medicine, 2013, 13, 695-706.	0.6	6
2428	Protein Kinases and Associated Pathways in Pluripotent State and Lineage Differentiation. Current Stem Cell Research and Therapy, 2014, 9, 366-387.	0.6	9
2429	Suppression of TGF-β and ERK Signaling Pathways as a New Strategy to Provide Rodent and Non-Rodent Pluripotent Stem Cells. Current Stem Cell Research and Therapy, 2019, 14, 466-473.	0.6	20
2430	Upregulation of Adhesion Molecules Sustains Matrix-Free Growth of Human Embryonic Stem Cells. Open Stem Cell Journal, 2018, 5, 14-30.	2.0	1
2431	Recent Progress on Chemical Biology of Pluripotent Stem Cell Selfrenewal, Reprogramming and Cardiomyogenesis. Recent Patents on Regenerative Medicine, 2011, 1, 263-274.	0.4	8
2432	Exit from Pluripotency Assay of Mouse Embryonic Stem Cells. Bio-protocol, 2017, 7, e2507.	0.2	3
2433	Metabolic Signature of Pluripotent Stem Cells. Cell Journal, 2018, 20, 388-395.	0.2	6
2434	Glycine cleavage system determines the fate of pluripotent stem cells via the regulation of senescence and epigenetic modifications. Life Science Alliance, 2019, 2, e201900413.	1.3	17
2435	Endogenous epitope-tagging of <i>Tet1</i> , <i>Tet2</i> and <i>Tet3</i> identifies TET2 as a naÃ ⁻ ve pluripotency marker. Life Science Alliance, 2019, 2, e201900516.	1.3	13
2436	The molecular clock protein Bmal1 regulates cell differentiation in mouse embryonic stem cells. Life Science Alliance, 2020, 3, e201900535.	1.3	13
2437	Induced Pluripotent Stem Cells of Microtus levis x Microtus arvalis Vole Hybrids: Conditions Necessary for Their Generation and Self-Renewal. Acta Naturae, 2015, 7, 56-69.	1.7	4

#	Article	IF	CITATIONS
2438	Wnt/β-catenin Pathway-Mediated PPARδ Expression during Embryonic Development Differentiation and Disease. International Journal of Molecular Sciences, 2021, 22, 1854.	1.8	14
2439	<i>In Pursuit</i> of Porcine Pluripotent Stem Cells for Autologous Cell Therapy. Stem Cell Discovery, 2014, 04, 107-124.	0.5	2
2440	An Insight on Small Molecule Induced Foot-Print Free Naive Pluripotent Stem Cells in Livestock. Stem Cell Discovery, 2015, 05, 1-9.	0.5	3
2441	Developments in cell culture systems for human pluripotent stem cells. World Journal of Stem Cells, 2019, 11, 968-981.	1.3	12
2442	MiR-301a promotes embryonic stem cell differentiation to cardiomyocytes. World Journal of Stem Cells, 2019, 11, 1130-1141.	1.3	6
2443	Search for naÃ⁻ve human pluripotent stem cells. World Journal of Stem Cells, 2015, 7, 649.	1.3	11
2444	Epigenetic regulation of stemness maintenance in the neurogenic niches. World Journal of Stem Cells, 2015, 7, 700.	1.3	11
2445	Common stemness regulators of embryonic and cancer stem cells. World Journal of Stem Cells, 2015, 7, 1150.	1.3	220
2446	Topographically and Chemically Modified Surfaces for Expansion or Differentiation of Embryonic Stem Cells. , 0, , .		1
2447	Precardiac deletion of Numb and Numblike reveals renewal of cardiac progenitors. ELife, 2014, 3, e02164.	2.8	36
2448	Characterization of the finch embryo supports evolutionary conservation of the naive stage of development in amniotes. ELife, 2015, 4, e07178.	2.8	18
2449	Receptor tyrosine kinases modulate distinct transcriptional programs by differential usage of intracellular pathways. ELife, 2015, 4, .	2.8	46
2450	Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. ELife, 2015, 4, .	2.8	96
2451	Polycomb enables primitive endoderm lineage priming in embryonic stem cells. ELife, 2016, 5, .	2.8	28
2452	The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers. ELife, 2016, 5, .	2.8	16
2453	AIRE is a critical spindle-associated protein in embryonic stem cells. ELife, 2017, 6, .	2.8	19
2454	Piezo1 forms a slowly-inactivating mechanosensory channel in mouse embryonic stem cells. ELife, 2018, 7, .	2.8	61
2455	Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference. ELife, 2018, 7, .	2.8	27

