DNA-programmable nanoparticle crystallization

Nature 451, 553-556 DOI: 10.1038/nature06508

Citation Report

#	Article		CITATIONS
8	Coincidence of Density Jump and Plasma Emission Front Induced by Transversely Excited Atmospheric-Pressure CO2 Laser Bombardment at Low and High Pressures. Japanese Journal of Applied Physics, 2000, 39, L601-L603.	0.8	16
9	Gold and Silica-Coated Gold Nanoparticles as Thermographic Labels for DNA Detection. Analytical Chemistry, 2006, 78, 3282-3288.	3.2	63
10	Solvent and nonlinear effects on the charge renormalization of nanoparticles within a molecular electrolyte model. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 5362-5370.	1.2	8
11	DNAâ€Mediated Synthesis of Microporous Singleâ€Crystalâ€Like NaTi ₂ (PO ₄) ₃ Nanospheres. Small, 2008, 4, 1976-1979.	5.2	27
12	The Third Dimension: DNAâ€Driven Formation of Nanoparticle Crystals. Small, 2008, 4, 1040-1042.	5.2	5
13	DNAâ€Gold Triangular Nanoprism Conjugates. Small, 2008, 4, 2176-2180.	5.2	64
14	DNA-KrÃ ¤ e und -Baumaterial. Chemie in Unserer Zeit, 2008, 42, 70-70.	0.1	1
15	Metalâ€Ionâ€Mediated Base Pairs in Nucleic Acids. European Journal of Inorganic Chemistry, 2008, 2008, 3749-3763.	1.0	156
16	Nanoscale Tubular and Sheetlike Superstructures from Hierarchical Selfâ€Assembly of Polymeric Janus Particles. Angewandte Chemie - International Edition, 2008, 47, 10171-10174.	7.2	113
17	Multiâ€Dimensional Control of Surfactantâ€Guided Assemblies of Quantum Gold Particles. Advanced Materials, 2008, 20, 4027-4032.	11.1	52
18	Nanoparticle Immobilization on Surfaces via Activatable Heterobifunctional Dithiocarbamate Bond Formation. Advanced Materials, 2008, 20, 4185-4188.	11.1	12
20	Determination of Size and Concentration of Gold Nanoparticles from Extinction Spectra. Analytical Chemistry, 2008, 80, 6620-6625.	3.2	255
21	Structure Direction of Ilâ^'VI Semiconductor Quantum Dot Binary Nanoparticle Superlattices by Tuning Radius Ratio. ACS Nano, 2008, 2, 1219-1229.	7.3	135
22	Golden handshake. Nature, 2008, 451, 528-529.	13.7	51
25	Design by DNA. Nature Nanotechnology, 2008, 3, 132-132.	15.6	3
26	Optical properties of DNA-CTMA and PA-CTMA doped with (E)-2-(2-(4-(diethylamino)styryl)-4H-pyan-4-ylidene)malononitrile (DCM). , 2008, , .		0
27	Stretching chimeric DNA: A test for the putative S-form. Journal of Chemical Physics, 2008, 129, 205101.	1.2	16
28	DNA Closed Nanostructures: A Structural and Monte Carlo Simulation Study. Journal of Physical Chemistry B, 2008, 112, 15283-15294.	1.2	23

#	Article	IF	CITATIONS
29	Controlling the Lattice Parameters of Gold Nanoparticle FCC Crystals with Duplex DNA Linkers. Nano Letters, 2008, 8, 2341-2344.	4.5	113
30	A New Peptide-Based Method for the Design and Synthesis of Nanoparticle Superstructures: Construction of Highly Ordered Gold Nanoparticle Double Helices. Journal of the American Chemical Society, 2008, 130, 13555-13557.	6.6	340
31	DNA-embedded Au/Ag core–shell nanoparticles. Chemical Communications, 2008, , 5312.	2.2	84
32	Assembly of DNA-functionalized gold nanoparticles studied by UV/Vis-spectroscopy and dynamic light scattering. Physical Chemistry Chemical Physics, 2008, 10, 1870.	1.3	31
33	Directed Hybridization of DNA Derivatized Nanoparticles into Higher Order Structures. Nano Letters, 2008, 8, 4053-4060.	4.5	9
34	Peptide antisense nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17222-17226.	3.3	103
35	DesoxyribonukleinsÃ ¤ re auf der Molekülbaustelle. Nachrichten Aus Der Chemie, 2008, 56, 659-661.	0.0	1
36	Scalable nano-particle assembly by efficient light-induced concentration and fusion. Optics Express, 2008, 16, 17276.	1.7	14
37	Assembling Materials with DNA as the Guide. Science, 2008, 321, 1795-1799.	6.0	933
38	Nanoparticle Self-Assembly on a DNA-Scaffold Written by Single-Molecule Cut-and-Paste. Nano Letters, 2008, 8, 3692-3695.	4.5	51
39	Fabrication of nanoporous superstructures through hierarchical self-assembly of nanoparticles. Journal of Materials Chemistry, 2008, 18, 2208.	6.7	31
40	Modeling Self-Assembly Processes Driven by Nonbonded Interactions in Soft Materials. Journal of Physical Chemistry B, 2008, 112, 10388-10398.	1.2	78
41	Surface Area Controlled Differential Catalytic Activities of One-Dimensional Chain-like Arrays of Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 11265-11271.	1.5	59
42	DNA and DNAzyme-Mediated 2D Colloidal Assembly. Journal of the American Chemical Society, 2008, 130, 8234-8240.	6.6	31
43	Manipulating DNA Probe Presentation via Enzymatic Cleavage of Diluent Strands. Biomacromolecules, 2008, 9, 2468-2476.	2.6	12
44	Hierarchies of networked phases induced by multiple liquid–liquid critical points. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13711-13715.	3.3	67
45	Formation Of Defined Nanoparticle Constructs Containing Gold, Silver, And Gold-Silver Nanoparticles. AIP Conference Proceedings, 2008, , .	0.3	1
46	Construction of Two Color Semiconductor Quantum Dots Wire by utilizing the complementarity of DNA. AIP Conference Proceedings, 2008, , .	0.3	0

#	Article	IF	CITATIONS
47	On the solution self-assembly of nanocolloidal brushes: insights from simulations. Nanotechnology, 2008, 19, 445606.		14
48	Chemical Biology: Past, Present and Future. Current Chemical Biology, 2008, 2, 278-311.	0.2	2
49	Multifunctional Polypeptide EQCN Sensors: Probing the Cysteamine-Glutathione Film Permeability with Hg(II) Ions. Sensors, 2008, 8, 7224-7240.	2.1	6
51	Self-assembling DNA-caged particles: Nanoblocks for hierarchical self-assembly. Physical Review E, 2009, 79, 011404.	0.8	10
52	Aggregation phenomena in telechelic star polymer solutions. Physical Review E, 2009, 79, 010401.	0.8	36
53	Phase Behavior of Nanoparticles Assembled by DNA Linkers. Physical Review Letters, 2009, 102, 015504.	2.9	116
54	Simple Quantitative Model for the Reversible Association of DNA Coated Colloids. Physical Review Letters, 2009, 102, 048301.	2.9	124
55	From Polymers to Colloids: Engineering the Dynamic Properties of Hairy Particles. Advances in Polymer Science, 2009, , 1-54.	0.4	36
56	Assembly and organization processes in DNA-directed colloidal crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10493-10498.	3.3	133
57	Switching the mechanics of dsDNA by Cu salicylic aldehyde complexation. Nanotechnology, 2009, 20, 434002.	1.3	11
58	Geometric frustration in small colloidal clusters. Journal of Physics Condensed Matter, 2009, 21, 425103.	0.7	36
59	Gold Nanoparticles Stabilized by Acetyleneâ€Functionalized Multidentate Thioether Ligands: Building Blocks for Nanoparticle Superstructures. Advanced Functional Materials, 2009, 19, 3497-3506.	7.8	43
60	3D Ordered Gold Strings by Coating Nanoparticles with Mesogens. Advanced Materials, 2009, 21, 1746-1750.	11.1	124
65	Two Base Pair Duplexes Suffice to Build a Novel Material. ChemBioChem, 2009, 10, 1335-1339.	1.3	59
68	A DNA Nanostructure for the Functional Assembly of Chemical Groups with Tunable Stoichiometry and Defined Nanoscale Geometry. Angewandte Chemie - International Edition, 2009, 48, 525-527.	7.2	78
69	Formation of Patches on 3D SAMs Driven by Thiols with Immiscible Chains Observed by ESR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 3060-3064.	7.2	61
70	A Supramolecular Approach for Preparation of Sizeâ€Controlled Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 4344-4348.	7.2	172
71	Laserâ€Modulated Ordering of Gold Nanoparticles at the Air/Water Interface. Angewandte Chemie - International Edition, 2009, 48, 4540-4542.	7.2	11

#	Article		CITATIONS
72	A pHâ€Triggered, Fastâ€Responding DNA Hydrogel. Angewandte Chemie - International Edition, 2009, 48, 7660-7663.		420
73	Making Use of Bond Strength and Steric Hindrance in Nanoscale "Synthesis― Angewandte Chemie - International Edition, 2009, 48, 9477-9480.	7.2	57
74	Origins and emergences of supramolecular chemistry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 221-235.	1.6	13
75	Gold and gold–silver core-shell nanoparticle constructs with defined size based on DNA hybridization. Journal of Nanoparticle Research, 2009, 11, 623-633.	0.8	18
76	Laser-induced growth and reformation of gold and silver nanoparticles. Journal of Nanoparticle Research, 2009, 11, 2023-2030.	0.8	10
77	In quest of a systematic framework for unifying and defining nanoscience. Journal of Nanoparticle Research, 2009, 11, 1251-1310.	0.8	238
78	Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Analytical and Bioanalytical Chemistry, 2009, 394, 33-46.	1.9	202
79	Nanofabrication by DNA self-assembly. Materials Today, 2009, 12, 24-32.	8.3	169
80	Controlled Assembly of Vesicleâ€Based Nanocontainers on Layerâ€by‣ayer Particles via DNA Hybridization. Small, 2009, 5, 320-323.		30
81	Synthetically Programmable DNA Binding Domains in Aggregates of DNAâ€Functionalized Gold Nanoparticles. Small, 2009, 5, 2156-2161.	5.2	30
82	From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461, 74-77.	13.7	859
83	Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly. Nature Materials, 2009, 8, 52-55.	13.3	83
84	Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Materials, 2009, 8, 388-391.	13.3	253
85	Undead layers breathe new life. Nature Materials, 2009, 8, 366-368.	13.3	7
86	DNA provides control. Nature Materials, 2009, 8, 365-366.	13.3	16
87	Free-standing nanoparticle superlattice sheets controlled by DNA. Nature Materials, 2009, 8, 519-525.	13.3	372
88	Switchable self-protected attractions in DNA-functionalized colloids. Nature Materials, 2009, 8, 590-595.	13.3	134
89	Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature Materials, 2009, 8, 781-792.	13.3	829

#	Article		CITATIONS
90	Enzyme cascades activated on topologically programmed DNA scaffolds. Nature Nanotechnology, 2009, 4, 249-254.		636
91	The unnatural order of things. Nature Nanotechnology, 2009, 4, 203-203.	15.6	1
92	Directed assembly of gold nanoparticles. Current Opinion in Colloid and Interface Science, 2009, 14, 126-134.	3.4	60
93	Biomolecular self-assembly of micrometer sized silica beads on patterned glass substrates. Applied Surface Science, 2009, 255, 7759-7765.	3.1	4
94	The origin of the molecular interaction between amino acids and gold nanoparticles: A theoretical and experimental investigation. Chemical Physics Letters, 2009, 469, 186-190.	1.2	42
95	Hydrogenâ€Bondâ€Assisted "Gold Cold Fusion―for Fabrication of 2D Web Structures. Chemistry - an Asian Journal, 2009, 4, 1055-1058.	1.7	12
96	Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles. Science, 2009, 323, 112-116.	6.0	680
97	Gold Nanostructures in Diacetylene Monolayer Templates. Journal of the American Chemical Society, 2009, 131, 2430-2431.		11
98	Supercrystals from Crystallization of Octahedral MnO Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 19107-19111.		48
99	DNA at Aqueous/Solid Interfaces: Chirality-Based Detection via Second Harmonic Generation Activity. Journal of the American Chemical Society, 2009, 131, 844-848.		35
100	Nanoparticle assembly on nanoplates. Chemical Communications, 2009, , 1981.		19
101	Cylindrical Superparticles from Semiconductor Nanorods. Journal of the American Chemical Society, 2009, 131, 6084-6085.	6.6	93
102	Self-Assembly of Enzymes on DNA Scaffolds: En Route to Biocatalytic Cascades and the Synthesis of Metallic Nanowires. Nano Letters, 2009, 9, 2040-2043.	4.5	123
103	Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology, 2009, 87, 133-170.	2.8	356
104	Gene Regulation with Polyvalent siRNAâ^'Nanoparticle Conjugates. Journal of the American Chemical Society, 2009, 131, 2072-2073.	6.6	574
105	The Role Radius of Curvature Plays in Thiolated Oligonucleotide Loading on Gold Nanoparticles. ACS Nano, 2009, 3, 418-424.	7.3	434
106	Electrostatic interactions for directed assembly of nanostructured materials: composites of titanium dioxide nanotubes with gold nanoparticles. Journal of Materials Chemistry, 2009, 19, 8928.	6.7	16
107	The mechanism behind the selective metal nanoscale etch method for precise metal nanopatterning. Nanotechnology, 2009, 20, 065302.	1.3	1

#	Article		CITATIONS
108	Discrete Functional Gold Nanoparticles: Hydrogen Bond-Assisted Synthesis, Magnetic Purification, Supramolecular Dimer and Trimer Formation. ACS Nano, 2009, 3, 2129-2138.	7.3	56
109	A Unified Poland-Scheraga Model of Oligo- and Polynucleotide DNA Melting: Salt Effects and Predictive Power. Biophysical Journal, 2009, 96, 1056-1067.	0.2	36
110	Helical Polymers: Synthesis, Structures, and Functions. Chemical Reviews, 2009, 109, 6102-6211.	23.0	1,481
111	Control of DNA Strand Displacement Kinetics Using Toehold Exchange. Journal of the American Chemical Society, 2009, 131, 17303-17314.	6.6	1,239
112	Controlling the Number and Positions of Oligonucleotides on Gold Nanoparticle Surfaces. Journal of the American Chemical Society, 2009, 131, 7518-7519.	6.6	104
113	Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials. Nano Letters, 2009, 9, 2153-2159.	4.5	228
114	Rapid Synthesis of DNA-Functionalized Gold Nanoparticles in Salt Solution Using Mononucleotide-Mediated Conjugation. Bioconjugate Chemistry, 2009, 20, 1218-1222.	1.8	52
115	Materials science of DNA. Journal of Materials Chemistry, 2009, 19, 1353-1380.	6.7	165
116	Angle Dependent Collective Surface Plasmon Resonance in an Array of Silver Nanoparticles. Journal of Physical Chemistry A, 2009, 113, 4430-4436.	1.1	26
117	DNA-templated nanofabrication. Chemical Society Reviews, 2009, 38, 329-337.	18.7	136
118	Aptamer Nano-flares for Molecular Detection in Living Cells. Nano Letters, 2009, 9, 3258-3261.	4.5	371
120	Facile and Controllable Loading of Single-Stranded DNA on Gold Nanoparticles. Analytical Chemistry, 2009, 81, 8523-8528.	3.2	99
121	Effects of Quantum Dots in Polymerase Chain Reaction. Journal of Physical Chemistry B, 2009, 113, 7637-7641.	1.2	57
122	Molecular Dynamics Simulation of DNA-Functionalized Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 2316-2321.	1.5	89
123	Regiospecific Assembly of Gold Nanoparticles around the Pores of Diatoms: Toward Three-Dimensional Nanoarrays. Journal of the American Chemical Society, 2009, 131, 8356-8357.	6.6	36
124	Curvature-Induced Base Pair "Slipping―Effects in DNA-Nanoparticle Hybridization. Nano Letters, 2009, 9, 317-321.	4.5	43
125	Regulating Immune Response Using Polyvalent Nucleic Acidâ^'Gold Nanoparticle Conjugates. Molecular Pharmaceutics, 2009, 6, 1934-1940.	2.3	134
126	Influence of Amorphous Silica Matrices on the Formation, Structure, and Chemistry of Iron and Iron Oxide Nanoparticles. Journal of the American Chemical Society, 2009, 131, 14768-14777.	6.6	12

#	Article		CITATIONS
127	Electrostatically tuned DNA adsorption on like-charged colloids and resultant colloidal clustering. Soft Matter, 2009, 5, 4290.	1.2	8
128	Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of gold nanoparticles. Chemical Communications, 2009, , 1972.	2.2	61
129	Metal nanoparticle–DNA hybrids – from assembly towards functional conjugates. Journal of Materials Chemistry, 2009, 19, 1518.	6.7	25
130	Dendritic structures within dendritic structures: dendrimer-induced formation and self-assembly of nanoparticle networks. Nanoscale, 2009, 1, 233.	2.8	38
131	Closed nanoconstructs assembled by step-by-step ss-DNA coupling assisted by phospholipid membranes. Soft Matter, 2009, 5, 1639.	1.2	29
132	Modulation of attractive colloidal interactions by lipid membrane-functionalization. Soft Matter, 2009, 5, 2027.	1.2	10
133	Towards self-replicating materials of DNA-functionalized colloids. Soft Matter, 2009, 5, 2422.	1.2	86
134	A Two-Dimensional DNA Array: The Three-Layer Logpile. Journal of the American Chemical Society, 2009, 131, 13574-13575.	6.6	21
135	Dimers of Silver Nanospheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering. Nano Letters, 2009, 9, 485-490.	4.5	578
136	Monodisperse Icosahedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation. ACS Nano, 2009, 3, 139-148.	7.3	175
137	Nano-flares for mRNA Regulation and Detection. ACS Nano, 2009, 3, 2147-2152.	7.3	263
138	Self-assembly: from crystals to cells. Soft Matter, 2009, 5, 1110.	1.2	385
139	Coreâ^'Shell Triangular Bifrustums. Nano Letters, 2009, 9, 3038-3041.	4.5	84
141	Photoinduced Conductivity of a Porphyrinâ^'Gold Composite Nanowire. Journal of Physical Chemistry A, 2009, 113, 4549-4556.	1.1	37
143	Harnessing the properties of fiber-reinforced composites in the design of tissue-engineered scaffolds. , 2010, , 296-322.		1
144	Visual Detection of Hg2+ with High Selectivity Using Thymine Modified Gold Nanoparticles. Analytical Sciences, 2010, 26, 1169-1172.	0.8	33
147	Nanoscience at the advanced photon source. Crystallography Reports, 2010, 55, 1152-1155.	0.1	0
148	Complex protein patterns formation via salt-induced self-assembly and droplet evaporation. European Physical Journal E, 2010, 33, 19-26.	0.7	63

#	Article		CITATIONS
149	pH-Induced Simultaneous Synthesis and Self-Assembly of 3D Layered β-FeOOH Nanorods. Langmuir, 2010, 26, 2745-2750.		45
150	ESR spectroscopy as a tool to investigate the properties of self-assembled monolayers protecting gold nanoparticles. Nanoscale, 2010, 2, 668.	2.8	48
151	Expanding the Chemical Versatility of Colloidal Nanocrystals Capped with Molecular Metal Chalcogenide Ligands. Journal of the American Chemical Society, 2010, 132, 10085-10092.	6.6	263
152	Sequence-Specifically Addressable Hairpin DNAâ^'Single-Walled Carbon Nanotube Complexes for Nanoconstruction. ACS Nano, 2010, 4, 649-656.	7.3	18
153	Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application in Biological and Chemical Sensing. Chemical Reviews, 2010, 110, 5332-5365.	23.0	673
154	Nanomaterials Based on DNA. Annual Review of Biochemistry, 2010, 79, 65-87.	5.0	933
155	Efficient synthesis of PbTe nanoparticle networks. Nano Research, 2010, 3, 685-693.	5.8	18
156	The many twists and turns of DNA: template, telomere, tool, and target. Current Opinion in Structural Biology, 2010, 20, 262-275.	2.6	28
157	Colloidal Assembly via Shape Complementarity. ChemPhysChem, 2010, 11, 3215-3217.		14
158	Asymmetric DNA Origami for Spatially Addressable and Indexâ€Free Solutionâ€Phase DNA Chips. Advanced Materials, 2010, 22, 2672-2675.	11.1	62
170	Peptideâ€Based Methods for the Preparation of Nanostructured Inorganic Materials. Angewandte Chemie - International Edition, 2010, 49, 1924-1942.		428
171	Probing in Real Time the Soft Crystallization of DNA apped Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 380-384.	7.2	71
172	Gold Nanoparticles for Biology and Medicine. Angewandte Chemie - International Edition, 2010, 49, 3280-3294.	7.2	2,096
173	Etching and Dimerization: A Simple and Versatile Route to Dimers of Silver Nanospheres with a Range of Sizes. Angewandte Chemie - International Edition, 2010, 49, 164-168.	7.2	123
174	DNAâ€Origamiâ€Directed Selfâ€Assembly of Discrete Silverâ€Nanoparticle Architectures. Angewandte Chemie - International Edition, 2010, 49, 2700-2704.	7.2	278
175	Establishing the Design Rules for DNAâ€Mediated Programmable Colloidal Crystallization. Angewandte Chemie - International Edition, 2010, 49, 4589-4592.	7.2	139
176	Pressureâ€Driven Assembly of Spherical Nanoparticles and Formation of 1Dâ€Nanostructure Arrays. Angewandte Chemie - International Edition, 2010, 49, 8431-8434.	7.2	78
177	Selfâ€Assembly of Nanotriangle Superlattices Facilitated by Repulsive Electrostatic Interactions. Angewandte Chemie - International Edition, 2010, 49, 6760-6763.	7.2	99

#	Article	IF	CITATIONS
178	Threeâ€Dimensional Directed Selfâ€Assembly of Peptide Nanowires into Micrometerâ€Sized Crystalline Cubes with Nanoparticle Joints. Angewandte Chemie - International Edition, 2010, 49, 8375-8378.	7.2	27
179	Molecular biomimetics: GEPIâ€based biological routes to technology. Biopolymers, 2010, 94, 78-94.	1.2	88
180	Viral templated palladium nanocatalysts for dichromate reduction. Applied Catalysis B: Environmental, 2010, 93, 282-291.	10.8	52
181	Dispersions of plate-like colloidal particles – Cubatic order?. Journal of Colloid and Interface Science, 2010, 348, 80-84.	5.0	22
182	Fabrication, spectroscopy, and dynamics of highly luminescent core–shell InP@ZnSe quantum dots. Journal of Colloid and Interface Science, 2010, 350, 5-9.	5.0	37
183	DNA assisted fragmentation of nickel nanoparticle clusters and their spectral properties. Journal of Inorganic Biochemistry, 2010, 104, 712-717.	1.5	5
184	Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1-35.	1.1	551
185	Cage molecules for self-assembly. Materials Science and Engineering Reports, 2010, 70, 188-208.	14.8	66
186	Alignment Strategies for the Assembly of Nanowires with Submicron Diameters. Small, 2010, 6, 1736-1740.	5.2	25
187	A DNAâ€Origami Chip Platform for Labelâ€Free SNP Genotyping Using Toeholdâ€Mediated Strand Displacement. Small, 2010, 6, 1854-1858.	5.2	125
188	Novel DNA materials and their applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 648-669.	3.3	79
189	Lock and key colloids. Nature, 2010, 464, 575-578.	13.7	699
190	Synergistic self-assembly of RNA and DNA molecules. Nature Chemistry, 2010, 2, 1050-1055.	6.6	117
191	Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Materials, 2010, 9, 60-67.	13.3	1,083
192	DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Materials, 2010, 9, 913-917.	13.3	596
193	DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and proteinÂnanoparticles. Nature Materials, 2010, 9, 918-922.	13.3	121
194	Made to order. Nature Materials, 2010, 9, 885-887.	13.3	39
195	Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nature Nanotechnology, 2010, 5, 116-120.	15.6	268

