The amphioxus genome and the evolution of the chorda

Nature 453, 1064-1071 DOI: 10.1038/nature06967

Citation Report

#	Article	IF	CITATIONS
2	Gap junctions as electrical synapses. Journal of Neurocytology, 1997, 26, 349-366.	1.5	181
3	The Evolution of Alternative Splicing in the Pax Family: The View from the Basal Chordate Amphioxus. Journal of Molecular Evolution, 2008, 66, 605-620.	1.8	26
4	Evolution of Spliceosomal snRNA Genes in Metazoan Animals. Journal of Molecular Evolution, 2008, 67, 594-607.	1.8	79
5	Regulatory genes in the ancestral chordate genomes. Development Genes and Evolution, 2008, 218, 715-721.	0.9	24
6	A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 723-727.	0.9	55
7	The Fox genes of Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 629-638.	0.9	49
8	Comprehensive survey and classification of homeobox genes in the genome of amphioxus, Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 579-590.	0.9	69
9	Evolution of DNA-methylation machinery: DNA methyltransferases and methyl-DNA binding proteins in the amphioxus Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 691-701.	0.9	34
10	C2H2 zinc finger genes of the Gli, Zic, KLF, SP, Wilms' tumour, Huckebein, Snail, Ovo, Spalt, Odd, Blimp-1, Fez and related gene families from Branchiostoma floridae. Development Genes and Evolution, 2008, 218, 639-649.	0.9	30
11	Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs. Development Genes and Evolution, 2008, 218, 613-628.	0.9	60
12	Nuclear hormone receptor signaling in amphioxus. Development Genes and Evolution, 2008, 218, 651-665.	0.9	42
13	The amphioxus genome enlightens the evolution of the thyroid hormone signaling pathway. Development Genes and Evolution, 2008, 218, 667-680.	0.9	59
14	The amphioxus genome sequence illuminates the evolutionary origin of vertebrates. Development Genes and Evolution, 2008, 218, 575-578.	0.9	3
15	Genomic complexity of the variable region-containing chitin-binding proteins in amphioxus. BMC Genetics, 2008, 9, 78.	2.7	39
16	Semaphorin and neuropilin expression during early morphogenesis of <i>Xenopus laevis</i> . Developmental Dynamics, 2008, 237, 3853-3863.	1.8	25
17	An aboralâ€dorsalization hypothesis for chordate origin. Genesis, 2008, 46, 614-622.	1.6	43
18	Additional molecular support for the new chordate phylogeny. Genesis, 2008, 46, 592-604.	1.6	207
19	Man is but a worm: Chordate origins. Genesis, 2008, 46, 605-613.	1.6	106

ATION REDO

#	Article	IF	CITATIONS
20	The basal chordate amphioxus as a simple model for elucidating developmental mechanisms in vertebrates. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 175-187.	3.6	34
21	Sequencing one sex or the other has to be justified: Gender genomics and equality. Heredity, 2008, 101, 395-395.	2.6	4
22	The Trichoplax genome and the nature of placozoans. Nature, 2008, 454, 955-960.	27.8	801
23	Prospecting for an iron age. Nature, 2008, 453, 1000-1001.	27.8	30
24	The amphioxus unleashed. Nature, 2008, 453, 999-1000.	27.8	13
25	The functional repertoires of metazoan genomes. Nature Reviews Genetics, 2008, 9, 689-698.	16.3	100
27	HomeoDB: a database of homeobox gene diversity. Evolution & Development, 2008, 10, 516-518.	2.0	75
28	Chordate phylogeny and evolution: a not so simple threeâ€ŧaxon problem. Journal of Zoology, 2008, 276, 117-141.	1.7	69
29	Comparative genomics and the study of evolution by natural selection. Molecular Ecology, 2008, 17, 4586-4596.	3.9	133
30	Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evolutionary Biology, 2008, 8, 254.	3.2	57
31	LRRCE: a leucine-rich repeat cysteine capping motif unique to the chordate lineage. BMC Genomics, 2008, 9, 599.	2.8	39
32	Are we degenerate tetraploids? More genomes, new facts. Biology Direct, 2008, 3, 50.	4.6	15
33	Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Research, 2008, 18, 1112-1126.	5.5	359
34	Preferential regulation of duplicated genes by microRNAs in mammals. Genome Biology, 2008, 9, R132.	9.6	31
35	Novel genes dramatically alter regulatory network topology in amphioxus. Genome Biology, 2008, 9, R123.	9.6	33
36	Trichoplax, the simplest known animal, contains an estrogen-related receptor but no estrogen receptor: Implications for estrogen receptor evolution. Biochemical and Biophysical Research Communications, 2008, 375, 623-627.	2.1	43
37	Genome duplication and the origin of the vertebrate skeleton. Current Opinion in Genetics and Development, 2008, 18, 387-393.	3.3	43
38	Rapidly evolving fish genomes and teleost diversity. Current Opinion in Genetics and Development, 2008, 18, 544-550.	3.3	219

#	Article	IF	CITATIONS
39	Gene Duplication, Co-Option and Recruitment during the Origin of the Vertebrate Brain from the Invertebrate Chordate Brain. Brain, Behavior and Evolution, 2008, 72, 91-105.	1.7	43
40	Evolution of vertebrate opioid receptors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15487-15492.	7.1	113
41	A Novel C1q Family Member of Amphioxus Was Revealed to Have a Partial Function of Vertebrate C1q Molecule. Journal of Immunology, 2008, 181, 7024-7032.	0.8	47
42	Gene Duplications and Losses within the Cyclooxygenase Family of Teleosts and Other Chordates. Molecular Biology and Evolution, 2008, 25, 2349-2359.	8.9	25
43	The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Research, 2008, 18, 1100-1111.	5.5	456
44	Gene Expansion and Retention Leads to a Diverse Tyrosine Kinase Superfamily in Amphioxus. Molecular Biology and Evolution, 2008, 25, 1841-1854.	8.9	79
45	Developmental Constraints on Vertebrate Genome Evolution. PLoS Genetics, 2008, 4, e1000311.	3.5	99
46	Timing of Genome Duplications Relative to the Origin of the Vertebrates: Did Cyclostomes Diverge before or after?. Molecular Biology and Evolution, 2008, 26, 47-59.	8.9	281
48	Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Research, 2008, 18, 1582-1591.	5.5	80
49	Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Research, 2008, 18, 1127-1132.	5.5	155
50	Phylogeny of Tec Family Kinases: Identification of a Premetazoan Origin of Btk, Bmx, Itk, Tec, Txk, and the Btk Regulator SH3BP5. Advances in Genetics, 2008, 64, 51-80.	1.8	27
51	Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Research, 2008, 18, 1393-1402.	5.5	73
52	Trichoplax, the simplest known animal, contains an estrogen-related receptor but no estrogen receptor: Implications for estrogen receptor evolution. Nature Precedings, 2008, , .	0.1	0
53	Genomic analyses reveal a conserved glutathione homeostasis pathway in the invertebrate chordate Ciona intestinalis. Physiological Genomics, 2009, 39, 183-194.	2.3	21
54	The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. International Journal of Developmental Biology, 2009, 53, 765-773.	0.6	101
55	Identifying and Characterizing a Novel Protein Kinase STK35L1 and Deciphering Its Orthologs and Close-Homologs in Vertebrates. PLoS ONE, 2009, 4, e6981.	2.5	9
56	Computational approaches for understanding the evolution of DNA methylation in animals. Epigenetics, 2009, 4, 551-556.	2.7	55
57	Light-transduction in melanopsin-expressing photoreceptors of Amphioxus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9081-9086.	7.1	40

#	Article	IF	CITATIONS
58	Characterization of Snail nuclear import pathways as representatives of C2H2 zinc finger transcription factors. Journal of Cell Science, 2009, 122, 1452-1460.	2.0	54
59	MAp44, a Human Protein Associated with Pattern Recognition Molecules of the Complement System and Regulating the Lectin Pathway of Complement Activation. Journal of Immunology, 2009, 183, 7371-7378.	0.8	164
60	On the Origin and Evolution of Vertebrate Olfactory Receptor Genes: Comparative Genome Analysis Among 23 Chordate Species. Genome Biology and Evolution, 2009, 1, 34-44.	2.5	161
61	Pigmentation Pathway Evolution after Whole-Genome Duplication in Fish. Genome Biology and Evolution, 2009, 1, 479-493.	2.5	104
62	Origin of the Genetic Components of the Vomeronasal System in the Common Ancestor of all Extant Vertebrates. Molecular Biology and Evolution, 2009, 26, 407-419.	8.9	95
63	Evolutionary Scenarios of Notch Proteins. Molecular Biology and Evolution, 2009, 26, 1631-1640.	8.9	24
64	Alternative oxidase in animals: unique characteristics and taxonomic distribution. Journal of Experimental Biology, 2009, 212, 2627-2634.	1.7	118
65	An Atypical CNG Channel Activated by a Single cCMP Molecule Controls Sperm Chemotaxis. Science Signaling, 2009, 2, ra68.	3.6	66
66	Melanopsin-mediated light-sensing in amphioxus. Communicative and Integrative Biology, 2009, 2, 441-443.	1.4	13
67	Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates. PLoS Genetics, 2009, 5, e1000762.	3.5	82
68	Dynamic Evolution of Immune System Regulators: The History of the Interferon Regulatory Factor Family. Molecular Biology and Evolution, 2009, 26, 2539-2550.	8.9	126
69	The Endothelin System: Evolution of Vertebrate-Specific Ligand-Receptor Interactions by Three Rounds of Genome Duplication. Molecular Biology and Evolution, 2009, 26, 783-799.	8.9	81
70	How Fast Is the Sessile Ciona?. Comparative and Functional Genomics, 2009, 2009, 1-6.	2.0	27
71	The European lancelet <i>Branchiostoma lanceolatum</i> (Pallas) as an indicator of environmental quality of Tuscan Archipelago (Western Mediterranean Sea). Chemistry and Ecology, 2009, 25, 61-69.	1.6	16
72	The Evolutionarily Dynamic IFN-Inducible GTPase Proteins Play Conserved Immune Functions in Vertebrates and Cephalochordates. Molecular Biology and Evolution, 2009, 26, 1619-1630.	8.9	69
73	Plasticity of the immunoglobulin domain in the evolution of immunity. Integrative and Comparative Biology, 2009, 49, 187-196.	2.0	6
74	Domain shuffling and the evolution of vertebrates. Genome Research, 2009, 19, 1393-1403.	5.5	86
75	Evolution of vertebrate rod and cone phototransduction genes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2867-2880.	4.0	91

#	Article	IF	CITATIONS
76	Evolution and the origin of the visual retinoid cycle in vertebrates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2897-2910.	4.0	34
77	Toll-like Receptors of the Ascidian Ciona intestinalis. Journal of Biological Chemistry, 2009, 284, 27336-27343.	3.4	90
78	Deeply conserved chordate noncoding sequences preserve genome synteny but do not drive gene duplicate retention. Genome Research, 2009, 19, 2036-2051.	5.5	43
79	Characterization and Putative Role of a Type I Gonadotropin-Releasing Hormone in the Cephalochordate Amphioxus. Endocrinology, 2009, 150, 812-820.	2.8	21
80	Protochordate amphioxus is an emerging model organism for comparative immunology. Progress in Natural Science: Materials International, 2009, 19, 923-929.	4.4	22
81	The complex relationship of gene duplication and essentiality. Trends in Genetics, 2009, 25, 152-155.	6.7	90
82	Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evolutionary Biology, 2009, 9, 127.	3.2	57
83	Conservation of the glucan phosphatase laforin is linked to rates of molecular evolution and the glucan metabolism of the organism. BMC Evolutionary Biology, 2009, 9, 138.	3.2	43
84	Evolutionary flexibility of protein complexes. BMC Evolutionary Biology, 2009, 9, 155.	3.2	9
85	Zebrafish RNase T2 genes and the evolution of secretory ribonucleases in animals. BMC Evolutionary Biology, 2009, 9, 170.	3.2	27
86	The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evolutionary Biology, 2009, 9, 180.	3.2	58
87	An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evolutionary Biology, 2009, 9, 187.	3.2	133
88	Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family. BMC Evolutionary Biology, 2009, 9, 207.	3.2	45
89	Multiple gains of spliceosomal introns in a superfamily of vertebrate protease inhibitor genes. BMC Evolutionary Biology, 2009, 9, 208.	3.2	24
90	The small heat shock protein (sHSP) genes in the silkworm, Bombyx mori, and comparative analysis with other insect sHSP genes. BMC Evolutionary Biology, 2009, 9, 215.	3.2	98
91	Comparative genomics of chondrichthyan Hoxa clusters. BMC Evolutionary Biology, 2009, 9, 218.	3.2	13
92	An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals. BMC Evolutionary Biology, 2009, 9, 240.	3.2	40
93	Amphioxus (Branchiostoma floridae) has orthologs of vertebrate odorant receptors. BMC Evolutionary Biology, 2009, 9, 242.	3.2	38

#	Article	IF	CITATIONS
94	Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evolutionary Biology, 2009, 9, 28.	3.2	137
95	Evolution of the multifaceted eukaryotic akirin gene family. BMC Evolutionary Biology, 2009, 9, 34.	3.2	84
96	Characterization of the neurohypophysial hormone gene loci in elephant shark and the Japanese lamprey: origin of the vertebrate neurohypophysial hormone genes. BMC Evolutionary Biology, 2009, 9, 47.	3.2	118
97	Amphioxus encodes the largest known family of green fluorescent proteins, which have diversified into distinct functional classes. BMC Evolutionary Biology, 2009, 9, 77.	3.2	44
98	Tunicate mitogenomics and phylogenetics: peculiarities of the Herdmania momus mitochondrial genome and support for the new chordate phylogeny. BMC Genomics, 2009, 10, 534.	2.8	54
99	The evolution of Runx genes II. The C-terminal Groucho recruitment motif is present in both eumetazoans and homoscleromorphs but absent in a haplosclerid demosponge. BMC Research Notes, 2009, 2, 59.	1.4	13
100	Hormones and receptors in fish: Do duplicates matter?. General and Comparative Endocrinology, 2009, 161, 3-12.	1.8	38
101	Expression of the gene for ancestral glycoprotein hormone β subunit in the nerve cord of amphioxus. General and Comparative Endocrinology, 2009, 162, 329-339.	1.8	40
102	Structure—function relationships in telomerase genes. Biology of the Cell, 2009, 101, 375-406.	2.0	51
103	Diversification of the expression patterns and developmental functions of the dishevelled gene family during chordate evolution. Developmental Dynamics, 2009, 238, 2044-2057.	1.8	36
104	The adaptive phenotype of cortical thymic epithelial cells. European Journal of Immunology, 2009, 39, 944-947.	2.9	14
105	It's a long way from amphioxus: descendants of the earliest chordate. BioEssays, 2009, 31, 665-675.	2.5	29
106	Transposable elements: powerful facilitators of evolution. BioEssays, 2009, 31, 703-714.	2.5	242
107	Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Research, 2009, 17, 699-717.	2.2	340
108	Evolutionary history of Na,K-ATPases and their osmoregulatory role. Genetica, 2009, 136, 479-490.	1.1	70
109	Characterization of SoxB2 and SoxC genes in amphioxus (Branchiostoma belcheri): Implications for their evolutionary conservation. Science in China Series C: Life Sciences, 2009, 52, 813-822.	1.3	14
110	Microbial community gene expression within colonies of the diazotroph, <i>Trichodesmium</i> , from the Southwest Pacific Ocean. ISME Journal, 2009, 3, 1286-1300.	9.8	103
111	Dual nature of the adaptive immune system in lampreys. Nature, 2009, 459, 796-801.	27.8	296

#	ARTICLE	IF	CITATIONS
112	The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 2009, 10, 725-732.	16.3	919
113	Current views of the origin and diversification of tetrapods. Molecular Biology, 2009, 43, 819-833.	1.3	2
114	Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nature Reviews Neuroscience, 2009, 10, 736-746.	10.2	102
115	Calcitonin in a protochordate, <i>Ciona intestinalis</i> – the prototype of the vertebrate calcitonin/calcitonin geneâ€related peptide superfamily. FEBS Journal, 2009, 276, 4437-4447.	4.7	53
116	The gill slits and pre-oral ciliary organ of Protoglossus (Hemichordata: Enteropneusta) are filter-feeding structures. Biological Journal of the Linnean Society, 2009, 98, 898-906.	1.6	40
117	Major Genomic Events and Their Consequences for Vertebrate Evolution and Endocrinology. Annals of the New York Academy of Sciences, 2009, 1163, 201-208.	3.8	26
118	Early Duplications of Opioid Receptor and Peptide Genes in Vertebrate Evolution. Annals of the New York Academy of Sciences, 2009, 1163, 451-453.	3.8	17
119	Timing of the Functional Diversification of α―and βâ€Adrenoceptors in Fish and Other Vertebrates. Annals of the New York Academy of Sciences, 2009, 1163, 343-347.	3.8	37
120	Characterization of microRNAs in cephalochordates reveals a correlation between microRNA repertoire homology and morphological similarity in chordate evolution. Evolution & Development, 2009, 11, 41-49.	2.0	23
121	Patterns and consequences of vertebrate <i>Emx</i> gene duplications. Evolution & Development, 2009, 11, 343-353.	2.0	26
122	<i>Ptc, Smo, Sufu</i> , and the Hedgehog signaling pathway in amphioxus. Evolution & Development, 2009, 11, 710-718.	2.0	8
123	Identification and characterization of a novel amphioxus dopamine D ₁ â€like receptor. Journal of Neurochemistry, 2009, 111, 26-36.	3.9	12
124	Phylogeny, taxonomy, and evolution of the endothelin receptor gene family. Molecular Phylogenetics and Evolution, 2009, 52, 677-687.	2.7	13
125	Cephalochordates (Amphioxus or Lancelets): A Model for Understanding the Evolution of Chordate Characters: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.emo130.	0.3	31
126	An evo-devo view on the origin of the backbone: evolutionary development of the vertebrae. Integrative and Comparative Biology, 2009, 49, 178-186.	2.0	25
127	"Changing by doublingâ€; the impact of Whole Genome Duplications in the evolution of eukaryotes. Comptes Rendus - Biologies, 2009, 332, 241-253.	0.2	48
128	A Developmental Perspective: Changes in the Position of the Blastopore during Bilaterian Evolution. Developmental Cell, 2009, 17, 162-174.	7.0	123
129	Evidence for the evolution of tenascin and fibronectin early in the chordate lineage. International Journal of Biochemistry and Cell Biology, 2009, 41, 424-434.	2.8	60

#	Article	IF	CITATIONS
130	Evolution of collagen-based adhesion systems. International Journal of Biochemistry and Cell Biology, 2009, 41, 341-348.	2.8	78
131	Genetic Redundancy: New Tricks for Old Genes. Cell, 2009, 136, 389-392.	28.9	158
132	Conserved properties of a urochordate estrogen receptor-related receptor (ERR) with mammalian ERRalpha. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 125-134.	1.9	20
133	Identification, expression and antibacterial activity of a tachylectin-related homolog in amphioxus Branchiostoma belcheri with implications for involvement of the digestive system in acute phase response. Fish and Shellfish Immunology, 2009, 26, 235-242.	3.6	28
134	Early evolution of metazoan transcription factors. Current Opinion in Genetics and Development, 2009, 19, 591-599.	3.3	123
135	Polyploidy and genome restructuring: a variety of outcomes. Current Opinion in Genetics and Development, 2009, 19, 600-606.	3.3	58
136	Computational prediction of amphioxus microRNA genes and their targets. Gene, 2009, 428, 41-46.	2.2	26
137	Structure of the amphioxus nebulin gene and evolution of the nebulin family genes. Gene, 2009, 443, 76-82.	2.2	10
138	Evolutionary and functional diversity of green fluorescent proteins in cephalochordates. Gene, 2009, 446, 41-49.	2.2	11
139	Simple and fast classification of non-LTR retrotransposons based on phylogeny of their RT domain protein sequences. Gene, 2009, 448, 207-213.	2.2	86
140	Regulatory back-up circuit of medaka Wt1 co-orthologs ensures PGC maintenance. Developmental Biology, 2009, 325, 179-188.	2.0	34
141	Systematic human/zebrafish comparative identification of cis-regulatory activity around vertebrate developmental transcription factor genes. Developmental Biology, 2009, 327, 526-540.	2.0	108
142	Interaction of notochord-derived fibrinogen-like protein with Notch regulates the patterning of the central nervous system of Ciona intestinalis embryos. Developmental Biology, 2009, 328, 1-12.	2.0	17
143	Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Developmental Biology, 2009, 332, 48-60.	2.0	127
144	Retinoic acid and Wnt/β-catenin have complementary roles in anterior/posterior patterning embryos of the basal chordate amphioxus. Developmental Biology, 2009, 332, 223-233.	2.0	70
145	Chapter 7 Establishment of Hox Vertebral Identities in the Embryonic Spine Precursors. Current Topics in Developmental Biology, 2009, 88, 201-234.	2.2	80
146	An Advanced Filter-Feeder Hypothesis for Urochordate Evolution. Zoological Science, 2009, 26, 97-111.	0.7	36
149	Synorth: exploring the evolution of synteny and long-range regulatory interactions in vertebrate genomes. Genome Biology, 2009, 10, R86.	9.6	25

#	Article	IF	CITATIONS
150	Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biology, 2009, 10, R78.	9.6	136
151	A Homolog of the Vertebrate Thyrostimulin Glycoprotein Hormone α Subunit (GPA2) is Expressed in Amphioxus Neurons. Zoological Science, 2009, 26, 409-414.	0.7	29
152	Placode Formation and Generation of Gonadotropin-Releasing Hormone (GnRH) Neurons in Ascidians. Zoological Science, 2009, 26, 398-405.	0.7	7
153	Analyzing S-Adenosylhomocysteine Hydrolase Gene Sequences in Deuterostome Genomes. Journal of Biomolecular Structure and Dynamics, 2009, 27, 371-380.	3.5	12
154	Pan-vertebrate conserved non-coding sequences associated with developmental regulation. Briefings in Functional Genomics & Proteomics, 2009, 8, 256-265.	3.8	17
155	Temporal and Spatial Dynamics of a Lower-Intertidal Lancelet Population in the Seto Inland Sea, Japan. Zoological Science, 2009, 26, 550-556.	0.7	3
156	Chapter 1 Gene Regulatory Networks in Neural Crest Development and Evolution. Current Topics in Developmental Biology, 2009, 86, 1-14.	2.2	23
157	Revaluation of deuterostome phylogeny and evolutionary relationships among chordate subphyla using mitogenome data. Journal of Genetics and Genomics, 2009, 36, 151-160.	3.9	9
158	Step-by-Step Evolution of Vertebrate Blood Coagulation. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 35-40.	1.1	91
159	Dynamic Modification of Oral Innervation During Metamorphosis in <i>Branchiostoma belcheri</i> , the Oriental Lancelet. Biological Bulletin, 2009, 217, 151-160.	1.8	9
160	Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Human Genomics, 2009, 4, 107.	2.9	105
161	Ciona intestinalis and Oxycomanthus japonicus, Representatives of Marine Invertebrates. Experimental Animals, 2009, 58, 459-469.	1.1	22
162	Bioinformatics for Evolutionary Developmental Biology. , 2009, , 355-378.		0
163	High Level of Structural Polymorphism Driven by Mobile Elements in the Hox Genomic Region of the Chaetognath Spadella cephaloptera. Genome Biology and Evolution, 2010, 2, 665-667.	2.5	3
164	Laboratory Spawning and Development of the Bahama Lancelet, <i>Asymmetron lucayanum</i> (Cephalochordata): Fertilization Through Feeding Larvae. Biological Bulletin, 2010, 219, 132-141.	1.8	35
165	Evolution of two Rh blood group-related genes of the amphioxus species Branchiostoma floridae. Genes and Genetic Systems, 2010, 85, 121-127.	0.7	9
166	Comparative genomic analysis reveals the evolutionary conservation of Pax gene family. Genes and Genetic Systems, 2010, 85, 193-206.	0.7	18
167	Relationship between genome size and organismal complexity in the lineage leading from prokaryotes to mammals. Paleontological Journal, 2010, 44, 363-373.	0.5	26

#	Article	IF	CITATIONS
168	Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective. Molecular Biology and Evolution, 2010, 27, 1645-1658.	8.9	115
169	False teeth: conodont-vertebrate phylogenetic relationships revisited. Geodiversitas, 2010, 32, 545-594.	0.8	91
170	The Rh protein family: gene evolution, membrane biology, and disease association. Cellular and Molecular Life Sciences, 2010, 67, 1203-1218.	5.4	42
171	Evidence for the Heparin-Binding Ability of the Ascidian Xlink Domain and Insight into the Evolution of the Xlink Domain in Chordates. Journal of Molecular Evolution, 2010, 71, 51-59.	1.8	6
172	Accelerated Evolutionary Rate of Housekeeping Genes in Tunicates. Journal of Molecular Evolution, 2010, 71, 153-167.	1.8	40
173	Evolution of Conserved Non-Coding Sequences Within the Vertebrate Hox Clusters Through the Two-Round Whole Genome Duplications Revealed by Phylogenetic Footprinting Analysis. Journal of Molecular Evolution, 2010, 71, 427-436.	1.8	25
174	Domain architecture evolution of pattern-recognition receptors. Immunogenetics, 2010, 62, 263-272.	2.4	68
175	A molecule in teleost fish, related with human MHC-encoded G6F, has a cytoplasmic tail with ITAM and marks the surface of thrombocytes and in some fishes also of erythrocytes. Immunogenetics, 2010, 62, 543-559.	2.4	20
176	The basis for haplotype complexity in VCBPs, an immune-type receptor in amphioxus. Immunogenetics, 2010, 62, 623-631.	2.4	25
177	Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development. Development Genes and Evolution, 2010, 220, 221-234.	0.9	28
178	Amphioxus expresses both vertebrate-type and invertebrate-type dopamine D1 receptors. Invertebrate Neuroscience, 2010, 10, 93-105.	1.8	8
179	Teleost fish with specific genome duplication as unique models of vertebrate evolution. Environmental Biology of Fishes, 2010, 88, 169-188.	1.0	72
180	Parallel visual cycles in the zebrafish retina. Progress in Retinal and Eye Research, 2010, 29, 476-486.	15.5	37
181	Gradual transition from mosaic to global DNA methylation patterns during deuterostome evolution. BMC Bioinformatics, 2010, 11, S2.	2.6	20
182	Phylogenetic analysis of the vertebrate Excitatory/Neutral Amino Acid Transporter (SLC1/EAAT) family reveals lineage specific subfamilies. BMC Evolutionary Biology, 2010, 10, 117.	3.2	48
183	Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach. BMC Evolutionary Biology, 2010, 10, 123.	3.2	52
184	Evolution of AANAT: expansion of the gene family in the cephalochordate amphioxus. BMC Evolutionary Biology, 2010, 10, 154.	3.2	24
185	The origin and evolution of ARGFX homeobox loci in mammalian radiation. BMC Evolutionary Biology, 2010, 10, 182.	3.2	10