#	Article	IF	CITATIONS
2456	circZNF827 nucleates a transcription inhibitory complex to balance neuronal differentiation. ELife, 2020, 9, .	2.8	33
2457	Inhibition of MEK1/2 and GSK3 (2i system) affects blastocyst quality and early differentiation of porcine parthenotes. PeerJ, 2019, 6, e5840.	0.9	4
2458	Of mice and men – differential mechanisms of maintaining the undifferentiated state in mESC and hESC. BioDiscovery, 0, , .	0.1	7
2459	Enhancer architecture-dependent multilayered transcriptional regulation orchestrates RA signaling-induced early lineage differentiation of ESCs. Nucleic Acids Research, 2021, 49, 11575-11595.	6.5	4
2460	Regulation of 3-O-Sulfation of Heparan Sulfate During Transition from the NaÃ ⁻ ve to the Primed State in Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2022, 2303, 443-452.	0.4	1
2461	StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nature Communications, 2021, 12, 6132.	5.8	22
2462	Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. Cell Reports, 2021, 37, 109851.	2.9	4
2463	Capture of the newly transcribed RNA interactome using click chemistry. Nature Protocols, 2021, 16, 5193-5219.	5.5	5
2464	Ectopic Splicing Disturbs the Function of Xist RNA to Establish the Stable Heterochromatin State. Frontiers in Cell and Developmental Biology, 2021, 9, 751154.	1.8	1
2465	Cell-cell communication through FGF4 generates and maintains robust proportions of differentiated cell types in embryonic stem cells. Development (Cambridge), 2021, 148, .	1.2	22
2466	Inhibition of ubiquitin-specific protease 13-mediated degradation of Raf1 kinase by Spautin-1 has opposing effects in naA¯ve and primed pluripotent stem cells. Journal of Biological Chemistry, 2021, 297, 101332.	1.6	6
2467	Changes in Cell Morphology and Actin Organization in Embryonic Stem Cells Cultured under Different Conditions. Cells, 2021, 10, 2859.	1.8	2
2468	Baoyuan Capsule promotes neurogenesis and neurological functional recovery through improving mitochondrial function and modulating PI3K/Akt signaling pathway. Phytomedicine, 2021, 93, 153795.	2.3	5
2469	Pluripotent stem cell derived dopaminergic subpopulations model the selective neuron degeneration in Parkinson's disease. Stem Cell Reports, 2021, 16, 2718-2735.	2.3	18
2470	Developmental Acquisition of p53 Functions. Genes, 2021, 12, 1675.	1.0	5
2471	Loss of <i>Resf1</i> reduces the efficiency of embryonic stem cell self-renewal and germline entry. Life Science Alliance, 2021, 4, e202101190.	1.3	2
2472	Design of Artificial Extracellular Matrices and Their Application for Regenerative Medicine. , 2008, , .		0
2473	Growth Factors and the Serum-free Culture of Human Pluripotent Stem Cells. , 2009, , 391-395.		0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2474	Stem Cell Niche Versus Cancer Stem Cell Niche $\hat{a} \in $ Differences and Similarities. , 2009	, , 223-233.		1
2475	Chapter 4. Chemical Biology of Stem Cell Modulation. RSC Drug Discovery Series, 201	0, , 97-150.	0.2	0
2476	A Quantity Study of Marital Satisfaction, Romantic Jealousy and Female's Aggressi	on (Psychological) Tj ETQa	0 0 0 rgB ⁻ 0.0 rgB	T /Qverlock 1
2478	Human Amnion-derived Pluripotent Stem Cells as a Promising Source for Regenerative Tissue Engineering. Journal of Bioengineering & Biomedical Science, 2011, 01, .	Medicine and	0.2	1
2479	Rat Embryonic Stem Cell Derivation and Propagation. Springer Protocols, 2011, , 457-4	475.	0.1	2
2480	Mouse Cloning by Nuclear Transfer. Springer Protocols, 2011, , 267-289.		0.1	0
2481	Establishment of Embryonic Stem Cells and Generation of Genetically Modified Rats. ,	0, , .		0
2482	Self-Renewal, Pluripotency and Tumorigenesis in Pluripotent Stem Cells Revisited. , 0, ,	·		0
2483	The Function of Glycan Structures for the Maintenance and Differentiation of Embryor 0, , .	iic Stem Cells. ,		0
2484	A Rational Approach to Inducing Neuronal Differentiation in Embryonic Stem Cells. , 0,	,.		0
2485	The Function of E-cadherin in ES Cell Pluripotency. , 0, , .			0
2486	Chemical Biology of Pluripotent Stem Cells: Focus on Cardiomyogenesis. , 0, , .			1
2487	Embryonic Stem Cells and the Capture of Pluripotency. , 0, , .			0
2488	Smads $\hat{a} \in \hat{a}$ the Intracellular Hubs of Signalling in Regulation of Pluripotency and Difference Stem Cells. , 0, , .	entiation of		0
2489	Synthetic Surfaces for Human Embryonic Stem Cell Culture. , 0, , .			0
2490	Molecular Mechanisms Underlying Pluripotency and Lineage Commitment $\hat{a} \in \hat{~}$ The Rol	e of GSK-3. , 0, , .		0
2492	New Approach to Understand the Biology of Stem Cells. SpringerBriefs in Stem Cells, 2	2012, , 57-68.	0.1	0
2494	Deciphering Protein Complexes and Protein Interaction Networks for Stem Cell Pluripo 97-118.	tency. , 2012, ,		2

#	Article	IF	Citations
2495	Procedures and Applications of Human Embryonic and Induced Pluripotent Stem Cells. Recent Patents on Regenerative Medicine, 2012, 2, 37-56.	0.4	0
2496	Glycogen Synthase Kinase-3. , 2012, , 799-805.		0
2497	Transgenic Livestock transgenic crop livestock Technologies transgenic crop livestock technologies. , 2012, , 10814-10839.		0
2498	Stem Cell Technology. , 2013, , 509-524.		0
2499	Early Embryo Development in Large Animals. SpringerBriefs in Stem Cells, 2013, , 1-19.	0.1	0
2500	Transgenic Livestock transgenic crop livestock Technologies transgenic crop livestock technologies. , 2013, , 1717-1741.		0
2501	Stem Cell Niche. , 2013, , 79-106.		2
2503	Stem Cells: Are They Pertinent to My Research?. Success in Academic Surgery, 2014, , 157-170.	0.1	0
2504	Meet the Stem Cells. Contemporary Food Engineering, 2013, , 111-142.	0.2	0
2506	Culture of Pig Induced Pluripotent Stem Cells without Direct Feeder Contact in Serum Free Media. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	0
2507	Function of Heparan Sulfate in Pluripotent Stem Cells. Trends in Glycoscience and Glycotechnology, 2014, 26, 149-157.	0.0	0
2508	Establishment of ESC Lines Derived from Mice, Rats, and Primate. Springer Theses, 2014, , 27-39.	0.0	0
2509	Germline Transmission of an Embryonic Stem Cell Line Derived from BALB/c Cataract Mice. PLoS ONE, 2014, 9, e90707.	1.1	0
2511	Modeling of Regulatory Mechanisms for mESC Self-Renewal: Kinetic and Stochastic Approaches. Mathematical Biology and Bioinformatics, 2014, 9, 504-517.	0.1	0
2512	Progress from Embryonic Stem Cells to Transduced Pluripotent Stem Cells. An Overview. Stem Cells and Cancer Stem Cells, 2015, , 75-90.	0.1	0
2513	A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures. AIMS Bioengineering, 2015, 2, 15-28.	0.6	0
2515	Clinically Relevant Reprogramming to Pluripotency. Recent Patents on Regenerative Medicine, 2015, 5, 27-35.	0.4	0
2518	Forward and Reverse Epigenomics in Embryonic Stem Cells. , 2017, , 1-20.		0