#	Article		CITATIONS
196	Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotechnology, 2010, 5, 121-126.	15.6	388
197	Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 2010, 5, 15-25.	15.6	1,449
199	Modeling collective charge transport in nanoparticle assemblies. Journal of Physics Condensed Matter, 2010, 22, 163201.	0.7	35
200	Integrating <i>in situ</i> high pressure small and wide angle synchrotron x-ray scattering for exploiting new physics of nanoparticle supercrystals. Review of Scientific Instruments, 2010, 81, 093902.	0.6	57
201	Aggregation-disaggregation transition of DNA-coated colloids: Experiments and theory. Physical Review E, 2010, 81, 041404.	0.8	84
202	Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates. Nanotechnology, 2010, 21, 105304.	1.3	29
203	Theoretical Description of a DNA-Linked Nanoparticle Self-Assembly. Physical Review Letters, 2010, 105, 055502.	2.9	38
205	The Polyvalent Gold Nanoparticle Conjugate—Materials Synthesis, Biodiagnostics, and Intracellular Gene Regulation. MRS Bulletin, 2010, 35, 532-539.	1.7	32
206	Immobilization of Gold Nanoparticles on Aluminum Oxide Nanoporous Structure for Highly Sensitive Plasmonic Sensing. Japanese Journal of Applied Physics, 2010, 49, 06GM02.		6
207	Single-step generation of fluorophore-encapsulated gold nanoparticle core–shell materials. Nanotechnology, 2010, 21, 345603.	1.3	5
208	Computational analysis of binary segregation during colloidal crystallization with DNA-mediated interactions. Journal of Chemical Physics, 2010, 132, 234705.	1.2	35
209	Screening Nanopyramid Assemblies to Optimize Surface Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2010, 1, 1046-1050.	2.1	34
210	Phase behavior of repulsive polymer-tethered colloids. Journal of Chemical Physics, 2010, 132, 014901.	1.2	8
211	Target-Responsive Structural Switching for Nucleic Acid-Based Sensors. Accounts of Chemical Research, 2010, 43, 631-641.	7.6	704
212	DNA-functionalized colloids: Physical properties and applications. Soft Matter, 2010, 6, 4647.	1.2	136
213	Effect of monomer sequences on conformations of copolymers grafted on spherical nanoparticles: A Monte Carlo simulation study. Journal of Chemical Physics, 2010, 132, 164901.	1.2	22
214	Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructuresviaself-assembly. Journal of Materials Chemistry, 2010, 20, 900-906.	6.7	167
215	Designing colloidal ground-state patterns using short-range isotropic interactions. Physical Review E, 2010, 82, 021404.	0.8	9

		CITATION REPOR	T	
#	Article	IF	1	CITATIONS
216	DNA-Directed Self-Assembly of Gold Nanoparticles onto Nanopatterned Surfaces: Controlle Placement of Individual Nanoparticles into Regular Arrays. ACS Nano, 2010, 4, 6153-6161.	d 7.3	6	101
217	Nanotribology Results Show that DNA Forms a Mechanically Resistant 2D Network in Meta Chromatin Plates. Biophysical Journal, 2010, 99, 3951-3958.	bhase 0.2	2	13
218	Specific interaction of DNA-functionalized polymer colloids. Polymer Chemistry, 2010, 1, 65	8. 1.9)	7
219	Chemically Directed Immobilization of Nanoparticles onto Gold Substrates for Orthogonal A Using Dithiocarbamate Bond Formation. ACS Applied Materials & Interfaces, 2010, 2, 7	Assembly 795-799. 4.0	D	28
220	Using DNA to Link Gold Nanoparticles, Polymers, and Molecules: A Theoretical Perspective. Physical Chemistry Letters, 2010, 1, 1781-1788.	ournal of 2.1	L	64
221	Covalently Linked DNA Nanotubes. Nano Letters, 2010, 10, 1458-1465.	4.5	ō	20
222	Formation of Thick, Large-Area Nanoparticle Superlattices in Lithographically Defined Geom Nano Letters, 2010, 10, 1517-1521.	etries. 4.5	5	24
223	Scavenger Receptors Mediate Cellular Uptake of Polyvalent Oligonucleotide-Functionalized Nanoparticles. Bioconjugate Chemistry, 2010, 21, 2250-2256.	Gold 1.8	3	317
224	Synthesis and Thermodynamically Controlled Anisotropic Assembly of DNAâ^'Silver Nanopri Conjugates for Diagnostic Applications. Chemistry of Materials, 2010, 22, 6684-6691.	sm 3.2	2	50
225	Nanoparticles in aqueous media: crystallization and solvation charge asymmetry. Soft Matte 331-341.	er, 2010, 6, 1.2		26
226	Assembly, Structure and Optical Response of Three-Dimensional Dynamically Tunable Multic Superlattices. Nano Letters, 2010, 10, 4456-4462.	component 4.5	5	66
227	Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes. Nano Lette 3367-3372.	ers, 2010, 10, 4.5	5	220
228	DNA Melting in Small-Moleculeâ `DNA-Hybrid Dimer Structures: Experimental Characterizati Coarse-Grained Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2010, 114	on and 1, 2627-2634. 1.2	2	53
229	Systematic Electron Crystallographic Studies of Self-Assembled Binary Nanocrystal Superlat Nano, 2010, 4, 2374-2381.	tices. ACS 7.3		52
230	DNA-Mediated Two-Dimensional Colloidal Crystallization above Different Attractive Surface Langmuir, 2010, 26, 16921-16927.	3. 1.6	; ;	6
231	Plasmonic Signatures in the Composite Crystals of Gold Nanoparticles and <i>p</i> -Hydroxyacetanilide (Paracetamol). Langmuir, 2010, 26, 15714-15717.	1.6		6
232	Self-Consistent PRISM Theoryâ ^{^*} Monte Carlo Simulation Studies of Copolymer Grafted Nand a Homopolymer Matrix. Macromolecules, 2010, 43, 8251-8263.	oparticles in 2.2	2	56
233	Assembly of Nanorods into Designer Superstructures: The Role of Templating, Capillary Ford Adhesion, and Polymer Hydration. ACS Nano, 2010, 4, 259-266.	es, 7.3		40

#	Article		CITATIONS
234	Structural DNA Nanotechnology: Growing Along with <i>Nano Letters</i> . Nano Letters, 2010, 10, 19, 1971-1978.		157
235	DNA Density-Dependent Assembly Behavior of Colloidal Micelles. Langmuir, 2010, 26, 9818-9826.	1.6	11
236	Modulation of Density and Orientation of Amphiphilic DNA on Phospholipid Membranes. II. Vesicles. Journal of Physical Chemistry B, 2010, 114, 7348-7358.	1.2	23
237	Programmed Assembly of Peptide-Functionalized Gold Nanoparticles on DNA Templates. Langmuir, 2010, 26, 13760-13762.	1.6	39
238	Well-Defined DNA Nanoparticles Templated by Self-Assembled M12L24Molecular Spheres and Binding of Complementary Oligonucleotides. Journal of the American Chemical Society, 2010, 132, 15930-15932.	6.6	67
239	Tailoring DNA Structure To Increase Target Hybridization Kinetics on Surfaces. Journal of the American Chemical Society, 2010, 132, 10638-10641.	6.6	76
240	DNA hybridization for nanocube functionalization. , 2010, , .		1
241	Formation of Gold Particles on Nanoscale Toroidal DNA Assembled with Bis(ethylenediamine)gold(III). Langmuir, 2010, 26, 10250-10253.	1.6	16
242	Site-Specific Patterning of Highly Ordered Nanocrystal Superlattices through Biomolecular Surface Confinement. ACS Nano, 2010, 4, 5076-5080.	7.3	17
243	Valency Dependence of Polymorphism and Polyamorphism in DNA-Functionalized Nanoparticles. Langmuir, 2010, 26, 3601-3608.	1.6	37
244	Real-Time Monitoring of Copolymer Stabilized Growing Gold Nanoparticles. Langmuir, 2010, 26, 5889-5894.	1.6	32
245	Silver Nanocrystals: Self-Organization and Collective Properties. Journal of Physical Chemistry C, 2010, 114, 3719-3731.	1.5	35
246	Template-Directed Synthesis and Organization of Shaped Oxide/Phosphate Nanoparticles. Chemistry of Materials, 2010, 22, 3226-3235.	3.2	28
247	Nucleotides and Nucleic Acids; Oligo- and Polynucleotides. Organophosphorus Chemistry, 2010, , 144-237.	0.3	1
248	Directed Self-Assembly of Nanoparticles. ACS Nano, 2010, 4, 3591-3605.	7.3	1,938
249	On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1405-1453.	1.6	230
250	Programmed Nanoparticle Aggregation Using Molecular Beacons. Angewandte Chemie - International Edition, 2010, 49, 7917-7919.	7.2	13
251	On the Thermal Stability of Surface-Assembled Viral-Metal Nanoparticle Complexes. Langmuir, 2010, 26, 7516-7522.	1.6	20

#	Article	IF	CITATIONS
252	Polyvalent Oligonucleotide Iron Oxide Nanoparticle "Click―Conjugates. Nano Letters, 2010, 10, 1477-1480.	4.5	141
253	Stable Gold Nanoparticle Conjugation to Internal DNA Positions: Facile Generation of Discrete Gold Nanoparticleâ^'DNA Assemblies. Bioconjugate Chemistry, 2010, 21, 1413-1416.	1.8	50
254	Cellular Response of Polyvalent Oligonucleotideâ^'Gold Nanoparticle Conjugates. ACS Nano, 2010, 4, 5641-5646.	7.3	128
255	Quantitative Study of the Association Thermodynamics and Kinetics of DNA-Coated Particles for Different Functionalization Schemes. Journal of the American Chemical Society, 2010, 132, 1903-1913.	6.6	50
256	Bioassembled Layered Silicate-Metal Nanoparticle Hybrids. ACS Applied Materials & Interfaces, 2010, 2, 1492-1498.	4.0	27
257	Facile Fabrication of Homogeneous 3D Silver Nanostructures on Gold-Supported Polyaniline Membranes as Promising SERS Substrates. Langmuir, 2010, 26, 8882-8886.	1.6	76
258	Transition from Isolated to Collective Modes in Plasmonic Oligomers. Nano Letters, 2010, 10, 2721-2726.	4.5	544
260	Plasmonic Nanoparticle Arrays with Nanometer Separation for High-Performance SERS Substrates. Nano Letters, 2010, 10, 2749-2754.	4.5	231
261	Soft matter nanoparticles with various shapes and functionalities can form through electrostatic self-assembly. Soft Matter, 2010, 6, 4296.	1.2	51
262	Self-lubricating nanoparticles: self-organization into 3D-superlattices during a fast drying process. Chemical Communications, 2010, 46, 8977.	2.2	21
263	Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. Physical Chemistry Chemical Physics, 2010, 12, 11850.	1.3	144
264	Effects of the ionic size-asymmetry around a charged nanoparticle: unequal charge neutralization and electrostatic screening. Soft Matter, 2010, 6, 2056.	1.2	70
265	Sensitive and selective localized surface plasmon resonance light-scattering sensor for Ag+ with unmodified gold nanoparticles. Analyst, The, 2010, 135, 2682.	1.7	41
266	Flying colloidal carpets. Soft Matter, 2010, 6, 664-669.	1.2	22
267	A facile method towards cyclic assembly of gold nanoparticles using DNA template alone. Chemical Communications, 2010, 46, 6132.	2.2	24
268	Programming the kinetics and extent of colloidal disassembly using a DNA trigger. Soft Matter, 2010, 6, 4446.	1.2	15
269	Anomalous phase behavior of liquid–vapor phase transition in binary mixtures of DNA-coated particles. Soft Matter, 2010, 6, 6136.	1.2	25
270	Universal two-step crystallization of DNA-functionalized nanoparticles. Soft Matter, 2010, 6, 6130.	1.2	32

#	Article	IF	CITATIONS
271	Small molecule-triggered assembly of DNA nanoarchitectures. Chemical Communications, 2010, 46, 1866-1868.	2.2	35
272	ssDNA templated assembly of oligonucleotides and bivalent naphthalene guests. Soft Matter, 2010, 6, 1494.	1.2	17
273	Cu ^{II} Cross-Linked Antiparallel Dipeptide Duplexes Using Heterofunctional Ligand-Substituted Aminoethylglycine. Inorganic Chemistry, 2010, 49, 5126-5133.	1.9	9
274	A detailed study of growth of nanostructured poly(aniline) particles in the light of thermodynamic interaction balance. Physical Chemistry Chemical Physics, 2010, 12, 11905.	1.3	2
275	Effects of mismatches on DNA as an isothermal assembly and disassembly tool. Soft Matter, 2010, 6, 3832.	1.2	8
276	Adaptive DNA-based materials for switching, sensing, and logic devices. Journal of Materials Chemistry, 2011, 21, 6113.	6.7	26
277	Highly stable, amphiphilic DNA-encoded nanoparticle conjugates for DNA encoding/decoding applications. Journal of Materials Chemistry, 2011, 21, 9467.	6.7	10
278	Self-replication of information-bearing nanoscale patterns. Nature, 2011, 478, 225-228.	13.7	105
279	Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter, 2011, 7, 6757.	1.2	170
280	Stability of DNA-linked nanoparticle crystals I: Effect of linker sequence and length. Soft Matter, 2011, 7, 2085.	1.2	49
281	Gold nanorod ensembles as artificial molecules for applications in sensors. Journal of Materials Chemistry, 2011, 21, 16759.	6.7	59
282	Assembly of copolymer functionalized nanoparticles: a Monte Carlo simulation study. Soft Matter, 2011, 7, 5952.	1.2	37
283	Chemically induced self-assembly of spherical and anisotropic inorganic nanocrystals. Journal of Materials Chemistry, 2011, 21, 16694.	6.7	45
284	Specific adhesion between DNA-functionalized "Janus―vesicles: size-limited clusters. Soft Matter, 2011, 7, 1747-1755.	1.2	63
285	Electrostatic-Driven Ridge Formation on Nanoparticles Coated with Charged End-Group Ligands. Journal of Physical Chemistry C, 2011, 115, 6484-6490.	1.5	32
286	Self-Assembly Enters the Design Era. Science, 2011, 334, 183-184.	6.0	35
287	Scalable synthesis of self-assembling nanoparticle clusters based on controlled steric interactions. Soft Matter, 2011, 7, 5339.	1.2	45
288	Binary Heterogeneous Superlattices Assembled from Quantum Dots and Gold Nanoparticles with DNA. Journal of the American Chemical Society, 2011, 133, 5252-5254.	6.6	88

#	Article	IF	CITATIONS
289	Polypeptide Folding-Mediated Tuning of the Optical and Structural Properties of Gold Nanoparticle Assemblies. Nano Letters, 2011, 11, 5564-5573.	4.5	55
290	Small-Molecule-Triggered Manipulation of DNA Three-Way Junctions. Journal of the American Chemical Society, 2011, 133, 4706-4709.	6.6	24
291	Direct Attachment of Oligonucleotides to Quantum Dot Interfaces. Chemistry of Materials, 2011, 23, 4975-4981.	3.2	41
292	Free-Standing Polymer–Nanoparticle Superlattice Sheets Self-Assembled at the Air–Liquid Interface. Crystal Growth and Design, 2011, 11, 4742-4746.	1.4	56
293	Assembly-Based Titration for the Determination of Monodisperse Plasmonic Nanoparticle Concentrations Using DNA. Analytical Chemistry, 2011, 83, 4989-4995.	3.2	8
294	Photon-Regulated DNA-Enzymatic Nanostructures by Molecular Assembly. ACS Nano, 2011, 5, 10090-10095.	7.3	53
295	Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles. Journal of the American Chemical Society, 2011, 133, 2120-2123.	6.6	111
296	Sterically controlled docking of gold nanoparticles on ferritin surface by DNA hybridization. Nanotechnology, 2011, 22, 275312.	1.3	5
297	Crystalline Gibbs Monolayers of DNA-Capped Nanoparticles at the Air–Liquid Interface. ACS Nano, 2011, 5, 7978-7985.	7.3	53
298	Probing DNA's Interstrand Orientation with Gold Nanoparticles. Analytical Chemistry, 2011, 83, 5067-5072.	3.2	8
299	Superlattice of Rodlike Virus Particles Formed in Aqueous Solution through Like-Charge Attraction. Langmuir, 2011, 27, 10929-10937.	1.6	39
300	DNA-based programming of quantum dot valency, self-assembly and luminescence. Nature Nanotechnology, 2011, 6, 485-490.	15.6	237
301	How to Predict the Growth Mechanism of Supracrystals from Gold Nanocrystals. Journal of Physical Chemistry Letters, 2011, 2, 417-422.	2.1	49
302	Electrostatics at the nanoscale. Nanoscale, 2011, 3, 1316-1344.	2.8	222
303	Chemistry of nucleic acids: impacts in multiple fields. Chemical Communications, 2011, 47, 7018.	2.2	56
304	The Fabrication of Stable Gold Nanoparticle-Modified Interfaces for Electrochemistry. Langmuir, 2011, 27, 4176-4183.	1.6	150
305	Engineering DNA-based functional materials. Chemical Society Reviews, 2011, 40, 5730.	18.7	263
306	Proteinâ ~ Nanoparticle Interactions: Opportunities and Challenges. Chemical Reviews, 2011, 111, 5610-5637.	23.0	1,242

#	Article	IF	CITATIONS
307	Design Rule for Colloidal Crystals of DNA-Functionalized Particles. Physical Review Letters, 2011, 107, 045902.	2.9	74
308	Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures. Journal of Materials Chemistry, 2011, 21, 2495-2501.	6.7	106
309	A coordination chemistry dichotomy for icosahedral carborane-based ligands. Nature Chemistry, 2011, 3, 590-596.	6.6	294
310	The role of responsive branched copolymer composition in controlling pH-triggered aggregation of "engineered―emulsion droplets: towards selective droplet assembly. Polymer Chemistry, 2011, 2, 403-410.	1.9	24
311	Self-assembling DNA templates for programmed artificial biomineralization. Soft Matter, 2011, 7, 3240.	1.2	31
312	Single metal nanoparticles: optical detection, spectroscopy and applications. Reports on Progress in Physics, 2011, 74, 106401.	8.1	233
313	Surfactant-Induced Postsynthetic Modulation of Pd Nanoparticle Crystallinity. Nano Letters, 2011, 11, 1614-1617.	4.5	98
314	New Synthesis Strategy for DNA Functional Gold Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 3243-3249.	1.5	33
315	Colloidal Structure and Stability of DNA/Polycations Polyplexes Investigated by Small Angle Scattering. Biomacromolecules, 2011, 12, 4272-4282.	2.6	11
316	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202
317	STRUCTURAL DNA NANOTECHNOLOGY: INFORMATION GUIDED SELF-ASSEMBLY. , 2011, , 65-84.		1
318	Bio-Mediated Assembly of Ordered Nanoparticle Superstructures. , 2011, , 69-103.		0
319	Tunable Dichroic Self-Affine Thin Films. Journal of Physical Chemistry C, 2011, 115, 15251-15256.	1.5	5
320	Patchy colloids: state of the art and perspectives. Physical Chemistry Chemical Physics, 2011, 13, 6397.	1.3	409
321	Dissociation and Degradation of Thiol-Modified DNA on Gold Nanoparticles in Aqueous and Organic Solvents. Langmuir, 2011, 27, 6132-6137.	1.6	105
322	Materials design by DNA programmed self-assembly. Current Opinion in Solid State and Materials Science, 2011, 15, 262-270.	5.6	48
323	Reversible gels of patchy particles. Current Opinion in Solid State and Materials Science, 2011, 15, 246-253.	5.6	106
324	How To Control the Crystalline Structure of Supracrystals of 5-nm Silver Nanocrystals. Chemistry of Materials, 2011, 23, 4186-4192.	3.2	46

#	Article	IF	CITATIONS
325	Site-Selective Binding of Nanoparticles to Double-Stranded DNA <i>via</i> Peptide Nucleic Acid "Invasion― ACS Nano, 2011, 5, 2467-2474.	7.3	22
326	Subdiffusion of a Sticky Particle on a Surface. Physical Review Letters, 2011, 106, 228102.	2.9	89
327	Linear birefringence magnitude of artificial self-assembled DNA crystals. Optical Materials Express, 2011, 1, 936.	1.6	1
328	Crystallization of Fluorescent Quantum Dots within a Three-Dimensional Bio-Organic Template of Actin Filaments and Lipid Membranes. Nano Letters, 2011, 11, 5443-5448.	4.5	32
329	Switching of the enzymatic activity synchronized with signal recognition by an artificial DNA receptor on a liposomal membrane. Organic and Biomolecular Chemistry, 2011, 9, 2397.	1.5	4
330	Lock and key colloids through polymerization-induced buckling of monodisperse silicon oil droplets. Soft Matter, 2011, 7, 1631-1634.	1.2	103
331	Assembly of hybrid photonic architectures from nanophotonic constituents. Nature, 2011, 480, 193-199.	13.7	327
332	The Frontier of Inorganic Synthesis and Preparative Chemistry (I)—Biomimetic Synthesis. , 2011, , 525-553.		3
333	Numerical study of DNA-functionalized microparticles and nanoparticles: Explicit pair potentials and their implications for phase behavior. Journal of Chemical Physics, 2011, 134, 084702.	1.2	75
334	DNA-Templated Fabrication of Two-Dimensional Metallic Nanostructures by Thermal Evaporation Coating. Journal of the American Chemical Society, 2011, 133, 1742-1744.	6.6	38
335	Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nature Chemistry, 2011, 3, 393-399.	6.6	404
336	Building plasmonic nanostructures with DNA. Nature Nanotechnology, 2011, 6, 268-276.	15.6	736
337	Directed self-assembly of a colloidal kagome lattice. Nature, 2011, 469, 381-384.	13.7	1,068
338	Nanoparticle Superlattice Engineering with DNA. Science, 2011, 334, 204-208.	6.0	1,013
339	A mechanistic view of binary colloidal superlattice formation using DNA-directed interactions. Soft Matter, 2011, 7, 1912.	1.2	59
340	Assembly of DNA-Functionalized Gold Nanoparticles with Gaps and Overhangs in Linker DNA. Journal of Physical Chemistry C, 2011, 115, 7851-7857.	1.5	32
341	Filter-Feeding Bivalves Store and Biodeposit Colloidally Stable Gold Nanoparticles. Environmental Science & Technology, 2011, 45, 6592-6599.	4.6	65
342	Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity. ACS Nano, 2011, 5, 5478-5489.	7.3	716

#	Article	IF	CITATIONS
343	Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Analytical Chemistry, 2011, 83, 4453-4488.	3.2	430
344	Interlocked octapods. Nature Materials, 2011, 10, 815-816.	13.3	9
345	Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nature Materials, 2011, 10, 872-876.	13.3	415
346	Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews, 2011, 111, 3736-3827.	23.0	1,080
347	Emergences of supramolecular chemistry: from supramolecular chemistry to supramolecular science. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 251-274.	1.6	20
348	Biogenic materialization using pear extract intended for the synthesis and design of ordered gold nanostructures. Journal of Materials Science, 2011, 46, 4741-4747.	1.7	15
349	Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH. Journal of Nanoparticle Research, 2011, 13, 4267-4276.	0.8	16
350	Multifunctional DNA-based biomemory device consisting of ssDNA/Cu heterolayers. Biosensors and Bioelectronics, 2011, 26, 2304-2310.	5.3	10
351	Dispersions based on noble metal nanoparticles-DNA conjugates. Advances in Colloid and Interface Science, 2011, 163, 123-143.	7.0	13
352	Shape-anisotropic colloids: Building blocks for complex assemblies. Current Opinion in Colloid and Interface Science, 2011, 16, 96-105.	3.4	386
353	Shaped gold and silver nanoparticles. Frontiers of Materials Science, 2011, 5, 1-24.	1.1	27
354	Direct Control of the Spatial Arrangement of Gold Nanoparticles in Organic–Inorganic Hybrid Superstructures. Small, 2011, 7, 920-929.	5.2	22
355	Affibodyâ€Functionalized Gold–Silica Nanoparticles for Raman Molecular Imaging of the Epidermal Growth Factor Receptor. Small, 2011, 7, 625-633.	5.2	125
356	Stepwise Thermal and Photothermal Dissociation of a Hierarchical Superaggregate of DNAâ€Functionalized Gold Nanoparticles. Small, 2011, 7, 1397-1402.	5.2	15
357	Design and Application of Inorganic Nanoparticle Superstructures: Current Status and Future challenges. Small, 2011, 7, 2133-2146.	5.2	191
358	Surfaceâ€Ðriven DNA Assembly of Binary Cubic 3D Nanocrystal Superlattices. Small, 2011, 7, 3021-3025.	5.2	24
359	Controlling forces and pathways in selfâ€assembly using viruses and DNA. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 282-297.	3.3	10
360	Sensing Nucleic Acids with Dimer Nanoclusters. Advanced Functional Materials, 2011, 21, 1051-1057.	7.8	11