#	Article	IF	CITATIONS
186	The evolution of vertebrate tetraspanins: gene loss, retention, and massive positive selection after whole genome duplications. BMC Evolutionary Biology, 2010, 10, 306.	3.2	21
187	Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters. BMC Evolutionary Biology, 2010, 10, 315.	3.2	22
188	The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution. BMC Evolutionary Biology, 2010, 10, 370.	3.2	36
189	A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location. BMC Evolutionary Biology, 2010, 10, 88.	3.2	49
190	In silico identification of the sea squirt selenoproteome. BMC Genomics, 2010, 11, 289.	2.8	21
191	Phototransduction and the Evolution of Photoreceptors. Current Biology, 2010, 20, R114-R124.	3.9	246
192	Comparative genomic and phylogenetic analysis of vitellogenin and other large lipid transfer proteins in metazoans. FEBS Letters, 2010, 584, 1273-1278.	2.8	74
193	Zebrafish Wnt9a,9b paralog comparisons suggest ancestral roles for Wnt9 in neural, oral–pharyngeal ectoderm and mesendoderm. Gene Expression Patterns, 2010, 10, 251-258.	0.8	12
194	Spatial and temporal expression patterns of <i>Bmal</i> delineate a circadian clock in the nervous system of <i>Branchiostoma lanceolatum</i> . Journal of Comparative Neurology, 2010, 518, 1837-1846.	1.6	7
195	Parathyroid hormone gene family in a cartilaginous fish, the elephant shark (<i>Callorhinchus) Tj ETQq1 1 0.7843</i>	314 rgBT /0 2.8	Overlock 10
196	The making of hemidesmosome structures in vivo. Developmental Dynamics, 2010, 239, 1465-1476.	1.8	63
197	Nearly complete rRNA genes assembled from across the metazoan animals: Effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. Molecular Phylogenetics and Evolution, 2010, 55, 1-17.	2.7	81
198	The evolutionary origin of the vertebrate neural crest and its developmental gene regulatory network – insights from amphioxus. Zoology, 2010, 113, 1-9.	1.2	35
199	The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children. BMC Medical Genetics, 2010, 11, 58.	2.1	65
200	2R and remodeling of vertebrate signal transduction engine. BMC Biology, 2010, 8, 146.	3.8	77
201	Early evolution of the LIM homeobox gene family. BMC Biology, 2010, 8, 4.	3.8	77
202	Crystal structures of the apo and GDPâ€bound forms of a cupinâ€like protein BbDUF985 from <i>Branchiostoma belcheri tsingtauense</i> . Proteins: Structure, Function and Bioinformatics, 2010, 78, 2714-2719.	2.6	3
203	Characterization of <i>drCol 15a1b</i> : A Novel Component of the Stem Cell Niche in the Zebrafish Retina Â. Stem Cells, 2010, 28, 1399-1411.	3.2	16

#	ARTICLE	IF	CITATIONS
204	The heat shock factor family and adaptation to proteotoxic stress. FEBS Journal, 2010, 277, 4112-4125.	4.7	195
205	Parallel polyploid speciation: distinct sympatric gene-pools of recurrently derived allo-octoploid Asplenium ferns. Molecular Ecology, 2010, 19, 2916-2932.	3.9	45
206	The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 2010, 466, 720-726.	27.8	917
207	99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Evolution of adaptive immunity in vertebrates. Clinical and Experimental Immunology, 2010, 160, 58-61.	2.6	5
208	Emergence of mammals by emergency: exaptation. Genes To Cells, 2010, 15, 801-812.	1.2	27
209	2R or not 2R is not the question anymore. Nature Reviews Genetics, 2010, 11, 166-166.	16.3	53
210	Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature Reviews Genetics, 2010, 11, 47-59.	16.3	753
211	How did our complex immune system evolve?. Nature Reviews Immunology, 2010, 10, 2-3.	22.7	61
212	The emergence of the chordate body plan: some puzzles and problems. Acta Zoologica, 2010, 91, 4-10.	0.8	18
213	From genomes to morphology: a view from amphioxus. Acta Zoologica, 2010, 91, 81-86.	0.8	10
214	Characterization and expression of <i>AmphiBMP3 /3b</i> gene in amphioxus <i>Branchiostoma japonicum</i> . Development Growth and Differentiation, 2010, 52, 157-167.	1.5	3
217	Concomitant Duplications of Opioid Peptide and Receptor Genes before the Origin of Jawed Vertebrates. PLoS ONE, 2010, 5, e10512.	2.5	94
218	Genomics Reveal Ancient Forms of Stanniocalcin in Amphioxus and Tunicate. Integrative and Comparative Biology, 2010, 50, 86-97.	2.0	12
219	Genome Duplication and T Cell Immunity. Progress in Molecular Biology and Translational Science, 2010, 92, 7-36.	1.7	11
220	Genome Biology of the Cyclostomes and Insights into the Evolutionary Biology of Vertebrate Genomes. Integrative and Comparative Biology, 2010, 50, 130-137.	2.0	25
221	Evolution of the Reproductive Endocrine System in Chordates. Integrative and Comparative Biology, 2010, 50, 53-62.	2.0	24
222	Ancient homeobox gene loss and the evolution of chordate brain and pharynx development: deductions from amphioxus gene expression. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 3381-3389.	2.6	11
223	A single starfish Aurora kinase performs the combined functions of Aurora-A and Aurora-B in human cells. Journal of Cell Science, 2010, 123, 3978-3988.	2.0	24

#	Article	IF	CITATIONS
224	Internal and External Paralogy in the Evolution of Tropomyosin Genes in Metazoans. Molecular Biology and Evolution, 2010, 27, 1504-1517.	8.9	23
225	Palaeophylogenomics of the Vertebrate AncestorImpact of Hidden Paralogy on Hagfish and Lamprey Gene Phylogeny. Integrative and Comparative Biology, 2010, 50, 124-129.	2.0	59
226	"Insights of Early Chordate Genomics: Endocrinology and Development in Amphioxus, Tunicates and Lampreys": Introduction to the symposium. Integrative and Comparative Biology, 2010, 50, 17-21.	2.0	10
227	Active Metabolism of Thyroid Hormone During Metamorphosis of Amphioxus. Integrative and Comparative Biology, 2010, 50, 63-74.	2.0	39
228	WHOLE GENOME COMPARISONS REVEALS A POSSIBLE CHIMERIC ORIGIN FOR A MAJOR METAZOAN ASSEMBLAGE. Journal of Biological Systems, 2010, 18, 261-275.	1.4	9
229	Glycogen Synthase Kinase 3β Interaction Protein Functions as an A-kinase Anchoring Protein. Journal of Biological Chemistry, 2010, 285, 5507-5521.	3.4	45
230	The Evolution of Thrombospondins and Their Ligand-Binding Activities. Molecular Biology and Evolution, 2010, 27, 2187-2197.	8.9	88
231	Chordate Hox and ParaHox Gene Clusters Differ Dramatically in Their Repetitive Element Content. Molecular Biology and Evolution, 2010, 27, 217-220.	8.9	8
232	A Novel Mouse HSF3 Has the Potential to Activate Nonclassical Heat-Shock Genes during Heat Shock. Molecular Biology of the Cell, 2010, 21, 106-116.	2.1	78
233	Notice of Retraction: Genetic variation and differentiation of amphioxus Branchiostoma belcheri (gray) populations. , 2010, , .		0
234	Parallel Retention of Pdx2 Genes in Cartilaginous Fish and Coelacanths. Molecular Biology and Evolution, 2010, 27, 2386-2391.	8.9	18
235	Lymphoid Tissue Inducer Cells and the Evolution of CD4 Dependent High-Affinity Antibody Responses. Progress in Molecular Biology and Translational Science, 2010, 92, 159-174.	1.7	9
236	AmphiEST: Enabling comparative analysis of ESTs from five developmental stages of amphioxus. Marine Genomics, 2010, 3, 151-155.	1.1	6
237	Global characterization of interferon regulatory factor (IRF) genes in vertebrates: Glimpse of the diversification in evolution. BMC Immunology, 2010, 11, 22.	2.2	202
238	A neurotropic herpesvirus infecting the gastropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associated with the amphioxus genome. Virology Journal, 2010, 7, 308.	3.4	63
239	The calculation of information and organismal complexity. Biology Direct, 2010, 5, 59.	4.6	15
240	Conserved developmental expression of Fezf in chordates and Drosophila and the origin of the Zona Limitans Intrathalamica (ZLI) brain organizer. EvoDevo, 2010, 1, 7.	3.2	55
241	Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 472-477.	7.1	267

#	Article	IF	Citations
242	Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate. Science, 2010, 330, 1381-1385.	12.6	251
243	Insights from the Comparison of Plant Genome Sequences. Annual Review of Plant Biology, 2010, 61, 349-372.	18.7	202
244	Genetic, functional and evolutionary characterization of scox, the Drosophila melanogaster ortholog of the human SCO1 gene. Mitochondrion, 2010, 10, 433-448.	3.4	20
245	Nebulin: A Study of Protein Repeat Evolution. Journal of Molecular Biology, 2010, 402, 38-51.	4.2	47
246	Two tyrosine hydroxylase genes in vertebrates. Molecular and Cellular Neurosciences, 2010, 43, 394-402.	2.2	157
247	NG peptides: A novel family of neurophysin-associated neuropeptides. Gene, 2010, 458, 20-26.	2.2	32
248	The evolution of somatostatin in vertebrates. Gene, 2010, 463, 21-28.	2.2	61
249	Molecular evolution of the fibulins: Implications on the functionality of the elastic fibulins. Gene, 2010, 464, 17-31.	2.2	45
250	No backbone but lots of Sox: Invertebrate Sox genes. International Journal of Biochemistry and Cell Biology, 2010, 42, 453-464.	2.8	79
251	Two interleukin-17C-like genes exist in rainbow trout Oncorhynchus mykiss that are differentially expressed and modulated. Developmental and Comparative Immunology, 2010, 34, 491-500.	2.3	73
252	The primitive immune system of amphioxus provides insights into the ancestral structure of the vertebrate immune system. Developmental and Comparative Immunology, 2010, 34, 791-796.	2.3	51
253	Highly diversified innate receptor systems and new forms of animal immunity. Seminars in Immunology, 2010, 22, 39-47.	5.6	71
254	Retinoic acid signaling targets Hox genes during the amphioxus gastrula stage: Insights into early anterior–posterior patterning of the chordate body plan. Developmental Biology, 2010, 338, 98-106.	2.0	53
255	Clustered Fox genes in lophotrochozoans and the evolution of the bilaterian Fox gene cluster. Developmental Biology, 2010, 340, 234-248.	2.0	44
256	Key steps in the morphogenesis of a cranial placode in an invertebrate chordate, the tunicate Ciona savignyi. Developmental Biology, 2010, 340, 134-144.	2.0	14
257	Cis-regulatory characterization of sequence conservation surrounding the Hox4 genes. Developmental Biology, 2010, 340, 269-282.	2.0	17
258	Growth/differentiation factor-11: an evolutionary conserved growth factor in vertebrates. Development Genes and Evolution, 2010, 220, 129-137.	0.9	15
259	Functional Characteristics of Amphioxus Troponin in Regulation of Muscle Contraction. Zoological Science, 2010, 27, 461-469.	0.7	5

#	Article	IF	CITATIONS
260	Characterization of Evolutionarily Conserved MicroRNAs in Amphioxus. Genomics, Proteomics and Bioinformatics, 2010, 8, 10-21.	6.9	2
261	Troponin in both Smooth and Striated Muscles of Ascidian <i>Ciona intestinalis</i> Functions as a Ca ²⁺ -Dependent Accelerator of Actinâ^'Myosin Interaction. Biochemistry, 2010, 49, 9563-9571.	2.5	9
262	Introduction to Marine Genomics. , 2010, , .		6
263	Distinctive Expression Patterns of Hedgehog Pathway Genes in the <i>Ciona intestinalis</i> Larva: Implications for a Role of Hedgehog Signaling in Postembryonic Development and Chordate Evolution. Zoological Science, 2010, 27, 84-90.	0.7	12
264	Variability of hair cells in the coronal organ of ascidians (Chordata, Tunicata). Canadian Journal of Zoology, 2010, 88, 567-578.	1.0	10
265	Generation of Prolactin-Like Neurons in the Dorsal Strand of Ascidians. Zoological Science, 2010, 27, 581-588.	0.7	2
266	Salmonid genomes have a remarkably expanded <i>akirin</i> family, coexpressed with genes from conserved pathways governing skeletal muscle growth and catabolism. Physiological Genomics, 2010, 42, 134-148.	2.3	48
267	MiRNAs as promising phylogenetic markers for inferring deep metazoan phylogeny and in support of Olfactores hypothesis. , 2010, , .		0
268	Cross-species identification of hydroxylation sites for ARD and FIH interaction. , 2011, , .		0
269	Coagulation in Vertebrates with a Focus on Evolution and Inflammation. Journal of Innate Immunity, 2011, 3, 9-16.	3.8	54
270	Cancer tumors as Metazoa 1.0: tapping genes of ancient ancestors. Physical Biology, 2011, 8, 015001.	1.8	178
271	The Evolution of Adaptive Immunity in Vertebrates. Advances in Immunology, 2011, 109, 125-157.	2.2	158
273	Analyses of Gene Function in Amphioxus Embryos by Microinjection of mRNAs and Morpholino Oligonucleotides. Methods in Molecular Biology, 2011, 770, 423-438.	0.9	11
274	Evolution of vertebrate central nervous system is accompanied by novel expression changes of duplicate genes. Journal of Genetics and Genomics, 2011, 38, 577-584.	3.9	8
275	Functional annotation of an expressed sequence tag library from Haliotis diversicolor and analysis of its plant-like sequences. Marine Genomics, 2011, 4, 189-196.	1.1	10
277	The Primary Role of Fibrinogen-Related Proteins in Invertebrates Is Defense, Not Coagulation. Journal of Innate Immunity, 2011, 3, 17-27.	3.8	164
279	Vertebrate Embryogenesis. Methods in Molecular Biology, 2011, , .	0.9	4
280	Conserved Synteny and the Zebrafish Genome. Methods in Cell Biology, 2011, 104, 259-285.	1.1	41

#	Article	IF	CITATIONS
281	A novel mode of chromosomal evolution peculiar to filamentous Ascomycete fungi. Genome Biology, 2011, 12, R45.	9.6	126
282	Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biology, 2011, 12, R20.	9.6	141
283	Physiological responses of the scleractinian coral <i>Pocillopora damicornis</i> to bacterial stress from Vibrio coralliilyticus. Journal of Experimental Biology, 2011, 214, 1533-1545.	1.7	93
284	Comparative genomics in teleost species: Knowledge transfer by linking the genomes of model and non-model fish species. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2011, 6, 92-102.	1.0	35
285	Neuropeptide Y/peptide YY receptor Y2 duplicate in zebrafish with unique introns displays distinct peptide binding properties. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2011, 160, 166-173.	1.6	21
286	A novel scavenger receptor-cysteine-rich (SRCR) domain containing scavenger receptor identified from mollusk mediated PAMP recognition and binding. Developmental and Comparative Immunology, 2011, 35, 227-239.	2.3	54
287	Gut CaVP is an innate immune protein against bacterial challenge in amphioxus Branchiostoma belcheri. Fish and Shellfish Immunology, 2011, 31, 217-223.	3.6	28
288	The evolution of MDM2 family genes. Gene, 2011, 486, 23-30.	2.2	42
289	Basonuclins and disco: Orthologous zinc finger proteins essential for development in vertebrates and arthropods. Biochimie, 2011, 93, 127-133.	2.6	11
290	Evolution of neuronal signalling: Transmitters and receptors. Autonomic Neuroscience: Basic and Clinical, 2011, 165, 28-53.	2.8	28
291	Evolutionary crossroads in developmental biology: amphioxus. Development (Cambridge), 2011, 138, 4819-4830.	2.5	120
292	Nuclear hormone receptors in chordates. Molecular and Cellular Endocrinology, 2011, 334, 67-75.	3.2	38
293	Amphioxus Connectin Exhibits Merged Structure as Invertebrate Connectin in I-Band Region and Vertebrate Connectin in A-Band Region. Journal of Molecular Biology, 2011, 409, 415-426.	4.2	8
294	When needles look like hay: How to find tissue-specific enhancers in model organism genomes. Developmental Biology, 2011, 350, 239-254.	2.0	28
295	Asymmetric localization of germline markers Vasa and Nanos during early development in the amphioxus Branchiostoma floridae. Developmental Biology, 2011, 353, 147-159.	2.0	66
296	Repression of Rx gene on the left side of the sensory vesicle by Nodal signaling is crucial for right-sided formation of the ocellus photoreceptor in the development of Ciona intestinalis. Developmental Biology, 2011, 354, 144-150.	2.0	33
297	Made for "anchorin― Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons. Seminars in Cell and Developmental Biology, 2011, 22, 185-192.	5.0	61
298	Evolution of Invertebrate Deuterostomes and Hox/ParaHox Genes. Genomics, Proteomics and Bioinformatics, 2011, 9, 77-96.	6.9	19

#	Article	IF	CITATIONS
299	Hox Gene Clusters of Early Vertebrates: Do They Serve as Reliable Markers for Genome Evolution?. Genomics, Proteomics and Bioinformatics, 2011, 9, 97-103.	6.9	12
300	Horizontal Gene Transfers with or without Cell Fusions in All Categories of the Living Matter. Advances in Experimental Medicine and Biology, 2011, 714, 5-89.	1.6	15
301	Fibronectin and tenascin-C: accomplices in vascular morphogenesis during development and tumor growth. International Journal of Developmental Biology, 2011, 55, 511-525.	0.6	98
302	Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Errors Caused by Confusing Paralogs and Epaktologs. Genes, 2011, 2, 516-561.	2.4	12
303	Contrasting 5' and 3' Evolutionary Histories and Frequent Evolutionary Convergence in Meis/hth Gene Structures. Genome Biology and Evolution, 2011, 3, 551-564.	2.5	16
304	FEZ2 Has Acquired Additional Protein Interaction Partners Relative to FEZ1: Functional and Evolutionary Implications. PLoS ONE, 2011, 6, e17426.	2.5	14
305	Regulation of Interleukin-10 Receptor Ubiquitination and Stability by Beta-TrCP-Containing Ubiquitin E3 Ligase. PLoS ONE, 2011, 6, e27464.	2.5	20
306	Evolution of the Max and Mlx Networks in Animals. Genome Biology and Evolution, 2011, 3, 915-937.	2.5	29
307	When a module is not a domain: the case of the REJ module and the redefinition of the architecture of polycystin-1. Biochemical Journal, 2011, 435, 651-660.	3.7	14
308	Identification of up-regulated genes in amphioxus neurula and the expression of AmphiFABP. Genes and Genetic Systems, 2011, 86, 37-46.	0.7	1
309	Expression and function of myc during asexual reproduction of the budding ascidian Polyandrocarpa misakiensis. Development Growth and Differentiation, 2011, 53, 1004-1014.	1.5	8
310	microRNA complements in deuterostomes: origin and evolution of microRNAs. Evolution & Development, 2011, 13, 15-27.	2.0	113
311	Deuterostome neuroanatomy and the body plan paradox. Evolution & Development, 2011, 13, 110-115.	2.0	22
312	Evolution of the Alx homeobox gene family: parallel retention and independent loss of the vertebrate Alx3 gene. Evolution & Development, 2011, 13, 343-351.	2.0	37
313	Tail regression induced by elevated retinoic acid signaling in amphioxus larvae occurs by tissue remodeling, not cell death. Evolution & Development, 2011, 13, 427-435.	2.0	11
314	Coâ€orthology of <i><scp>P</scp>ax4</i> and <i><scp>P</scp>ax6</i> to the fly <i>eyeless</i> gene: molecular phylogenetic, comparative genomic, and embryological analyses. Evolution & Development, 2011, 13, 448-459.	2.0	16
315	Genome duplication in amphibians and fish: an extended synthesis. Journal of Zoology, 2011, 284, 151-182.	1.7	209
316	The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics, 2011, 43, 228-235.	21.4	285

#	Article	IF	CITATIONS
317	Development and evolution of the lateral plate mesoderm: Comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Developmental Biology, 2011, 359, 124-136.	2.0	57
318	Evolution of the gonadotropin-releasing hormone (GnRH) gene family in relation to vertebrate tetraploidizations. General and Comparative Endocrinology, 2011, 170, 575-581.	1.8	74
319	Evolution of GnRH: Diving deeper. General and Comparative Endocrinology, 2011, 171, 1-16.	1.8	221
320	Family structure and phylogenetic analysis of odorant receptor genes in the large yellow croaker (Larimichthys crocea). BMC Evolutionary Biology, 2011, 11, 237.	3.2	12
321	Emergence and evolution of the glycoprotein hormone and neurotrophin gene families in vertebrates. BMC Evolutionary Biology, 2011, 11, 332.	3.2	49
322	The HMGB protein gene family in zebrafish: Evolution and embryonic expression patterns. Gene Expression Patterns, 2011, 11, 3-11.	0.8	33
323	Amphioxus Tbx6/16 and Tbx20 embryonic expression patterns reveal ancestral functions in chordates. Gene Expression Patterns, 2011, 11, 239-243.	0.8	17
324	Ion channels in key marine invertebrates; their diversity and potential for applications in biotechnology. Biotechnology Advances, 2011, 29, 457-467.	11.7	5
325	Transphyletic conservation of developmental regulatory state in animal evolution. Proceedings of the United States of America, 2011, 108, 14186-14191.	7.1	94
326	Evolution of the epithelial sodium channel and the sodium pump as limiting factors of aldosterone action on sodium transport. Physiological Genomics, 2011, 43, 844-854.	2.3	39
327	Thyroid Hormone Deiodinases. Advanced Topics in Science and Technology in China, 2011, , 27-40.	0.1	0
328	An outline of the phylogenetic history of Metazoan aging phenomenon (to the study of creating a) Tj ETQq1 1 0.	784314 rg 0.4	gBŢ /Overloc
329	Forming a tough shell via an intracellular matrix and cellular junctions in the tail epidermis of Oikopleura dioica (Chordata: Tunicata: Appendicularia). Die Naturwissenschaften, 2011, 98, 661-669.	1.6	9
330	Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1. Developmental and Comparative Immunology, 2011, 35, 725-735.	2.3	157
331	Can Clues from Evolution Unlock the Molecular Development of the Cerebellum?. Molecular Neurobiology, 2011, 43, 67-76.	4.0	28
332	Interplay between amphioxus complement with sea bass macrophages: Opsonic activity of amphioxus humoral fluids. Journal of Ocean University of China, 2011, 10, 357-361.	1.2	3
333	Tunicates push the limits of animal evo-devo. BMC Biology, 2011, 9, 3.	3.8	9
334	A study of neural-related microRNAs in the developing amphioxus. EvoDevo, 2011, 2, 15.	3.2	33

#	Article	IF	CITATIONS
335	Constraints on genes shape long-term conservation of macro-synteny in metazoan genomes. BMC Bioinformatics, 2011, 12, S11.	2.6	24
336	Natural history of SLC11 genes in vertebrates: tales from the fish world. BMC Evolutionary Biology, 2011, 11, 106.	3.2	20
337	The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evolutionary Biology, 2011, 11, 132.	3.2	90
338	Testis-specific glyceraldehyde-3-phosphate dehydrogenase: origin and evolution. BMC Evolutionary Biology, 2011, 11, 160.	3.2	18
339	Molecular evolution of a chordate specific family of G protein-coupled receptors. BMC Evolutionary Biology, 2011, 11, 234.	3.2	16
340	Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case. BMC Genomics, 2011, 12, 325.	2.8	70
341	Eukaryote DIRS1-like retrotransposons: an overview. BMC Genomics, 2011, 12, 621.	2.8	38
342	<i>CiMTâ€I </i> , an unusual chordate metallothionein gene in <i>Ciona intestinalis</i> genome: structure and expression studies. Journal of Experimental Zoology, 2011, 315A, 90-100.	1.2	28
343	Amphioxus spawning behavior in an artificial seawater facility. , 2011, 316B, 263-275.		35
344	Regeneration of amphioxus oral cirri and its skeletal rods: implications for the origin of the vertebrate skeleton. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 409-417.	1.3	35
347	Distinct and redundant expression and transcriptional diversity of <i>MEIS</i> gene paralogs during chicken development. Developmental Dynamics, 2011, 240, 1475-1492.	1.8	21
348	Direct examination of chromosomal clustering of organ-specific genes in the chordate Ciona intestinalis. Genesis, 2011, 49, 662-672.	1.6	10
349	Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life, 2011, 63, 313-322.	3.4	47
350	Comparative and phylogenetic analyses of three TIR domain-containing adaptors in metazoans: Implications for evolution of TLR signaling pathways. Developmental and Comparative Immunology, 2011, 35, 764-773.	2.3	15
351	Progress in tracing the evolutionary paths of cytochrome P450. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 14-18.	2.3	198
352	A Nonselenoprotein from Amphioxus Deiodinates Triac But Not T3: Is Triac the Primordial Bioactive Thyroid Hormone?. Endocrinology, 2011, 152, 3259-3267.	2.8	45
353	Occurrence of Two Distinct Urotensin II-Related Peptides in Zebrafish Provides New Insight into the Evolutionary History of the Urotensin II Gene Family. Endocrinology, 2011, 152, 2330-2341.	2.8	35
354	A segmental genomic duplication generates a functional intron. Nature Communications, 2011, 2, 454.	12.8	12