ARTICLE IF CITATIONS Glycogen Synthase Kinase-3., 2018, , 2161-2168. 0 2527 Neutralizing Gatad2a-Chd4-Mbd3 Axis within the NuRD Complex Facilitates Deterministic Induction of 2528 0.4 Naive Pluripotency. SSRN Electronic Journal, O, , . Derivation of Haploid Trophoblast Stem Cells <1>Via</1> Conversion <1>In Vitro</1>. SSRN Electronic 2530 0.4 0 Journal, O, , . The effect of oxygen concentration on embryo development and assisted reproductive technologies efficiency. Genes and Cells, 2018, 13, 39-46. Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic 2542 0.4 0 Stem Cells. SSRN Electronic Journal, 0, , . Temporal Dynamics of Tet1 and Oct4 Gene Activation Resolve Distinct Stages of Global DNA 2545 Demethylation and Transcriptomic Changes in the Final Phases of Induced Pluripotency. SSRN 0.4 Electronic Journal, 0, , . The Functions of <i>O</i>-GlcNAc in Pluripotent Stem Cells. Trends in Glycoscience and 2555 0.0 1 Glycotechnology, 2019, 31, E69-E75. The Functions of <i>O</i>-GlcNAc in Pluripotent Stem Cells. Trends in Glycoscience and 2556 Glycotechnology, 2019, 31, J69-J75. 2562 EMBRYONIC STEM CELLS: WHERE DO WE STAND AT THE MOMENT?. Acta Medica Medianae, 2019, , 138-146. 0.0 1 Targeted Mutations in the Mouse via Embryonic Stem Cells. Methods in Molecular Biology, 2020, 2066, 0.4 59-82 Inducible TDG knockout models to study epigenetic regulation. F1000Research, 2020, 9, 1112. 2579 4 0.8 Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells. Biology Open, 0.6 2021, 10, . Culturing and Manipulating. Methods in Molecular Biology, 2020, 2155, 1-9. 2585 0.4 1 Origins of Pluripotency: From Stem Cells to Germ Cells. Learning Materials in Biosciences, 2020, , 2586 0.2 29-55. 2587 Embryonic Stem Cells., 2020, , 315-365. 0 Role and Regulation of Lin28 in Progenitor Cells During Central Nervous System Development. 2588 Advances in Experimental Medicine and Biology, 2020, 1326, 55-72. Derivation of LIF-Independent Embryonic Stem Cells Using Inducible OCT4 Expression. Methods in 2589 0.4 1 Molecular Biology, 2020, 2117, 229-234. 2590 Mitotic bookmarking by transcription factors and the preservation of pluripotency., 2020, , 131-153.

#	Article	IF	CITATIONS
2591	A change in culture: Modeling human germ cell development in vitro. , 2020, , 75-91.		1
2592	The pluripotent cell cycle. , 2020, , 115-129.		0
2593	Intravenously Injected Pluripotent Stem Cell–derived Cells Form Fetomaternal Vasculature and Prevent Miscarriage in Mouse. Cell Transplantation, 2020, 29, 096368972097045.	1.2	1
2599	MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Reports, 2021, 37, 109949.	2.9	4
2601	Rapid generation of murine haploid-induced trophoblast stem cells via a Tet-on system. STAR Protocols, 2021, 2, 100881.	0.5	3
2606	Mouse Cloning by Nuclear Transfer. Springer Protocols, 2011, , 267-289.	0.1	0
2607	The Importance of Mouse ES Cell Line Selection. Springer Protocols, 2011, , 327-356.	0.1	0
2608	Combining ES Cells with Embryos. Springer Protocols, 2011, , 377-430.	0.1	0
2609	Derivation of Murine ES Cell Lines. Springer Protocols, 2011, , 431-455.	0.1	1
2610	Rat Embryonic Stem Cell Derivation and Propagation. Springer Protocols, 2011, , 457-475.	0.1	0
2611	Generation of Primordial Germ Cell-like Cells on Small and Large Scales. Methods in Molecular Biology, 2021, 2214, 75-89.	0.4	2
2612	Inducible TDG knockout models to study epigenetic regulation. F1000Research, 0, 9, 1112.	0.8	1
2620	Inhibition of MUC1-C Increases ROS and Cell Death in Mouse Embryonic Stem Cells. International Journal of Stem Cells, 2020, 14, 180-190.	0.8	4
2621	Small Molecule Regulation of Stem Cells that Generate Bone, Chondrocyte, and Cardiac Cells. Current Topics in Medicinal Chemistry, 2020, 20, 2344-2361.	1.0	0
2622	Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. Cell Journal, 2015, 17, 288-95.	0.2	7
2623	Key players in the gene networks guiding ESCs toward mesoderm. Journal of Stem Cells, 2009, 4, 147-60.	1.0	1
2626	Specific differentiation of mesenchymal stem cells by small molecules. American Journal of Stem Cells, 2012, 1, 22-30.	0.4	11
2627	MiR-3099 is Overexpressed in Differentiating 46c Mouse Embryonic Stem Cells upon Neural Induction. The Malaysian Journal of Medical Sciences, 2014, 21, 27-33.	0.3	2

#	Article	IF	CITATIONS
2628	Rat embryonic stem cells create new era in development of genetically manipulated rat models. World Journal of Stem Cells, 2015, 7, 1054-63.	1.3	7
2629	Induced Pluripotent Stem Cells of Microtus levis x Microtus arvalis Vole Hybrids: Conditions Necessary for Their Generation and Self-Renewal. Acta Naturae, 2015, 7, 56-69.	1.7	4
2630	Three-dimensional retinal organoids from mouse pluripotent stem cells mimic development with enhanced stratification and rod photoreceptor differentiation. Molecular Vision, 2016, 22, 1077-1094.	1.1	60
2632	miR-302b-3p Promotes Self-Renewal Properties in Leukemia Inhibitory Factor-Withdrawn Embryonic Stem Cells. Cell Journal, 2018, 20, 61-72.	0.2	14
2633	Temporal Gene Expression and DNA Methylation during Embryonic Stem Cell Derivation. Cell Journal, 2018, 20, 361-368.	0.2	1
2634	Generating Human Organs via Interspecies Chimera Formation: Advances and Barriers. Yale Journal of Biology and Medicine, 2018, 91, 333-342.	0.2	22
2635	Deriving rabbit embryonic stem cells by small molecule inhibitors. American Journal of Translational Research (discontinued), 2019, 11, 5122-5133.	0.0	1
2636	Methyl-CpG-binding domain 3 (Mbd3) is an important regulator for apoptosis in mouse embryonic stem cells. American Journal of Translational Research (discontinued), 2020, 12, 8147-8161.	0.0	1
2637	Pluripotin stimulates the growth of hematopoietic stem cells while suppressing the expansion of bone marrow mesenchymal stem cells and fibroblasts. Journal of Immunology and Regenerative Medicine, 2022, 15, 100056.	0.2	1
2638	A Case for Revisiting Nodal Signaling in Human Pluripotent Stem Cells. Stem Cells, 2021, 39, 1137-1144.	1.4	9
2639	Expression levels and activation status of Yap splicing isoforms determine self-renewal and differentiation potential of embryonic stem cells. Stem Cells, 2021, 39, 1178-1191.	1.4	9
2640	T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Frontiers in Cell and Developmental Biology, 2021, 9, 784998.	1.8	2
2641	Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nature Communications, 2021, 12, 6718.	5.8	12
2642	Cell-fate transition and determination analysis of mouse male germ cells throughout development. Nature Communications, 2021, 12, 6839.	5.8	31
2644	A conserved expression signature predicts growth rate and reveals cell & lineage-specific differences. PLoS Computational Biology, 2021, 17, e1009582.	1.5	4
2645	Cell Therapy: Types, Regulation, and Clinical Benefits. Frontiers in Medicine, 2021, 8, 756029.	1.2	61
2646	Towards organism-level systems biology by next-generation genetics and whole-organ cell profiling. Biophysical Reviews, 2021, 13, 1113-1126.	1.5	1
2648	An ERK5–KLF2 signalling module regulates early embryonic gene expression and telomere rejuvenation in stem cells. Biochemical Journal, 2021, 478, 4119-4136.	1.7	7