#	Article	IF	CITATIONS
361	Which Forces Control Supracrystal Nucleation in Organic Media?. Advanced Functional Materials, 2011, 21, 2693-2704.	7.8	102
362	Selfâ€Assembly of Tunable Nanocrystal Superlattices Using Polyâ€(NIPAM) Spacers. Advanced Functional Materials, 2011, 21, 4668-4676.	7.8	73
363	Colloidal Crystallization of Surfactantâ€Free ZnO Quantum Dots. ChemPhysChem, 2011, 12, 3533-3538.	1.0	3
369	Colloidal Assembly: The Road from Particles to Colloidal Molecules and Crystals. Angewandte Chemie - International Edition, 2011, 50, 360-388.	7.2	659
370	Nanocrystal Selfâ€Assembly Assisted by Oriented Attachment. Angewandte Chemie - International Edition, 2011, 50, 578-580.	7.2	44
371	Branched DNA That Forms a Solid at 95 °C. Angewandte Chemie - International Edition, 2011, 50, 3227-3231.	7.2	66
372	DNA‣inked Nanoparticle Building Blocks for Programmable Matter. Angewandte Chemie - International Edition, 2011, 50, 9185-9190.	7.2	88
373	Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization. Angewandte Chemie - International Edition, 2011, 50, 11994-11998.	7.2	306
374	Interfacing Colloidal Graphene Oxide Sheets with Gold Nanoparticles. Chemistry - A European Journal, 2011, 17, 5958-5964.	1.7	66
375	Semiconductive, Oneâ€Dimensional, Selfâ€Assembled Nanostructures Based on Oligopeptides with π onjugated Segments. Chemistry - A European Journal, 2011, 17, 4746-4749.	1.7	35
376	Rapid DNA detection by interface PCR on nanoparticles. Biosensors and Bioelectronics, 2011, 26, 2495-2499.	5.3	27
377	Laser-induced fabrication of platinum nanoshells having enhanced catalytic and Raman properties. Applied Catalysis A: General, 2011, 393, 317-322.	2.2	16
378	Role of electrostatic interactions in two-dimensional self-assembly of tobacco mosaic viruses on cationic lipid monolayers. Journal of Colloid and Interface Science, 2011, 358, 497-505.	5.0	10
379	DNA-functionalized thermoresponsive bioconjugates synthesized via ATRP and click chemistry. Polymer, 2011, 52, 895-900.	1.8	42
380	Conformational behavior of DNA-templated CdS inorganic nanowire. Nanotechnology, 2011, 22, 375604.	1.3	9
381	Stability of DNA-linked nanoparticle crystals: Effect of number of strands, core size, and rigidity of strand attachment. Journal of Chemical Physics, 2011, 134, 244701.	1.2	34
382	Design principles for self-assembly with short-range interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5193-5198.	3.3	86
383	Dynamics and Statics of DNA-Programmable Nanoparticle Self-Assembly and Crystallization. Physical Review Letters, 2011, 106, 215501.	2.9	124

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
384	Theory of Programmable Hierarchic Self-Assembly. Physical Review Letters, 2011, 106, 255501.	2.9	44
385	Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15687-15692.	3.3	155
386	Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Scientific Reports, 2011, 1, 18.	1.6	335
387	Investigative Tools: Theory, Modeling, and Simulation. , 2011, , 29-69.		4
388	Use of Oligonucleotides Carrying Photolabile Groups for the Control of the Deposition of Nanoparticles in Surfaces and Nanoparticle Association. International Journal of Molecular Sciences, 2011, 12, 7238-7249.	1.8	3
389	DNA-Based Soft Phases. Topics in Current Chemistry, 2011, 318, 225-279.	4.0	29
390	DNA as scaffolding for nanophotonic structures. Journal of Nanophotonics, 2012, 6, 064505-1.	0.4	21
391	Polygamous particles. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18731-18736.	3.3	34
392	End-to-end attraction of duplex DNA. Nucleic Acids Research, 2012, 40, 3812-3821.	6.5	81
393	Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nature Communications, 2012, 3, 1209.	5.8	110
394	Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2240-2245.	3.3	144
395	Consequences of local inter-strand dehybridization for large-amplitude bending fluctuations of double-stranded DNA. Journal of Chemical Physics, 2012, 136, 045102.	1.2	15
396	A general theory of DNA-mediated and other valence-limited colloidal interactions. Journal of Chemical Physics, 2012, 137, 094108.	1.2	96
397	Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces. Journal of Physics Condensed Matter, 2012, 24, 424219.	0.7	14
399	DNA Hairs Provide Potential for Molecular Self-Assembly. Physics Magazine, 2012, 5, .	0.1	0
400	Structural phases of colloids interacting via a flat-well potential. Physical Review E, 2012, 86, 051402.	0.8	17
401	Tailoring Quantum Dot Interfaces for Improved Biofunctionality and Energy Transfer. ACS Symposium Series, 2012, , 59-79.	0.5	1
402	Dynamics of DNA-programmable nanoparticle crystallization: gelation, nucleation and topological defects. Soft Matter, 2012, 8, 12053.	1.2	43

ARTICLE IF CITATIONS Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman 403 18.7 380 Spectroscopy applications. Chemical Society Reviews, 2012, 41, 7085. Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano, 2012, 6, 11059-11065. 404 Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today, 405 6.2 202 2012, 7, 564-585. Self-assembled nanostructures of Ag6[PV3Mo9O40] with N-donor ligands and their catalytic activity. 406 RSC Advances, 2012, 2, 11449. Arrested demixing opens route to bigels. Proceedings of the National Academy of Sciences of the 407 3.3 91 United States of America, 2012, 109, 19155-19160. Controlling the temperature sensitivity of DNA-mediated colloidal interactions through competing 408 1.2 linkages. Šoft Matter, 2012, 8, 2213. Solution-Phase Synthesis of Branched DNA Hybrids Based on Dimer Phosphoramidites and Phenolic or 409 1.7 24 Nucleosidic Cores. Journal of Organic Chemistry, 2012, 77, 2703-2717. Solution-Phase Synthesis of Branched DNA Hybrids via <i>H</i>-Phosphonate Dimers. Journal of 1.7 28 Organic Chemistry, 2012, 77, 2718-2728. Fe₃O₄nanoparticles: protein-mediated crystalline magnetic superstructures. 411 1.3 42 Nanotechnology, 2012, 23, 415601. Nanostructures Conjugated to Nucleic Acids and Their Applications. ACS Symposium Series, 2012, 259-288. Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a 413 6.6 477 pH-Assisted and Surfactant-Free Route. Journal of the American Chemical Society, 2012, 134, 7266-7269. Instantaneous Attachment of an Ultrahigh Density of Nonthiolated DNA to Gold Nanoparticles and Its 1.6 Applications. Langmuir, 2012, 28, 17053-17060. Amplifying the Macromolecular Crowding Effect Using Nanoparticles. Journal of the American 417 6.6 50 Chemical Society, 2012, 134, 35-38. Genetically engineered protein nanowires: unique features in site-specific functionalization and 1.2 multi-dimensional self-assembly. Soft Matter, 2012, 8, 7533. Nucleic acid-mediated gold oxidation: novel biolithography for surface microfabrication and new 419 2.2 14 insight into gold-based biomaterials. Chemical Communications, 2012, 48, 8787. Control of anisotropic self-assembly of gold nanoparticles coated with mesogens. Journal of 420 Materials Chemistry, 2012, 22, 11101. Designing and fabricating of surface-enhanced Raman scattering substrate with high density hot 421 2.8 43 spots by polyaniline template-assisted self-assembly. Nanoscale, 2012, 4, 6449. Bio-inspired hierarchical self-assembly of nanotubes into multi-dimensional and multi-scale 2.8 structures. Nanoscale, 2012, 4, 224-230.

ARTICLE IF CITATIONS # One-pot synthesis of noble metal nanoparticles and their ordered self-assembly nanostructures. Soft 423 1.2 11 Matter, 2012, 8, 3743. Heterogeneous nanoclusters assembled by PNA-templated double-stranded DNA. Nanoscale, 2012, 4, 424 2.8 6722. Multiple electrokinetic actuators for feedback control of colloidal crystal size. Lab on A Chip, 2012, 425 3.139 12, 4063. Targeted Binding of the M13 Bacteriophage to Thiamethoxam Organic Crystals. Langmuir, 2012, 28, 426 6013-6020. DNA-porphyrin hybrids as reaction centers for photosensitized ene reactions with singlet oxygen. 427 0.4 3 Journal of Porphyrins and Phthalocyanines, 2012, 16, 488-498. Synchronized Assembly of Gold Nanoparticles Driven by a Dynamic DNA-Fueled Molecular Machine. Journal of the American Chemical Society, 2012, 134, 10803-10806. 6.6 Supercrystals of DNA-Functionalized Gold Nanoparticles: A Million-Atom Molecular Dynamics 429 1.5 20 Simulation Study. Journal of Physical Chemistry C, 2012, 116, 19579-19585. DNA-Directed Assembly of Asymmetric Nanoclusters Using Janus Nanoparticles. ACS Nano, 2012, 6, 430 7.3 93 802-809. Controlling the nano–bio interface to build collagen–silica self-assembled networks. Nanoscale, 431 2.8 44 2012, 4, 7127. Platonic Hexahedron Composed of Six Organic Faces with an Inscribed Au Cluster. Journal of the 6.6 American Chemical Society, 2012, 134, 816-819. Progression of Occupational Risk Management with Advances in Nanomaterials. Journal of 433 17 0.4 Occupational and Environmental Hygiene, 2012, 9, D12-D22. Exploring the thermal stability of DNA-linked gold nanoparticles in ionic liquids and molecular 3.7 solvents. Chemical Science, 2012, 3, 3216. Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole–Imidazole Polyamides. 435 6.6 46 Journal of the American Chemical Society, 2012, 134, 8356-8359. Resolving the Growth of 3D Colloidal Nanoparticle Superlattices by Real-Time Small-Angle X-ray Scattering. Journal of the American Chemical Society, 2012, 134, 18732-18738. 6.6 Short Oligonucleotides Aligned in Stretched Humid Matrix: Secondary DNA Structure in Poly(vinyl) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 437 Self-Assembly of Chiral Nanoparticle Pyramids with Strong <i>R</i>/i>/<i>S</i> Optical Activity. Journal 366 of the American Chemical Society, 2012, 134, 15114-15121. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer 439 15.6 158 approach. Nature Nanotechnology, 2012, 7, 24-28.

CITATION REPORT

440Biochemical Investigation of the Formation of Three-Dimensional Networks from DNA-Grafted Large
Silica Particles. Langmuir, 2012, 28, 2156-2165.1.627

#	Article	IF	Citations
441	DNA Base Dimers Are Stabilized by Hydrogen-Bonding Interactions Including Non-Watson–Crick Pairing Near Graphite Surfaces. Journal of Physical Chemistry B, 2012, 116, 12088-12094.	1.2	26
442	Updating the eureka. Nature Materials, 2012, 11, 488-488.	13.3	1
443	Tuning and Maximizing the Single-Molecule Surface-Enhanced Raman Scattering from DNA-Tethered Nanodumbbells. ACS Nano, 2012, 6, 9574-9584.	7.3	134
444	Self organization of inorganic nanocrystals: Unexpected chemical and physical properties. Journal of Colloid and Interface Science, 2012, 388, 1-8.	5.0	18
446	DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features. Journal of Nanobiotechnology, 2012, 10, 21.	4.2	5
447	Electrochemistry of robust gold nanoparticle–glassy carbon hybrids generated using a patternable photochemical approach. Journal of Materials Chemistry, 2012, 22, 23971.	6.7	9
448	Melting also on cooling. Nature Materials, 2012, 11, 487-488.	13.3	4
449	Hybridization of inorganic nanoparticles and polymers to create regular and reversible self-assembly architectures. Chemical Society Reviews, 2012, 41, 6066.	18.7	105
450	Probing Resonance Energy Transfer and Inner Filter Effects in Quantum Dot–Large Metal Nanoparticle Clusters using a DNA-Mediated Quench and Release Mechanism. Journal of Physical Chemistry C, 2012, 116, 22996-23003.	1.5	28
452	Modeling the Crystallization of Spherical Nucleic Acid Nanoparticle Conjugates with Molecular Dynamics Simulations. Nano Letters, 2012, 12, 2509-2514.	4.5	129
453	Regiospecific Plasmonic Assemblies for <i>in Situ</i> Raman Spectroscopy in Live Cells. Journal of the American Chemical Society, 2012, 134, 1699-1709.	6.6	259
454	Free-Standing Plasmonic-Nanorod Superlattice Sheets. ACS Nano, 2012, 6, 925-934.	7.3	132
455	Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 2012, 64, 967-978.	6.6	607
456	Highly efficient remote controlled release system based on light-driven DNA nanomachine functionalized mesoporous silica. Nanoscale, 2012, 4, 4473.	2.8	41
457	A- to B-Form Transition in DNA Between Gold Surfaces. Journal of Physical Chemistry B, 2012, 116, 7000-7005.	1.2	22
458	Re-entrant melting as a design principle for DNA-coated colloids. Nature Materials, 2012, 11, 518-522.	13.3	104
459	Enhancing the Melting Properties of Small Molecule-DNA Hybrids through Designed Hydrophobic Interactions: An Experimental-Computational Study. Journal of the American Chemical Society, 2012, 134, 7450-7458.	6.6	33
460	Simple Cubic Packing of Gold Nanoparticles through Rational Design of Their Dendrimeric Corona. Journal of the American Chemical Society, 2012, 134, 808-811.	6.6	86

<u> </u>			-			
Спт	ΆΤΙ	ON	l K	FΡ	OR1	Г

#	Article	IF	CITATIONS
461	Asymmetric and symmetric PCR of gold nanoparticles: A pathway to scaled-up self-assembly with tunable chirality. Journal of Materials Chemistry, 2012, 22, 5574.	6.7	35
462	DNA-Templating Mass Production of Gold Trimer Rings for Optical Metamaterials. Journal of Physical Chemistry C, 2012, 116, 15028-15033.	1.5	21
463	Ordering at Various Scales: Magnetic Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 3-14.	1.5	20
464	Structure of DNA-functionalized dendrimer nanoparticles. Soft Matter, 2012, 8, 1893-1900.	1.2	10
465	Size-Dependent Hamaker Constant for Silver Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 20099-20102.	1.5	53
466	Functionalized DNA Nanostructures. Chemical Reviews, 2012, 112, 2528-2556.	23.0	359
467	Two- and Three-Dimensional Network of Nanoparticles via Polymer-Mediated Self-Assembly. ACS Macro Letters, 2012, 1, 396-399.	2.3	9
468	Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chemical Science, 2012, 3, 2262.	3.7	52
469	The Influence of Gap Length on Cooperativity and Rate of Association in DNA-Modified Gold Nanoparticle Aggregates. Journal of Physical Chemistry C, 2012, 116, 11694-11701.	1.5	7
471	Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates. Journal of the American Chemical Society, 2012, 134, 11876-11879.	6.6	452
472	Nanorods in functionalized block-copolymer gels: Flexible ladders and liquid crystalline order in curved geometries. Europhysics Letters, 2012, 100, 56004.	0.7	6
473	A quantized building block concept leading to a new nano-periodic system. , 2012, , 293-377.		2
474	DNAâ€based plasmonic nanoarchitectures: from structural design to emerging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 587-604.	3.3	26
475	Binary Assembly of Colloidal Semiconductor Nanorods with Spherical Metal Nanoparticles. Small, 2012, 8, 843-846.	5.2	26
476	High‥ield Assembly of Soluble and Stable Gold Nanorod Pairs for Highâ€Temperature Plasmonics. Small, 2012, 8, 1013-1020.	5.2	56
477	Photo-induced growth of DNA-capped silver nanoparticles. Nanotechnology, 2012, 23, 115607.	1.3	6
478	Spherical Nucleic Acids. Journal of the American Chemical Society, 2012, 134, 1376-1391.	6.6	947
479	Shape-Dependent Reversible Assembly Properties of Polyvalent DNA–Silver Nanocube Conjugates. Journal of Physical Chemistry C, 2012, 116, 2278-2284.	1.5	31

	Сітатіс	n Report	
#	Article	IF	CITATIONS
480	Internal Structure of Nanoparticle Dimers Linked by DNA. ACS Nano, 2012, 6, 6793-6802.	7.3	43
481	Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir, 2012, 28, 3896-3902.	1.6	260
482	Quantitative Prediction of the Phase Diagram of DNA-Functionalized Nanosized Colloids. Physical Review Letters, 2012, 108, 268301.	2.9	47
483	Facile Preparation of Polymeric Dimers from Amphiphilic Patchy Particles. Macromolecular Rapid Communications, 2012, 33, 933-937.	2.0	6
484	Selfâ€Assembly of ZnO Nanoparticles – An NMR Spectroscopic Study. European Journal of Inorganic Chemistry, 2012, 2012, 2691-2699.	1.0	25
485	Dynamic Nanoparticle Assemblies. Accounts of Chemical Research, 2012, 45, 1916-1926.	7.6	209
486	Designing Quantum Rods for Optimized Energy Transfer with Firefly Luciferase Enzymes. Nano Letters, 2012, 12, 3251-3256.	4.5	63
487	Programmable Construction of Nanostructures: Assembly of Nanostructures with Various Nanocomponents. IEEE Nanotechnology Magazine, 2012, 6, 19-23.	0.9	10
488	Transitioning DNAâ€Engineered Nanoparticle Superlattices from Solution to the Solid State. Advanced Materials, 2012, 24, 5181-5186.	11.1	136
490	Biomimetic Surface Engineering of Lanthanideâ€Doped Upconversion Nanoparticles as Versatile Bioprobes. Angewandte Chemie - International Edition, 2012, 51, 6121-6125.	7.2	232
491	Discovery of the DNA "Genetic Code―for Abiological Gold Nanoparticle Morphologies. Angewandte Chemie - International Edition, 2012, 51, 9078-9082.	7.2	128
492	Photoswitchable Oligonucleotide-Modified Gold Nanoparticles: Controlling Hybridization Stringency with Photon Dose. Nano Letters, 2012, 12, 2530-2536.	4.5	89
493	Bio-inspired variable structural color materials. Chemical Society Reviews, 2012, 41, 3297.	18.7	772
494	Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA. Science China Chemistry, 2012, 55, 814-821.	4.2	11
495	DNA thin film coated optical fiber biosensor. Current Applied Physics, 2012, 12, 841-845.	1.1	18
496	Structural study on gold nanoparticle functionalized with DNA and its non-cross-linking aggregation. Journal of Colloid and Interface Science, 2012, 368, 629-635.	5.0	41
497	Self-assembly of particles—The regulatory role of particle flexibility. Progress in Polymer Science, 2012, 37, 445-486.	11.8	84
498	Highâ€Energy Al/CuO Nanocomposites Obtained by DNAâ€Directed Assembly. Advanced Functional Materials, 2012, 22, 323-329.	7.8	144

#	Article	IF	Citations
499	Super-compressible DNA nanoparticle lattices. Soft Matter, 2013, 9, 10452.	1.2	29
500	Supramolecular Organic–Inorganic Hybrid Assemblies with Tunable Particle Size: Interplay of Three Noncovalent Interactions. Angewandte Chemie - International Edition, 2013, 52, 8742-8745.	7.2	39
501	Assembling colloidal clusters using crystalline templates and reprogrammable DNA interactions. Soft Matter, 2013, 9, 9119.	1.2	46
502	DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. , 2013, , .		8
503	Bonding them all. Nature Materials, 2013, 12, 694-696.	13.3	18
504	Aptamerâ€Assisted Assembly of Gold Nanoframe Dimers. Particle and Particle Systems Characterization, 2013, 30, 1071-1078.	1.2	9
505	Biochirality. Topics in Current Chemistry, 2013, , .	4.0	19
506	Nanostructures for magnetically triggered release of drugs and biomolecules. Current Opinion in Colloid and Interface Science, 2013, 18, 459-467.	3.4	59
507	Using Temperature-Sensitive Smart Polymers to Regulate DNA-Mediated Nanoassembly and Encoded Nanocarrier Drug Release. ACS Nano, 2013, 7, 7011-7020.	7.3	93
508	Structural Transitions in Nanoparticle Assemblies Governed by Competing Nanoscale Forces. Journal of the American Chemical Society, 2013, 135, 10262-10265.	6.6	100
509	Integrative self-assembly of functional hybrid nanoconstructs by inorganic wrapping of single biomolecules, biomolecule arrays and organic supramolecular assemblies. Nanoscale, 2013, 5, 7161.	2.8	8
510	Anisotropic Nanoparticles as Shape-Directing Catalysts for the Chemical Etching of Silicon. Journal of the American Chemical Society, 2013, 135, 12196-12199.	6.6	44
511	Reversible Aggregation of DNA-Decorated Gold Nanoparticles Controlled by Molecular Recognition. Langmuir, 2013, 29, 10824-10830.	1.6	36
512	Capability of DNA-fueled molecular machine in tuning association rate of DNA-functionalized gold nanoparticles. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1183-1189.	2.0	6
513	Plasmonic Chirogenesis from Gold Nanoparticles Superstructures. Journal of Physical Chemistry C, 2013, 117, 17757-17765.	1.5	28
514	lmmune recognition construct plasmonic dimer for SERSâ€based bioassay. Journal of Raman Spectroscopy, 2013, 44, 1253-1258.	1.2	5
515	Strand displacement in DNA-based materials systems. Soft Matter, 2013, 9, 11160.	1.2	22
516	Coherent Longitudinal Acoustic Phonons in Three-Dimensional Supracrystals of Cobalt Nanocrystals. Nano Letters, 2013, 13, 4914-4919.	4.5	34

# 517	ARTICLE A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nature Nanotechnology, 2013, 8, 865-872.	IF 15.6	CITATIONS 267
518	Precursors of order in aggregates of patchy particles. Physical Review E, 2013, 88, 012302.	0.8	30
519	Facile and Efficient Preparation of Anisotropic DNA-Functionalized Gold Nanoparticles and Their Regioselective Assembly. Journal of the American Chemical Society, 2013, 135, 17675-17678.	6.6	86
520	Liposomes with Double-Stranded DNA Anchoring the Bilayer to a Hydrogel Core. Biomacromolecules, 2013, 14, 3380-3385.	2.6	8
521	Designing DNA-grafted particles that self-assemble into desired crystalline structures using the genetic algorithm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18431-18435.	3.3	52
522	Counting the Number of Magnesium Ions Bound to the Surface-Immobilized Thymine Oligonucleotides That Comprise Spherical Nucleic Acids. Journal of the American Chemical Society, 2013, 135, 17339-17348.	6.6	17
523	Kinetics and non-exponential binding of DNA-coated colloids. Soft Matter, 2013, 9, 6412.	1.2	33
524	Organotextile Catalysis. Science, 2013, 341, 1225-1229.	6.0	121
525	Binding Assistance Triggering Attachments of Hairpin DNA onto Gold Nanoparticles. Analytical Chemistry, 2013, 85, 11973-11978.	3.2	5
526	A perspective on functionalizing colloidal quantum dots with DNA. Nano Research, 2013, 6, 853-870.		31
527	Counterion Distribution Surrounding Spherical Nucleic Acid–Au Nanoparticle Conjugates Probed by Small-Angle X-ray Scattering. ACS Nano, 2013, 7, 11301-11309.	7.3	25
528	Preparation of gold nanoparticle dimers via streptavidin-induced interlinking. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	2
529	Ordered gold nanoparticle arrays on glass and their characterization. Journal of Colloid and Interface Science, 2013, 410, 1-10.	5.0	22
530	A study of DNA design dependency of segmented DNA-induced gold nanoparticle aggregation towards versatile bioassay development. RSC Advances, 2013, 3, 21604.	1.7	16
531	Theory of plasmonic waves on a chain of metallic nanoparticles in a liquid crystalline host. Proceedings of SPIE, 2013, , .	0.8	1
532	Plasmonic Shaping in Gold Nanoparticle Three-Dimensional Assemblies. Journal of Physical Chemistry C, 2013, 117, 23126-23132.	1.5	33
533	Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nature Nanotechnology, 2013, 8, 763-771.	15.6	99
534	Effect of blockiness in grafted monomer sequences on assembly of copolymer grafted nanoparticles: a Monte Carlo simulation study. Soft Matter, 2013, 9, 155-169.	1.2	16

#	Article	IF	CITATIONS
535	DNA-responsive disassembly of AuNP aggregates: influence of nonbase-paired regions and colorimetric DNA detection by exonuclease III aided amplification. Journal of Materials Chemistry B, 2013, 1, 2851.	2.9	45
536	Phase behavior of rigid, amphiphilic star polymers. Soft Matter, 2013, 9, 7424.	1.2	11
537	Hairpin embedded DNA lattices grown on a mica substrate. RSC Advances, 2013, 3, 19876.	1.7	5
538	Connecting magnetic micro-particles with DNA G-quadruplexes. Soft Matter, 2013, 9, 216-223.	1.2	4
539	Functionalization of organic semiconductor crystals via the Diels–Alder reaction. Chemical Communications, 2013, 49, 4495.	2.2	15
540	Procedure to construct a multi-scale coarse-grained model of DNA-coated colloids from experimental data. Soft Matter, 2013, 9, 7342.	1.2	23
541	Fast, single-step, and surfactant-free oligonucleotide modification of gold nanoparticles using DNA with a positively charged tail. Chemical Communications, 2013, 49, 11400.	2.2	18
542	Expanding DNAzyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directed assembly of nanomaterials. Chemical Science, 2013, 4, 398-404.	3.7	16
543	Developments in understanding and controlling self assembly of DNA-functionalized colloids. Physical Chemistry Chemical Physics, 2013, 15, 3115.	1.3	83
544	Seeded solution growth of nanoparticles into ordered three-dimensional supracrystals. RSC Advances, 2013, 3, 10628.	1.7	2
545	Reversible bioresponsive aptamer-based nanocomposites: ATP binding and removal from DNA-grafted silica nanoparticles. Journal of Materials Chemistry B, 2013, 1, 5353.	2.9	10
546	En route to patchy superlattices. Nature Nanotechnology, 2013, 8, 5-6.	15.6	5
547	Earthworms lit with quantum dots. Nature Nanotechnology, 2013, 8, 6-7.	15.6	12
548	Self-Assembly of Triblock Janus Nanoparticle in Nanotube. Journal of Chemical Theory and Computation, 2013, 9, 179-187.	2.3	34
549	DNA Nanoarchitectonics: Assembled DNA at Interfaces. Langmuir, 2013, 29, 7344-7353.	1.6	60
550	Design and applications of gold nanoparticle conjugates by exploiting biomolecule–gold nanoparticle interactions. Nanoscale, 2013, 5, 2589.	2.8	71
551	Imparting the unique properties of DNA into complex material architectures and functions. Materials Today, 2013, 16, 290-296.	8.3	10
552	Bead assembly magnetorotation as a signal transduction method for protein detection. Biosensors and Bioelectronics, 2013, 48, 26-32.	5.3	14