ARTICLE IF CITATIONS # Age-dependent gain of alternative splice forms and biased duplication explain the relation between 355 5.5 50 splicing and duplication. Genome Research, 2011, 21, 357-363. New Insights into the Evolution of Metazoan Cadherins. Molecular Biology and Evolution, 2011, 28, 647-657 CIPRO 2.5: Ciona intestinalis protein database, a unique integrated repository of large-scale omics 357 data, bioinformatic analyses and curated annotation, with user rating and reviewing functionality. 14.5 24 Nucleic Acids Research, 2011, 39, D807-D814. DNA ligase III. Cell Cycle, 2011, 10, 3636-3644. 358 Structural and functional diversity of cadherin at the adherens junction. Journal of Cell Biology, 359 5.2 203 2011, 193, 1137-1146. Maturation of Thyroglobulin Protein Region I. Journal of Biological Chemistry, 2011, 286, 33045-33052. 3.4 Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral 361 5.5 77 chromosomes. Genome Research, 2011, 21, 1306-1312. Not what you thought: How H+ ions combine with taurine or other aminosulfonates to close Cx26 1.9 channels. Journal of General Physiology, 2011, 138, 377-380. Evolution of the Insulin-Like Growth Factor Binding Protein (IGFBP) Family. Endocrinology, 2011, 152, 363 2.8 123 2278-2289. Evolution of Retinoid and Steroid Signaling: Vertebrate Diversification from an Amphioxus 364 2.5 Perspective. Genome Biology and Evolution, 2011, 3, 985-1005. OrthoDisease: tracking disease gene orthologs across 100 species. Briefings in Bioinformatics, 2011, 12, 365 6.5 16 463-473. RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian 366 5.2 149 meiosis. Journal of Cell Biology, 2011, 192, 263-276. Spawning periodicity of the lancelet, <i>Asymmetron lucayanum </i>(i>(Cephalochordata), in Bimini, 367 0.6 15 Bahamas. Italian Journal of Zoology, 2011, 78, 478-486. Ancient Vertebrate Conserved Noncoding Elements Have Been Evolving Rapidly in Teleost Fishes. Molecular Biology and Evolution, 2011, 28, 1205-1215. Structural shifts of aldehyde dehydrogenase enzymes were instrumental for the early evolution of 369 retinoid-dependent axial patterning in metazoans. Proceedings of the National Academy of Sciences of 7.1 57 the United States of America, 2011, 108, 226-231. Molecular Evolution of the Metazoan PHDâ€"HIF Oxygen-Sensing System. Molecular Biology and 370 132 Evolution, 2011, 28, 1913-1926. Reconstructing the architecture of the ancestral amniote genome. Bioinformatics, 2011, 27, 2664-2671. 371 4.1 30 Evolution of the Insect Yellow Gene Family. Molecular Biology and Evolution, 2011, 28, 257-272. 114

#	Article	IF	CITATIONS
373	The Evolution and Regulation of the Mucosal Immune Complexity in the Basal Chordate Amphioxus. Journal of Immunology, 2011, 186, 2042-2055.	0.8	55
374	Regulation of Synaptic Vesicle Budding and Dynamin Function by an EHD ATPase. Journal of Neuroscience, 2011, 31, 13972-13980.	3.6	46
375	A mechanism for graded motor control encoded in the channel properties of the muscle ACh receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2599-2604.	7.1	35
376	Evolutionary crossroads in developmental biology: the tunicates. Development (Cambridge), 2011, 138, 2143-2152.	2.5	157
377	Independent HHsearch, Needleman-Wunsch-Based, and Motif Analyses Reveal the Overall Hierarchy for Most of the G Protein-Coupled Receptor Families. Molecular Biology and Evolution, 2011, 28, 2471-2480.	8.9	145
378	Differential Evolution of Voltage-Gated Sodium Channels in Tetrapods and Teleost Fishes. Molecular Biology and Evolution, 2011, 28, 859-871.	8.9	72
379	Is there intracellular cellulose in the appendicularian tail epidermis? A tale of the adult tail of an invertebrate chordate. Communicative and Integrative Biology, 2011, 4, 768-771.	1.4	4
380	Jumbled Genomes: Missing Apicomplexan Synteny. Molecular Biology and Evolution, 2011, 28, 2855-2871.	8.9	65
381	Combinatorial Binding in Human and Mouse Embryonic Stem Cells Identifies Conserved Enhancers Active in Early Embryonic Development. PLoS Computational Biology, 2011, 7, e1002304.	3.2	43
382	The Role of the Vitamin D Receptor in Bile Acid Homeostasis. , 2011, , 763-767.		0
383	Evolution of Cyclin B3 Shows an Abrupt Three-Fold Size Increase, due to the Extension of a Single Exon in Placental Mammals, Allowing for New Protein–Protein Interactions. Molecular Biology and Evolution, 2012, 29, 3855-3871.	8.9	10
384	Evolution of Vertebrate GnRH Receptors from the Perspective of a Basal Vertebrate. Frontiers in Endocrinology, 2012, 3, 140.	3.5	12
385	Biological Functions of the Novel Collectins CL-L1, CL-K1, and CL-P1. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	33
386	The Evolution of Invertebrate Gene Body Methylation. Molecular Biology and Evolution, 2012, 29, 1907-1916.	8.9	214
387	Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology. DNA Research, 2012, 19, 117-130.	3.4	266
388	Extensive Chordate and Annelid Macrosynteny Reveals Ancestral Homeobox Gene Organization. Molecular Biology and Evolution, 2012, 29, 157-165.	8.9	53
389	The light-sensitive conductance of melanopsin-expressing Joseph and Hesse cells in amphioxus. Journal of General Physiology, 2012, 139, 19-30.	1.9	11
390	Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates. Molecular Biology and Evolution, 2012, 29, 303-312.	8.9	88

#	Article	IF	CITATIONS
391	Population dynamics of the amphioxus Branchiostoma elongatum from northern Chile. Journal of the Marine Biological Association of the United Kingdom, 2012, 92, 591-599.	0.8	7
392	Evolution of the lamin protein family. Nucleus, 2012, 3, 44-59.	2.2	57
393	Vertebrate-like regeneration in the invertebrate chordate amphioxus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 517-522.	7.1	71
394	Urokinase-type Plasminogen Activator-like Proteases in Teleosts Lack Genuine Receptor-binding Epidermal Growth Factor-like Domains. Journal of Biological Chemistry, 2012, 287, 27526-27536.	3.4	8
395	Evolution of the FGF Gene Family. International Journal of Evolutionary Biology, 2012, 2012, 1-12.	1.0	42
396	Mechanisms of Gene Duplication and Translocation and Progress towards Understanding Their Relative Contributions to Animal Genome Evolution. International Journal of Evolutionary Biology, 2012, 2012, 1-10.	1.0	29
397	Molecular and functional characterization of cionin receptors in the ascidian, Ciona intestinalis: the evolutionary origin of the vertebrate cholecystokinin/gastrin family. Journal of Endocrinology, 2012, 213, 99-106.	2.6	30
398	Polyploidy and the Evolution of Complex Traits. International Journal of Evolutionary Biology, 2012, 2012, 1-12.	1.0	19
399	An ancient genomic regulatory block conserved across bilaterians and its dismantling in tetrapods by retrogene replacement. Genome Research, 2012, 22, 642-655.	5.5	35
400	Positionally biased gene loss after whole genome duplication: Evidence from human, yeast, and plant. Genome Research, 2012, 22, 2427-2435.	5.5	32
401	Genetic and Genomic Toolbox of the Chordate <i>Ciona intestinalis</i> . Genetics, 2012, 192, 55-66.	2.9	63
402	Immune Related Genes Underpin the Evolution of Adaptive Immunity in Jawless Vertebrates. Current Genomics, 2012, 13, 86-94.	1.6	11
403	The Origins of Chordate Larvae. Cell & Developmental Biology, 2012, 01, .	0.3	2
404	Comparative genomics of the Hedgehog loci in chordates and the origins of Shh regulatory novelties. Scientific Reports, 2012, 2, 433.	3.3	29
405	Coherent Raman scattering microscopy for label-free imaging of live amphioxus. Proceedings of SPIE, 2012, , .	0.8	0
407	Evolution of the Genetic Machinery of the Visual Cycle: A Novelty of the Vertebrate Eye?. Molecular Biology and Evolution, 2012, 29, 1461-1469.	8.9	38
408	Evolution of the Tbx6/16 Subfamily Genes in Vertebrates: Insights from Zebrafish. Molecular Biology and Evolution, 2012, 29, 3959-3983.	8.9	21
409	Dissecting the Determinants of Light Sensitivity in Amphioxus Microvillar Photoreceptors: Possible Evolutionary Implications for Melanopsin Signaling. Journal of Neuroscience, 2012, 32, 17977-17987.	3.6	12

#	Article	IF	CITATIONS
410	Acquisition of the paired fins: a view from the sequential evolution of the lateral plate mesoderm. Evolution & Development, 2012, 14, 412-420.	2.0	16
411	Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo. Development Genes and Evolution, 2012, 222, 313-323.	0.9	25
412	Additive multiple k-mer transcriptome of the keelworm Pomatoceros lamarckii (Annelida; Serpulidae) reveals annelid trochophore transcription factor cassette. Development Genes and Evolution, 2012, 222, 325-339.	0.9	11
413	On the Expansion of "Dangerous―Gene Repertoires by Whole-Genome Duplications in Early Vertebrates. Cell Reports, 2012, 2, 1387-1398.	6.4	52
414	Why has butyrylcholinesterase been retained? Structural and functional diversification in a duplicated gene. Neurochemistry International, 2012, 61, 783-797.	3.8	72
415	The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. General and Comparative Endocrinology, 2012, 179, 331-344.	1.8	83
416	Expansion of transducin subunit gene families in early vertebrate tetraploidizations. Genomics, 2012, 100, 203-211.	2.9	28
417	Vertebrate patatin-like phospholipase domain-containing protein 4 (PNPLA4) genes and proteins: a gene with a role in retinol metabolism. 3 Biotech, 2012, 2, 277-286.	2.2	6
418	A Prototypic Jun Like Gene in Amphioxus Branchiostoma japonicum Expressed in Female Gonad. Journal of Genetics and Genomics, 2012, 39, 607-611.	3.9	1
419	Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15383-15388.	7.1	115
420	How much does the amphioxus genome represent the ancestor of chordates?. Briefings in Functional Genomics, 2012, 11, 89-95.	2.7	45
421	Amphioxus genomics. Briefings in Functional Genomics, 2012, 11, 87-88.	2.7	6
422	The amphioxus genome provides unique insight into the evolution of immunity. Briefings in Functional Genomics, 2012, 11, 167-176.	2.7	25
423	A genome-wide view of transcription factor gene diversity in chordate evolution: less gene loss in amphioxus?. Briefings in Functional Genomics, 2012, 11, 177-186.	2.7	36
424	Label-free chemical imaging in vivo: three-dimensional non-invasive microscopic observation of amphioxus notochord through stimulated Raman scattering (SRS). Chemical Science, 2012, 3, 2646.	7.4	26
425	The evolution of metazoan extracellular matrix. Journal of Cell Biology, 2012, 196, 671-679.	5.2	227
426	Examining host–microbial interactions through the lens of NOD: From plants to mammals. Seminars in Immunology, 2012, 24, 9-16.	5.6	21
427	Involvement of AmphiREL, a Rel-like gene identified in Brachiastoma belcheri, in LPS-induced response: Implication for evolution of Rel subfamily genes. Genomics, 2012, 99, 361-369.	2.9	10

#	Article	IF	CITATIONS
428	Comparative studies on troponin, a Ca2+-dependent regulator of muscle contraction, in striated and smooth muscles of protochordates. Methods, 2012, 56, 3-10.	3.8	7
429	Peculiar patterns of amino acid substitution and conservation in the fast evolving tunicate Oikopleura dioica. Molecular Phylogenetics and Evolution, 2012, 62, 708-717.	2.7	10
430	Cis <i>-</i> Acting Transcriptional Repression Establishes a Sharp Boundary in Chordate Embryos. Science, 2012, 337, 964-967.	12.6	31
431	Characterization of s <scp>FRP</scp> 2â€like in amphioxus: insights into the evolutionary conservation of <scp>W</scp> nt antagonizing function. Evolution & Development, 2012, 14, 168-177.	2.0	10
432	Differential deployment of paralogous W nt genes in the mouse and chick embryo during development. Evolution & Development, 2012, 14, 178-195.	2.0	15
433	<i>Pikaia gracilens</i> Walcott, a stemâ€group chordate from the Middle Cambrian of British Columbia. Biological Reviews, 2012, 87, 480-512.	10.4	81
434	X-ray structures of transferrins and related proteins. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 203-211.	2.4	47
435	Beyond bilobal: Transferrin homologs having unusual domain architectures. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 212-217.	2.4	10
436	The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2012, 7, 83-93.	1.0	8
437	Molecular and expression analysis of the farnesoid X receptor in the urochordate Halocynthia roretzi. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2012, 161, 189-196.	1.6	4
438	A novel Acetyl-CoA synthetase short-chain subfamily member 1 (Acss1) gene indicates a dynamic history of paralogue retention and loss in vertebrates. Gene, 2012, 497, 249-255.	2.2	12
439	Sex dimorphic expression of five dmrt genes identified in the Atlantic cod genome. The fish-specific dmrt2b diverged from dmrt2a before the fish whole-genome duplication. Gene, 2012, 505, 221-232.	2.2	49
440	The Population Genomics of a Fast Evolver: High Levels of Diversity, Functional Constraint, and Molecular Adaptation in the Tunicate Ciona intestinalis. Genome Biology and Evolution, 2012, 4, 852-861.	2.5	116
441	Proteomic characterization and evolutionary analyses of zona pellucida domain-containing proteins in the egg coat of the cephalochordate, Branchiostoma belcheri. BMC Evolutionary Biology, 2012, 12, 239.	3.2	12
442	Molecular evolution of the polyamine oxidase gene family in Metazoa. BMC Evolutionary Biology, 2012, 12, 90.	3.2	38
443	A genomic overview of short genetic variations in a basal chordate, Ciona intestinalis. BMC Genomics, 2012, 13, 208.	2.8	16
444	Evolution of selenoproteins in the metazoan. BMC Genomics, 2012, 13, 446.	2.8	44
445	A neurochemical map of the developing amphioxus nervous system. BMC Neuroscience, 2012, 13, 59.	1.9	39

#	Article	IF	CITATIONS
446	Broken colinearity of the amphioxus Hox cluster. EvoDevo, 2012, 3, 28.	3.2	46
447	Gene structure in the sea urchin <i>Strongylocentrotus purpuratus</i> based on transcriptome analysis. Genome Research, 2012, 22, 2079-2087.	5.5	138
448	Distribution of repetitive DNAs and the hybrid origin of the red vizcacha rat (Octodontidae). Genome, 2012, 55, 105-117.	2.0	18
449	Identical Genomic Organization of Two Hemichordate Hox Clusters. Current Biology, 2012, 22, 2053-2058.	3.9	43
450	Systematic investigation of Amphioxus (Branchiostoma floridae) microRNAs. Gene, 2012, 508, 110-116.	2.2	5
451	Actin capping proteins, CapZ (β-actinin) and tropomodulin in amphioxus striated muscle. Gene, 2012, 510, 78-86.	2.2	9
452	Isolation and functional analysis of the promoter of the amphioxus Hsp70a gene. Gene, 2012, 510, 39-46.	2.2	10
453	Putative Chitin Synthases from Branchiostoma floridae Show Extracellular Matrix-related Domains and Mosaic Structures. Genomics, Proteomics and Bioinformatics, 2012, 10, 197-207.	6.9	6
454	Evolutionary Significance of Whole-Genome Duplication. , 2012, , 1-20.		24
455	Two Rounds of Whole-Genome Duplication: Evidence and Impact on the Evolution of Vertebrate Innovations. , 2012, , 309-339.		19
456	Polyploidy in Fish and the Teleost Genome Duplication. , 2012, , 341-383.		102
457	BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development (Cambridge), 2012, 139, 2020-2030.	2.5	63
458	Polyploidy and Genome Evolution. , 2012, , .		93
459	Extensive conservation of ancient microsynteny across metazoans due to <i>cis</i> -regulatory constraints. Genome Research, 2012, 22, 2356-2367.	5.5	126
460	Transposon diversity is higher in amphioxus than in vertebrates: functional and evolutionary inferences. Briefings in Functional Genomics, 2012, 11, 131-141.	2.7	16
461	Cis-regulation and conserved non-coding elements in amphioxus. Briefings in Functional Genomics, 2012, 11, 118-130.	2.7	8
462	Evolution of Reproductive Neurohormones. , 2012, , 73-94.		2
463	Molecular cloning and characterization of an IKK homologue from amphioxus (Branchiostoma) Tj ETQq1 1 0.784	1314 _{.1} gBT	/Oyerlock 10

		CITATION REPORT		
#	Article		IF	CITATIONS
464	Pannexin 1 Ohnologs in the Teleost Lineage. Journal of Membrane Biology, 2012, 245,	483-493.	2.1	23
465	Evolution of Thrombin and Other Hemostatic Proteases by Survey of Protochordate, H and Echinoderm Genomes. Journal of Molecular Evolution, 2012, 74, 319-331.	emichordate,	1.8	23
466	The evolution of vertebrate somatostatin receptors and their gene regions involves ext chromosomal rearrangements. BMC Evolutionary Biology, 2012, 12, 231.	ensive	3.2	46
467	An Unauthorized Biography of the Second Heart Field and a Pioneer/Scaffold Model fo Development. Current Topics in Developmental Biology, 2012, 100, 67-105.	r Cardiac	2.2	8
468	Development and Evolution of the Ascidian Cardiogenic Mesoderm. Current Topics in Biology, 2012, 100, 107-142.	Developmental	2.2	38
469	Melanopsin-Expressing Amphioxus Photoreceptors Transduce Light via a Phospholipas Cascade. PLoS ONE, 2012, 7, e29813.	e C Signaling	2.5	15
470	The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcell and Promoted Multicellular Specialization. PLoS ONE, 2012, 7, e33261.	ular Complexity	2.5	50
471	Evolution of the Vertebrate Paralemmin Gene Family: Ancient Origin of Gene Duplicate Distinct Functions. PLoS ONE, 2012, 7, e41850.	s Suggests	2.5	18
472	A Conserved Non-Reproductive GnRH System in Chordates. PLoS ONE, 2012, 7, e4195	.5.	2.5	41
473	Asymmetric Divergence in Structure and Function of HCN Channel Duplicates in Ciona PLoS ONE, 2012, 7, e47590.	intestinalis.	2.5	7
474	Multiple Kisspeptin Receptors in Early Osteichthyans Provide New Insights into the Evo Receptor Family. PLoS ONE, 2012, 7, e48931.	ulution of This	2.5	57
475	Expanded Functional Diversity of Shaker K+ Channels in Cnidarians Is Driven by Gene E ONE, 2012, 7, e51366.	xpansion. PLoS	2.5	29
476	HTS-PEG: A Method for High Throughput Sequencing of the Paired-Ends of Genomic Li ONE, 2012, 7, e52257.	oraries. PLoS	2.5	1
477	SNP Detection from De Novo Transcriptome Sequencing in the Bivalve Macoma balthic Development for Evolutionary Studies. PLoS ONE, 2012, 7, e52302.	ca: Marker	2.5	24
478	Evolutionary Insights into the Steroid Sensitive kiss1 and kiss2 Neurons in the Vertebra Frontiers in Endocrinology, 2012, 3, 28.	ate Brain.	3.5	36
479	Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the Open Biology, 2012, 2, 120103.	vertebrates.	3.6	47
480	El Genoma en los Cordados: Introducción a la Genómica Comparada. International Jo Morphology, 2012, 30, 1309-1315.	ournal of	0.2	0
481	EST and transcriptome analysis of cephalochordate amphioxuspast, present and futu Functional Genomics, 2012, 11, 96-106.	re. Briefings in	2.7	5

#	Article	IF	CITATIONS
482	The nonâ€hierarchical, nonâ€uniformly branching topology of a leuconoid sponge aquiferous system revealed by 3D reconstruction and morphometrics using corrosion casting and Xâ€ray microtomography. Acta Zoologica, 2012, 93, 160-170.	0.8	13
483	VLR-Based Adaptive Immunity. Annual Review of Immunology, 2012, 30, 203-220.	21.8	217
484	Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development (Cambridge), 2012, 139, 2091-2099.	2.5	142
485	Independent evolution of striated muscles in cnidarians and bilaterians. Nature, 2012, 487, 231-234.	27.8	221
486	HaploMerger: Reconstructing allelic relationships for polymorphic diploid genome assemblies. Genome Research, 2012, 22, 1581-1588.	5.5	104
487	Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics, 2012, 28, 1698-1704.	4.1	51
488	Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromis niloticus. Chromosome Research, 2012, 20, 279-292.	2.2	49
489	Field identification of â€~types' A and B of the ascidian Ciona intestinalis in a region of sympatry. Marine Biology, 2012, 159, 1611-1619.	1.5	62
490	A genomewide survey of bHLH transcription factors in the coral Acropora digitifera identifies three novel orthologous families, pearl, amber, and peridot. Development Genes and Evolution, 2012, 222, 63-76.	0.9	18
491	2011 William Allan Award: Development and Evolution 1. American Journal of Human Genetics, 2012, 90, 392-404.	6.2	12
492	How was the notochord born?. Evolution & Development, 2012, 14, 56-75.	2.0	72
493	Unexpected diversity in Shisa-like proteins suggests the importance of their roles as transmembrane adaptors. Cellular Signalling, 2012, 24, 758-769.	3.6	54
494	Steroid Sensitive <i>kiss2</i> Neurones in the Goldfish: Evolutionary Insights into the Duplicate Kisspeptin Geneâ€Expressing Neurones. Journal of Neuroendocrinology, 2012, 24, 897-906.	2.6	59
495	NFâ€ÎºB: where did it come from and why?. Immunological Reviews, 2012, 246, 14-35.	6.0	214
496	Ancestral and conserved cis-regulatory architectures in developmental control genes. Developmental Biology, 2012, 362, 282-294.	2.0	13
497	Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo. Developmental Biology, 2012, 363, 74-83.	2.0	33
498	The oxytocin/vasopressin receptor family has at least five members in the gnathostome lineage, inclucing two distinct V2 subtypes. General and Comparative Endocrinology, 2012, 175, 135-143.	1.8	88
499	Comparative genomic analysis of the proteasome Î ² 5t subunit gene: implications for the origin and evolution of thymoproteasomes. Immunogenetics, 2012, 64, 49-58.	2.4	26

#	Article	IF	CITATIONS
500	Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Research, 2012, 20, 7-19.	2.2	115
501	A trypsin homolog in amphioxus: expression, enzymatic activity and evolution. Molecular Biology Reports, 2012, 39, 1745-1753.	2.3	10
502	Discovery of a novel neurophysin-associated neuropeptide that triggers cardiac stomach contraction and retraction in starfish. Journal of Experimental Biology, 2013, 216, 4047-53.	1.7	37
503	Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cellular and Molecular Life Sciences, 2013, 70, 3243-3275.	5.4	37
504	A Phylogenetic Analysis of the L1 Family of Neural Cell Adhesion Molecules. Neurochemical Research, 2013, 38, 1196-1207.	3.3	10
505	Evolution of General Transcription Factors. Journal of Molecular Evolution, 2013, 76, 28-47.	1.8	7
506	Impact of gene gains, losses and duplication modes on the origin and diversification of vertebrates. Seminars in Cell and Developmental Biology, 2013, 24, 83-94.	5.0	87
507	Homoeologous chromosomes of Xenopus laevis are highly conserved after whole-genome duplication. Heredity, 2013, 111, 430-436.	2.6	57
508	Evolution of Hoxgene clusters in deuterostomes. BMC Developmental Biology, 2013, 13, 26.	2.1	90
509	Expression of phosphatase of regenerating liver family genes during embryogenesis: an evolutionary developmental analysis among Drosophila, amphioxus, and zebrafish. BMC Developmental Biology, 2013, 13, 18.	2.1	23
510	Establishing primary cell cultures from Branchiostoma belcheri Japanese. In Vitro Cellular and Developmental Biology - Animal, 2013, 49, 97-102.	1.5	2
511	The sea lamprey tryptophan hydroxylase: new insight into the evolution of the serotonergic system of vertebrates. Brain Structure and Function, 2013, 218, 587-593.	2.3	20
512	Evolution of Cell Adhesion to Extracellular Matrix. Biology of Extracellular Matrix, 2013, , 243-283.	0.3	4
513	Expression of germline markers in three species of amphioxus supports a preformation mechanism of germ cell development in cephalochordates. EvoDevo, 2013, 4, 17.	3.2	34
514	Genome Duplication in Early Vertebrates: Insights from Agnathan Cytogenetics. Cytogenetic and Genome Research, 2013, 141, 80-89.	1.1	26
515	Evolution of Extracellular Matrix. Biology of Extracellular Matrix, 2013, , .	0.3	15
516	Stable aquaculture of the Japanese lancelet <i>Branchiostoma japonicum</i> for 7 years. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 538-547.	1.3	11
517	The cephalochordate Branchiostoma genome contains 26 intermediate filament (IF) genes: Implications for evolution of chordate IF proteins. European Journal of Cell Biology, 2013, 92, 295-302.	3.6	7

#	ARTICLE	IF	CITATIONS
518	Impact of gene/genome duplications on the evolution of the urotensin II and somatostatin families. General and Comparative Endocrinology, 2013, 188, 110-117.	1.8	31
519	Impact of whole-genome duplication on vertebrate development and evolution. Seminars in Cell and Developmental Biology, 2013, 24, 81-82.	5.0	9
520	Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Molecular Phylogenetics and Evolution, 2013, 66, 469-478.	2.7	110
521	Evolution of new characters after whole genome duplications: Insights from amphioxus. Seminars in Cell and Developmental Biology, 2013, 24, 101-109.	5.0	39
522	Deep conservation of <i>cis</i> -regulatory elements in metazoans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130020.	4.0	26
524	Characterisation of AmphiAmR4, an amphioxus (Branchiostoma floridae) α2-adrenergic-like G-protein-coupled receptor. Invertebrate Neuroscience, 2013, 13, 71-84.	1.8	4
525	Phylostratigraphic profiles reveal a deep evolutionary history of the vertebrate head sensory systems. Frontiers in Zoology, 2013, 10, 18.	2.0	32
526	Diversity and history of the long-chain acyl-CoA synthetase (Acsl) gene family in vertebrates. BMC Evolutionary Biology, 2013, 13, 271.	3.2	60
527	Conserving the Genetic Diversity of Plants in Austral and Neotropical America (ANA): A Metanalysis of Published Studies Using Samples of the Region. Botanical Review, The, 2013, 79, 449-468.	3.9	4
528	The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications. BMC Evolutionary Biology, 2013, 13, 238.	3.2	111
529	Sex-Related Genomic Sequences in Cartilaginous Fish: An Overview. Cytogenetic and Genome Research, 2013, 141, 169-176.	1.1	3
530	From gonadotropin-inhibitory hormone to SIFamides: Are echinoderm SALMFamides the "missing link― in a bilaterian family of neuropeptides that regulate reproductive processes?. General and Comparative Endocrinology, 2013, 193, 229-233.	1.8	13
531	Structural and Functional Analysis of the Amphioxus IGFBP Gene Uncovers Ancient Origin of IGF-Independent Functions. Endocrinology, 2013, 154, 3753-3763.	2.8	19
532	The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Molecular Phylogenetics and Evolution, 2013, 66, 898-905.	2.7	28
533	Insights into bilaterian evolution from three spiralian genomes. Nature, 2013, 493, 526-531.	27.8	564
534	Phylogenetic analysis reveals that <i>Rhabdopleura</i> is an extant graptolite. Lethaia, 2013, 46, 34-56.	1.4	62
535	R4 regulators of G protein signaling (RGS) identify an ancient MHC-linked synteny group. Immunogenetics, 2013, 65, 145-156.	2.4	8
536	The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Seminars in Cell and Developmental Biology, 2013, 24, 110-118.	5.0	34