ARTICLE IF CITATIONS # Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 48 2649 5.7 2022, 32, 383-400. OUP accepted manuscript. Stem Cells Translational Medicine, 2022, 11, 231-238. 2650 1.6 8. Différenciation cellulaire et cellules souches., 2017,, 309-360. 0 2651 A Modified SMART-Seq Method for Single-Cell Transcriptomic Analysis of Embryoid Body 0.4 Differentiation. Methods in Molecular Biology, 2021, , 233-259. Pluripotency Stemness and Cancer: More Questions than Answers. Advances in Experimental Medicine 2653 7 0.8 and Biology, 2021, , 77-100. Studying the DNA damage response in embryonic systems. Methods in Enzymology, 2021, 661, 95-120. 0.4 From Cells to Organs: The Present and Future of Regenerative Medicine. Advances in Experimental 2655 0.8 3 Medicine and Biology, 2021, , 135-149. <i>Hoxb1</i> Regulates Distinct Signaling Pathways in Neuromesodermal and Hindbrain Progenitors 2656 1.4 to Promote Cell Survival and Specification. Stem Cells, 2022, 40, 175-189. Lactate enhances mouse ES cell differentiation towards XEN cells in vitro. Stem Cells, 2022, , . 2657 1.4 8 Metabolic Control of Germline Formation and Differentiation in Mammals. Sexual Development, 2022, 2658 1.1 16, 388-403. Dual role of <i>Ovol2</i> on the germ cell lineage segregation during gastrulation in mouse 2659 1.2 6 embryogenesis. Development (Cambridge), 2022, 149, . Transcriptomic profiling fuels the derivation of stable pig epiblast stem cells. Cell Research, 2022, , . 2660 5.7 Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. 2661 1.4 33 Frontiers in Molecular Neuroscience, 2021, 14, 792364. Nucleus-cytoskeleton communication impacts on OCT4-chromatin interactions in embryonic stem cells. BMC Biology, 2022, 20, 6. 2663 1.7 Pluripotency state of mouse ES cells determines their contribution to self-organized layer formation 2664 by mesh closure on microstructured adhesion-limiting substrates. Biochemical and Biophysical 1.0 1 Research Communications, 2022, 590, 97-102. Distinct transcription kinetics of pluripotent cell states. Molecular Systems Biology, 2022, 18, e10407. From Patient Material to New Discoveries: a Methodological Review and Guide for Intestinal Stem Cell 2666 1.7 2 Researchers. Stem Cell Reviews and Reports, 2022, 18, 1309-1321. \hat{l}^2 -catenin perturbations control differentiation programs in mouse embryonic stem cells. IScience, 2022, 25, 103756.

# 2668	ARTICLE Loss of Foxd4 Impacts Neurulation and Cranial Neural Crest Specification During Early Head Development. Frontiers in Cell and Developmental Biology, 2021, 9, 777652.	IF 1.8	CITATIONS 2
2669	Lima1 mediates the pluripotency control of membrane dynamics and cellular metabolism. Nature Communications, 2022, 13, 610.	5.8	8
2670	Constitutive activation of canonical Wnt signaling disrupts choroid plexus epithelial fate. Nature Communications, 2022, 13, 633.	5.8	28
2671	Ribosomal DNA promoter recognition is determined in vivo by cooperation between UBTF1 and SL1 and is compromised in the UBTF-E210K neuroregression syndrome. PLoS Genetics, 2022, 18, e1009644.	1.5	12
2673	Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells. Cell Stem Cell, 2022, 29, 400-418.e13.	5.2	68
2674	High-throughput Genetically Modified Animal Experiments Achieved by Next-generation Mammalian Genetics. Journal of Biological Rhythms, 2022, , 074873042210750.	1.4	1
2676	BMP4 preserves the developmental potential of mESCs through Ube2s- and Chmp4b-mediated chromosomal stability safeguarding. Protein and Cell, 2022, 13, 580-601.	4.8	3
2677	Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag. Nature Chemical Biology, 2022, 18, 180-190.	3.9	41
2678	YY1 safeguard multidimensional epigenetic landscape associated with extended pluripotency. Nucleic Acids Research, 2022, 50, 12019-12038.	6.5	14
2679	Efficient generation of embryonic stem cells from single blastomeres of cryopreserved mouse embryos in the presence of signalling modulators. Reproduction, Fertility and Development, 2022, , .	0.1	1
2680	Computational Methods to Identify Cell-Fate Determinants, Identity Transcription Factors, and Niche-Induced Signaling Pathways for Stem Cell Research. Methods in Molecular Biology, 2022, 2471, 83-109.	0.4	2
2681	CELLoGeNe - An Energy Landscape Framework for Logical Networks Controlling Cell Decisions. SSRN Electronic Journal, 0, , .	0.4	0
2682	Label-Free and Non-Destructive Identification of NaÃ ⁻ ve and Primed Embryonic Stem Cells Based on Differences in Cellular Metabolism. SSRN Electronic Journal, 0, , .	0.4	0
2683	Germline specification from pluripotent stem cells. Stem Cell Research and Therapy, 2022, 13, 74.	2.4	10
2684	BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation. Nature Communications, 2022, 13, 1658.	5.8	7
2685	Chromatin modifier HUSH co-operates with RNA decay factor NEXT to restrict transposable element expression. Molecular Cell, 2022, 82, 1691-1707.e8.	4.5	43
2687	A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes. Cell Reports Methods, 2022, 2, 100187.	1.4	4
2688	The BTB transcription factors ZBTB11 and ZFP131 maintain pluripotency by repressing pro-differentiation genes. Cell Reports, 2022, 38, 110524.	2.9	7