#	Article		CITATIONS
553	An Exceptionally Simple Strategy for DNA-Functionalized Up-Conversion Nanoparticles as Biocompatible Agents for Nanoassembly, DNA Delivery, and Imaging. Journal of the American Chemical Society, 2013, 135, 2411-2414.		252
554	Surface Assembly and Plasmonic Properties in Strongly Coupled Segmented Gold Nanorods. Small, 2013, 9, 2979-2990.	5.2	31
555	Controlling the Pulsed-Laser-Induced Size Reduction of Au and Ag Nanoparticles via Changes in the External Pressure, Laser Intensity, and Excitation Wavelength. Langmuir, 2013, 29, 1295-1302.	1.6	44
556	Microparticles confined to a nematic liquid crystal shell. Soft Matter, 2013, 9, 6911.		41
557	DNAâ€Directed Gold Nanodimers with Tunable Sizes and Interparticle Distances and Their Surface Plasmonic Properties. Small, 2013, 9, 2308-2315.		58
558	Particle size effects on nanocolloidal interactions in nematic liquid crystals. Physical Review E, 2013, 87, .	0.8	29
559	Colloidal superparticles from nanoparticle assembly. Chemical Society Reviews, 2013, 42, 2804-2823.	18.7	230
560	Electrostatic assembly of binary nanoparticle superlattices using protein cages. Nature Nanotechnology, 2013, 8, 52-56.	15.6	332
561	Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chemical Society Reviews, 2013, 42, 3114.	18.7	216
562	2 Tuning and assembling metal nanostructures with DNA. Chemical Communications, 2013, 49, 2597.		49
563	Engineering and applications of DNA-grafted polymer materials. Chemical Science, 2013, 4, 1928.	3.7	72
564	Nanoparticles in Science and Technology. , 2013, , 299-345.		0
565	Controlled Assembly of Gold Nanoparticles through Antibody Recognition: Study and Utilizing the Effect of Particle Size on Interparticle Distance. Langmuir, 2013, 29, 4697-4702.	1.6	11
566	Nucleic Acidâ€Modified Nanostructures as Programmable Atom Equivalents: Forging a New "Table of Elements― Angewandte Chemie - International Edition, 2013, 52, 5688-5698.	7.2	148
567	Molecular simulation study of the assembly of DNA-functionalised nanoparticles: Effect of DNA strand sequence and composition. Molecular Simulation, 2013, 39, 741-753.	0.9	20
568	Multistep kinetic self-assembly of DNA-coated colloids. Nature Communications, 2013, 4, 2007.	5.8	111
569	Linear Mesostructures in DNA–Nanorod Self-Assembly. ACS Nano, 2013, 7, 5437-5445.	7.3	72
570_	A general approach to DNA-programmable atom equivalents. Nature Materials, 2013, 12, 741-746.	13.3	279

#	Article	IF	CITATIONS
572	Thermally Active Hybridization Drives the Crystallization of DNA-Functionalized Nanoparticles. Journal of the American Chemical Society, 2013, 135, 8535-8541.	6.6	70
573	Stepwise Evolution of DNAâ€Programmable Nanoparticle Superlattices. Angewandte Chemie - International Edition, 2013, 52, 6624-6628.	7.2	92
574	Biomolecular Assembly of Thermoresponsive Superlattices of the Tobacco Mosaic Virus with Large Tunable Interparticle Distances. Angewandte Chemie - International Edition, 2013, 52, 6638-6642.	7.2	44
575	Understanding Molecular Motor Walking along a Microtubule: A Themosensitive Asymmetric Brownian Motor Driven by Bubble Formation. Journal of the American Chemical Society, 2013, 135, 8616-8624.	6.6	18
576	DNAâ€Based Selfâ€Assembly for Functional Nanomaterials. Advanced Materials, 2013, 25, 3905-3914.	11.1	81
577	Orthogonal Labeling of M13 Minor Capsid Proteins with DNA to Self-Assemble End-to-End Multiphage Structures. ACS Synthetic Biology, 2013, 2, 490-496.	1.9	45
578	Perfect mixing of immiscible macromolecules at fluid interfaces. Nature Materials, 2013, 12, 735-740.	13.3	60
579	A Generic Approach for the Synthesis of Dimer Nanoclusters and Asymmetric Nanoassemblies. Journal of the American Chemical Society, 2013, 135, 2213-2221.	6.6	53
580	Rational design and synthesis of SERS labels. Analyst, The, 2013, 138, 2224.	1.7	188
582	Impact of nanocrystallinity segregation on the growth and morphology of nanocrystal superlattices. Nano Research, 2013, 6, 611-618.	5.8	11
583	Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 2013, 5, 7098.	2.8	610
584	Competing Interactions in Patterned and Self-Assembled Magnetic Nanostructures. Springer Tracts in Modern Physics, 2013, , 189-234.	0.1	14
585	Silver Nanoassemblies Constructed from Boranephosphonate DNA. Journal of the American Chemical Society, 2013, 135, 6234-6241.	6.6	34
586	Hierarchy in Au Nanocrystal Ordering in Supracrystals: A Potential Approach to Detect New Physical Properties. Langmuir, 2013, 29, 7456-7463.	1.6	31
587	DNA-Functionalized Quantum Dots: Fabrication, Structural, and Physicochemical Properties. Langmuir, 2013, 29, 7038-7046.	1.6	59
588	Free‣tanding 1D Assemblies of Plasmonic Nanoparticles. Advanced Materials, 2013, 25, 3968-3972.	11.1	42
589	Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS. Nanoscale, 2013, 5, 5368.	2.8	51
590	Biomolecules at Interfaces: Chiral, Naturally. Topics in Current Chemistry, 2013, 333, 109-156.	4.0	24

#	Article	IF	CITATIONS
591	Dynamically Interchangeable Nanoparticle Superlattices Through the Use of Nucleic Acid-Based Allosteric Effectors. Journal of the American Chemical Society, 2013, 135, 10342-10345.	6.6	51
592	Measuring in Situ Primary and Competitive DNA Hybridization Activity on Microspheres. Biomacromolecules, 2013, 14, 986-992.	2.6	6
593	Two-Color, Laser Excitation Improves Temporal Resolution for Detecting the Dynamic, Plasmonic Coupling between Metallic Nanoparticles. Analytical Chemistry, 2013, 85, 5095-5102.	3.2	3
594	A molecular logical switching beacon controlled by thiolated DNA signals. Chemical Communications, 2013, 49, 11308.	2.2	10
595	DNAâ€Directed Selfâ€Assembly of Coreâ€Satellite Plasmonic Nanostructures: A Highly Sensitive and Reproducible Nearâ€IR SERS Sensor. Advanced Functional Materials, 2013, 23, 1519-1526.	7.8	150
596	Structure and thermodynamics of ssDNA oligomers near hydrophobic and hydrophilic surfaces. Soft Matter, 2013, 9, 11521.	1.2	26
597	Growth Dynamics for DNA-Guided Nanoparticle Crystallization. ACS Nano, 2013, 7, 10948-10959.	7.3	24
598	A Robust and Facile Approach To Assembling Mobile and Highly-Open Unfrustrated Triangular Lattices from Ferromagnetic Nanorods. Nano Letters, 2013, 13, 36-42.	4.5	22
599	Responsive Multidomain Free-Standing Films of Gold Nanoparticles Assembled by DNA-Directed Layer-by-Layer Approach. Nano Letters, 2013, 13, 4449-4455.	4.5	50
601	Single-Step Rapid Assembly of DNA Origami Nanostructures for Addressable Nanoscale Bioreactors. Journal of the American Chemical Society, 2013, 135, 696-702.	6.6	242
602	Epitaxial Growth of DNA-Assembled Nanoparticle Superlattices on Patterned Substrates. Nano Letters, 2013, 13, 6084-6090.	4.5	35
603	Hierarchy in Au Nanocrystal Ordering in a Supracrystal: II. Control of Interparticle Distances. Langmuir, 2013, 29, 13576-13581.	1.6	43
604	Colorimetric Detection of Mercury Ions Based on Plasmonic Nanoparticles. Small, 2013, 9, 1467-1481.	5.2	255
605	Analysis of localized surface plasmon resonance in glass-supported gold nanoparticles with a hexagonal pattern. , 2013, , .		0
606	Plasmonic waves on a chain of metallic nanoparticles: effects of a liquid-crystalline host. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1127.	0.9	6
607	Controlled self-assembly of gold nanoparticles mediated by novel organic molecular cages. Optical Materials Express, 2013, 3, 205.	1.6	12
608	DNA-Promoted Auto-Assembly of Gold Nanoparticles: Effect of the DNA Sequence on the Stability of the Assemblies. Polymers, 2013, 5, 1041-1055.	2.0	5
609	Oligonucleoside assisted one pot synthesis and self-assembly of gold nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4, 045014.	0.7	0

#	Article	IF	CITATIONS
610	Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120026.	1.8	96
611	DNA-programmed mesoscopic architecture. Physical Review E, 2013, 87, 062310.	0.8	89
612	Kinetics of DNA-coated sticky particles. Physical Review E, 2013, 88, 022304.	0.8	22
613	Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping. Journal of Biophotonics, 2013, 6, 534-542.	1.1	26
614	A coarse-grained model for DNA-functionalized spherical colloids, revisited: Effective pair potential from parallel replica simulations. Journal of Chemical Physics, 2013, 138, 025101.	1.2	20
615	Topotactic Interconversion of Nanoparticle Superlattices. Science, 2013, 341, 1222-1225.	6.0	137
616	Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10078-10083.	3.3	202
617	Molecular Selfâ€Assembly of Multifunctional Nanoparticle Composites with Arbitrary Shapes and Functions: Challenges and Strategies. Particle and Particle Systems Characterization, 2013, 30, 117-132.	1.2	29
618	Colloids get active. Nature Materials, 2013, 12, 696-696.	13.3	4
620	Bypassing the Limitations of Classical Chemical Purification with DNAâ€Programmable Nanoparticle Recrystallization. Angewandte Chemie - International Edition, 2013, 52, 2886-2891.	7.2	53
623	Nanonetworks: The graph theory framework for modeling nanoscale systems. The Nanoscale Systems: Mathematical Modelingory and Applications, 2013, 2, 30-48.	0.3	7
624	Fabrication of Monodisperse "Core atellite―Nanostructures by DNAâ€Programming: a Novel Class of Superstructured Building Blocks for Hierarchical Nanoassembly. Chinese Journal of Chemical Physics, 2013, 26, 601-606.	0.6	5
626	DNA-programmed self-assembly of photonic nanoarchitectures. NPG Asia Materials, 2014, 6, e97-e97.	3.8	28
627	Insights into DNA-mediated interparticle interactions from a coarse-grained model. Journal of Chemical Physics, 2014, 141, 184901.	1.2	23
628	Simulation study of the effects of surface chemistry and temperature on the conformations of ssDNA oligomers near hydrophilic and hydrophobic surfaces. Journal of Chemical Physics, 2014, 140, .	1.2	8
629	A small-angle X-ray scattering study of nanoparticle assembly in an aligned nematic liquid crystal. Liquid Crystals, 2014, 41, 1791-1802.	0.9	4
630	Synthesis of Eight-Arm, Branched Oligonucleotide Hybrids and Studies on the Limits of DNA-Driven Assembly. Journal of Organic Chemistry, 2014, 79, 11558-11566.	1.7	19
631	Application of the paracrystal model to GISAXS analysis of the 3D self-assembled nanoparticle crystals. Physica Status Solidi (B): Basic Research, 2014, 251, 1169-1177.	0.7	2

#	Article	IF	CITATIONS
632	Planet–Satellite Nanostructures Made To Order by RAFT Star Polymers. Angewandte Chemie - International Edition, 2014, 53, 12639-12642.	7.2	48
633	Hydrodynamics selects the pathway for displacive transformations in DNA-linked colloidal crystallites. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4803-4808.	3.3	36
634	Molecular simulation study of assembly of DNA-grafted nanoparticles: effect of bidispersity in DNA strand length. Molecular Simulation, 2014, 40, 1085-1098.	0.9	9
635	Charge Transport Dilemma of Solution-Processed Nanomaterials. Chemistry of Materials, 2014, 26, 134-152.	3.2	106
636	Dynamic Assembly/Disassembly Processes of Photoresponsive DNA Origami Nanostructures Directly Visualized on a Lipid Membrane Surface. Journal of the American Chemical Society, 2014, 136, 1714-1717.	6.6	121
637	A biofabrication approach for controlled synthesis of silver nanoparticles with high catalytic and antibacterial activities. Biochemical Engineering Journal, 2014, 89, 10-20.	1.8	22
638	Electrochemically Assembled Gold Nanostructures Platform: Electrochemistry, Kinetic Analysis, and Biomedical Application. Journal of Physical Chemistry C, 2014, 118, 6261-6271.	1.5	12
639	Self-assembled plasmonic nanostructures. Chemical Society Reviews, 2014, 43, 3976.	18.7	276
640	Visualization and Quantification of Neurochemicals with Gold Nanoparticles: Opportunities and Challenges. Advanced Materials, 2014, 26, 6933-6943.	11,1	59
641	Bio-Inspired Nanotechnology. , 2014, , .		13
641 642	Bio-Inspired Nanotechnology. , 2014, , . DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226.	1.9	13 12
641 642 643	Bio-Inspired Nanotechnology. , 2014, , . DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226. Controlled Formation and Characterization of Dithiothreitol-Conjugated Gold Nanoparticle Clusters. Langmuir, 2014, 30, 3397-3405.	1.9	13 12 36
641 642 643 644	Bio-Inspired Nanotechnology. , 2014, , . DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226. Controlled Formation and Characterization of Dithiothreitol-Conjugated Gold Nanoparticle Clusters. Langmuir, 2014, 30, 3397-3405. Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chemistry of Materials, 2014, 26, 507-518.	1.9 1.6 3.2	13 12 36 421
 641 642 643 644 645 	Bio-Inspired Nanotechnology., 2014, , . DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226. Controlled Formation and Characterization of Dithiothreitol-Conjugated Gold Nanoparticle Clusters. Langmuir, 2014, 30, 3397-3405. Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chemistry of Materials, 2014, 26, 507-518. Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From "Nanoatomsâ€-to Ciant Molecules. Macromolecules, 2014, 47, 1221-1239.	1.9 1.6 3.2 2.2	13 12 36 421 308
 641 642 643 644 645 646 	Bio-Inspired Nanotechnology., 2014, , . DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226. Controlled Formation and Characterization of Dithiothreitol-Conjugated Gold Nanoparticle Clusters. Langmuir, 2014, 30, 3397-3405. Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chemistry of Materials, 2014, 26, 507-518. Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From "Nanoatomsâ€+to Ciant Molecules. Macromolecules, 2014, 47, 1221-1239. Self-replicating colloidal clusters. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1748-1753.	1.9 1.6 3.2 2.2 3.3	 13 12 36 421 308 56
 641 642 643 644 645 646 647 	Bio-Inspired Nanotechnology. , 2014, , . DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226. Controlled Formation and Characterization of Dithiothreitol-Conjugated Gold Nanoparticle Clusters. Langmuir, 2014, 30, 3397-3405. Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chemistry of Materials, 2014, 26, 507-518. Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From â&ceNanoatomsâ&to Giant Molecules. Macromolecules, 2014, 47, 1221-1239. Self-replicating colloidal clusters. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1748-1753. Lighting up tumours. Nature Materials, 2014, 13, 122-124.	1.9 1.6 3.2 2.2 3.3 13.3	13 12 36 421 308 56
 641 642 643 644 645 646 647 648 	Bio-Inspired Nanotechnology., 2014, , . DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226. Controlled Formation and Characterization of Dithiothreitol-Conjugated Gold Nanoparticle Clusters. Langmuir, 2014, 30, 3397-3405. Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chemistry of Materials, 2014, 26, 507-518. Molecular Nanoparticles Are Unique Elements for Macromolecular Science: From "Nanoatomsâ€-to Clant Molecules. Macromolecules, 2014, 47, 1221-1239. Self-replicating colloidal clusters. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1748-1753. Lighting up tumours. Nature Materials, 2014, 13, 122-124. DNA-bonded 'atoms'. Nature Materials, 2014, 13, 121-122.	1.9 1.6 3.2 2.2 3.3 13.3	13 12 36 421 308 56 34 7

		CITATION R	EPORT	
#	Article		IF	CITATIONS
650	DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature, 2014, 505, 73-7	7.	13.7	382
651	Computer simulation studies on the interactions between nanoparticles and cell membra China Chemistry, 2014, 57, 1662-1671.	ne. Science	4.2	19
652	Multiple Energy Exciton Shelves in Quantum-Dot–DNA Nanobioelectronics. Journal of P Chemistry Letters, 2014, 5, 3909-3913.	hysical	2.1	15
653	Accurate phase diagram of tetravalent DNA nanostars. Journal of Chemical Physics, 2014,	, 140, .	1.2	50
654	Transparent Aggregates of Nanocrystalline Hydroxyapatite. Crystal Growth and Design, 2 6343-6349.	014, 14,	1.4	19
655	Cation-Size-Dependent DNA Adsorption Kinetics and Packing Density on Gold Nanopartic Opposite Trend. Langmuir, 2014, 30, 13228-13234.	les: An	1.6	28
656	Size limits of self-assembled colloidal structures made using specific interactions. Proceed National Academy of Sciences of the United States of America, 2014, 111, 15918-15923	lings of the	3.3	79
657	Core solution: a strategy towards gold core/non-gold shell nanoparticles bearing strict DNA-valences for programmable nanoassembly. Chemical Science, 2014, 5, 1015-1020.		3.7	18
658	Designing stimulus-sensitive colloidal walkers. Soft Matter, 2014, 10, 3463-3470.		1.2	13
659	Supramolecular nanoparticle carriers self-assembled from cyclodextrin- and adamantane-functionalized polyacrylates for tumor-targeted drug delivery. Journal of Mat Chemistry B, 2014, 2, 1879.	erials	2.9	73
660	Poisson property of the occurrence of flip-flops in a model membrane. Journal of Chemica 2014, 140, 064901.	l Physics,	1.2	15
661	Magnetic nanoparticle clusters as actuators of ssDNA release. Physical Chemistry Chemic 2014, 16, 10023.	al Physics,	1.3	33
662	Mechanical Properties of Au Supracrystals Tuned by Flexible Ligand Interactions. Journal c Chemistry C, 2014, 118, 5005-5012.	of Physical	1.5	52
663	Self-Assembly and Crystallization of Hairy (<i>f</i> -Star) and DNA-Grafted Nanocubes. Jou American Chemical Society, 2014, 136, 653-659.	ırnal of the	6.6	37
664	Surface ligands in synthesis, modification, assembly and biomedical applications of nanop Nano Today, 2014, 9, 457-477.	particles.	6.2	169
665	Importance of the DNA "bond―in programmable nanoparticle crystallization. Procee National Academy of Sciences of the United States of America, 2014, 111, 14995-15000	dings of the	3.3	55
666	Nanomaterial Building Blocks Based on Spider Silk–Oligonucleotide Conjugates. ACS N 1342-1349.	ano, 2014, 8,	7.3	63
667	Laser-Induced Fabrication of Hollow Platinum Nanospheres for Enhanced Catalytic Perform Journal of Physical Chemistry C, 2014, 118, 22792-22798.	mances.	1.5	9

#	Article		CITATIONS
668	Single-molecule electronics: from chemical design to functional devices. Chemical Society Reviews, 2014, 43, 7378-7411.	18.7	433
669	Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools. RSC Advances, 2014, 4, 916-942.	1.7	25
670	Coarse-grained modeling of DNA oligomer hybridization: Length, sequence, and salt effects. Journal of Chemical Physics, 2014, 141, 035102.	1.2	58
671	Using DNA to Design Plasmonic Metamaterials with Tunable Optical Properties. Advanced Materials, 2014, 26, 653-659.		157
672	Reconstitutable Nanoparticle Superlattices. Nano Letters, 2014, 14, 2162-2167.	4.5	38
673	Poly(oligonucleotide). Journal of the American Chemical Society, 2014, 136, 11216-11219.	6.6	40
674	Hydrophobic Organic Linkers in the Self-Assembly of Small Molecule-DNA Hybrid Dimers: A Computational–Experimental Study of the Role of Linkage Direction in Product Distributions and Stabilities. Journal of Physical Chemistry B, 2014, 118, 2366-2376.	1.2	10
675	Gold nanostructures for bioimaging, drug delivery and therapeutics. , 2014, , 163-176.		8
676	Plasmonic response of DNA-assembled gold nanorods: Effect of DNA linker length, temperature and linker/nanoparticles ratio. Journal of Colloid and Interface Science, 2014, 433, 34-42.	5.0	13
677	Synergetic Approach for Simple and Rapid Conjugation of Gold Nanoparticles with Oligonucleotides. ACS Applied Materials & Interfaces, 2014, 6, 16800-16807.	4.0	47
678	Modular-DNA Programmed Molecular Construction of "Fixed―of 2D and 3D-Au Nanoparticle Arrays. Chemistry of Materials, 2014, 26, 5499-5505.	3.2	4
679	Mobile Linkers on DNA-Coated Colloids: Valency without Patches. Physical Review Letters, 2014, 113, 128303.	2.9	75
680	Giant Plasmene Nanosheets, Nanoribbons, and Origami. ACS Nano, 2014, 8, 11086-11093.	7.3	134
681	Synthesis and Internal Structure of Finite-Size DNA–Gold Nanoparticle Assemblies. Journal of Physical Chemistry C, 2014, 118, 7174-7184.	1.5	14
682	Applications of Synchrotronâ€Based Spectroscopic Techniques in Studying Nucleic Acids and Nucleic Acidâ€Functionalized Nanomaterials. Advanced Materials, 2014, 26, 7849-7872.	11.1	19
683	DNA Assisted Self-Assembly of PAMAM Dendrimers. Journal of Physical Chemistry B, 2014, 118, 11805-11815.	1.2	14
684	Dynamic Behavior of DNA Cages Anchored on Spherically Supported Lipid Bilayers. Journal of the American Chemical Society, 2014, 136, 12987-12997.	6.6	72
685	Optical interactions in plasmonic nanostructures. Nano Convergence, 2014, 1, .	6.3	21
#	Article	IF	CITATIONS
-----	---	------	-----------
686	Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing. ACS Nano, 2014, 8, 7639-7647.	7.3	60
687	From Cascaded Catalytic Nucleic Acids to Enzyme–DNA Nanostructures: Controlling Reactivity, Sensing, Logic Operations, and Assembly of Complex Structures. Chemical Reviews, 2014, 114, 2881-2941.	23.0	573
688	Binary hairy nanoparticles: Recent progress in theory and simulations. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1583-1599.	2.4	17
689	DNA Nanoarchitectures: Steps towards Biological Applications. ChemBioChem, 2014, 15, 1374-1390.	1.3	35
690	Graphene Nanopore with a Self-Integrated Optical Antenna. Nano Letters, 2014, 14, 5584-5589.	4.5	79
691	Selection of Arginine-Rich Anti-Gold Antibodies Engineered for Plasmonic Colloid Self-Assembly. Journal of Physical Chemistry C, 2014, 118, 14502-14510.	1.5	9
692	Solvent-Mediated Self-Assembly of Nanocube Superlattices. Journal of the American Chemical Society, 2014, 136, 1352-1359.	6.6	120
693	Tandem Phosphorothioate Modifications for DNA Adsorption Strength and Polarity Control on Gold Nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 14795-14800.	4.0	60
694	Precise organization of metal nanoparticles on DNA origami template. Methods, 2014, 67, 205-214.	1.9	39
695	Application of nucleic acid–lipid conjugates for the programmable organisation of liposomal modules. Advances in Colloid and Interface Science, 2014, 207, 290-305.	7.0	57
696	Forming two-dimensional structure of DNA-functionalized Au nanoparticles via lipid diffusion in supported lipid bilayers. Journal of Crystal Growth, 2014, 401, 494-498.	0.7	11
697	Two-Dimensional DNA-Programmable Assembly of Nanoparticles at Liquid Interfaces. Journal of the American Chemical Society, 2014, 136, 8323-8332.	6.6	73
699	Controlled Hierarchical Assembly of Spider Silk-DNA Chimeras into Ribbons and Raft-Like Morphologies. Nano Letters, 2014, 14, 3999-4004.	4.5	29
700	Facile one-step solid-phase synthesis of multitopic organic–DNA hybrids via "click―chemistry. Chemical Science, 2014, 5, 1091-1096.	3.7	50
701	Using nanoscale and mesoscale anisotropy to engineer the optical response of three-dimensional plasmonic metamaterials. Nature Communications, 2014, 5, 4090.	5.8	90
702	Oligonucleotide Flexibility Dictates Crystal Quality in DNAâ€Programmable Nanoparticle Superlattices. Advanced Materials, 2014, 26, 7235-7240.	11.1	40
705	Crystallization of DNAâ€Capped Gold Nanoparticles in Highâ€Concentration, Divalent Salt Environments. Angewandte Chemie - International Edition, 2014, 53, 1316-1319.	7.2	46
706	Nanomaterials under stress: A new opportunity for nanomaterials synthesis and engineering. MRS Bulletin, 2015, 40, 961-970.	1.7	9