#	Article	IF	CITATIONS
537	Selfâ€incompatibilty in gamete recognition: Single selfâ€recognizing determinants and multiple, nonâ€selfâ€recognizing ones function in the same individual. Molecular Reproduction and Development, 2013, 80, 2-7.	2.0	3
538	Insight from the lamprey genome: Glimpsing early vertebrate development via neuroendocrine-associated genes and shared synteny of gonadotropin-releasing hormone (GnRH). General and Comparative Endocrinology, 2013, 192, 237-245.	1.8	61
539	Specificâ€gene studies of evolutionary mechanisms in an age of genomeâ€wide surveying. Annals of the New York Academy of Sciences, 2013, 1289, 1-17.	3.8	11
540	Characterization of the compact bicistronic microRNA precursor, miR-1/miR-133, expressed specifically in Ciona muscle tissues. Gene Expression Patterns, 2013, 13, 43-50.	0.8	19
541	Cloning and pharmacological characterization of the neuropeptide Y receptor Y5 in the sea lamprey, Petromyzon marinus. Peptides, 2013, 39, 64-70.	2.4	5
542	Characterization and embryonic expression of four amphioxus Frizzled genes with important functions during early embryogenesis. Gene Expression Patterns, 2013, 13, 445-453.	0.8	17
543	Identification, evolution and expression of a CD36 homolog in the basal chordate amphioxus Branchiostoma japonicum. Fish and Shellfish Immunology, 2013, 34, 546-555.	3.6	13
544	Significance and Biological Consequences of Polyploidization in Land Plant Evolution. , 2013, , 277-293.		34
545	Structural Insights into the Evolution of the Adaptive Immune System. Annual Review of Biophysics, 2013, 42, 191-215.	10.0	30
546	The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120474.	4.0	147
547	Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome, 2013, 56, 475-486.	2.0	76
548	A genome-wide survey of photoreceptor and circadian genes in the coral, Acropora digitifera. Gene, 2013, 515, 426-431.	2.2	36
549	New Paralogues and Revised Time Line in the Expansion of the Vertebrate GH18 Family. Journal of Molecular Evolution, 2013, 76, 240-260.	1.8	38
550	<i>Pikaia gracilens</i> Walcott: Stem Chordate, or Already Specialized in the Cambrian?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 247-271.	1.3	23
551	A Hypothesis on the Origin and Evolution of Tubulin. International Review of Cell and Molecular Biology, 2013, 302, 41-185.	3.2	93
552	Two Novel Gonadotropin-Releasing Hormones (GnRHs) from the Urochordate Ascidian, Halocynthia roretzi: Implications for the Origin of Vertebrate GnRH Isoforms. Zoological Science, 2013, 30, 311.	0.7	13
553	Identification and bioactivity analysis of transthyretin-like protein in amphioxus: A case demonstrating divergent evolution from an enzyme to a hormone distributor. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 164, 143-150.	1.6	8
554	Diversity and Evolution of Root-Knot Nematodes, Genus <i>Meloidogyne</i> : New Insights from the Genomic Era. Annual Review of Phytopathology, 2013, 51, 203-220.	7.8	135

#	Article	IF	CITATIONS
555	Ancient cis-regulatory constraints and the evolution of genome architecture. Trends in Genetics, 2013, 29, 521-528.	6.7	30
556	Identification, expression of a glycoprotein hormone receptor homolog in the amphioxus Branchiostoma belcheri with implications for origin of vertebrate GpHRs. General and Comparative Endocrinology, 2013, 184, 35-41.	1.8	5
557	Calreticulin is a microbial-binding molecule with phagocytosis-enhancing capacity. Fish and Shellfish Immunology, 2013, 35, 776-784.	3.6	25
558	An endocrine disruptor, bisphenol A, affects development in the protochordate Ciona intestinalis: Hatching rates and swimming behavior alter in a dose-dependent manner. Environmental Pollution, 2013, 173, 257-263.	7.5	23
559	Structure of the red fluorescent protein from a lancelet (<i>Branchiostoma lanceolatum</i>): a novel GYG chromophore covalently bound to a nearby tyrosine. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1850-1860.	2.5	15
560	Evolution of homeobox genes. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 31-45.	5.9	232
561	Incremental evolution of the neural crest, neural crest cells and neural crestâ€derived skeletal tissues. Journal of Anatomy, 2013, 222, 19-31.	1.5	49
562	The Complex NOD-Like Receptor Repertoire of the Coral Acropora digitifera Includes Novel Domain Combinations. Molecular Biology and Evolution, 2013, 30, 167-176.	8.9	109
563	Functions of NOD-Like Receptors in Human Diseases. Frontiers in Immunology, 2013, 4, 333.	4.8	248
564	The Repertoires of Ubiquitinating and Deubiquitinating Enzymes in Eukaryotic Genomes. Molecular Biology and Evolution, 2013, 30, 1172-1187.	8.9	70
565	Evolution of Ancient Functions in the Vertebrate Insulin-Like Growth Factor System Uncovered by Study of Duplicated Salmonid Fish Genomes. Molecular Biology and Evolution, 2013, 30, 1060-1076.	8.9	102
566	Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development. Nucleic Acids Research, 2013, 41, 3600-3618.	14.5	24
567	Evolution of Dopamine Receptor Genes of the D1 Class in Vertebrates. Molecular Biology and Evolution, 2013, 30, 833-843.	8.9	38
568	APE-Type Non-LTR Retrotransposons of Multicellular Organisms Encode Virus-Like 2A Oligopeptide Sequences, Which Mediate Translational Recoding during Protein Synthesis. Molecular Biology and Evolution, 2013, 30, 1955-1965.	8.9	12
569	The Evolutionary Origins of Detoxifying Enzymes. Journal of Biological Chemistry, 2013, 288, 23914-23927.	3.4	112
570	Evidence for at least six Hox clusters in the Japanese lamprey (<i>Lethenteron japonicum</i>). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16044-16049.	7.1	202
571	Vertebrate Paralogous Conserved Noncoding Sequences May Be Related to Gene Expressions in Brain. Genome Biology and Evolution, 2013, 5, 140-150.	2.5	20
572	Expansion of Secretin-Like G Protein-Coupled Receptors and Their Peptide Ligands via Local Duplications Before and After Two Rounds of Whole-Genome Duplication. Molecular Biology and Evolution, 2013, 30, 1119-1130.	8.9	61

#	ARTICLE	IF	Citations
573	A Brief History of Life. Computational Biology, 2013, , 157-173.	0.2	0
574	Inference of Genome Duplications from Age Distributions Revisited. Molecular Biology and Evolution, 2013, 30, 177-190.	8.9	145
575	Molecular Evolutionary Mechanisms Driving Functional Diversification of the HSP90A Family of Heat Shock Proteins in Eukaryotes. Molecular Biology and Evolution, 2013, 30, 2035-2043.	8.9	27
576	Punctuated Emergences of Genetic and Phenotypic Innovations in Eumetazoan, Bilaterian, Euteleostome, and Hominidae Ancestors. Genome Biology and Evolution, 2013, 5, 1949-1968.	2.5	24
577	Identification of a retinoic acidâ€responsive neural enhancer in the <i>Ciona intestinalis Hox1</i> gene. Development Growth and Differentiation, 2013, 55, 260-269.	1.5	9
578	Formation of the digestive tract in <i>Ciona intestinalis</i> includes two distinct morphogenic processes between its anterior and posterior parts. Developmental Dynamics, 2013, 242, 1172-1183.	1.8	24
579	Genomic compartmentalization of gene families encoding core components of metazoan signaling systems. Genome, 2013, 56, 215-225.	2.0	2
580	Genome-Wide Analyses of Amphioxus MicroRNAs Reveal an Immune Regulation via miR-92d Targeting C3. Journal of Immunology, 2013, 190, 1491-1500.	0.8	27
581	Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin. Genome Biology and Evolution, 2013, 5, 1485-1502.	2.5	3
582	HMCB1 Protein Does Not Mediate the Inflammatory Response in Spontaneous Spinal Cord Regeneration. Journal of Biological Chemistry, 2013, 288, 18204-18218.	3.4	35
583	Molecular evolution of peptidergic signaling systems in bilaterians. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2028-37.	7.1	362
584	Fosmid library construction and end sequences analysis of the Pacific oyster,Crassostrea gigas. Molluscan Research, 2013, 33, 65-73.	0.7	0
585	Functional characterization of protein 4.1 homolog in amphioxus: Defining a cryptic spectrin-actin-binding site. Scientific Reports, 2013, 3, 2873.	3.3	4
586	Evolution of the JAK-STAT pathway. Jak-stat, 2013, 2, e22756.	2.2	59
587	Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish. Nucleic Acids Research, 2013, 41, e151-e151.	14.5	84
588	Evolution of the Opioid System. , 2013, , 1562-1569.		1
590	PGBD5: a neural-specific intron-containing piggyBac transposase domesticated over 500 million years ago and conserved from cephalochordates to humans. Mobile DNA, 2013, 4, 23.	3.6	32
591	The medaka mutation tintachina sheds light on the evolution of V-ATPase B subunits in vertebrates. Scientific Reports, 2013, 3, 3217.	3.3	3

#	ARTICLE	IF	CITATIONS
592	Genomes and evolutionary genomics of animals. Environmental Epigenetics, 2013, 59, 87-98.	1.8	4
593	The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Frontiers in Psychology, 2013, 4, 667.	2.1	85
595	Identification of a Novel Gig2 Gene Family Specific to Non-Amniote Vertebrates. PLoS ONE, 2013, 8, e60588.	2.5	21
596	Assessment and Reconstruction of Novel HSP90 Genes: Duplications, Gains and Losses in Fungal and Animal Lineages. PLoS ONE, 2013, 8, e73217.	2.5	6
597	Evolutionary History of Chordate PAX Genes: Dynamics of Change in a Complex Gene Family. PLoS ONE, 2013, 8, e73560.	2.5	20
598	Year-Round Reproduction and Induced Spawning of Chinese Amphioxus, Branchiostoma belcheri, in Laboratory. PLoS ONE, 2013, 8, e75461.	2.5	33
599	An RNAi-Based Approach to Down-Regulate a Gene Family In Vivo. PLoS ONE, 2013, 8, e80312.	2.5	2
600	Characterisation of AmphiAmR11, an Amphioxus (Branchiostoma floridae) D2-Dopamine-Like G Protein-Coupled Receptor. PLoS ONE, 2013, 8, e80833.	2.5	5
601	Ancient Grandeur of the Vertebrate Neuropeptide Y System Shown by the Coelacanth Latimeria chalumnae. Frontiers in Neuroscience, 2013, 7, 27.	2.8	22
602	The salmon, the lungfish (or the coelacanth) and the cow: a revival?. Zootaxa, 2013, 3750, 265-76.	0.5	4
603	The diversity of fibrinogen ; its structure, function and molecular evolution. Japanese Journal of Thrombosis and Hemostasis, 2013, 24, 300-317.	0.1	0
605	The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation. PLoS ONE, 2014, 9, e113686.	2.5	129
606	Unexpected multiplicity of QRFP receptors in early vertebrate evolution. Frontiers in Neuroscience, 2014, 8, 337.	2.8	12
607	The Transcriptome of an Amphioxus, Asymmetron lucayanum, from the Bahamas: A Window into Chordate Evolution. Genome Biology and Evolution, 2014, 6, 2681-2696.	2.5	72
608	Evolutionary Genomics of Fast Evolving Tunicates. Genome Biology and Evolution, 2014, 6, 1724-1738.	2.5	73
609	TheCryptosporidium parvumApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems. Nucleic Acids Research, 2014, 42, 8271-8284.	14.5	40
610	Functional Characterization of GH-Like Homolog in Amphioxus Reveals an Ancient Origin of GH/GH Receptor System. Endocrinology, 2014, 155, 4818-4830.	2.8	22
611	An amphioxus gC1q protein binds human IgG and initiates the classical pathway: Implications for a C1qâ€mediated complement system in the basal chordate. European Journal of Immunology, 2014, 44, 3680-3695.	2.9	36

#	Article	IF	Citations
613	Ascidian Mitogenomics: Comparison of Evolutionary Rates in Closely Related Taxa Provides Evidence of Ongoing Speciation Events. Genome Biology and Evolution, 2014, 6, 591-605.	2.5	39
615	Correcting for Differential Transcript Coverage Reveals a Strong Relationship between Alternative Splicing and Organism Complexity. Molecular Biology and Evolution, 2014, 31, 1402-1413.	8.9	124
616	The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima. PLoS Biology, 2014, 12, e1002005.	5.6	221
617	Human Dominant Disease Genes Are Enriched in Paralogs Originating from Whole Genome Duplication. PLoS Computational Biology, 2014, 10, e1003754.	3.2	21
618	An Otx/Nodal Regulatory Signature for Posterior Neural Development in Ascidians. PLoS Genetics, 2014, 10, e1004548.	3.5	42
619	The Evolution and Variety of RFamide-Type Neuropeptides: Insights from Deuterostomian Invertebrates. Frontiers in Endocrinology, 2014, 5, 93.	3.5	71
620	Does Kisspeptin Belong to the Proposed RF-Amide Peptide Family?. Frontiers in Endocrinology, 2014, 5, 134.	3.5	25
621	Large Chromosomal Rearrangements during a Long-Term Evolution Experiment with Escherichia coli. MBio, 2014, 5, e01377-14.	4.1	109
622	TIR-domain-containing protein repertoire of nine anthozoan species reveals coral–specific expansions and uncharacterized proteins. Developmental and Comparative Immunology, 2014, 46, 480-488.	2.3	80
623	Two apextrin-like proteins mediate extracellular and intracellular bacterial recognition in amphioxus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13469-13474.	7.1	32
624	Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nature Communications, 2014, 5, 5896.	12.8	136
625	Genomics of zebrafish hoxba and hoxbb loci. Journal of Applied Ichthyology, 2014, 30, 689-695.	0.7	1
626	Parasitic success without sex – the nematode experience. Journal of Evolutionary Biology, 2014, 27, 1323-1333.	1.7	56
627	On a possible evolutionary link of the stomochord of hemichordates to pharyngeal organs of chordates. Genesis, 2014, 52, 925-934.	1.6	32
628	A Short Course on the Impact of Gene Duplications on the Evolution of Novelty. Advances in Botanical Research, 2014, 69, 335-361.	1.1	1
629	GnRH receptors and peptides: Skating backward. General and Comparative Endocrinology, 2014, 209, 118-134.	1.8	124
630	Comparative evolution of peptide hormone-binding GPCRs: A route to understanding functional complexity. General and Comparative Endocrinology, 2014, 209, 1-2.	1.8	8
631	Evolution of Integrin I Domains. Advances in Experimental Medicine and Biology, 2014, 819, 1-19.	1.6	21

#	Article	IF	CITATIONS
632	MOLECULAR EVOLUTION OF GPCRS: Kisspeptin/kisspeptin receptors. Journal of Molecular Endocrinology, 2014, 52, T101-T117.	2.5	95
633	Transcriptomic analysis of the lesser spotted catshark (Scyliorhinus canicula) pancreas, liver and brain reveals molecular level conservation of vertebrate pancreas function. BMC Genomics, 2014, 15, 1074.	2.8	34
634	At the Transition from Invertebrates to Vertebrates, a Novel GnRH-Like Peptide Emerges in Amphioxus. Molecular Biology and Evolution, 2014, 31, 765-778.	8.9	70
635	Glycoprotein Hormones and Their Receptors Emerged at the Origin of Metazoans. Genome Biology and Evolution, 2014, 6, 1466-1479.	2.5	58
636	Structural and functional analysis of amphioxus HIFα reveals ancient features of the HIFα family. FASEB Journal, 2014, 28, 1880-1890.	0.5	11
637	Regulation of Cardiac Cell Fate by microRNAs: Implications for Heart Regeneration. Cells, 2014, 3, 996-1026.	4.1	25
638	The Global Invertebrate Genomics Alliance (GICA): Developing Community Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 2014, 105, 1-18.	2.4	96
639	The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii. EvoDevo, 2014, 5, 17.	3.2	67
640	Molecular Analysis of the Koala Reproductive Hormones and Their Receptors: Gonadotrophinâ€Releasing Hormone (GnRH), <scp> Follicleâ€Stimulating Hormone </scp> Î ² and <scp>Luteinising Hormone </scp> Î ² with Localisation of <scp>G</scp> n <scp>RH</scp> . Journal of Neuroendocrinology, 2014, 26, 870-887.	2.6	6
641	Crystallization and preliminary X-ray diffraction analysis of a single variable domain of the immunoglobulin superfamily in amphioxus,Amphi-IgSF-V. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1072-1075.	0.8	1
642	Connectivity of vertebrate genomes: Paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 163, 24-36.	2.6	22
643	Evolution of the gastrin–cholecystokinin gene family revealed by synteny analysis. General and Comparative Endocrinology, 2014, 195, 164-173.	1.8	21
644	Dissection of a Ciona regulatory element reveals complexity of cross-species enhancer activity. Developmental Biology, 2014, 390, 261-272.	2.0	8
645	The evolutionary history of vertebrate cranial placodes – I: Cell type evolution. Developmental Biology, 2014, 389, 82-97.	2.0	79
646	Studying Lamins in Invertebrate Models. Advances in Experimental Medicine and Biology, 2014, 773, 245-262.	1.6	15
647	Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus. Fish Physiology and Biochemistry, 2014, 40, 1239-52.	2.3	27
648	Looping Back to Leap Forward: Transcription Enters a New Era. Cell, 2014, 157, 13-25.	28.9	423
649	On the Origin of Autonomy. History, Philosophy and Theory of the Life Sciences, 2014, , .	0.4	20
#	Article	IF	CITATIONS
-----	--	------	-----------
650	Structural and functional characterization of a TGFÎ ² molecule from amphioxus reveals an ancient origin of both immune-enhancing and -inhibitory functions. Developmental and Comparative Immunology, 2014, 45, 219-226.	2.3	5
651	Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate. Free Radical Biology and Medicine, 2014, 70, 54-67.	2.9	18
652	The evolution and conservation of left-right patterning mechanisms. Development (Cambridge), 2014, 141, 1603-1613.	2.5	141
653	Detecting and Locating Whole Genome Duplications on a Phylogeny: A Probabilistic Approach. Molecular Biology and Evolution, 2014, 31, 750-762.	8.9	73
654	Genetic and Genomic Tools for the Marine Annelid <i>Platynereis dumerilii</i> . Genetics, 2014, 197, 19-31.	2.9	63
655	MOLECULAR EVOLUTION OF GPCRS: Somatostatin/urotensin II receptors. Journal of Molecular Endocrinology, 2014, 52, T61-T86.	2.5	54
656	A cDNA Resource for Gene Expression Studies of a Hemichordate, Ptychodera flava. Zoological Science, 2014, 31, 414.	0.7	10
657	Identification and characterization of a p38-like gene from amphioxus (Branchiostoma belcheri): An insight into amphioxus innate immunity and evolution. Fish and Shellfish Immunology, 2014, 41, 421-427.	3.6	21
658	The relaxin family peptide receptors and their ligands: New developments and paradigms in the evolution from jawless fish to mammals. General and Comparative Endocrinology, 2014, 209, 93-105.	1.8	25
659	Insights into Three Whole-Genome Duplications Gleaned from the <i>Paramecium caudatum</i> Genome Sequence. Genetics, 2014, 197, 1417-1428.	2.9	67
660	Identification and characterization of complement factor H in Branchiostoma belcheri. Gene, 2014, 553, 42-48.	2.2	4
661	A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature, 2014, 514, 490-493.	27.8	88
662	Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life. , 2014, , .		7
663	Differential retention and divergent resolution of duplicate genes following whole-genome duplication. Genome Research, 2014, 24, 1665-1675.	5.5	111
664	Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Research, 2014, 24, 1334-1347.	5.5	381
665	Functional analysis of the promoter region of amphioxus β-actin gene: a useful tool for driving gene expression in vivo. Molecular Biology Reports, 2014, 41, 6817-6826.	2.3	11
666	Whole-genome duplication in teleost fishes and its evolutionary consequences. Molecular Genetics and Genomics, 2014, 289, 1045-1060.	2.1	650
667	Lamins of the sea lamprey (Petromyzon marinus) and the evolution of the vertebrate lamin protein family. European Journal of Cell Biology, 2014, 93, 308-321.	3.6	10

#	Article	IF	CITATIONS
668	Integrated Syntenic and Phylogenomic Analyses Reveal an Ancient Genome Duplication in Monocots. Plant Cell, 2014, 26, 2792-2802.	6.6	220
669	The Proto-MHC of Placozoans, a Region Specialized in Cellular Stress and Ubiquitination/Proteasome Pathways. Journal of Immunology, 2014, 193, 2891-2901.	0.8	22
670	Chordate evolution and the three-phylum system. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141729.	2.6	132
671	A universal genomic coordinate translator for comparative genomics. BMC Bioinformatics, 2014, 15, 227.	2.6	7
672	Genome-wide survey and expression analysis of the bHLH-PAS genes in the amphioxus Branchiostoma floridae reveal both conserved and diverged expression patterns between cephalochordates and vertebrates. EvoDevo, 2014, 5, 20.	3.2	12
673	Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication. GigaScience, 2014, 3, 9.	6.4	86
674	Identification of transcriptional regulatory elements for Ntng1 and Ntng2 genes in mice. Molecular Brain, 2014, 7, 19.	2.6	17
675	MOLECULAR EVOLUTION OF GPCRS: GLP1/GLP1 receptors. Journal of Molecular Endocrinology, 2014, 52, T15-T27.	2.5	18
676	On the expansion of "dangerous―gene families in vertebrates. BMC Bioinformatics, 2014, 15, .	2.6	0
677	Implications of human genome structural heterogeneity: functionally related genes tend to reside in organizationally similar genomic regions. BMC Genomics, 2014, 15, 252.	2.8	2
678	New frontiers in the evolution of fin development. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 540-552.	1.3	32
679	Enigmatic Orthology Relationships between Hox Clusters of the African Butterfly Fish and Other Teleosts Following Ancient Whole-Genome Duplication. Molecular Biology and Evolution, 2014, 31, 2592-2611.	8.9	37
680	Control of the number of cell division rounds in distinct tissues during ascidian embryogenesis. Development Growth and Differentiation, 2014, 56, 376-386.	1.5	4
681	Identification, expression and bioactivity of hexokinase in amphioxus: Insights into evolution of vertebrate hexokinase genes. Gene, 2014, 535, 318-326.	2.2	10
682	Why do a wide variety of animals retain multiple isoforms of cyclooxygenase?. Prostaglandins and Other Lipid Mediators, 2014, 109-111, 14-22.	1.9	12
683	Sequencing and analysis of the transcriptome of the acorn worm Ptychodera flava, an indirect developing hemichordate. Marine Genomics, 2014, 15, 35-43.	1.1	16
684	Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 1272-1284.	2.4	24
685	A novel N-terminal motif is responsible for the evolution of neural crest-specific gene-regulatory activity in vertebrate FoxD3. Developmental Biology, 2014, 385, 396-404.	2.0	24

#	Article	IF	CITATIONS
686	Asynchronous Evolutionary Origins of AÂ and BACE1. Molecular Biology and Evolution, 2014, 31, 696-702.	8.9	19
687	Metabolites and metals in Metazoa – what role do phytochelatins play in animals?. Metallomics, 2014, 6, 1576-1582.	2.4	19
688	Genes encoding aromatases in teleosts: Evolution and expression regulation. General and Comparative Endocrinology, 2014, 205, 151-158.	1.8	36
689	Expression of carbonic anhydrase, cystic fibrosis transmembrane regulator (CFTR) and V-H+-ATPase in the lancelet Branchiostoma lanceolatum (Pallas, 1774). Acta Histochemica, 2014, 116, 487-492.	1.8	3
690	Identification of 2R-ohnologue gene families displaying the same mutation-load skew in multiple cancers. Open Biology, 2014, 4, 140029.	3.6	17
691	Gene regulatory systems that control gene expression in the <i>Ciona</i> embryo. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 33-51.	3.8	30
692	Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 511-538.	3.8	32
693	Hybrids Between the Florida Amphioxus (Branchiostoma floridae) and the Bahamas Lancelet (Asymmetron lucayanum): Developmental Morphology and Chromosome Counts. Biological Bulletin, 2015, 228, 13-24.	1.8	11
694	Towards Resolving the Enigma of <i>HOX</i> Gene Collinearity. , 2015, , 253-273.		0
695	Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication. BMC Evolutionary Biology, 2015, 15, 245.	3.2	16
696	ERK1 and ERK2 present functional redundancy in tetrapods despite higher evolution rate of ERK1. BMC Evolutionary Biology, 2015, 15, 179.	3.2	46
697	Bacterial calpains and the evolution of the calpain (C2) family of peptidases. Biology Direct, 2015, 10, 66.	4.6	15
698	On the origin of vertebrate somites. Zoological Letters, 2015, 1, 33.	1.3	21
699	The role of the <i>Pax1/9</i> gene in the early development of amphioxus pharyngeal gill slits. , 2015, 324, 30-40.		9
700	Investigation of glycan evolution based on a comprehensive analysis of glycosyltransferases using phylogenetic profiling. Biophysics and Physicobiology, 2015, 12, 57-68.	1.0	5
701	A simple method for selecting spawningâ€ready individuals out from laboratorial cultured amphioxus population. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 629-635.	1.3	3
702	Analysis of the nicotinamide phosphoribosyltransferase family provides insight into vertebrate adaptation to different oxygen levels during the waterâ€ŧoâ€ŀand transition. FEBS Journal, 2015, 282, 2858-2878.	4.7	6
703	Genome-wide methylation study of diploid and triploid brown trout (<i>Salmo trutta</i> L.). Animal Genetics, 2015, 46, 280-288.	1.7	17

