Cyclic dermal BMP signalling regulates stem cell activat

Nature 451, 340-344 DOI: 10.1038/nature06457

Citation Report

#	Article	IF	CITATIONS
2	A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proceedings of the United States of America, 2008, 105, 13906-13911.	3.3	503
3	(Neuro-)endocrinology of epithelial hair follicle stem cells. Molecular and Cellular Endocrinology, 2008, 288, 38-51.	1.6	42
4	Smad4-dependent desmoglein-4 expression contributes to hair follicle integrity. Developmental Biology, 2008, 322, 156-166.	0.9	33
5	The role of activins and follistatins in skin and hair follicle development and function. Cytokine and Growth Factor Reviews, 2008, 19, 415-426.	3.2	42
6	Conversion of the Nipple to Hair-Bearing Epithelia by Lowering Bone Morphogenetic Protein Pathway Activity at the Dermal-Epidermal Interface. American Journal of Pathology, 2008, 173, 1339-1348.	1.9	44
7	Therapeutic potential of stem cells in skin repair and regeneration. Chinese Journal of Traumatology - English Edition, 2008, 11, 209-221.	0.7	67
8	More than one way to skin Genes and Development, 2008, 22, 976-985.	2.7	192
9	Skin and hair: models for exploring organ regeneration. Human Molecular Genetics, 2008, 17, R54-R59.	1.4	34
10	Dlx3 is a crucial regulator of hair follicle differentiation and cycling. Development (Cambridge), 2008, 135, 3149-3159.	1.2	121
11	Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of β-catenin in mice. Genes and Development, 2008, 22, 2308-2341.	2.7	512
12	What Signals Operate in the Mammary Niche?. Breast Disease, 2008, 29, 69-82.	0.4	22
13	Building Epithelial Tissues from Skin Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 333-350.	2.0	75
15	Pattern formation today. International Journal of Developmental Biology, 2009, 53, 653-658.	0.3	22
16	Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. International Journal of Developmental Biology, 2009, 53, 813-826.	0.3	133
17	Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. International Journal of Developmental Biology, 2009, 53, 857-868.	0.3	61
18	Propagation failures, breathing fronts, and nonannihilation collisions in the ferroin-bromate-pyrocatechol system. Chaos, 2009, 19, 023116.	1.0	4
19	Disruption of Smad4 in Mouse Epidermis Leads to Depletion of Follicle Stem Cells. Molecular Biology of the Cell, 2009, 20, 882-890.	0.9	41
20	Akt2 and SGK3 are both determinants of postnatal hair follicle development. FASEB Journal, 2009, 23, 3193-3202.	0.2	20

#	Article	IF	CITATIONS
21	Elevated Cutaneous Smad Activation Associates with Enhanced Skin Tumor Susceptibility in Organ Transplant Recipients. Clinical Cancer Research, 2009, 15, 5101-5107.	3.2	12
22	Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8429-8434.	3.3	296
23	On the Origin of Epidermal Cancers. Current Molecular Medicine, 2009, 9, 355-364.	0.6	7
24	Follistatin modulates a BMP autoregulatory loop to control the size and patterning of sensory domains in the developing tongue. Development (Cambridge), 2009, 136, 2187-2197.	1.2	55
25	The Hair Follicle as a Dynamic Miniorgan. Current Biology, 2009, 19, R132-R142.	1.8	814
26	Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Human Mutation, 2009, 30, 379-390.	1.1	364
27	Deletion of BMP7 affects the development of bones, teeth, and other ectodermal appendages of the orofacial complex. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 361-374.	0.6	70
28	The stem cell niche. Journal of Pathology, 2009, 217, 169-180.	2.1	188
29	Hair Follicles Are Required for Optimal Growth during Lateral Skin Expansion. Journal of Investigative Dermatology, 2009, 129, 2358-2364.	0.3	14
30	From Telogen to Exogen: Mechanisms Underlying Formation and Subsequent Loss of the Hair Club Fiber. Journal of Investigative Dermatology, 2009, 129, 2100-2108.	0.3	81
31	Epidermal homeostasis: a balancing act of stem cells in the skin. Nature Reviews Molecular Cell Biology, 2009, 10, 207-217.	16.1	1,076
32	Defining the hair follicle stem cell (Part II). Journal of Cutaneous Pathology, 2009, 36, 1134-1137.	0.7	9
33	A Two-Step Mechanism for Stem Cell Activation during Hair Regeneration. Cell Stem Cell, 2009, 4, 155-169.	5.2	669
34	The River of Stem Cells. Cell Stem Cell, 2009, 4, 100-102.	5.2	14
35	Distinct Self-Renewal and Differentiation Phases in the Niche of Infrequently Dividing Hair Follicle Stem Cells. Cell Stem Cell, 2009, 5, 267-278.	5.2	188
36	Inhibition of compensatory renal growth by the N-terminus of a sheep-derived peptide. Regulatory Peptides, 2009, 152, 48-53.	1.9	7
38	Epidermal stem cell diversity and quiescence. EMBO Molecular Medicine, 2009, 1, 260-267.	3.3	162
39	Characterization of BMP2 gene expression in embryonic and adult Inner Mongolia Cashmere goat (Capra hircus) hair follicles. Canadian Journal of Animal Science, 2009, 89, 457-462.	0.7	18