#	Article	IF	CITATIONS
707	Alternative DNA Structures, Switches and Nanomachines. , 2015, , 329-490.		0
711	DNA nanotechnology organizing other materials. , 0, , 231-247.		Ο
712	Surface energy fluctuation effects in single crystals of DNA-functionalized nanoparticles. Journal of Chemical Physics, 2015, 143, 243156.	1.2	5
713	Screening of Oligopeptides that Recognize Inorganic Crystalline Facets of Metal Nanoparticles. Israel Journal of Chemistry, 2015, 55, 749-755.	1.0	3
714	Mechanically Robust and Selfâ€Healable Superlattice Nanocomposites by Selfâ€Assembly of Singleâ€Component "Sticky―Polymerâ€Grafted Nanoparticles. Advanced Materials, 2015, 27, 3934-3941.	11.1	111
715	Multichannelâ€Improved Chargeâ€Carrier Dynamics in Wellâ€Designed Heteroâ€nanostructural Plasmonic Photocatalysts toward Highly Efficient Solarâ€toâ€Fuels Conversion. Advanced Materials, 2015, 27, 5906-5914.	11.1	239
717	Coordination Assembly of Discoid Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 8966-8970.	7.2	25
718	A Universal Fast Colorimetric Method for DNA Signal Detection with DNA Strand Displacement and Gold Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	11
721	Self-assembly of "patchy―nanoparticles: a versatile approach to functional hierarchical materials. Chemical Science, 2015, 6, 3663-3673.	3.7	124
722	Spatial regulation of synthetic and biological nanoparticles by DNA nanotechnology. NPG Asia Materials, 2015, 7, e161-e161.	3.8	21
723	Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nature Materials, 2015, 14, 833-839.	13.3	154
724	Effect of Hydrophobic and Hydrophilic Surfaces on the Stability of Double-Stranded DNA. Biomacromolecules, 2015, 16, 1862-1869.	2.6	28
725	Recent advances in the preparation of nanocrystal solids. Pramana - Journal of Physics, 2015, 84, 1065-1071.	0.9	0
726	X-ray scattering characterisation of nanoparticles. Crystallography Reviews, 2015, 21, 229-303.	0.4	126
727	Polymer-Tethered Nanoparticle Materials—An Emerging Platform for Multifunctional Hybrid Materials. , 2015, , 65-94.		2
728	Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nature Materials, 2015, 14, 840-847.	13.3	126
729	Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nature Nanotechnology, 2015, 10, 637-644.	15.6	243
731	What Controls the "Off/On Switch―in the Toehold-Mediated Strand Displacement Reaction on DNA Conjugated Gold Nanoparticles?. Langmuir, 2015, 31, 7055-7061.	1.6	19

#	Article	IF	CITATIONS
732	The DNA strand assisted conductive filament mechanism for improved resistive switching memory. Journal of Materials Chemistry C, 2015, 3, 12149-12155.	2.7	82
733	High-Density PEO- <i>b</i> -DNA Brushes on Polymer Particles for Colloidal Superstructures. Chemistry of Materials, 2015, 27, 8337-8344.	3.2	56
734	A molecular view of DNA-conjugated nanoparticle association energies. Soft Matter, 2015, 11, 1919-1929.	1.2	11
735	Programming macro-materials from DNA-directed self-assembly. Soft Matter, 2015, 11, 1862-1870.	1.2	24
736	Sequenceâ€Dependent dsDNAâ€Templated Formation of Fluorescent Copper Nanoparticles. Chemistry - A European Journal, 2015, 21, 2417-2422.	1.7	105
737	Programmable materials and the nature of the DNA bond. Science, 2015, 347, 1260901.	6.0	1,141
738	The Statistical Mechanics of Dynamic Pathways to Self-Assembly. Annual Review of Physical Chemistry, 2015, 66, 143-163.	4.8	166
739	Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA. Journal of the American Chemical Society, 2015, 137, 1658-1662.	6.6	78
740	Programming colloidal phase transitions with DNA strand displacement. Science, 2015, 347, 639-642.	6.0	179
741	Multifarious assembly mixtures: Systems allowing retrieval of diverse stored structures. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 54-59.	3.3	52
742	Supermagnetism. Handbook of Magnetic Materials, 2015, , 1-83.	0.6	42
743	Overcoming the Coupling Dilemma in DNAâ€Programmable Nanoparticle Assemblies by "Ag ⁺ Solderingâ€: Small, 2015, 11, 2247-2251.	5.2	36
744	Flexible One-Dimensional Nanostructures: A Review. Journal of Materials Science and Technology, 2015, 31, 607-615.	5.6	27
745	Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami. Nanoscale, 2015, 7, 2883-2888.	2.8	19
746	Dynamic Tuning of DNA-Nanoparticle Superlattices by Molecular Intercalation of Double Helix. Journal of the American Chemical Society, 2015, 137, 4030-4033.	6.6	48
747	Probing Soft Corona Structures of DNA-Capped Nanoparticles by Small Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 18773-18778.	1.5	10
748	Defect tolerance and the effect of structural inhomogeneity in plasmonic DNA-nanoparticle superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10292-10297.	3.3	35
749	Binary nanoparticle superlattices of soft-particle systems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9563-9567.	3.3	55

#	Article	IF	CITATIONS
750	Capturing Conformation-Dependent Molecule–Surface Interactions When Surface Chemistry Is Heterogeneous. ACS Nano, 2015, 9, 7237-7247.	7.3	9
751	Chain-Stiffness-Induced Entropy Effects Mediate Interfacial Assembly of Janus Nanoparticles in Block Copolymers: From Interfacial Nanostructures to Optical Responses. Macromolecules, 2015, 48, 5385-5393.	2.2	26
752	Entropy-Driven Crystallization Behavior in DNA-Mediated Nanoparticle Assembly. Nano Letters, 2015, 15, 5545-5551.	4.5	39
753	Nanoplasmonics, Nano-Optics, Nanocomposites, and Surface Studies. Springer Proceedings in Physics, 2015, , .	0.1	6
754	Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polymer Chemistry, 2015, 6, 5143-5184.	1.9	124
755	A minimal description of morphological hierarchy in two-dimensional aggregates. Soft Matter, 2015, 11, 6740-6746.	1.2	9
756	Reversible Ligation of Programmed DNA-Gold Nanoparticle Assemblies. Journal of the American Chemical Society, 2015, 137, 9242-9245.	6.6	34
757	Quantitative Super-Resolution Microscopy of Nanopipette-Deposited Fluorescent Patterns. ACS Nano, 2015, 9, 8122-8130.	7.3	19
758	Crystallization of DNA-coated colloids. Nature Communications, 2015, 6, 7253.	5.8	217
759	Synthetic Strategies Toward DNA-Coated Colloids that Crystallize. Journal of the American Chemical Society, 2015, 137, 10760-10766.	6.6	91
760	Nested-Batch-Mode Learning and Stochastic Optimization with An Application to Sequential MultiStage Testing in Materials Science. SIAM Journal of Scientific Computing, 2015, 37, B361-B381.	1.3	21
761	Nanostructure formation via post growth of particles. CrystEngComm, 2015, 17, 6796-6808.	1.3	12
762	DNA-based plasmonic nanostructures. Materials Today, 2015, 18, 326-335.	8.3	68
763	A platinum shell for ultraslow ligand exchange: unmodified DNA adsorbing more stably on platinum than thiol and dithiol on gold. Chemical Communications, 2015, 51, 12084-12087.	2.2	21
764	Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films. Applied Physics Letters, 2015, 106, 083109.	1.5	6
765	Self-replication of DNA rings. Nature Nanotechnology, 2015, 10, 528-533.	15.6	46
766	Conformal, Macroscopic Crystalline Nanoparticle Sheets Assembled with DNA. Advanced Materials, 2015, 27, 3159-3163.	11.1	15
767	Light-Harvesting Nanoparticle Core–Shell Clusters with Controllable Optical Output. ACS Nano, 2015, 9, 5657-5665.	7.3	50

ARTICLE IF CITATIONS # Directed Assembly of Nucleic Acid-Based Polymeric Nanoparticles from Molecular Tetravalent Cores. 768 6.6 31 Journal of the Américan Chemical Society, 2015, 137, 8184-8191. Ratiometric detection of oligonucleotide stoichiometry on multifunctional gold nanoparticles by 1.7 whispering gallery mode biosensing. Analyst, The, 2015, 140, 2969-2972. Designing soft nanomaterials via the self assembly of functionalized icosahedral viral capsid 770 1.2 5 nanoparticles. Journal of Materials Research, 2015, 30, 141-150. Gold Nanorod–pNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS 771 Properties. ACS Applied Materials & amp; Interfaces, 2015, 7, 12530-12538. Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold 772 3.8 107 nanoparticle conjugates with nearly quantitative yield. NPG Asia Materials, 2015, 7, e159-e159. Self-Assembly of Molecule-like Nanoparticle Clusters Directed by DNA Nanocages. Journal of the American Chemical Society, 2015, 137, 4320-4323. 6.6 DNA-mediated engineering of multicomponent enzyme crystals. Proceedings of the National Academy 774 3.3 122 of Sciences of the United States of America, 2015, 112, 4564-4569. Deposition of Waferâ€Scale Singleâ€Component and Binary Nanocrystal Superlattice Thin Films Via 11.1 Dipâ€Coating. Advanced Materials, 2015, 27, 2846-2851. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nature 776 15.6 169 Nanotechnology, 2015, 10, 453-458. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nature 5.8 176 Communications, 2015, 6, 8052. Design Strategies for the Fabrication of Tailored Nanocomposites via RAFT Polymerization. ACS 778 0.5 5 Symposium Series, 2015, , 293-307. Small-angle scattering of particle assemblies. Journal of Applied Crystallography, 2015, 48, 1172-1182. 779 Dynamic Diglyme-Mediated Self-Assembly of Gold Nanoclusters. ACS Nano, 2015, 9, 11690-11698. 780 7.3 33 Mechanistic Insight into DNA-Guided Control of Nanoparticle Morphologies. Journal of the American Chemical Society, 2015, 137, 14456-14464. 6.6 84 Free-Standing Bilayered Nanoparticle Superlattice Nanosheets with Asymmetric Ionic Transport 782 7.3 45 Behaviors. ACS Nano, 2015, 9, 11218-11224. Volume and porosity thermal regulation in lipid mesophases by coupling mobile ligands to soft 5.8 88 membranes. Nature Communications, 2015, 6, 5948. Enhancing DNA-Mediated Assemblies of Supramolecular Cage Dimers through Tuning Core Flexibility and DNA Lengthâ€"A Combined Experimentalâ€"Modeling Študy. Journal of the American Chemical Society, 784 6.6 16 2015, 137, 13381-13388. Modular and Chemically Responsive Oligonucleotide "Bonds―in Nanoparticle Superlattices. Journal 6.6 of the American Chemical Society, 2015, 137, 13566-13571.

	CITATION F	CITATION REPORT	
#	Article	IF	Citations
786	Crystallization and arrest mechanisms of model colloids. Soft Matter, 2015, 11, 9307-9320.	1.2	22
787	Mighty linkers. Nature Materials, 2015, 14, 745-745.	13.3	1
788	Comparing Highly Ordered Monolayers of Nanoparticles Fabricated Using Electrophoretic Deposition: Cobalt Ferrite Nanoparticles versus Iron Oxide Nanoparticles. Journal of the Electrochemical Society, 2015, 162, D3036-D3039.	1.3	6
789	Artificial Molecular Machines. Chemical Reviews, 2015, 115, 10081-10206.	23.0	1,586
790	Design Principles for Nanoparticles Enveloped by a Polymer-Tethered Lipid Membrane. ACS Nano, 2015, 9, 9942-9954.	7.3	22
791	DNA nanotechnology: understanding and optimisation through simulation. Molecular Physics, 2015, 113, 1-15.	0.8	34
792	Programmable self-assembly. Nature Materials, 2015, 14, 2-9.	13.3	233
793	Order through entropy. Nature Materials, 2015, 14, 9-12.	13.3	205
794	DNA Adsorption by Indium Tin Oxide Nanoparticles. Langmuir, 2015, 31, 371-377.	1.6	45
795	Stimuli-Responsive Colloidal Assembly Driven by Surface-Grafted Supramolecular Moieties. Langmuir, 2015, 31, 57-64.	1.6	24
796	Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bilayers. Journal of Physical Chemistry C, 2015, 119, 534-546.	1.5	77
797	Self-assembly of mesogenic bent-core DNA nanoduplexes. Soft Matter, 2015, 11, 2934-2944.	1.2	10
798	Tunable longitudinal modes in extended silver nanoparticle assemblies. Beilstein Journal of Nanotechnology, 2016, 7, 1219-1228.	1.5	6
799	3D DNA Crystals and Nanotechnology. Crystals, 2016, 6, 97.	1.0	20
800	Molecular dynamics simulation of DNAâ€directed assembly of nanoparticle superlattices using patterned templates. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1687-1692.	2.4	3
801	DNAâ€Nanoparticle Tinkertoys. ChemBioChem, 2016, 17, 1090-1092.	1.3	7
802	Selfâ€Assembly of DNA Functionalized Gold Nanoparticles at the Liquidâ€Vapor Interface. Advanced Materials Interfaces, 2016, 3, 1600180.	1.9	17
803	Self-assembly behaviours of primitive and modern lipid membrane solutions: a coarse-grained molecular simulation study. Physical Chemistry Chemical Physics, 2016, 18, 19426-19432.	1.3	28

#	Article	IF	CITATIONS
804	Sequential programmable self-assembly: Role of cooperative interactions. Journal of Chemical Physics, 2016, 144, 094903.	1.2	14
805	Fabrication of gold-deposited plasmonic crystal based on nanoimprint lithography for label-free biosensing application. Japanese Journal of Applied Physics, 2016, 55, 08RE02.	0.8	21
806	Self-Organization beyond the Molecule: Control of Nanoparticle Assemblies by Their Surface Properties and Their Functional Applications. Kobunshi Ronbunshu, 2016, 73, 147-156.	0.2	1
807	Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation. ACS Central Science, 2016, 2, 614-620.	5.3	13
808	Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures. AIP Advances, 2016, 6, .	0.6	9
809	Faraday rotation, band splitting, and one-way propagation of plasmon waves on a nanoparticle chain. Journal of Applied Physics, 2016, 119, 113103.	1.1	2
810	Colloidal Cluster Assembly into Ordered Superstructures <i>via</i> Engineered Directional Binding. ACS Nano, 2016, 10, 11280-11289.	7.3	39
811	Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science, 2016, 354, 1580-1584.	6.0	490
812	Suppressing Electron Exposure Artifacts: An Electron Scanning Paradigm with Bayesian Machine Learning. Microscopy and Microanalysis, 2016, 22, 778-788.	0.2	17
813	Prediction of binary nanoparticle superlattices from soft potentials. Journal of Chemical Physics, 2016, 144, 014502.	1.2	36
814	Submillimetre Network Formation by Light-induced Hybridization of Zeptomole-level DNA. Scientific Reports, 2016, 6, 37768.	1.6	29
815	Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials. Physical Chemistry Chemical Physics, 2016, 18, 30845-30856.	1.3	10
816	Three steps to gold: mechanism of protein adsorption revealed by Brownian and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2016, 18, 10191-10200.	1.3	31
817	Hierarchical Superstructures Assembled by Binary Hairy Nanoparticles. ACS Macro Letters, 2016, 5, 718-723.	2.3	16
818	Tuning the Growth Mode of 3D Silver Nanocrystal Superlattices by Triphenylphosphine. Chemistry of Materials, 2016, 28, 4380-4389.	3.2	21
819	Modeling and simulation of protein–surface interactions: achievements and challenges. Quarterly Reviews of Biophysics, 2016, 49, e4.	2.4	163
820	DNA-programmable particle superlattices: Assembly, phases, and dynamic control. MRS Bulletin, 2016, 41, 381-387.	1.7	19
821	Size-Selective Nanoparticle Assembly on Substrates by DNA Density Patterning. ACS Nano, 2016, 10, 5679-5686.	7.3	40

# 822	ARTICLE Small Angle X-ray Scattering for Nanoparticle Research. Chemical Reviews, 2016, 116, 11128-11180.	IF 23.0	Citations 667
823	Electric-Field-Assisted Assembly of Polymer-Tethered Gold Nanorods in Cylindrical Nanopores. ACS Nano, 2016, 10, 4954-4960.	7.3	61
824	PolyA-Mediated DNA Assembly on Gold Nanoparticles for Thermodynamically Favorable and Rapid Hybridization Analysis. Analytical Chemistry, 2016, 88, 4949-4954.	3.2	107
825	Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8, 9037-9095.	2.8	181
826	The Significance of Multivalent Bonding Motifs and "Bond Order―in DNA-Directed Nanoparticle Crystallization. Journal of the American Chemical Society, 2016, 138, 6119-6122.	6.6	22
827	Functionalization of metal nanoclusters for biomedical applications. Analyst, The, 2016, 141, 3126-3140.	1.7	279
828	Multi-component superstructures self-assembled from nanocrystal building blocks. Nanoscale, 2016, 8, 9944-9961.	2.8	49
829	Membrane tube pearling induced by a coupling of osmotic pressure and nanoparticle adhesion. Molecular Physics, 2016, 114, 2432-2445.	0.8	2
830	Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews, 2016, 45, 4199-4225.	18.7	146
831	General Strategy for the Design of DNA Coding Sequences Applied to Nanoparticle Assembly. Langmuir, 2016, 32, 9676-9686.	1.6	12
832	Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10485-10490.	3.3	61
833	DNA self-assembly on graphene surface studied by SERS mapping. Carbon, 2016, 109, 363-372.	5.4	24
834	Binding energy and biophysical properties of ionic liquid-DNA complex: Understanding the role of hydrophobic interactions. Journal of Molecular Liquids, 2016, 223, 1197-1203.	2.3	39
835	Effect of Nonionic Surfactant on Association/Dissociation Transition of DNA-Functionalized Colloids. Langmuir, 2016, 32, 10017-10025.	1.6	7
836	Rapid, Surfactant-Free, and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA under Physiological pH and Its Application in Molecular Beacon-Based Biosensor. ACS Applied Materials & Interfaces, 2016, 8, 27298-27304.	4.0	32
837	Kinetically guided colloidal structure formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8577-8582.	3.3	17
838	Characterizing DNA Corona Rigidity in DNA-Directed Gold Nanoparticle Crystalline Structures. Journal of Physical Chemistry C, 2016, 120, 18307-18315.	1.5	1
840	Direct self-assembly of CTAB-capped Au nanotriangles. Nano Research, 2016, 9, 3247-3256.	5.8	22

TION

#	Article	IF	Citations
841	Nanoparticle Assemblies into Luminescent Dendrites in Shrinking Microdroplets. Langmuir, 2016, 32, 12468-12475.	1.6	3
842	Melting transition in lipid vesicles functionalised by mobile DNA linkers. Soft Matter, 2016, 12, 7804-7817.	1.2	30
843	DNAâ€Mediated Morphological Control of Silver Nanoparticles. Small, 2016, 12, 5449-5487.	5.2	33
844	Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews, 2016, 116, 11220-11289.	23.0	1,485
845	Generic phase diagram of binary superlattices. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10269-10274.	3.3	26
846	Understanding of the major reactions in solution synthesis of functional nanomaterials. Science China Materials, 2016, 59, 938-996.	3.5	86
847	Minimal Positive Design for Self-Assembly of the Archimedean Tilings. Physical Review Letters, 2016, 117, 228003.	2.9	21
848	Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices. Journal of the American Chemical Society, 2016, 138, 12731-12734.	6.6	106
849	Construction and Structure Determination of a Three-Dimensional DNA Crystal. Journal of the American Chemical Society, 2016, 138, 10047-10054.	6.6	63
850	Multigaps Embedded Nanoassemblies Enhance In Situ Raman Spectroscopy for Intracellular Telomerase Activity Sensing. Advanced Functional Materials, 2016, 26, 1602-1608.	7.8	115
851	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals. Journal of the American Chemical Society, 2016, 138, 8722-8725.	6.6	55
852	Enzymatically Controlled Vacancies in Nanoparticle Crystals. Nano Letters, 2016, 16, 5114-5119.	4.5	3
853	Dynamic Properties of DNA-Programmable Nanoparticle Crystallization. ACS Nano, 2016, 10, 7485-7492.	7.3	26
854	Gold nanocrystals with DNA-directed morphologies. Nature Communications, 2016, 7, 12873.	5.8	52
855	Two-dimensional binary mixtures of patchy particles and spherical colloids. Soft Matter, 2016, 12, 9538-9548.	1.2	10
856	UV–Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles. Analytical Chemistry, 2016, 88, 12072-12080.	3.2	38
857	Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nature Reviews Materials, 2016, 1, .	23.3	281
858	Liquid Crystal Phase Transition in Epitaxial Monolayers of DNA-Functionalized Nanoparticle Superlattices. ACS Nano, 2016, 10, 9948-9956.	7.3	4

#	Article	IF	CITATIONS
859	In situ microscopy of the self-assembly of branched nanocrystals in solution. Nature Communications, 2016, 7, 11213.	5.8	91
860	Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. Advanced Materials, 2016, 28, 2099-2147.	11.1	323
861	Plasmonic Metallurgy Enabled by DNA. Advanced Materials, 2016, 28, 2790-2794.	11.1	30
862	Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Doubleâ€Crossover Tiles. ChemBioChem, 2016, 17, 1122-1126.	1.3	24
863	Collective Surface Plasmon Resonances in Two-Dimensional Assemblies of Au and Ag Nanocrystals: Experiments and Discrete Dipole Approximation Simulation. Journal of Physical Chemistry C, 2016, 120, 13732-13738.	1.5	9
864	On Electronic and Charge Interference in Second Harmonic Generation Responses from Gold Metal Nanoparticles at Supported Lipid Bilayers. Journal of Physical Chemistry C, 2016, 120, 20659-20667.	1.5	29
865	Electrolyte-Mediated Assembly of Charged Nanoparticles. ACS Central Science, 2016, 2, 219-224.	5.3	31
866	Self-organized architectures from assorted DNA-framed nanoparticles. Nature Chemistry, 2016, 8, 867-873.	6.6	210
867	Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies. Journal of the American Chemical Society, 2016, 138, 8422-8431.	6.6	32
868	Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices. Small, 2016, 12, 499-505.	5.2	28
869	Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon, 2016, 100, 165-177.	5.4	24
870	A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-like Nanoperiodic Tables. Chemical Reviews, 2016, 116, 2705-2774.	23.0	195
871	Sequence-Dependent Structure/Function Relationships of Catalytic Peptide-Enabled Gold Nanoparticles Generated under Ambient Synthetic Conditions. Journal of the American Chemical Society, 2016, 138, 540-548.	6.6	84
872	Additive and enhanced fluorescence effects of hairpin DNA template-based copper nanoparticles and their application for the detection of NAD+. Talanta, 2016, 154, 574-580.	2.9	28
873	Sitting Phases of Polymerizable Amphiphiles for Controlled Functionalization of Layered Materials. Journal of the American Chemical Society, 2016, 138, 4448-4457.	6.6	41
874	Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Applied Catalysis B: Environmental, 2016, 188, 245-252.	10.8	158
875	Self-Assembly of Structures with Addressable Complexity. Journal of the American Chemical Society, 2016, 138, 2457-2467.	6.6	73
876	Nanomanufacturing: A Perspective. ACS Nano, 2016, 10, 2995-3014.	7.3	176

