DNA-guided crystallization of colloidal nanoparticles

Nature 451, 549-552 DOI: 10.1038/nature06560

Citation Report

#	Article	IF	CITATIONS
4	Coincidence of Density Jump and Plasma Emission Front Induced by Transversely Excited Atmospheric-Pressure CO2 Laser Bombardment at Low and High Pressures. Japanese Journal of Applied Physics, 2000, 39, L601-L603.	0.8	16
5	"Sweet―gold nanoparticles with oligosaccharide-modified poly(ethyleneimine). Colloid and Polymer Science, 2008, 286, 1317-1327.	1.0	35
6	Adenovirus Knob Trimers as Tailorable Scaffolds for Nanoscale Assembly. Small, 2008, 4, 1941-1944.	5.2	3
7	DNAâ€Mediated Synthesis of Microporous Singleâ€Crystalâ€Like NaTi ₂ (PO ₄) ₃ Nanospheres. Small, 2008, 4, 1976-1979.	5.2	27
8	The Third Dimension: DNAâ€Ðriven Formation of Nanoparticle Crystals. Small, 2008, 4, 1040-1042.	5.2	5
9	DNA-KrÃ r e und -Baumaterial. Chemie in Unserer Zeit, 2008, 42, 70-70.	0.1	1
10	Metalâ€Ionâ€Mediated Base Pairs in Nucleic Acids. European Journal of Inorganic Chemistry, 2008, 2008, 3749-3763.	1.0	156
11	Multiâ€Dimensional Control of Surfactantâ€Guided Assemblies of Quantum Gold Particles. Advanced Materials, 2008, 20, 4027-4032.	11.1	52
12	Nanoparticle Immobilization on Surfaces via Activatable Heterobifunctional Dithiocarbamate Bond Formation. Advanced Materials, 2008, 20, 4185-4188.	11.1	12
13	Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra. Analytical Chemistry, 2008, 80, 6620-6625.	3.2	255
14	Structure Direction of Ilâ^`VI Semiconductor Quantum Dot Binary Nanoparticle Superlattices by Tuning Radius Ratio. ACS Nano, 2008, 2, 1219-1229.	7.3	135
15	Golden handshake. Nature, 2008, 451, 528-529.	13.7	51
19	Design by DNA. Nature Nanotechnology, 2008, 3, 132-132.	15.6	3
20	Optical properties of DNA-CTMA and PA-CTMA doped with (E)-2-(2-(4-(diethylamino)styryl)-4H-pyan-4-ylidene)malononitrile (DCM). , 2008, , .		0
21	Stretching chimeric DNA: A test for the putative S-form. Journal of Chemical Physics, 2008, 129, 205101.	1.2	16
22	DNA Closed Nanostructures: A Structural and Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2008, 112, 15283-15294.	1.2	23
23	Controlling the Lattice Parameters of Gold Nanoparticle FCC Crystals with Duplex DNA Linkers. Nano Letters, 2008, 8, 2341-2344.	4.5	113
24	A New Peptide-Based Method for the Design and Synthesis of Nanoparticle Superstructures: Construction of Highly Ordered Gold Nanoparticle Double Helices. Journal of the American Chemical Society, 2008, 130, 13555-13557	6.6	340

#	ARTICLE	IF	Citations
25	DNA-embedded Au/Ag corea€ snell nanoparticles. Chemical Communications, 2008, , 5312.	2.2	84
26	Peptide antisense nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17222-17226.	3.3	103
27	Desoxyribonukleinsäre auf der Molekülbaustelle. Nachrichten Aus Der Chemie, 2008, 56, 659-661.	0.0	1
28	Assembling Materials with DNA as the Guide. Science, 2008, 321, 1795-1799.	6.0	933
29	"Chemical Transformers―from Nanoparticle Ensembles Operated with Logic. Nano Letters, 2008, 8, 2993-2997.	4.5	131
30	Nanoparticle Self-Assembly on a DNA-Scaffold Written by Single-Molecule Cut-and-Paste. Nano Letters, 2008, 8, 3692-3695.	4.5	51
31	Fabrication of nanoporous superstructures through hierarchical self-assembly of nanoparticles. Journal of Materials Chemistry, 2008, 18, 2208.	6.7	31
32	Self-Assembly by Mutual Association: Basic Thermodynamic Properties. Journal of Physical Chemistry B, 2008, 112, 16193-16204.	1.2	34
33	DNA and DNAzyme-Mediated 2D Colloidal Assembly. Journal of the American Chemical Society, 2008, 130, 8234-8240.	6.6	31
34	Robust Detection of Plasmon Coupling in Core-Satellite Nanoassemblies Linked by DNA. Journal of Physical Chemistry C, 2008, 112, 18331-18339.	1.5	45
35	Manipulating DNA Probe Presentation via Enzymatic Cleavage of Diluent Strands. Biomacromolecules, 2008, 9, 2468-2476.	2.6	12
36	Hierarchies of networked phases induced by multiple liquid–liquid critical points. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13711-13715.	3.3	67
37	Formation Of Defined Nanoparticle Constructs Containing Gold, Silver, And Gold-Silver Nanoparticles. AIP Conference Proceedings, 2008, , .	0.3	1
38	Construction of Two Color Semiconductor Quantum Dots Wire by utilizing the complementarity of DNA. AIP Conference Proceedings, 2008, , .	0.3	0
39	On the solution self-assembly of nanocolloidal brushes: insights from simulations. Nanotechnology, 2008, 19, 445606.	1.3	14
40	Chemical Biology: Past, Present and Future. Current Chemical Biology, 2008, 2, 278-311.	0.2	2
42	Simulating Mechanical Deformation in Nanomaterials with Application for Energy Storage in Nanoporous Architectures. ACS Nano, 2009, 3, 3308-3314.	7.3	23
43	Self-assembling DNA-caged particles: Nanoblocks for hierarchical self-assembly. Physical Review E, 2009, 79, 011404.	0.8	10

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
44	Aggregation phenomena in telechelic star polymer solutions. Physical Review E, 2009, 79, 010401.	0.8	36
45	Phase Behavior of Nanoparticles Assembled by DNA Linkers. Physical Review Letters, 2009, 102, 015504.	2.9	116
46	Simple Quantitative Model for the Reversible Association of DNA Coated Colloids. Physical Review Letters, 2009, 102, 048301.	2.9	124
47	Nanoessence: God, the first nano assembler. Technoetic Arts, 2009, 6, 217-231.	0.0	12
48	Assembly and organization processes in DNA-directed colloidal crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10493-10498.	3.3	133
49	The structure of hybrid radial superlattices. Journal Physics D: Applied Physics, 2009, 42, 103001.	1.3	34
50	Soft Hybrid Nanostructures Composed of Phospholipid Liposomes Decorated with Oligonucleotides. Methods in Enzymology, 2009, 464, 249-277.	0.4	3
51	Switching the mechanics of dsDNA by Cu salicylic aldehyde complexation. Nanotechnology, 2009, 20, 434002.	1.3	11
52	Geometric frustration in small colloidal clusters. Journal of Physics Condensed Matter, 2009, 21, 425103.	0.7	36
53	Biogenic metals in advanced water treatment. Trends in Biotechnology, 2009, 27, 90-98.	4.9	203
54	3D Ordered Gold Strings by Coating Nanoparticles with Mesogens. Advanced Materials, 2009, 21, 1746-1750.	11.1	124
57	Two Base Pair Duplexes Suffice to Build a Novel Material. ChemBioChem, 2009, 10, 1335-1339.	1.3	59
58	Understanding the mechanism of the dormant dauer formation of <i>C. elegans</i> : From genetics to biochemistry. IUBMB Life, 2009, 61, 607-612.	1.5	23
60	A DNA Nanostructure for the Functional Assembly of Chemical Groups with Tunable Stoichiometry and Defined Nanoscale Geometry. Angewandte Chemie - International Edition, 2009, 48, 525-527.	7.2	78
61	Formation of Patches on 3D SAMs Driven by Thiols with Immiscible Chains Observed by ESR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 3060-3064.	7.2	61
62	A pHâ€Triggered, Fastâ€Responding DNA Hydrogel. Angewandte Chemie - International Edition, 2009, 48, 7660-7663.	7.2	420
63	Construction of Bacteriophage Phi29 DNA Packaging Motor and its Applications in Nanotechnology and Therapy. Annals of Biomedical Engineering, 2009, 37, 2064-2081.	1.3	43
64	Origins and emergences of supramolecular chemistry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 221-235.	1.6	13

#	Article	IF	CITATIONS
65	Gold and gold–silver core-shell nanoparticle constructs with defined size based on DNA hybridization. Journal of Nanoparticle Research, 2009, 11, 623-633.	0.8	18
66	In quest of a systematic framework for unifying and defining nanoscience. Journal of Nanoparticle Research, 2009, 11, 1251-1310.	0.8	238
67	Nanofabrication by DNA self-assembly. Materials Today, 2009, 12, 24-32.	8.3	169
68	Controlled Assembly of Vesicleâ€Based Nanocontainers on Layerâ€byâ€Layer Particles via DNA Hybridization. Small, 2009, 5, 320-323.	5.2	30
69	An Integrated Multifunctional Nanosystem from Command Nanoparticles and Enzymes. Small, 2009, 5, 817-820.	5.2	63
70	Synthetically Programmable DNA Binding Domains in Aggregates of DNAâ€Functionalized Gold Nanoparticles. Small, 2009, 5, 2156-2161.	5.2	30
71	Designed DNA Crystals: Triangles with Short Sticky Ends. Small, 2009, 5, 2782-2783.	5.2	5
72	From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461, 74-77.	13.7	859
73	Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. Nature Materials, 2009, 8, 52-55.	13.3	83
74	Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Materials, 2009, 8, 388-391.	13.3	253
75	Undead layers breathe new life. Nature Materials, 2009, 8, 366-368.	13.3	7
76	DNA provides control. Nature Materials, 2009, 8, 365-366.	13.3	16
77	Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Materials, 2009, 8, 519-525.	13.3	372
78	Switchable self-protected attractions in DNA-functionalized colloids. Nature Materials, 2009, 8, 590-595.	13.3	134
79	Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature Materials, 2009, 8, 781-792.	13.3	829
80	Enzyme cascades activated on topologically programmed DNA scaffolds. Nature Nanotechnology, 2009, 4, 249-254.	15.6	636
81	The unnatural order of things. Nature Nanotechnology, 2009, 4, 203-203.	15.6	1
82	Directed assembly of gold nanoparticles. Current Opinion in Colloid and Interface Science, 2009, 14, 126-134.	3.4	60

#	Article	IF	CITATIONS
83	The origin of the molecular interaction between amino acids and gold nanoparticles: A theoretical and experimental investigation. Chemical Physics Letters, 2009, 469, 186-190.	1.2	42
84	Hydrogenâ€Bondâ€Assisted "Gold Cold Fusion―for Fabrication of 2D Web Structures. Chemistry - an Asian Journal, 2009, 4, 1055-1058.	1.7	12
85	Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science, 2009, 323, 112-116.	6.0	680
86	Fabrication of Massive Sheets of Single Layer Patterned Arrays Using Lipid Directed Reengineered Phi29 Motor Dodecamer. ACS Nano, 2009, 3, 100-107.	7.3	20
87	Nanoparticle assembly on nanoplates. Chemical Communications, 2009, , 1981.	2.2	19
88	Synthesis and Thermally Reversible Assembly of DNAâ^'Gold Nanoparticle Cluster Conjugates. Nano Letters, 2009, 9, 4564-4569.	4.5	86
89	Programmable Nanoparticle Assembly via Polymer Single Crystals. Macromolecules, 2009, 42, 9394-9399.	2.2	56
90	Gene Regulation with Polyvalent siRNAâ^'Nanoparticle Conjugates. Journal of the American Chemical Society, 2009, 131, 2072-2073.	6.6	574
91	The Role Radius of Curvature Plays in Thiolated Oligonucleotide Loading on Gold Nanoparticles. ACS Nano, 2009, 3, 418-424.	7.3	434
92	Insights into Templated Supramolecular Polymerization: Binding of Naphthalene Derivatives to ssDNA Templates of Different Lengths. Journal of the American Chemical Society, 2009, 131, 1222-1231.	6.6	86
93	Discrete Functional Gold Nanoparticles: Hydrogen Bond-Assisted Synthesis, Magnetic Purification, Supramolecular Dimer and Trimer Formation. ACS Nano, 2009, 3, 2129-2138.	7.3	56
94	A Unified Poland-Scheraga Model of Oligo- and Polynucleotide DNA Melting: Salt Effects and Predictive Power. Biophysical Journal, 2009, 96, 1056-1067.	0.2	36
95	Helical Polymers: Synthesis, Structures, and Functions. Chemical Reviews, 2009, 109, 6102-6211.	23.0	1,481
96	Optical Detection of Human Papillomavirus Type 16 and Type 18 by Sequence Sandwich Hybridization With Oligonucleotide-Functionalized Au Nanoparticles. IEEE Transactions on Nanobioscience, 2009, 8, 120-131.	2.2	25
97	Waterâ^'Dichloromethane Interface Controlled Synthesis of Hierarchical Rutile TiO ₂ Superstructures and Their Photocatalytic Properties. Inorganic Chemistry, 2009, 48, 1105-1113.	1.9	92
98	Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials. Nano Letters, 2009, 9, 2153-2159.	4.5	228
99	Rapid Synthesis of DNA-Functionalized Gold Nanoparticles in Salt Solution Using Mononucleotide-Mediated Conjugation. Bioconjugate Chemistry, 2009, 20, 1218-1222.	1.8	52
100	Materials science of DNA. Journal of Materials Chemistry, 2009, 19, 1353-1380.	6.7	165

#	Article	IF	CITATIONS
101	DNA-templated nanofabrication. Chemical Society Reviews, 2009, 38, 329-337.	18.7	136
102	Probing the Stability of Magnetically Assembled DNA-Linked Colloidal Chains. Langmuir, 2009, 25, 8944-8950.	1.6	24
103	Molecular Dynamics Simulation of DNA-Functionalized Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 2316-2321.	1.5	89
104	Regiospecific Assembly of Gold Nanoparticles around the Pores of Diatoms: Toward Three-Dimensional Nanoarrays. Journal of the American Chemical Society, 2009, 131, 8356-8357.	6.6	36
105	Curvature-Induced Base Pair "Slipping―Effects in DNA-Nanoparticle Hybridization. Nano Letters, 2009, 9, 317-321.	4.5	43
106	Electrostatically tuned DNA adsorption on like-charged colloids and resultant colloidal clustering. Soft Matter, 2009, 5, 4290.	1.2	8
107	Metal nanoparticle–DNA hybrids – from assembly towards functional conjugates. Journal of Materials Chemistry, 2009, 19, 1518.	6.7	25
108	Closed nanoconstructs assembled by step-by-step ss-DNA coupling assisted by phospholipid membranes. Soft Matter, 2009, 5, 1639.	1.2	29
109	Modulation of attractive colloidal interactions by lipid membrane-functionalization. Soft Matter, 2009, 5, 2027.	1.2	10
110	Towards self-replicating materials of DNA-functionalized colloids. Soft Matter, 2009, 5, 2422.	1.2	86
111	A Two-Dimensional DNA Array: The Three-Layer Logpile. Journal of the American Chemical Society, 2009, 131, 13574-13575.	6.6	21
112	Monodisperse Icosahedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation. ACS Nano, 2009, 3, 139-148.	7.3	175
114	Collective charge fluctuations in single-electron processes on nanonetworks. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P02015.	0.9	3
115	Harnessing the properties of fiber-reinforced composites in the design of tissue-engineered scaffolds. , 2010, , 296-322.		1
117	ESR spectroscopy as a tool to investigate the properties of self-assembled monolayers protecting gold nanoparticles. Nanoscale, 2010, 2, 668.	2.8	48
118	Synthesis, Characterization, and Self-Organization of Dendrimer-Encapsulated HgTe Quantum Dots. Langmuir, 2010, 26, 10636-10644.	1.6	22
119	Sequence-Specifically Addressable Hairpin DNAâ^'Single-Walled Carbon Nanotube Complexes for Nanoconstruction. ACS Nano, 2010, 4, 649-656.	7.3	18
120	Nanomaterials Based on DNA. Annual Review of Biochemistry, 2010, 79, 65-87.	5.0	933

#	Article	IF	CITATIONS
121	Efficient synthesis of PbTe nanoparticle networks. Nano Research, 2010, 3, 685-693.	5.8	18
122	The many twists and turns of DNA: template, telomere, tool, and target. Current Opinion in Structural Biology, 2010, 20, 262-275.	2.6	28
123	Colloidal Assembly via Shape Complementarity. ChemPhysChem, 2010, 11, 3215-3217.	1.0	14
124	Asymmetric DNA Origami for Spatially Addressable and Indexâ€Free Solutionâ€Phase DNA Chips. Advanced Materials, 2010, 22, 2672-2675.	11.1	62
132	Peptideâ€Based Methods for the Preparation of Nanostructured Inorganic Materials. Angewandte Chemie - International Edition, 2010, 49, 1924-1942.	7.2	428
133	Probing in Real Time the Soft Crystallization of DNA apped Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 380-384.	7.2	71
134	Gold Nanoparticles for Biology and Medicine. Angewandte Chemie - International Edition, 2010, 49, 3280-3294.	7.2	2,096
135	DNAâ€Origamiâ€Directed Selfâ€Assembly of Discrete Silverâ€Nanoparticle Architectures. Angewandte Chemie - International Edition, 2010, 49, 2700-2704.	7.2	278
136	Establishing the Design Rules for DNAâ€Mediated Programmable Colloidal Crystallization. Angewandte Chemie - International Edition, 2010, 49, 4589-4592.	7.2	139
137	Threeâ€Dimensional Directed Selfâ€Assembly of Peptide Nanowires into Micrometerâ€Sized Crystalline Cubes with Nanoparticle Joints. Angewandte Chemie - International Edition, 2010, 49, 8375-8378.	7.2	27
138	Molecular biomimetics: GEPlâ€based biological routes to technology. Biopolymers, 2010, 94, 78-94.	1.2	88
139	Dispersions of plate-like colloidal particles – Cubatic order?. Journal of Colloid and Interface Science, 2010, 348, 80-84.	5.0	22
140	DNA assisted fragmentation of nickel nanoparticle clusters and their spectral properties. Journal of Inorganic Biochemistry, 2010, 104, 712-717.	1.5	5
141	Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1-35.	1.1	551
142	Biological synthesis of platinum nanoparticles: Effect of initial metal concentration. Enzyme and Microbial Technology, 2010, 46, 501-505.	1.6	72
143	Detection of protein–DNA interaction and regulation using gold nanoparticles. Analytical Biochemistry, 2010, 399, 262-267.	1.1	16
144	Highâ€Resolution, Parallel Patterning of Nanoparticles via an Ionâ€Induced Focusing Mask. Small, 2010, 6, 2146-2152.	5.2	29
145	Novel DNA materials and their applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 648-669.	3.3	79

#	Article	IF	Citations
146	Threeâ€Ðimensional Fabrication at Small Size Scales. Small, 2010, 6, 792-806.	5.2	236
147	Lock and key colloids. Nature, 2010, 464, 575-578.	13.7	699
148	Synergistic self-assembly of RNA and DNA molecules. Nature Chemistry, 2010, 2, 1050-1055.	6.6	117
149	Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Materials, 2010, 9, 60-67.	13.3	1,083
150	DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Materials, 2010, 9, 913-917.	13.3	596
151	DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and proteinÂnanoparticles. Nature Materials, 2010, 9, 918-922.	13.3	121
152	Made to order. Nature Materials, 2010, 9, 885-887.	13.3	39
153	Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nature Nanotechnology, 2010, 5, 116-120.	15.6	268
154	Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotechnology, 2010, 5, 121-126.	15.6	388
155	Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 2010, 5, 15-25.	15.6	1,449
156	The Unlikely Surfactant: DNA as a Ligand for Single-Walled Carbon Nanotubes. , 0, , .		1
157	Production of semiconducting gold–DNA nanowires by application of DC bias. Nanotechnology, 2010, 21, 185604.	1.3	6
158	Modeling collective charge transport in nanoparticle assemblies. Journal of Physics Condensed Matter, 2010, 22, 163201.	0.7	35
159	Integrating <i>in situ</i> high pressure small and wide angle synchrotron x-ray scattering for exploiting new physics of nanoparticle supercrystals. Review of Scientific Instruments, 2010, 81, 093902.	0.6	57
160	Aggregation-disaggregation transition of DNA-coated colloids: Experiments and theory. Physical Review E, 2010, 81, 041404.	0.8	84
161	Theoretical Description of a DNA-Linked Nanoparticle Self-Assembly. Physical Review Letters, 2010, 105, 055502.	2.9	38
163	The Polyvalent Gold Nanoparticle Conjugate—Materials Synthesis, Biodiagnostics, and Intracellular Gene Regulation. MRS Bulletin, 2010, 35, 532-539.	1.7	32
164	Single-step generation of fluorophore-encapsulated gold nanoparticle core–shell materials. Nanotechnology, 2010, 21, 345603.	1.3	5

#	Article	IF	CITATIONS
165	Computational analysis of binary segregation during colloidal crystallization with DNA-mediated interactions. Journal of Chemical Physics, 2010, 132, 234705.	1.2	35
166	Screening Nanopyramid Assemblies to Optimize Surface Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2010, 1, 1046-1050.	2.1	34
167	Phase behavior of repulsive polymer-tethered colloids. Journal of Chemical Physics, 2010, 132, 014901.	1.2	8
168	Target-Responsive Structural Switching for Nucleic Acid-Based Sensors. Accounts of Chemical Research, 2010, 43, 631-641.	7.6	704
169	DNA-functionalized colloids: Physical properties and applications. Soft Matter, 2010, 6, 4647.	1.2	136
170	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructuresviaself-assembly. Journal of Materials Chemistry, 2010, 20, 900-906.	6.7	167
171	Designing colloidal ground-state patterns using short-range isotropic interactions. Physical Review E, 2010, 82, 021404.	0.8	9
172	Nanotribology Results Show that DNA Forms a Mechanically Resistant 2D Network in Metaphase Chromatin Plates. Biophysical Journal, 2010, 99, 3951-3958.	0.2	13
173	Covalently Linked DNA Nanotubes. Nano Letters, 2010, 10, 1458-1465.	4.5	20
174	Formation of Thick, Large-Area Nanoparticle Superlattices in Lithographically Defined Geometries. Nano Letters, 2010, 10, 1517-1521.	4.5	24
175	Scavenger Receptors Mediate Cellular Uptake of Polyvalent Oligonucleotide-Functionalized Gold Nanoparticles. Bioconjugate Chemistry, 2010, 21, 2250-2256.	1.8	317
176	Nanoparticles in aqueous media: crystallization and solvation charge asymmetry. Soft Matter, 2010, 6, 331-341.	1.2	26
177	Assembly, Structure and Optical Response of Three-Dimensional Dynamically Tunable Multicomponent Superlattices. Nano Letters, 2010, 10, 4456-4462.	4.5	66
178	Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes. Nano Letters, 2010, 10, 3367-3372.	4.5	220
179	Systematic Electron Crystallographic Studies of Self-Assembled Binary Nanocrystal Superlattices. ACS Nano, 2010, 4, 2374-2381.	7.3	52
180	Bistability and Hysteresis During Aggregation of Charged Nanoparticles. Journal of Physical Chemistry Letters, 2010, 1, 1459-1462.	2.1	38
181	DNA-Mediated Two-Dimensional Colloidal Crystallization above Different Attractive Surfaces. Langmuir, 2010, 26, 16921-16927.	1.6	6
182	Plasmonic Signatures in the Composite Crystals of Gold Nanoparticles and <i>p</i> -Hydroxyacetanilide (Paracetamol). Langmuir, 2010, 26, 15714-15717.	1.6	6