#	Article	IF	CITATIONS
704	Neuronal organization of the brain in the adult amphioxus (<i>Branchiostoma lanceolatum</i>): A study with acetylated tubulin immunohistochemistry. Journal of Comparative Neurology, 2015, 523, 2211-2232.	1.6	16
705	Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian <i>Ciona intestinalis</i> . Developmental Dynamics, 2015, 244, 1375-1393.	1.8	20
706	Pax2/5/8 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain. Frontiers in Genetics, 2015, 6, 228.	2.3	9
707	Identification of dopamine receptors across the extant avian family tree and analysis with other clades uncovers a polyploid expansion among vertebrates. Frontiers in Neuroscience, 2015, 9, 361.	2.8	13
708	Sugarcane Giant Borer Transcriptome Analysis and Identification of Genes Related to Digestion. PLoS ONE, 2015, 10, e0118231.	2.5	13
709	Transducin Duplicates in the Zebrafish Retina and Pineal Complex: Differential Specialisation after the Teleost Tetraploidisation. PLoS ONE, 2015, 10, e0121330.	2.5	41
710	Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes. PLoS Computational Biology, 2015, 11, e1004394.	3.2	113
711	Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution. PLoS Genetics, 2015, 11, e1005560.	3.5	18
712	A Simple Predictive Enhancer Syntax for Hindbrain Patterning Is Conserved in Vertebrate Genomes. PLoS ONE, 2015, 10, e0130413.	2.5	11
713	Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication. PLoS ONE, 2015, 10, e0137276.	2.5	9
714	Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT); a key enzyme for physiological and behavioral switch in arthropods. Frontiers in Physiology, 2015, 6, 113.	2.8	35
715	Was the tail bud the ancestral centre where the fin developmental program evolved in chordates?. Contributions To Zoology, 2015, 84, 317-328.	0.5	2
716	The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications. Genome Research, 2015, 25, 1081-1090.	5.5	146
717	Calcium activates the light-dependent conductance in melanopsin-expressing photoreceptors of amphioxus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7845-7850.	7.1	7
718	Functional Pairing of Class B1 Ligand-GPCR in Cephalochordate Provides Evidence of the Origin of PTH and PACAP/Glucagon Receptor Family. Molecular Biology and Evolution, 2015, 32, 2048-2059.	8.9	21
719	The Nodal signaling pathway controls left-right asymmetric development in amphioxus. EvoDevo, 2015, 6, 5.	3.2	40
720	Remodelling of a homeobox gene cluster by multiple independent gene reunions in Drosophila. Nature Communications, 2015, 6, 6509.	12.8	13
721	Basal Gnathostomes Provide Unique Insights into the Evolution of Vitamin B12 Binders. Genome Biology and Evolution, 2015, 7, 457-464.	2.5	6

#	ARTICLE	IF	CITATIONS
722	Development of somites and their derivatives in amphioxus, and implications for the evolution of vertebrate somites. EvoDevo, 2015, 6, 21.	3.2	30
723	Evolutionary Developmental Biology of Invertebrates 6. , 2015, , .		5
724	NOD-Like Receptors: Versatile Cytosolic Sentinels. Physiological Reviews, 2015, 95, 149-178.	28.8	270
725	Epithelial Sodium Transport and Its Control by Aldosterone: The Story of Our Internal Environment Revisited. Physiological Reviews, 2015, 95, 297-340.	28.8	217
726	Dehydroepiandrosterone: An Ancestral Ligand of Neurotrophin Receptors. Endocrinology, 2015, 156, 16-23.	2.8	37
727	Ancestral Vertebrate Complexity of the Opioid System. Vitamins and Hormones, 2015, 97, 95-122.	1.7	20
728	Regulatory elements retained during chordate evolution: Coming across tunicates. Genesis, 2015, 53, 66-81.	1.6	8
729	Phylostratigraphic Profiles in Zebrafish Uncover Chordate Origins of the Vertebrate Brain. Molecular Biology and Evolution, 2015, 32, 299-312.	8.9	32
730	Integrative View of α2,3-Sialyltransferases (ST3Gal) Molecular and Functional Evolution in Deuterostomes: Significance of Lineage-Specific Losses. Molecular Biology and Evolution, 2015, 32, 906-927.	8.9	40
731	A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths. Molecular Biology and Evolution, 2015, 32, 1161-1174.	8.9	30
732	Cardiac Cytoarchitecture. , 2015, , .		4
733	The cult of amphioxus in German Darwinism; or, Our gelatinous ancestors in Naples' blue and balmy bay. History and Philosophy of the Life Sciences, 2015, 36, 371-393.	1.1	4
734	Do echinoderm genomes measure up?. Marine Genomics, 2015, 22, 1-9.	1.1	26
735	Evolution of akirin family in gene and genome levels and coexpressed patterns among family members and rel gene in croaker. Developmental and Comparative Immunology, 2015, 52, 17-25.	2.3	13
736	Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates. Marine Genomics, 2015, 24, 159-166.	1.1	14
737	C2H2 zinc finger proteins of the SP/KLF, Wilms tumor, EGR, Huckebein, and Klumpfuss families in metazoans and beyond. Gene, 2015, 573, 91-99.	2.2	20
738	Evolutionary Analysis of the B56 Gene Family of PP2A Regulatory Subunits. International Journal of Molecular Sciences, 2015, 16, 10134-10157.	4.1	13
739	Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization. Molecular Biology and Evolution, 2015, 32, 2141-2148.	8.9	160

		CITATION RE	PORT	
#	Article		IF	CITATIONS
740	A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature, 2015, 52	20, 466-473.	27.8	201
741	Reconstruction of Cyclooxygenase Evolution in Animals Suggests Variable, Lineage-Spe Duplications, and Homologs with Low Sequence Identity. Journal of Molecular Evolutio 193-208.	ecific n, 2015, 80,	1.8	7
742	Scenarios for the making of vertebrates. Nature, 2015, 520, 450-455.		27.8	51
743	Vertebrate Cranial Placodes as Evolutionary Innovations—The Ancestor's Tale. Currer Developmental Biology, 2015, 111, 235-300.	t Topics in	2.2	31
744	Gene expression profiles of FABP genes in protochordates, Ciona intestinalis and Brand belcheri. Cell and Tissue Research, 2015, 362, 331-345.	hiostoma	2.9	5
745	Evolutionary link between metazoan RHIM motif and prion-forming domain of fungal h incompatibility factor HET-s/HET-s. Scientific Reports, 2014, 4, 7436.	eterokaryon	3.3	47
746	Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, 2015, , .		1.2	18
747	Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from schordates. Current Opinion in Genetics and Development, 2015, 32, 119-128.	simple	3.3	38
748	Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide su genome annotation and transcriptome data. Marine Genomics, 2015, 24, 147-157.	irvey using	1.1	7
749	Characterization and expression analyses of five interferon regulatory factor transcript	s (Irf4a,) Tj ETQq1 1 0.784	314 rgBT 3.6	/Oyerlock I 41
750	A novel protein tyrosine kinase Tec identified in lamprey,Lampetra japonica. Acta Bioch Biophysica Sinica, 2015, 47, 639-646.	imica Et	2.0	3
751	The Lingula genome provides insights into brachiopod evolution and the origin of phos biomineralization. Nature Communications, 2015, 6, 8301.	phate	12.8	159
752	The genome of <i>Aiptasia</i> , a sea anemone model for coral symbiosis. Proceedings Academy of Sciences of the United States of America, 2015, 112, 11893-11898.	of the National	7.1	359
753	Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archai Humans. Molecular Biology and Evolution, 2015, 32, msv204.	c and Modern	8.9	24
754	Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates. Marine Pollution Bulletin, 2015, 98, 5-13.	١	5.0	56
755	A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polym evolutionary divergent genomes: Application to the ascidian Ciona intestinalis. Develop Biology, 2015, 404, 149-163.	orphic and pmental	2.0	20
756	Tunicate pregnane X receptor (PXR) orthologs: Transcript characterization and natural Marine Genomics, 2015, 23, 99-108.	variation.	1.1	4
757	Genomic and Evolutionary Insights into Chordate Origins. , 2015, , 115-128.			0

#	Article	IF	CITATIONS
758	Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Marine Genomics, 2015, 24, 121-129.	1.1	25
759	The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature, 2015, 524, 220-224.	27.8	506
760	Early Evolution of Vertebrate Mybs: An Integrative Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses. Genome Biology and Evolution, 2015, 7, 3009-3021.	2.5	19
761	The early history of the metazoa—a paleontologist's viewpoint. Biology Bulletin Reviews, 2015, 5, 415-461.	0.9	4
762	Motor neuronâ€expressed micro <scp>RNA</scp> s 218 and their enhancers are nested within introns of <i>Slit2/3</i> genes. Genesis, 2015, 53, 321-328.	1.6	18
763	Cephalochordata. , 2015, , 91-133.		5
764	Neuropeptide Y family receptors Y1 and Y2 from sea lamprey, Petromyzon marinus. General and Comparative Endocrinology, 2015, 222, 106-115.	1.8	3
765	KLF/SP Transcription Factor Family Evolution: Expansion, Diversification, and Innovation in Eukaryotes. Genome Biology and Evolution, 2015, 7, 2289-2309.	2.5	93
766	Prevertebrate Local Gene Duplication Facilitated Expansion of the Neuropeptide GPCR Superfamily. Molecular Biology and Evolution, 2015, 32, 2803-2817.	8.9	54
767	The evolution of animal genomes. Current Opinion in Genetics and Development, 2015, 35, 25-32.	3.3	48
768	The Insect Chemoreceptor Superfamily Is Ancient in Animals. Chemical Senses, 2015, 40, 609-614.	2.0	75
769	Multidimensional Drift of Sequence Attributes and Functional Profiles in the Superfamily of the Three-Finger Proteins and Their Structural Homologues. Journal of Chemical Information and Modeling, 2015, 55, 2026-2041.	5.4	6
770	Quest for Orthologs Entails Quest for Tree of Life: In Search of the Gene Stream. Genome Biology and Evolution, 2015, 7, 1988-1999.	2.5	25
771	Hemichordate genomes and deuterostome origins. Nature, 2015, 527, 459-465.	27.8	217
772	Cdx ParaHox genes acquired distinct developmental roles after gene duplication in vertebrate evolution. BMC Biology, 2015, 13, 56.	3.8	12
773	The origin and evolution of chordate nervous systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150048.	4.0	38
774	Notch Signaling and Ageing. Advances in Experimental Medicine and Biology, 2015, 822, 25-36.	1.6	16
775	Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. Developmental and Comparative Immunology, 2015, 49, 179-189.	2.3	71

#	Article	IF	CITATIONS
776	Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Progress in Lipid Research, 2015, 57, 13-39.	11.6	81
777	cDNA cloning and characterization of a rhamnose-binding lectin SUL-I from the toxopneustid sea urchin Toxopneustes pileolus venom. Toxicon, 2015, 94, 8-15.	1.6	10
778	Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue. Nature, 2015, 518, 534-537.	27.8	78
779	Characterization of peptide QRFP (26RFa) and its receptor from amphioxus, Branchiostoma floridae. General and Comparative Endocrinology, 2015, 210, 107-113.	1.8	7
780	Genomics, evolution and development of amphioxus and tunicates: The Goldilocks principle. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 342-352.	1.3	38
781	Amphioxus as a model for investigating evolution of the vertebrate immune system. Developmental and Comparative Immunology, 2015, 48, 297-305.	2.3	36
782	Origin of the response to adrenal and sex steroids: Roles of promiscuity and co-evolution of enzymes and steroid receptors. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 12-24.	2.5	87
784	Amphioxus as a Model for Understanding the Evolution of Vertebrates. , 2016, , 1-13.		2
785	Genomic and Transcriptomic View of Amphioxus Immunity. , 2016, , 57-84.		2
786	Hox genes and evolution. F1000Research, 2016, 5, 859.	1.6	35
786 787	Hox genes and evolution. F1000Research, 2016, 5, 859. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3–SH2–Tyrosine Kinase Protein Family. Genome Biology and Evolution, 2016, 8, 2806-2825.	1.6 2.5	35 8
786 787 788	Hox genes and evolution. F1000Research, 2016, 5, 859. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3â€"SH2â€"Tyrosine Kinase Protein Family. Genome Biology and Evolution, 2016, 8, 2806-2825. Evolution of Sox2 and Functional Redundancy in Relation to Other SoxB1 Genes. , 2016, , 89-106.	1.6 2.5	35 8 4
786 787 788 789	Hox genes and evolution. F1000Research, 2016, 5, 859. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3â€"SH2â€"Tyrosine Kinase Protein Family. Genome Biology and Evolution, 2016, 8, 2806-2825. Evolution of Sox2 and Functional Redundancy in Relation to Other SoxB1 Genes., 2016, , 89-106. Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering. Frontiers in Ecology and Evolution, 2016, 4, .	1.6 2.5 2.2	35 8 4 40
786 787 788 789 790	Hox genes and evolution. F1000Research, 2016, 5, 859. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3â€"SH2â€"Tyrosine Kinase Protein Family. Genome Biology and Evolution, 2016, 8, 2806-2825. Evolution of Sox2 and Functional Redundancy in Relation to Other SoxB1 Genes. , 2016, , 89-106. Evolution of Homeobox Gene Clusters in Animals: The Ciga-Cluster and Primary vs. Secondary Clustering. Frontiers in Ecology and Evolution, 2016, 4, . Phylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate 1²-Galactoside 1±2,3/6-Sialyltransferases (ST3Gal and ST6Gal). International Journal of Molecular Sciences, 2016, 17, 1286.	1.6 2.5 2.2 4.1	 35 8 4 40 25
786 787 788 789 789 790	Hox genes and evolution. F1000Research, 2016, 5, 859. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3a€"SH2a€"Tyrosine Kinase Protein Family. Genome Biology and Evolution, 2016, 8, 2806-2825. Evolution of Sox2 and Functional Redundancy in Relation to Other SoxB1 Genes. , 2016, , 89-106. Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering. Frontiers in Ecology and Evolution, 2016, 4, . Phylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate I²-Galactoside I±2,3/6-Sialyltransferases (ST3Gal and ST6Gal). International Journal of Molecular Sciences, 2016, 17, 1286. Ciona as a Simple Chordate Model for Heart Development and Regeneration. Journal of Cardiovascular Development and Disease, 2016, 3, 25.	1.6 2.5 2.2 4.1	 35 8 4 40 25 34
 786 787 788 789 790 791 792 	Hox genes and evolution. F1000Research, 2016, 5, 859. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH3â€"SH2â€"Tyrosine Kinase Protein Family. Genome Biology and Evolution, 2016, 8, 2806-2825. Evolution of Sox2 and Functional Redundancy in Relation to Other SoxB1 Genes. , 2016, , 89-106. Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering. Frontiers in Ecology and Evolution, 2016, 4, . Phylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate 12-Galactoside 1±2,316-Sialyltransferases (ST3Gal and ST6Gal). International Journal of Molecular Sciences, 2016, 17, 1286. Ciona as a Simple Chordate Model for Heart Development and Regeneration. Journal of Cardiovascular Development and Disease, 2016, 3, 25. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates. Genome Biology and Evolution, 2016, 8, 1600-1613.	1.6 2.5 2.2 4.1 1.6 2.5	 35 8 4 40 25 34 38
 786 787 788 789 790 791 792 793 	Hox genes and evolution. F1000Research, 2016, 5, 859. Paralog-Specific Patterns of Structural Disorder and Phosphorylation in the Vertebrate SH38C*SH28C*Tyrosine Kinase Protein Family. Genome Biology and Evolution, 2016, 8, 2806-2825. Evolution of Sox2 and Functional Redundancy in Relation to Other SoxB1 Genes. , 2016, , 89-106. Evolution of Homeobox Gene Clusters in Animals: The Giga-Cluster and Primary vs. Secondary Clustering. Frontiers in Ecology and Evolution, 2016, 4, . Phylogenetic-Derived Insights into the Evolution of Sialylation in Eukaryotes: Comprehensive Analysis of Vertebrate 12-Galactoside 12,3/6-Sialyltransferases (ST3Gal and ST6Gal). International Journal of Molecular Sciences, 2016, 17, 1286. Ciona as a Simple Chordate Model for Heart Development and Regeneration. Journal of Cardiovascular Development and Disease, 2016, 3, 25. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates. Genome Biology and Evolution, 2016, 8, 1600-1613. Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. BMC Evolutionary Biology, 2016, 16, 124.	1.6 2.5 2.2 4.1 1.6 2.5 3.2	 35 8 4 40 25 34 38 46

#	Article	IF	CITATIONS
795	Analysis of coelom development in the sea urchin <i>Holopneustes purpurescens</i> yielding a deuterostome body plan. Biology Open, 2016, 5, 348-358.	1.2	13
796	Conserved Noncoding Elements in the Most Distant Genera of Cephalochordates: The Goldilocks Principle. Genome Biology and Evolution, 2016, 8, 2387-2405.	2.5	23
797	Evolutionary functional elaboration of the Elovl2/5 gene family in chordates. Scientific Reports, 2016, 6, 20510.	3.3	60
798	Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development. Scientific Reports, 2016, 6, 23195.	3.3	17
799	Genome Sequencing, Transcriptomics, and Proteomics. Compendium of Plant Genomes, 2016, , 141-161.	0.5	23
800	The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. Advances in Genetics, 2016, 96, 143-206.	1.8	27
802	Selection of reliable reference genes for normalization of quantitative RT-PCR from different developmental stages and tissues in amphioxus. Scientific Reports, 2016, 6, 37549.	3.3	37
803	Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate–Vertebrate Boundary. Molecular Biology and Evolution, 2016, 33, 1019-1028.	8.9	98
804	Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular	2.4	9
	unkering. Royal Society Open Science, 2010, 5, 150404.		
805	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391.	16.3	597
805 806	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391. Neurocutaneous Syndromes as Embryonic Neurocristopathies. Journal of Pediatric Epilepsy, 2016, 05, 070-081.	16.3 0.2	597
805 806 807	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391. Neurocutaneous Syndromes as Embryonic Neurocristopathies. Journal of Pediatric Epilepsy, 2016, 05, 070-081. The Nuanced Interplay of Intrinsic Disorder and Other Structural Properties Driving Protein Evolution. Molecular Biology and Evolution, 2016, 33, 2248-2256.	16.3 0.2 8.9	597 1 21
805 806 807 808	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391. Neurocutaneous Syndromes as Embryonic Neurocristopathies. Journal of Pediatric Epilepsy, 2016, 05, 070-081. The Nuanced Interplay of Intrinsic Disorder and Other Structural Properties Driving Protein Evolution. Molecular Biology and Evolution, 2016, 33, 2248-2256. Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo, 2016, 7, 21.	16.3 0.2 8.9 3.2	597 1 21 22
805 806 807 808	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391. Neurocutaneous Syndromes as Embryonic Neurocristopathies. Journal of Pediatric Epilepsy, 2016, 05, 070-081. The Nuanced Interplay of Intrinsic Disorder and Other Structural Properties Driving Protein Evolution. Molecular Biology and Evolution, 2016, 33, 2248-2256. Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo, 2016, 7, 21. Identification of three somatostatin genes in lampreys. General and Comparative Endocrinology, 2016, 237, 89-97.	16.3 0.2 8.9 3.2 1.8	597 1 21 22 13
805 806 807 808 809 810	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391. Neurocutaneous Syndromes as Embryonic Neurocristopathies. Journal of Pediatric Epilepsy, 2016, 05, 070-081. The Nuanced Interplay of Intrinsic Disorder and Other Structural Properties Driving Protein Evolution. Molecular Biology and Evolution, 2016, 33, 2248-2256. Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo, 2016, 7, 21. Identification of three somatostatin genes in lampreys. General and Comparative Endocrinology, 2016, 237, 89-97. Vertebrate Cytokines and Their Evolution. , 2016, , 87-150.	16.3 0.2 8.9 3.2 1.8	 597 1 21 22 13 29
805 806 807 808 809 810	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391. Neurocutaneous Syndromes as Embryonic Neurocristopathies. Journal of Pediatric Epilepsy, 2016, 05, 070-081. The Nuanced Interplay of Intrinsic Disorder and Other Structural Properties Driving Protein Evolution. Molecular Biology and Evolution, 2016, 33, 2248-2256. Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo, 2016, 7, 21. Identification of three somatostatin genes in lampreys. General and Comparative Endocrinology, 2016, 237, 89-97. Vertebrate Cytokines and Their Evolution. , 2016, , 87-150. The Thrâc ^{et} His Connection on the Distal Heme of CatalaseâCRelated Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides. ChemBioChem, 2016, 17, 2000-2006.	16.3 0.2 8.9 3.2 1.8	 597 1 21 22 13 29 12
805 806 807 808 809 810 811	Evolution by gene loss. Nature Reviews Genetics, 2016, 17, 379-391. Neurocutaneous Syndromes as Embryonic Neurocristopathies. Journal of Pediatric Epilepsy, 2016, 05, 070-081. The Nuanced Interplay of Intrinsic Disorder and Other Structural Properties Driving Protein Evolution. Molecular Biology and Evolution, 2016, 33, 2248-2256. Fibronectin contributes to notochord intercalation in the invertebrate chordate, Ciona intestinalis. EvoDevo, 2016, 7, 21. Identification of three somatostatin genes in lampreys. General and Comparative Endocrinology, 2016, 237, 89-97. Vertebrate Cytokines and Their Evolution. , 2016, , 87-150. The Thrâc"His Connection on the Distal Heme of Catalasea@Related Hemoproteins: A Hallmark of Reaction with Fatty Acid Hydroperoxides. ChemBioChem, 2016, 17, 2000-2006. Identification of interacting proteins with aryl hydrocarbon receptor in scallop Chlamys farreri by yeast two hybrid screening. Ecotoxicology and Environmental Safety, 2016, 133, 381-389.	16.3 0.2 8.9 3.2 1.8 2.6	 597 1 21 22 13 29 12 7

#	Article	IF	CITATIONS
814	Discoidin Domain Receptors in Health and Disease. , 2016, , .		0
815	Location, location, location: the evolutionary history of CD1 genes and the NKR-P1/ligand systems. Immunogenetics, 2016, 68, 499-513.	2.4	12
816	Acquisition of the dorsal structures in chordate amphioxus. Open Biology, 2016, 6, 160062.	3.6	14
817	Vertebrates, the Origin of. , 2016, , 333-343.		0
818	Studying the genetic basis of speciation in high gene flow marine invertebrates. Environmental Epigenetics, 2016, 62, 643-653.	1.8	14
819	Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics. Molecular Biology and Evolution, 2016, 33, 2820-2835.	8.9	149
820	LanFP10-A, first functional fluorescent protein whose chromophore contains the elusive mutation G67A. Gene, 2016, 592, 281-290.	2.2	9
821	Evolutionary history of the reprimo tumor suppressor gene family in vertebrates with a description of a new reprimo gene lineage. Gene, 2016, 591, 245-254.	2.2	24
822	SOXE neofunctionalization and elaboration of the neural crest during chordate evolution. Scientific Reports, 2016, 6, 34964.	3.3	16
823	The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus). Scientific Reports, 2016, 6, 28350.	3.3	6
824	An analysis of the population of extended main-sequence turn-off clusters in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1632-1641.	4.4	10
825	NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nature Communications, 2016, 7, 11264.	12.8	117
826	Ancestral Reconstruction: Theory and Practice. , 2016, , 70-77.		1
827	Rapid Evolutionary Rates and Unique Genomic Signatures Discovered in the First Reference Genome for the Southern Ocean Salp, <i>Salpa thompsoni</i> (Urochordata, Thaliacea). Genome Biology and Evolution, 2016, 8, 3171-3186.	2.5	25
828	Structure of a variable lymphocyte receptor-like protein from the amphioxus Branchiostoma floridae. Scientific Reports, 2016, 6, 19951.	3.3	12
829	Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors. Scientific Reports, 2016, 6, 30700.	3.3	20
830	A cytosolic carbonic anhydrase molecular switch occurs in the gills of metamorphic sea lamprey. Scientific Reports, 2016, 6, 33954.	3.3	20
831	Evolutionary gains and losses in Bilateria. Paleontological Journal, 2016, 50, 1477-1485.	0.5	2

#	Article	IF	CITATIONS
832	Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus. Current Opinion in Genetics and Development, 2016, 39, 55-62.	3.3	14
833	Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineages. Journal of Molecular Endocrinology, 2016, 57, 73-86.	2.5	52
834	Rab32 and Rab38 genes in chordate pigmentation: an evolutionary perspective. BMC Evolutionary Biology, 2016, 16, 26.	3.2	34
835	TCF/Lef regulates the Gsx ParaHox gene in central nervous system development in chordates. BMC Evolutionary Biology, 2016, 16, 57.	3.2	9
836	Structure and Function of the HSF Family Members. , 2016, , 31-50.		4
837	Epithelial sodium channel (ENaC) family: Phylogeny, structure–function, tissue distribution, and associated inherited diseases. Gene, 2016, 579, 95-132.	2.2	310
838	Expression Characterization of Stress Genes Under High and Low Temperature Stresses in the Pacific Oyster, Crassostrea gigas. Marine Biotechnology, 2016, 18, 176-188.	2.4	73
839	Favorable genomic environments for cis-regulatory evolution: A novel theoretical framework. Seminars in Cell and Developmental Biology, 2016, 57, 2-10.	5.0	16
840	Evidence for Conservation of the Calcitonin Superfamily and Activity-regulating Mechanisms in the Basal Chordate Branchiostoma floridae. Journal of Biological Chemistry, 2016, 291, 2345-2356.	3.4	26
841	<scp>AMP</scp> â€activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS Journal, 2016, 283, 2987-3001.	4.7	288
842	Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biology, 2016, 6, 150224.	3.6	144
843	The phylogeny, evolutionary developmental biology, and paleobiology of the Deuterostomia: 25Âyears of new techniques, new discoveries, and new ideas. Organisms Diversity and Evolution, 2016, 16, 401-418.	1.6	30
844	Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire. Progress in Lipid Research, 2016, 62, 25-40.	11.6	312
845	Amphioxus mouth after dorso-ventral inversion. Zoological Letters, 2016, 2, 2.	1.3	35
846	Identification and expression analysis of a new invertebrate lysozyme in Kuruma shrimp (Marsupenaeus japonicus). Fish and Shellfish Immunology, 2016, 49, 336-343.	3.6	32
847	Identification and biochemical characterization of polyamine oxidases in amphioxus: Implications for emergence of vertebrate-specific spermine and acetylpolyamine oxidases. Gene, 2016, 575, 429-437.	2.2	5
848	Topological Domains, Metagenes, and the Emergence of Pleiotropic Regulations at Hox Loci. Current Topics in Developmental Biology, 2016, 116, 299-314.	2.2	30
849	Thyroglobulin From Molecular and Cellular Biology to Clinical Endocrinology. Endocrine Reviews, 2016, 37, 2-36.	20.1	144