#	Article	IF	CITATIONS
40	Unveiling Hair Follicle Stem Cells. Stem Cell Reviews and Reports, 2010, 6, 658-664.	5.6	43
41	Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice. BMC Neuroscience, 2010, 11, 129.	0.8	23
42	The cycling hair follicle as an ideal systems biology research model. Experimental Dermatology, 2010, 19, 707-713.	1.4	75
43	Peripheral blood gene expression in alopecia areata reveals molecular pathways distinguishing heritability, disease and severity. Genes and Immunity, 2010, 11, 531-541.	2.2	31
44	Tipping the scale: muscle versus fat. Nature Cell Biology, 2010, 12, 102-104.	4.6	50
45	Runx1 Directly Promotes Proliferation of Hair Follicle Stem Cells and Epithelial Tumor Formation in Mouse Skin. Molecular and Cellular Biology, 2010, 30, 2518-2536.	1.1	107
46	N-WASP is a novel regulator of hair-follicle cycling that controls antiproliferative TGFβ pathways. Journal of Cell Science, 2010, 123, 128-140.	1.2	36
47	Microâ€RNAâ€31 controls hair cycleâ€associated changes in gene expression programs of the skin and hair follicle. FASEB Journal, 2010, 24, 3869-3881.	0.2	175
48	Deciphering the Mesodermal Potency of Porcine Skin-Derived Progenitors (SKP) by Microarray Analysis. Cellular Reprogramming, 2010, 12, 161-173.	0.5	8
49	Compartmentalized organization: a common and required feature of stem cell niches?. Development (Cambridge), 2010, 137, 1586-1594.	1.2	60
50	Cyclic Expression of Lhx2 Regulates Hair Formation. PLoS Genetics, 2010, 6, e1000904.	1.5	50
51	Biology of Human Hair: Know Your Hair to Control It. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 121-143.	0.6	12
52	Fluctuations of BMP signaling pathway during hair cycles in skin of mice with mutant genes we, wal and Fgf5go. Journal of Dermatological Science, 2010, 60, 201-203.	1.0	3
53	Relation between the expression levels of the POU transcription factors Skn-1a and Skn-1n and keratinocyte differentiation. Journal of Dermatological Science, 2010, 60, 203-205.	1.0	20
54	Small cutaneous wounds induce telogen to anagen transition of murine hair follicle stem cells. Journal of Dermatological Science, 2010, 60, 143-150.	1.0	19
55	On the Streets of San Francisco: Highlights from the ISSCR Annual Meeting 2010. Cell Stem Cell, 2010, 7, 443-450.	5.2	1
56	Wnt Proteins Promote Bone Regeneration. Science Translational Medicine, 2010, 2, 29ra30.	5.8	235
57	Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation. Science, 2010, 329, 1616-1620.	6.0	1,273