#	Article	IF	CITATIONS
183	Assembly of Nanorods into Designer Superstructures: The Role of Templating, Capillary Forces, Adhesion, and Polymer Hydration. ACS Nano, 2010, 4, 259-266.	7.3	40
184	Structural DNA Nanotechnology: Growing Along with <i>Nano Letters</i> . Nano Letters, 2010, 10, 1971-1978.	4.5	157
185	DNA Density-Dependent Assembly Behavior of Colloidal Micelles. Langmuir, 2010, 26, 9818-9826.	1.6	11
186	Modulation of Density and Orientation of Amphiphilic DNA on Phospholipid Membranes. II. Vesicles. Journal of Physical Chemistry B, 2010, 114, 7348-7358.	1.2	23
187	Complexity in Nanoparticle Assembly and Function Obtained by Direct-Grafted Peptides. Langmuir, 2010, 26, 1013-1018.	1.6	2
188	Well-Defined DNA Nanoparticles Templated by Self-Assembled M12L24Molecular Spheres and Binding of Complementary Oligonucleotides. Journal of the American Chemical Society, 2010, 132, 15930-15932.	6.6	67
189	DNA hybridization for nanocube functionalization. , 2010, , .		1
190	Formation of Gold Particles on Nanoscale Toroidal DNA Assembled with Bis(ethylenediamine)gold(III). Langmuir, 2010, 26, 10250-10253.	1.6	16
191	Site-Specific Patterning of Highly Ordered Nanocrystal Superlattices through Biomolecular Surface Confinement. ACS Nano, 2010, 4, 5076-5080.	7.3	17
192	Valency Dependence of Polymorphism and Polyamorphism in DNA-Functionalized Nanoparticles. Langmuir, 2010, 26, 3601-3608.	1.6	37
193	Real-Time Monitoring of Copolymer Stabilized Growing Gold Nanoparticles. Langmuir, 2010, 26, 5889-5894.	1.6	32
194	Chain Stiffness and Attachment-Dependent Attraction between Polyelectrolyte-Grafted Colloids. Journal of Physical Chemistry B, 2010, 114, 15886-15896.	1.2	9
195	Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles. Chemistry of Materials, 2010, 22, 3226-3235.	3.2	28
196	Nucleotides and Nucleic Acids; Oligo- and Polynucleotides. Organophosphorus Chemistry, 2010, , 144-237.	0.3	1
197	Directed Self-Assembly of Nanoparticles. ACS Nano, 2010, 4, 3591-3605.	7.3	1,938
198	Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine, 2010, 5, 1237-1260.	1.7	94
199	Supramolecular hemoprotein–gold nanoparticle conjugates. Chemical Communications, 2010, 46, 9107.	2.2	28
200	Single-molecule derivation of salt dependent base-pair free energies in DNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15431-15436.	3.3	215

#	Article	IF	CITATIONS
201	Programmed Nanoparticle Aggregation Using Molecular Beacons. Angewandte Chemie - International Edition, 2010, 49, 7917-7919.	7.2	13
202	Polyvalent Oligonucleotide Iron Oxide Nanoparticle "Click―Conjugates. Nano Letters, 2010, 10, 1477-1480.	4.5	141
203	Stable Gold Nanoparticle Conjugation to Internal DNA Positions: Facile Generation of Discrete Gold Nanoparticleâ^'DNA Assemblies. Bioconjugate Chemistry, 2010, 21, 1413-1416.	1.8	50
204	Quantitative Study of the Association Thermodynamics and Kinetics of DNA-Coated Particles for Different Functionalization Schemes. Journal of the American Chemical Society, 2010, 132, 1903-1913.	6.6	50
205	Bioassembled Layered Silicate-Metal Nanoparticle Hybrids. ACS Applied Materials & Interfaces, 2010, 2, 1492-1498.	4.0	27
206	Adsorption and Aggregation Characteristics of Silver Nanoparticles onto a Poly(4-vinylpyridine) Film: A Comparison with Gold Nanoparticles. Langmuir, 2010, 26, 10827-10832.	1.6	41
208	DNA-incorporating nanomaterials in biotechnological applications. Nanomedicine, 2010, 5, 319-334.	1.7	30
209	Mutual Transformation between Random Nanoparticles and Their Superlattices: The Configuration of Capping Ligand Chains. Journal of Physical Chemistry C, 2010, 114, 11425-11429.	1.5	14
210	Self-lubricating nanoparticles: self-organization into 3D-superlattices during a fast drying process. Chemical Communications, 2010, 46, 8977.	2.2	21
211	Effects of the ionic size-asymmetry around a charged nanoparticle: unequal charge neutralization and electrostatic screening. Soft Matter, 2010, 6, 2056.	1.2	70
212	Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles. Analyst, The, 2010, 135, 2682.	1.7	41
213	Flying colloidal carpets. Soft Matter, 2010, 6, 664-669.	1.2	22
214	Programming the kinetics and extent of colloidal disassembly using a DNA trigger. Soft Matter, 2010, 6, 4446.	1.2	15
215	Anomalous phase behavior of liquid–vapor phase transition in binary mixtures of DNA-coated particles. Soft Matter, 2010, 6, 6136.	1.2	25
216	Universal two-step crystallization of DNA-functionalized nanoparticles. Soft Matter, 2010, 6, 6130.	1.2	32
217	Cu ^{II} Cross-Linked Antiparallel Dipeptide Duplexes Using Heterofunctional Ligand-Substituted Aminoethylglycine. Inorganic Chemistry, 2010, 49, 5126-5133.	1.9	9
218	A detailed study of growth of nanostructured poly(aniline) particles in the light of thermodynamic interaction balance. Physical Chemistry Chemical Physics, 2010, 12, 11905.	1.3	2
219	Effects of mismatches on DNA as an isothermal assembly and disassembly tool. Soft Matter, 2010, 6, 3832.	1.2	8

#	Article	IF	CITATIONS
220	Adaptive DNA-based materials for switching, sensing, and logic devices. Journal of Materials Chemistry, 2011, 21, 6113.	6.7	26
221	A pH-driven DNA nanoswitch for responsive controlled release. Chemical Communications, 2011, 47, 2850.	2.2	109
222	Self-replication of information-bearing nanoscale patterns. Nature, 2011, 478, 225-228.	13.7	105
223	Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter, 2011, 7, 6757.	1.2	170
224	Stability of DNA-linked nanoparticle crystals I: Effect of linker sequence and length. Soft Matter, 2011, 7, 2085.	1.2	49
225	Gold nanorod ensembles as artificial molecules for applications in sensors. Journal of Materials Chemistry, 2011, 21, 16759.	6.7	59
226	Assembly of copolymer functionalized nanoparticles: a Monte Carlo simulation study. Soft Matter, 2011, 7, 5952.	1.2	37
227	Chemically induced self-assembly of spherical and anisotropic inorganic nanocrystals. Journal of Materials Chemistry, 2011, 21, 16694.	6.7	45
228	Specific adhesion between DNA-functionalized "Janus―vesicles: size-limited clusters. Soft Matter, 2011, 7, 1747-1755.	1.2	63
229	Self-Assembly Enters the Design Era. Science, 2011, 334, 183-184.	6.0	35
230	Binary Heterogeneous Superlattices Assembled from Quantum Dots and Gold Nanoparticles with DNA. Journal of the American Chemical Society, 2011, 133, 5252-5254.	6.6	88
231	Polypeptide Folding-Mediated Tuning of the Optical and Structural Properties of Gold Nanoparticle Assemblies. Nano Letters, 2011, 11, 5564-5573.	4.5	55
232	Direct Attachment of Oligonucleotides to Quantum Dot Interfaces. Chemistry of Materials, 2011, 23, 4975-4981.	3.2	41
233	Free-Standing Polymer–Nanoparticle Superlattice Sheets Self-Assembled at the Air–Liquid Interface. Crystal Growth and Design, 2011, 11, 4742-4746.	1.4	56
234	Assembly-Based Titration for the Determination of Monodisperse Plasmonic Nanoparticle Concentrations Using DNA. Analytical Chemistry, 2011, 83, 4989-4995.	3.2	8
235	Thiolated Dendrimers as Multi-Point Binding Headgroups for DNA Immobilization on Gold. Langmuir, 2011, 27, 12434-12442.	1.6	26
236	Photon-Regulated DNA-Enzymatic Nanostructures by Molecular Assembly. ACS Nano, 2011, 5, 10090-10095.	7.3	53
237	Disassembly of a Core–Satellite Nanoassembled Substrate for Colorimetric Biomolecular Detection. ACS Nano, 2011, 5, 5383-5389.	7.3	69

#	Article	IF	CITATIONS
238	Two-Dimensional Packing of Short DNA with Nonpairing Overhangs in Cationic Liposome–DNA Complexes: From Onsager Nematics to Columnar Nematics with Finite-Length Columns. Journal of the American Chemical Society, 2011, 133, 7585-7595.	6.6	42
239	Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles. Journal of the American Chemical Society, 2011, 133, 2120-2123.	6.6	111
240	Sterically controlled docking of gold nanoparticles on ferritin surface by DNA hybridization. Nanotechnology, 2011, 22, 275312.	1.3	5
241	Crystalline Gibbs Monolayers of DNA-Capped Nanoparticles at the Air–Liquid Interface. ACS Nano, 2011, 5, 7978-7985.	7.3	53
242	Probing DNA's Interstrand Orientation with Gold Nanoparticles. Analytical Chemistry, 2011, 83, 5067-5072.	3.2	8
243	DNA-Enabled Self-Assembly of Plasmonic Nanoclusters. Nano Letters, 2011, 11, 4859-4864.	4.5	136
244	DNA-based programming of quantum dot valency, self-assembly and luminescence. Nature Nanotechnology, 2011, 6, 485-490.	15.6	237
245	Chemistry of nucleic acids: impacts in multiple fields. Chemical Communications, 2011, 47, 7018.	2.2	56
246	The Fabrication of Stable Gold Nanoparticle-Modified Interfaces for Electrochemistry. Langmuir, 2011, 27, 4176-4183.	1.6	150
247	Engineering DNA-based functional materials. Chemical Society Reviews, 2011, 40, 5730.	18.7	263
248	Design Rule for Colloidal Crystals of DNA-Functionalized Particles. Physical Review Letters, 2011, 107, 045902.	2.9	74
249	Self-assembling DNA templates for programmed artificial biomineralization. Soft Matter, 2011, 7, 3240.	1.2	31
250	Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology, 2011, 6, 763-772.	15.6	1,169
251	New Synthesis Strategy for DNA Functional Gold Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 3243-3249.	1.5	33
252	Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory. Journal of Chemical Physics, 2011, 135, 114901.	1.2	49
253	DNA-templated assembly of droplet-derived PEG microtissues. Lab on A Chip, 2011, 11, 2967.	3.1	60
254	Colloidal Structure and Stability of DNA/Polycations Polyplexes Investigated by Small Angle Scattering. Biomacromolecules, 2011, 12, 4272-4282.	2.6	11
255	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202

#	Article	IF	CITATIONS
256	STRUCTURAL DNA NANOTECHNOLOGY: INFORMATION GUIDED SELF-ASSEMBLY. , 2011, , 65-84.		1
257	Bio-Mediated Assembly of Ordered Nanoparticle Superstructures. , 2011, , 69-103.		Ο
258	Modifying Fe ₃ O ₄ -Functionalized Nanoparticles with <i>N</i> -Halamine and Their Magnetic/Antibacterial Properties. ACS Applied Materials & Interfaces, 2011, 3, 4228-4235.	4.0	133
259	Two dimensional assembly of triblock Janus particles into crystal phases in the two bond per patch limit. Soft Matter, 2011, 7, 5799.	1.2	106
260	Patchy colloids: state of the art and perspectives. Physical Chemistry Chemical Physics, 2011, 13, 6397.	1.3	409
261	Dissociation and Degradation of Thiol-Modified DNA on Gold Nanoparticles in Aqueous and Organic Solvents. Langmuir, 2011, 27, 6132-6137.	1.6	105
262	Materials design by DNA programmed self-assembly. Current Opinion in Solid State and Materials Science, 2011, 15, 262-270.	5.6	48
263	Reversible gels of patchy particles. Current Opinion in Solid State and Materials Science, 2011, 15, 246-253.	5.6	106
264	Site-Selective Binding of Nanoparticles to Double-Stranded DNA <i>via</i> Peptide Nucleic Acid "Invasion― ACS Nano, 2011, 5, 2467-2474.	7.3	22
265	Subdiffusion of a Sticky Particle on a Surface. Physical Review Letters, 2011, 106, 228102.	2.9	89
266	Linear birefringence magnitude of artificial self-assembled DNA crystals. Optical Materials Express, 2011, 1, 936.	1.6	1
267	Crystallization of Fluorescent Quantum Dots within a Three-Dimensional Bio-Organic Template of Actin Filaments and Lipid Membranes. Nano Letters, 2011, 11, 5443-5448.	4.5	32
268	Switching of the enzymatic activity synchronized with signal recognition by an artificial DNA receptor on a liposomal membrane. Organic and Biomolecular Chemistry, 2011, 9, 2397.	1.5	4
269	The Frontier of Inorganic Synthesis and Preparative Chemistry (I)—Biomimetic Synthesis. , 2011, , 525-553.		3
270	Numerical study of DNA-functionalized microparticles and nanoparticles: Explicit pair potentials and their implications for phase behavior. Journal of Chemical Physics, 2011, 134, 084702.	1.2	75
271	DNA-Templated Fabrication of Two-Dimensional Metallic Nanostructures by Thermal Evaporation Coating. Journal of the American Chemical Society, 2011, 133, 1742-1744.	6.6	38
272	Observation of empty liquids and equilibrium gels in a colloidal clay. Nature Materials, 2011, 10, 56-60.	13.3	307
273	Building plasmonic nanostructures with DNA. Nature Nanotechnology, 2011, 6, 268-276.	15.6	736

#	Article	IF	CITATIONS
274	Directed self-assembly of a colloidal kagome lattice. Nature, 2011, 469, 381-384.	13.7	1,068
275	Effect of nanosize on catalytic properties of ferric (hydr)oxides in water: Mechanistic insights. Journal of Catalysis, 2011, 282, 25-34.	3.1	34
276	Nanoparticle Superlattice Engineering with DNA. Science, 2011, 334, 204-208.	6.0	1,013
277	A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions. Soft Matter, 2011, 7, 1912.	1.2	59
278	Assembly of DNA-Functionalized Gold Nanoparticles with Gaps and Overhangs in Linker DNA. Journal of Physical Chemistry C, 2011, 115, 7851-7857.	1.5	32
279	Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity. ACS Nano, 2011, 5, 5478-5489.	7.3	716
280	Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Materials, 2011, 10, 872-876.	13.3	415
281	Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews, 2011, 111, 3736-3827.	23.0	1,080
282	Emergences of supramolecular chemistry: from supramolecular chemistry to supramolecular science. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 251-274.	1.6	20
283	Biogenic materialization using pear extract intended for the synthesis and design of ordered gold nanostructures. Journal of Materials Science, 2011, 46, 4741-4747.	1.7	15
284	Towards a universal organogelator: A general mixing approach to fabricate various organic compounds into organogels. Science China Chemistry, 2011, 54, 1051-1063.	4.2	26
285	Shaped gold and silver nanoparticles. Frontiers of Materials Science, 2011, 5, 1-24.	1.1	27
286	Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges. Small, 2011, 7, 2133-2146.	5.2	191
287	Surfaceâ€Ðriven DNA Assembly of Binary Cubic 3D Nanocrystal Superlattices. Small, 2011, 7, 3021-3025.	5.2	24
288	Controlling forces and pathways in selfâ€assembly using viruses and DNA. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 282-297.	3.3	10
289	Sensing Nucleic Acids with Dimer Nanoclusters. Advanced Functional Materials, 2011, 21, 1051-1057.	7.8	11
290	Colloidal Crystallization of Surfactantâ€Free ZnO Quantum Dots. ChemPhysChem, 2011, 12, 3533-3538.	1.0	3
295	Colloidal Assembly: The Road from Particles to Colloidal Molecules and Crystals. Angewandte Chemie - International Edition, 2011, 50, 360-388.	7.2	659

#	Article	IF	CITATIONS
296	Branched DNA That Forms a Solid at 95 °C. Angewandte Chemie - International Edition, 2011, 50, 3227-3231.	7.2	66
297	DNA‣inked Nanoparticle Building Blocks for Programmable Matter. Angewandte Chemie - International Edition, 2011, 50, 9185-9190.	7.2	88
298	Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization. Angewandte Chemie - International Edition, 2011, 50, 11994-11998.	7.2	306
299	Stabilization of nanoparticles under biological assembly conditions using peptoids. Biopolymers, 2011, 96, 669-678.	1.2	18
300	Synthesis of nano ground nutshell-like polyindole by supramolecular assembled salts of ss-DNA assisted chloroauric acid. Chemical Physics Letters, 2011, 511, 77-81.	1.2	9
301	Role of electrostatic interactions in two-dimensional self-assembly of tobacco mosaic viruses on cationic lipid monolayers. Journal of Colloid and Interface Science, 2011, 358, 497-505.	5.0	10
302	DNA-functionalized thermoresponsive bioconjugates synthesized via ATRP and click chemistry. Polymer, 2011, 52, 895-900.	1.8	42
303	Silica through the eyes of colloidal models—when glass is a gel. Journal of Physics Condensed Matter, 2011, 23, 285101.	0.7	7
304	Stability of DNA-linked nanoparticle crystals: Effect of number of strands, core size, and rigidity of strand attachment. Journal of Chemical Physics, 2011, 134, 244701.	1.2	34
305	Design principles for self-assembly with short-range interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5193-5198.	3.3	86
306	Growing large nanostructured superlattices from a continuum medium by sequential activation of self-assembly. Physical Review E, 2011, 83, 041610.	0.8	2
307	Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles. Physical Review Letters, 2011, 107, 105503.	2.9	53
308	Dynamics and Statics of DNA-Programmable Nanoparticle Self-Assembly and Crystallization. Physical Review Letters, 2011, 106, 215501.	2.9	124
309	Theory of Programmable Hierarchic Self-Assembly. Physical Review Letters, 2011, 106, 255501.	2.9	44
310	Three-dimensional colloidal crystals in liquid crystalline blue phases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5188-5192.	3.3	205
311	Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15687-15692.	3.3	155
312	Routes to Nanoparticle-Polymer Superlattices. Polymers, 2011, 3, 662-673.	2.0	32
313	DNA-Based Soft Phases. Topics in Current Chemistry, 2011, 318, 225-279.	4.0	29

		Citation Report	
#	Article	IF	Citations
314	DNA as scaffolding for nanophotonic structures. Journal of Nanophotonics, 2012, 6, 064505-1.	0.4	21
315	Polygamous particles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18731-18736.	3.3	34
316	End-to-end attraction of duplex DNA. Nucleic Acids Research, 2012, 40, 3812-3821.	6.5	81
317	Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nature Communications, 2012, 3, 1209.	5.8	110
318	Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamenta nanoscale forces. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, 2240-2245.	 a, 3.3	144
319	Dynamics of solvent-free grafted nanoparticles. Journal of Chemical Physics, 2012, 136, 044902.	1.2	49
320	Anomalously-large photo-induced magnetic response of metallic nanocolloids in aqueous solution using a solar simulator. Optics Express, 2012, 20, 19214.	1.7	13
321	Topological Interaction by Entangled DNA Loops. Physical Review Letters, 2012, 109, 188301.	2.9	3
322	A general theory of DNA-mediated and other valence-limited colloidal interactions. Journal of Chemical Physics, 2012, 137, 094108.	1.2	96
323	Spontaneous propagation of self-assembly in a continuous medium. Physical Review E, 2012, 85, 04	41124. 0.8	2
324	Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces. Journal of Physics Condensed Matter, 2012, 24, 424219.	0.7	14
325	DNA Hairs Provide Potential for Molecular Self-Assembly. Physics Magazine, 2012, 5, .	0.1	0
326	Structural phases of colloids interacting via a flat-well potential. Physical Review E, 2012, 86, 05140)2. 0.8	17
327	Tailoring Quantum Dot Interfaces for Improved Biofunctionality and Energy Transfer. ACS Symposic Series, 2012, , 59-79.	ım 0.5	1
328	Dynamics of DNA-programmable nanoparticle crystallization: gelation, nucleation and topological defects. Soft Matter, 2012, 8, 12053.	1.2	43
329	Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chemical Society Reviews, 2012, 41, 7085.	18.7	380
330	Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano, 2012, 6, 11059-110)65. 7.3	338
331	Analysis of DNA-Guided Self-Assembly of Microspheres Using Imaging Flow Cytometry. Journal of th American Chemical Society, 2012, 134, 15245-15248.	e 6.6	14

#	Article	IF	Citations
332	Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today, 2012, 7, 564-585.	6.2	202
333	Self-assembled nanostructures of Ag6[PV3Mo9O40] with N-donor ligands and their catalytic activity. RSC Advances, 2012, 2, 11449.	1.7	9
334	Molecular Thinking for Nanoplasmonic Design. ACS Nano, 2012, 6, 3655-3662.	7.3	95
335	Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing linkages. Soft Matter, 2012, 8, 2213.	1.2	42
336	Solution-Phase Synthesis of Branched DNA Hybrids Based on Dimer Phosphoramidites and Phenolic or Nucleosidic Cores. Journal of Organic Chemistry, 2012, 77, 2703-2717.	1.7	24
337	Solution-Phase Synthesis of Branched DNA Hybrids via <i>H</i> -Phosphonate Dimers. Journal of Organic Chemistry, 2012, 77, 2718-2728.	1.7	28
338	The surface plasmon modes of self-assembled gold nanocrystals. Nature Communications, 2012, 3, 1275.	5.8	157
339	Nanostructures Conjugated to Nucleic Acids and Their Applications. ACS Symposium Series, 2012, , 259-288.	0.5	0
340	Templating of inorganic nanomaterials by biomacromolecules and their assemblies. Polymer Science - Series C, 2012, 54, 80-87.	0.8	12
341	Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a pH-Assisted and Surfactant-Free Route. Journal of the American Chemical Society, 2012, 134, 7266-7269.	6.6	477
342	Instantaneous Attachment of an Ultrahigh Density of Nonthiolated DNA to Gold Nanoparticles and Its Applications. Langmuir, 2012, 28, 17053-17060.	1.6	157
344	Amplifying the Macromolecular Crowding Effect Using Nanoparticles. Journal of the American Chemical Society, 2012, 134, 35-38.	6.6	50
345	Genetically engineered protein nanowires: unique features in site-specific functionalization and multi-dimensional self-assembly. Soft Matter, 2012, 8, 7533.	1.2	18
346	Nucleic acid-mediated gold oxidation: novel biolithography for surface microfabrication and new insight into gold-based biomaterials. Chemical Communications, 2012, 48, 8787.	2.2	14
347	Diffusive behaviour of PLL–PEG coated colloids on λ-DNA brushes – tuning hydrophobicity. Soft Matter, 2012, 8, 6792.	1.2	11
348	Control of anisotropic self-assembly of gold nanoparticles coated with mesogens. Journal of Materials Chemistry, 2012, 22, 11101.	6.7	47
349	Bio-inspired hierarchical self-assembly of nanotubes into multi-dimensional and multi-scale structures. Nanoscale, 2012, 4, 224-230.	2.8	11
350	Bubble-promoted assembly of hierarchical, porous Ag2S nanoparticle membranes. Journal of Materials Chemistry, 2012, 22, 24721.	6.7	5

ARTICLE IF CITATIONS # One-pot synthesis of noble metal nanoparticles and their ordered self-assembly nanostructures. Soft 351 1.2 11 Matter, 2012, 8, 3743. Heterogeneous nanoclusters assembled by PNA-templated double-stranded DNA. Nanoscale, 2012, 4, 2.8 6722. Facetted patchy particles through entropy-driven patterning of mixed ligand SAMS. Nanoscale, 2012, 4, 353 2.8 26 2640 A flexible DNA modification approach towards construction of gold nanoparticle assemblies. 354 Chemical Communications, 2012, 48, 3963. Reversible Plasmonic Circular Dichroism of Au Nanorod and DNA Assemblies. Journal of the American 355 307 6.6 Chemical Society, 2012, 134, 3322-3325. Field-Directed Self-Assembly with Locking Nanoparticles. Nano Letters, 2012, 12, 3814-3820. 4.5 Synchronized Assembly of Gold Nanoparticles Driven by a Dynamic DNA-Fueled Molecular Machine. 357 6.6 96 Journal of the American Chemical Society, 2012, 134, 10803-10806. Supercrystals of DNA-Functionalized Gold Nanoparticles: A Million-Atom Molecular Dynamics 1.5 Simulation Study. Journal of Physical Chemistry C, 2012, 116, 19579-19585. Nanoparticle Assemblies in Thin Films of Supramolecular Nanocomposites. Nano Letters, 2012, 12, 359 4.5 74 2610-2618. DNA-Directed Assembly of Asymmetric Nanoclusters Using Janus Nanoparticles. ACS Nano, 2012, 6, 7.3 802-809. Exploring the thermal stability of DNA-linked gold nanoparticles in ionic liquids and molecular 361 3.7 32 solvents. Chemical Science, 2012, 3, 3216. Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole–Imidazole Polyamides. 6.6 Journal of the American Chemical Society, 2012, 134, 8356-8359. Resolving the Growth of 3D Colloidal Nanoparticle Superlattices by Real-Time Small-Angle X-ray 363 6.6 31 Scattering. Journal of the American Chemical Society, 2012, 134, 18732-18738. Self-Assembly of Chiral Nanoparticle Pyramids with Strong <i>R</i>/i>/<i>S</i> Optical Activity. Journal of the American Chemical Society, 2012, 134, 15114-15121. 364 6.6 366 Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer 365 15.6 158 approach. Nature Nanotechnology, 2012, 7, 24-28. Biochemical Investigation of the Formation of Three-Dimensional Networks from DNA-Grafted Large Silica Particles. Langmuir, 2012, 28, 2156-2165. DNA Base Dimers Are Stabilized by Hydrogen-Bonding Interactions Including Non-Watsonâ€"Crick 367 1.2 26 Pairing Near Graphite Surfaces. Journal of Physical Chemistry B, 2012, 116, 12088-12094. Updating the eureka. Nature Materials, 2012, 11, 488-488. 13.3