		CITATION REPORT		
#	Article		IF	CITATIONS
877	Lattice engineering through nanoparticle–DNA frameworks. Nature Materials, 2016,	15, 654-661.	13.3	198
878	Theory and simulation of DNA-coated colloids: a guide for rational design. Physical Cher Chemical Physics, 2016, 18, 6373-6393.	mistry	1.3	55
879	Programmable DNA scaffolds for spatially-ordered protein assembly. Nanoscale, 2016,	8, 4436-4446.	2.8	55
880	Diamond family of nanoparticle superlattices. Science, 2016, 351, 582-586.		6.0	331
881	Transmutable nanoparticles with reconfigurable surface ligands. Science, 2016, 351, 52	79-582.	6.0	150
882	Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostruc of Physical Chemistry C, 2016, 120, 816-830.	tures. Journal	1.5	257
883	Transfer of molecular recognition information from DNA nanostructures to gold nanop Nature Chemistry, 2016, 8, 162-170.	articles.	6.6	205
884	Modulating the Bond Strength of DNAâ \in "Nanoparticle Superlattices. ACS Nano, 2016,	10, 1771-1779.	7.3	36
885	Modular, polymer-directed nanoparticle assembly for fabricating metamaterials. Farada 2016, 186, 489-502.	y Discussions,	1.6	10
886	Designing disordered materials using DNA-coated colloids of bacteriophage fd and gold Discussions, 2016, 186, 473-488.	l. Faraday	1.6	6
887	Topological structure prediction in binary nanoparticle superlattices. Soft Matter, 2017	', 13, 147-157.	1.2	66
888	Organisation von Metalloxidâ€Nanowürfeln durch Hydroxylierung. Angewandte Chei 1428-1432.	mie, 2017, 129,	1.6	0
889	Membrane Adhesion through Bridging by Multimeric Ligands. Langmuir, 2017, 33, 113	9-1146.	1.6	30
890	Modulating Nanoparticle Superlattice Structure Using Proteins with Tunable Bond Dist Journal of the American Chemical Society, 2017, 139, 1754-1757.	ributions.	6.6	53
891	Recent developments in reversible photoregulation of oligonucleotide structure and fu Chemical Society Reviews, 2017, 46, 1052-1079.	nction.	18.7	263
892	Polymerization-Induced Interfacial Self-Assembly of Janus Nanoparticles in Block Copoly Reaction-Mediated Entropy Effects, Diffusion Dynamics, and Tailorable Micromechanica Macromolecules, 2017, 50, 2078-2091.	vmers: al Behaviors.	2.2	32
893	Analysis of in Situ LNA and DNA Hybridization Events on Microspheres. Biomacromolec 1086-1096.	ules, 2017, 18,	2.6	6
894	Atomic clusters with addressable complexity. Journal of Chemical Physics, 2017, 146, 0	54306.	1.2	8

#	Article	IF	CITATIONS
895	Uniform Distance Scaling Behavior of Planet–Satellite Nanostructures Made by Star Polymers. Langmuir, 2017, 33, 2017-2026.	1.6	28
896	A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA–inorganic hybrid nanoflowers. Journal of Materials Chemistry B, 2017, 5, 2231-2234.	2.9	55
897	Self-assembly of nanostructures with multiferroic components using nucleic acid linkers. MRS Communications, 2017, 7, 20-26.	0.8	3
898	Bottom-Up Strategy To Prepare Nanoparticles with a Single DNA Strand. Journal of the American Chemical Society, 2017, 139, 3623-3626.	6.6	30
899	Methods for preparing DNA-functionalized gold nanoparticles, a key reagent of bioanalytical chemistry. Analytical Methods, 2017, 9, 2633-2643.	1.3	173
900	Spectral signatures of charge transfer in assemblies of molecularly-linked plasmonic nanoparticles. International Journal of Modern Physics B, 2017, 31, 1740002.	1.0	5
901	Directed assembly of particles using directional DNA interactions. Current Opinion in Colloid and Interface Science, 2017, 30, 34-44.	3.4	26
902	Directionally Interacting Spheres and Rods Form Ordered Phases. ACS Nano, 2017, 11, 4950-4959.	7.3	19
903	Elucidating the influence of materials-binding peptide sequence on Au surface interactions and colloidal stability of Au nanoparticles. Nanoscale, 2017, 9, 421-432.	2.8	30
904	Epitaxy: Programmable Atom Equivalents <i>Versus</i> Atoms. ACS Nano, 2017, 11, 180-185.	7.3	35
905	Core–Shell and Layerâ€by‣ayer Assembly of 3D DNA Crystals. Advanced Materials, 2017, 29, 1701019.	11.1	17
906	Soft Skyrmions, Spontaneous Valence and Selection Rules in Nanoparticle Superlattices. ACS Nano, 2017, 11, 5375-5382.	7.3	62
907	A Low-Symmetry Cubic Mesophase of Dendronized CdS Nanoparticles and Their Structure-Dependent Photoluminescence. CheM, 2017, 2, 860-876.	5.8	27
908	Functionality of Nonfunctional Diluent Ligands within Bicomponent Layers on Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 13906-13915.	1.5	3
909	Assembling and ordering polymer-grafted nanoparticles in three dimensions. Nanoscale, 2017, 9, 8710-8715.	2.8	51
910	Cyclodextrin-based nanosponges: A critical review. Carbohydrate Polymers, 2017, 173, 37-49.	5.1	239
911	Optically transparent dense colloidal gels. Chemical Science, 2017, 8, 5559-5566.	3.7	15
912	Supra-Nanoparticle Functional Assemblies through Programmable Stacking. ACS Nano, 2017, 11, 7036-7048.	7.3	32

CITATION REPORT ARTICLE IF CITATIONS Clusters of anisotropic colloidal particles: From colloidal molecules to supracolloidal structures. 3.4 51 Current Opinion in Colloid and Interface Science, 2017, 30, 70-80. DNA-Driven Assembly: From Polyhedral Nanoparticles to Proteins. Annual Review of Materials 4.3 Research, 2017, 47, 33-49. Folding Topology of a Short Coiled oil Peptide Structure Templated by an Oligonucleotide Triplex. 1.7 13 Chemistry - A European Journal, 2017, 23, 9297-9305. Im biologischen Container. Nachrichten Aus Der Chemie, 2017, 65, 434-439. Nucleic acid based polymer and nanoparticle conjugates: Synthesis, properties and applications. 16.0 24 Progress in Materials Science, 2017, 88, 136-185. Laser-induced fabrication of gold nanoparticles on shellac-driven peptide nanostructures. Materials 0.8 Research Express, 2017, 4, 035036. Long-term fluidization of titania nanoparticle agglomerates. Powder Technology, 2017, 316, 441-445. 2.1 13 Recent advances in molecular machines based on toeholdâ€mediated strand displacement reaction. 0.3 Quantitative Biology, 2017, 5, 25-41. Top-down design of magnonic crystals from bottom-up magnetic nanoparticles through protein 1.3 22 arrays. Nanotechnology, 2017, 28, 155301. Molecular control over colloidal assembly. Chemical Communications, 2017, 53, 4414-4428. 2.2 Self-assembly of artificially manufactured microcomponents using the entropic effect. Sensors and 2.0 11 Actuators A: Physical, 2017, 254, 43-53. Hydroxylation Induced Alignment of Metal Oxide Nanocubes. Angewandte Chemie - International Edition, 2017, 56, 1407-1410. The Use of Graphene and Its Derivatives for Liquid-Phase Transmission Electron Microscopy of 4.5 120 Radiation-Sensitive Specimens. Nano Letters, 2017, 17, 414-420. Colloidal assembly of magnetic nanoparticles and polyelectrolytes by arrested electrostatic 2.3 interaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 107-116. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle 6.0 120 superlattices. Science, 2017, 358, 514-518.

929	Capping Ligand Vortices as "Atomic Orbitals―in Nanocrystal Self-Assembly. ACS Nano, 2017, 11, 11273-11282.	7.3	43
930	Freeâ€Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity. Chemistry - A European Journal, 2017, 23, 17482-17486.	1.7	25
931	Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles. Materials Research Express, 2017, 4, 116105.	0.8	38

#

913

914

915

917

919

920

921

924

926

927

#	Article	IF	CITATIONS
932	Interaction Heterogeneity can Favorably Impact Colloidal Crystal Nucleation. Physical Review Letters, 2017, 119, 178002.	2.9	6
933	Controlling Nonâ€Equilibrium Structure Formation on the Nanoscale. ChemPhysChem, 2017, 18, 3437-3442.	1.0	1
934	Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles. Langmuir, 2017, 33, 12227-12234.	1.6	26
935	Beyond native block copolymer morphologies. Molecular Systems Design and Engineering, 2017, 2, 518-538.	1.7	62
936	Three-Dimensional SERS Substrates Formed with Plasmonic Core-Satellite Nanostructures. Scientific Reports, 2017, 7, 13066.	1.6	37
937	Optical properties of anisotropic 3D nanoparticles arrays. Europhysics Letters, 2017, 119, 27005.	0.7	2
938	Triblock peptide–oligonucleotide chimeras (POCs): programmable biomolecules for the assembly of morphologically tunable and responsive hybrid materials. Chemical Communications, 2017, 53, 12221-12224.	2.2	8
939	The Role of Repulsion in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2017, 139, 16528-16535.	6.6	31
940	Molecular rigidity and enthalpy–entropy compensation in DNA melting. Soft Matter, 2017, 13, 8309-8330.	1.2	28
941	Oriented assembly of anisotropic nanoparticles into frame-like superstructures. Science Advances, 2017, 3, e1700732.	4.7	158
943	Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chemical Reviews, 2017, 117, 12641-12704.	23.0	162
944	No need to wait. Nature Materials, 2017, 16, 883-884.	13.3	2
945	Contribution of gold nanoparticles to the catalytic DNA strand displacement in leakage reduction and signal amplification. Chemical Communications, 2017, 53, 10950-10953.	2.2	15
946	<i>Colloquium</i> : Toward living matter with colloidal particles. Reviews of Modern Physics, 2017, 89, .	16.4	34
947	Nanoparticle Superlattices as Quasi-Frank-Kasper Phases. Physical Review Letters, 2017, 119, 115701.	2.9	42
948	Cooperative colloidal self-assembly of metal-protein superlattice wires. Nature Communications, 2017, 8, 671.	5.8	73
949	Ion-Specific Interfacial Crystallization of Polymer-Grafted Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 15424-15429.	1.5	33
950	General and Direct Method for Preparing Oligonucleotide-Functionalized Metal–Organic Framework Nanoparticles. Journal of the American Chemical Society, 2017, 139, 9827-9830.	6.6	245

#	Article	IF	CITATIONS
951	Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion. Nano Letters, 2017, 17, 5126-5132.	4.5	36
952	Stacking modular DNA circuitry in cascading self-assembly of spherical nucleic acids. Journal of Materials Chemistry B, 2017, 5, 6256-6265.	2.9	6
953	Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals. Journal of the American Chemical Society, 2017, 139, 11254-11260.	6.6	47
954	Dynamics of Templated Assembly of Nanoparticle Filaments within Nanochannels. Advanced Materials, 2017, 29, 1702682.	11.1	24
955	High-temperature crystallization of nanocrystals into three-dimensional superlattices. Nature, 2017, 548, 197-201.	13.7	101
956	DNAâ€Mediated Assembly of Gold Nanoparticles and Applications in Bioanalysis. ChemNanoMat, 2017, 3, 725-735.	1.5	16
957	Quasiâ€Dualâ€Packedâ€Kerneled Au ₄₉ (2,4â€DMBT) ₂₇ Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap. Angewandte Chemie - International Edition, 2017, 56, 12644-12648.	7.2	66
958	Quasiâ€Dualâ€Packedâ€Kerneled Au 49 (2,4â€DMBT) 27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap. Angewandte Chemie, 2017, 129, 12818-12822.	1.6	20
959	Pt supraparticles with controllable DNA valences for programmed nanoassembly. Chemical Communications, 2017, 53, 9773-9776.	2.2	10
960	Layer-by-layer assembly of patchy particles as a route to nontrivial structures. Physical Review E, 2017, 96, 022601.	0.8	12
961	Out-of-Equilibrium Aggregates and Coatings during Seeded Growth of Metallic Nanoparticles. Journal of the American Chemical Society, 2017, 139, 17973-17978.	6.6	62
962	Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology. MRS Bulletin, 2017, 42, 904-912.	1.7	30
963	Intracellular localization of nanoparticle dimers by chirality reversal. Nature Communications, 2017, 8, 1847.	5.8	93
964	An Introduction to Chiral Nanomaterials: Origin, Construction, and Optical Application. , 0, , 1-28.		1
965	Free-standing nanoparticle superlattice sheets: From design to applications. Europhysics Letters, 2017, 119, 48004.	0.7	14
966	Molecular Recognition in the Colloidal World. Accounts of Chemical Research, 2017, 50, 2756-2766.	7.6	59
967	Communication: Programmable self-assembly of thin-shell mesostructures. Journal of Chemical Physics, 2017, 147, 141103.	1.2	5
968	Filamentous phages as building blocks for reconfigurable and hierarchical self-assembly. Journal of Physics Condensed Matter, 2017, 29, 493003.	0.7	8

#	Article	IF	CITATIONS
969	The competing effects of core rigidity and linker flexibility in the nanoassembly of trivalent small molecule-DNA hybrids (SMDH ₃ s)–a synergistic experimental-modeling study. Nanoscale, 2017, 9, 12652-12663.	2.8	3
970	Freezing Directed Construction of Bio/Nano Interfaces: Reagentless Conjugation, Denser Spherical Nucleic Acids, and Better Nanoflares. Journal of the American Chemical Society, 2017, 139, 9471-9474.	6.6	303
971	Stimuli-Responsive Interfaces. , 2017, , .		3
972	Macroscopic and tunable nanoparticle superlattices. Nanoscale, 2017, 9, 164-171.	2.8	58
973	Covalent and Nonâ€Covalent DNA–Goldâ€Nanoparticle Interactions: New Avenues of Research. ChemPhysChem, 2017, 18, 17-33.	1.0	94
974	Derivation of nearest-neighbor DNA parameters in magnesium from single molecule experiments. Nucleic Acids Research, 2017, 45, 12921-12931.	6.5	39
975	Deutsche Gesellschaft für Kristallographie. , 2017, , 1-141.		0
976	Coherent amplification of X-ray scattering from meso-structures. IUCrJ, 2017, 4, 604-613.	1.0	3
977	Colloidal Crystals: Using Self-Assembly to Create Structures From Nanoparticle Building Blocks. , 2017, , 109-127.		0
978	Frontier of Inorganic Synthesis and Preparative Chemistry (I) Biomimetic Synthesis. , 2017, , 687-721.		6
979	Robust X-ray angular correlations for the study of meso-structures. Journal of Applied Crystallography, 2017, 50, 805-819.	1.9	7
980	Three-Dimensional Lattice Structure Formed in a Binary System with DNA Nanoparticles. Journal of the Physical Society of Japan, 2017, 86, 064601.	0.7	1
982	Virus-Like Particles (VLPs) in Supramolecular Chemistry. , 2017, , 127-148.		0
983	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	23.0	768
984	Significance of DNA bond strength in programmable nanoparticle thermodynamics and dynamics. Soft Matter, 2018, 14, 2665-2670.	1.2	10
985	Recent Advances in Multicomponent Particle Assembly. Chemistry - A European Journal, 2018, 24, 16196-16208.	1.7	11
986	Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering. Nano Letters, 2018, 18, 2609-2615.	4.5	43
987	Protein cage assembly across multiple length scales. Chemical Society Reviews, 2018, 47, 3433-3469.	18.7	138

	CHARONIC		
#	Article	IF	CITATIONS
988	Liquid interfaces with pH-switchable nanoparticle arrays. Soft Matter, 2018, 14, 3929-3934.	1.2	14
989	Electrochemical behavior of self-assembled DNA–gold nanoparticle lattice films. Electrochemistry Communications, 2018, 90, 51-55.	2.3	7
990	Molecular spherical nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4340-4344.	3.3	130
992	Micrometer-sized TPM emulsion droplets with surface-mobile binding groups. Journal of Physics Condensed Matter, 2018, 30, 094005.	0.7	9
993	Tools and Functions of Reconfigurable Colloidal Assembly. Langmuir, 2018, 34, 11205-11219.	1.6	29
994	Entropy Stabilizes Floppy Crystals of Mobile DNA-Coated Colloids. Physical Review Letters, 2018, 120, 048003.	2.9	19
995	Polyethyleneâ€Clycolâ€Mediated Selfâ€Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface. Advanced Materials Interfaces, 2018, 5, 1701149.	1.9	5
996	DNA-Assembled Advanced Plasmonic Architectures. Chemical Reviews, 2018, 118, 3032-3053.	23.0	313
997	DNA Origami Route for Nanophotonics. ACS Photonics, 2018, 5, 1151-1163.	3.2	171
998	Self-Assembly of Protein Crystals with Different Crystal Structures Using Tobacco Mosaic Virus Coat Protein as a Building Block. ACS Nano, 2018, 12, 1673-1679.	7.3	33
999	DNA Nanostructureâ€Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Advanced Healthcare Materials, 2018, 7, e1701153.	3.9	56
1000	DNAâ€Templated Magnetic Nanoparticleâ€Quantum Dot Polymers for Ultrasensitive Capture and Detection of Circulating Tumor Cells. Advanced Functional Materials, 2018, 28, 1707152.	7.8	96
1001	Directed assembly of metal nanoparticles in polymer bilayers. Molecular Systems Design and Engineering, 2018, 3, 390-396.	1.7	5
1002	Lattice Mismatch in Crystalline Nanoparticle Thin Films. Nano Letters, 2018, 18, 579-585.	4.5	59
1003	Using DNA strand displacement to control interactions in DNA-grafted colloids. Soft Matter, 2018, 14, 969-984.	1.2	22
1004	Directional rolling of positively charged nanoparticles along a flexibility gradient on long DNA molecules. Soft Matter, 2018, 14, 817-825.	1.2	5
1005	Dithiothreitol-Regulated Coverage of Oligonucleotide-Modified Gold Nanoparticles To Achieve Optimized Biosensor Performance. ACS Applied Materials & Interfaces, 2018, 10, 4233-4242.	4.0	25
1006	Dynamical inversion of the energy landscape promotes non-equilibrium self-assembly of binary mixtures. Chemical Science, 2018, 9, 1640-1646.	3.7	1

ARTICLE IF CITATIONS # Adsorption Mechanisms of Nucleobases on the Hydrated Au(111) Surface. Langmuir, 2018, 34, 1007 1.6 9 14749-14756. DNA for Assembly and Charge Transport Photocatalytic Reduction of CO₂. Advanced 2.7 Sustainable Systèms, 2018, 2, 1700 156. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nature 1009 6.6 68 Chemistry, 2018, 10, 489-495. Multiplexed mRNA Sensing and Combinatorial-Targeted Drug Delivery Using DNA-Gold Nanoparticle Dimers. ACS Nano, 2018, 12, 3333-3340. Templated Assembly of a Functional Ordered Protein Macromolecular Framework from P22 Virus-like 1011 7.3 52 Particles. ACS Nano, 2018, 12, 3541-3550. Bromide as a Robust Backfiller on Gold for Precise Control of DNA Conformation and High Stability 6.6 of Spherical Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 4499-4502. Inverse design of multicomponent assemblies. Journal of Chemical Physics, 2018, 148, 104509. 1013 1.2 27 Designing hierarchical molecular complexity: icosahedra of addressable icosahedra. Molecular 1014 0.8 Physics, 2018, 116, 2954-2964. Defining the Structure of a Protein–Spherical Nucleic Acid Conjugate and Its Counterionic Cloud. 1015 5.3 27 ACS Central Science, 2018, 4, 378-386. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Advanced Materials, 11.1 2018, 30, 1702669. Janus DNA orthogonal adsorption of graphene oxide and metal oxide nanoparticles enabling stable 1017 88 6.4 sensing in serum. Materials Horizons, 2018, 5, 65-69. Nanoparticle Superlattices: The Roles of Soft Ligands. Advanced Science, 2018, 5, 1700179. 1018 5.6 170 Thermally reversible nanoparticle gels with tuneable porosity showing structural colour. Physical 1019 1.3 4 Chemistry Chemical Physics, 2018, 20, 467-477. Photoresponsive spherical nucleic acid: spatiotemporal control of the assembly circuit and 1020 2.2 intracellular microRNA release. Chemical Communications, 2018, 54, 106-109. Bioâ€Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar 1021 7.8 117 Energy Manipulation. Advanced Functional Materials, 2018, 28, 1705309. Optothermally Reversible Carbon Nanotube–DNA Supramolecular Hybrid Hydrogels. Macromolecular 2.0 Rapid Communications, 2018, 39, 1700587. Hairpin loop-enhanced fluorescent copper nanoclusters and application in S1 nuclease detection. 1023 1.7 16 Analyst, The, 2018, 143, 415-419. 1024 DNA nanotechnology. Nature Reviews Materials, 2018, 3, . 23.3 1,268

	CHATON R	EPORT	
#	Article	IF	CITATIONS
1025	Modular Self-Assembly of Protein Cage Lattices for Multistep Catalysis. ACS Nano, 2018, 12, 942-953.	7.3	86
1026	Two-dimensional structures formed in a binary system of DNA nanoparticles with a short-range interaction potential. Japanese Journal of Applied Physics, 2018, 57, 125002.	0.8	1
1027	Emerging Chemical and Biological Technologies: Security & Policy Challenges. ACS Symposium Series, 2018, , 51-68.	0.5	2
1028	Nonisotropic Selfâ€Assembly of Nanoparticles: From Compact Packing to Functional Aggregates. Advanced Materials, 2018, 30, e1706558.	11.1	38
1030	Formation of Multicomponent Sizeâ€Sorted Assembly Patterns by Tunable Templated Dewetting. Angewandte Chemie - International Edition, 2018, 57, 16126-16130.	7.2	21
1031	Formation of Multicomponent Sizeâ€Sorted Assembly Patterns by Tunable Templated Dewetting. Angewandte Chemie, 2018, 130, 16358-16362.	1.6	6
1033	DNA-Coated Microspheres and Their Colloidal Superstructures. Macromolecular Research, 2018, 26, 1085-1094.	1.0	13
1034	Stereochemical conversion of nucleic acid circuits via strand displacement. Communications Chemistry, 2018, 1, .	2.0	12
1035	Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA. ACS Nano, 2019, 13, 1412-1420.	7.3	16
1036	Design Rules for Templateâ€Confined DNAâ€Mediated Nanoparticle Assembly. Small, 2018, 14, e1802742.	5.2	13
1037	Programmable self-assembly of diamond polymorphs from chromatic patchy particles. Physical Review E, 2018, 98, .	0.8	22
1038	Effect of Chain Rigidity on the Crystallization of DNA-Directed Nanoparticle System. Macromolecules, 2018, 51, 8372-8376.	2.2	10
1039	MicroRNA Detection through DNAzyme-Mediated Disintegration of Magnetic Nanoparticle Assemblies. ACS Sensors, 2018, 3, 1884-1891.	4.0	35
1040	Hierarchical Crystals Formed from DNA-Functionalized Janus Nanoparticles. ACS Nano, 2018, 12, 9467-9475.	7.3	39
1041	Stability and Free Energy of Nanocrystal Chains and Superlattices. Journal of Physical Chemistry C, 2018, 122, 23153-23164.	1.5	31
1042	3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273.	11.1	150
1043	Assembly Dynamics of Plasmonic DNA-Capped Gold Nanoparticle Monolayers. Langmuir, 2018, 34, 14711-14720.	1.6	2
1044	Reconfigurable Nucleic Acid Materials for Cancer Therapy. Nanomedicine and Nanotoxicology, 2018, , 365-385.	0.1	Ο

#	Article	IF	CITATIONS
1045	Salt-Induced Assembly Transformation of DNA–AuNP Conjugates Based on RCA Origami: From Linear Arrays to Nanorings. Langmuir, 2018, 34, 8904-8909.	1.6	8
1046	Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nature Nanotechnology, 2018, 13, 730-738.	15.6	85
1047	Spherical Nucleic Acid Nanoparticles: Therapeutic Potential. BioDrugs, 2018, 32, 297-309.	2.2	84
1048	DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. Advanced Therapeutics, 2018, 1, 1800042.	1.6	61
1049	Ordered Networks of Gold Nanoparticles Crosslinked by Dithiolâ€Oligomers. Particle and Particle Systems Characterization, 2018, 35, 1800097.	1.2	7
1050	Radiation damage during <i>in situ</i> electron microscopy of DNA-mediated nanoparticle assemblies in solution. Nanoscale, 2018, 10, 12674-12682.	2.8	14
1051	Potential of mean force for two nanocrystals: Core geometry and size, hydrocarbon unsaturation, and universality with respect to the force field. Journal of Chemical Physics, 2018, 149, 034109.	1.2	21
1052	Functional Two- and Three-Dimensional Architectures of Immobilized Metal Nanoparticles. CheM, 2018, 4, 2301-2328.	5.8	14
1053	Decorating a single giant DNA with gold nanoparticles. RSC Advances, 2018, 8, 26571-26579.	1.7	10
1054	Assembly of colloidal particles in solution. Reports on Progress in Physics, 2018, 81, 126601.	8.1	51
1055	DNA-Encoded Protein Janus Nanoparticles. Journal of the American Chemical Society, 2018, 140, 9269-9274.	6.6	48
1056	Self-Assembly of Quantum Dot–Gold Heterodimer Nanocrystals with Orientational Order. Nano Letters, 2018, 18, 5049-5056.	4.5	25
1057	Resonance Energy Transfer Mediated by Metal–Dielectric Composite Nanostructures. Journal of Physical Chemistry C, 2018, 122, 18256-18265.	1.5	13
1058	Density-Gradient Control over Nanoparticle Supercrystal Formation. Nano Letters, 2018, 18, 6022-6029.	4.5	12
1059	Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Advanced Materials, 2018, 30, e1802309.	11.1	216
1060	Non-Cross-Linking Aggregation of DNA-Carrying Polymer Micelles Triggered by Duplex Formation. Langmuir, 2018, 34, 14899-14910.	1.6	15
1061	Metal–Organic Framework Nanoparticles. Advanced Materials, 2018, 30, e1800202.	11.1	539
1062	Polyvalent Spherical Nucleic Acids for Universal Display of Functional DNA with Ultrahigh Stability. Angewandte Chemie - International Edition, 2018, 57, 9439-9442.	7.2	53