#	Article	IF	CITATIONS
58	In search of the Golden Fleece: unraveling principles of morphogenesis by studying the integrative biology of skin appendages. Integrative Biology (United Kingdom), 2011, 3, 388.	0.6	25
59	Mechanisms Limiting Body Growth in Mammals. Endocrine Reviews, 2011, 32, 422-440.	8.9	134
60	MicroRNAs and Mesenchymal Stem Cells. Vitamins and Hormones, 2011, 87, 291-320.	0.7	45
61	A Simplified Procedure to Reconstitute Hair-Producing Skin. Tissue Engineering - Part C: Methods, 2011, 17, 391-400.	1.1	53
62	The circadian molecular clock creates epidermal stem cell heterogeneity. Nature, 2011, 480, 209-214.	13.7	273
63	Dynamics between Stem Cells, Niche, and Progeny in the Hair Follicle. Cell, 2011, 144, 92-105.	13.5	525
64	Adipocyte Lineage Cells Contribute to the Skin Stem Cell Niche to Drive Hair Cycling. Cell, 2011, 146, 761-771.	13.5	502
65	Niche Crosstalk: Intercellular Signals at the Hair Follicle. Cell, 2011, 146, 678-681.	13.5	53
66	A novel promising therapy for skin aging: Dermal multipotent stem cells against photoaged skin by activation of TGF-I²/Smad and p38 MAPK signaling pathway. Medical Hypotheses, 2011, 76, 343-346.	0.8	30
67	Nerve-Derived Sonic Hedgehog Defines a Niche for Hair Follicle Stem Cells Capable of Becoming Epidermal Stem Cells. Cell Stem Cell, 2011, 8, 552-565.	5.2	395
68	Regulation of Human Epidermal Stem Cell Proliferation and Senescence Requires Polycomb- Dependent and -Independent Functions of Cbx4. Cell Stem Cell, 2011, 9, 233-246.	5.2	128
69	Self-Organizing and Stochastic Behaviors During the Regeneration of Hair Stem Cells. Science, 2011, 332, 586-589.	6.0	186
71	Multiple miliary osteoma cutis is a distinct disease entity: four case reports and review of the literature. British Journal of Dermatology, 2011, 164, no-no.	1.4	28
72	Hypothesis. Journal of Biological Rhythms, 2011, 26, 471-485.	1.4	58
73	The Expression and Regulation of Bone-acting Cytokines in Human Peripheral Adipose Tissue in Organ Culture. Hormone and Metabolic Research, 2011, 43, 477-482.	0.7	11
74	Transcriptional regulation of bone morphogenetic protein 4 by tumor necrosis factor and its relationship with ageâ€related macular degeneration. FASEB Journal, 2011, 25, 2221-2233.	0.2	24
75	Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments. Journal of Cell Biology, 2011, 193, 235-250.	2.3	63
76	Activated Kras Alters Epidermal Homeostasis of Mouse Skin, Resulting in Redundant Skin and Defective Hair Cycling. Journal of Investigative Dermatology, 2011, 131, 311-319.	0.3	21

#	Article	lF	CITATIONS
77	Bone Morphogenetic Protein 5 Regulates the Number of Keratinocyte Stem Cells from the Skin of Mice. Journal of Investigative Dermatology, 2011, 131, 580-585.	0.3	17
78	BIOLOGICAL CLOCK - Is the Need for a Clock a Common Issue for Cells and Computers ?. Bio-Algorithms and Med-Systems, 2012, 8, 255-265.	1.0	0
79	Modelling Hair Follicle Growth Dynamics as an Excitable Medium. PLoS Computational Biology, 2012, 8, e1002804.	1.5	22
80	Regulation of Hair Shedding by the Type 3 IP3 Receptor. Journal of Investigative Dermatology, 2012, 132, 2137-2147.	0.3	19
81	Stem Cell Niches for Skin Regeneration. International Journal of Biomaterials, 2012, 2012, 1-8.	1.1	98
82	Identification of Telogen Markers Underscores that Telogen Is Far from a Quiescent Hair Cycle Phase. Journal of Investigative Dermatology, 2012, 132, 721-724.	0.3	20
83	Classifying general nonlinear force laws in cell-based models via the continuum limit. Physical Review E, 2012, 85, 021921.	0.8	33
84	Hair Cycle Resting Phase Is Regulated by Cyclic Epithelial FGF18 Signaling. Journal of Investigative Dermatology, 2012, 132, 1338-1345.	0.3	106
85	Exogenous stimulations change nude mouse hair cycle pattern. Journal of Dermatological Treatment, 2012, 23, 90-96.	1.1	2
86	Context-dependent Action of Transforming Growth Factor Î ² Family Members on Normal and Cancer Stem Cells. Current Pharmaceutical Design, 2012, 18, 4072-4086.	0.9	22
87	Acute and Impaired Wound Healing. Advances in Skin and Wound Care, 2012, 25, 349-370.	0.5	155
88	Regeneration of Epidermal Structures. , 2012, , 43-65.		2
89	Unravelling hair follicle–adipocyte communication. Experimental Dermatology, 2012, 21, 827-830.	1.4	68
90	The Harmonies Played by TGF-Î ² in Stem Cell Biology. Cell Stem Cell, 2012, 11, 751-764.	5.2	165
91	Understanding hair follicle cycling: a systems approach. Current Opinion in Genetics and Development, 2012, 22, 607-612.	1.5	30
92	Stochastic modeling of stem-cell dynamics with control. Mathematical Biosciences, 2012, 240, 231-240.	0.9	41
93	New Activators and Inhibitors in the Hair Cycle Clock: Targeting Stem Cells' State of Competence. Journal of Investigative Dermatology, 2012, 132, 1321-1324.	0.3	74
94	Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation. Cell Stem Cell, 2012, 10, 63-75.	5.2	316