#	Article	IF	CITATIONS
370	Supramolecular assembling systems formed by heme–heme pocket interactions in hemoproteins. Chemical Communications, 2012, 48, 11714.	2.2	68
371	Self-Assembly of Inorganic Nanoparticle Vesicles and Tubules Driven by Tethered Linear Block Copolymers. Journal of the American Chemical Society, 2012, 134, 11342-11345.	6.6	286
372	Colloids with valence and specific directional bonding. Nature, 2012, 491, 51-55.	13.7	908
373	Melting also on cooling. Nature Materials, 2012, 11, 487-488.	13.3	4
374	Assemblies of Polymer-Based Nanoscopic Objects. , 2012, , 83-105.		0
375	Probing Resonance Energy Transfer and Inner Filter Effects in Quantum Dot–Large Metal Nanoparticle Clusters using a DNA-Mediated Quench and Release Mechanism. Journal of Physical Chemistry C, 2012, 116, 22996-23003.	1.5	28
376	Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations. Nano Letters, 2012, 12, 2509-2514.	4.5	129
377	Regiospecific Plasmonic Assemblies for <i>in Situ</i> Raman Spectroscopy in Live Cells. Journal of the American Chemical Society, 2012, 134, 1699-1709.	6.6	259
378	Free-Standing Plasmonic-Nanorod Superlattice Sheets. ACS Nano, 2012, 6, 925-934.	7.3	132
379	Re-entrant melting as a design principle for DNA-coated colloids. Nature Materials, 2012, 11, 518-522.	13.3	104
380	DNA-Linker-Induced Surface Assembly of Ultra Dense Parallel Single Walled Carbon Nanotube Arrays. Nano Letters, 2012, 12, 1129-1135.	4.5	47
381	Simple Cubic Packing of Gold Nanoparticles through Rational Design of Their Dendrimeric Corona. Journal of the American Chemical Society, 2012, 134, 808-811.	6.6	86
382	Asymmetric and symmetric PCR of gold nanoparticles: A pathway to scaled-up self-assembly with tunable chirality. Journal of Materials Chemistry, 2012, 22, 5574.	6.7	35
383	Salt-mediated kinetics of the self-assembly of gold nanorods end-tethered with polymer ligands. Nanoscale, 2012, 4, 6574.	2.8	32
384	Fabrication of "strong―columnar Cu2â^'xSe superstructures assisted by inorganic ligands. Nanoscale, 2012, 4, 2741.	2.8	12
385	DNA-Templating Mass Production of Gold Trimer Rings for Optical Metamaterials. Journal of Physical Chemistry C, 2012, 116, 15028-15033.	1.5	21
386	Chapter 9. DNA Self-assembly: from Nanostructures to Macro-engineering. RSC Smart Materials, 2012, , 204-222.	0.1	0
387	Structure of DNA-functionalized dendrimer nanoparticles. Soft Matter, 2012, 8, 1893-1900.	1.2	10

#	Article	IF	CITATIONS
388	Functionalized DNA Nanostructures. Chemical Reviews, 2012, 112, 2528-2556.	23.0	359
389	Two- and Three-Dimensional Network of Nanoparticles via Polymer-Mediated Self-Assembly. ACS Macro Letters, 2012, 1, 396-399.	2.3	9
390	Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chemical Science, 2012, 3, 2262.	3.7	52
392	Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates. Journal of the American Chemical Society, 2012, 134, 11876-11879.	6.6	452
393	Detection of DNA Hybridization via Fluorescence Intensity Variations of ZnSe-DNA Quantum Dot Biosensors. Analytical Letters, 2012, 45, 227-241.	1.0	3
394	Nanorods in functionalized block-copolymer gels: Flexible ladders and liquid crystalline order in curved geometries. Europhysics Letters, 2012, 100, 56004.	0.7	6
396	DNAâ€based plasmonic nanoarchitectures: from structural design to emerging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 587-604.	3.3	26
397	Photo-induced growth of DNA-capped silver nanoparticles. Nanotechnology, 2012, 23, 115607.	1.3	6
398	Spherical Nucleic Acids. Journal of the American Chemical Society, 2012, 134, 1376-1391.	6.6	947
399	Shape-Dependent Reversible Assembly Properties of Polyvalent DNA–Silver Nanocube Conjugates. Journal of Physical Chemistry C, 2012, 116, 2278-2284.	1.5	31
400	Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir, 2012, 28, 3896-3902.	1.6	260
401	Quantitative Prediction of the Phase Diagram of DNA-Functionalized Nanosized Colloids. Physical Review Letters, 2012, 108, 268301.	2.9	47
402	Selfâ€Assembly of ZnO Nanoparticles – An NMR Spectroscopic Study. European Journal of Inorganic Chemistry, 2012, 2012, 2691-2699.	1.0	25
403	Dynamic Nanoparticle Assemblies. Accounts of Chemical Research, 2012, 45, 1916-1926.	7.6	209
404	Programmable Construction of Nanostructures: Assembly of Nanostructures with Various Nanocomponents. IEEE Nanotechnology Magazine, 2012, 6, 19-23.	0.9	10
405	Tilted Face-Centered-Cubic Supercrystals of PbS Nanocubes. Nano Letters, 2012, 12, 4409-4413.	4.5	59
406	Quantum Dot Nanoarrays: Selfâ€Assembly With Singleâ€Particle Control and Resolution. Advanced Materials, 2012, 24, 2207-2211.	11.1	32
407	Transitioning DNAâ€Engineered Nanoparticle Superlattices from Solution to the Solid State. Advanced Materials, 2012, 24, 5181-5186.	11.1	136

#	Article	IF	CITATIONS
408	Discovery of the DNA "Genetic Code―for Abiological Gold Nanoparticle Morphologies. Angewandte Chemie - International Edition, 2012, 51, 9078-9082.	7.2	128
409	DNA Architectonics: towards the Next Generation of Bioâ€inspired Materials. Chemistry - A European Journal, 2012, 18, 4456-4469.	1.7	82
410	Photoswitchable Oligonucleotide-Modified Gold Nanoparticles: Controlling Hybridization Stringency with Photon Dose. Nano Letters, 2012, 12, 2530-2536.	4.5	89
411	Self-assembling of non-Brownian magnetized spheres. Granular Matter, 2012, 14, 303-308.	1.1	12
412	Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA. Science China Chemistry, 2012, 55, 814-821.	4.2	11
413	Structural study on gold nanoparticle functionalized with DNA and its non-cross-linking aggregation. Journal of Colloid and Interface Science, 2012, 368, 629-635.	5.0	41
414	Self-assembly of particles—The regulatory role of particle flexibility. Progress in Polymer Science, 2012, 37, 445-486.	11.8	84
415	Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates. Science Bulletin, 2012, 57, 238-246.	1.7	64
416	Super-compressible DNA nanoparticle lattices. Soft Matter, 2013, 9, 10452.	1.2	29
417	Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions. Soft Matter, 2013, 9, 9119.	1.2	46
418	DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. , 2013, , .		8
419	Bonding them all. Nature Materials, 2013, 12, 694-696.	13.3	18
420	Multipole Analysis of Self-assembled Metamaterials. Nano-optics and Nanophotonics, 2013, , 89-117.	0.2	2
421	Amorphous Nanophotonics. Nano-optics and Nanophotonics, 2013, , .	0.2	21
422	Using Temperature-Sensitive Smart Polymers to Regulate DNA-Mediated Nanoassembly and Encoded Nanocarrier Drug Release. ACS Nano, 2013, 7, 7011-7020.	7.3	93
423	Structural Transitions in Nanoparticle Assemblies Governed by Competing Nanoscale Forces. Journal of the American Chemical Society, 2013, 135, 10262-10265.	6.6	100
424	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies. Nanoscale, 2013, 5, 7161.	2.8	8
425	Gold nanoparticles stabilized by an amphiphilic pillar[5]arene: preparation, self-assembly into composite microtubes in water and application in green catalysis. Chemical Science, 2013, 4, 3667.	3.7	152

#	Article	IF	CITATIONS
426	Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles. Nanoscale, 2013, 5, 7209.	2.8	57
427	Reversible Aggregation of DNA-Decorated Gold Nanoparticles Controlled by Molecular Recognition. Langmuir, 2013, 29, 10824-10830.	1.6	36
428	Capability of DNA-fueled molecular machine in tuning association rate of DNA-functionalized gold nanoparticles. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1183-1189.	2.0	6
429	Self-assembly of colloidal polymers via depletion-mediated lock and key binding. Soft Matter, 2013, 9, 9661.	1.2	35
430	DNA-directed self-assembly of shape-controlled hydrogels. Nature Communications, 2013, 4, 2275.	5.8	238
431	Plasmonic Chirogenesis from Gold Nanoparticles Superstructures. Journal of Physical Chemistry C, 2013, 117, 17757-17765.	1.5	28
432	Strand displacement in DNA-based materials systems. Soft Matter, 2013, 9, 11160.	1.2	22
433	Three dimensional self-assembly at the nanoscale. , 2013, , .		2
434	A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nature Nanotechnology, 2013, 8, 865-872.	15.6	267
435	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302.	0.8	30
435 436	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302. Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678.	0.8 6.6	30 86
435 436 437	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302. Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18431-18435.	0.8 6.6 3.3	30 86 52
435436437438	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302. Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18431-18435. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013, 5, 12043.	0.8 6.6 3.3 2.8	30 86 52 125
 435 436 437 438 439 	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302. Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18431-18435. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013, 5, 12043. Self-Assembly of Polymer Brush-Functionalized Inorganic Nanoparticles: From Hairy Balls to Smart Molecular Mimics. Journal of Physical Chemistry Letters, 2013, 4, 3654-3666.	0.8 6.6 3.3 2.8 2.1	 30 86 52 125 92
 435 436 437 438 439 440 	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302. Facile and Efficient Preparation of Anisotropic DNA-Functionalized Cold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18431-18435. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013, 5, 12043. Self-Assembly of Polymer Brush-Functionalized Inorganic Nanoparticles: From Hairy Balls to Smart Molecular Mimics. Journal of Physical Chemistry Letters, 2013, 4, 3654-3666. Kinetics and non-exponential binding of DNA-coated colloids. Soft Matter, 2013, 9, 6412.	0.8 6.6 3.3 2.8 2.1 1.2	 30 86 52 125 92 33
 435 436 437 438 439 440 441 	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302. Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18431-18435. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013, 5, 12043. Self-Assembly of Polymer Brush-Functionalized Inorganic Nanoparticles: From Hairy Balls to Smart Molecular Mimics. Journal of Physical Chemistry Letters, 2013, 4, 3654-3666. Kinetics and non-exponential binding of DNA-coated colloids. Soft Matter, 2013, 9, 6412. Organotextile Catalysis. Science, 2013, 341, 1225-1229.	0.8 6.6 3.3 2.8 2.1 1.2 6.0	 30 86 52 125 92 33 121
 435 436 437 438 439 440 441 442 	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302. Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678. Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18431-18435. Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013, 5, 12043. Self-Assembly of Polymer Brush-Functionalized Inorganic Nanoparticles: From Hairy Balls to Smart Molecular Mimics. Journal of Physical Chemistry Letters, 2013, 4, 3654-3666. Kinetics and non-exponential binding of DNA-coated colloids. Soft Matter, 2013, 9, 6412. Organotextile Catalysis. Science, 2013, 341, 1225-1229. Binding Assistance Triggering Attachments of Hairpin DNA onto Gold Nanoparticles. Analytical Chemistry, 2013, 85, 11973-11978.	0.8 6.6 3.3 2.8 2.1 1.2 6.0 3.2	 30 86 52 125 92 33 121 5

ARTICLE IF CITATIONS # Preparation of gold nanoparticle dimers via streptavidin-induced interlinking. Journal of 445 0.8 2 Nanoparticle Research, 2013, 15, 1. Specificity, flexibility and valence of DNA bonds guide emulsion architecture. Soft Matter, 2013, 9, 9816. 446 1.2 Solid Colloids with Surface-Mobile DNA Linkers. Journal of the American Chemical Society, 2013, 135, 447 6.6 93 15129-15134. Ordered gold nanoparticle arrays on glass and their characterization. Journal of Colloid and 448 5.0 Interface Science, 2013, 410, 1-10. A study of DNA design dependency of segmented DNA-induced gold nanoparticle aggregation towards 449 1.7 16 versatile bioassay development. RSC Advances, 2013, 3, 21604. Plasmonic Shaping in Gold Nanoparticle Three-Dimensional Assemblies. Journal of Physical Chemistry C, 2013, 117, 23126-23132. 1.5 DNA-responsive disassembly of AuNP aggregates: influence of nonbase-paired regions and colorimetric 451 2.9 45 DNA detection by exonuclease III aided amplification. Journal of Materials Chemistry B, 2013, 1, 2851. Phase behavior of rigid, amphiphilic star polymers. Soft Matter, 2013, 9, 7424. 1.2 453 Connecting magnetic micro-particles with DNA G-quadruplexes. Soft Matter, 2013, 9, 216-223. 1.2 4 Procedure to construct a multi-scale coarse-grained model of DNA-coated colloids from 454 1.2 experimental data. Soft Matter, 2013, 9, 7342. Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA 455 2.2 18 with a positively charged tail. Chemical Communications, 2013, 49, 11400. Gold nanoparticle superstructures with enhanced photothermal effect. CrystEngComm, 2013, 15, 3490. 456 1.3 Developments in understanding and controlling self assembly of DNA-functionalized colloids. 457 1.3 83 Physical Chemistry Chemical Physics, 2013, 15, 3115. Discovering crystals using shape matching and machine learning. Soft Matter, 2013, 9, 8552. 1.2 Reversible bioresponsive aptamer-based nanocomposites: ATP binding and removal from DNA-grafted 459 2.9 10 silica nanoparticles. Journal of Materials Chemistry B, 2013, 1, 5353. Tuning colloidal association with specific peptide interactions. Soft Matter, 2013, 9, 6781. 1.2 En route to patchy superlattices. Nature Nanotechnology, 2013, 8, 5-6. 461 15.6 5 Earthworms lit with quantum dots. Nature Nanotechnology, 2013, 8, 6-7.

ARTICLE IF CITATIONS # Self-Assembly of Triblock Janus Nanoparticle in Nanotube. Journal of Chemical Theory and 463 2.3 34 Computation, 2013, 9, 179-187. Toward functional nanocomposites: taking the best of nanoparticles, polymers, and small molecules. 464 18.7 341 Chemical Society Reviews, 2013, 42, 2654-2678. 465 DNA Nanoarchitectonics: Assembled DNA at Interfaces. Langmuir, 2013, 29, 7344-7353. 1.6 60 Imparting the unique properties of DNA into complex material architectures and functions. Materials 466 Today, 2013, 16, 290-296. Collective behavior in out-of-equilibrium colloidal suspensions. Comptes Rendus Physique, 2013, 14, 467 0.3 50 518-527. Bead assembly magnetorotation as a signal transduction method for protein detection. Biosensors and Bioelectronics, 2013, 48, 26-32. 5.3 An Exceptionally Simple Strategy for DNA-Functionalized Up-Conversion Nanoparticles as Biocompatible Ágents for Nanoassembly, DNA Delivery, and Imaging. Journal of the American Chemical 469 6.6 252 Society, 2013, 135, 2411-2414. Surface Assembly and Plasmonic Properties in Strongly Coupled Segmented Gold Nanorods. Small, 5.2 2013, 9, 2979-2990. 471 Microparticles confined to a nematic liquid crystal shell. Soft Matter, 2013, 9, 6911. 1.2 41 DNAâ€Directed Gold Nanodimers with Tunable Sizes and Interparticle Distances and Their Surface 5.2 58 Plasmonic Properties. Small, 2013, 9, 2308-2315. Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nature 473 15.6 332 Nanotechnology, 2013, 8, 52-56. Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chemical 474 18.7 216 Society Reviews, 2013, 42, 3114. Tuning and assembling metal nanostructures with DNA. Chemical Communications, 2013, 49, 2597. 475 2.2 49 Tunable Assembly of Colloidal Crystal Alloys Using Magnetic Nanoparticle Fluids. ACS Nano, 2013, 7, 2705-2716. Nanoparticles in Science and Technology., 2013, , 299-345. 477 0 Controlled Assembly of Gold Nanoparticles through Antibody Recognition: Study and Utilizing the Effect of Particle Size on Interparticle Distance. Langmuir, 2013, 29, 4697-4702. 479 DNA Patchy Particles. Advanced Materials, 2013, 25, 2779-2783. 11.1 126 Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their 2.1 Optical Properties. Journal of Physical Chemistry Letters, 2013, 4, 641-647.

#	Article	IF	CITATIONS
481	Spontaneous Self-Assembly of Silver Nanoparticles into Lamellar Structured Silver Nanoleaves. ACS Nano, 2013, 7, 3053-3060.	7.3	50
482	Self-assembled plasmonic metamaterials. Nanophotonics, 2013, 2, 211-240.	2.9	43
483	Nucleic Acidâ€Modified Nanostructures as Programmable Atom Equivalents: Forging a New "Table of Elements― Angewandte Chemie - International Edition, 2013, 52, 5688-5698.	7.2	148
484	Molecular simulation study of the assembly of DNA-functionalised nanoparticles: Effect of DNA strand sequence and composition. Molecular Simulation, 2013, 39, 741-753.	0.9	20
485	Multistep kinetic self-assembly of DNA-coated colloids. Nature Communications, 2013, 4, 2007.	5.8	111
486	DNAâ€Mediated Selfâ€Assembly of Singleâ€Walled Carbon Nanotubes into Nanorings. Small, 2013, 9, 2059-2063.	5.2	3
487	Improving the understanding of oligonucleotide–nanoparticle conjugates using DNA-binding fluorophores. Nanoscale, 2013, 5, 4166.	2.8	3
488	Linear Mesostructures in DNA–Nanorod Self-Assembly. ACS Nano, 2013, 7, 5437-5445.	7.3	72
489	A general approach to DNA-programmable atom equivalents. Nature Materials, 2013, 12, 741-746.	13.3	279
490	Nanocrystals self-assembled in superlattices directed by the solvent–organic capping interaction. Nanoscale, 2013, 5, 5602-5610.	2.8	28
491	Cinnamate-based DNA photolithography. Nature Materials, 2013, 12, 747-753.	13.3	43
493	Thermally Active Hybridization Drives the Crystallization of DNA-Functionalized Nanoparticles. Journal of the American Chemical Society, 2013, 135, 8535-8541.	6.6	70
494	Stepwise Evolution of DNAâ€₽rogrammable Nanoparticle Superlattices. Angewandte Chemie - International Edition, 2013, 52, 6624-6628.	7.2	92
495	Nucleation-Controlled Polymerization of Nanoparticles into Supramolecular Structures. Journal of the American Chemical Society, 2013, 135, 11417-11420.	6.6	52
496	Biomolecular Assembly of Thermoresponsive Superlattices of the Tobacco Mosaic Virus with Large Tunable Interparticle Distances. Angewandte Chemie - International Edition, 2013, 52, 6638-6642.	7.2	44
497	DNAâ€Based Selfâ€Assembly for Functional Nanomaterials. Advanced Materials, 2013, 25, 3905-3914.	11.1	81
498	Orthogonal Labeling of M13 Minor Capsid Proteins with DNA to Self-Assemble End-to-End Multiphage Structures. ACS Synthetic Biology, 2013, 2, 490-496.	1.9	45
499	Perfect mixing of immiscible macromolecules at fluid interfaces. Nature Materials, 2013, 12, 735-740.	13.3	60

#	Article	IF	CITATIONS
500	A Generic Approach for the Synthesis of Dimer Nanoclusters and Asymmetric Nanoassemblies. Journal of the American Chemical Society, 2013, 135, 2213-2221.	6.6	53
502	<i>In Situ</i> Plasmonic Counter for Polymerization of Chains of Gold Nanorods in Solution. ACS Nano, 2013, 7, 5901-5910.	7.3	63
503	Library Approach for Reliable Synthesis and Properties of DNA–Gold Nanorod Conjugates. Analytical Chemistry, 2013, 85, 6580-6586.	3.2	25
504	Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality. Nano Letters, 2013, 13, 3145-3151.	4.5	178
506	DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today, 2013, 8, 138-167.	6.2	113
507	DNA-Functionalized Quantum Dots: Fabrication, Structural, and Physicochemical Properties. Langmuir, 2013, 29, 7038-7046.	1.6	59
508	Freeâ€Standing 1D Assemblies of Plasmonic Nanoparticles. Advanced Materials, 2013, 25, 3968-3972.	11.1	42
509	Drug delivery systems based on nucleic acid nanostructures. Journal of Controlled Release, 2013, 172, 467-483.	4.8	78
510	Dynamically Interchangeable Nanoparticle Superlattices Through the Use of Nucleic Acid-Based Allosteric Effectors. Journal of the American Chemical Society, 2013, 135, 10342-10345.	6.6	51
511	Measuring in Situ Primary and Competitive DNA Hybridization Activity on Microspheres. Biomacromolecules, 2013, 14, 986-992.	2.6	6
512	A molecular logical switching beacon controlled by thiolated DNA signals. Chemical Communications, 2013, 49, 11308.	2.2	10
513	DNAâ€Directed Selfâ€Assembly of Coreâ€Satellite Plasmonic Nanostructures: A Highly Sensitive and Reproducible Nearâ€IR SERS Sensor. Advanced Functional Materials, 2013, 23, 1519-1526.	7.8	150
514	A Robust and Facile Approach To Assembling Mobile and Highly-Open Unfrustrated Triangular Lattices from Ferromagnetic Nanorods. Nano Letters, 2013, 13, 36-42.	4.5	22
515	Double-functionalized gold nanoparticles with split aptamer for the detection of adenosine triphosphate. Talanta, 2013, 115, 506-511.	2.9	30
516	Responsive Multidomain Free-Standing Films of Gold Nanoparticles Assembled by DNA-Directed Layer-by-Layer Approach. Nano Letters, 2013, 13, 4449-4455.	4.5	50
518	Single-Step Rapid Assembly of DNA Origami Nanostructures for Addressable Nanoscale Bioreactors. Journal of the American Chemical Society, 2013, 135, 696-702.	6.6	242
519	Epitaxial Growth of DNA-Assembled Nanoparticle Superlattices on Patterned Substrates. Nano Letters, 2013, 13, 6084-6090.	4.5	35
520	Hierarchy in Au Nanocrystal Ordering in a Supracrystal: II. Control of Interparticle Distances. Langmuir, 2013, 29, 13576-13581.	1.6	43

		CITATION REPORT		
#	Article		IF	CITATIONS
521	Colorimetric Detection of Mercury Ions Based on Plasmonic Nanoparticles. Small, 2013	3, 9, 1467-1481.	5.2	255
522	Controlled self-assembly of gold nanoparticles mediated by novel organic molecular ca Materials Express, 2013, 3, 205.	ges. Optical	1.6	12
523	Controlling crystal self-assembly using a real-time feedback scheme. Journal of Chemic 138, 094502.	al Physics, 2013,	1.2	26
524	Self-assembly of binary nanoparticles on soft elastic shells. Journal of Chemical Physics 214901.	, 2013, 138,	1.2	2
525	Spontaneous Crystallization in Athermal Polymer Packings. International Journal of Mo Sciences, 2013, 14, 332-358.	lecular	1.8	26
526	DNA-Promoted Auto-Assembly of Gold Nanoparticles: Effect of the DNA Sequence on t the Assemblies. Polymers, 2013, 5, 1041-1055.	he Stability of	2.0	5
527	Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: and challenges. MRS Communications, 2013, 3, 13-29.	opportunities	0.8	169
528	Oligonucleoside assisted one pot synthesis and self-assembly of gold nanoparticles. Ac Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 045014.	lvances in	0.7	0
529	Chiral plasmonics of self-assembled nanorod dimers. Scientific Reports, 2013, 3, 1934.		1.6	185
530	DNA-programmed mesoscopic architecture. Physical Review E, 2013, 87, 062310.		0.8	89
531	Contact processes in crowded environments. Physical Review E, 2013, 88, 052130.		0.8	5
532	Kinetics of DNA-coated sticky particles. Physical Review E, 2013, 88, 022304.		0.8	22
533	A coarse-grained model for DNA-functionalized spherical colloids, revisited: Effective pa from parallel replica simulations. Journal of Chemical Physics, 2013, 138, 025101.	air potential	1.2	20
534	Active colloids. Physics-Uspekhi, 2013, 56, 79-92.		0.8	109
535	Topotactic Interconversion of Nanoparticle Superlattices. Science, 2013, 341, 1222-12	225.	6.0	137
536	Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineerin of the National Academy of Sciences of the United States of America, 2013, 110, 1007	g. Proceedings 78-10083.	3.3	202
537	Molecular Selfâ€Assembly of Multifunctional Nanoparticle Composites with Arbitrary S Functions: Challenges and Strategies. Particle and Particle Systems Characterization, 2	Shapes and 2013, 30, 117-132.	1.2	29
538	Colloids get active. Nature Materials, 2013, 12, 696-696.		13.3	4