#	Article	IF	CITATIONS
1063	Many Body Effects and Icosahedral Order in Superlattice Self-Assembly. Journal of the American Chemical Society, 2018, 140, 8236-8245.	6.6	31
1064	Polyvalent Spherical Nucleic Acids for Universal Display of Functional DNA with Ultrahigh Stability. Angewandte Chemie, 2018, 130, 9583-9586.	1.6	16
1065	Gold nanoparticles for cancer diagnostics, spectroscopic imaging, drug delivery, and plasmonic photothermal therapy. , 2018, , 41-91.		10
1066	Phthalocyanine–Virus Nanofibers as Heterogeneous Catalysts for Continuousâ€Flow Photoâ€Oxidation Processes. Advanced Materials, 2019, 31, e1902582.	11.1	25
1067	Valency-Controlled Molecular Spherical Nucleic Acids with Tunable Biosensing Performances. Analytical Chemistry, 2019, 91, 11374-11379.	3.2	13
1068	Self-assembly and characterization of 2D plasmene nanosheets. Nature Protocols, 2019, 14, 2691-2706.	5.5	37
1069	Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. Reports on Progress in Physics, 2019, 82, 116601.	8.1	39
1070	A Cross-Linking Approach to Stabilizing Stimuli-Responsive Colloidal Crystals Engineered with DNA. Journal of the American Chemical Society, 2019, 141, 11827-11831.	6.6	27
1071	Chemistries for DNA Nanotechnology. Chemical Reviews, 2019, 119, 6384-6458.	23.0	319
1072	Engineering entropy for the inverse design of colloidal crystals from hard shapes. Science Advances, 2019, 5, eaaw0514.	4.7	49
1073	DNA functionalization of colloidal particles via physisorption of azide-functionalized diblock copolymers. Soft Matter, 2019, 15, 6930-6933.	1.2	1
1074	Gold Nanoparticles Thin Films with Thermo―and Photoresponsive Plasmonic Properties Realized with Liquidâ€Crystalline Ligands. Small, 2019, 15, e1902807.	5.2	9
1075	Statistical Modeling of Ligand-Mediated Multimeric Nanoparticle Assembly. Journal of Physical Chemistry C, 2019, 123, 21195-21206.	1.5	4
1076	Assembling Ordered Crystals with Disperse Building Blocks. Nano Letters, 2019, 19, 5774-5780.	4.5	34
1077	From DNA Tiles to Functional DNA Materials. Trends in Chemistry, 2019, 1, 799-814.	4.4	43
1078	Interface-Driven Hybrid Materials Based on DNA-Functionalized Gold Nanoparticles. Matter, 2019, 1, 825-847.	5.0	147
1079	Self-Assembly Formed by Spherical Patchy Particles with Long-Range Attraction. Journal of the Physical Society of Japan, 2019, 88, 104801.	0.7	6
1080	Reversible Polymerization-like Kinetics for Programmable Self-Assembly of DNA-Encoded Nanoparticles with Limited Valence. Journal of the American Chemical Society, 2019, 141, 16408-16415.	6.6	18

#	Article	IF	CITATIONS
1081	<i>In situ</i> electron microscopy of the self-assembly of single-stranded DNA-functionalized Au nanoparticles in aqueous solution. Nanoscale, 2019, 11, 34-44.	2.8	14
1082	Etching silver nanoparticles using DNA. Materials Horizons, 2019, 6, 155-159.	6.4	35
1083	Complementary Design for Pairing between Two Types of Nanoparticles Mediated by a Bispecific Antibody: Bottom-Up Formation of Porous Materials from Nanoparticles. Langmuir, 2019, 35, 3067-3076.	1.6	0
1084	Hoobas: A highly object-oriented builder for molecular dynamics. Computational Materials Science, 2019, 167, 25-33.	1.4	20
1085	Transient self-organisation of DNA coated colloids directed by enzymatic reactions. Scientific Reports, 2019, 9, 7350.	1.6	16
1086	Particle analogs of electrons in colloidal crystals. Science, 2019, 364, 1174-1178.	6.0	91
1087	Electron transfer in superlattice films based on self-assembled DNA-Gold nanoparticle. Electrochimica Acta, 2019, 318, 931-936.	2.6	5
1088	Encoding Reversible Hierarchical Structures with Supramolecular Peptide–DNA Materials. Bioconjugate Chemistry, 2019, 30, 1864-1869.	1.8	18
1089	Interconnected assembly of ZrO ₂ @SiO ₂ nanoparticles with dimensional selectivity and refractive index tunability. Journal of Materials Chemistry C, 2019, 7, 8176-8184.	2.7	7
1090	Stimuli-Responsive DNA-Linked Nanoparticle Arrays as Programmable Surfaces. Nano Letters, 2019, 19, 4535-4542.	4.5	12
1091	Protein Materials Engineering with DNA. Accounts of Chemical Research, 2019, 52, 1939-1948.	7.6	39
1092	DNA Nanotechnology as an Emerging Tool to Study Mechanotransduction in Living Systems. Small, 2019, 15, e1900961.	5.2	67
1093	Connecting Nanoparticles with Different Colloidal Stability by DNA for Programmed Anisotropic Self-Assembly. Journal of Physical Chemistry C, 2019, 123, 15293-15300.	1.5	11
1094	Facile Strategy for Visible Disassembly of Spherical Nucleic Acids Programmed by Catalytic DNA Circuits. ACS Applied Materials & Interfaces, 2019, 11, 19724-19733.	4.0	15
1095	Discovery of and Insights into DNA "Codes―for Tunable Morphologies of Metal Nanoparticles. Small, 2019, 15, 1900975.	5.2	37
1096	The Stability of a Nanoparticle Diamond Lattice Linked by DNA. Nanomaterials, 2019, 9, 661.	1.9	5
1097	Structure of Polydisperse fcc Nanocrystals: Implications for Crystal Fractionalization. Journal of Physical Chemistry C, 2019, 123, 9528-9537.	1.5	7
1098	Designing molecular building blocks for the self-assembly of complex porous networks. Molecular Systems Design and Engineering, 2019, 4, 644-653.	1.7	10

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1099	Achieving Selective Targeting Using Engineered Nanomaterials. Series in Bioengineering, 201	9,,147-182.	0.3	2
1100	Controlling Nanoparticle Orientations in the Self-Assembly of Patchy Quantum Dot-Gold Heterostructural Nanocrystals. Journal of the American Chemical Society, 2019, 141, 6013-60	021.	6.6	49
1101	Higherâ€Order Structures Based on Molecular Interactions for the Formation of Natural and A Biomaterials. ChemBioChem, 2019, 20, 1637-1641.	Artificial	1.3	5
1102	Engineering inverse opals with enclosed voids via Bottom-up assembly of double emulsions. C Engineering Science, 2019, 205, 414-419.	Chemical	1.9	3
1103	Thermodynamics and Biophysics of Biomedical Nanosystems. Series in Bioengineering, 2019,	y •	0.3	6
1104	Spherically Directed Synthesis and Enhanced Cellular Internalization of Metal-Crosslinked DN. Micelles. CheM, 2019, 5, 913-928.	Ą	5.8	14
1105	Light-Induced Reversible DNA Ligation of Gold Nanoparticle Superlattices. ACS Nano, 2019, 1	3, 5771-5777.	7.3	32
1106	Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices. Small, 2019, 15, 1805424.		5.2	26
1107	Nucleic Acid–Based Functional Nanomaterials as Advanced Cancer Therapeutics. Small, 202 e1900172.	19, 15,	5.2	80
1108	Three-Dimensional Molecular Transfer from DNA Nanocages to Inner Gold Nanoparticle Surface Nano, 2019, 13, 4174-4182.	ces. ACS	7.3	43
1109	Goldâ€Aryl nanoparticles coated with polyelectrolytes for adsorption and protection of DNA a nuclease degradation. Applied Organometallic Chemistry, 2019, 33, e4803.	against	1.7	14
1110	Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nano Journal of Physical Chemistry B, 2019, 123, 2157-2168.	particles.	1.2	16
1111	Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst, The, 2019, 144, 1052-1072.		1.7	37
1112	Crystal engineering with DNA. Nature Reviews Materials, 2019, 4, 201-224.		23.3	178
1113	3D Lattice Engineering of Nanoparticles by DNA Shells. Small, 2019, 15, e1805401.		5.2	13
1114	Bio-inspired synthesis of mesoporous HfO2 nanoframes as reactors for piezotronic polymeriz and Suzuki coupling reactions. Nanoscale, 2019, 11, 5240-5246.	ation	2.8	6
1115	From DNA Nanotechnology to Material Systems Engineering. Advanced Materials, 2019, 31, 6	21806294.	11.1	119
1116	Size-Separation and Self-Assembly of Anisotropic Nanoparticles in a Coffee-Stain Ring. Nano, 1950149.	2019, 14,	0.5	4

#	Article	IF	CITATIONS
1117	Ag Ion Soldering: An Emerging Tool for Sub-nanomeric Plasmon Coupling and Beyond. Accounts of Chemical Research, 2019, 52, 3442-3454.	7.6	16
1118	Linker-Mediated Phase Behavior of DNA-Coated Colloids. Physical Review X, 2019, 9, .	2.8	13
1119	Translational and rotational dynamics of colloidal particles interacting through reacting linkers. Physical Review E, 2019, 100, 060601.	0.8	15
1120	Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment. Frontiers in Physics, 2019, 7, .	1.0	12
1121	Multivalent Cation-Induced Actuation of DNA-Mediated Colloidal Superlattices. Journal of the American Chemical Society, 2019, 141, 19973-19977.	6.6	23
1122	Colloidal Crystal "Alloysâ€: Journal of the American Chemical Society, 2019, 141, 20443-20450.	6.6	20
1123	Assembly by solvent evaporation: equilibrium structures and relaxation times. Nanoscale, 2019, 11, 18702-18714.	2.8	9
1124	Superlattice assembly by interpolymer complexation. Soft Matter, 2019, 15, 9690-9699.	1.2	6
1125	Interpolymer Complexation as a Strategy for Nanoparticle Assembly and Crystallization. Journal of Physical Chemistry C, 2019, 123, 836-840.	1.5	21
1126	Dynamic Self-Organization and Catalysis: Periodic versus Random Driving Forces. Journal of Physical Chemistry C, 2019, 123, 825-835.	1.5	3
1127	Freezingâ€directed Stretching and Alignment of DNA Oligonucleotides. Angewandte Chemie - International Edition, 2019, 58, 2109-2113.	7.2	42
1128	Freezingâ€directed Stretching and Alignment of DNA Oligonucleotides. Angewandte Chemie, 2019, 131, 2131-2135.	1.6	16
1129	In Situ Atomic Force Microscopy of the Reconfiguration of Onâ€Surface Selfâ€Assembled DNAâ€Nanoparticle Superlattices. Advanced Functional Materials, 2019, 29, 1806924.	7.8	12
1130	DNA Hybridization to Control Cellular Interactions. Trends in Biochemical Sciences, 2019, 44, 342-350.	3.7	15
1131	The Importance of Salt-Enhanced Electrostatic Repulsion in Colloidal Crystal Engineering with DNA. ACS Central Science, 2019, 5, 186-191.	5.3	24
1132	Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chemical Reviews, 2019, 119, 664-699.	23.0	380
1133	Stabilization of Colloidal Crystals Engineered with DNA. Advanced Materials, 2019, 31, e1805480.	11.1	40
1134	Assembly of Zeolitic Crystals From a Model of Mesogenic Patchy Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 971-978.	1.5	7

#	Article	IF	Citations
1135	Regioselective surface encoding of nanoparticles for programmable self-assembly. Nature Materials, 2019, 18, 169-174.	13.3	153
1136	Fabrication of Metal Nanostructures on DNA Templates. ACS Applied Materials & Interfaces, 2019, 11, 13835-13852.	4.0	52
1137	Proteins as Sustainable Building Blocks for the Next Generation of Bioinorganic Nanomaterials. Biochemistry, 2019, 58, 140-141.	1.2	6
1138	Molecular insights into the thermal stability of gold superlattices. Nanotechnology, 2020, 31, 085704.	1.3	2
1139	DNAâ€Guided Assembly of Molecules, Materials, and Cells. Advanced Intelligent Systems, 2020, 2, 1900101.	3.3	6
1140	Gold Nanoparticles in Conjunction with Nucleic Acids as a Modern Molecular System for Cellular Delivery. Molecules, 2020, 25, 204.	1.7	78
1141	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie - International Edition, 2020, 59, 4892-4896.	7.2	33
1142	Self-assembly of DNA Nanostructures via Bioinspired Metal Ion Coordination. Chemical Research in Chinese Universities, 2020, 36, 268-273.	1.3	3
1143	A palindromic-based strategy for colorimetric detection of HIV-1 nucleic acid: Single-component assembly of gold nanoparticle-core spherical nucleic acids. Analytica Chimica Acta, 2020, 1102, 119-129.	2.6	19
1144	Polarized Single-Particle Quantum Dot Emitters through Programmable Cluster Assembly. ACS Nano, 2020, 14, 1369-1378.	7.3	34
1145	Programming nanoparticle valence bonds with single-stranded DNA encoders. Nature Materials, 2020, 19, 781-788.	13.3	166
1146	Transitionâ€Metalâ€Functionalized DNA Doubleâ€Crossover Tiles: Enhanced Stability and Chirality Transfer to Metal Centers. Angewandte Chemie - International Edition, 2020, 59, 4091-4098.	7.2	7
1147	Polymer Stereocomplexation as a Scalable Platform for Nanoparticle Assembly. Journal of the American Chemical Society, 2020, 142, 1667-1672.	6.6	31
1148	Three-dimensional nanoparticle assemblies with tunable plasmonics via a layer-by-layer process. Nano Today, 2020, 30, 100823.	6.2	10
1149	Free energy landscape of salt-actuated reconfigurable DNA nanodevices. Nucleic Acids Research, 2020, 48, 548-560.	6.5	18
1150	DNA―and Fieldâ€Mediated Assembly of Magnetic Nanoparticles into Highâ€Aspect Ratio Crystals. Advanced Materials, 2020, 32, e1906626.	11.1	25
1151	Photonic Fractal Metamaterials: A Metal–Semiconductor Platform with Enhanced Volatile ompound Sensing Performance. Advanced Materials, 2020, 32, e2002471.	11.1	27
1152	Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chemical Society Reviews, 2020, 49, 8439-8468.	18.7	44

	Сг	tation Report	
#	ARTICLE	IF	CITATIONS
1153	Mie-Resonant Three-Dimensional Metacrystals. Nano Letters, 2020, 20, 8096-8101.	4.5	28
1154	ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nature Communications, 2020, 11, 3658.	5.8	47
1155	Self-assembly of anisotropic nanoparticles into functional superstructures. Chemical Society Reviews, 2020, 49, 6002-6038.	18.7	140
1156	DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chemical Reviews, 2020, 120, 9420-9481.	23.0	313
1157	Interfacial and Bulk Assembly of Anisotropic Gold Nanostructures: Implications for Photonics and Plasmonics. ACS Applied Nano Materials, 2020, 3, 8216-8223.	2.4	15
1158	Linkerâ€free Gold Nanoparticle Superstructure Coated with Poly(dopamine) by Site‧pecific Polymerization for Amplifying Photothermal Cancer Therapy. Chemistry - an Asian Journal, 2020, 15, 2742-2748.	1.7	9
1159	Assembly of Linked Nanocrystal Colloids by Reversible Covalent Bonds. Chemistry of Materials, 2020, 32, 10235-10245.	3.2	27
1160	Programmable Cocrystallization of DNA Origami Shapes. Journal of the American Chemical Society, 2020, 142, 21336-21343.	6.6	32
1161	<p>A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle</p> . International Journal of Nanomedicine, 2020, Volume 15, 9823-9857.	3.3	256
1162	Switchable supracolloidal 3D DNA origami nanotubes mediated through fuel/antifuel reactions. Nanoscale, 2020, 12, 16995-17004.	2.8	14
1163	DNA-Mediated Three-Dimensional Assembly of Hollow Au–Ag Alloy Nanocages as Plasmonic Crystal ACS Applied Nano Materials, 2020, 3, 8068-8074.	S. 2.4	8
1164	Heating Drives DNA to Hydrophobic Regions While Freezing Drives DNA to Hydrophilic Regions of Graphene Oxide for Highly Robust Biosensors. Journal of the American Chemical Society, 2020, 142, 14702-14709.	6.6	34
1165	Covalently Linked, Two-Dimensional Quantum Dot Assemblies. Langmuir, 2020, 36, 9944-9951.	1.6	4
1166	Tertiary Hierarchical Complexity in Assemblies of Sulfur-Bridged Metal Chiral Clusters. Journal of the American Chemical Society, 2020, 142, 14495-14503.	6.6	22
1167	Device-quality, reconfigurable metamaterials from shape-directed nanocrystal assembly. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21052-21057.	3.3	26
1168	Quantifying patterns in optical micrographs of one- and two-dimensional ellipsoidal particle assemblies. Soft Matter, 2020, 16, 10900-10909.	1.2	3
1169	DNA Nanotechnology. Topics in Current Chemistry Collections, 2020, , .	0.2	0
1170	Local Environment Affects the Activity of Enzymes on a 3D Molecular Scaffold. ACS Nano, 2020, 14, 14646-14654.	7.3	24

#	Article	IF	CITATIONS
1171	Self-Assembly of DNA-Functionalized Nanoparticles Guided by Binding Kinetics. Journal of Physical Chemistry B, 2020, 124, 11593-11599.	1.2	5
1172	Effect of Patch Area and Interaction Length on Clusters and Structures Formed by One-Patch Particles in Thin Systems. ACS Omega, 2020, 5, 28812-28822.	1.6	6
1173	Using DNA to Control the Mechanical Response of Nanoparticle Superlattices. Journal of the American Chemical Society, 2020, 142, 19181-19188.	6.6	16
1174	Three-Dimensional Patterning of Nanoparticles by Molecular Stamping. ACS Nano, 2020, 14, 6823-6833.	7.3	42
1175	Combinatorial-Entropy-Driven Aggregation in DNA-Grafted Nanoparticles. ACS Nano, 2020, 14, 5628-5635.	7.3	15
1176	DNAâ€Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. Angewandte Chemie - International Edition, 2020, 59, 14842-14853.	7.2	57
1177	Chain-length effect on binary superlattices of polymer-tethered nanoparticles. Materials Chemistry Frontiers, 2020, 4, 2089-2095.	3.2	13
1178	Learning to grow: Control of material self-assembly using evolutionary reinforcement learning. Physical Review E, 2020, 101, 052604.	0.8	36
1179	Factors that control the gold nanoparticles' aggregation induced by adenine molecules: New insights through a combined experimental and theoretical study. Journal of Molecular Liquids, 2020, 310, 113136.	2.3	5
1180	DNAâ€Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. Angewandte Chemie, 2020, 132, 14952-14963.	1.6	1
1181	Hierarchical Fabrication of Plasmonic Superlattice Membrane by Aspect-Ratio Controllable Nanobricks for Label-Free Protein Detection. Frontiers in Chemistry, 2020, 8, 307.	1.8	5
1182	Facet-selective asymmetric functionalization of anisotropic gold nanoprisms for Janus particle synthesis. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	4
1183	DNA-Mediated Step-Growth Polymerization of Bottlebrush Macromonomers. Journal of the American Chemical Society, 2020, 142, 10297-10301.	6.6	16
1184	Strong polaronic effect in a superatomic two-dimensional semiconductor. Journal of Chemical Physics, 2020, 152, 171101.	1.2	8
1185	Colloidal crystal engineering with metal–organic framework nanoparticles and DNA. Nature Communications, 2020, 11, 2495.	5.8	114
1186	A Selfâ€Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and Highâ€Resolution Structural Detail. Angewandte Chemie, 2020, 132, 18778-18785.	1.6	6
1187	Applications of Nanomaterials in Human Health. , 2020, , .		21
1188	Fourâ€Đimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie - International Edition, 2020, 59, 17250-17255.	7.2	37

#	Article	IF	CITATIONS
1189	Fourâ€Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies. Angewandte Chemie, 2020, 132, 17403-17408.	1.6	2
1190	A Selfâ€Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and Highâ€Resolution Structural Detail. Angewandte Chemie - International Edition, 2020, 59, 18619-18626.	7.2	22
1191	Programming colloidal bonding using DNA strand-displacement circuitry. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5617-5623.	3.3	27
1192	DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Topics in Current Chemistry, 2020, 378, 31.	3.0	12
1193	Directional Assembly of Nanoparticles by DNA Shapes: Towards Designed Architectures and Functionality. Topics in Current Chemistry, 2020, 378, 36.	3.0	18
1194	pH-Controlled Detachable DNA Circuitry and Its Application in Resettable Self-Assembly of Spherical Nucleic Acids. ACS Nano, 2020, 14, 8317-8327.	7.3	35
1195	PolyA-based DNA bonds with programmable bond length and bond energy. NPG Asia Materials, 2020, 12, .	3.8	8
1196	Self-Assembly and Crystallization of DNA-Coated Colloids via Linker-Encoded Interactions. Langmuir, 2020, 36, 7100-7108.	1.6	13
1197	The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: A molecular LEGO approach. Progress in Polymer Science, 2020, 103, 101230.	11.8	75
1198	Transitionâ€Metalâ€Functionalized DNA Doubleâ€Crossover Tiles: Enhanced Stability and Chirality Transfer to Metal Centers. Angewandte Chemie, 2020, 132, 4120-4127.	1.6	2
1199	Three-dimensional DNA-programmable nanoparticle superlattices. Current Opinion in Biotechnology, 2020, 63, 142-150.	3.3	17
1200	High-Density DNA Coatings on Carboxylated Colloids by DMTMM- and Azide-Mediated Coupling Reactions. Langmuir, 2020, 36, 3583-3589.	1.6	9
1201	Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nature Materials, 2020, 19, 789-796.	13.3	172
1202	Programmable Assembly of Nanoâ€∎rchitectures through Designing Anisotropic DNA Origami Patches. Angewandte Chemie, 2020, 132, 6451-6458.	1.6	6
1203	Programmable Assembly of Nanoâ€architectures through Designing Anisotropic DNA Origami Patches. Angewandte Chemie - International Edition, 2020, 59, 6389-6396.	7.2	25
1204	Nanoparticleâ€Assisted Alignment of Carbon Nanotubes on DNA Origami. Angewandte Chemie, 2020, 132, 4922-4926.	1.6	7
1205	Lightâ€Responsive Colloidal Crystals Engineered with DNA. Advanced Materials, 2020, 32, e1906600.	11.1	40
1206	DNA-Directed Protein Packing within Single Crystals. CheM, 2020, 6, 1007-1017.	5.8	17

		CITATION REPO	ORT	
#	Article		IF	Citations
1207	DNA Base Pair Stacking Crystallization of Gold Colloids. Langmuir, 2020, 36, 5118-5125.	:	1.6	10
1208	The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent. ACS Nano, 2020, 5649-5658.	14,	7.3	21
1209	Conventional PCR assisted single-component assembly of spherical nucleic acids for simple colorimetric detection of SARS-CoV-2. Sensors and Actuators B: Chemical, 2021, 328, 128971.		4.0	36
1210	Advances in intelligent DNA nanomachines for targeted cancer therapy. Drug Discovery Today, 2 26, 1018-1029.	021,	3.2	8
1211	Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chemical Science, 2021, 12, 99-127.	I .	3.7	108
1212	Single-strand DNA-nanorod conjugates – tunable anisotropic colloids for on-demand self-asser Journal of Colloid and Interface Science, 2021, 586, 847-854.	nbly.	5.0	3
1213	Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chemical Society Reviews, 2021, 50, 2074-2101.		18.7	54
1214	Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engined with DNA. Angewandte Chemie - International Edition, 2021, 60, 4065-4069.	ering	7.2	5
1215	Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution. Accounts of Chemical Research, 2021, 54, 11-21.	,	7.6	10
1216	Integral equation theory for mixtures of spherical and patchy colloids. 2. Numerical results. Soft Matter, 2021, 17, 3513-3519.		1.2	5
1217	A double helical 4H assembly pattern with secondary hierarchical complexity in an Ag _{70<td>sub></td><td>4.1</td><td>9</td>}	sub>	4.1	9
1218	DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chemical Society Review 50, 5650-5667.	vs, 2021,	18.7	73
1219	Molecular Robotics. , 2021, , 1-17.			2
1220	Optimizing the dynamic and thermodynamic properties of hybridization in DNA-mediated nanop self-assembly. Physical Chemistry Chemical Physics, 2021, 23, 11774-11783.	article	1.3	3
1221	DNA Walker-Programmed Nanoparticle Superlattice. Acta Chimica Sinica, 2021, 79, 192.		0.5	0
1222	Microfluidic synthesis of high-valence programmable atom-like nanoparticles for reliable sensing. Chemical Science, 2021, 12, 896-904.		3.7	5
1223	Nanotube Active Water Pump Driven by Alternating Hydrophobicity. ACS Nano, 2021, 15, 2481-	2489.	7.3	14
1224	Rationally Programming Nanomaterials with DNA for Biomedical Applications. Advanced Science 8, 2003775.	, 2021,	5.6	51