#	Article	IF	CITATIONS
95	Inducible deletion of epidermal <i>Dicer</i> and <i>Drosha</i> reveals multiple functions for miRNAs in postnatal skin. Development (Cambridge), 2012, 139, 1405-1416.	1.2	80
96	Physiological Regeneration of Skin Appendages and Implications for Regenerative Medicine. Physiology, 2012, 27, 61-72.	1.6	64
97	A prototypic mathematical model of the human hair cycle. Journal of Theoretical Biology, 2012, 310, 143-159.	0.8	34
98	A family business: stem cell progeny join the niche to regulate homeostasis. Nature Reviews Molecular Cell Biology, 2012, 13, 103-114.	16.1	266
99	The human hair follicle, a bistable organ?. Experimental Dermatology, 2012, 21, 401-403.	1.4	44
100	Hoxc13/ \hat{l}^2 -catenin Correlation with Hair Follicle Activity in Cashmere Goat. Journal of Integrative Agriculture, 2012, 11, 1159-1166.	1.7	21
101	Multi-layered environmental regulation on the homeostasis of stem cells: The saga of hair growth and alopecia. Journal of Dermatological Science, 2012, 66, 3-11.	1.0	61
102	Hairy tale of signaling in hair follicle development and cycling. Seminars in Cell and Developmental Biology, 2012, 23, 906-916.	2.3	169
103	Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Seminars in Cell and Developmental Biology, 2012, 23, 917-927.	2.3	319
104	Epigenetic alterations involved in cancer stem cell reprogramming. Molecular Oncology, 2012, 6, 620-636.	2.1	167
105	Progressive Alopecia Reveals Decreasing Stem Cell Activation Probability during Aging of Mice with Epidermal Deletion of DNA Methyltransferase 1. Journal of Investigative Dermatology, 2012, 132, 2681-2690.	0.3	74
106	Stem cells: A view from the roots. Biotechnology Journal, 2012, 7, 704-722.	1.8	14
107	Dynamic Signals for Hair Follicle Development and Regeneration. Stem Cells and Development, 2012, 21, 7-18.	1.1	67
108	Development and Homeostasis of the Skin Epidermis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008383-a008383.	2.3	83
109	A pair of transmembrane receptors essential for the retention and pigmentation of hair. Genesis, 2012, 50, 783-800.	0.8	11
110	Two anatomically distinct niches regulate stem cell activity. Blood, 2012, 120, 2174-2181.	0.6	65
111	Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature, 2012, 487, 496-499.	13.7	324
112	Home sweet home: skin stem cell niches. Cellular and Molecular Life Sciences, 2012, 69, 2573-2582.	2.4	80