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
540	Bypassing the Limitations of Classical Chemical Purification with DNAâ€Programmable Nanoparticle Recrystallization. Angewandte Chemie - International Edition, 2013, 52, 2886-2891.	7.2	53
542	Functional DNA Nanostructures for Photonic and Biomedical Applications. Small, 2013, 9, 2210-2222.	5.2	54
543	Observation of empty liquids and equilibrium gels in a colloidal clay. , 2013, , .		4
544	Nanonetworks: The graph theory framework for modeling nanoscale systems. The Nanoscale Systems: Mathematical Modelingory and Applications, 2013, 2, 30-48.	0.3	7
545	Fabrication of Monodisperse "Coreâ€Satelliteâ€Nanostructures by DNAâ€Programming: a Novel Class of Superstructured Building Blocks for Hierarchical Nanoassembly. Chinese Journal of Chemical Physics, 2013, 26, 601-606.	0.6	5
547	Progress in molecular modelling of DNA materials. Molecular Simulation, 2014, 40, 777-783.	0.9	17
548	DNA-programmed self-assembly of photonic nanoarchitectures. NPG Asia Materials, 2014, 6, e97-e97.	3.8	28
549	A promising road with challenges: where are gold nanoparticles in translational research?. Nanomedicine, 2014, 9, 2353-2370.	1.7	58
550	Insights into DNA-mediated interparticle interactions from a coarse-grained model. Journal of Chemical Physics, 2014, 141, 184901.	1.2	23
551	Engineering metal-nanoantennae/dye complexes for maximum fluorescence enhancement. Optics Express, 2014, 22, 22018.	1.7	27
552	Synthesis of Eight-Arm, Branched Oligonucleotide Hybrids and Studies on the Limits of DNA-Driven Assembly. Journal of Organic Chemistry, 2014, 79, 11558-11566.	1.7	19
553	Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4803-4808.	3.3	36
554	Hierarchical Structures from Inorganic Nanocrystal Self-Assembly for Photoenergy Utilization. International Journal of Photoenergy, 2014, 2014, 1-15.	1.4	12
555	Molecular simulation study of assembly of DNA-grafted nanoparticles: effect of bidispersity in DNA strand length. Molecular Simulation, 2014, 40, 1085-1098.	0.9	9
556	Charge Transport Dilemma of Solution-Processed Nanomaterials. Chemistry of Materials, 2014, 26, 134-152.	3.2	106
557	What molecular assembly can learn from catalytic chemistry. Chemical Society Reviews, 2014, 43, 399-411.	18.7	89
558	Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angewandte Chemie - International Edition, 2014, 53, 1756-1789.	7.2	793
559	Self-Assembly of Archimedean Tilings with Enthalpically and Entropically Patchy Polygons. ACS Nano, 2014, 8, 2918-2928.	7.3	76

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
560	Self-assembled plasmonic nanostructures. Chemical Society Reviews, 2014, 43, 3976.	18.7	276
561	Interfacial assembly of ZnO quantum dots into giant supramolecular architectures. Soft Matter, 2014, 10, 2767.	1.2	12
562	Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes. Nature Communications, 2014, 5, 3763.	5.8	28
563	Bio-Inspired Nanotechnology. , 2014, , .		13
564	DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226.	1.9	12
565	Phase Behavior and Complex Crystal Structures of Self-Assembled Tethered Nanoparticle Telechelics. Nano Letters, 2014, 14, 2071-2078.	4.5	36
566	Plasmonic DNA-Origami Nanoantennas for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2014, 14, 2914-2919.	4.5	187
567	Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From "Nanoatoms―to Giant Molecules. Macromolecules, 2014, 47, 1221-1239.	2.2	308
568	Lighting up tumours. Nature Materials, 2014, 13, 122-124.	13.3	34
569	DNA-bonded 'atoms'. Nature Materials, 2014, 13, 121-122.	13.3	7
570	DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature, 2014, 505, 73-77.	13.7	382
571	Multiple Energy Exciton Shelves in Quantum-Dot–DNA Nanobioelectronics. Journal of Physical Chemistry Letters, 2014, 5, 3909-3913.	2.1	15
572	Accurate phase diagram of tetravalent DNA nanostars. Journal of Chemical Physics, 2014, 140, .	1.2	50
573	Biocompatible Infiniteâ€Coordinationâ€Polymer Nanoparticle–Nucleicâ€Acid Conjugates for Antisense Gene Regulation. Angewandte Chemie - International Edition, 2015, 54, 476-480.	7.2	55
574	Thermomechanical stability and mechanochemical response of DNA: A minimal mesoscale model. Journal of Chemical Physics, 2014, 141, 115101.	1.2	3
575	Cation-Size-Dependent DNA Adsorption Kinetics and Packing Density on Gold Nanoparticles: An Opposite Trend. Langmuir, 2014, 30, 13228-13234.	1.6	28
576	Size limits of self-assembled colloidal structures made using specific interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15918-15923.	3.3	79
577	DNA-functionalized polystyrene particles and their controlled self-assembly. RSC Advances, 2014, 4, 30648-30653.	1.7	6

#	Article	IF	CITATIONS
578	Core solution: a strategy towards gold core/non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly. Chemical Science, 2014, 5, 1015-1020.	3.7	18
579	X-ray scattering as a liquid and solid phase probe of ordering within sub-monolayers of iron oxide nanoparticles fabricated by electrophoretic deposition. Nanoscale, 2014, 6, 4047.	2.8	8
580	Free energy landscape and localization of nanoparticles at block copolymer model defects. Soft Matter, 2014, 10, 3284.	1.2	10
581	DNA Nanostructure-Based Universal Microarray Platform for High-Efficiency Multiplex Bioanalysis in Biofluids. ACS Applied Materials & Interfaces, 2014, 6, 17944-17953.	4.0	110
582	Thermally Reversible Selfâ€Assembly of Nanoparticles via Polymer Crystallization. Macromolecular Rapid Communications, 2014, 35, 2012-2017.	2.0	2
583	DNA induced intense plasmonic circular dichroism of highly purified gold nanobipyramids. Nanoscale, 2014, 6, 4498-4502.	2.8	34
584	Designing stimulus-sensitive colloidal walkers. Soft Matter, 2014, 10, 3463-3470.	1.2	13
585	Self-Assembly and Crystallization of Hairy (<i>f</i> -Star) and DNA-Grafted Nanocubes. Journal of the American Chemical Society, 2014, 136, 653-659.	6.6	37
586	Progress Report on the Generation of Polyfunctional Microscale Particles for Programmed Self-Assembly. Chemistry of Materials, 2014, 26, 1457-1462.	3.2	4
587	Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today, 2014, 9, 457-477.	6.2	169
588	Preparation of colloidal graphene in quantity by electrochemical exfoliation. Journal of Colloid and Interface Science, 2014, 436, 41-46.	5.0	89
589	Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks. Journal of the American Chemical Society, 2014, 136, 3716-3719.	6.6	77
590	Water/n-heptane interface as a viable platform for the self-assembly of ZnO nanospheres to nanorods. CrystEngComm, 2014, 16, 7696-7700.	1.3	5
591	Importance of the DNA "bond―in programmable nanoparticle crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14995-15000.	3.3	55
592	A Coarse-Grained Model of Unstructured Single-Stranded DNA Derived from Atomistic Simulation and Single-Molecule Experiment. Journal of Chemical Theory and Computation, 2014, 10, 2891-2896.	2.3	79
593	Polycondensation of Polymer Brushes via DNA Hybridization. Journal of the American Chemical Society, 2014, 136, 10214-10217.	6.6	57
594	Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Advanced Materials, 2014, 26, 653-659.	11.1	157
595	Reconstitutable Nanoparticle Superlattices. Nano Letters, 2014, 14, 2162-2167.	4.5	38

		Citation Report		
#	Article		IF	CITATIONS
596	Self-assembly of magnetite nanocubes into helical superstructures. Science, 2014, 34	5, 1149-1153.	6.0	435
597	Linking experiment and theory for three-dimensional networked binary metal nanopart terpolymer superstructures. Nature Communications, 2014, 5, 3247.	ticle–triblock	5.8	58
598	Effect of Inert Tails on the Thermodynamics of DNA Hybridization. Journal of the Ameri Society, 2014, 136, 6538-6541.	can Chemical	6.6	44
599	DNA-directed self-assembly of three-dimensional plasmonic nanostructures for detecti surface-enhanced Raman scattering (SERS). Sensing and Bio-Sensing Research, 2014,	on by 1, 21-25.	2.2	5
600	Plasmonic response of DNA-assembled gold nanorods: Effect of DNA linker length, ten linker/nanoparticles ratio. Journal of Colloid and Interface Science, 2014, 433, 34-42.	perature and	5.0	13
601	Digital colloids: reconfigurable clusters as high information density elements. Soft Mat 7468-7479.	ter, 2014, 10,	1.2	50
602	Synergetic Approach for Simple and Rapid Conjugation of Gold Nanoparticles with Olig ACS Applied Materials & Interfaces, 2014, 6, 16800-16807.	gonucleotides.	4.0	47
603	Modular-DNA Programmed Molecular Construction of "Fixed―of 2D and 3D-Au N Chemistry of Materials, 2014, 26, 5499-5505.	anoparticle Arrays.	3.2	4
604	Mobile Linkers on DNA-Coated Colloids: Valency without Patches. Physical Review Lett 128303.	ers, 2014, 113,	2.9	75
605	Naturally self-assembled nickel nanolattice. Journal of Materials Chemistry C, 2014, 2,	8918-8924.	2.7	23
606	Giant Plasmene Nanosheets, Nanoribbons, and Origami. ACS Nano, 2014, 8, 11086-11	093.	7.3	134
607	Synthesis and Internal Structure of Finite-Size DNA–Gold Nanoparticle Assemblies. Jo Chemistry C, 2014, 118, 7174-7184.	ournal of Physical	1.5	14
608	Applications of Synchrotronâ€Based Spectroscopic Techniques in Studying Nucleic Ac Acidâ€Functionalized Nanomaterials. Advanced Materials, 2014, 26, 7849-7872.	ids and Nucleic	11.1	19
609	Directing Assembly of DNA-Coated Colloids with Magnetic Fields To Generate Rigid, Se Flexible Chains. Langmuir, 2014, 30, 9045-9052.	emiflexible, and	1.6	66
610	Crystallization of tin chloride as a promising pseudocapacitor electrode. CrystEngCom 4610-4618.	m, 2014, 16,	1.3	25
611	DNA Assisted Self-Assembly of PAMAM Dendrimers. Journal of Physical Chemistry B, 20 11805-11815.	014, 118,	1.2	14
612	Optical interactions in plasmonic nanostructures. Nano Convergence, 2014, 1, .		6.3	21
613	Transformation of thiolated chitosan-templated gold nanoparticles to huge microcube Research Bulletin, 2014, 53, 89-95.	s. Materials	2.7	6

#	Article	IF	CITATIONS
614	Biotemplated Inorganic Nanostructures: Supramolecular Directed Nanosystems of Semiconductor(s)/Metal(s) Mediated by Nucleic Acids and Their Properties. Chemical Reviews, 2014, 114, 7044-7078.	23.0	64
616	Binary hairy nanoparticles: Recent progress in theory and simulations. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1583-1599.	2.4	17
617	DNA Nanoarchitectures: Steps towards Biological Applications. ChemBioChem, 2014, 15, 1374-1390.	1.3	35
618	Engineering DNA Binding Sites to Assemble and Tune Plasmonic Nanostructures. Advanced Materials, 2014, 26, 4286-4292.	11.1	9
619	Meso-oblate Spheroids of Thermal-Stabile Linker-Free Aggregates with Size-Tunable Subunits for Reversible Lithium Storage. ACS Applied Materials & Interfaces, 2014, 6, 1173-1179.	4.0	16
620	Selection of Arginine-Rich Anti-Gold Antibodies Engineered for Plasmonic Colloid Self-Assembly. Journal of Physical Chemistry C, 2014, 118, 14502-14510.	1.5	9
621	Tandem Phosphorothioate Modifications for DNA Adsorption Strength and Polarity Control on Gold Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 14795-14800.	4.0	60
622	Growth modes of nanoparticle superlattice thin films. Nanotechnology, 2014, 25, 205602.	1.3	16
623	Hierarchy in Au Nanocrystal Ordering in Supracrystals: III. Competition between van der Waals and Dynamic Processes. Langmuir, 2014, 30, 7177-7181.	1.6	5
624	Application of nucleic acid–lipid conjugates for the programmable organisation of liposomal modules. Advances in Colloid and Interface Science, 2014, 207, 290-305.	7.0	57
625	Forming two-dimensional structure of DNA-functionalized Au nanoparticles via lipid diffusion in supported lipid bilayers. Journal of Crystal Growth, 2014, 401, 494-498.	0.7	11
626	Two-Dimensional DNA-Programmable Assembly of Nanoparticles at Liquid Interfaces. Journal of the American Chemical Society, 2014, 136, 8323-8332.	6.6	73
627	Periodic lattices of arbitrary nano-objects: modeling and applications for self-assembled systems. Journal of Applied Crystallography, 2014, 47, 118-129.	1.9	45
629	Oligonucleotide Flexibility Dictates Crystal Quality in DNAâ€Programmable Nanoparticle Superlattices. Advanced Materials, 2014, 26, 7235-7240.	11.1	40
631	Crystallization of DNA apped Gold Nanoparticles in High oncentration, Divalent Salt Environments. Angewandte Chemie - International Edition, 2014, 53, 1316-1319.	7.2	46
632	π–π interactions mediated self-assembly of gold nanoparticles into single crystalline superlattices in solution. RSC Advances, 2015, 5, 90766-90771.	1.7	12
633	Nanomaterial-Based Sensors for Environmental Monitoring. Frontiers in Nanobiomedical Research, 2015, , 91-110.	0.1	0
634	Alternative DNA Structures, Switches and Nanomachines. , 2015, , 329-490.		0

#	Article	IF	CITATIONS
635	Reversible Regulation of Catalytic Activity of Gold Nanoparticles with DNA Nanomachines. Scientific Reports, 2015, 5, 14402.	1.6	22
636	Modal engineering of Surface Plasmons in apertured Au Nanoprisms. Scientific Reports, 2015, 5, 16635.	1.6	17
637	DNA-Based Bulk Hydrogel Materials and Biomedical Application. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, .	0.8	1
641	DNA nanotechnology organizing other materials. , 0, , 231-247.		Ο
642	Hall transport of divalent metal ion modified DNA lattices. Applied Physics Letters, 2015, 106, 263702.	1.5	12
643	Surface energy fluctuation effects in single crystals of DNA-functionalized nanoparticles. Journal of Chemical Physics, 2015, 143, 243156.	1.2	5
644	Mechanically Robust and Selfâ€Healable Superlattice Nanocomposites by Selfâ€Assembly of Singleâ€Component "Sticky―Polymerâ€Grafted Nanoparticles. Advanced Materials, 2015, 27, 3934-3941.	11.1	111
647	DNA Polymer Brush Patterning through Photocontrollable Surfaceâ€Initiated DNA Hybridization Chain Reaction. Small, 2015, 11, 5800-5806.	5.2	34
648	Coordination Assembly of Discoid Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 8966-8970.	7.2	25
650	Supracolloidal Architectures Selfâ€Assembled in Microdroplets. Chemistry - A European Journal, 2015, 21, 15516-15519.	1.7	9
653	Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. Applied Physics Reviews, 2015, 2, 011303.	5.5	303
654	What Controls the Hybridization Thermodynamics of Spherical Nucleic Acids?. Journal of the American Chemical Society, 2015, 137, 3486-3489.	6.6	79
655	Spatial regulation of synthetic and biological nanoparticles by DNA nanotechnology. NPG Asia Materials, 2015, 7, e161-e161.	3.8	21
656	Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nature Materials, 2015, 14, 833-839.	13.3	154
657	X-ray scattering characterisation of nanoparticles. Crystallography Reviews, 2015, 21, 229-303.	0.4	126
658	Spectroscopic studies of nucleic acid additions during seed-mediated growth of gold nanoparticles. Journal of Materials Research, 2015, 30, 666-676.	1.2	3
659	Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nature Materials, 2015, 14, 840-847.	13.3	126
660	Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nature Nanotechnology, 2015, 10, 637-644.	15.6	243

#	Article	IF	CITATIONS
661	Optical Band Gap and Hall Transport Characteristics of Lanthanide-Ion-Modified DNA Crystals. Journal of Physical Chemistry C, 2015, 119, 14443-14449.	1.5	24
663	What Controls the "Off/On Switch―in the Toehold-Mediated Strand Displacement Reaction on DNA Conjugated Gold Nanoparticles?. Langmuir, 2015, 31, 7055-7061.	1.6	19
664	The combination of gold nanorods and nanoparticles with DNA nanodevices for logic gates construction. Nanotechnology, 2015, 26, 425601.	1.3	9
665	High-Density PEO- <i>b</i> -DNA Brushes on Polymer Particles for Colloidal Superstructures. Chemistry of Materials, 2015, 27, 8337-8344.	3.2	56
666	Trioctylphosphine as self-assembly inducer. Faraday Discussions, 2015, 181, 211-223.	1.6	14
667	Driven self-assembly of hard nanoplates on soft elastic shells. Chinese Physics B, 2015, 24, 118202.	0.7	2
668	Binary alloy of virus capsids and gold nanoparticles as a Mie-resonance-based optical metamaterial. Solid State Communications, 2015, 204, 51-55.	0.9	8
669	A molecular view of DNA-conjugated nanoparticle association energies. Soft Matter, 2015, 11, 1919-1929.	1.2	11
670	Programming macro-materials from DNA-directed self-assembly. Soft Matter, 2015, 11, 1862-1870.	1.2	24
671	Selfâ€Assembly of Amphiphilic Block Copolymerâ€Tethered Nanoparticles: a New Approach to Nanoscale Design of Functional Materials. Macromolecular Rapid Communications, 2015, 36, 711-725.	2.0	44
672	Programmable materials and the nature of the DNA bond. Science, 2015, 347, 1260901.	6.0	1,141
673	The Statistical Mechanics of Dynamic Pathways to Self-Assembly. Annual Review of Physical Chemistry, 2015, 66, 143-163.	4.8	166
674	Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA. Journal of the American Chemical Society, 2015, 137, 1658-1662.	6.6	78
675	Programming colloidal phase transitions with DNA strand displacement. Science, 2015, 347, 639-642.	6.0	179
676	Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications. Tissue Engineering - Part B: Reviews, 2015, 21, 288-297.	2.5	5
677	Multifarious assembly mixtures: Systems allowing retrieval of diverse stored structures. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 54-59.	3.3	52
678	DNAâ€Mediated Stabilization of Selfâ€Assembling Bead Monolayers for Microfluidic Applications. Particle and Particle Systems Characterization, 2015, 32, 583-587.	1.2	3
679	Higher Order Assembly of Virusâ€like Particles (VLPs) Mediated by Multiâ€valent Protein Linkers. Small, 2015, 11, 1562-1570.	5.2	36
#	Article	IF	CITATIONS
-----	---	------	-----------
680	Supermagnetism. Handbook of Magnetic Materials, 2015, , 1-83.	0.6	42
681	Overcoming the Coupling Dilemma in DNAâ€Programmable Nanoparticle Assemblies by "Ag ⁺ Soldering― Small, 2015, 11, 2247-2251.	5.2	36
682	Flexible One-Dimensional Nanostructures: A Review. Journal of Materials Science and Technology, 2015, 31, 607-615.	5.6	27
683	Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami. Nanoscale, 2015, 7, 2883-2888.	2.8	19
684	Dynamic self-assembly of colloids through periodic variation of inter-particle potentials. Soft Matter, 2015, 11, 3232-3240.	1.2	13
685	Dynamic Tuning of DNA-Nanoparticle Superlattices by Molecular Intercalation of Double Helix. Journal of the American Chemical Society, 2015, 137, 4030-4033.	6.6	48
686	Probing Soft Corona Structures of DNA-Capped Nanoparticles by Small Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 18773-18778.	1.5	10
687	Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10292-10297.	3.3	35
688	Binary nanoparticle superlattices of soft-particle systems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9563-9567.	3.3	55
689	Entropy-Driven Crystallization Behavior in DNA-Mediated Nanoparticle Assembly. Nano Letters, 2015, 15, 5545-5551.	4.5	39
690	Superlattices assembled through shape-induced directional binding. Nature Communications, 2015, 6, 6912.	5.8	188
691	Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics, 2015, , .	0.1	6
692	Reversible Ligation of Programmed DNA-Gold Nanoparticle Assemblies. Journal of the American Chemical Society, 2015, 137, 9242-9245.	6.6	34
693	Quantitative Super-Resolution Microscopy of Nanopipette-Deposited Fluorescent Patterns. ACS Nano, 2015, 9, 8122-8130.	7.3	19
694	Crystallization of DNA-coated colloids. Nature Communications, 2015, 6, 7253.	5.8	217
695	Synthetic Strategies Toward DNA-Coated Colloids that Crystallize. Journal of the American Chemical Society, 2015, 137, 10760-10766.	6.6	91
696	Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chemical Reviews, 2015, 115, 8896-8943.	23.0	576
697	DNA-based plasmonic nanostructures. Materials Today, 2015, 18, 326-335.	8.3	68

#	Article	IF	Citations
698	Formation of Monocrystalline 1D and 2D Architectures via Epitaxial Attachment: Bottom-Up Routes through Surfactant-Mediated Arrays of Oriented Nanocrystals. Langmuir, 2015, 31, 6197-6201.	1.6	20
699	A platinum shell for ultraslow ligand exchange: unmodified DNA adsorbing more stably on platinum than thiol and dithiol on gold. Chemical Communications, 2015, 51, 12084-12087.	2.2	21
700	Toward rational and modular molecular design in soft matter engineering. Chinese Journal of Polymer Science (English Edition), 2015, 33, 797-814.	2.0	39
701	Self-replication of DNA rings. Nature Nanotechnology, 2015, 10, 528-533.	15.6	46
702	Conformal, Macroscopic Crystalline Nanoparticle Sheets Assembled with DNA. Advanced Materials, 2015, 27, 3159-3163.	11.1	15
703	Light-Harvesting Nanoparticle Core–Shell Clusters with Controllable Optical Output. ACS Nano, 2015, 9, 5657-5665.	7.3	50
704	Submicron ZnO raspberries as effective catalysts for Fries rearrangement. RSC Advances, 2015, 5, 41780-41785.	1.7	4
705	An engineered nano-plasmonic biosensing surface for colorimetric and SERS detection of DNA-hybridization events. , 2015, , .		0
706	Facile, Rapid, and Large-Area Periodic Patterning of Semiconductor Substrates with Submicron Inorganic Structures. Journal of the American Chemical Society, 2015, 137, 3739-3742.	6.6	5
707	Programming nanoparticle assembly. , 2015, , .		0
708	Self-Assembly of Molecule-like Nanoparticle Clusters Directed by DNA Nanocages. Journal of the American Chemical Society, 2015, 137, 4320-4323.	6.6	136
709	DNA-mediated engineering of multicomponent enzyme crystals. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4564-4569.	3.3	122
710	Deposition of Waferâ€Scale Singleâ€Component and Binary Nanocrystal Superlattice Thin Films Via Dipâ€Coating. Advanced Materials, 2015, 27, 2846-2851.	11.1	52
711	Reductant and Sequence Effects on the Morphology and Catalytic Activity of Peptide-Capped Au Nanoparticles. ACS Applied Materials & Interfaces, 2015, 7, 8843-8851.	4.0	44
712	Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nature Nanotechnology, 2015, 10, 453-458.	15.6	169
713	Direct measurement of DNA-mediated adhesion between lipid bilayers. Physical Chemistry Chemical Physics, 2015, 17, 15615-15628.	1.3	40
714	Small-angle scattering of particle assemblies. Journal of Applied Crystallography, 2015, 48, 1172-1182.	1.9	42
715	From Ribbons to Networks: Hierarchical Organization of DNA-Grafted Supramolecular Polymers. Journal of the American Chemical Society, 2015, 137, 14051-14054.	6.6	50