		CITATION REPORT		
#	Article		IF	CITATIONS
2689	TMED2 binding restricts SMO to the ER and Golgi compartments. PLoS Biology, 2022,	20, e3001596.	2.6	7
2690	Fast and Efficient Mouse Pluripotency Reprogramming Using a Chemically-Defined Me and Protocols, 2022, 5, 28.	dium. Methods	0.9	0
2693	From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Frontiers Developmental Biology, 2022, 10, 838356.	in Cell and	1.8	6
2694	Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Em Development. Frontiers in Cell and Developmental Biology, 2022, 10, 819044.	bryonic	1.8	10
2695	Timely stimulation of early embryo promotes the acquisition of pluripotency. Cytometr Journal of the International Society for Analytical Cytology, 2022, 101, 682-691.	y Part A: the	1.1	0
2696	An shRNA kinase screen identifies regulators of UHRF1 stability and activity in mouse e cells. Epigenetics, 2022, , 1-18.	mbryonic stem	1.3	1
2697	In vitro investigation of mammalian peri-implantation embryogenesis. Biology of Repro	duction, 2022, , .	1.2	0
2698	Genomeâ€scale screening in a rat haploid system identifies <i>Thop1</i> as a modulat exit. Cell Proliferation, 2022, 55, e13209.	or of pluripotency	2.4	5
2699	RhoA/ROCK signaling antagonizes bovine trophoblast stem cell self-renewal and regula preimplantation embryo size and differentiation. Development (Cambridge), 2022, 149		1.2	4
2700	Synergistic power of genomic selection, assisted reproductive technologies, and gene genetic improvement of cattle. CABI Agriculture and Bioscience, 2022, 3, .	editing to drive	1.1	17
2701	High temporal resolution proteome and phosphoproteome profiling of stem cell-derive development. Cell Reports, 2022, 38, 110604.	d hepatocyte	2.9	8
2703	Cell surface fluctuations regulate early embryonic lineage sorting. Cell, 2022, 185, 777	-793.e20.	13.5	37
2704	elF4A2 targets developmental potency and histone H3.3 transcripts for translational concell pluripotency. Science Advances, 2022, 8, eabm0478.	ontrol of stem	4.7	7
2705	TSA Activates Pluripotency Factors in Porcine Recloned Embryos. Genes, 2022, 13, 649	9.	1.0	1
2706	Cell–cell adhesions in embryonic stem cells regulate the stability and transcriptional β atenin. FEBS Letters, 2022, 596, 1647-1660.	activity of	1.3	3
2707	Aryl Hydrocarbon Receptor: From Homeostasis to Tumor Progression. Frontiers in Cell Developmental Biology, 2022, 10, 884004.	and	1.8	8
2708	Premise and peril of Wnt signaling activation through GSK-3Î ² inhibition. IScience, 202	2, 25, 104159.	1.9	22
2709	Two Sets of Compound Complex Driving for High Efficiency of Nonintegration Reprogr Human Fibroblasts. Cellular Reprogramming, 2022, 24, 71-79.	amming of	0.5	0

#	Article	IF	CITATIONS
2710	Cnot8 eliminates naìve regulation networks and is essential for naìve-to-formative pluripotency transition. Nucleic Acids Research, 2022, , .	6.5	1
2713	KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. Science China Life Sciences, 2022, 65, 1985-1997.	2.3	6
2714	Live isolation of naÃ ⁻ ve ESCs via distinct glucose metabolism and stored glycogen. Metabolic Engineering, 2022, 72, 97-106.	3.6	1
2715	Pluripotency Dynamics during Embryogenesis and in Cell Culture. Russian Journal of Developmental Biology, 2021, 52, 379-389.	0.1	4
2716	N6-methyladenosine (m ⁶ A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
2717	The Different Impact of ERK Inhibition on Neuroblastoma, Astrocytoma, and Rhabdomyosarcoma Cell Differentiation. , 2021, 13, 69-77.		2
2718	Genetic control of the pluripotency epigenome determines differentiation bias in mouse embryonic stem cells. EMBO Journal, 2022, 41, e109445.	3.5	5
2719	Capturing Pluripotency and Beyond. Cells, 2021, 10, 3558.	1.8	4
2720	Germ cells commit somatic stem cells to differentiation following priming by PI3K/Tor activity in the Drosophila testis. PLoS Genetics, 2021, 17, e1009609.	1.5	5
2722	Generation of Sheep Induced Pluripotent Stem Cells With Defined DOX-Inducible Transcription Factors via piggyBac Transposition. Frontiers in Cell and Developmental Biology, 2021, 9, 785055.	1.8	4
2723	Epigenetic integrity of paternal imprints enhances the developmental potential of androgenetic haploid embryonic stem cells. Protein and Cell, 2022, 13, 102-119.	4.8	4
2724	Deriving Human NaÃ⁻ve Embryonic Stem Cell Lines from Donated Supernumerary Embryos Using Physical Distancing and Signal Inhibition. Methods in Molecular Biology, 2022, 2416, 1-12.	0.4	2
2725	The role of FGF-4 and FGFR-2 on preimplantation embryo development in experimental maternal diabetes. Gynecological Endocrinology, 2022, 38, 248-252.	0.7	1
2727	Induction of Human NaÃ⁻ve Pluripotency Using 5i/L/A Medium. Methods in Molecular Biology, 2022, 2416, 13-28.	0.4	8
2728	Genomic stability of mouse spermatogonial stem cells in vitro. Scientific Reports, 2021, 11, 24199.	1.6	0
2730	Generation of sex-reversed female clonal mice via CRISPR/Cas9-mediated Y chromosome deletion in male embryonic stem cells. Methods in Cell Biology, 2022, , .	0.5	1
2746	L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. Methods in Molecular Biology, 2022, 2490, 11-24.	0.4	4
2747	O-GlcNAcylation and Regulation of Galectin-3 in Extraembryonic Endoderm Differentiation. Biomolecules, 2022, 12, 623.	1.8	5