<u> </u>			<u> </u>	
(17	ΓΔΤΙ	10N	KEDUB	Г
\sim				

#	Article	IF	CITATIONS
850	Genome-wide identification and characterization of transcription start sites and promoters in the tunicateCiona intestinalis. Genome Research, 2016, 26, 140-150.	5.5	13
851	The emergence of the vasopressin and oxytocin hormone receptor gene family lineage: Clues from the characterization of vasotocin receptors in the sea lamprey (Petromyzon marinus). General and Comparative Endocrinology, 2016, 226, 88-101.	1.8	21
852	RFamide peptides in agnathans and basal chordates. General and Comparative Endocrinology, 2016, 227, 94-100.	1.8	16
853	The molecular evolution of the vertebrate behavioural repertoire. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150051.	4.0	33
854	Identification and characterization of a TAB1 gene involved in innate immunity of amphioxus (Branchiostoma belcheri). Gene, 2016, 575, 294-302.	2.2	9
855	Homeodomain proteins: an update. Chromosoma, 2016, 125, 497-521.	2.2	322
856	Phylogenomic analysis reveals ancient segmental duplications in the human genome. Molecular Phylogenetics and Evolution, 2016, 94, 95-100.	2.7	10
857	Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches. Briefings in Functional Genomics, 2016, 15, 315-321.	2.7	7
858	Diversity and evolution of TIR-domain-containing proteins in bivalves and Metazoa: New insights from comparative genomics. Developmental and Comparative Immunology, 2017, 70, 145-164.	2.3	43
859	Evolution of the β-adrenoreceptors in vertebrates. General and Comparative Endocrinology, 2017, 240, 129-137.	1.8	14
860	Functional characterization of avidins in amphioxus Branchiostoma japonicum: Evidence for a dual role in biotin-binding and immune response. Developmental and Comparative Immunology, 2017, 70, 106-118.	2.3	6
861	A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Scientific Reports, 2017, 7, 43010.	3.3	20
862	Diversity as opportunity: Insights from 600 million years of AHR evolution. Current Opinion in Toxicology, 2017, 2, 58-71.	5.0	92
863	Molecular Basis of ABHD5 Lipolysis Activation. Scientific Reports, 2017, 7, 42589.	3.3	35
864	The Notch pathway in the annelid <i>Platynereis</i> : insights into chaetogenesis and neurogenesis processes. Open Biology, 2017, 7, 160242.	3.6	28
865	The evolution of rod photoreceptors. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160074.	4.0	30
866	Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula). BMC Genetics, 2017, 18, 19.	2.7	22
867	Genome specific PPARαB duplicates in salmonids and insights into estrogenic regulation in brown trout. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2017, 208-209, 94-101.	1.6	11

#	Article	IF	CITATIONS
868	Independent evolution of genomic characters during major metazoan transitions. Developmental Biology, 2017, 427, 179-192.	2.0	30
869	The origin and evolution of human glutaminases and their atypical C-terminal ankyrin repeats. Journal of Biological Chemistry, 2017, 292, 11572-11585.	3.4	19
870	Similar Ratios of Introns to Intergenic Sequence across Animal Genomes. Genome Biology and Evolution, 2017, 9, 1582-1598.	2.5	48
871	Evolution of the α2-adrenoreceptors in vertebrates: ADRA2D is absent in mammals and crocodiles. General and Comparative Endocrinology, 2017, 250, 85-94.	1.8	15
872	Identification and functional characterization of a novel member of low-density lipoprotein receptor-related protein (LRP)-like family in amphioxus. Gene, 2017, 618, 42-48.	2.2	3
873	Compartmentalized expression patterns of pancreatic- and gastric-related genes in the alimentary canal of the ascidian Ciona intestinalis: evolutionary insights into the functional regionality of the gastrointestinal tract in Olfactores. Cell and Tissue Research, 2017, 370, 113-128.	2.9	21
874	Identification and characterization of properdin in amphioxus: Implications for a functional alternative complement pathway in the basal chordate. Fish and Shellfish Immunology, 2017, 65, 1-8.	3.6	6
875	Scallop genome provides insights into evolution of bilaterian karyotype and development. Nature Ecology and Evolution, 2017, 1, 120.	7.8	353
876	Asymmetrically reduced expression of hand1 homeologs involving a single nucleotide substitution in a cis -regulatory element. Developmental Biology, 2017, 425, 152-160.	2.0	3
877	Transcriptomic profiles of spring and summer populations of the Southern Ocean salp, Salpa thompsoni, in the Western Antarctic Peninsula region. Polar Biology, 2017, 40, 1261-1276.	1.2	17
879	New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150480.	4.0	90
880	Scientific Learning and Education for Human Security and Well-Being. , 2017, , 239-257.		3
881	Voltage-gated sodium channel gene repertoire of lampreys: gene duplications, tissue-specific expression and discovery of a long-lost gene. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170824.	2.6	5
882	The structure, splicing, synteny and expression of lamprey COE genes and the evolution of the COE gene family in chordates. Development Genes and Evolution, 2017, 227, 319-338.	0.9	9
883	Genome-wide gene expression analysis of amphioxus (<i>Branchiostoma belcheri</i>) following lipopolysaccharide challenge using strand-specific RNA-seq. RNA Biology, 2017, 14, 1799-1809.	3.1	18
884	cDNA cloning, expression and immune function analysis of a novel Rac1 gene (AjRac1) in the sea cucumber Apostichopus japonicus. Fish and Shellfish Immunology, 2017, 69, 218-226.	3.6	7
885	Exploring gene expression changes in the amphioxus gill after poly(I:C) challenge using digital expression profiling. Fish and Shellfish Immunology, 2017, 70, 57-65.	3.6	14
886	Evolutionary history of the extant amphioxus lineage with shallow-branching diversification. Scientific Reports, 2017, 7, 1157.	3.3	27

#	Article	IF	CITATIONS
887	ER stress-induced aggresome trafficking of HtrA1 protects against proteotoxicity. Journal of Molecular Cell Biology, 2017, 9, 516-532.	3.3	9
888	Shared hemocyte- and intestine-dominant expression profiles of intelectin genes in ascidian Ciona intestinalis: insight into the evolution of the innate immune system in chordates. Cell and Tissue Research, 2017, 370, 129-142.	2.9	10
889	Identification of neuroglobin as a novel player in anti-bacterial responses in amphioxus. Developmental and Comparative Immunology, 2017, 77, 157-165.	2.3	2
890	Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9146-9151.	7.1	18
892	Cognitive innovations and the evolutionary biology of expertise. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160427.	4.0	18
893	The conserved ancient role of chordate PIAS as a multilevel repressor of the NF-κB pathway. Scientific Reports, 2017, 7, 17063.	3.3	13
894	Evolutionary History of Voltage-Gated Sodium Channels. Handbook of Experimental Pharmacology, 2017, 246, 3-32.	1.8	10
895	Evolution of the angiopoietin-like gene family in teleosts and their role in skin regeneration. BMC Evolutionary Biology, 2017, 17, 14.	3.2	24
896	Lineage-specific duplication of amphioxus retinoic acid degrading enzymes (CYP26) resulted in sub-functionalization of patterning and homeostatic roles. BMC Evolutionary Biology, 2017, 17, 24.	3.2	20
897	Phylogenetic analysis of ionotropic L-glutamate receptor genes in the Bilateria, with special notes on Aplysia californica. BMC Evolutionary Biology, 2017, 17, 11.	3.2	23
898	The chordate ancestor possessed a single copy of the Brachyury gene for notochord acquisition. Zoological Letters, 2017, 3, 4.	1.3	13
899	Phylogeny mandalas for illustrating the Tree of Life. Molecular Phylogenetics and Evolution, 2017, 117, 168-178.	2.7	34
900	Evolution of the Rax family of developmental transcription factors in vertebrates. Mechanisms of Development, 2017, 144, 163-170.	1.7	11
901	Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brainâ€ŧoâ€bone signaling pathway. FASEB Journal, 2017, 31, 569-583.	0.5	17
902	Functional Diversification of the Four MARCKS Family Members in Zebrafish Neural Development. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 119-138.	1.3	14
903	Convergent evolution of defensin sequence, structure and function. Cellular and Molecular Life Sciences, 2017, 74, 663-682.	5.4	152
904	Marine genomics: News and views. Marine Genomics, 2017, 31, 1-8.	1.1	12
905	Evolution of the Human Genome I. Evolutionary Studies, 2017, , .	0.1	1

#	Article	IF	CITATIONS
906	Human Evolution and Human Genome at a Glance. Evolutionary Studies, 2017, , 3-17.	0.1	1
907	Transcription Factor Genes. Evolutionary Studies, 2017, , 241-263.	0.1	1
908	The concept of macroevolution in view of modern data. Paleontological Journal, 2017, 51, 799-898.	0.5	3
909	Selective Constraints on Coding Sequences of Nervous System Genes Are a Major Determinant of Duplicate Gene Retention in Vertebrates. Molecular Biology and Evolution, 2017, 34, 2773-2791.	8.9	43
910	Metamerism in cephalochordates and the problem of the vertebrate head. International Journal of Developmental Biology, 2017, 61, 621-632.	0.6	11
911	PTH Reloaded: A New Evolutionary Perspective. Frontiers in Physiology, 2017, 8, 776.	2.8	17
912	The ups and downs of amphioxus biology: a history. International Journal of Developmental Biology, 2017, 61, 575-583.	0.6	9
913	Genomes as documents of evolutionary history: a probabilistic macrosynteny model for the reconstruction of ancestral genomes. Bioinformatics, 2017, 33, i369-i378.	4.1	24
914	Next Generation Sequencing of Chromosome-Specific Libraries Sheds Light on Genome Evolution in Paleotetraploid Sterlet (Acipenser ruthenus). Genes, 2017, 8, 318.	2.4	12
915	Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides. International Journal of Molecular Sciences, 2017, 18, 685.	4.1	25
916	Activities of Amphioxus GH-Like Protein in Osmoregulation: Insight into Origin of Vertebrate GH Family. International Journal of Endocrinology, 2017, 2017, 1-13.	1.5	10
917	3 Evolutionary Origin of the Notochord. , 2017, , .		0
918	LXRα and LXRβ nuclear receptors evolved in the common ancestor of gnathostomes. Genome Biology and Evolution, 2017, 9, evw305.	2.5	10
919	Reprimo tissue-specific expression pattern is conserved between zebrafish and human. PLoS ONE, 2017, 12, e0178274.	2.5	10
920	The house spider genome reveals an ancient whole-genome duplication during arachnid evolution. BMC Biology, 2017, 15, 62.	3.8	286
921	Hox gene cluster of the ascidian, Halocynthia roretzi, reveals multiple ancient steps of cluster disintegration during ascidian evolution. Zoological Letters, 2017, 3, 17.	1.3	14
922	From so simple a beginning – what amphioxus can teach us about placode evolution. International Journal of Developmental Biology, 2017, 61, 633-648.	0.6	18
923	Keeping amphioxus in the laboratory: an update on available husbandry methods. International Journal of Developmental Biology, 2017, 61, 773-783.	0.6	10

#	Article	IF	CITATIONS
924	Characterization of an amphioxus heat-shock protein gene promoter and its application in vivo. International Journal of Developmental Biology, 2017, 61, 785-792.	0.6	1
925	Origin and evolution of the chordate central nervous system: insights from amphioxus genoarchitecture. International Journal of Developmental Biology, 2017, 61, 655-664.	0.6	8
926	Amphioxus regeneration: evolutionary and biomedical implications. International Journal of Developmental Biology, 2017, 61, 689-696.	0.6	13
927	Characterization of a Novel Rhamnose-containing Acidic Glycosphingolipid from the Ascidian <i>Halocynthia aurantium</i> . Journal of Oleo Science, 2017, 66, 285-295.	1.4	5
928	Transcriptome-wide analysis of immune-responsive microRNAs against poly (I:C) challenge in <i>Branchiostoma belcheri</i> by deep sequencing and bioinformatics. Oncotarget, 2017, 8, 73590-73602.	1.8	11
929	The relaxin receptor as a therapeutic target – perspectives from evolution and drug targeting. , 2018, 187, 114-132.		35
930	Discovery and Analysis of Invertebrate IgVJ-C2 Structure from Amphioxus Provides Insight into the Evolution of the Ig Superfamily. Journal of Immunology, 2018, 200, 2869-2881.	0.8	12
931	The evolutionary origin of chordate segmentation: revisiting the enterocoel theory. Theory in Biosciences, 2018, 137, 1-16.	1.4	10
932	Comparative transcriptomic analysis provides insights into antibacterial mechanisms of Branchiostoma belcheri under Vibrio parahaemolyticus infection. Fish and Shellfish Immunology, 2018, 76, 196-205.	3.6	17
933	Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates. G3: Genes, Genomes, Genetics, 2018, 8, 1795-1806.	1.8	40
934	Evolution of neuropeptide signalling systems. Journal of Experimental Biology, 2018, 221, .	1.7	164
935	Retinoic acid signaling and neurogenic niche regulation in the developing peripheral nervous system of the cephalochordate amphioxus. Cellular and Molecular Life Sciences, 2018, 75, 2407-2429.	5.4	16
936	Initiation of the zygotic genetic program in the ascidian embryo. Seminars in Cell and Developmental Biology, 2018, 84, 111-117.	5.0	8
937	The unique evolution of the carbohydrateâ€binding module CBM 20 in laforin. FEBS Letters, 2018, 592, 586-598.	2.8	12
938	Keeping the home fires burning: AMP-activated protein kinase. Journal of the Royal Society Interface, 2018, 15, 20170774.	3.4	137
939	The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nature Genetics, 2018, 50, 270-277.	21.4	262
940	Comparative Methods for Reconstructing Ancient Genome Organization. Methods in Molecular Biology, 2018, 1704, 343-362.	0.9	7
941	Deuterostome Genomics: Lineage-Specific Protein Expansions That Enabled Chordate Muscle Evolution. Molecular Biology and Evolution, 2018, 35, 914-924.	8.9	16

#	Article	IF	CITATIONS
942	Evolution of the growth hormone, prolactin, prolactin 2 and somatolactin family. General and Comparative Endocrinology, 2018, 264, 94-112.	1.8	45
943	Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa. BMC Evolutionary Biology, 2018, 18, 51.	3.2	17
944	Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates. Nature Ecology and Evolution, 2018, 2, 859-866.	7.8	55
945	Genome-wide organization, evolutionary diversification of the COMMD family genes of amphioxus (Branchiostoma belcheri) with the possible role in innate immunity. Fish and Shellfish Immunology, 2018, 77, 31-39.	3.6	3
946	Wnt gene family members and their expression profiling in Litopenaeus vannamei. Fish and Shellfish Immunology, 2018, 77, 233-243.	3.6	36
947	Significance of whole-genome duplications on the emergence of evolutionary novelties. Briefings in Functional Genomics, 2018, 17, 329-338.	2.7	59
948	Evolution of the receptors for growth hormone, prolactin, erythropoietin and thrombopoietin in relation to the vertebrate tetraploidizations. General and Comparative Endocrinology, 2018, 257, 143-160.	1.8	26
949	Review: Structure, function and evolution of GnIH. General and Comparative Endocrinology, 2018, 264, 48-57.	1.8	38
950	Roles of Retinoic Acid Signaling in Shaping the Neuronal Architecture of the Developing Amphioxus Nervous System. Molecular Neurobiology, 2018, 55, 5210-5229.	4.0	17
951	Structural and functional diversity of collectins and ficolins and their relationship to disease. Seminars in Immunopathology, 2018, 40, 75-85.	6.1	44
952	Immunohistochemical analysis of the distribution of molecules involved in ionic and pH regulation in the lancelet Branchiostoma floridae (Hubbs, 1922). Acta Histochemica, 2018, 120, 33-40.	1.8	2
953	Unravelling the Carbohydrateâ€Binding Preferences of the Carbohydrateâ€Binding Modules of AMPâ€Activated Protein Kinase. ChemBioChem, 2018, 19, 229-238.	2.6	3
954	Recent progress and prospects for advancing arachnid genomics. Current Opinion in Insect Science, 2018, 25, 51-57.	4.4	44
955	Lampreys, "Living Fossils,―in Research on Early Development and Regeneration in Vertebrates. Russian Journal of Developmental Biology, 2018, 49, 327-338.	0.5	8
956	The inverted retina and the evolution of vertebrates: an evo-devo perspective. Annals of Eye Science, 2018, 3, 19-19.	2.1	1
957	Characterization of the TLR Family in Branchiostoma lanceolatum and Discovery of a Novel TLR22-Like Involved in dsRNA Recognition in Amphioxus. Frontiers in Immunology, 2018, 9, 2525.	4.8	25
958	Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature, 2018, 564, 64-70.	27.8	224
959	Evolutionary Exploitation of Vertebrate Peroxisome Proliferator-Activated Receptor Î ³ by Organotins. Environmental Science & Technology, 2018, 52, 13951-13959.	10.0	21

		CITATION REPOR	Т	
#	Article	IF	CITATIO	ONS
960	The phylum Vertebrata: a case for zoological recognition. Zoological Letters, 2018, 4, 32.	1.3	32	
961	A Phylogenomic Framework and Divergence History of Cephalochordata Amphioxus. Frontiers ir Physiology, 2018, 9, 1833.	1 2.8	11	
962	A new look at an old question: when did the second whole genome duplication occur in vertebra evolution?. Genome Biology, 2018, 19, 209.	ite 8.8	63	
963	Functional Characterization of Thyrostimulin in Amphioxus Suggests an Ancestral Origin of the Signaling Pathway. Endocrinology, 2018, 159, 3536-3548.	TH 2.8	24	
964	Functional and phylogenetic characterization of noncanonical vitamin B12–binding proteins in zebrafish suggests involvement in cobalamin transport. Journal of Biological Chemistry, 2018, 2 17606-17621.	n 93, 3.4	11	
965	Ran GTPase, an eukaryotic gene novelty, is involved in amphioxus mitosis. PLoS ONE, 2018, 13,	e0196930. 2.5	6	
966	Chaperones, Canalization, and Evolution of Animal Forms. International Journal of Molecular Sciences, 2018, 19, 3029.	4.1	. 12	
967	Brief History of Life. Computational Biology, 2018, , 183-199.	0.2	2 0	
968	Horizons in evolutionary genomics: an interview with David Ferrier. BMC Biology, 2018, 16, 124	. 3.8	• O	
969	Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biology, 2018 166.	8, 19, 8.8	174	
970	My Favorite Animal, Amphioxus: Unparalleled for Studying Early Vertebrate Evolution. BioEssays 40, e1800130.	, 2018, 2.5	16	
971	Genome Biology: Unconventional DNA Repair in an Extreme Genome. Current Biology, 2018, 28 R1208-R1210.	, 3.9	2	
972	Microbiology: Peeling Back the Layers of Bacterial Envelope Mechanics. Current Biology, 2018, 2 R1210-R1211.	28, 3.9	5	
973	Nature-inspired engineering of an F-type lectin for increased binding strength. Glycobiology, 201 933-948.	.8, 28, 2.5	7	
974	Recent advances in understanding the roles of whole genome duplications in evolution. F1000Research, 2018, 6, 1623.	1.6	18	
975	Insights into the Etiology of Mammalian Neural Tube Closure Defects from Developmental, Gene and Evolutionary Studies. Journal of Developmental Biology, 2018, 6, 22.	etic 1.7	43	
976	The opium poppy genome and morphinan production. Science, 2018, 362, 343-347.	12.	6 225	
977	Egg Coat Proteins Across Metazoan Evolution. Current Topics in Developmental Biology, 2018, 443-488.	130, 2.2	19	

#	Article	IF	CITATIONS
978	An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time. ELife, 2018, 7, .	6.0	30
979	The embryonic and evolutionary boundaries between notochord and cartilage: a new look at nucleus pulposus-specific markers. Osteoarthritis and Cartilage, 2018, 26, 1274-1282.	1.3	14
980	The Reprimo Gene Family: A Novel Gene Lineage in Gastric Cancer with Tumor Suppressive Properties. International Journal of Molecular Sciences, 2018, 19, 1862.	4.1	23
981	Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biology, 2018, 19, 98.	8.8	34
982	Evolutionary and Expression Analyses Show Co-option of khdrbs Genes for Origin of Vertebrate Brain. Frontiers in Genetics, 2017, 8, 225.	2.3	4
983	Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes, 2018, 9, 177.	2.4	177
984	Pax3/7 duplicated and diverged independently in amphioxus, the basal chordate lineage. Scientific Reports, 2018, 8, 9414.	3.3	7
985	A phylogenomic framework and timescale for comparative studies of tunicates. BMC Biology, 2018, 16, 39.	3.8	133
986	Reporter Analyses Reveal Redundant Enhancers that Confer Robustness on Cis-Regulatory Mechanisms. Advances in Experimental Medicine and Biology, 2018, 1029, 69-79.	1.6	3
987	The tale of two talins – two isoforms to fineâ€ŧune integrin signalling. FEBS Letters, 2018, 592, 2108-2125.	2.8	68
988	Expansion, retention and loss in the Acyl-CoA synthetase " Bubblegum ―(Acsbg) gene family in vertebrate history. Gene, 2018, 664, 111-118.	2.2	16
989	Isolation of an invertebrate-type lysozyme from the nephridia of the echiura, Urechis unicinctus, and its recombinant production and activities. Fish and Shellfish Immunology, 2018, 79, 351-362.	3.6	8
990	Enhancer activities of amphioxus <i>Brachyury</i> genes in embryos of the ascidian, <i>Ciona intestinalis</i> . Genesis, 2018, 56, e23240.	1.6	4
991	Morphological Stasis and Proteome Innovation in Cephalochordates. Genes, 2018, 9, 353.	2.4	3
992	Genome-wide identification, evolution of DNA methyltransferases and their expression during gonadal development in Nile tilapia. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2018, 226, 73-84.	1.6	14
993	Cephalochordata: Branchiostoma. , 2018, , 593-635.		1
994	The Origin and Early Evolution of Adaptive Immune Systems. , 2018, , 637-657.		0
995	Rewired RNAi-mediated genome surveillance in house dust mites. PLoS Genetics, 2018, 14, e1007183.	3.5	32

#	Article	IF	CITATIONS
996	Phagocytic intracellular digestion in amphioxus (<i>Branchiostoma</i>). Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180438.	2.6	11
997	Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biology, 2018, 16, e2004892.	5.6	24
998	Animal expertise: mechanisms, ecology and evolution. Animal Behaviour, 2019, 147, 199-210.	1.9	22
999	Comparative and Evolutionary Genomics. , 2019, , 257-267.		5
1000	A Bioinformatics Protocol for Quickly Creating Large-Scale Phylogenetic Trees. Advances in Intelligent Systems and Computing, 2019, , 88-96.	0.6	1
1001	Evolution of cis-regulatory modules for the head organizer gene goosecoid in chordates: comparisons between Branchiostoma and Xenopus. Zoological Letters, 2019, 5, 27.	1.3	10
1002	Evolution of the Chordate Telencephalon. Current Biology, 2019, 29, R647-R662.	3.9	59
1004	Boosting Macroevolution: Genomic Changes Triggering Qualitative Expansions of Regulatory Potential. Fascinating Life Sciences, 2019, , 175-207.	0.9	0
1005	Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation. Molecular Cell, 2019, 75, 483-497.e9.	9.7	50
1006	Evolution of vertebrate spinal cord patterning. Developmental Dynamics, 2019, 248, 1028-1043.	1.8	20
1007	OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates. Nucleic Acids Research, 2020, 48, D724-D730.	14.5	52
1008	Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes, 2019, 10, 794.	2.4	41
1009	Genome-Wide Identification and Transcriptomic Analysis of MicroRNAs Across Various Amphioxus Organs Using Deep Sequencing. Frontiers in Genetics, 2019, 10, 877.	2.3	1
1010	Lectin-like and bacterial-agglutinating activities of heat shock proteins Hsp5 and Hsp90α from amphioxus Branchiostoma japonicum. Fish and Shellfish Immunology, 2019, 95, 688-696.	3.6	9
1011	A Nearly Complete Genome of Ciona intestinalis Type A (C.Ârobusta) Reveals the Contribution of Inversion to Chromosomal Evolution in the Genus Ciona. Genome Biology and Evolution, 2019, 11, 3144-3157.	2.5	81
1012	Microsyntenic Clusters Reveal Conservation of IncRNAs in Chordates Despite Absence of Sequence Conservation. Biology, 2019, 8, 61.	2.8	19
1013	A critical appraisal of appendage disparity and homology in fishes. Fish and Fisheries, 2019, 20, 1138-1175.	5.3	10
1014	Comparative genomic analysis suggests that the sperm-specific sodium/proton exchanger and soluble adenylyl cyclase are key regulators of CatSper among the Metazoa. Zoological Letters, 2019, 5, 25.	1.3	22