#	Article	IF	CITATIONS
716	Integrating DNA-Strand-Displacement Circuitry with Self-Assembly of Spherical Nucleic Acids. Journal of the American Chemical Society, 2015, 137, 14107-14113.	6.6	61
717	Mechanistic Insight into DNA-Guided Control of Nanoparticle Morphologies. Journal of the American Chemical Society, 2015, 137, 14456-14464.	6.6	84
718	Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery. International Journal of Pharmaceutics, 2015, 496, 159-172.	2.6	106
719	Self-Organization of Quantum Rods Induced by Lipid Membrane Corrugations. Langmuir, 2015, 31, 12148-12154.	1.6	10
720	Role of Alumina Coatings for Selective and Controlled Bonding of DNA on Technologically Relevant Oxide Surfaces. Journal of Physical Chemistry C, 2015, 119, 23527-23543.	1.5	17
721	Volume and porosity thermal regulation in lipid mesophases by coupling mobile ligands to soft membranes. Nature Communications, 2015, 6, 5948.	5.8	88
722	Metastable orientational order of colloidal discoids. Nature Communications, 2015, 6, 8507.	5.8	40
723	Modular and Chemically Responsive Oligonucleotide "Bonds―in Nanoparticle Superlattices. Journal of the American Chemical Society, 2015, 137, 13566-13571.	6.6	23
724	Programming the assembly of gold nanoparticles on graphene oxide sheets using DNA. Journal of Materials Chemistry C, 2015, 3, 9379-9384.	2.7	16
725	DNA-mediated control of Au shell nanostructure and controlled intra-nanogap for a highly sensitive and broad plasmonic response range. Journal of Materials Chemistry C, 2015, 3, 10728-10733.	2.7	15
726	Crystallization and arrest mechanisms of model colloids. Soft Matter, 2015, 11, 9307-9320.	1.2	22
727	Mighty linkers. Nature Materials, 2015, 14, 745-745.	13.3	1
728	Controlled electrostatic focusing of charged aerosol nanoparticles via an electrified mask. Journal of Aerosol Science, 2015, 88, 90-97.	1.8	14
729	Designer metal-nanoantennae/dye complexes for maximum fluorescence enhancement. Proceedings of SPIE, 2015, , .	0.8	0
730	Artificial Molecular Machines. Chemical Reviews, 2015, 115, 10081-10206.	23.0	1,586
731	Thermodynamics versus Kinetics in Nanosynthesis. Angewandte Chemie - International Edition, 2015, 54, 2022-2051.	7.2	400
732	Dimensionality-dependent charge transport in close-packed nanoparticle arrays: from 2D to 3D. Scientific Reports, 2015, 4, 7565.	1.6	18
733	Programmable self-assembly. Nature Materials, 2015, 14, 2-9.	13.3	233

# 734	ARTICLE Order through entropy. Nature Materials, 2015, 14, 9-12.	IF 13.3	Citations 205
735	DNA Adsorption by Indium Tin Oxide Nanoparticles. Langmuir, 2015, 31, 371-377.	1.6	45
736	Repeat protein mediated synthesis of gold nanoparticles: effect of protein shape on the morphological and optical properties. RSC Advances, 2015, 5, 2062-2069.	1.7	23
737	Bioinspired structural materials. Nature Materials, 2015, 14, 23-36.	13.3	3,284
738	Compact and ordered colloidal clusters from assembly–disassembly cycles: A numerical study. Journal of Colloid and Interface Science, 2015, 440, 198-203.	5.0	5
739	Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. ACS Applied Materials & Materi	4.0	37
740	Bio-nanogate controlled enzymatic reaction for virus sensing. Biosensors and Bioelectronics, 2015, 67, 400-407.	5.3	35
741	Self-assembly of mesogenic bent-core DNA nanoduplexes. Soft Matter, 2015, 11, 2934-2944.	1.2	10
742	Macromolecular Self&;#x02010;assembly. , 2016, , .		5
743	Effective Drug Delivery System of Biopolymers Based On Nanomaterials and Hydrogels - A Review. Drug Designing: Open Access, 2016, 5, .	0.2	43
744	3D DNA Crystals and Nanotechnology. Crystals, 2016, 6, 97.	1.0	20
745	Molecular dynamics simulation of DNAâ€directed assembly of nanoparticle superlattices using patterned templates. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1687-1692.	2.4	3
746	DNAâ€Nanoparticle Tinkertoys. ChemBioChem, 2016, 17, 1090-1092.	1.3	7
747	Selfâ€Assembly of DNA Functionalized Gold Nanoparticles at the Liquidâ€Vapor Interface. Advanced Materials Interfaces, 2016, 3, 1600180.	1.9	17
748	Sequential programmable self-assembly: Role of cooperative interactions. Journal of Chemical Physics, 2016, 144, 094903.	1.2	14
749	Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a Brownian nanoparticle. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160397.	1.0	5
750	Self-Organization beyond the Molecule: Control of Nanoparticle Assemblies by Their Surface Properties and Their Functional Applications. Kobunshi Ronbunshu, 2016, 73, 147-156.	0.2	1
751	Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation. ACS Central Science, 2016, 2, 614-620.	5.3	13

#	Article	IF	CITATIONS
752	Colloidal Cluster Assembly into Ordered Superstructures <i>via</i> Engineered Directional Binding. ACS Nano, 2016, 10, 11280-11289.	7.3	39
753	Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science, 2016, 354, 1580-1584.	6.0	490
754	Effective interactions between nanoparticles: Creating temperature-independent solvation environments for self-assembly. Journal of Chemical Physics, 2016, 144, 244901.	1.2	13
755	Kinetic control of the coverage of oil droplets by DNA-functionalized colloids. Science Advances, 2016, 2, e1600881.	4.7	45
756	Prediction of binary nanoparticle superlattices from soft potentials. Journal of Chemical Physics, 2016, 144, 014502.	1.2	36
757	Size-Induced Structural Phase Transition at â^1∕46.0 nm from Mixed fcc–hcp to Purely fcc Structure in Monodispersed Nickel Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 28354-28362.	1.5	26
758	Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound. Journal of Chemical Physics, 2016, 145, 211903.	1.2	8
759	Optimising self-assembly through time-dependent interactions. Journal of Chemical Physics, 2016, 145, 244505.	1.2	13
760	Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials. Physical Chemistry Chemical Physics, 2016, 18, 30845-30856.	1.3	10
761	Hierarchical Superstructures Assembled by Binary Hairy Nanoparticles. ACS Macro Letters, 2016, 5, 718-723.	2.3	16
762	DNA-programmable particle superlattices: Assembly, phases, and dynamic control. MRS Bulletin, 2016, 41, 381-387.	1.7	19
763	Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning. ACS Nano, 2016, 10, 5679-5686.	7.3	40
764	Small Angle X-ray Scattering for Nanoparticle Research. Chemical Reviews, 2016, 116, 11128-11180.	23.0	667
765	Nanoparticle assembly: from fundamentals to applications: concluding remarks. Faraday Discussions, 2016, 186, 529-537.	1.6	14
766	Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8, 9037-9095.	2.8	181
767	The Significance of Multivalent Bonding Motifs and "Bond Order―in DNA-Directed Nanoparticle Crystallization. Journal of the American Chemical Society, 2016, 138, 6119-6122.	6.6	22
768	Information capacity of specific interactions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5841-5846.	3.3	23
769	Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates. ACS Nano, 2016, 10, 5374-5382.	7.3	128

#	Article	IF	CITATIONS
770	Complex collective dynamics of active torque-driven colloids at interfaces. Current Opinion in Colloid and Interface Science, 2016, 21, 65-75.	3.4	63
771	Multi-component superstructures self-assembled from nanocrystal building blocks. Nanoscale, 2016, 8, 9944-9961.	2.8	49
772	Dynamic, Directed Self-Assembly of Nanoparticles via Toggled Interactions. ACS Nano, 2016, 10, 5260-5271.	7.3	47
773	Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews, 2016, 45, 4199-4225.	18.7	146
774	Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10485-10490.	3.3	61
775	Binding energy and biophysical properties of ionic liquid-DNA complex: Understanding the role of hydrophobic interactions. Journal of Molecular Liquids, 2016, 223, 1197-1203.	2.3	39
776	Extremophiles: Applications in Nanotechnology. , 2016, , .		20
777	Effect of Nonionic Surfactant on Association/Dissociation Transition of DNA-Functionalized Colloids. Langmuir, 2016, 32, 10017-10025.	1.6	7
778	Two-Dimensional Crystal Structure Formed by Two Components of DNA Nanoparticles on a Substrate. Journal of the Physical Society of Japan, 2016, 85, 074605.	0.7	5
779	Kinetically guided colloidal structure formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8577-8582.	3.3	17
780	Characterizing DNA Corona Rigidity in DNA-Directed Gold Nanoparticle Crystalline Structures. Journal of Physical Chemistry C, 2016, 120, 18307-18315.	1.5	1
782	Macromolecular Decoration of Nanoparticles for Guiding Self&;#x02010;Assembly in 2D and 3D. , 0, , 159-192.		7
783	Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals. Journal of the American Chemical Society, 2016, 138, 10508-10515.	6.6	22
784	Iterative and accurate determination of small angle X-ray scattering background. Nuclear Science and Techniques/Hewuli, 2016, 27, 1.	1.3	2
785	Melting transition in lipid vesicles functionalised by mobile DNA linkers. Soft Matter, 2016, 12, 7804-7817.	1.2	30
786	DNAâ€Mediated Morphological Control of Silver Nanoparticles. Small, 2016, 12, 5449-5487.	5.2	33
787	Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews, 2016, 116, 11220-11289.	23.0	1,485
788	Activity-assisted self-assembly of colloidal particles. Physical Review E, 2016, 94, 022607.	0.8	19

	CITATION RE	PORT	
Article		IF	CITATIONS
Generic phase diagram of binary superlattices. Proceedings of the National Academy o United States of America, 2016, 113, 10269-10274.	f Sciences of the	3.3	26
Understanding of the major reactions in solution synthesis of functional nanomaterials China Materials, 2016, 59, 938-996.	s. Science	3.5	86
The pathway to atomic alignment. Nature Materials, 2016, 15, 1225-1226.		13.3	2
DNA assembled metal nanoclusters: synthesis to novel applications. RSC Advances, 20	16, 6, 113095-113114.	1.7	33
Minimal Positive Design for Self-Assembly of the Archimedean Tilings. Physical Review 228003.	Letters, 2016, 117,	2.9	21
Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices. Journa American Chemical Society, 2016, 138, 12731-12734.	al of the	6.6	106
First identification of nanoparticles on thorax, abdomen and wings of the worker bee A Fabricius. Journal of Apicultural Science, 2016, 60, 87-96.	pis dorsata	0.1	1
Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Cryst the American Chemical Society, 2016, 138, 8722-8725.	cals. Journal of	6.6	55

795	First identification of nanoparticles on thorax, abdomen and wings of the worker bee Apis dorsata Fabricius. Journal of Apicultural Science, 2016, 60, 87-96.	0.1	1
796	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals. Journal of the American Chemical Society, 2016, 138, 8722-8725.	6.6	55
797	Optimal Feedback Controlled Assembly of Perfect Crystals. ACS Nano, 2016, 10, 6791-6798.	7.3	83
798	Enzymatically Controlled Vacancies in Nanoparticle Crystals. Nano Letters, 2016, 16, 5114-5119.	4.5	3
799	Dynamic Properties of DNA-Programmable Nanoparticle Crystallization. ACS Nano, 2016, 10, 7485-7492.	7.3	26
800	Bond disorder, frustration and polymorphism in the spontaneous crystallization of a polymer melt. Journal of Non-Crystalline Solids, 2016, 453, 88-93.	1.5	8
801	Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nature Reviews Materials, 2016, 1, .	23.3	281
802	Control of colloidal placement by modulated molecular orientation in nematic cells. Science Advances, 2016, 2, e1600932.	4.7	53
803			
000	In situ microscopy of the self-assembly of branched nanocrystals in solution. Nature Communications, 2016, 7, 11213.	5.8	91
804	In situ microscopy of the self-assembly of branched nanocrystals in solution. Nature Communications, 2016, 7, 11213. Effect of magnesium ion concentration on two-dimensional structure of DNA-functionalized nanoparticles on supported lipid bilayer. Japanese Journal of Applied Physics, 2016, 55, 03DF11.	5.8 0.8	91 8
804 805	In situ microscopy of the self-assembly of branched nanocrystals in solution. Nature Communications, 2016, 7, 11213. Effect of magnesium ion concentration on two-dimensional structure of DNA-functionalized nanoparticles on supported lipid bilayer. Japanese Journal of Applied Physics, 2016, 55, 03DF11. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. Advanced Materials, 2016, 28, 2099-2147.	5.8 0.8 11.1	91 8 323

#

789

791

793

794

#	Article	IF	CITATIONS
807	Molecular mechanics of DNA bricks: <i>in situ</i> structure, mechanical properties and ionic conductivity. New Journal of Physics, 2016, 18, 055012.	1.2	21
808	Ordering Gold Nanoparticles with DNA Origami Nanoflowers. ACS Nano, 2016, 10, 7303-7306.	7.3	87
809	Self-assembly of PEGylated gold nanoparticles with satellite structures as seeds. Chemical Communications, 2016, 52, 9542-9545.	2.2	8
810	Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications. Nanoscale, 2016, 8, 14297-14340.	2.8	378
811	Thermal Regulation of Colloidal Materials Architecture through Orthogonal Functionalizable Patchy Particles. Chemistry of Materials, 2016, 28, 3984-3989.	3.2	46
812	Electrolyte-Mediated Assembly of Charged Nanoparticles. ACS Central Science, 2016, 2, 219-224.	5.3	31
813	Self-organized architectures from assorted DNA-framed nanoparticles. Nature Chemistry, 2016, 8, 867-873.	6.6	210
814	Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon, 2016, 100, 165-177.	5.4	24
815	A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-like Nanoperiodic Tables. Chemical Reviews, 2016, 116, 2705-2774.	23.0	195
816	Relaxation dynamics of functionalized colloids on attractive substrates. Soft Matter, 2016, 12, 1550-1557.	1.2	14
817	Self-Assembly of Nanoparticle–Surfactant Complexes with Rodlike Micelles: A Molecular Dynamics Study. Langmuir, 2016, 32, 1214-1219.	1.6	51
818	Photodependent Melting of Unmodified DNA Using a Photosensitive Intercalator: A New and Generic Tool for Photoreversible Assembly of DNA Nanostructures at Constant Temperature. Nano Letters, 2016, 16, 773-780.	4.5	56
819	Solvent-Mediated Crystallization of Nanocrystal 3D Assemblies of Silver Nanocrystals: Unexpected Superlattice Ripening. Chemistry of Materials, 2016, 28, 293-302.	3.2	27
820	Orientation-selective alignments of nanoblocks in a and c directions of a tetragonal system through molecularly mediated manipulation. Chemical Communications, 2016, 52, 5597-5600.	2.2	5
821	Forming CNT-guided stereocomplex networks in polylactide-based nanocomposites. Composites Science and Technology, 2016, 128, 8-16.	3.8	26
822	Self-Assembly of Structures with Addressable Complexity. Journal of the American Chemical Society, 2016, 138, 2457-2467.	6.6	73
823	Nanomanufacturing: A Perspective. ACS Nano, 2016, 10, 2995-3014.	7.3	176
824	Lattice engineering through nanoparticle–DNA frameworks. Nature Materials, 2016, 15, 654-661.	13.3	198

#	Article	IF	CITATIONS
825	Controlling Self-Assembly Kinetics of DNA-Functionalized Liposomes Using Toehold Exchange Mechanism. ACS Nano, 2016, 10, 2392-2398.	7.3	80
826	Theory and simulation of DNA-coated colloids: a guide for rational design. Physical Chemistry Chemical Physics, 2016, 18, 6373-6393.	1.3	55
827	Programmable DNA scaffolds for spatially-ordered protein assembly. Nanoscale, 2016, 8, 4436-4446.	2.8	55
828	Diamond family of nanoparticle superlattices. Science, 2016, 351, 582-586.	6.0	331
829	Transmutable nanoparticles with reconfigurable surface ligands. Science, 2016, 351, 579-582.	6.0	150
830	Critical Casimir forces for colloidal assembly. Journal of Physics Condensed Matter, 2016, 28, 043001.	0.7	22
831	Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures. Journal of Physical Chemistry C, 2016, 120, 816-830.	1.5	257
832	G-Quadruplexes Light up Localized DNA Circuits. Nano Letters, 2016, 16, 624-628.	4.5	20
833	Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nature Chemistry, 2016, 8, 162-170.	6.6	205
834	Self-Assembled Spherical Supercluster Metamaterials from Nanoscale Building Blocks. ACS Photonics, 2016, 3, 35-42.	3.2	30
835	Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology, 2016, 11, 82-88.	15.6	305
836	Modular, polymer-directed nanoparticle assembly for fabricating metamaterials. Faraday Discussions, 2016, 186, 489-502.	1.6	10
837	Designing disordered materials using DNA-coated colloids of bacteriophage fd and gold. Faraday Discussions, 2016, 186, 473-488.	1.6	6
838	Topological structure prediction in binary nanoparticle superlattices. Soft Matter, 2017, 13, 147-157.	1.2	66
839	Eco-friendly fabrication of antibacterial cotton fibers by the cooperative self-assembly of hyperbranched poly(amidoamine)- and hyperbranched poly(amine-ester)-functionalized silver nanoparticles. Cellulose, 2017, 24, 1493-1509.	2.4	17
840	A new view for nanoparticle assemblies: from crystalline to binary cooperative complementarity. Chemical Society Reviews, 2017, 46, 1483-1509.	18.7	77
841	Membrane Adhesion through Bridging by Multimeric Ligands. Langmuir, 2017, 33, 1139-1146.	1.6	30
842	Nonequilibrium self-organization of colloidal particles on substrates: adsorption, relaxation, and annealing. Journal of Physics Condensed Matter, 2017, 29, 014001.	0.7	6

#	Article	IF	CITATIONS
843	Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices. Nano Letters, 2017, 17, 1387-1394.	4.5	40
844	Modulating Nanoparticle Superlattice Structure Using Proteins with Tunable Bond Distributions. Journal of the American Chemical Society, 2017, 139, 1754-1757.	6.6	53
845	Evidence of contact epitaxy in the self-assembly of HgSe nanocrystals formed at a liquid–liquid interface. Journal of Physics Condensed Matter, 2017, 29, 095101.	0.7	13
846	Atomic clusters with addressable complexity. Journal of Chemical Physics, 2017, 146, 054306.	1.2	8
847	A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA–inorganic hybrid nanoflowers. Journal of Materials Chemistry B, 2017, 5, 2231-2234.	2.9	55
848	Bottom-Up Strategy To Prepare Nanoparticles with a Single DNA Strand. Journal of the American Chemical Society, 2017, 139, 3623-3626.	6.6	30
849	Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. Analytical Methods, 2017, 9, 2633-2643.	1.3	173
850	<i>SLADS</i> : a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems. Journal of Applied Crystallography, 2017, 50, 951-958.	1.9	10
851	Process Principles for Large-Scale Nanomanufacturing. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 201-226.	3.3	10
852	Directed assembly of particles using directional DNA interactions. Current Opinion in Colloid and Interface Science, 2017, 30, 34-44.	3.4	26
853	Directionally Interacting Spheres and Rods Form Ordered Phases. ACS Nano, 2017, 11, 4950-4959.	7.3	19
854	Optimizing the formation of solid solutions with components of different shapes. Journal of Chemical Physics, 2017, 146, 134508.	1.2	6
855	Core–Shell and Layerâ€by‣ayer Assembly of 3D DNA Crystals. Advanced Materials, 2017, 29, 1701019.	11.1	17
856	Soft Skyrmions, Spontaneous Valence and Selection Rules in Nanoparticle Superlattices. ACS Nano, 2017, 11, 5375-5382.	7.3	62
857	A Low-Symmetry Cubic Mesophase of Dendronized CdS Nanoparticles and Their Structure-Dependent Photoluminescence. CheM, 2017, 2, 860-876.	5.8	27
858	Functionality of Nonfunctional Diluent Ligands within Bicomponent Layers on Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 13906-13915.	1.5	3
859	Assembling and ordering polymer-grafted nanoparticles in three dimensions. Nanoscale, 2017, 9, 8710-8715.	2.8	51
860	Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nature Materials, 2017, 16, 849-856.	13.3	85

#	Article	IF	Citations
861	Optically transparent dense colloidal gels. Chemical Science, 2017, 8, 5559-5566.	3.7	15
862	Supra-Nanoparticle Functional Assemblies through Programmable Stacking. ACS Nano, 2017, 11, 7036-7048.	7.3	32
863	Clusters of anisotropic colloidal particles: From colloidal molecules to supracolloidal structures. Current Opinion in Colloid and Interface Science, 2017, 30, 70-80.	3.4	51
864	DNA-Driven Assembly: From Polyhedral Nanoparticles to Proteins. Annual Review of Materials Research, 2017, 47, 33-49.	4.3	17
865	Surfactantâ€Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis. Advanced Materials, 2017, 29, 1605622.	11.1	77
866	Nucleic acid based polymer and nanoparticle conjugates: Synthesis, properties and applications. Progress in Materials Science, 2017, 88, 136-185.	16.0	24
867	Assembling gold nanoparticles into flower-like structures by complementary base pairing of DNA molecules with mediation by apoferritins. Chemical Communications, 2017, 53, 4581-4584.	2.2	4
868	Quantified Binding Scale of Competing Ligands at the Surface of Gold Nanoparticles: The Role of Entropy and Intermolecular Forces. Small, 2017, 13, 1604028.	5.2	21
869	Recent advances in molecular machines based on toeholdâ€nediated strand displacement reaction. Quantitative Biology, 2017, 5, 25-41.	0.3	22
870	Top-down design of magnonic crystals from bottom-up magnetic nanoparticles through protein arrays. Nanotechnology, 2017, 28, 155301.	1.3	22
871	Free energy of singular sticky-sphere clusters. Physical Review E, 2017, 95, 022130.	0.8	16
872	Molecular control over colloidal assembly. Chemical Communications, 2017, 53, 4414-4428.	2.2	33
874	HIV Peptide-Mediated Binding Behaviors of Nanoparticles on a Lipid Membrane. Langmuir, 2017, 33, 2590-2595.	1.6	12
875	The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of Radiation-Sensitive Specimens. Nano Letters, 2017, 17, 414-420.	4.5	120
876	Sticky-Sphere Clusters. Annual Review of Condensed Matter Physics, 2017, 8, 77-98.	5.2	22
877	Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science, 2017, 358, 514-518.	6.0	120
878	Capping Ligand Vortices as "Atomic Orbitals―in Nanocrystal Self-Assembly. ACS Nano, 2017, 11, 11273-11282.	7.3	43
879	Free tanding Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity. Chemistry - A European Journal, 2017, 23, 17482-17486.	1.7	25

#	Article	IF	CITATIONS
880	Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles. Materials Research Express, 2017, 4, 116105.	0.8	38
881	Interaction Heterogeneity can Favorably Impact Colloidal Crystal Nucleation. Physical Review Letters, 2017, 119, 178002.	2.9	6
882	Self-assembled three-dimensional chiral colloidal architecture. Science, 2017, 358, 633-636.	6.0	105
883	Controlling Nonâ€Equilibrium Structure Formation on the Nanoscale. ChemPhysChem, 2017, 18, 3437-3442.	1.0	1
884	DNA Grafting and Arrangement on Oxide Surfaces for Self-Assembly of Al and CuO Nanoparticles. Langmuir, 2017, 33, 12193-12203.	1.6	23
885	Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles. Langmuir, 2017, 33, 12227-12234.	1.6	26
886	Beyond native block copolymer morphologies. Molecular Systems Design and Engineering, 2017, 2, 518-538.	1.7	62
887	Inverting the design path for self-assembled block copolymers. Molecular Systems Design and Engineering, 2017, 2, 539-548.	1.7	20
888	Optical properties of anisotropic 3D nanoparticles arrays. Europhysics Letters, 2017, 119, 27005.	0.7	2
889	Triblock peptide–oligonucleotide chimeras (POCs): programmable biomolecules for the assembly of morphologically tunable and responsive hybrid materials. Chemical Communications, 2017, 53, 12221-12224.	2.2	8
890	The Role of Repulsion in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2017, 139, 16528-16535.	6.6	31
891	Molecular rigidity and enthalpy–entropy compensation in DNA melting. Soft Matter, 2017, 13, 8309-8330.	1.2	28
892	Oriented assembly of anisotropic nanoparticles into frame-like superstructures. Science Advances, 2017, 3, e1700732.	4.7	158
894	Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chemical Reviews, 2017, 117, 12641-12704.	23.0	162
895	No need to wait. Nature Materials, 2017, 16, 883-884.	13.3	2
896	<i>Colloquium</i> : Toward living matter with colloidal particles. Reviews of Modern Physics, 2017, 89, .	16.4	34
897	Nanoparticle Superlattices as Quasi-Frank-Kasper Phases. Physical Review Letters, 2017, 119, 115701.	2.9	42
898	Cooperative colloidal self-assembly of metal-protein superlattice wires. Nature Communications, 2017, 8, 671.	5.8	73