#	Article	IF	CITATIONS
113	Ontogeny and Homeostasis of Adult Epithelial Skin Stem Cells. Stem Cell Reviews and Reports, 2012, 8, 561-576.	5.6	16
114	Specific VEGF sequestering and release using peptide-functionalized hydrogel microspheres. Biomaterials, 2012, 33, 3475-3484.	5.7	77
115	What does the concept of the stem cell niche really mean today?. BMC Biology, 2012, 10, 19.	1.7	155
116	Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres. Materials Science and Engineering C, 2013, 33, 1506-1513.	3.8	27
117	Beyond the Niche: Tissue-Level Coordination of Stem Cell Dynamics. Annual Review of Cell and Developmental Biology, 2013, 29, 107-136.	4.0	51
118	Roles of MED1 in Quiescence of Hair Follicle Stem Cells and Maintenance of Normal Hair Cycling. Journal of Investigative Dermatology, 2013, 133, 354-360.	0.3	18
120	Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19679-19688.	3.3	309
121	Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504, 277-281.	13.7	946
122	Architectural Niche Organization by LHX2 Is Linked to Hair Follicle Stem Cell Function. Cell Stem Cell, 2013, 13, 314-327.	5.2	84
123	Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nature Reviews Molecular Cell Biology, 2013, 14, 737-748.	16.1	131
124	<i>Nfatc1</i> orchestrates aging in hair follicle stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4950-9.	3.3	146
125	New Insights into Mechanisms ofÂStem Cell Daughter Fate Determination in Regenerative Tissues. International Review of Cell and Molecular Biology, 2013, 300, 1-50.	1.6	16
126	Wnt Signaling in Skin Development, Homeostasis, and Disease. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008029-a008029.	2.3	205
127	Hair Follicle: A Novel Source of Multipotent Stem Cells for Tissue Engineering and Regenerative Medicine. Tissue Engineering - Part B: Reviews, 2013, 19, 265-278.	2.5	68
128	Distinct Functions for Wnt/β-Catenin in Hair Follicle Stem Cell Proliferation and Survival and Interfollicular Epidermal Homeostasis. Cell Stem Cell, 2013, 13, 720-733.	5.2	270
129	Wound Healing: A Paradigm for Regeneration. Mayo Clinic Proceedings, 2013, 88, 1022-1031.	1.4	67
130	The biology of hair diversity. International Journal of Cosmetic Science, 2013, 35, 329-336.	1.2	48
131	Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development (Cambridge), 2013, 140, 1676-1683.	1.2	225

ARTICLE IF CITATIONS # Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 132 1.2 255 (Cambridge), 2013, 140, 1517-1527. Common developmental pathways link tooth shape to regeneration. Developmental Biology, 2013, 377, 133 94 399-414. Isolation and Characterization of Cutaneous Epithelial Stem Cells. Methods in Molecular Biology, 134 0.4 4 2013, 989, 61-69. Brg1 Governs a Positive Feedback Circuit in the Hair Follicle for Tissue Regeneration and Repair. 3.1 Developmental Cell, 2013, 25, 169-181. Hippo Signaling and Organ Size Control., 2013, , 281-291. 136 0 Therapeutic strategy for hair regeneration: hair cycle activation, niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opinion on Biological Therapy, 1.4 79 2013, 13, 377-391. BMP signaling in development and diseases: A pharmacological perspective. Biochemical Pharmacology, 138 2.0 86 2013, 85, 857-864. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development 1.2 (Cambridge), 2013, 140, 3809-3818. EGFR-Ras-Raf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, 142 Tissue Remodeling and Epidermal Cancers. International Journal of Molecular Sciences, 2013, 14, 1.8 38 19361-19384. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem 143 Cells. BioMed Research International, 2013, 2013, 1-21. Adenovirus-Mediated Wnt10b Overexpression Induces Hair Follicle Regeneration. Journal of 144 0.3 84 Investigative Dermatology, 2013, 133, 42-48. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes 5.0 through the primary cilia. Cell Death and Differentiation, 2013, 20, 130-138. The incidental pore: Ca_V1.2 and stem cell activation in quiescent hair follicles. Genes and 146 2.7 3 Development, 2013, 27, 1315-1317. A randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: A pilot 0.1 166 study. International Journal of Trichology, 2013, 5, 6. Activin B Promotes Initiation and Development of Hair Follicles in Mice. Cells Tissues Organs, 2013, 198, 148 1.3 5 318-326. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proceedings of the National Academy of Sciences of the United 149 169 States of America, 2013, 110, 1351-1356. Toward a universal treatment for cancer: cell inflation assisted chemotherapy. Cancer Medicine, 2013, 150 1.36 2, 421-426. Adenovirus-Mediated Wnt5a Expression Inhibits the Telogen-To-Anagen Transition of Hair Follicles in 151 1.1 19 Mice. International Journal of Medical Sciences, 2013, 10, 908-914.