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1015	Neural Crest—An Unusual Population of Embryonic Cells. Molecular Biology, 2019, 5	3, 227-236.	1.3	5
1016	Phylogenetically conserved TAK1 participates in Branchiostoma belcheri innate immun LPS stimulus. Fish and Shellfish Immunology, 2019, 94, 264-270.	e response to	3.6	5
1017	Chromosomal rearrangements as a source of new gene formation in Drosophila yakub Genetics, 2019, 15, e1008314.	a. PLoS	3.5	27
1018	Initial characterization of Wnt-Tcf functions during Ciona heart development. Develop Biology, 2019, 448, 199-209.	mental	2.0	5
1019	Duplicated Myosin V Genes in Teleosts Show Evolutionary Rate Variations among the N Cargo-Binding Domains. Genome Biology and Evolution, 2019, 11, 415-430.	Notor and	2.5	0
1020	JmjC Domain-Encoding Genes Are Conserved in Highly Regenerative Metazoans and Ar Planarian Whole-Body Regeneration. Genome Biology and Evolution, 2019, 11, 552-56	e Associated with 4.	2.5	6
1021	Evolution of Chordate Cardiopharyngeal Muscles and the Origin of Vertebrate Head M Fascinating Life Sciences, 2019, , 1-22.	uscles.	0.9	0
1022	Opioid Neurobiology, Neurogenetics and Neuropharmacology in Zebrafish. Neuroscien 218-232.	ce, 2019, 404,	2.3	36
1023	The constrained architecture of mammalian Hox gene clusters. Proceedings of the Nat of Sciences of the United States of America, 2019, 116, 13424-13433.	ional Academy	7.1	35
1024	Neuropeptide precursors and neuropeptides in the sea cucumber Apostichopus japoni transcriptomic and proteomic analysis. Scientific Reports, 2019, 9, 8829.	cus: a genomic,	3.3	29
1025	Resynthesizing behavior through phylogenetic refinement. Attention, Perception, and 2019, 81, 2265-2287.	Psychophysics,	1.3	160
1026	Control of Invasive Sea Lamprey in the Great Lakes, Lake Champlain, and Finger Lakes 2019, , 411-479.	of New York. ,		27
1027	LanceletDB: an integrated genome database for lancelet, comparing domain types and orthologues among lancelet and other species. Database: the Journal of Biological Data Curation, 2019, 2019, .	combination in abases and	3.0	7
1028	Long-Term Conservation of Ohnologs Through Partial Tetrasomy Following Whole-Gen Duplication in Salmonidae. G3: Genes, Genomes, Genetics, 2019, 9, 2017-2028.	ome	1.8	24
1029	Rac1 GTPase is a critical factor in phagocytosis in the large yellow croaker Larimichthys interacting with tropomyosin. Fish and Shellfish Immunology, 2019, 91, 148-158.	s crocea by	3.6	4
1030	A comparative analysis of methods for de novo assembly of hymenopteran genomes u haploid or diploid samples. Scientific Reports, 2019, 9, 6480.	sing either	3.3	19
1031	Molecular and evolutionary aspects of the protochordate digestive system. Cell and Tis 2019, 377, 309-320.	ssue Research,	2.9	9
1032	Molecular evolution of CRH and CRHR subfamily before the evolutionary origin of verte Peptides, 2019, 120, 170087.	ebrate.	2.4	6

#	Article	IF	Citations
1033	Identification and functional characterization of solute carrier family 6 genes in Ciona savignyi. Gene, 2019, 705, 142-148.	2.2	5
1034	The evolutionary landscape of the Rab family in chordates. Cellular and Molecular Life Sciences, 2019, 76, 4117-4130.	5.4	25
1035	A stem group echinoderm from the basal Cambrian of China and the origins of Ambulacraria. Nature Communications, 2019, 10, 1366.	12.8	20
1036	Massive Changes of Genome Size Driven by Expansions of Non-autonomous Transposable Elements. Current Biology, 2019, 29, 1161-1168.e6.	3.9	71
1037	The role of thyroglobulin in thyroid hormonogenesis. Nature Reviews Endocrinology, 2019, 15, 323-338.	9.6	136
1038	Canonical Wnt/β atenin and Notch signaling regulate animal/vegetal axial patterning in the cephalochordate amphioxus. Evolution & Development, 2019, 21, 31-43.	2.0	11
1039	Asymmetric paralog evolution between the "cryptic―gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Scientific Reports, 2019, 9, 3136.	3.3	1,637
1040	Revisiting the evolution of the somatostatin family: Already five genes in the gnathostome ancestor. General and Comparative Endocrinology, 2019, 279, 139-147.	1.8	12
1041	A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nature Ecology and Evolution, 2019, 3, 691-701.	7.8	63
1042	Evolution of vertebrate nicotinic acetylcholine receptors. BMC Evolutionary Biology, 2019, 19, 38.	3.2	36
1043	Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions. Nature Communications, 2019, 10, 1702.	12.8	92
1044	Functional characterization of an orexin neuropeptide in amphioxus reveals an ancient origin of orexin/orexin receptor system in chordate. Science China Life Sciences, 2019, 62, 1655-1669.	4.9	2
1045	Novel Zebrafish Mono-α2,8-sialyltransferase (ST8Sia VIII): An Evolutionary Perspective of α2,8-Sialylation. International Journal of Molecular Sciences, 2019, 20, 622.	4.1	7
1046	Recapitulation-like developmental transitions of chromatin accessibility in vertebrates. Zoological Letters, 2019, 5, 33.	1.3	24
1047	Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas. Scientific Reports, 2019, 9, 19559.	3.3	23
1048	Cilia-driven asymmetric Hedgehog signalling determines the amphioxus left-right axis by controlling <i>Cerberus/Dand5</i> expression. Development (Cambridge), 2020, 147, .	2.5	19
1049	Bisphenol A affects neural development of the ascidian <i>Ciona robusta</i> . Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2019, 331, 5-16.	1.9	18
1050	Identification of circular RNAs and their altered expression under poly(I:C) challenge in key antiviral immune pathways in amphioxus. Fish and Shellfish Immunology, 2019, 86, 1053-1057.	3.6	4

#	Article	IF	CITATIONS
1051	Characterisation of amphioxus protein kinase C-δlÎ, reveals a unique proto-V3 domain suggesting an evolutionary mechanism for PKC-Î, unique V3. Fish and Shellfish Immunology, 2019, 84, 1100-1107.	3.6	3
1053	The amphioxus ERK2 gene is involved in innate immune response to LPS stimulation. Fish and Shellfish Immunology, 2019, 86, 64-69.	3.6	3
1054	Involvement of JNK signaling pathway in lipopolysaccharide-induced complement C3 transcriptional activation from amphioxus Branchiostoma belcheri. Fish and Shellfish Immunology, 2019, 86, 196-203.	3.6	3
1055	Using Amphioxus as a Basal Chordate Model to Study BMP Signaling Pathway. Methods in Molecular Biology, 2019, 1891, 91-114.	0.9	7
1056	Genome-wide transcriptional response of microRNAs to the benzo(a)pyrene stress in amphioxus Branchiostoma belcheri. Chemosphere, 2019, 218, 205-210.	8.2	13
1057	Genome-wide gene expression analysis reveals novel insights into the response to nitrite stress in gills of Branchiostoma belcheri. Chemosphere, 2019, 218, 609-615.	8.2	3
1058	Evolutionary distribution of deoxynucleoside 5-monophosphate N-glycosidase, DNPH1. Gene, 2019, 683, 1-11.	2.2	3
1059	Lessons from Amphioxus Bauplan About Origin of Cranial Nerves of Vertebrates That Innervates Extrinsic Eye Muscles. Anatomical Record, 2019, 302, 452-462.	1.4	8
1060	The M-band: The underestimated part of the sarcomere. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118440.	4.1	70
1061	Characterization of GRP as a functional neuropeptide in basal chordate amphioxus. International Journal of Biological Macromolecules, 2020, 142, 384-394.	7.5	5
1062	Phylogenomics Identifies an Ancestral Burst of Gene Duplications Predating the Diversification of Aphidomorpha. Molecular Biology and Evolution, 2020, 37, 730-756.	8.9	29
1063	Gonadotropin-inhibitory hormone in teleosts: New insights from a basal representative, the eel. General and Comparative Endocrinology, 2020, 287, 113350.	1.8	12
1064	The family of amphioxus chitin synthases offers insight into the evolution of chitin formation in chordates. Molecular Phylogenetics and Evolution, 2020, 143, 106691.	2.7	3
1065	Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. Science of the Total Environment, 2020, 705, 135740.	8.0	32
1066	Evolution of the lamin protein family at the base of the vertebrate lineage. Cell and Tissue Research, 2020, 379, 37-44.	2.9	3
1067	Cephalopod Biology: At the Intersection Between Genomic and Organismal Novelties. Annual Review of Animal Biosciences, 2020, 8, 71-90.	7.4	30
1068	Chordate PIAS proteins act as conserved repressors of the TRAF6 self-polyubiquitination. Developmental and Comparative Immunology, 2020, 104, 103554.	2.3	4
1069	Characterization of a novel protein identified by proteomics analysis as a modulator of inflammatory networks in amphioxus. Fish and Shellfish Immunology, 2020, 96, 97-106.	3.6	2

#	Article	IF	CITATIONS
1070	Evolution of the genes mediating phototransduction in rod and cone photoreceptors. Progress in Retinal and Eye Research, 2020, 76, 100823.	15.5	27
1071	The Cis-Regulatory Code for Kelch-like 21/30 Specific Expression in Ciona robusta Sensory Organs. Frontiers in Cell and Developmental Biology, 2020, 8, 569601.	3.7	8
1072	Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome. BMC Genomics, 2020, 21, 713.	2.8	24
1073	Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Molecular and Cellular Endocrinology, 2020, 518, 111029.	3.2	28
1074	Reconstruction of the Carbohydrate 6-O Sulfotransferase Gene Family Evolution in Vertebrates Reveals Novel Member, CHST16, Lost in Amniotes. Genome Biology and Evolution, 2020, 12, 993-1012.	2.5	4
1075	Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing. Genes, 2020, 11, 1311.	2.4	10
1076	Retracing the evolutionary emergence of thymopoiesis. Science Advances, 2020, 6, .	10.3	10
1077	The ADAR Family in Amphioxus: RNA Editing and Conserved Orthologous Site Predictions. Genes, 2020, 11, 1440.	2.4	5
1078	Molecular Fingerprint of Amphioxus Frontal Eye Illuminates the Evolution of Homologous Cell Types in the Chordate Retina. Frontiers in Cell and Developmental Biology, 2020, 8, 705.	3.7	5
1079	Corticotropin-Releasing Hormone (CRH) Gene Family Duplications in Lampreys Correlate With Two Early Vertebrate Genome Doublings. Frontiers in Neuroscience, 2020, 14, 672.	2.8	18
1080	Deconstructing the longâ€standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. Journal of Morphology, 2020, 281, 1110-1132.	1.2	10
1081	Wholeâ€genome resequencing reveals the pleistocene temporal dynamics of Branchiostoma belcheri and Branchiostoma floridae populations. Ecology and Evolution, 2020, 10, 8210-8224.	1.9	4
1082	Phylogenetic Analyses of Glycosyl Hydrolase Family 6 Genes in Tunicates: Possible Horizontal Transfer. Genes, 2020, 11, 937.	2.4	4
1083	Discovery of four Noggin genes in lampreys suggests two rounds of ancient genome duplication. Communications Biology, 2020, 3, 501.	4.4	8
1084	Cellular identity and Ca2+ signaling activity of the non-reproductive GnRH system in the Ciona intestinalis type A (Ciona robusta) larva. Scientific Reports, 2020, 10, 18590.	3.3	16
1085	Linear Time Additively Exact Algorithm for Transformation of Chain-Cycle Graphs for Arbitrary Costs of Deletions and Insertions. Mathematics, 2020, 8, 2001.	2.2	3
1086	Ancient Genomic Regulatory Blocks Are a Source for Regulatory Gene Deserts in Vertebrates after Whole-Genome Duplications. Molecular Biology and Evolution, 2020, 37, 2857-2864.	8.9	13
1087	Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution. Nature Communications, 2020, 11, 2322.	12.8	57

#	Addicie	IF	CITATIONS
π 1088	Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cisâ€regulatory modules. Development Growth and Differentiation, 2020, 62, 279-300.	1.5	4
1089	The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone, 2020, 137, 115409.	2.9	63
1090	More Than One-to-Four via 2R: Evidence of an Independent Amphioxus Expansion and Two-Gene Ancestral Vertebrate State for MyoD-Related Myogenic Regulatory Factors (MRFs). Molecular Biology and Evolution, 2020, 37, 2966-2982.	8.9	15
1091	Genetic Mechanisms of the Early Development of the Telencephalon, a Unique Segment of the Vertebrate Central Nervous System, as Reflecting Its Emergence and Evolution. Russian Journal of Developmental Biology, 2020, 51, 162-175.	0.5	1
1092	Tracing the Origins of the Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP). Frontiers in Neuroscience, 2020, 14, 366.	2.8	15
1093	Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RNA processing. Nature Communications, 2020, 11, 3051.	12.8	47
1094	Evolutionary Analysis of the Zinc Finger and Homeoboxes Family of Proteins Identifies Multiple Conserved Domains and a Common Early Chordate Ancestor. Genome Biology and Evolution, 2020, 12, 174-184.	2.5	3
1095	Identification, Expression, and Functions of the Somatostatin Gene Family in Spotted Scat (Scatophagus argus). Genes, 2020, 11, 194.	2.4	4
1096	Phylogeny of teleost connexins reveals highly inconsistent intra- and interspecies use of nomenclature and misassemblies in recent teleost chromosome assemblies. BMC Genomics, 2020, 21, 223.	2.8	8
1097	On the origin of vertebrate body plan: Insights from the endoderm using the hourglass model. Gene Expression Patterns, 2020, 37, 119125.	0.8	2
1098	Genome-wide identification and transcriptome-based expression profiling of Wnt gene family in Ruditapes philippinarum. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 35, 100709.	1.0	9
1099	Cartilaginous fishes offer unique insights into the evolution of the nuclear receptor gene repertoire in gnathostomes. General and Comparative Endocrinology, 2020, 295, 113527.	1.8	22
1100	Extinction of chromosomes due to specialization is a universal occurrence. Scientific Reports, 2020, 10, 2170.	3.3	3
1101	Presence–absence polymorphisms of single-copy genes in the stony coral Acropora digitifera. BMC Genomics, 2020, 21, 158.	2.8	7
1102	Whole-Genome Resequencing of Twenty Branchiostoma belcheri Individuals Provides a Brand-New Variant Dataset for Branchiostoma. BioMed Research International, 2020, 2020, 1-15.	1.9	5
1103	The origin and evolution of vertebrate neural crest cells. Open Biology, 2020, 10, 190285.	3.6	48
1104	Functional Variation of IL-1R–Associated Kinases in the Conserved MyD88–TRAF6 Pathway during Evolution. Journal of Immunology, 2020, 204, 832-843.	0.8	9
1105	Deeply conserved synteny resolves early events in vertebrate evolution. Nature Ecology and Evolution, 2020, 4, 820-830.	7.8	250

#	Article	IF	CITATIONS
1106	SLC2A12 of SLC2 Gene Family in Bird Provides Functional Compensation for the Loss of SLC2A4 Gene in Other Vertebrates. Molecular Biology and Evolution, 2021, 38, 1276-1291.	8.9	12
1107	Chromosomeâ€level genome assembly of <i>Lethenteron reissneri</i> provides insights into lamprey evolution. Molecular Ecology Resources, 2021, 21, 448-463.	4.8	25
1108	Divergent Evolution of a Protein–Protein Interaction Revealed through Ancestral Sequence Reconstruction and Resurrection. Molecular Biology and Evolution, 2021, 38, 152-167.	8.9	8
1109	Transitional chordates and vertebrate origins: Tunicates. Current Topics in Developmental Biology, 2021, 141, 149-171.	2.2	6
1110	Molecular evolution of melatonin receptor genes (mtnr) in vertebrates and its shedding light on mtnr1c. Gene, 2021, 769, 145256.	2.2	4
1111	A phylogenetic view and functional annotation of the animal β1,3-glycosyltransferases of the GT31 CAZy family. Glycobiology, 2021, 31, 243-259.	2.5	9
1112	Host–Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. Molecular Biology and Evolution, 2021, 38, 502-518.	8.9	46
1113	Evolution of new cell types at the lateral neural border. Current Topics in Developmental Biology, 2021, 141, 173-205.	2.2	11
1114	Biological computation and computational biology: survey, challenges, and discussion. Artificial Intelligence Review, 2021, 54, 4169-4235.	15.7	7
1115	Heterologous functional expression of ascidian Nav1 channels and close relationship with the evolutionary ancestor of vertebrate Nav channels. Journal of Biological Chemistry, 2021, 296, 100783.	3.4	4
1116	Horseshoe crab genomes reveal the evolution of genes and microRNAs after three rounds of whole genome duplication. Communications Biology, 2021, 4, 83.	4.4	31
1117	Effects of Melatonin on Anterior Pituitary Plasticity: A Comparison Between Mammals and Teleosts. Frontiers in Endocrinology, 2020, 11, 605111.	3.5	10
1118	Amphioxus neuroglia: Molecular characterization and evidence for early compartmentalization of the developing nerve cord. Glia, 2021, 69, 1654-1678.	4.9	12
1120	Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions. Molecular Biology and Evolution, 2021, 38, 2446-2467.	8.9	53
1121	OMAmer: tree-driven and alignment-free protein assignment to subfamilies outperforms closest sequence approaches. Bioinformatics, 2021, 37, 2866-2873.	4.1	5
1122	Analysis of Paralogons, Origin of the Vertebrate Karyotype, and Ancient Chromosomes Retained in Extant Species. Genome Biology and Evolution, 2021, 13, .	2.5	17
1123	On the importance of evolutionary constraint for regulatory sequence identification. Briefings in Functional Genomics, 2021, , .	2.7	1
1124	The Ontology of the Amphioxus Anatomy and Life Cycle (AMPHX). Frontiers in Cell and Developmental Biology, 2021, 9, 668025.	3.7	10

		Report	
#	Article	IF	CITATIONS
1125	Detection of the First Epoxyalcohol Synthase/Allene Oxide Synthase (CYP74 Clan) in the Lancelet (Branchiostoma belcheri, Chordata). International Journal of Molecular Sciences, 2021, 22, 4737.	4.1	4
1126	Universal nomenclature for oxytocin–vasotocin ligand and receptor families. Nature, 2021, 592, 747-755.	27.8	73
1127	The piggyBac-derived protein 5 (PGBD5) transposes both the closely and the distantly related piggyBac-like elements Tcr-pble and Ifp2. Journal of Molecular Biology, 2021, 433, 166839.	4.2	5
1129	Fluorescence Properties of a Novel Isoquinoline Derivative Tested in an Invertebrate Chordate, Ciona intestinalis. ChemBioChem, 2021, 22, 2140-2145.	2.6	1
1130	Comparative and evolutionary analyses reveal conservation and divergence of the notch pathway in lophotrochozoa. Scientific Reports, 2021, 11, 11378.	3.3	1
1131	Utilizing a chromosomal-length genome assembly to annotate the Wnt signaling pathway in the Asian citrus psyllid, Diaphorina citri. GigaByte, 0, 2021, 1-15.	0.0	7
1132	Somite Compartments in Amphioxus and Its Implications on the Evolution of the Vertebrate Skeletal Tissues. Frontiers in Cell and Developmental Biology, 2021, 9, 607057.	3.7	9
1133	An Updated Staging System for Cephalochordate Development: One Table Suits Them All. Frontiers in Cell and Developmental Biology, 2021, 9, 668006.	3.7	23
1134	Advances in immunological research of amphioxus. Developmental and Comparative Immunology, 2021, 118, 103992.	2.3	2
1135	Molecular taxonomy confirms that the northeastern Atlantic and Mediterranean Sea harbor a single lancelet, Branchiostoma lanceolatum (Pallas, 1774) (Cephalochordata: Leptocardii:) Tj ETQq1 1 0.784314 rgBT	/Ov e nstock	10 1 f 50 377
1136	Genome Duplications as the Basis of Vertebrates' Evolutionary Success. Russian Journal of Developmental Biology, 2021, 52, 141-163.	0.5	7
1137	Loss of the Vitamin B-12 Transport Protein Tcn2 Results in Maternally Inherited Growth and Developmental Defects in Zebrafish. Journal of Nutrition, 2021, 151, 2522-2532.	2.9	2
1138	Improved Understanding of the Role of Gene and Genome Duplications in Chordate Evolution With New Genome and Transcriptome Sequences. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	8
1139	The gastrin-releasing peptide/bombesin system revisited by a reverse-evolutionary study considering Xenopus. Scientific Reports, 2021, 11, 13315.	3.3	8
1141	Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins. Molecules, 2021, 26, 3529.	3.8	7
1143	New Genes Born-In or Invading Vertebrate Genomes. Frontiers in Cell and Developmental Biology, 2021, 9, 713918.	3.7	0
1144	A Preliminary Single-Cell RNA-Seq Analysis of Embryonic Cells That Express Brachyury in the Amphioxus, Branchiostoma japonicum. Frontiers in Cell and Developmental Biology, 2021, 9, 696875.	3.7	8
1145	Genomic Signatures Supporting the Symbiosis and Formation of Chitinous Tube in the Deep-Sea Tubeworm <i>Paraescarpia echinospica</i> . Molecular Biology and Evolution, 2021, 38, 4116-4134.	8.9	37

#	Article	IF	CITATIONS
1146	Reconstruction of proto-vertebrate, proto-cyclostome and proto-gnathostome genomes provides new insights into early vertebrate evolution. Nature Communications, 2021, 12, 4489.	12.8	88
1147	A brief review of vertebrate sex evolution with a pledge for integrative research: towards â€~ <i>sexomics</i> '. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200426.	4.0	39
1148	The Taxus genome provides insights into paclitaxel biosynthesis. Nature Plants, 2021, 7, 1026-1036.	9.3	103
1149	Molecular Phylogenetic Analysis of the AIG Family in Vertebrates. Genes, 2021, 12, 1190.	2.4	1
1150	Two Amphioxus ApeC-Containing Proteins Bind to Microbes and Inhibit the TRAF6 Pathway. Frontiers in Immunology, 2021, 12, 715245.	4.8	1
1151	A Potential Method for Rapid Screening of Amphioxus Founder Harboring Germline Mutation and Transgene. Frontiers in Cell and Developmental Biology, 2021, 9, 702290.	3.7	3
1153	Why Do Some Vertebrates Have Microchromosomes?. Cells, 2021, 10, 2182.	4.1	26
1155	Chromosomeâ€scale genome assembly and population genomics provide insights into the adaptation, domestication, and flavonoid metabolism of Chinese plum. Plant Journal, 2021, 108, 1174-1192.	5.7	16
1157	Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review. Frontiers in Endocrinology, 2021, 12, 731966.	3.5	11
1159	The Nereid on the rise: Platynereis as a model system. EvoDevo, 2021, 12, 10.	3.2	34
1160	Reconstructing the evolutionary history of the oxytocin and vasotocin receptor gene family: Insights on whole genome duplication scenarios. Developmental Biology, 2021, 479, 99-106.	2.0	8
1161	Protein kinase C family evolution in jawed vertebrates. Developmental Biology, 2021, 479, 77-90.	2.0	5
1162	An ancestral nuclear receptor couple, PPAR-RXR, is exploited by organotins. Science of the Total Environment, 2021, 797, 149044.	8.0	7
1163	Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 2021, 590, 284-289.	27.8	132
1164	A nomenclature for echinoderm genes. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	4
1166	Gap Junctions as Electrical Synapses. , 2009, , 423-439.		3
1167	The M-Band: Not Just Inert Glue but Playing an Active Role in the Middle of the Sarcomere. , 2015, , 125-140.		3
1168	Variable Lymphocyte Receptors: A Current Overview. Results and Problems in Cell Differentiation, 2015, 57, 175-192.	0.7	6

ARTICLE IF CITATIONS # Molecular Evolution of Pituitary Adenylyl Cyclase-Activating Polypeptide Subfamily and Cognate 1169 0.4 5 Receptor Subfamily. Current Topics in Neurotoxicity, 2016, , 3-17. Large-Scale Analyses of Positive Selection Using Codon Models., 2009, , 217-235. 1170 Molecular Evolution of the Microfibril-Associated Proteins: The Fibulins and the MAGPs. Biology of 1171 0.3 2 Extracellular Matrix, 2013, , 163-190. Molecular and Functional Evolution of the Adrenomedullin Family in Vertebrates: What Do Fish Studies Tell Us?., 2010, , 1-21. A Comparative Genomics Perspective on the Origin of Multicellularity and Early Animal Evolution. 1173 1.2 7 Advances in Marine Genomics, 2015, , 269-299. 1174 PDK1: At the crossroad of cancer signaling pathways. Seminars in Cancer Biology, 2018, 48, 27-35. 9.6 130 Genomic, phylogenetic, and cell biological insights into metazoan origins., 2009, , 24-32. 1176 16 The mouth, the anus, and the blastoporeâ€" open questions about questionable openings. , 2009, , 33-40. 1177 21 1178 Origins of metazoan body plans: the larval revolution., 2009, , 43-51. 3 1179 Assembling the spiralian tree of life., 2009, , 52-64. 1180 The origins and evolution of the Ecdysozoa., 2009, , 71-79. 2 Deciphering deuterostome phylogeny: molecular, morphological, and palaeontological perspectives. , 1181 2009, , 80-92. Invertebrate Problematica: kinds, causes, and solutions., 2009, , 107-126. 1182 2 Improvement of molecular phylogenetic inference and the phylogeny of Bilateria., 2009, , 127-138. Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic 1184 1 reconstruction., 2009, , 139-147. The animal in the genome: comparative genomics and evolution., 2009,, 148-156. MicroRNAs and metazoan phylogeny: big trees from little genes., 2009, 157-170. 29 1186 Reassembling animal evolution: a four-dimensional puzzle., 2009, , 191-196.