#	Article	IF	CITATIONS
899	Ion-Specific Interfacial Crystallization of Polymer-Grafted Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 15424-15429.	1.5	33
900	General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles. Journal of the American Chemical Society, 2017, 139, 9827-9830.	6.6	245
901	Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion. Nano Letters, 2017, 17, 5126-5132.	4.5	36
902	Humidityâ€Responsive Singleâ€Nanoparticle‣ayer Plasmonic Films. Advanced Materials, 2017, 29, 1606796.	11.1	25
903	Stacking modular DNA circuitry in cascading self-assembly of spherical nucleic acids. Journal of Materials Chemistry B, 2017, 5, 6256-6265.	2.9	6
904	Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Physical Chemistry Chemical Physics, 2017, 19, 19847-19868.	1.3	64
905	Assembly of charged aerosols on non-conducting substrates via ion-assisted aerosol lithography (IAAL). Particuology, 2017, 33, 17-23.	2.0	3
906	High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature, 2017, 548, 197-201.	13.7	101
907	Surface and Tip-Enhanced Raman Spectroscopy at the Plasmonic Hot Spot of a Coordination Complex-Conjugated Gold Nanoparticle Dimer. Journal of Physical Chemistry C, 2017, 121, 18854-18861.	1.5	7
908	Pt supraparticles with controllable DNA valences for programmed nanoassembly. Chemical Communications, 2017, 53, 9773-9776.	2.2	10
909	Effective potentials induced by self-assembly of patchy particles. Soft Matter, 2017, 13, 6051-6058.	1.2	10
910	Layer-by-layer assembly of patchy particles as a route to nontrivial structures. Physical Review E, 2017, 96, 022601.	0.8	12
911	Out-of-Equilibrium Aggregates and Coatings during Seeded Growth of Metallic Nanoparticles. Journal of the American Chemical Society, 2017, 139, 17973-17978.	6.6	62
912	Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology. MRS Bulletin, 2017, 42, 904-912.	1.7	30
913	Spatial Control of Crystallographic Direction in 2D Microarrays of Anisotropic Nanoblocks on Trenched Substrates. Langmuir, 2017, 33, 13805-13810.	1.6	8
914	Agriculture Applications of Entomopathogenic Fungi Using Nanotechnology. Fungal Biology, 2017, , 35-53.	0.3	2
915	Molecular Recognition in the Colloidal World. Accounts of Chemical Research, 2017, 50, 2756-2766.	7.6	59
917	Communication: Programmable self-assembly of thin-shell mesostructures. Journal of Chemical Physics, 2017, 147, 141103.	1.2	5

#	Article	IF	CITATIONS
918	Dynamics of network fluids. Advances in Colloid and Interface Science, 2017, 247, 258-263.	7.0	24
919	Fuel-Mediated Transient Clustering of Colloidal Building Blocks. Journal of the American Chemical Society, 2017, 139, 9763-9766.	6.6	100
920	Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares. Journal of the American Chemical Society, 2017, 139, 9471-9474.	6.6	303
921	Stimuli-Responsive Interfaces. , 2017, , .		3
922	Macroscopic and tunable nanoparticle superlattices. Nanoscale, 2017, 9, 164-171.	2.8	58
923	DNA Functionalization of Nanoparticles. Methods in Molecular Biology, 2017, 1500, 99-107.	0.4	5
924	Phase transition process in DDAB supported lipid bilayer. Journal of Crystal Growth, 2017, 468, 88-92.	0.7	1
925	Fungal Nanotechnology. Fungal Biology, 2017, , .	0.3	20
926	A Nucleotide-Level Computational Approach to DNA-Based Materials. , 2017, , 71-90.		0
927	Derivation of nearest-neighbor DNA parameters in magnesium from single molecule experiments. Nucleic Acids Research, 2017, 45, 12921-12931.	6.5	39
928	Optimizing the formation of colloidal compounds with components of different shapes. Journal of Chemical Physics, 2017, 147, 214501.	1.2	12
929	Tuning Patchy Bonds Induced by Critical Casimir Forces. Materials, 2017, 10, 1265.	1.3	14
930	Nucleobase-Containing Polymers: Structure, Synthesis, and Applications. Polymers, 2017, 9, 666.	2.0	32
931	Coherent amplification of X-ray scattering from meso-structures. IUCrJ, 2017, 4, 604-613.	1.0	3
932	Green Intelligent Nanomaterials by Design (Using Nanoparticulate/2D-Materials Building Blocks) Current Developments and Future Trends. , 2017, , .		1
933	Colloidal Crystals: Using Self-Assembly to Create Structures From Nanoparticle Building Blocks. , 2017, , 109-127.		0
934	Hierarchical Materials. , 2017, , 545-574.		6
935	Frontier of Inorganic Synthesis and Preparative Chemistry (I) Biomimetic Synthesis. , 2017, , 687-721.		6

#	Article	IF	CITATIONS
936	Robust X-ray angular correlations for the study of meso-structures. Journal of Applied Crystallography, 2017, 50, 805-819.	1.9	7
937	Thiolated gold nanoparticle solvation in near-critical fluids: The role of density, temperature, and topology. Journal of Chemical Physics, 2017, 146, 174902.	1.2	5
938	Three-Dimensional Lattice Structure Formed in a Binary System with DNA Nanoparticles. Journal of the Physical Society of Japan, 2017, 86, 064601.	0.7	1
940	Virus-Like Particles (VLPs) in Supramolecular Chemistry. , 2017, , 127-148.		0
941	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
942	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	23.0	768
943	Fluorescent DNA Probing Nanoscale MnO ₂ : Adsorption, Dissolution by Thiol, and Nanozyme Activity. Langmuir, 2018, 34, 3094-3101.	1.6	50
944	Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics. Soft Matter, 2018, 14, 2665-2670.	1.2	10
945	Directed Assembly of Hybrid Nanomaterials and Nanocomposites. Advanced Materials, 2018, 30, e1705794.	11.1	74
946	Recent Advances in Multicomponent Particle Assembly. Chemistry - A European Journal, 2018, 24, 16196-16208.	1.7	11
947	Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering. Nano Letters, 2018, 18, 2609-2615.	4.5	43
948	Protein cage assembly across multiple length scales. Chemical Society Reviews, 2018, 47, 3433-3469.	18.7	138
949	Liquid interfaces with pH-switchable nanoparticle arrays. Soft Matter, 2018, 14, 3929-3934.	1.2	14
950	Manipulation of Colloidal Particles in Three Dimensions via Microfluid Engineering. Advanced Materials, 2018, 30, e1707291.	11.1	28
951	Modeling antigen-antibody nanoparticle bioconjugates and their polymorphs. Journal of Chemical Physics, 2018, 148, 124507.	1.2	2
952	pH-Responsive Nanoparticle Superlattices with Tunable DNA Bonds. Journal of the American Chemical Society, 2018, 140, 5061-5064.	6.6	56
953	Electrochemical behavior of self-assembled DNA–gold nanoparticle lattice films. Electrochemistry Communications, 2018, 90, 51-55.	2.3	7
955	Micrometer-sized TPM emulsion droplets with surface-mobile binding groups. Journal of Physics Condensed Matter, 2018, 30, 094005.	0.7	9

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
957	Tools and Functions of Reconfigurable Colloidal Assembly. Langmuir, 2018, 34, 11205-112	219.	1.6	29
958	Synthesis of Colloidal Graphene by Electrochemical Exfoliation of Graphite in Lithium Sulp Materials Today: Proceedings, 2018, 5, 973-979.	nate.	0.9	8
959	Entropy Stabilizes Floppy Crystals of Mobile DNA-Coated Colloids. Physical Review Letters 048003.	, 2018, 120,	2.9	19
960	Polyethyleneâ€Glycolâ€Mediated Selfâ€Assembly of Magnetite Nanoparticles at the Liquid Advanced Materials Interfaces, 2018, 5, 1701149.	d/Vapor Interface.	1.9	5
961	Programmable and Multifunctional DNAâ€Based Materials for Biomedical Applications. Ad Materials, 2018, 30, e1703658.	vanced	11.1	163
962	Building superlattices from individual nanoparticles via template-confined DNA-mediated a Science, 2018, 359, 669-672.	issembly.	6.0	195
963	DNA Origami Route for Nanophotonics. ACS Photonics, 2018, 5, 1151-1163.		3.2	171
964	Self-Assembly of Protein Crystals with Different Crystal Structures Using Tobacco Mosaic Protein as a Building Block. ACS Nano, 2018, 12, 1673-1679.	Virus Coat	7.3	33
965	DNA Nanostructureâ€Based Systems for Intelligent Delivery of Therapeutic Oligonucleotic Healthcare Materials, 2018, 7, e1701153.	les. Advanced	3.9	56
966	Directed assembly of metal nanoparticles in polymer bilayers. Molecular Systems Design a Engineering, 2018, 3, 390-396.	nd	1.7	5
967	On-Particle Rolling Circle Amplification-Based Core–Satellite Magnetic Superstructures f MicroRNA Detection. ACS Applied Materials & Interfaces, 2018, 10, 2957-2964.	or	4.0	39
968	Annealing cycles and the self-organization of functionalized colloids. Journal of Physics Co Matter, 2018, 30, 014001.	ndensed	0.7	0
969	Lattice Mismatch in Crystalline Nanoparticle Thin Films. Nano Letters, 2018, 18, 579-585.		4.5	59
970	Using DNA strand displacement to control interactions in DNA-grafted colloids. Soft Matte 969-984.	er, 2018, 14,	1.2	22
972	Layer-by-layer manipulation of anisotropic nanoblocks: orientation-switched superlattices orthogonal stacking of <i>a</i> and <i>c</i> directions. Nanoscale, 2018, 10, 12957-1290	through 52.	2.8	5
973	Assembling silicon quantum dots into wires, networks and rods via metal ion bridges. Nan 2018, 10, 7597-7604.	oscale,	2.8	4
974	Multiplexed mRNA Sensing and Combinatorial-Targeted Drug Delivery Using DNA-Gold Na Dimers. ACS Nano, 2018, 12, 3333-3340.	noparticle	7.3	107
975	Templated Assembly of a Functional Ordered Protein Macromolecular Framework from P2 Particles. ACS Nano, 2018, 12, 3541-3550.	2 Virus-like	7.3	52

#	Article	IF	CITATIONS
976	Bromide as a Robust Backfiller on Gold for Precise Control of DNA Conformation and High Stability of Spherical Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 4499-4502.	6.6	91
977	Inverse design of multicomponent assemblies. Journal of Chemical Physics, 2018, 148, 104509.	1.2	27
978	Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Advanced Materials, 2018, 30, 1702669.	11.1	102
979	Length-Dependent Diblock DNA with Poly-cytosine (Poly-C) as High-Affinity Anchors on Graphene Oxide. Langmuir, 2018, 34, 1171-1177.	1.6	40
980	Nanoparticle Superlattices: The Roles of Soft Ligands. Advanced Science, 2018, 5, 1700179.	5.6	170
981	Thermally reversible nanoparticle gels with tuneable porosity showing structural colour. Physical Chemistry Chemical Physics, 2018, 20, 467-477.	1.3	4
982	Photoresponsive spherical nucleic acid: spatiotemporal control of the assembly circuit and intracellular microRNA release. Chemical Communications, 2018, 54, 106-109.	2.2	4
983	Plasmonic Nanoparticle Dimers with Reversibly Photoswitchable Interparticle Distances Linked by DNA. Journal of Physical Chemistry C, 2018, 122, 13363-13370.	1.5	16
984	DNA nanotechnology. Nature Reviews Materials, 2018, 3, .	23.3	1,268
985	Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis. ACS Nano, 2018, 12, 942-953.	7.3	86
986	Binary Superlattice Design by Controlling DNA-Mediated Interactions. Langmuir, 2018, 34, 991-998.	1.6	22
987	Two-dimensional structures formed in a binary system of DNA nanoparticles with a short-range interaction potential. Japanese Journal of Applied Physics, 2018, 57, 125002.	0.8	1
988	Nonisotropic Selfâ€Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. Advanced Materials, 2018, 30, e1706558.	11.1	38
989	Crossover from three- to six-fold symmetry of colloidal aggregates in circular traps. Soft Matter, 2018, 14, 9411-9417.	1.2	0
991	Reversible Control of Spacing in Charged Lamellar Membrane Hydrogels by Hydrophobically Mediated Tethering with Symmetric and Asymmetric Double-End-Anchored Poly(ethylene glycol)s. ACS Applied Materials & Interfaces, 2018, 10, 44152-44162.	4.0	5
992	Non-equilibrium anisotropic colloidal single crystal growth with DNA. Nature Communications, 2018, 9, 4558.	5.8	37
994	Control of thermal conduction and rectification in a model of complex networks with two asymmetric parts. Physical Review E, 2018, 98, .	0.8	13
995	Templated synthesis of cubic crystalline single networks having large open-space lattices by polymer cubosomes. Nature Communications, 2018, 9, 5327.	5.8	49

#	Article	IF	CITATIONS
996	Strong bonds and far-from-equilibrium conditions minimize errors in lattice-gas growth. Journal of Chemical Physics, 2018, 149, 104902.	1.2	5
997	Design Rules for Templateâ€Confined DNAâ€Mediated Nanoparticle Assembly. Small, 2018, 14, e1802742.	5.2	13
998	Patterning well-controlled cross section of ordered 3D architecture via capillary bridge route. AIP Advances, 2018, 8, .	0.6	1
999	Programmable self-assembly of diamond polymorphs from chromatic patchy particles. Physical Review E, 2018, 98, .	0.8	22
1000	Effect of Chain Rigidity on the Crystallization of DNA-Directed Nanoparticle System. Macromolecules, 2018, 51, 8372-8376.	2.2	10
1001	MicroRNA Detection through DNAzyme-Mediated Disintegration of Magnetic Nanoparticle Assemblies. ACS Sensors, 2018, 3, 1884-1891.	4.0	35
1002	Hierarchical Crystals Formed from DNA-Functionalized Janus Nanoparticles. ACS Nano, 2018, 12, 9467-9475.	7.3	39
1003	Stability and Free Energy of Nanocrystal Chains and Superlattices. Journal of Physical Chemistry C, 2018, 122, 23153-23164.	1.5	31
1004	DNA-Directed Non-Langmuir Deposition of Programmable Atom Equivalents. Langmuir, 2018, 34, 14842-14850.	1.6	10
1005			
1005	3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273.	11.1	150
1005	3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273. Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720.	11.1	150 2
1003 1006 1007	 3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273. Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720. Controllable oligomerization: defying step-growth kinetics in the polymerization of gold nanoparticles. Chemical Communications, 2018, 54, 7746-7749. 	11.1 1.6 2.2	150 2 14
1003 1006 1007 1008	 3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273. Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720. Controllable oligomerization: defying step-growth kinetics in the polymerization of gold nanoparticles. Chemical Communications, 2018, 54, 7746-7749. The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. Journal of the American Chemical Society, 2018, 140, 6226-6230. 	11.1 1.6 2.2 6.6	150 2 14 36
1003 1006 1007 1008 1009	 3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273. Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720. Controllable oligomerization: defying step-growth kinetics in the polymerization of gold nanoparticles. Chemical Communications, 2018, 54, 7746-7749. The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. Journal of the American Chemical Society, 2018, 140, 6226-6230. Compressible colloidal clusters from Pickering emulsions and their DNA functionalization. Chemical Communications, 2018, 54, 8328-8331. 	11.1 1.6 2.2 6.6 2.2	150 2 14 36 10
1003 1006 1007 1008 1009	 3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273. Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720. Controllable oligomerization: defying step-growth kinetics in the polymerization of gold nanoparticles. Chemical Communications, 2018, 54, 7746-7749. The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. Journal of the American Chemical Society, 2018, 140, 6226-6230. Compressible colloidal clusters from Pickering emulsions and their DNA functionalization. Chemical Communications, 2018, 54, 8328-8331. Spherical Nucleic Acid Nanoparticles: Therapeutic Potential. BioDrugs, 2018, 32, 297-309. 	11.1 1.6 2.2 6.6 2.2 2.2	150 2 14 36 10 84
1003 1006 1007 1008 1009 1010	 3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273. Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720. Controllable oligomerization: defying step-growth kinetics in the polymerization of gold nanoparticles. Chemical Communications, 2018, 54, 7746-7749. The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. Journal of the American Chemical Society, 2018, 140, 6226-6230. Compressible colloidal clusters from Pickering emulsions and their DNA functionalization. Chemical Communications, 2018, 54, 8328-8331. Spherical Nucleic Acid Nanoparticles: Therapeutic Potential. BioDrugs, 2018, 32, 297-309. Ordered Networks of Cold Nanoparticles Crosslinked by DithiolâcOligomers. Particle and Particle Systems Characterization, 2018, 35, 1800097. 	11.1 1.6 2.2 6.6 2.2 2.2 2.2 1.2	150 2 14 36 10 84 7
1003 1006 1007 1008 1009 1010 1011	3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273. Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720. Controllable oligomerization: defying step-growth kinetics in the polymerization of gold nanoparticles. Chemical Communications, 2018, 54, 7746-7749. The Role of Structural Enthalpy in Spherical Nucleic Acid Hybridization. Journal of the American Chemical Society, 2018, 140, 6226-6230. Compressible colloidal clusters from Pickering emulsions and their DNA functionalization. Chemical Communications, 2018, 54, 8328-8331. Spherical Nucleic Acid Nanoparticles: Therapeutic Potential. BioDrugs, 2018, 32, 297-309. Ordered Networks of Gold Nanoparticles Crosslinked by Dithiolâ€Oligomers. Particle and Particle Systems Characterization, 2018, 35, 1800097. Radiation damage during <i>in situ </i> electron microscopy of DNA-mediated nanoparticle assemblies in solution. Nanoscale, 2018, 10, 12674-12682.	11.1 1.6 2.2 6.6 2.2 2.2 2.2 1.2 2.8	150 2 14 36 10 84 7 14

~		<u> </u>	
		IV F D(DDT
\sim	IIAI	IVE F	

#	Article	IF	CITATIONS
1014	Functional Two- and Three-Dimensional Architectures of Immobilized Metal Nanoparticles. CheM, 2018, 4, 2301-2328.	5.8	14
1015	Correlation between DNA Self-Assembly Kinetics, Microstructure, and Thermal Properties of Tunable Highly Energetic Al–CuO Nanocomposites for Micropyrotechnic Applications. ACS Applied Nano Materials, 2018, 1, 4716-4725.	2.4	24
1016	DNA-Encoded Protein Janus Nanoparticles. Journal of the American Chemical Society, 2018, 140, 9269-9274.	6.6	48
1017	Assembly of three-dimensional binary superlattices from multi-flavored particles. Soft Matter, 2018, 14, 6303-6312.	1.2	15
1018	Density-Gradient Control over Nanoparticle Supercrystal Formation. Nano Letters, 2018, 18, 6022-6029.	4.5	12
1019	Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Advanced Materials, 2018, 30, e1802309.	11.1	216
1020	Biopolymers and Their Composites for Drug Delivery: A Brief Review. Macromolecular Symposia, 2018, 380, 1800114.	0.4	41
1021	Non-Cross-Linking Aggregation of DNA-Carrying Polymer Micelles Triggered by Duplex Formation. Langmuir, 2018, 34, 14899-14910.	1.6	15
1022	Bioorthogonal DNA Adsorption on Polydopamine Nanoparticles Mediated by Metal Coordination for Highly Robust Sensing in Serum and Living Cells. ACS Nano, 2018, 12, 9070-9080.	7.3	107
1023	Metal–Organic Framework Nanoparticles. Advanced Materials, 2018, 30, e1800202.	11.1	539
1024	Polyvalent Spherical Nucleic Acids for Universal Display of Functional DNA with Ultrahigh Stability. Angewandte Chemie - International Edition, 2018, 57, 9439-9442.	7.2	53
1025	Many Body Effects and Icosahedral Order in Superlattice Self-Assembly. Journal of the American Chemical Society, 2018, 140, 8236-8245.	6.6	31
1026	Polyvalent Spherical Nucleic Acids for Universal Display of Functional DNA with Ultrahigh Stability. Angewandte Chemie, 2018, 130, 9583-9586.	1.6	16
1027	Microrheology of DNA hydrogel gelling and melting on cooling. Soft Matter, 2018, 14, 6431-6438.	1.2	37
1028	3D Columnar Phase of Stacked Short DNA Organized by Coherent Membrane Undulations. Langmuir, 2019, 35, 11891-11901.	1.6	2
1029	Phthalocyanine–Virus Nanofibers as Heterogeneous Catalysts for Continuousâ€Flow Photoâ€Oxidation Processes. Advanced Materials, 2019, 31, e1902582.	11.1	25
1030	Valency-Controlled Molecular Spherical Nucleic Acids with Tunable Biosensing Performances. Analytical Chemistry, 2019, 91, 11374-11379.	3.2	13
1031	Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. Reports on Progress in Physics, 2019, 82, 116601.	8.1	39

	Сітатіо	n Report	
#	Article	IF	CITATIONS
1032	Drag Force for Asymmetrically Grafted Colloids in Polymer Solutions. Frontiers in Physics, 2019, 7, .	1.0	1
1033	A Cross-Linking Approach to Stabilizing Stimuli-Responsive Colloidal Crystals Engineered with DNA. Journal of the American Chemical Society, 2019, 141, 11827-11831.	6.6	27
1034	Designing active particles for colloidal microstructure manipulation <i>via</i> strain field alchemy. Soft Matter, 2019, 15, 6086-6096.	1.2	5
1035	Chemistries for DNA Nanotechnology. Chemical Reviews, 2019, 119, 6384-6458.	23.0	319
1036	Computational self-assembly of colloidal crystals from Platonic polyhedral sphere clusters. Soft Matter, 2019, 15, 6288-6299.	1.2	9
1037	Engineering entropy for the inverse design of colloidal crystals from hard shapes. Science Advances, 2019, 5, eaaw0514.	4.7	49
1038	Self-Assembly of Ultrathin Nanocrystals to Multidimensional Superstructures. Langmuir, 2019, 35, 10246-10266.	1.6	17
1039	Gold Nanoparticles Thin Films with Thermo―and Photoresponsive Plasmonic Properties Realized with Liquidâ€Crystalline Ligands. Small, 2019, 15, e1902807.	5.2	9
1040	Statistical Modeling of Ligand-Mediated Multimeric Nanoparticle Assembly. Journal of Physical Chemistry C, 2019, 123, 21195-21206.	1.5	4
1041	Nanostructured Biopolymers for Application as Drug-Delivery Vehicles. , 2019, , 189-210.		5
1042	Controlling Crystal Texture in Programmable Atom Equivalent Thin Films. ACS Nano, 2019, 13, 8452-8460.	7.3	13
1044	Phosphine-free synthesis of FeTe ₂ nanoparticles and self-assembly into tree-like nanoarchitectures*. Chinese Physics B, 2019, 28, 106401.	0.7	3
1045	Supercrystal Formation of Gold Nanorods by High Pressure Stimulation. Journal of Physical Chemistry C, 2019, 123, 29994-30000.	1.5	4
1046	Structure and phase behavior of polymer-linked colloidal gels. Journal of Chemical Physics, 2019, 151, 124901.	1.2	28
1047	Tunable Fluorescence from Dyeâ€Modified DNAâ€Assembled Plasmonic Nanocube Arrays. Advanced Materials, 2019, 31, e1904448.	11.1	24
1048	From DNA Tiles to Functional DNA Materials. Trends in Chemistry, 2019, 1, 799-814.	4.4	43
1049	Interface-Driven Hybrid Materials Based on DNA-Functionalized Gold Nanoparticles. Matter, 2019, 1, 825-847.	5.0	147
1050	Self-Assembly Formed by Spherical Patchy Particles with Long-Range Attraction. Journal of the Physical Society of Japan, 2019, 88, 104801.	0.7	6