#	Article	IF	CITATIONS
2748	Dppa3 facilitates self-renewal of embryonic stem cells by stabilization of pluripotent factors. Stem Cell Research and Therapy, 2022, 13, 169.	2.4	5
2749	Functional Characterization of Endothelial Cells Differentiated from Porcine Epiblast Stem Cells. Cells, 2022, 11, 1524.	1.8	3
2750	Selective activation and downâ€regulation of Trk receptors by neurotrophins in human neurons coâ€expressing <scp>TrkB</scp> and <scp>TrkC</scp> . Journal of Neurochemistry, 2022, 161, 463-477.	2.1	12
2752	Research Progress of Totipotent Stem Cells. Stem Cells and Development, 2022, 31, 335-345.	1.1	6
2753	Prospects in GSK-3 Signaling: From Cellular Regulation to Disease Therapy. Cells, 2022, 11, 1618.	1.8	2
2754	Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation. Nature Cell Biology, 2022, 24, 633-644.	4.6	35
2755	Nuclear GSK-3β and Oncogenic KRas Lead to the Retention of Pancreatic Ductal Progenitor Cells Phenotypically Similar to Those Seen in IPMN. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
2756	A synthetic lethality screen reveals ING5 as a genetic dependency of catalytically dead Set1A/COMPASS in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118385119.	3.3	3
2757	Subnuclear localisation is associated with gene expression more than parental origin at the imprinted Dlk1-Dio3 locus. PLoS Genetics, 2022, 18, e1010186.	1.5	0
2758	Avian Embryonic Culture: A Perspective of In Ovo to Ex Ovo and In Vitro Studies. Frontiers in Physiology, 2022, 13, .	1.3	2
2759	Differential Single Cell Responses of Embryonic Stem Cells Versus Embryoid Bodies to Gravity Mechanostimulation. Stem Cells and Development, 2022, 31, 346-356.	1.1	1
2760	Covariation of Pluripotency Markers and Biomechanical Properties in Mouse Embryonic Stem Cells. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	0
2761	BMP4 drives primed to naÃ ⁻ ve transition through PGC-like state. Nature Communications, 2022, 13, 2756.	5.8	2
2763	Mouse embryonic stem cells require multiple amino acids. Experimental Biology and Medicine, 2022, 247, 1379-1387.	1.1	0
2765	Effects of KnockOut Serum Replacement on Differentiation of Mouse-Induced Pluripotent Stem Cells into Odontoblasts. Bulletin of Tokyo Dental College, The, 2022, 63, 75-83.	0.1	1
2766	3R measures in facilities for the production of genetically modified rodents. Lab Animal, 2022, 51, 162-177.	0.2	4
2767	Derivation of functional trophoblast stem cells from primed human pluripotent stem cells. Stem Cell Reports, 2022, 17, 1303-1317.	2.3	24
2768	Controlled Xâ€chromosome dynamics defines meiotic potential of female mouse <i>in vitro</i> germ cells. EMBO Journal, 2022, 41, .	3.5	13

#	Article	IF	CITATIONS
2769	Large-Scale Analysis of X Inactivation Variations between Primed and NaÃ ⁻ ve Human Embryonic Stem Cells, 2022, 11, 1729.	1.8	2
2770	Methanol fixed feeder layers altered the pluripotency and metabolism of bovine pluripotent stem cells. Scientific Reports, 2022, 12, .	1.6	2
2771	Arp2/3 complex activity is necessary for mouse ESC differentiation, times formative pluripotency, and enables lineage specification. Stem Cell Reports, 2022, 17, 1318-1333.	2.3	4
2773	<i>Dnmt3bas</i> Regulates Transcriptional Induction and Alternative Splicing of <i>Dnmt3b</i> . SSRN Electronic Journal, 0, , .	0.4	0
2775	Involvement of PGC7 and UHRF1 in regulating DNA methylation of the IG-DMR in the imprinted Dlk1-Dio3 locus Acta Biochimica Et Biophysica Sinica, 2022, , .	0.9	1
2777	Role of heat shock protein 60 in primed and naÃ⁻ve states of human pluripotent stem cells. PLoS ONE, 2022, 17, e0269547.	1.1	0
2778	Identification of the central intermediate in the extra-embryonic to embryonic endoderm transition through single-cell transcriptomics. Nature Cell Biology, 2022, 24, 833-844.	4.6	15
2779	Research progress and application prospects of stable porcine pluripotent stem cells. Biology of Reproduction, 2022, 107, 226-236.	1.2	5
2780	Emerging interplay of cytoskeletal architecture, cytomechanics and pluripotency. Journal of Cell Science, 2022, 135, .	1.2	2
2781	Transcriptional regulation and chromatin architecture maintenance are decoupled functions at the <i>Sox2</i> locus. Genes and Development, 2022, 36, 699-717.	2.7	17
2782	A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes. Nature Communications, 2022, 13, .	5.8	14
2783	The Rx transcription factor is required for determination of the retinal lineage and regulates the timing of neuronal differentiation. Development Growth and Differentiation, 0, , .	0.6	2
2784	ZFP281-BRCA2 prevents R-loop accumulation during DNA replication. Nature Communications, 2022, 13,	5.8	12
2785	Nucleome programming is required for the foundation of totipotency in mammalian germline development. EMBO Journal, 2022, 41, .	3.5	9
2786	Metabolic regulation in pluripotent stem cells. Current Opinion in Genetics and Development, 2022, 75, 101923.	1.5	8
2787	Inhibition of Canonical Wnt Signaling Promotes Ex Vivo Maintenance and Proliferation of Hematopoietic Stem Cells in Zebrafish. Stem Cells, 2022, 40, 831-842.	1.4	5
2788	Epigenetics as "conductor―in "orchestra―of pluripotent states. Cell and Tissue Research, 2022, 390, 141-172.	1.5	4
2789	Dichotomous role of Shp2 for naÃ ⁻ ve and primed pluripotency maintenance in embryonic stem cells. Stem Cell Research and Therapy, 2022, 13, .	2.4	2

#	Article	IF	CITATIONS
2790	Capturing Transitional Pluripotency through Proline Metabolism. Cells, 2022, 11, 2125.	1.8	4
2791	Mesp1 controls the chromatin and enhancer landscapes essential for spatiotemporal patterning of early cardiovascular progenitors. Nature Cell Biology, 2022, 24, 1114-1128.	4.6	11
2792	CELLoGeNe - An energy landscape framework for logical networks controlling cell decisions. IScience, 2022, 25, 104743.	1.9	1
2793	An automated do-it-yourself system for dynamic stem cell and organoid culture in standard multi-well plates. Cell Reports Methods, 2022, 2, 100244.	1.4	6
2794	Cell competition and the regulative nature of early mammalian development. Cell Stem Cell, 2022, 29, 1018-1030.	5.2	11
2795	A long noncoding RNA influences the choice of the X chromosome to be inactivated. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
2796	Epiblast inducers capture mouse trophectoderm stem cells inÂvitro and pattern blastoids for implantation in utero. Cell Stem Cell, 2022, 29, 1102-1118.e8.	5.2	17
2797	Opportunities and impediments of human pluripotent stem cell-derived islets in the treatment of diabetes. Journal of Immunology and Regenerative Medicine, 2022, 17, 100064.	0.2	2
2798	Optimized protocol to derive germline stem-cell-like cells from mouse pluripotent stem cells. STAR Protocols, 2022, 3, 101544.	0.5	4
2799	P21-Activated Kinase 4 Pak4 Maintains Embryonic Stem Cell Pluripotency via Akt Activation. Stem Cells, 2022, 40, 892-905.	1.4	2
2800	A Genome-Wide CRISPR Screen Identifies Factors Regulating Pluripotency Exit in Mouse Embryonic Stem Cells. Cells, 2022, 11, 2289.	1.8	1
2801	Extracellular Vesicle Mimetics: Preparation from Topâ€Đown Approaches and Biological Functions. Advanced Healthcare Materials, 2022, 11, .	3.9	6
2802	The role of BMP4 signaling in trophoblast emergence from pluripotency. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	12
2803	The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. Journal of Developmental Biology, 2022, 10, 31.	0.9	9
2804	Geneticin reduces mRNA stability. PLoS ONE, 2022, 17, e0272058.	1.1	0
2805	Regulation of the <scp> <i>THRA</i> </scp> gene, encoding the thyroid hormone nuclear receptor TRα1, in intestinal lesions. Molecular Oncology, 0, , .	2.1	0
2806	Regulation of Embryonic Stem Cell Self-Renewal. Life, 2022, 12, 1151.	1.1	4
2807	Bone morphogenetic protein 4 rescues the bone regenerative potential of old muscle-derived stem cells via regulation of cell cycle inhibitors. Stem Cell Research and Therapy, 2022, 13, .	2.4	1