#	Article	IF	Citations
152	Development of the Mouse Dermal Adipose Layer Occurs Independently of Subcutaneous Adipose Tissue and Is Marked by Restricted Early Expression of FABP4. PLoS ONE, 2013, 8, e59811.	1.1	66
153	Hyperelastic Material Properties of Mouse Skin under Compression. PLoS ONE, 2013, 8, e67439.	1.1	43
154	Hair follicle and skin regeneration. , 0, , 590-602.		0
155	Growth and viability of Liaoning Cashmere goat hair follicles during the annual hair follicle cycle. Genetics and Molecular Research, 2014, 13, 4433-4443.	0.3	10
156	Creation of Consistent Burn Wounds: A Rat Model. Archives of Plastic Surgery, 2014, 41, 317-324.	0.4	63
158	Optimal Effector Functions in Human Natural Killer Cells Rely upon Autocrine Bone Morphogenetic Protein Signaling. Cancer Research, 2014, 74, 5019-5031.	0.4	22
159	Transgenic Flash Mice for In Vivo Quantitative Monitoring of Canonical Wnt Signaling to Track Hair Follicle Cycle Dynamics. Journal of Investigative Dermatology, 2014, 134, 1519-1526.	0.3	20
160	Mouse Hair Cycle Expression Dynamics Modeled as Coupled Mesenchymal and Epithelial Oscillators. PLoS Computational Biology, 2014, 10, e1003914.	1.5	12
161	Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells. PLoS Biology, 2014, 12, e1002002.	2.6	145
162	Calcineurin/Nfatc1 signaling links skin stem cell quiescence to hormonal signaling during pregnancy and lactation. Genes and Development, 2014, 28, 983-994.	2.7	42
163	Defining dermal adipose tissue. Experimental Dermatology, 2014, 23, 629-631.	1.4	218
164	SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes and Development, 2014, 28, 328-341.	2.7	171
165	Akt Signaling Leads to Stem Cell Activation and Promotes Tumor Development in Epidermis. Stem Cells, 2014, 32, 1917-1928.	1.4	30
166	Concise Review: The Plasticity of Stem Cell Niches: A General Property Behind Tissue Homeostasis and Repair. Stem Cells, 2014, 32, 852-859.	1.4	53
167	Smad1 and 5 but Not Smad8 Establish Stem Cell Quiescence Which Is Critical to Transform the Premature Hair Follicle During Morphogenesis Toward the Postnatal State. Stem Cells, 2014, 32, 534-547.	1.4	51
168	Aging and Anti-Aging in Hair and Hair Loss. , 2014, , 231-246.		1
169	Heterogeneity and plasticity of epidermal stem cells. Development (Cambridge), 2014, 141, 2559-2567.	1.2	97
170	Sequential and Opposing Activities of Wnt and BMP Coordinate Zebrafish Bone Regeneration. Cell Reports, 2014, 6, 482-498.	2.9	105