#	Article	IF	CITATIONS
1051	Reversible Polymerization-like Kinetics for Programmable Self-Assembly of DNA-Encoded Nanoparticles with Limited Valence. Journal of the American Chemical Society, 2019, 141, 16408-16415.	6.6	18
1052	A Droplet-Based Microfluidics Route to Temperature-Responsive Colloidal Molecules. Journal of Physical Chemistry B, 2019, 123, 9260-9271.	1.2	9
1053	Self-assembly of spheroidal triblock Janus nanoparticle solutions in nanotubes. Molecular Systems Design and Engineering, 2019, 4, 122-132.	1.7	6
1054	<i>In situ</i> electron microscopy of the self-assembly of single-stranded DNA-functionalized Au nanoparticles in aqueous solution. Nanoscale, 2019, 11, 34-44.	2.8	14
1055	Etching silver nanoparticles using DNA. Materials Horizons, 2019, 6, 155-159.	6.4	35
1056	Complementary Design for Pairing between Two Types of Nanoparticles Mediated by a Bispecific Antibody: Bottom-Up Formation of Porous Materials from Nanoparticles. Langmuir, 2019, 35, 3067-3076.	1.6	0
1057	Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations. Annual Review of Analytical Chemistry, 2019, 12, 501-522.	2.8	27
1058	Micelle-Assisted Formation of Nanoparticle Superlattices and Thermally Reversible Symmetry Transitions. Nano Letters, 2019, 19, 2313-2321.	4.5	10
1059	High-order elastic multipoles as colloidal atoms. Nature Communications, 2019, 10, 1825.	5.8	18
1060	Transient self-organisation of DNA coated colloids directed by enzymatic reactions. Scientific Reports, 2019, 9, 7350.	1.6	16
1061	Particle analogs of electrons in colloidal crystals. Science, 2019, 364, 1174-1178.	6.0	91
1062	Electron transfer in superlattice films based on self-assembled DNA-Gold nanoparticle. Electrochimica Acta, 2019, 318, 931-936.	2.6	5
1063	Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications. ACS Nano, 2019, 13, 7957-7965.	7.3	40
1064	Encoding Reversible Hierarchical Structures with Supramolecular Peptide–DNA Materials. Bioconjugate Chemistry, 2019, 30, 1864-1869.	1.8	18
1065	Versatile functionalization of polymer nanoparticles with carbonate groups <i>via</i> hydroxyurethane linkages. Polymer Chemistry, 2019, 10, 3571-3584.	1.9	41
1066	Recent advances in nanomaterial-based sensors as tool for environmental monitoring. , 2019, , 391-403.		0
1067	Protein Materials Engineering with DNA. Accounts of Chemical Research, 2019, 52, 1939-1948.	7.6	39
1068		1.5	18

#	Article	IF	CITATIONS
1069	DNA Nanotechnology as an Emerging Tool to Study Mechanotransduction in Living Systems. Small, 2019, 15, e1900961.	5.2	67
1070	Modelling and simulation of DNA-mediated self-assembly for superlattice design. Molecular Simulation, 2019, 45, 1203-1210.	0.9	7
1071	Connecting Nanoparticles with Different Colloidal Stability by DNA for Programmed Anisotropic Self-Assembly. Journal of Physical Chemistry C, 2019, 123, 15293-15300.	1.5	11
1072	Facile Strategy for Visible Disassembly of Spherical Nucleic Acids Programmed by Catalytic DNA Circuits. ACS Applied Materials & Interfaces, 2019, 11, 19724-19733.	4.0	15
1073	Unusual packing of soft-shelled nanocubes. Science Advances, 2019, 5, eaaw2399.	4.7	50
1074	Surface forces measurement for materials science. Pure and Applied Chemistry, 2019, 91, 707-716.	0.9	8
1075	Freezing-Driven DNA Adsorption on Gold Nanoparticles: Tolerating Extremely Low Salt Concentration but Requiring High DNA Concentration. Langmuir, 2019, 35, 6476-6482.	1.6	59
1076	Self-Assembly of Liquid-Crystal Droplets in Cells With Patterned Indium Tin Oxide. Physical Review Applied, 2019, 11, .	1.5	0
1077	Phosphorothioate DNA Mediated Sequence-Insensitive Etching and Ripening of Silver Nanoparticles. Frontiers in Chemistry, 2019, 7, 198.	1.8	5
1078	Nanocrystal Core Size and Shape Substitutional Doping and Underlying Crystalline Order in Nanocrystal Superlattices. ACS Nano, 2019, 13, 5712-5719.	7.3	30
1079	The Stability of a Nanoparticle Diamond Lattice Linked by DNA. Nanomaterials, 2019, 9, 661.	1.9	5
1080	Structure of Polydisperse fcc Nanocrystals: Implications for Crystal Fractionalization. Journal of Physical Chemistry C, 2019, 123, 9528-9537.	1.5	7
1081	Designing molecular building blocks for the self-assembly of complex porous networks. Molecular Systems Design and Engineering, 2019, 4, 644-653.	1.7	10
1082	Achieving Selective Targeting Using Engineered Nanomaterials. Series in Bioengineering, 2019, , 147-182.	0.3	2
1083	Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals. Journal of the American Chemical Society, 2019, 141, 6013-6021.	6.6	49
1084	DNA-Based Assembly of Quantum Dots into Dimers and Helices. Nanomaterials, 2019, 9, 339.	1.9	14
1085	Thermodynamics and Biophysics of Biomedical Nanosystems. Series in Bioengineering, 2019, , .	0.3	6
1086	Light-Induced Reversible DNA Ligation of Gold Nanoparticle Superlattices. ACS Nano, 2019, 13, 5771-5777.	7.3	32

#	Article	IF	CITATIONS
1087	Synthesis of Gold Nanoparticles and Functionalization With DNA for Bioanalytical Applications. , 2019, , 111-136.		1
1088	Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers, 2019, 11, 488.	2.0	9
1089	Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices. Small, 2019, 15, 1805424.	5.2	26
1090	Optimal number of linkers per monomer in linker-mediated aggregation. Soft Matter, 2019, 15, 3712-3718.	1.2	5
1091	Patterning Nanoparticles with DNA Molds. ACS Applied Materials & amp; Interfaces, 2019, 11, 13853-13858.	4.0	30
1092	Spontaneous Formation of Cold-Welded Plasmonic Nanoassemblies with Refracted Shapes for Intense Raman Scattering. Langmuir, 2019, 35, 4110-4116.	1.6	4
1093	From Atoms to Lives: The Evolution of Nanoparticle Assemblies. Advanced Functional Materials, 2019, 29, 1807658.	7.8	44
1094	Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles. Journal of Physical Chemistry B, 2019, 123, 2157-2168.	1.2	16
1095	Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst, The, 2019, 144, 1052-1072.	1.7	37
1096	Crystal engineering with DNA. Nature Reviews Materials, 2019, 4, 201-224.	23.3	178
1097	3D Lattice Engineering of Nanoparticles by DNA Shells. Small, 2019, 15, e1805401.	5.2	13
1098	From DNA Nanotechnology to Material Systems Engineering. Advanced Materials, 2019, 31, e1806294.	11.1	119
1099	Size-Separation and Self-Assembly of Anisotropic Nanoparticles in a Coffee-Stain Ring. Nano, 2019, 14, 1950149.	0.5	4
1100	Magnetic handshake materials as a scale-invariant platform for programmed self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24402-24407.	3.3	28
1101	Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond. Accounts of Chemical Research, 2019, 52, 3442-3454.	7.6	16
1103	Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices. Journal of the American Chemical Society, 2019, 141, 19973-19977.	6.6	23
1104	Colloidal Crystal "Alloys― Journal of the American Chemical Society, 2019, 141, 20443-20450.	6.6	20
1105	Assembly by solvent evaporation: equilibrium structures and relaxation times. Nanoscale, 2019, 11, 18702-18714.	2.8	9

#	Article	IF	CITATIONS
1106	Superlattice assembly by interpolymer complexation. Soft Matter, 2019, 15, 9690-9699.	1.2	6
1107	Interpolymer Complexation as a Strategy for Nanoparticle Assembly and Crystallization. Journal of Physical Chemistry C, 2019, 123, 836-840.	1.5	21
1108	A novel photosensitive dual-sensor for simultaneous detection of nucleic acids and small chemical molecules. Biosensors and Bioelectronics, 2019, 127, 108-117.	5.3	5
1109	In Situ Atomic Force Microscopy of the Reconfiguration of On‧urface Selfâ€Assembled DNAâ€Nanoparticle Superlattices. Advanced Functional Materials, 2019, 29, 1806924.	7.8	12
1110	The Importance of Salt-Enhanced Electrostatic Repulsion in Colloidal Crystal Engineering with DNA. ACS Central Science, 2019, 5, 186-191.	5.3	24
1111	Kinetics of Nanoparticle–Membrane Adhesion Mediated by Multivalent Interactions. Langmuir, 2019, 35, 2002-2012.	1.6	13
1112	Stabilization of Silver and Cold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chemical Reviews, 2019, 119, 664-699.	23.0	380
1113	Same solution synthesis and self-assembly of porous silica nanoparticles into microspheres. Applied Surface Science, 2019, 467-468, 634-639.	3.1	8
1114	Assembly of Zeolitic Crystals From a Model of Mesogenic Patchy Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 971-978.	1.5	7
1115	Regioselective surface encoding of nanoparticles for programmable self-assembly. Nature Materials, 2019, 18, 169-174.	13.3	153
1116	Fabrication of Metal Nanostructures on DNA Templates. ACS Applied Materials & Interfaces, 2019, 11, 13835-13852.	4.0	52
1117	Homogeneity quantification of nanoparticles dispersion in composite materials. Polymer Composites, 2019, 40, 1000-1005.	2.3	4
1118	Peripheral blood leukocyte telomere length is associated with survival of sepsis patients. European Respiratory Journal, 2020, 55, 1901044.	3.1	27
1119	Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules, 2020, 25, 204.	1.7	78
1120	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie - International Edition, 2020, 59, 4892-4896.	7.2	33
1121	A palindromic-based strategy for colorimetric detection of HIV-1 nucleic acid: Single-component assembly of gold nanoparticle-core spherical nucleic acids. Analytica Chimica Acta, 2020, 1102, 119-129.	2.6	19
1122	Polarized Single-Particle Quantum Dot Emitters through Programmable Cluster Assembly. ACS Nano, 2020, 14, 1369-1378.	7.3	34
1123	Polymer-guided assembly of inorganic nanoparticles. Chemical Society Reviews, 2020, 49, 465-508.	18.7	196

#	Article	IF	CITATIONS
1124	Transitionâ€Metalâ€Functionalized DNA Doubleâ€Crossover Tiles: Enhanced Stability and Chirality Transfer to Metal Centers. Angewandte Chemie - International Edition, 2020, 59, 4091-4098.	7.2	7
1125	Independent control over size, valence, and elemental composition in the synthesis of DNA–nanoparticle conjugates. Chemical Science, 2020, 11, 1564-1572.	3.7	7
1126	Three-dimensional nanoparticle assemblies with tunable plasmonics via a layer-by-layer process. Nano Today, 2020, 30, 100823.	6.2	10
1127	DNA―and Fieldâ€Mediated Assembly of Magnetic Nanoparticles into Highâ€Aspect Ratio Crystals. Advanced Materials, 2020, 32, e1906626.	11.1	25
1128	Photonic Fractal Metamaterials: A Metal–Semiconductor Platform with Enhanced Volatileâ€Compound Sensing Performance. Advanced Materials, 2020, 32, e2002471.	11.1	27
1129	Functional materials and devices by self-assembly. MRS Bulletin, 2020, 45, 799-806.	1.7	27
1130	Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chemical Society Reviews, 2020, 49, 8439-8468.	18.7	44
1131	Mie-Resonant Three-Dimensional Metacrystals. Nano Letters, 2020, 20, 8096-8101.	4.5	28
1132	Interfacial and Bulk Assembly of Anisotropic Gold Nanostructures: Implications for Photonics and Plasmonics. ACS Applied Nano Materials, 2020, 3, 8216-8223.	2.4	15
1133	Assembly of Linked Nanocrystal Colloids by Reversible Covalent Bonds. Chemistry of Materials, 2020, 32, 10235-10245.	3.2	27
1134	Programmable Cocrystallization of DNA Origami Shapes. Journal of the American Chemical Society, 2020, 142, 21336-21343.	6.6	32
1135	<p>A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle</p> . International Journal of Nanomedicine, 2020, Volume 15, 9823-9857.	3.3	256
1136	DNA-Mediated Three-Dimensional Assembly of Hollow Au–Ag Alloy Nanocages as Plasmonic Crystals. ACS Applied Nano Materials, 2020, 3, 8068-8074.	2.4	8
1137	Covalently Linked, Two-Dimensional Quantum Dot Assemblies. Langmuir, 2020, 36, 9944-9951.	1.6	4
1138	Universal reshaping of arrested colloidal gels via active doping. Journal of Chemical Physics, 2020, 153, 084901.	1.2	5
1139	DNA Nanotechnology. Topics in Current Chemistry Collections, 2020, , .	0.2	0
1140	Local Environment Affects the Activity of Enzymes on a 3D Molecular Scaffold. ACS Nano, 2020, 14, 14646-14654.	7.3	24
1141	Self-Assembly of DNA-Functionalized Nanoparticles Guided by Binding Kinetics. Journal of Physical Chemistry B, 2020, 124, 11593-11599.	1.2	5

#	Article	IF	CITATIONS
1142	Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems. ACS Omega, 2020, 5, 28812-28822.	1.6	6
1143	Using DNA to Control the Mechanical Response of Nanoparticle Superlattices. Journal of the American Chemical Society, 2020, 142, 19181-19188.	6.6	16
1144	Deposition and distribution of gold nanoparticles in a coffee-stain ring on the HOPG terraces. Bulletin of Materials Science, 2020, 43, 1.	0.8	1
1145	Three-Dimensional Patterning of Nanoparticles by Molecular Stamping. ACS Nano, 2020, 14, 6823-6833.	7.3	42
1146	Combinatorial-Entropy-Driven Aggregation in DNA-Grafted Nanoparticles. ACS Nano, 2020, 14, 5628-5635.	7.3	15
1147	Valence-programmable nanoparticle architectures. Nature Communications, 2020, 11, 2279.	5.8	37
1148	Stimuliâ€Responsive Particleâ€Based Amphiphiles as Active Colloids Prepared by Anisotropic Click Chemistry. Angewandte Chemie, 2020, 132, 8987-8991.	1.6	2
1149	Learning to grow: Control of material self-assembly using evolutionary reinforcement learning. Physical Review E, 2020, 101, 052604.	0.8	36
1150	Hierarchical Fabrication of Plasmonic Superlattice Membrane by Aspect-Ratio Controllable Nanobricks for Label-Free Protein Detection. Frontiers in Chemistry, 2020, 8, 307.	1.8	5
1151	<scp>SAS</scp> PDF: pair distribution function analysis of nanoparticle assemblies from small-angle scattering data. Journal of Applied Crystallography, 2020, 53, 699-709.	1.9	10
1152	DNA-Mediated Step-Growth Polymerization of Bottlebrush Macromonomers. Journal of the American Chemical Society, 2020, 142, 10297-10301.	6.6	16
1153	Colloidal crystal engineering with metal–organic framework nanoparticles and DNA. Nature Communications, 2020, 11, 2495.	5.8	114
1154	Linker-mediated self-assembly of mobile DNA-coated colloids. Science Advances, 2020, 6, eaaz6921.	4.7	20
1155	A Selfâ€Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and Highâ€Resolution Structural Detail. Angewandte Chemie, 2020, 132, 18778-18785.	1.6	6
1156	Fourâ€Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie - International Edition, 2020, 59, 17250-17255.	7.2	37
1157	Fourâ€Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie, 2020, 132, 17403-17408.	1.6	2
1158	A Selfâ€Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and Highâ€Resolution Structural Detail. Angewandte Chemie - International Edition, 2020, 59, 18619-18626.	7.2	22
1159	Stimuliâ€Responsive Particleâ€Based Amphiphiles as Active Colloids Prepared by Anisotropic Click Chemistry. Angewandte Chemie - International Edition, 2020, 59, 8902-8906.	7.2	5

#	Article	IF	CITATIONS
1160	Programming colloidal bonding using DNA strand-displacement circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5617-5623.	3.3	27
1161	DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Topics in Current Chemistry, 2020, 378, 31.	3.0	12
1162	Nanocrystal facet modulation to enhance transferrin binding and cellular delivery. Nature Communications, 2020, 11, 1262.	5.8	33
1163	Reconfigurable Self-Assembly and Kinetic Control of Multiprogrammed DNA-Coated Particles. ACS Nano, 2020, 14, 4595-4600.	7.3	23
1164	Stepwise assembly of nanoclusters guided by DNA origami frames with high-throughput. Chemical Communications, 2020, 56, 4918-4921.	2.2	6
1165	Directional Assembly of Nanoparticles by DNA Shapes: Towards Designed Architectures and Functionality. Topics in Current Chemistry, 2020, 378, 36.	3.0	18
1166	DNA origami protection and molecular interfacing through engineered sequence-defined peptoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6339-6348.	3.3	99
1167	Conformation and dynamics of a self-avoiding active flexible polymer. Physical Review E, 2020, 101, 030501.	0.8	34
1168	Programming Diffusion and Localization of DNA Signals in 3Dâ€Printed DNAâ€Functionalized Hydrogels. Small, 2020, 16, e2001815.	5.2	20
1169	Self-Assembly of Macromolecules Within Single Topological Defects of Nematic Solvents. Chemistry of Materials, 2020, 32, 6753-6764.	3.2	5
1170	Self-Assembly and Crystallization of DNA-Coated Colloids via Linker-Encoded Interactions. Langmuir, 2020, 36, 7100-7108.	1.6	13
1171	The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: A molecular LEGO approach. Progress in Polymer Science, 2020, 103, 101230.	11.8	75
1172	Transitionâ€Metalâ€Functionalized DNA Doubleâ€Crossover Tiles: Enhanced Stability and Chirality Transfer to Metal Centers. Angewandte Chemie, 2020, 132, 4120-4127.	1.6	2
1173	Three-dimensional DNA-programmable nanoparticle superlattices. Current Opinion in Biotechnology, 2020, 63, 142-150.	3.3	17
1174	High-Density DNA Coatings on Carboxylated Colloids by DMTMM- and Azide-Mediated Coupling Reactions. Langmuir, 2020, 36, 3583-3589.	1.6	9
1175	Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nature Materials, 2020, 19, 789-796.	13.3	172
1176	Programmable Assembly of Nanoâ€architectures through Designing Anisotropic DNA Origami Patches. Angewandte Chemie, 2020, 132, 6451-6458.	1.6	6
1177	Programmable Assembly of Nanoâ€architectures through Designing Anisotropic DNA Origami Patches. Angewandte Chemie - International Edition, 2020, 59, 6389-6396.	7.2	25

#	Article	IF	CITATIONS
1178	A microgel-Pickering emulsion route to colloidal molecules with temperature-tunable interaction sites. Soft Matter, 2020, 16, 1908-1921.	1.2	17
1179	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie, 2020, 132, 4922-4926.	1.6	7
1180	Magnetic–plasmonic Ni@Au core–shell nanoparticle arrays and their SERS properties. RSC Advances, 2020, 10, 2661-2669.	1.7	19
1181	Lightâ€Responsive Colloidal Crystals Engineered with DNA. Advanced Materials, 2020, 32, e1906600.	11.1	40
1182	Self-assembly of silver nanoparticles through functionalization with coumarin-thiazole fused-ring thiol. Heliyon, 2020, 6, e03674.	1.4	9
1183	Recent advances in food-derived nanomaterials applied to biosensing. TrAC - Trends in Analytical Chemistry, 2020, 127, 115884.	5.8	20
1184	Novel Stable DNA Nanoscale Material and Its Application on Specific Enrichment of DNA. ACS Applied Materials & Interfaces, 2020, 12, 19834-19839.	4.0	5
1185	Scale-free, programmable design of morphable chain loops of kilobots and colloidal motors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8700-8710.	3.3	6
1186	DNA Base Pair Stacking Crystallization of Gold Colloids. Langmuir, 2020, 36, 5118-5125.	1.6	10
1187	The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent. ACS Nano, 2020, 14, 5649-5658.	7.3	21
1188	Ionic solids from common colloids. Nature, 2020, 580, 487-490.	13.7	87
1189	Pinning dislocations in colloidal crystals with active particles that seek stacking faults. Soft Matter, 2020, 16, 4182-4191.	1.2	3
1190	Conventional PCR assisted single-component assembly of spherical nucleic acids for simple colorimetric detection of SARS-CoV-2. Sensors and Actuators B: Chemical, 2021, 328, 128971.	4.0	36
1191	Flexible synthesis of high-purity plasmonic assemblies. Nano Research, 2021, 14, 635-645.	5.8	11
1192	Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chemical Science, 2021, 12, 99-127.	3.7	108
1193	Single-strand DNA-nanorod conjugates – tunable anisotropic colloids for on-demand self-assembly. Journal of Colloid and Interface Science, 2021, 586, 847-854.	5.0	3
1194	Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA. Angewandte Chemie - International Edition, 2021, 60, 4065-4069.	7.2	5
1195	Poly(N-isopropylacrylamide)-grafted gold nanoparticles at the vapor/water interface. Journal of Colloid and Interface Science, 2021, 585, 312-319.	5.0	11

#	Article	IF	CITATIONS
1196	Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution. Accounts of Chemical Research, 2021, 54, 11-21.	7.6	10
1197	Elasticity of connected semiflexible quadrilaterals. Soft Matter, 2021, 17, 102-112.	1.2	4
1198	Optimizing the dynamic and thermodynamic properties of hybridization in DNA-mediated nanoparticle self-assembly. Physical Chemistry Chemical Physics, 2021, 23, 11774-11783.	1.3	3
1199	Approaches toward designing nanocarriers for tuberculosis drug delivery. , 2021, , 59-89.		0
1200	State-of-art plasmonic photonic crystals based on self-assembled nanostructures. Journal of Materials Chemistry C, 2021, 9, 3368-3383.	2.7	9
1201	Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices. ACS Nano, 2021, 15, 4916-4926.	7.3	10
1202	Rationally Programming Nanomaterials with DNA for Biomedical Applications. Advanced Science, 2021, 8, 2003775.	5.6	51
1203	DNA assembles nano-objects. Physics Today, 2021, 74, 58-59.	0.3	1
1204	Enhanced Porosity in Self-Assembled Morphologies Mediated by Charged Lobes on Patchy Particles. Journal of Physical Chemistry B, 2021, 125, 3208-3215.	1.2	5
1205	Effect of the Interaction Length on Clusters Formed by Spherical One-Patch Particles on Flat Planes. Langmuir, 2021, 37, 4213-4221.	1.6	4
1206	Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Science Advances, 2021, 7, .	4.7	45
1207	Empty perovskites as Coulomb floppy networks: Entropic elasticity and negative thermal expansion. Physical Review B, 2021, 103, .	1.1	8
1209	Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chemical Reviews, 2021, 121, 5830-5888.	23.0	57
1210	Tuning optical properties of self-assembled nanoparticle network with external optical excitation. Journal of Applied Physics, 2021, 129, .	1.1	2
1211	Recent Advances in Fabrication of Well-Organized Protein-Based Nanostructures. ACS Applied Bio Materials, 2021, 4, 4039-4048.	2.3	6
1212	Stabilizing ordered structures with single patch inverse patchy colloids in two dimensions. Journal of Physics Condensed Matter, 2021, 33, 195101.	0.7	4
1213	DNA Assemblyâ€Based Stimuliâ€Responsive Systems. Advanced Science, 2021, 8, 2100328.	5.6	44
1214	Crystallization of nanoparticles induced by precipitation of trace polymeric additives. Nature Communications, 2021, 12, 2767.	5.8	15