#	Article	IF	CITATIONS
2808	Bilineage embryo-like structure from EPS cells can produce live mice with tetraploid trophectoderm. Protein and Cell, 0, , .	4.8	3
2809	WDR36 Safeguards Self-Renewal and Pluripotency of Human Extended Pluripotent Stem Cells. Frontiers in Genetics, 0, 13, .	1.1	0
2810	Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development (Cambridge), 2022, 149, .	1.2	3
2811	Stepwise pluripotency transitions in mouse stem cells. EMBO Reports, 2022, 23, .	2.0	9
2812	Transcriptional heterogeneity and cell cycle regulation as central determinants of Primitive Endoderm priming. ELife, 0, 11, .	2.8	7
2814	A pendulum of induction between the epiblast and extra-embryonic endoderm supports post-implantation progression. Development (Cambridge), 2022, 149, .	1.2	11
2818	Nucleosome remodeling and deacetylation complex and MBD3 influence mouse embryonic stem cell naÃ ⁻ ve pluripotency under inhibition of protein kinase C. Cell Death Discovery, 2022, 8, .	2.0	2
2819	The Divergent Pluripotent States in Mouse and Human Cells. Genes, 2022, 13, 1459.	1.0	1
2821	Rap1 controls epiblast morphogenesis in sync with the pluripotency states transition. Developmental Cell, 2022, 57, 1937-1956.e8.	3.1	7
2823	Transcriptomics, regulatory syntax, and enhancer identification in mesoderm-induced ESCs at single-cell resolution. Cell Reports, 2022, 40, 111219.	2.9	8
2824	RBM47 is a Critical Regulator of Mouse Embryonic Stem Cell Differentiation. Stem Cell Reviews and Reports, 2023, 19, 475-490.	1.7	2
2827	Hypoxia induces an early primitive streak signature, enhancing spontaneous elongation and lineage representation in gastruloids. Development (Cambridge), 2022, 149, .	1.2	14
2828	Blastocyst Stage Affects the Isolation and Culture of Buffalo Naive/Primed Embryonic Stem-Like Cells. Microscopy and Microanalysis, 0, , 1-12.	0.2	0
2830	Super-enhancers conserved within placental mammals maintain stem cell pluripotency. Proceedings of the United States of America, 2022, 119, .	3.3	11
2831	H3K18 lactylation marks tissue-specific active enhancers. Genome Biology, 2022, 23, .	3.8	25
2832	Germline stem cells in human. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	12
2833	Developmental Potency and Metabolic Traits of Extended Pluripotency Are Faithfully Transferred to Somatic Cells via Cell Fusion-Induced Reprogramming. Cells, 2022, 11, 3266.	1.8	1
2834	Stem cell-based models of early mammalian development. Development (Cambridge), 2022, 149, .	1.2	8

#	Article	IF	CITATIONS
2838	Chromatin as a sensor of metabolic changes during early development. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
2839	New insights into the epitranscriptomic control of pluripotent stem cell fate. Experimental and Molecular Medicine, 2022, 54, 1643-1651.	3.2	4
2840	Mini Review: Molecular Interpretation of the IGF/IGF-1R Axis in Cancer Treatment and Stem Cells-Based Therapy in Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 11781.	1.8	4
2841	Formation of benign tumors by stem cell deregulation. PLoS Genetics, 2022, 18, e1010434.	1.5	0
2843	Human primed and naÃ⁻ve PSCs are both able to differentiate into trophoblast stem cells. Stem Cell Reports, 2022, 17, 2484-2500.	2.3	16
2844	NaÃ ⁻ ve-like conversion of bovine induced pluripotent stem cells from Sertoli cells. Theriogenology, 2023, 196, 68-78.	0.9	3
2845	Brasenia-inspired hydrogel with sustained and sequential release of BMP and WNT activators for improved bone regeneration. Chinese Chemical Letters, 2023, 34, 107965.	4.8	3
2846	Single-cell mass cytometry analysis reveals stem cell heterogeneity. Methods, 2022, 208, 9-18.	1.9	2
2847	CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site. Nature Communications, 2022, 13, .	5.8	7
2848	A method for stabilising the XX karyotype in female mESC cultures. Development (Cambridge), 0, , .	1.2	0
2849	Transcription factor antagonism regulates heterogeneity in embryonic stem cell states. Molecular Cell, 2022, 82, 4410-4427.e12.	4.5	5
2851	Suppression of YAP safeguards human naÃ ⁻ ve pluripotency. Development (Cambridge), 2022, 149, .	1.2	7
2852	Leucine and Arginine Availability Modulate Mouse Embryonic Stem Cell Proliferation and Metabolism. International Journal of Molecular Sciences, 2022, 23, 14286.	1.8	5
2853	A single cell-based computational platform to identify chemical compounds targeting desired sets of transcription factors for cellular conversion. Stem Cell Reports, 2023, 18, 131-144.	2.3	1
2854	Label-free and non-destructive identification of naÃ ⁻ ve and primed embryonic stem cells based on differences in cellular metabolism. Biomaterials, 2023, 293, 121939.	5.7	3
2855	Inhibition of GSK3Î ² Promotes Proliferation and Suppresses Apoptosis of Porcine Muscle Satellite Cells. Animals, 2022, 12, 3328.	1.0	1
2856	Differentiation of enteric neural crest cells transplanted from SOX10-Venus mouse embryonic stem cells into the gut of the endothelin receptor B null mouse model. Pediatric Surgery International, 2023, 39, .	0.6	1
2857	Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells, 2022, 11, 3713.	1.8	6