#	Article	IF	CITATIONS
1188	Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera. Genome Biology and Evolution, 2020, 12, 1099-1188.	2.5	17
1189	Homeobox Gene Duplication and Divergence in Arachnids. Molecular Biology and Evolution, 2018, 35, 2240-2253.	8.9	66
1208	New Insights into Vertebrate Thyroid Hormone Receptor Evolution. Nuclear Receptor Research, 2017, 4, .	2.5	3
1209	The Evolutionary Origins of the Adaptive Immune System of Jawed Vertebrates. , 0, , 41-55.		3
1210	Recent advances in understanding the roles of whole genome duplications in evolution. F1000Research, 2017, 6, 1623.	1.6	19
1211	Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biology, 2017, 15, e2001573.	5.6	96
1212	Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes. PLoS Genetics, 2009, 5, e1000496.	3.5	69
1213	Human Developmental Enhancers Conserved between Deuterostomes and Protostomes. PLoS Genetics, 2012, 8, e1002852.	3.5	55
1214	Evolutionary Genomics Reveals Lineage-Specific Gene Loss and Rapid Evolution of a Sperm-Specific Ion Channel Complex: CatSpers and CatSperl ² . PLoS ONE, 2008, 3, e3569.	2.5	92
1215	Improving Hox Protein Classification across the Major Model Organisms. PLoS ONE, 2010, 5, e10820.	2.5	27
1216	Genome-Wide Identification of Calcium-Response Factor (CaRF) Binding Sites Predicts a Role in Regulation of Neuronal Signaling Pathways. PLoS ONE, 2010, 5, e10870.	2.5	20
1217	Characterization of the Deleted in Autism 1 Protein Family: Implications for Studying Cognitive Disorders. PLoS ONE, 2011, 6, e14547.	2.5	26
1218	A Snapshot of the Population Structure of Branchiostoma lanceolatum in the Racou Beach, France, during Its Spawning Season. PLoS ONE, 2011, 6, e18520.	2.5	14
1219	Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses. PLoS ONE, 2011, 6, e19673.	2.5	21
1220	Spliceosomal Intron Insertions in Genome Compacted Ray-Finned Fishes as Evident from Phylogeny of MC Receptors, Also Supported by a Few Other GPCRs. PLoS ONE, 2011, 6, e22046.	2.5	30
1221	Diversification and Molecular Evolution of ATOH8, a Gene Encoding a bHLH Transcription Factor. PLoS ONE, 2011, 6, e23005.	2.5	24
1222	Gene Discovery in the Threatened Elkhorn Coral: 454 Sequencing of the Acropora palmata Transcriptome. PLoS ONE, 2011, 6, e28634.	2.5	58
1223	Functional Desaturase Fads1 (Δ5) and Fads2 (Δ6) Orthologues Evolved before the Origin of Jawed Vertebrates. PLoS ONE, 2012, 7, e31950.	2.5	121

#	Article	IF	CITATIONS
1224	Using Paleogenomics to Study the Evolution of Gene Families: Origin and Duplication History of the Relaxin Family Hormones and Their Receptors. PLoS ONE, 2012, 7, e32923.	2.5	50
1225	New Insights into the Evolution of Metazoan Tyrosinase Gene Family. PLoS ONE, 2012, 7, e35731.	2.5	48
1226	Sequencing and Analysis of the Mediterranean Amphioxus (Branchiostoma lanceolatum) Transcriptome. PLoS ONE, 2012, 7, e36554.	2.5	42
1227	Molecular Phylogeny of OVOL Genes Illustrates a Conserved C2H2 Zinc Finger Domain Coupled by Hypervariable Unstructured Regions. PLoS ONE, 2012, 7, e39399.	2.5	25
1228	Metal Dealing at the Origin of the Chordata Phylum: The Metallothionein System and Metal Overload Response in Amphioxus. PLoS ONE, 2012, 7, e43299.	2.5	15
1229	Consecutive Spawnings of Chinese Amphioxus, Branchiostoma belcheri, in Captivity. PLoS ONE, 2012, 7, e50838.	2.5	35
1230	The Role of Gene Duplication and Unconstrained Selective Pressures in the Melanopsin Gene Family Evolution and Vertebrate Circadian Rhythm Regulation. PLoS ONE, 2012, 7, e52413.	2.5	22
1231	Evolutionary Paths of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunits. PLoS ONE, 2013, 8, e60935.	2.5	46
1232	Methods for Generating Year-Round Access to Amphioxus in the Laboratory. PLoS ONE, 2013, 8, e71599.	2.5	21
1233	Local Duplication of Gonadotropin-Releasing Hormone (GnRH) Receptor before Two Rounds of Whole Genome Duplication and Origin of the Mammalian GnRH Receptor. PLoS ONE, 2014, 9, e87901.	2.5	25
1234	A Survey of Innovation through Duplication in the Reduced Genomes of Twelve Parasites. PLoS ONE, 2014, 9, e99213.	2.5	7
1235	Transcriptome Profiling Reveals Higher Vertebrate Orthologous of Intra-Cytoplasmic Pattern Recognition Receptors in Grey Bamboo Shark. PLoS ONE, 2014, 9, e100018.	2.5	19
1236	Characterization of Small HSPs from Anemonia viridis Reveals Insights into Molecular Evolution of Alpha Crystallin Genes among Cnidarians. PLoS ONE, 2014, 9, e105908.	2.5	14
1237	Early Chordate Origin of the Vertebrate Integrin αl Domains. PLoS ONE, 2014, 9, e112064.	2.5	7
1238	Characterization of the Runx Gene Family in a Jawless Vertebrate, the Japanese Lamprey (Lethenteron) Tj ETQq0 (0 0 rgBT /0 2.9	Dverlock 10 T
1239	The Evolutionary Panorama of Organ-Specifically Expressed or Repressed Orthologous Genes in Nine Vertebrate Species. PLoS ONE, 2015, 10, e0116872.	2.5	5
1240	Functional Diversification after Gene Duplication: Paralog Specific Regions of Structural Disorder and Phosphorylation in p53, p63, and p73. PLoS ONE, 2016, 11, e0151961.	2.5	22
1241	The Nuclear DNA Content and Genetic Diversity of Lampetra morii. PLoS ONF. 2016, 11, e0157494.	2.5	7

#	Article	IF	CITATIONS
1242	No evidence for the radiation time lag model after whole genome duplications in Teleostei. PLoS ONE, 2017, 12, e0176384.	2.5	11
1243	A novel G protein-coupled receptor for starfish gonadotropic hormone, relaxin-like gonad-stimulating peptide. PLoS ONE, 2020, 15, e0242877.	2.5	13
1244	The dawn of amphioxus molecular biology - a personal perspective. International Journal of Developmental Biology, 2017, 61, 585-590.	0.6	4
1245	Novel polyclonal antibodies as a useful tool for expression studies in amphioxus embryos. International Journal of Developmental Biology, 2017, 61, 793-800.	0.6	9
1246	Evolution of the Muscarinic Acetylcholine Receptors in Vertebrates. ENeuro, 2018, 5, ENEURO.0340-18.2018.	1.9	22
1247	Genome-wide gene expression analysis in the amphioxus, Branchiostoma belcheri after poly (I: C) challenge using strand-specific RNA-seq. Oncotarget, 2017, 8, 108392-108405.	1.8	3
1248	Genome-wide comparison of the protein-coding repertoire reveals fast evolution of immune-related genes in cephalochordates and Osteichthyes superclass. Oncotarget, 2018, 9, 83-95.	1.8	14
1249	Evolutionary Constraints Favor a Biophysical Model Explaining Hox Gene Collinearity. Current Genomics, 2013, 14, 279-288.	1.6	12
1250	Neurohormones: oxytocin, vasopressin and related peptides – structure, genes, receptors, and evolution. Journal of Animal and Feed Sciences, 2013, 22, 283-294.	1.1	5
1251	Specific Evolution and Gene Family Expansion of Complement 3 and Regulatory Factor H in Fish. Frontiers in Immunology, 2020, 11, 568631.	4.8	21
1256	Expansion of the Actin Gene Family in Amphioxus. Zoological Research, 2010, 30, 473-479.	0.6	1
1257	Seagrass Halodule wrightii as a new habitat for the amphioxus Branchiostoma californiense (Cephalochordata, Branchiostomidae) in the southern Gulf of California, Mexico. ZooKeys, 2019, 873, 113-131.	1.1	2
1258	Evolutionary and Comparative Genomics to Drive Rational Drug Design, with Particular Focus on Neuropeptide Seven-Transmembrane Receptors. Biomolecules and Therapeutics, 2017, 25, 57-68.	2.4	4
1259	Recent topics on the biology of alien ascidians. Sessile Organisms, 2012, 29, 61-68.	0.2	3
1260	Fasciculation and elongation zeta proteins 1 and 2: From structural flexibility to functional diversity. World Journal of Biological Chemistry, 2019, 10, 28-43.	4.3	9
1261	Molecular and Chromosomal Markers for Evolutionary Considerations in Torpediniformes (Chondrichthyes, Batoidea). ISRN Genetics, 2013, 2013, 1-10.	0.2	3
1262	Longitudinal Observation of Japanese Lancelet, Branchiostoma japonicum, Metamorphosis. Dataset Papers in Biology, 2013, 2013, 1-6.	0.5	2
1263	Discovery of a metabolic alternative to the classical mevalonate pathway. ELife, 2013, 2, e00672.	6.0	83

0

0

0

#	Article	IF	CITATIONS
1264	A Cambrian origin for vertebrate rods. ELife, 2015, 4, .	6.0	39
1265	Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events. ELife, 2018, 7, .	6.0	53
1266	Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function. ELife, 2020, 9, .	6.0	34
1267	Echinoderms provide missing link in the evolution of PrRP/sNPF-type neuropeptide signalling. ELife, 2020, 9, .	6.0	25
1268	Evolution of dopamine receptors: phylogenetic evidence suggests a later origin of the DRD _{2l} and DRD _{4rs} dopamine receptor gene lineages. PeerJ, 2018, 6, e4593.	2.0	9
1269	Duplication of spiralian-specific TALE genes and evolution of the blastomere specification mechanism in the bivalve lineage. EvoDevo, 2021, 12, 11.	3.2	4
1270	Fish genomics and its impact on fundamental and applied research of vertebrate biology. Reviews in Fish Biology and Fisheries, 2022, 32, 357-385.	4.9	7
1271	Transcriptomic Analyses Reveal 2 and 4 Family Members of Cytochromes P450 (CYP) Involved in LPS Inflammatory Response in Pharynx of Ciona robusta. International Journal of Molecular Sciences, 2021, 22, 11141.	4.1	6
1273	ãf>ãfª¹¼ç"Ÿã®å‰å⊷容å™" ï¼è"ŠæŽå⊶物ã®çœ¼ãëã®æ⁻"è¼f5 Hikaku Seiri Seikagaku(Comparat	iv o. Rhysio	lo g y and Bio
1274	ls Glycogen Synthase Kinase-3β an Ultraconserved Kernel Enzyme?. Gene Expression To Genetical Genomics, 0, 2, 1-27.	1.0	1

1275	Conserved developmental processes and the evolution of novel traits: wounds, embryos, veins, and butterfly eyespots. , 2009, , 183-190.	0
	The Ediacaran emergence of hilaterians: congruence between the genetic and the geological fossil	

1276	records. , 2009, , 15-23.

1277 The evolution of nervous system centralization. , 2009, , 65-	70.
--	-----

1278	The evolution of developmental gene networks: lessons from comparative studies on holometabolous insects. , 2009, , 171-182.	0	
------	--	---	--

1279 The earliest fossil record of the animals and its significance. , 2009, , 3-14.

1280 Molecular genetic insights into deuterostome evolution from the direct-developing hemichordate<i>Saccoglossus kowalevskii</i>., 2009, , 93-104.

1283 Metazoan Complexity. , 2010, , 143-178.

1284 Formation and Function of White Pulp Lymphocyte Rich Areas of Spleen. , 2011, , 143-157.

#	Article	IF	CITATIONS
1285	Genome Duplication and Subfunction Partitioning: Sox9 in Medaka and Other Vertebrates. , 2011, ,		0
1200	323-337.		U U
1286	Origins of the Metazoa. Encyclopedia of Earth Sciences Series, 2011, , 716-719.	0.1	Ο
1289	Formation of Nervous Systems and Neural Stem Cells in Ascidians. , 0, , .		0
1295	The Cambrian Explosion and Thereafter. History, Philosophy and Theory of the Life Sciences, 2014, ,	0.4	1
	69-110.		
1296	Quartet Partitioning Reveals Hybrid Origins of the Vertebrate. , 2014, , 191-205.		0
1297	Astonishing Gene Permanence Throughout Vertebrates and the Origin of the Skeleton. , 2014, , 11-19.		0
1900	Euture Decearch Directions 2016 220 259		0
1299	Future Research Directions. , 2016, , 259-238.		0
1300	Discoidin Domain Receptors in Invertebrates. , 2016, , 87-105.		1
1303	Marine Genomics: Recent Advancement and Wide-Area Applications. , 2016, , 97-108.		0
1304	Marine Genomics: Recent Advancement and Wide-Area Applications. , 2016, , 117-128.		0
1306	IODOTHYRONINE DEIODINASES: KEY ENZYMES BEHIND THE ACTION OF THYROID HORMONE. Reviews in	27	0
1000	Agricultural Science, 2017, 5, 45-55.	2.1	0
1325	A vertebrate-specific qPCR assay as an endogenous internal control for robust species identification. Forensic Science International: Genetics, 2022, 56, 102628.	3.1	4
1327	Molecular asymmetry in the cephalochordate embryo revealed by single-blastomere transcriptome profiling. PLoS Genetics, 2020, 16, e1009294.	3.5	4
	Genome-wide identification, evolution of histone lysine demethylases (KDM) genes and their		
1328	expression during gonadal development in Nile tilapia. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2022, 257, 110674.	1.6	3
1330	Whole mount in situ hybridization and immunohistochemistry for studying retinoic acid signaling in	1.0	4
1000	developing amphioxus. Methods in Enzymology, 2020, 637, 419-452.	1.0	•
1331	Extreme diversity of SINE families in amphioxus Branchiostoma belcheri. Biopolymers and Cell, 2020, 36, 13-21.	0.4	0
1338	Evolution, structure, and synthesis of vertebrate egg-coat proteins. Trends in Developmental Biology, 2014, 8, 65-76.	1.0	35
	Origin and evolutionary landscape of Nr2f transcription factors across Metazoa, PLoS ONF, 2021, 16		
1339	e0254282.	2.5	6

#	Article	IF	CITATIONS
1341	Supracellular organization confers directionality and mechanical potency to migrating pairs of cardiopharyngeal progenitor cells. ELife, 2021, 10, .	6.0	3
1342	Ciliary photoreceptors in sea urchin larvae indicate pan-deuterostome cell type conservation. BMC Biology, 2021, 19, 257.	3.8	7
1343	Functional Conservation and Genetic Divergence of Chordate Glycinergic Neurotransmission: Insights from Amphioxus Glycine Transporters. Cells, 2021, 10, 3392.	4.1	3
1345	Evolution of ray-finned fish genomes: Status and directions with a primer on microRNA characterization. , 2022, , 309-346.		2
1347	The Preservation of PPARÎ ³ Genome Duplicates in Some Teleost Lineages: Insights into Lipid Metabolism and Xenobiotic Exploitation. Genes, 2022, 13, 107.	2.4	5
1349	Connexins evolved after early chordates lost innexin diversity. ELife, 2022, 11, .	6.0	7
1350	Genomic deciphering of sex determination and unique immune system of a potential model species rare minnow (<i>Gobiocypris rarus</i>). Science Advances, 2022, 8, eabl7253.	10.3	13
1351	Deeply conserved synteny and the evolution of metazoan chromosomes. Science Advances, 2022, 8, eabi5884.	10.3	81
1352	The Evolution of Oxytocin and Vasotocin Receptor Genes in Jawed Vertebrates: A Clear Case for Gene Duplications Through Ancestral Whole-Genome Duplications. Frontiers in Endocrinology, 2021, 12, 792644.	3.5	13
1353	Genome-wide identification and characterization of NLR genes in lamprey (Lethenteron reissneri) and their responses to lipopolysaccharide/poly(I:C) challenge. Molecular Immunology, 2022, 143, 122-134.	2.2	5
1354	Insights into the evolution of the ISG15 and UBA7 system. Genomics, 2022, 114, 110302.	2.9	1
1355	The invertebrate chordate amphioxus gives clues to vertebrate origins. Current Topics in Developmental Biology, 2022, 147, 563-594.	2.2	3
1356	Evolutionary History of TOPIIA Topoisomerases in Animals. Journal of Molecular Evolution, 2022, 90, 149-165.	1.8	5
1357	Emergence of distinct syntenic density regimes is associated with early metazoan genomic transitions. BMC Genomics, 2022, 23, 143.	2.8	6
1358	Origin and Evolution of the Multifaceted Adherens Junction Component Plekha7. Frontiers in Cell and Developmental Biology, 2022, 10, 856975.	3.7	5
1359	Gain of gene regulatory network interconnectivity at the origin of vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114802119.	7.1	9
1360	A Manually Curated Gene Model Set for an Ascidian, Ciona robusta (Ciona intestinalis Type A). Zoological Science, 2022, 39, .	0.7	18
1361	Protein kinases and protein phosphatases encoded in the <i>Ciona robusta</i> genome. Genesis, 2022, 60, e23471.	1.6	2

#	Article	IF	CITATIONS
1362	The Origination of Growth Hormone/Insulin-Like Growth Factor System: A Story From Ancient Basal Chordate Amphioxus. Frontiers in Endocrinology, 2022, 13, 825722.	3.5	4
1363	Deep whole-genome resequencing sheds light on the distribution and effect of amphioxus SNPs. BMC Genomic Data, 2022, 23, 26.	1.7	5
1365	MicroRNAs as Indicators into the Causes and Consequences of Whole-Genome Duplication Events. Molecular Biology and Evolution, 2022, 39, .	8.9	17
1366	Evolution of behavioural control from chordates to primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200522.	4.0	30
1367	Ascidian neuropeptides, peptide hormones, and their receptors: structures, biological functions, and evolutionary aspects Hikaku Seiri Seikagaku(Comparative Physiology and Biochemistry), 2021, 38, 115-123.	0.0	0
1368	The Genome of the "Sea Vomit―Didemnum vexillum. Life, 2021, 11, 1377.	2.4	0
1415	Evolution of osmosensing OSCA1 Ca ²⁺ channel family coincident with plant transition from water to land. Plant Genome, 2022, 15, e20198.	2.8	5
1416	Genome and transcriptome mechanisms driving cephalopod evolution. Nature Communications, 2022, 13, 2427.	12.8	47
1417	The developmental and evolutionary origins of cellular pluripotency in the vertebrate neural crest. Seminars in Cell and Developmental Biology, 2023, 138, 36-44.	5.0	9
1419	Taste and Smell: A Unifying Chemosensory Theory. Quarterly Review of Biology, 2022, 97, 69-94.	0.1	12
1421	On the evolutionary origins and regionalization of the neural crest. Seminars in Cell and Developmental Biology, 2023, 138, 28-35.	5.0	7
1422	Um panorama atual sobre a filogenia de Metazoa: conflitos e concordâncias. Revista Da Biologia, 2021, 21, 1-13.	0.2	0
1423	Searching for the Origin and the Differentiation of Haemocytes before and after Larval Settlement of the Colonial Ascidian Botryllus schlosseri: An Ultrastructural Viewpoint. Journal of Marine Science and Engineering, 2022, 10, 987.	2.6	4
1428	A developmental role for the chromatin-regulating CoREST complex in the cnidarian Nematostella vectensis. BMC Biology, 2022, 20, .	3.8	1
1429	Robust 3D Modelling Reveals Spatiosyntenic Properties of Animal Genomes. SSRN Electronic Journal, 0,	0.4	1
1431	HOX-Gene Cluster Organization and Genome Duplications in Fishes and Mammals: Transcript Variant Distribution along the Anterior–Posterior Axis. International Journal of Molecular Sciences, 2022, 23, 9990.	4.1	1
1432	Pax3/7 regulates neural tube closure and patterning in a non-vertebrate chordate. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	5
1433	Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency. Nature Communications, 2022, 13, .	12.8	9
CITATION REPORT

#	Article	IF	CITATIONS
1434	Dynamic evolution of transient receptor potential vanilloid (TRPV) ion channel family with numerous gene duplications and losses. Frontiers in Endocrinology, 0, 13, .	3.5	2
1435	Inference of a genome-wide protein-coding gene set of the inshore hagfish Eptatretus burgeri. F1000Research, 0, 11, 1270.	1.6	3
1436	Parallel evolution of amphioxus and vertebrate small-scale gene duplications. Genome Biology, 2022, 23, .	8.8	14
1437	Evolution of Vertebrate Hormones and Their Receptors: Insights from Non-Osteichthyan Genomes. Annual Review of Animal Biosciences, 2023, 11, 163-182.	7.4	3
1438	Evolution of the glomerulus in a marine environment and its implications for renal function in terrestrial vertebrates. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 0, , .	1.8	2
1439	Active DNA demethylation of developmental <i>cis</i> -regulatory regions predates vertebrate origins. Science Advances, 2022, 8, .	10.3	7
1440	Evolution of TOP1 and TOP1MT Topoisomerases in Chordata. Journal of Molecular Evolution, 2023, 91, 192-203.	1.8	1
1441	Combining vertebrate mitochondrial 12S rRNA gene sequencing and shotgun metagenomic sequencing to investigate the diet of the leopard cat (Prionailurus bengalensis) in Korea. PLoS ONE, 2023, 18, e0281245.	2.5	1
1443	Impacts of microplastics and the associated plastisphere on physiological, biochemical, genetic expression and gut microbiota of the filter-feeder amphioxus. Environment International, 2023, 172, 107750.	10.0	9
1444	Robust 3D modeling reveals spatiosyntenic properties of animal genomes. IScience, 2023, 26, 106136.	4.1	3
1445	Retinoic Acid and POU Genes in Developing Amphioxus: A Focus on Neural Development. Cells, 2023, 12, 614.	4.1	1
1446	Evolution of homology: From archetype towards a holistic concept of cell type. Journal of Morphology, 2023, 284, .	1.2	2
1447	Three amphioxus reference genomes reveal gene and chromosome evolution of chordates. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	11
1450	Genomic Analysis of Amphioxus Reveals a Wide Range of Fragments Homologous to Viral Sequences. Viruses, 2023, 15, 909.	3.3	1
1451	Analysis of the P.Âlividus sea urchin genome highlights contrasting trends of genomic and regulatory evolution in deuterostomes. Cell Genomics, 2023, 3, 100295.	6.5	11
1454	BMP signaling is required to form the anterior neural plate border in ascidian embryos. Development Genes and Evolution, 2023, 233, 13-23.	0.9	2
1455	SUMO and PIAS repress NF-κB activation in a basal chordate. Fish and Shellfish Immunology, 2023, 137, 108754.	3.6	0
1456	The long protostomic-type cytoplasmic intermediate filament (cIF) protein in Branchiostoma supports the phylogenetic transition between the protostomic- and the chordate-type cIFs. Protoplasma, 0, , .	2.1	1

CITATION REPORT

#	Article	IF	CITATIONS
1457	Unexpected Distribution of Chitin and Chitin Synthase across Soft-Bodied Cnidarians. Biomolecules, 2023, 13, 777.	4.0	2
1458	Genome-wide transcriptomics and microRNAomics analyses uncover multi-faceted mechanisms to cope with copper stress in ancient macrobenthos amphioxus. Journal of Hazardous Materials, 2023, 458, 131594.	12.4	1
1459	Functional characterization of two corticotropin-releasing hormone receptors in Larimichthys crocea. Frontiers in Marine Science, 0, 10, .	2.5	1
1460	Ring Finger 149-Related Is an FGF/MAPK-Independent Regulator of Pharyngeal Muscle Fate Specification. International Journal of Molecular Sciences, 2023, 24, 8865.	4.1	0
1462	The Impact of Whole Genome Duplication on the Evolution of the Arachnids. Integrative and Comparative Biology, 0, , .	2.0	1
1463	Discovery of Paralogous GnRH and Corazonin Signaling Systems in an Invertebrate Chordate. Genome Biology and Evolution, 2023, 15, .	2.5	1
1464	Evolution of affinity between p53 transactivation domain and <scp>MDM2</scp> across the animal kingdom demonstrates high plasticity of motifâ€mediated interactions. Protein Science, 2023, 32, .	7.6	3
1465	Amphioxus adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U and A-to-I deamination of DNA. Communications Biology, 2023, 6, .	4.4	1
1466	A Putative Role of Vasopressin/Oxytocin-Type Neuropeptide in Osmoregulation and Feeding Inhibition of Apostichopus japonicus. International Journal of Molecular Sciences, 2023, 24, 14358.	4.1	1
1467	TransIntegrator: capture nearly full protein-coding transcript variants via integrating Illumina and PacBio transcriptomes. Briefings in Bioinformatics, 2023, 24, .	6.5	0
1469	Ohnologs and SSD Paralogs Differ in Genomic and Expression Features Related to Dosage Constraints. Genome Biology and Evolution, 2023, 15, .	2.5	0
1470	A journey from speech to dance through the field of oxytocin. Comprehensive Psychoneuroendocrinology, 2023, 16, 100193.	1.7	0
1471	Linking Vertebrate Gene Duplications to the New Head Hypothesis. Biology, 2023, 12, 1213.	2.8	1
1472	日本æ [–] "è¼f内å^†æ³Œå¦ä¼šå¥"励賞ã,'å⊷賞ã⊷ã┥:脊索å⇔物ã«ãŠã'ã,‹éªï代è¬ãf›ãf«ãf¢ãf	³ ã f šãf—ã	fã∲‰ã€ã,≪ã
1473	Amphioxus as a model to study the evolution of development in chordates. ELife, 0, 12, .	6.0	0
1474	Evolution of the expression and regulation of the nuclear hormone receptor ERR gene family in the chordate lineage. Developmental Biology, 2023, 504, 12-24.	2.0	0
1475	Ciona spp. and ascidians as bioindicator organisms for evaluating effects of endocrine disrupting chemicals: A discussion paper. Marine Environmental Research, 2023, 191, 106170.	2.5	0
1477	Amphioxus Gli knockout disrupts the development of left–right asymmetry but has limited impact on neural patterning. Marine Life Science and Technology, 2023, 5, 492-499.	4.6	1

CITATION REPORT

#	Article	IF	CITATIONS
1478	Evolution of the Spider Homeobox Gene Repertoire by Tandem and Whole Genome Duplication. Molecular Biology and Evolution, 2023, 40, .	8.9	1
1479	Comparison of Evolutionary Relationships between Branchiostoma floridae, Ciona intestinalis, and Homo sapiens Globins Provide Evidence of Gene Co-Option and Convergent Evolution. International Journal of Molecular Sciences, 2023, 24, 16009.	4.1	0
1482	Genomic reconsideration of fish non-monophyly: why cannot we simply call them all â€~fish'?. Ichthyological Research, 0, , .	0.8	0
1483	Evolution of lysine-specific demethylase 1 and REST corepressor gene families and their molecular interaction. Communications Biology, 2023, 6, .	4.4	0
1484	Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nature Ecology and Evolution, 2024, 8, 519-535.	7.8	4
1485	Hagfish genome sequence sheds light on early vertebrate genome evolution. Nature Ecology and Evolution, 2024, 8, 372-373.	7.8	0
1487	Diversity hotspots on the benthos—Case studies highlight hidden treasures. , 2024, , 131-168.		0
1488	scRNA-seq analysis of cells comprising the amphioxus notochord. Developmental Biology, 2024, 508, 24-37.	2.0	0
1489	The hagfish genome and the evolution of vertebrates. Nature, 2024, 627, 811-820.	27.8	3
1490	Molecular and functional characterization of a type-1 cystatin in amphioxus (Branchiostoma) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 T
1491	Hepatic caecum of amphioxus and origin of vertebrate liver. Acta Oceanologica Sinica, 2023, 42, 1-8.	1.0	0
1492	Comparison of genes involved in brain development: insights into the organization and evolution of the telencephalic pallium. Scientific Reports, 2024, 14, .	3.3	0
1493	Reconstruction of Ancestral Genomes as a Key to Understanding the Early Evolution of Vertebrate Genotype. Russian Journal of Developmental Biology, 2023, 54, S1-S9.	0.5	0
1494	Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach. Nature Protocols, 0, , .	12.0	0
1495	A novel C-type lectin protein (BjCTL5) interacts with apoptosis stimulating proteins of p53 (ASPP) to activate NF-I°B signaling pathway in primitive chordate. Developmental and Comparative Immunology,	2.3	0

2024, 156, 105166.