#	Article	IF	CITATIONS
1215	A Specific Nucleic Acid Microfluidic Capture Device Based on Stable DNA Nanostructure. ACS Applied Materials & Interfaces, 2021, 13, 24487-24492.	4.0	8
1216	Perovskite-type superlattices from lead halide perovskite nanocubes. Nature, 2021, 593, 535-542.	13.7	152
1217	From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nature Materials, 2021, 20, 762-773.	13.3	75
1218	Programmable Metal Nanoclusters with Atomic Precision. Advanced Materials, 2021, 33, e2006591.	11.1	60
1219	Colloidal Particles with Triangular Patches. Langmuir, 2021, 37, 7246-7253.	1.6	15
1220	Neuroevolutionary Learning of Particles and Protocols for Self-Assembly. Physical Review Letters, 2021, 127, 018003.	2.9	12
1221	DNA Frameworkâ€Engineered Longâ€Range Electrostatic Interactions for DNA Hybridization Reactions. Angewandte Chemie, 2021, 133, 16829-16835.	1.6	0
1222	Designed and biologically active protein lattices. Nature Communications, 2021, 12, 3702.	5.8	25
1223	DNA Frameworkâ€Engineered Longâ€Range Electrostatic Interactions for DNA Hybridization Reactions. Angewandte Chemie - International Edition, 2021, 60, 16693-16699.	7.2	16
1224	Moltenâ€Saltâ€Assisted Annealing for Making Colloidal ZnGa ₂ O ₄ :Cr Nanocrystals with High Persistent Luminescence. Chemistry - A European Journal, 2021, 27, 11398-11405.	1.7	19
1225	DNA-Grafted 3D Superlattice Self-Assembly. International Journal of Molecular Sciences, 2021, 22, 7558.	1.8	8
1226	Two-Step Nanoparticle Crystallization via DNA-Guided Self-Assembly and the Nonequilibrium Dehydration Process. Crystal Growth and Design, 2021, 21, 4506-4515.	1.4	3
1227	Importance of Substrate–Particle Repulsion for Protein-Templated Assembly of Metal Nanoparticles. Langmuir, 2021, 37, 9111-9119.	1.6	2
1228	Effect of Polymer Chain Length on the Superlattice Assembly of Functionalized Gold Nanoparticles. Langmuir, 2021, 37, 10143-10149.	1.6	10
1229	Controlled Organization of Inorganic Materials Using Biological Molecules for Activating Therapeutic Functionalities. ACS Applied Materials & Interfaces, 2021, 13, 39030-39041.	4.0	10
1230	Recent Notable Approaches to Study Selfâ€Assembly of Nanoparticles with Xâ€Ray Scattering and Electron Microscopy. Particle and Particle Systems Characterization, 2021, 38, 2100087.	1.2	23
1231	5′-Phosphorylation Strengthens Sticky-End Cohesions. Journal of the American Chemical Society, 2021, 143, 14987-14991.	6.6	7
1232	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie, 2022, 134, .	1.6	7

#	Article	IF	CITATIONS
1233	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
1234	Size-encoded hierarchical self-assembly of nanoparticles into chains and tubules. Journal of Colloid and Interface Science, 2021, 604, 866-875.	5.0	1
1235	Hydrophobic collapse-driven nanoparticle coating with poly-adenine adhesives. Chemical Communications, 2021, 57, 3801-3804.	2.2	18
1236	From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chemical Society Reviews, 2021, 50, 5898-5951.	18.7	232
1237	Selfâ€Assembly of Precision Noble Metal Nanoclusters: Hierarchical Structural Complexity, Colloidal Superstructures, and Applications. Small, 2021, 17, e2005718.	5.2	76
1238	Multifarious colloidal structures: new insight into ternary and quadripartite ordered assemblies. Nanoscale, 2021, 13, 16554-16563.	2.8	1
1239	Electron-Equivalent Valency through Molecularly Well-Defined Multivalent DNA. Journal of the American Chemical Society, 2021, 143, 1752-1757.	6.6	13
1240	Building ordered nanoparticle assemblies inspired by atomic epitaxy. Physical Chemistry Chemical Physics, 2021, 23, 20028-20037.	1.3	1
1241	Trimacrocyclic hexasubstituted benzene linked by labile octahedral [X(CHCl ₃) ₆] ^{â^'} clusters. Chemical Science, 2021, 12, 11647-11651.	3.7	4
1243	Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA. Angewandte Chemie, 2021, 133, 4111-4115.	1.6	3
1244	Addressable Biological Functionalization of Inorganics: Materials-Selective Fusion Proteins in Bio-nanotechnology. , 2014, , 221-255.		3
1245	Halophiles in Nanotechnology. , 2016, , 53-88.		9
1247	Hot particles attract in a cold bath. Physical Review Fluids, 2017, 2, .	1.0	25
1248	Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces. Physical Review Materials, 2017, 1, .	0.9	11
1249	Strain fields in repulsive colloidal crystals. Physical Review Materials, 2018, 2, .	0.9	11
1250	Diffusion and steady state distributions of flexible chemotactic enzymes. European Physical Journal: Special Topics, 2020, 229, 2791-2806.	1.2	12
1251	Nanostructures and Nanomaterials via DNA-Based Self-Assembly. , 2011, , 13-48.		2
1253	Effects of DNA on Gold Nanoparticle Synthesis Using Gas-Liquid Interfacial Pulse Discharge Plasma. Transactions of the Materials Research Society of Japan, 2011, 36, 483-485.	0.2	1

#	Article	IF	CITATIONS
1254	Citrate Stabilized Silver Nanoparticles. International Journal of Nanotechnology and Molecular Computation, 2011, 3, 15-28.	0.3	10
1255	A Review on Metal Nanostructures: Preparation Methods and Their Potential Applications. Advances in Nanoparticles, 2016, 05, 27-43.	0.3	65
1256	Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions. Bulletin of the Korean Chemical Society, 2012, 33, 159-166.	1.0	8
1258	Selfâ€Complementary Zwitterionic Peptides Direct Nanoparticle Assembly and Enable Enzymatic Selection of Endocytic Pathways. Advanced Materials, 2022, 34, e2104962.	11.1	20
1259	Nanoparticle Superlattices through Template-Encoded DNA Dendrimers. Journal of the American Chemical Society, 2021, 143, 17170-17179.	6.6	12
1260	Charge-Driven Self-Assembly of Polyelectrolyte-Grafted Nanoparticles in Solutions. Langmuir, 2021, 37, 12007-12015.	1.6	4
1261	Divalent Multilinking Bonds Control Growth and Morphology of Nanopolymers. Nano Letters, 2021, 21, 10547-10554.	4.5	15
1262	Mechanoenzymatics and Nanoassembly of Single Molecules. Springer Series in Chemical Physics, 2010, , 289-303.	0.2	0
1265	Self-Assembled DNA-Inorganic Nanoparticle Structures. , 2013, , 185-205.		0
1266	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
1267	Properties of DNA-Capped Nanoparticles. , 2014, , 1227-1262.		0
1268	Overview: An Evolving State of the Art in Tissue Engineering. , 2014, , 1-20.		0
1269	Dynamical Properties of Two-Dimensional Aggregates in Patchy Particle Systems. Springer Proceedings in Physics, 2015, , 265-271.	0.1	1
1270	Assemblies of Polymer-Based Nanoscopic Objects. , 2016, , .		0
1271	Front Matter Title. Jurnal Kebijakan Sosial Ekonomi Kelautan Dan Perikanan, 2016, 3, .	0.1	0
1272	Synthetic Strategies for Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology, 2017, , 29-77.	0.1	1
1273	Effect of difference in interaction strength on two-dimensional lattice structure in a binary system with DNA nanoparticles. Japanese Journal of Applied Physics, 2017, 56, 075001.	0.8	0
1274	Investigating the stability of DNA-coated gold nanoparticles. , 2018, , .		0

#	Article	IF	CITATIONS
1275	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals*. , 2020, , 1069-1079.		0
1276	Large-Area, Highly Crystalline DNA-Assembled Metasurfaces Exhibiting Widely Tunable Epsilon-Near-Zero Behavior. ACS Nano, 2021, 15, 18289-18296.	7.3	5
1277	DNA-mediated hierarchical organization of gold nanoprisms into 3D aggregates and their application in surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2021, 23, 25256-25263.	1.3	2
1278	Applications for Nanotechnology in the Polyphagous Destructive Insect Pest Management of Agricultural Crops. Nanotechnology in the Life Sciences, 2020, , 181-188.	0.4	0
1279	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals*. , 2020, , 1069-1079.		0
1280	DNA self-organization controls valence in programmable colloid design. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
1281	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 4976-5067.	23.0	173
1282	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
1284	Controlling the Emission Properties of Quantum Rods via Multiscale 3D Ordered Organization. Journal of Nanomaterials, 2021, 2021, 1-9.	1.5	0
1285	Comparative toxic effects of Eucalyptus globulus L. (Myrtales: Myrtaceae) and its green synthesized zinc oxide nanoparticles (ZnONPs) against Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). International Journal of Tropical Insect Science, 2022, 42, 1697-1706.	0.4	6
1286	Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chemical Society Reviews, 2021, 50, 13410-13440.	18.7	20
1287	Controlling morphology in hybrid isotropic/patchy particle assemblies. Journal of Chemical Physics, 2022, 156, 024501.	1.2	4
1288	Kinetic Control of Length and Morphology of Segmented Polymeric Nanofibers in Microfluidic Chips. Langmuir, 2020, 36, 13364-13370.	1.6	4
1289	Temperature-Selective Self-Assembled Superlattices of Gold Nanoparticles Driven by Block Copolymer Template Guidance. Journal of Physical Chemistry Letters, 2021, 12, 11960-11967.	2.1	4
1290	Colorimetric sensing using plasmonic nanoparticles. , 2022, , 175-205.		1
1291	Programmable Macroscopic Self-Assembly of DNA-Decorated Hydrogels. Journal of the American Chemical Society, 2022, 144, 2149-2155.	6.6	26
1292	Low-entropy lattices engineered through bridged DNA origami frames. Chemical Science, 2021, 13, 283-289.	3.7	3
1293	Free energy cost to assemble superlattices of polymer-grafted nanoparticles. Soft Matter, 2022, 18, 640-647.	1.2	3

#	Article	IF	CITATIONS
1294	Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA. Soft Matter, 2022, 18, 526-534.	1.2	4
1295	The emergence of valency in colloidal crystals through electron equivalents. Nature Materials, 2022, 21, 580-587.	13.3	37
1296	Engineering bacterial surface interactions using DNA as a programmable material. Chemical Communications, 2022, 58, 3086-3100.	2.2	12
1298	Programmable Matter: The Nanoparticle Atom and DNA Bond. Advanced Materials, 2022, 34, e2107875.	11.1	30
1299	Blunt-End Driven Re-entrant Ordering in Quasi Two-Dimensional Dispersions of Spherical DNA Brushes. ACS Nano, 2022, 16, 2133-2146.	7.3	4
1300	Nanocomposite tectons as unifying systems for nanoparticle assembly. Soft Matter, 2022, 18, 2176-2192.	1.2	2
1301	Confined Growth of DNA-Assembled Superlattice Films. ACS Nano, 2022, 16, 4813-4822.	7.3	4
1302	Encapsulation of Gold Nanoparticles into Redesigned Ferritin Nanocages for the Assembly of Binary Superlattices Composed of Fluorophores and Gold Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 10656-10668.	4.0	11
1303	Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms. ACS Sensors, 2022, 7, 622-631.	4.0	12
1304	Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. Industrial & Engineering Chemistry Research, 2022, 61, 7594-7612.	1.8	7
1305	Effect of impurities on tiling in a two-dimensional dodecagonal quasicrystal. Japanese Journal of Applied Physics, 2022, 61, 045504.	0.8	0
1306	Sensors for agricultural pest management using nanotechnology/nanomaterials. Nanotechnology for Environmental Engineering, 2022, 7, 319-323.	2.0	2
1307	Fabrication of a Large-Scale Plasmonic Nanojunction for Chemical Sensing. ACS Applied Nano Materials, 2022, 5, 5722-5732.	2.4	3
1308	Diversified Applications of Self-assembled Nanocluster Delivery Systems- A State-ofthe- art Review. Current Pharmaceutical Design, 2022, 28, 1870-1884.	0.9	2
1309	Three-dimensional visualization of nanoparticle lattices and multimaterial frameworks. Science, 2022, 376, 203-207.	6.0	27
1310	Self-assembly of photonic crystals by controlling the nucleation and growth of DNA-coated colloids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
1314	Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization. Nano Letters, 2022, 22, 3809-3817.	4.5	10
1315	Compact Peptoid Molecular Brushes for Nanoparticle Stabilization. Journal of the American Chemical Society, 2022, 144, 8138-8152.	6.6	11

c	 D	
	NEDC	ND T
CHAD	NLPU	VIC I

#	Article	IF	CITATIONS
1316	Designing a High-Crystallinity Nano-Gapped Particle Superlattice via DNA-Guided Colloidal Crystallization and Dehydration. Crystal Growth and Design, 0, , .	1.4	1
1317	Comprehensive view of microscopic interactions between DNA-coated colloids. Nature Communications, 2022, 13, 2304.	5.8	14
1318	Multilayered Ordered Protein Arrays Self-Assembled from a Mixed Population of Virus-like Particles. ACS Nano, 2022, 16, 7662-7673.	7.3	8
1319	Tuning the Effective Interactions between Spherical Double-Stranded DNA Brushes. Macromolecules, 0, , .	2.2	1
1320	From Precision Colloidal Hybrid Materials to Advanced Functional Assemblies. Accounts of Chemical Research, 2022, 55, 1785-1795.	7.6	19
1321	The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly. Nature Communications, 2022, 13, .	5.8	24
1323	Nanopolymers for magnetic applications: how to choose the architecture?. Nanoscale, 0, , .	2.8	5
1324	Dual nature of magnetic nanoparticle dispersions enables control over short-range attraction and long-range repulsion interactions. Communications Chemistry, 2022, 5, .	2.0	8
1325	Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Applied Materials & Interfaces, 2023, 15, 25248-25274.	4.0	33
1326	Self-Assembly of DNA-Grafted Colloids: A Review of Challenges. Micromachines, 2022, 13, 1102.	1.4	10
1327	Two-dimensional binary colloidal crystals formed by particles with two different sizes. Scientific Reports, 2022, 12, .	1.6	0
1328	The Promise of Softâ€Matterâ€Enabled Quantum Materials. Advanced Materials, 2023, 35, .	11.1	4
1329	Self-Assembly in Mixtures of Charged Lobed Particles. Frontiers in Physics, 0, 10, .	1.0	3
1330	pHâ€Induced Symmetry Conversion of DNA Origami Lattices. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1331	pHâ€Induced Symmetry Conversion of DNA Origami Lattices. Angewandte Chemie, 0, , .	1.6	0
1332	Self-assembly in binary mixtures of spherical colloids. Advances in Colloid and Interface Science, 2022, 308, 102748.	7.0	5
1333	Staged Assembly of Colloids Using DNA and Acoustofluidics. Nano Letters, 2022, 22, 6907-6915.	4.5	1
1334	Tools for the quantification of the dynamic assembly of colloidal chains of ellipsoidal particles. Colloids and Interface Science Communications, 2022, 50, 100661.	2.0	0

#	Article	IF	CITATIONS
1335	DNA-assisted nanoparticle assembly. , 2023, , 128-148.		1
1336	Controlled 3D assembly and stimuli responsive behavior of DNA and peptide functionalized gold nanoparticles in solutions. Physical Chemistry Chemical Physics, 2022, 24, 19552-19563.	1.3	1
1337	Optical Properties of Magnetic Nanoalloys and Nanocomposites. , 2022, , 1-27.		0
1338	DNA Templated Silver Nanoclusters for Bioanalytical Applications: A Review. Journal of Biomedical Nanotechnology, 2022, 18, 1237-1256.	0.5	1
1339	Dual Atomic Coherence in the Self-Assembly of Patchy Heterostructural Nanocrystals. ACS Nano, 2022, 16, 15053-15062.	7.3	6
1340	Chemical Cascading Between Polymersomal Nanoreactor Populations. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	3
1341	Conjugation strategies of <scp>DNA</scp> to gold nanoparticles. Bulletin of the Korean Chemical Society, 2022, 43, 1298-1306.	1.0	11
1342	Kinetically Programming Copolymerization-like Coassembly of Multicomponent Nanoparticles with DNA. ACS Nano, 2022, 16, 15907-15916.	7.3	4
1343	Optical Mie Scattering by DNA-Assembled Three-Dimensional Gold Nanoparticle Superlattice Crystals. , 2023, 1, 69-77.		1
1344	Controlling the two components modified on nanoparticles to construct nanomaterials. Soft Matter, 2022, 18, 8213-8222.	1.2	4
1345	Analytical separation techniques: toward achieving atomic precision in nanomaterials science. Nanoscale, 2022, 14, 16415-16426.	2.8	2
1346	Optical Properties of Magnetic Nanoalloys and Nanocomposites. , 2022, , 547-573.		0
1347	Silver nanocube dimer nanojunctions as plasmon-enhanced Raman sensors. Journal of Materials Chemistry C, 2022, 10, 16573-16582.	2.7	3
1348	Direct visualization of cooperative adsorption of a string-like molecule onto a solid. Science Advances, 2022, 8, .	4.7	5
1349	Shape memory in self-adapting colloidal crystals. Nature, 2022, 610, 674-679.	13.7	21
1350	Dynamics of equilibrium-linked colloidal networks. Journal of Chemical Physics, 2022, 157, .	1.2	4
1351	DNA as grabbers and steerers of quantum emitters. Nanophotonics, 2022, .	2.9	1
1352	Self-assembly of colloidal nanoparticles into low-dimensional structures in a dynamic environment. ,		0
CITATION REPORT

#	Article	IF	CITATIONS
1353	A universal way to enrich the nanoparticle lattices with polychrome DNA origami "homologs― Science Advances, 2022, 8, .	4.7	3
1354	Chiral assemblies of pinwheel superlattices on substrates. Nature, 2022, 612, 259-265.	13.7	31
1355	Two-Dimensional Structures Formed by Triblock Patchy Particles with Two Different Patches. Langmuir, 2022, 38, 15404-15412.	1.6	2
1356	Lamellar and Hexagonal Assemblies of PEC-Grafted Silver Nanoparticles: Implications for Plasmonics and Photonics. ACS Applied Nano Materials, 2022, 5, 17556-17564.	2.4	2
1357	Supramolecular Semiconductivity through Emerging Ionic Gates in Ion–Nanoparticle Superlattices. ACS Nano, 2023, 17, 275-287.	7.3	9
1359	Arrays of Colloidal Single Crystals Engineered with DNA in Lithographically Defined Microwells. Nano Letters, 2023, 23, 116-123.	4.5	6
1360	Multicomponent nanoparticle superlattices. , 2023, , 298-323.		1
1361	Dynamic Light Scattering Based Microrheology of End-Functionalised Triblock Copolymer Solutions. Polymers, 2023, 15, 481.	2.0	0
1362	Dynamic Reconfigurable DNA Nanostructures, Networks and Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
1363	Dynamic Reconfigurable DNA Nanostructures. Networks and Materials. Angewandte Chemie. 2023, 135	16	0
		1.0	
1364	Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale, 2023, 15, 2018-2035.	2.8	5
1364 1365	Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale, 2023, 15, 2018-2035. Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2023, 145, 841-850.	2.8 6.6	5
1364 1365 1366	Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale, 2023, 15, 2018-2035. Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2023, 145, 841-850. Non-Invasive, Reliable, and Fast Quantification of DNA Loading on Gold Nanoparticles by a One-Step Optical Measurement. Analytical Chemistry, 2023, 95, 1856-1866.	2.8 6.6 3.2	5 4 2
1364 1365 1366 1367	 Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale, 2023, 15, 2018-2035. Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2023, 145, 841-850. Non-Invasive, Reliable, and Fast Quantification of DNA Loading on Gold Nanoparticles by a One-Step Optical Measurement. Analytical Chemistry, 2023, 95, 1856-1866. DNA: structure, strand displacement and reaction network. Scientia Sinica Chimica, 2023, 53, 721-733. 	2.8 6.6 3.2 0.2	5 4 2 0
1364 1365 1366 1367 1368	Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale, 2023, 15, 2018-2035. Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2023, 145, 841-850. Non-Invasive, Reliable, and Fast Quantification of DNA Loading on Gold Nanoparticles by a One-Step Optical Measurement. Analytical Chemistry, 2023, 95, 1856-1866. DNA: structure, strand displacement and reaction network. Scientia Sinica Chimica, 2023, 53, 721-733. Rapid Phase Transitions of Thermotropic Clycolipid Quasicrystal and Frankâ€Kasper Mesophases: A Mechanistic Rosetta Stone. Angewandte Chemie - International Edition, 2023, 62, .	1.0 2.8 6.6 3.2 0.2 7.2	5 4 2 0 3
1364 1365 1366 1367 1368 1369	 Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale, 2023, 15, 2018-2035. Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2023, 145, 841-850. Non-Invasive, Reliable, and Fast Quantification of DNA Loading on Gold Nanoparticles by a One-Step Optical Measurement. Analytical Chemistry, 2023, 95, 1856-1866. DNA: structure, strand displacement and reaction network. Scientia Sinica Chimica, 2023, 53, 721-733. Rapid Phase Transitions of Thermotropic Glycolipid Quasicrystal and Frankâ€Kasper Mesophases: A Mechanistic Rosetta Stone. Angewandte Chemie - International Edition, 2023, 62, . Surface engineering of colloidal nanoparticles. Materials Horizons, 2023, 10, 1185-1209. 	1.0 2.8 6.6 3.2 0.2 7.2 6.4	5 4 2 0 3
1364 1365 1366 1367 1368 1369 1370	Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale, 2023, 15, 2018-2035. Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2023, 145, 841-850. Non-Invasive, Reliable, and Fast Quantification of DNA Loading on Gold Nanoparticles by a One-Step Optical Measurement. Analytical Chemistry, 2023, 95, 1856-1866. DNA: structure, strand displacement and reaction network. Scientia Sinica Chimica, 2023, 53, 721-733. Rapid Phase Transitions of Thermotropic Glycolipid Quasicrystal and Frankå&Kasper Mesophases: A Mechanistic Rosetta Stone. Angewandte Chemie - International Edition, 2023, 62, . Surface engineering of colloidal nanoparticles. Materials Horizons, 2023, 10, 1185-1209. Rapid and Direct Liquidå&Phase Synthesis of Luminescent Metal Halide Superlattices. Advanced Materials, 2023, 35, .	1.0 2.8 6.6 3.2 0.2 7.2 6.4 11.1	5 4 2 0 3 7 2

		CITATION REPORT		
#	Article		IF	CITATIONS
1372	Self-Assembling Systems for Optical Out-of-Plane Coupling Devices. ACS Nano, 2023,	17, 3394-3400.	7.3	6
1373	Dynamically Reconfigurable DNA Origami Crystals Driven by a Designated Path Diagra American Chemical Society, 2023, 145, 3978-3986.	m. Journal of the	6.6	9
1374	Gold Nanoparticle–Polyelectrolyte Complexes with Tunable Structure Probed by Syr Small-Angle X-ray Scattering: Implications for the Production of Colloidal Crystals-Base Nanophotonic Materials. ACS Applied Nano Materials, 2023, 6, 3990-4004.	nchrotron ed	2.4	1
1375	A promising approach to an environmentally friendly pest management solution: nanocarrier-delivered dsRNA towards controlling the destructive invasive pest <i>Tuta Environmental Science: Nano, 2023, 10, 1003-1015.</i>	absoluta.	2.2	5
1376	Engineering the Thermodynamic Stability and Metastability of Mesophases of Colloida through Shape Entropy. ACS Nano, 2023, 17, 4287-4295.	l Bipyramids	7.3	2
1377	Prediction and Control in DNA Nanotechnology. ACS Applied Bio Materials, 2024, 7, 6	26-645.	2.3	5
1378	Spherical Packing Superlattices in Self-Assembly of Homogenous Soft Matter: Progres Potentials. Chinese Journal of Polymer Science (English Edition), 2023, 41, 607-620.	ses and	2.0	7
1379	DNA-Patched Nanoparticles for the Self-Assembly of Colloidal Metamaterials. Jacs Au, 2	2023, 3, 1176-1184.	3.6	2
1380	Pair distribution function analysis of nano-object assemblies. Journal of Applied Crysta 2023, 56, 545-557.	llography,	1.9	0
1381	Rapid Phase Transitions of Thermotropic Glycolipid Quasicrystal and Frankâ€Kasper M Mechanistic Rosetta Stone. Angewandte Chemie, 0, , .	esophases: A	1.6	0
1382	Design strategies for the self-assembly of polyhedral shells. Proceedings of the Nation Sciences of the United States of America, 2023, 120, .	al Academy of	3.3	8
1384	Avoiding Kinetic Trapping in the Self-Assembly of DNA-Functionalized Gold Nanopartic Enthalpy-Mediated Strategy. Macromolecules, 0, , .	les by Using an	2.2	1
1386	Nano and Beyond. , 2008, , 743-764.			0
1390	DNA-Driven Dynamic Assembly/Disassembly of Inorganic Nanocrystals for Biomedical I 340-355.	maging. , 2023, 1,		6
1393	An Aptamer-Embedded Two-Dimensional DNA Nanoscale Material with the Property of Recruitment. Nano Letters, 0, , .	f Cells	4.5	0
1398	Design, characterization and applications of nanocolloidal hydrogels. Chemical Society 2023, 52, 5317-5339.	y Reviews,	18.7	8