#	Article	IF	CITATIONS
1225	Steering the Assembly and Disassembly of Active Pd Sites in Organometallic Networks for Electrocatalytic Performance and Organic Transformation. Advanced Functional Materials, 2021, 31, 2009557.	7.8	1
1226	Exploiting SERS sensitivity to monitor DNA aggregation properties. International Journal of Biological Macromolecules, 2021, 170, 88-93.	3.6	3
1227	The Effects of Temperature on the Assembly of Gold Nanoparticle by Interpolymer Complexation. Journal of Physical Chemistry Letters, 2021, 12, 1461-1467.	2.1	11
1228	Effect of the Interaction Length on Clusters Formed by Spherical One-Patch Particles on Flat Planes. Langmuir, 2021, 37, 4213-4221.	1.6	4
1229	Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Science Advances, 2021, 7, .	4.7	45
1230	Environment-Resistant DNA Origami Crystals Bridged by Rigid DNA Rods with Adjustable Unit Cells. Nano Letters, 2021, 21, 3581-3587.	4.5	13
1232	Grafting of Fluorescence-labeled ssDNA onto Inorganic Nanosheets and Detection of a Target DNA. Chemistry Letters, 2021, 50, 632-635.	0.7	0
1233	Tuning optical properties of self-assembled nanoparticle network with external optical excitation. Journal of Applied Physics, 2021, 129, .	1.1	2
1234	Stabilizing ordered structures with single patch inverse patchy colloids in two dimensions. Journal of Physics Condensed Matter, 2021, 33, 195101.	0.7	4
1235	Enzyme Activated Gold Nanoparticles for Versatile Site-Selective Bioconjugation. Journal of the American Chemical Society, 2021, 143, 7342-7350.	6.6	34
1236	Activation of yeast alcohol dehydrogenase in the presence of citrate stabilized gold nanoparticles: An insight into its interaction and modulation mechanism. Journal of Molecular Liquids, 2021, 330, 115633.	2.3	5
1237	From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nature Materials, 2021, 20, 762-773.	13.3	75
1238	Colloidal Particles with Triangular Patches. Langmuir, 2021, 37, 7246-7253.	1.6	15
1239	Neuroevolutionary Learning of Particles and Protocols for Self-Assembly. Physical Review Letters, 2021, 127, 018003.	2.9	12
1240	Designed and biologically active protein lattices. Nature Communications, 2021, 12, 3702.	5.8	25
1241	Lowâ€Density 2D Superlattices Assembled via Directional DNA Bonding. Angewandte Chemie - International Edition, 2021, 60, 19035-19040.	7.2	4
1242	DNA-Grafted 3D Superlattice Self-Assembly. International Journal of Molecular Sciences, 2021, 22, 7558.	1.8	8
1243	Adaptive Nanoparticleâ€Polymer Complexes as Optical Elements: Design and Application in Nanophotonics and Nanomedicine. Laser and Photonics Reviews, 2021, 15, 2000421.	4.4	13

#	Article	IF	Citations
1244	Two-Step Nanoparticle Crystallization via DNA-Guided Self-Assembly and the Nonequilibrium Dehydration Process. Crystal Growth and Design, 2021, 21, 4506-4515.	1.4	3
1245	Formulation of DNA Nanocomposites: Towards Functional Materials for Protein Expression. Polymers, 2021, 13, 2395.	2.0	4
1246	Importance of Substrate–Particle Repulsion for Protein-Templated Assembly of Metal Nanoparticles. Langmuir, 2021, 37, 9111-9119.	1.6	2
1247	Lowâ€Density 2D Superlattices Assembled via Directional DNA Bonding. Angewandte Chemie, 2021, 133, 19183-19188.	1.6	0
1248	Programming Self-Assembled Materials With DNA-Coated Colloids. Frontiers in Physics, 2021, 9, .	1.0	8
1249	Chiral Photomelting of DNA-Nanocrystal Assemblies Utilizing Plasmonic Photoheating. Nano Letters, 2021, 21, 7298-7308.	4.5	20
1250	Effect of Polymer Chain Length on the Superlattice Assembly of Functionalized Gold Nanoparticles. Langmuir, 2021, 37, 10143-10149.	1.6	10
1251	Protein Assembly by Design. Chemical Reviews, 2021, 121, 13701-13796.	23.0	123
1252	Controlled Organization of Inorganic Materials Using Biological Molecules for Activating Therapeutic Functionalities. ACS Applied Materials & Interfaces, 2021, 13, 39030-39041.	4.0	10
1253	Brownian lithographic polymers of steric lock-and-key colloidal linkages. Science Advances, 2021, 7, eabg3678.	4.7	2
1254	Coupling morphological and magnetic anisotropy for assembling tetragonal colloidal crystals. Science Advances, 2021, 7, eabh1289.	4.7	31
1255	5′-Phosphorylation Strengthens Sticky-End Cohesions. Journal of the American Chemical Society, 2021, 143, 14987-14991.	6.6	7
1256	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie, 2022, 134, .	1.6	7
1257	Spherical Nucleic Acids: Integrating Nanotechnology Concepts into General Chemistry Curricula. Journal of Chemical Education, 2021, 98, 3090-3099.	1.1	3
1258	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
1259	Colloidal Plasmonic Nanocubes as Capacitor Building Blocks for Multidimensional Optical Metamaterials: A Review. ACS Applied Nano Materials, 2021, 4, 9976-9984.	2.4	7
1260	Self-regulated co-assembly of soft and hard nanoparticles. Nature Communications, 2021, 12, 5682.	5.8	32
1261	Structure of <scp>nanoparticleâ€polyelectrolyte</scp> complexes: Effects of polyelectrolyte	1.8	2

#	Article	IF	CITATIONS
1262	The Application of Tetrahedral Framework Nucleic Acids as a Drug Carrier in Biomedicine Fields. Current Stem Cell Research and Therapy, 2021, 16, 48-56.	0.6	9
1263	Hydrophobic collapse-driven nanoparticle coating with poly-adenine adhesives. Chemical Communications, 2021, 57, 3801-3804.	2.2	18
1264	From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chemical Society Reviews, 2021, 50, 5898-5951.	18.7	232
1265	Multifarious colloidal structures: new insight into ternary and quadripartite ordered assemblies. Nanoscale, 2021, 13, 16554-16563.	2.8	1
1266	Electron-Equivalent Valency through Molecularly Well-Defined Multivalent DNA. Journal of the American Chemical Society, 2021, 143, 1752-1757.	6.6	13
1267	Building ordered nanoparticle assemblies inspired by atomic epitaxy. Physical Chemistry Chemical Physics, 2021, 23, 20028-20037.	1.3	1
1269	Probing the Consequences of Cubic Particle Shape and Applied Field on Colloidal Crystal Engineering with DNA. Angewandte Chemie, 2021, 133, 4111-4115.	1.6	3
1270	Addressable Biological Functionalization of Inorganics: Materials-Selective Fusion Proteins in Bio-nanotechnology. , 2014, , 221-255.		3
1271	Biomedical Applications of Anisotropic Gold Nanoparticles. Nanostructure Science and Technology, 2017, , 399-426.	0.1	3
1272	Application of Nanomaterials in Cancer Diagnosis, Drug Delivery, and Therapy. , 2020, , 147-171.		1
1274	Spontaneous Formation of Highly Stable Nanoparticle Supercrystals Driven by a Covalent Bonding Interaction. Nano Letters, 2021, 21, 258-264.	4.5	13
1275	Ligand-Free Fabrication of Ag Nanoassemblies for Highly Sensitive and Reproducible Surface-Enhanced Raman Scattering Sensing of Antibiotics. ACS Applied Materials & Interfaces, 2021, 13, 1766-1772.	4.0	11
1276	Salt-induced cluster formation of gold nanoparticles followed by stopped-flow SAXS, DLS and extinction spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 16348-16357.	1.3	15
1277	Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces. Physical Review Materials, 2017, 1, .	0.9	11
1278	Pressure-tunable photonic band gaps in an entropic colloidal crystal. Physical Review Materials, 2018, 2, .	0.9	16
1279	Xenotransplantation: back to the future?. Transplant International, 2018, 31, 465-477.	0.8	51
1280	Materials Science of DNA. , 2011, , 1-12.		5
1281	Nanostructures and Nanomaterials via DNA-Based Self-Assembly. , 2011, , 13-48.		2

	CITATION	Report
--	----------	--------

#	Article	IF	CITATIONS
1282	Nanoparticle Superlattices through Template-Encoded DNA Dendrimers. Journal of the American Chemical Society, 2021, 143, 17170-17179.	6.6	12
1283	Divalent Multilinking Bonds Control Growth and Morphology of Nanopolymers. Nano Letters, 2021, 21, 10547-10554.	4.5	15
1284	Bimetallic Janus Nanocrystals: Syntheses and Applications. Advanced Materials, 2022, 34, e2102591.	11.1	55
1285	Applying Nanotechnology to Revolutionary Chemical and Biological Countermeasures. , 2009, , 29-87.		0
1286	Mechanoenzymatics and Nanoassembly of Single Molecules. Springer Series in Chemical Physics, 2010, , 289-303.	0.2	0
1287	Synthesis, Processing, and Manufacturing of Components, Devices, and Systems. , 2011, , 109-158.		1
1288	Self-Assembled DNA-Inorganic Nanoparticle Structures. , 2013, , 185-205.		0
1289	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
1290	Properties of DNA-Capped Nanoparticles. , 2014, , 1227-1262.		0
1291	INVESTIGATIONS OF THE LEVEL OF OLIGONUCLEOTIDE IMMOBILIZATION ON THE SURFACE OF GOLD NANOPARTICLES USING EXPERIMENTAL APPROACH WITH FLUOROPHORE Cy3. Sensor Electronics and Microsystem Technologies, 2014, 11, 31-41.	0.1	0
1292	Nanoelement Manufacturing: Quantum Mechanics and Thermodynamic Principles. , 2014, , 67-101.		0
1293	Dynamical Properties of Two-Dimensional Aggregates in Patchy Particle Systems. Springer Proceedings in Physics, 2015, , 265-271.	0.1	1
1294	Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly. PLoS ONE, 2015, 10, e0137982.	1.1	1
1295	Cyclodextrin Nanosponges. , 0, , 2259-2270.		0
1296	Assemblies and Superstructures of Inorganic Colloidal Nanocrystals. Nanostructure Science and Technology, 2017, , 293-335.	0.1	0
1297	Synthetic Strategies for Anisotropic and Shape-Selective Nanomaterials. Nanostructure Science and Technology, 2017, , 29-77.	0.1	1
1298	Effect of difference in interaction strength on two-dimensional lattice structure in a binary system with DNA nanoparticles. Japanese Journal of Applied Physics, 2017, 56, 075001.	0.8	0
1299	Nanotechnology for the Management of Respiratory Disease. , 2018, , 927-940.		1

#	Article	IF	CITATIONS
1300	Investigating the stability of DNA-coated gold nanoparticles. , 2018, , .		0
1301	MOST NOTABLE PAPERS IN THE 2018 BIANNUAL METALS IN MEDICINE GORDON RESEARCH CONFERENCE. International Journal of Research -GRANTHAALAYAH, 2018, 6, 391-397.	0.1	0
1303	Controlling Structure and Porosity in Catalytic Nanoparticle Superlattices with DNA*. , 2020, , 1415-1429.		0
1304	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals*. , 2020, , 1069-1079.		0
1305	Growth Dynamics for DNA-Guided Nanoparticle Crystallization*. , 2020, , 989-1016.		0
1306	DNA-mediated hierarchical organization of gold nanoprisms into 3D aggregates and their application in surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2021, 23, 25256-25263.	1.3	2
1309	Contraction and Expansion of Stimuli-Responsive DNA Bonds in Flexible Colloidal Crystals*. , 2020, , 1069-1079.		0
1311	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 4976-5067.	23.0	173
1312	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
1313	Probing the adsorption behavior and free energy landscape of single-stranded DNA oligonucleotides on single-layer MoS ₂ with molecular dynamics. Nanotechnology, 2022, 33, 105602.	1.3	0
1314	Reversible and spatiotemporal control of colloidal structure formation. Nature Communications, 2021, 12, 6811.	5.8	8
1315	Controlling the Emission Properties of Quantum Rods via Multiscale 3D Ordered Organization. Journal of Nanomaterials, 2021, 2021, 1-9.	1.5	0
1316	Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chemical Society Reviews, 2021, 50, 13410-13440.	18.7	20
1317	Controlling morphology in hybrid isotropic/patchy particle assemblies. Journal of Chemical Physics, 2022, 156, 024501.	1.2	4
1318	Kinetic Control of Length and Morphology of Segmented Polymeric Nanofibers in Microfluidic Chips. Langmuir, 2020, 36, 13364-13370.	1.6	4
1319	Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA. Soft Matter, 2022, 18, 526-534.	1.2	4
1320	The emergence of valency in colloidal crystals through electron equivalents. Nature Materials, 2022, 21, 580-587.	13.3	37
1321	Engineering bacterial surface interactions using DNA as a programmable material. Chemical	2.2	12

ORT

#	Article	IF	CITATIONS
1323	Real-time imaging of metallic supraparticle assembly during nanoparticle synthesis. Nanoscale, 2022, 14, 312-319.	2.8	2
1324	Programmable Matter: The Nanoparticle Atom and DNA Bond. Advanced Materials, 2022, 34, e2107875.	11.1	30
1325	Nanocomposite tectons as unifying systems for nanoparticle assembly. Soft Matter, 2022, 18, 2176-2192.	1.2	2
1326	Encapsulation of Gold Nanoparticles into Redesigned Ferritin Nanocages for the Assembly of Binary Superlattices Composed of Fluorophores and Gold Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 10656-10668.	4.0	11
1327	Plasmonic Superlattice Membranes Based on Bimetallic Nano-Sea Urchins as High-Performance Label-Free Surface-Enhanced Raman Spectroscopy Platforms. ACS Sensors, 2022, 7, 622-631.	4.0	12
1328	Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. Industrial & Engineering Chemistry Research, 2022, 61, 7594-7612.	1.8	7
1329	Fabrication of a Large-Scale Plasmonic Nanojunction for Chemical Sensing. ACS Applied Nano Materials, 2022, 5, 5722-5732.	2.4	3
1330	Diversified Applications of Self-assembled Nanocluster Delivery Systems- A State-ofthe- art Review. Current Pharmaceutical Design, 2022, 28, 1870-1884.	0.9	2
1331	Delivery Order of Nanoconstructs Affects Intracellular Trafficking by Endosomes. Journal of the American Chemical Society, 2022, 144, 5274-5279.	6.6	4
1332	Acid-Resistant and Physiological pH-Responsive DNA Hydrogel Composed of A-Motif and i-Motif toward Oral Insulin Delivery. Journal of the American Chemical Society, 2022, 144, 5461-5470.	6.6	66
1333	Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta, 2022, 243, 123377.	2.9	8
1334	Self-assembly of photonic crystals by controlling the nucleation and growth of DNA-coated colloids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	28
1335	Binary Superlattices of Gold Nanoparticles in Two Dimensions. Journal of Physical Chemistry Letters, 2022, 13, 3424-3430.	2.1	8
1338	Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization. Nano Letters, 2022, 22, 3809-3817.	4.5	10
1339	Compact Peptoid Molecular Brushes for Nanoparticle Stabilization. Journal of the American Chemical Society, 2022, 144, 8138-8152.	6.6	11
1340	Designing a High-Crystallinity Nano-Gapped Particle Superlattice via DNA-Guided Colloidal Crystallization and Dehydration. Crystal Growth and Design, 0, , .	1.4	1
1341	Comprehensive view of microscopic interactions between DNA-coated colloids. Nature Communications, 2022, 13, 2304.	5.8	14
1342	Chiral plasmonic nanomaterials for assembly. , 2022, , .		0

#	Article	IF	CITATIONS
1343	Synthesis of Polymer Nanoparticles in the Presence of Diatoms as Sustainable Bio-Templates. Colloid Journal, 2022, 84, 120-126.	0.5	3
1344	Solventâ€Mediated Structural Evolution in Colloidal Lead Halide Perovskite Nanocrystals Selfâ€Assembly. Advanced Materials Interfaces, 2022, 9, .	1.9	1
1345	Tuning the Effective Interactions between Spherical Double-Stranded DNA Brushes. Macromolecules, 0, , .	2.2	1
1346	DNAâ€Engineered Hydrogels with Lightâ€Adaptive Plasmonic Responses. Advanced Functional Materials, 2022, 32, .	7.8	7
1347	From Precision Colloidal Hybrid Materials to Advanced Functional Assemblies. Accounts of Chemical Research, 2022, 55, 1785-1795.	7.6	19
1348	The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly. Nature Communications, 2022, 13, .	5.8	24
1349	Particle-Based Crystallization. ACS Symposium Series, 0, , 37-73.	0.5	1
1350	Nanopolymers for magnetic applications: how to choose the architecture?. Nanoscale, 0, , .	2.8	5
1351	Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Applied Materials & Interfaces, 2023, 15, 25248-25274.	4.0	33
1352	Adenine oligomer directed synthesis of chiral gold nanoparticles. Nature Communications, 2022, 13, .	5.8	31
1353	Self-Assembly of DNA-Grafted Colloids: A Review of Challenges. Micromachines, 2022, 13, 1102.	1.4	10
1354	Highly Stable Nanoparticle Supercrystals Formed by the Aldol Reaction in Conjunction with Slow Solvent Evaporation. Chemistry of Materials, 2022, 34, 6744-6752.	3.2	2
1355	The Promise of Softâ€Matterâ€Enabled Quantum Materials. Advanced Materials, 2023, 35, .	11.1	4
1356	Mass Changes the Diffusion Coefficient of Particles with Ligand-Receptor Contacts in the Overdamped Limit. Physical Review Letters, 2022, 129, .	2.9	3
1357	pHâ€Induced Symmetry Conversion of DNA Origami Lattices. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1358	pHâ€Induced Symmetry Conversion of DNA Origami Lattices. Angewandte Chemie, 0, , .	1.6	0
1359	Magnetically controlled anisotropic light emission of DNA-functionalized supraparticles. MRS Bulletin, 2022, 47, 1084-1091.	1.7	1
1360	Self-assembly in binary mixtures of spherical colloids. Advances in Colloid and Interface Science, 2022, 308, 102748.	7.0	5
	CITATION	REPORT	
------	--	--------	-----------
#	Article	IF	Citations
1361	Staged Assembly of Colloids Using DNA and Acoustofluidics. Nano Letters, 2022, 22, 6907-6915.	4.5	1
1362	Tools for the quantification of the dynamic assembly of colloidal chains of ellipsoidal particles. Colloids and Interface Science Communications, 2022, 50, 100661.	2.0	0
1363	DNA-assisted nanoparticle assembly. , 2023, , 128-148.		1
1364	DNA-mediated assembly of a gold-nanoparticle film with controllable sonic behavior detected by novel electric-induced ultrasound. Biomaterials Science, 2022, 10, 6190-6200.	2.6	1
1365	Preparation, applications, and challenges of functional DNA nanomaterials. Nano Research, 2023, 16, 3895-3912.	5.8	11
1366	Optical Mie Scattering by DNA-Assembled Three-Dimensional Gold Nanoparticle Superlattice Crystals. , 2023, 1, 69-77.		1
1367	Linker-Templated Structure Tuning of Optical Response in Plasmonic Nanoparticle Gels. Journal of Physical Chemistry C, 2022, 126, 16885-16893.	1.5	7
1368	Controlling the two components modified on nanoparticles to construct nanomaterials. Soft Matter, 2022, 18, 8213-8222.	1.2	4
1369	Silver nanocube dimer nanojunctions as plasmon-enhanced Raman sensors. Journal of Materials Chemistry C, 2022, 10, 16573-16582.	2.7	3
1370	Shape memory in self-adapting colloidal crystals. Nature, 2022, 610, 674-679.	13.7	21
1371	DNA-Based Molecular Machines. Jacs Au, 2022, 2, 2381-2399.	3.6	15
1372	Biosynthesis and Characterization of Co3O4NPs Utilizing Prickly Pear Fruit Extract and its Biological Activities. Journal of the Turkish Chemical Society, Section A: Chemistry, 0, , 1117-1128.	0.4	1
1373	Self-assembly of colloidal nanoparticles into low-dimensional structures in a dynamic environment. , 2022, , .		0
1374	A universal way to enrich the nanoparticle lattices with polychrome DNA origami "homologs― Science Advances, 2022, 8, .	4.7	3
1375	Tunable Colloids with Dipolar and Depletion Interactions: Toward Field-Switchable Crystals and Gels. Physical Review X, 2022, 12, .	2.8	1
1376	Two-Dimensional Structures Formed by Triblock Patchy Particles with Two Different Patches. Langmuir, 2022, 38, 15404-15412.	1.6	2
1377	Hierarchically Structured Nanocomposites via a "Systems Materials Science―Approach. Accounts of Materials Research, 2022, 3, 1248-1259.	5.9	5
1378	Supramolecular Semiconductivity through Emerging Ionic Gates in Ion–Nanoparticle Superlattices. ACS Nano, 2023, 17, 275-287.	7.3	9

CITATION REPORT

#	Article	IF	CITATIONS
1379	Effective Hard-Sphere Repulsions between Oleate-Capped Colloidal Metal Oxide Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 11323-11329.	2.1	5
1380	Framework nucleic acids directed assembly of Au nanostructures for biomedical applications. , 2023, 1, .		18
1381	Multidimensional Honeycomb-like DNA Nanostructures Made of C-Motifs. ACS Biomaterials Science and Engineering, 2023, 9, 608-616.	2.6	2
1382	Symmetry-Breaking Dendrimer Synthons in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2023, 145, 841-850.	6.6	4
1383	Non-Invasive, Reliable, and Fast Quantification of DNA Loading on Gold Nanoparticles by a One-Step Optical Measurement. Analytical Chemistry, 2023, 95, 1856-1866.	3.2	2
1384	DNA: structure, strand displacement and reaction network. Scientia Sinica Chimica, 2023, 53, 721-733.	0.2	0
1385	Surface engineering of colloidal nanoparticles. Materials Horizons, 2023, 10, 1185-1209.	6.4	7
1386	Enhancing Crystallization of DNA-Functionalized Nanoparticles by Polymer Chains. Macromolecules, 2023, 56, 1189-1198.	2.2	2
1387	Dynamically Reconfigurable DNA Origami Crystals Driven by a Designated Path Diagram. Journal of the American Chemical Society, 2023, 145, 3978-3986.	6.6	9
1388	Nanoparticle Assembly and Oriented Attachment: Correlating Controlling Factors to the Resulting Structures. Chemical Reviews, 2023, 123, 3127-3159.	23.0	18
1389	Engineering the Thermodynamic Stability and Metastability of Mesophases of Colloidal Bipyramids through Shape Entropy. ACS Nano, 2023, 17, 4287-4295.	7.3	2
1390	Spherical Packing Superlattices in Self-Assembly of Homogenous Soft Matter: Progresses and Potentials. Chinese Journal of Polymer Science (English Edition), 2023, 41, 607-620.	2.0	7
1391	Avoiding Kinetic Trapping in the Self-Assembly of DNA-Functionalized Gold Nanoparticles by Using an Enthalpy-Mediated Strategy. Macromolecules, 0, , .	2.2	1
1393	Nano and Beyond. , 2008, , 743-764.		0
1396	DNA-Driven Dynamic Assembly/Disassembly of Inorganic Nanocrystals for Biomedical Imaging. , 2023, 1, 340-355.		6
1400	A facile method for purifying DNA-modified small particles and soft materials using aqueous two-phase systems. Chemical Communications, 2023, 59, 9130-9133.	2.2	2
1407	Plasmonic nanomaterials: noble metals and beyond. , 2024, , 35-72.		0
1408	Introductory Chapter: Self-Assembly of Molecules into Supramolecular Structures. , 0, , .		0

IF

#

1428 Living donor organ transplantation—gene therapy. , 2024, , 1485-1499.

CITATIONS