#	Article	IF	CITATIONS
2858	Maternal Undernutrition Induces Cell Signalling and Metabolic Dysfunction in Undifferentiated Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 0, , .	1.7	1
2860	LINE-1 Retrotransposition Assays in Embryonic Stem Cells. Methods in Molecular Biology, 2023, , 257-309.	0.4	Ο
2861	Atypical cell cycle profile of mouse embryonic stem cell is regulated by classic oncogenic and tumor suppressive genes in vitro. Heliyon, 2022, 8, e11979.	1.4	0
2863	Attempts for deriving extended pluripotent stem cells from common marmoset embryonic stem cells. Genes To Cells, 0, , .	0.5	0
2864	Production of large, defined genome modifications in rats by targeting rat embryonic stem cells. Stem Cell Reports, 2023, 18, 394-409.	2.3	1
2865	Requirement for STAT3 and its target, TFCP2L1, in self-renewal of naÃ⁻ve pluripotent stem cells <i>in vivo</i> and <i>in vitro</i> . Biology Open, 0, , .	0.6	6
2866	ERK1/2 signalling dynamics promote neural differentiation by regulating chromatin accessibility andÂthe polycomb repressive complex. PLoS Biology, 2022, 20, e3000221.	2.6	9
2867	Retention of ERK in the cytoplasm mediates the pluripotency of embryonic stem cells. Stem Cell Reports, 2023, 18, 305-318.	2.3	3
2868	A congenital hydrocephalusâ€causing mutation in Trim71 induces stem cell defects via inhibiting <i>Lsd1</i> <scp>mRNA</scp> translation. EMBO Reports, 0, , .	2.0	2
2870	A chemically defined system supports two distinct types of stem cell from a single blastocyst and their selfâ€assembly to generate blastoid. Cell Proliferation, 2023, 56, .	2.4	6
2871	Molecular versatility during pluripotency progression. Nature Communications, 2023, 14, .	5.8	6
2872	Novel Insights into the Role of Kras in Myeloid Differentiation: Engaging with Wnt/β-Catenin Signaling. Cells, 2023, 12, 322.	1.8	0
2873	Two target gene activation pathways for orphan ERR nuclear receptors. Cell Research, 2023, 33, 165-183.	5.7	7
2874	Distinct enhancer-promoter modes determine Sox 2 regulation in mouse pluripotent cells. Genes and Diseases, 2022, , .	1.5	1
2877	Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
2878	Wnt signaling and the regulation of pluripotency. Current Topics in Developmental Biology, 2023, , 95-119.	1.0	1
2879	Chromosome territory reorganization through artificial chromosome fusion is compatible with cell fate determination and mouse development. Cell Discovery, 2023, 9, .	3.1	2
2881	Metabolism-based cardiomyocytes production for regenerative therapy. Journal of Molecular and Cellular Cardiology, 2023, 176, 11-20.	0.9	1

#	Article	IF	Citations
2882	Modeling Nonalcoholic Fatty Liver Disease in the Dish Using Human-Specific Platforms: Strategies and Limitations. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1135-1145.	2.3	4
2884	Different congenital hydrocephalus–associated mutations in Trim71 impair stem cell differentiation via distinct gain-of-function mechanisms. PLoS Biology, 2023, 21, e3001947.	2.6	2
2886	ZBTB12 is a molecular barrier to dedifferentiation in human pluripotent stem cells. Nature Communications, 2023, 14, .	5.8	6
2887	Characterization of a Distinct State in the Continuum of Pluripotency Facilitated by Inhibition of PKCζ in Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 2023, 19, 1098-1115.	1.7	2
2888	Dual role of lipids for genome stability and pluripotency facilitates full potency of mouse embryonic stem cells. Protein and Cell, 2023, 14, 591-602.	4.8	2
2891	The role of Wnt signaling in the development of the epiblast and axial progenitors. Current Topics in Developmental Biology, 2023, , 145-180.	1.0	3
2892	Manipulation of Signal Gradient and Transcription Factors Recapitulates: Multiple Hypothalamic Identities. Stem Cells, 2023, 41, 453-467.	1.4	1
2893	The Wnt/TCF7L1 transcriptional repressor axis drives primitive endoderm formation by antagonizing naive and formative pluripotency. Nature Communications, 2023, 14, .	5.8	7
2895	Large-scale expansion of human umbilical cord-derived mesenchymal stem cells using PLGA@PLL scaffold. Bioresources and Bioprocessing, 2023, 10, .	2.0	1
2896	Commercial dishes with gelatin-free microstructured inserts for elongated stem cell self-renewal and pluripotency. IScience, 2023, 26, 106446.	1.9	0
2898	Generation of functional oocytes from male mice in vitro. Nature, 2023, 615, 900-906.	13.7	16
2899	Rif1 Regulates Self-Renewal and Impedes Mesendodermal Differentiation of Mouse Embryonic Stem Cells. Stem Cell Reviews and Reports, 0, , .	1.7	2
2901	Transgenesis and Genome Engineering: A Historical Review. Methods in Molecular Biology, 2023, , 1-32.	0.4	2
2902	ZBTB7A regulates primedâ€toâ€naÃ⁻ve transition of pluripotent stem cells via recognition of the PNTâ€associated sequence by zinc fingers 1–2 and recognition of γâ€globin â°'200 gene element by zinc fingers 1–4. FEBS Journal, 2023, 290, 3896-3909.	2.2	0
2906	Induction and application of human naive pluripotency. Cell Reports, 2023, 42, 112379.	2.9	7
2907	Reprogramming efficiency and pluripotency of mule iPSCs over its parents. Biology of Reproduction, 2023, 108, 887-901.	1.2	3
2908	CHARGE syndrome-associated CHD7 acts at ISL1-regulated enhancers to modulate second heart field gene expression. Cardiovascular Research, 2023, 119, 2089-2105.	1.8	5
2911	Pluripotent Stem Cells as a Model for Human Embryogenesis. Cells, 2023, 12, 1192.	1.8	0

#	Article	IF	CITATIONS
2912	In vitro spermatogenesis from pluripotent stem cells. , 2023, , 119-143.		0
2932	Produktion von transgenen Nutztieren: Überblick über transgene Technologien. , 2023, , 109-138.		0
2981	A new era of stem cell and developmental biology: from blastoids to synthetic embryos and beyond. Experimental and Molecular Medicine, 0, , .	3.2	1
2991	The Effects of Metabolic Alteration on Embryonic Stem Cells. , 2023, , 235-240.		0
3034	Unravelling the genomics and proteomics aspects of the stemness phenotype in stem cells. , 2024, , 129-147.		0
3039	Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Molecular Biology Reports, 2024, 51, .	1.0	0