#	Article	IF	CITATIONS
171	Human epithelial hair follicle stem cells and their progeny: Current state of knowledge, the widening gap in translational research and future challenges. BioEssays, 2014, 36, 513-525.	1.2	111
172	Tooth, hair and claw: Comparing epithelial stem cell niches of ectodermal appendages. Experimental Cell Research, 2014, 325, 96-103.	1.2	14
173	Stem cell dynamics in the hair follicle niche. Seminars in Cell and Developmental Biology, 2014, 25-26, 34-42.	2.3	135
174	Macroenvironmental Regulation of Hair Cycling and Collective Regenerative Behavior. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015198-a015198.	2.9	45
175	Modulating hair follicle size with <i><scp>W</scp>nt10b/<scp>DKK</scp>1</i> during hair regeneration. Experimental Dermatology, 2014, 23, 407-413.	1.4	51
176	Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1501-9.	3.3	128
177	Transit-Amplifying Cells Orchestrate Stem Cell Activity and Tissue Regeneration. Cell, 2014, 157, 935-949.	13.5	306
178	A Meeting of Two Chronobiological Systems: Circadian Proteins Period1 and BMAL1 Modulate the Human Hair Cycle Clock. Journal of Investigative Dermatology, 2014, 134, 610-619.	0.3	84
179	Evolution and developmental diversity of tooth regeneration. Seminars in Cell and Developmental Biology, 2014, 25-26, 71-80.	2.3	89
180	Epithelial Stem Cells in Adult Skin. Current Topics in Developmental Biology, 2014, 107, 109-131.	1.0	36
181	Adult Stem Cell Niches. Current Topics in Developmental Biology, 2014, 107, 333-372.	1.0	80
182	Bone morphogenetic proteins 4 and 2/7 induce osteogenic differentiation of mouse skin derived fibroblast and dermal papilla cells. Cell and Tissue Research, 2014, 355, 463-470.	1.5	22
183	Bone Morphogenetic Protein Signaling Suppresses Wound-Induced Skin Repair by Inhibiting Keratinocyte Proliferation and Migration. Journal of Investigative Dermatology, 2014, 134, 827-837.	0.3	60
184	Partial Proteasome Inhibitors Induce Hair Follicle Growth by Stabilizing β-Catenin. Stem Cells, 2014, 32, 85-92.	1.4	3
185	The Dermal Papilla: An Instructive Niche for Epithelial Stem and Progenitor Cells in Development and Regeneration of the Hair Follicle. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015180-a015180.	2.9	153
186	Nucleocytoplasmic shuttling: a common theme in mechanotransduction. Biochemical Society Transactions, 2014, 42, 645-649.	1.6	19
187	Adipocytes in Skin Health and Disease. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015271-a015271.	2.9	81
188	Genome Array on Differentially Expressed Genes of Skin Tissue in Cashmere Goat at Early Anagen of Cashmere Growth Cycle Using DNA Microarray. Journal of Integrative Agriculture, 2014, 13, 2243-2252.	1.7	4

#	Article	IF	CITATIONS
189	Wnt7b Is an Important Intrinsic Regulator of Hair Follicle Stem Cell Homeostasis and Hair Follicle Cycling. Stem Cells, 2014, 32, 886-901.	1.4	83
190	Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 2014, 32, 795-803.	9.4	492
191	Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure and Applied Analysis, 2014, 13, 347-369.	0.4	8
192	Emerging interactions between skin stem cells and their niches. Nature Medicine, 2014, 20, 847-856.	15.2	474
193	The Thinning Top: Why Old People Have Less Hair. Journal of Investigative Dermatology, 2014, 134, 2068-2069.	0.3	4
194	Regenerative Hair Waves in Aging Mice and Extra-Follicular Modulators Follistatin, Dkk1, and Sfrp4. Journal of Investigative Dermatology, 2014, 134, 2086-2096.	0.3	80
195	Bifunctional ectodermal stem cells around the nail display dual fate homeostasis and adaptive wounding response toward nail regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15114-15119.	3.3	30
196	Regionalisation of the skin. Seminars in Cell and Developmental Biology, 2014, 25-26, 3-10.	2.3	23
197	Exogenous connective tissue growth factor preserves the hairâ€inductive ability of human dermal papilla cells. International Journal of Cosmetic Science, 2014, 36, 442-450.	1.2	3
198	Physiological Functions and Underlying Mechanisms of Fibroblast Growth Factor (FGF) Family Members: Recent Findings and Implications for Their Pharmacological Application. Biological and Pharmaceutical Bulletin, 2014, 37, 1081-1089.	0.6	51
199	A review of adipocyte lineage cells and dermal papilla cells in hair follicle regeneration. Journal of Tissue Engineering, 2014, 5, 204173141455685.	2.3	52
200	Epigenetic and Environmental Regulation of Skin Appendage Regeneration. , 2015, , 163-184.		0
201	Palatogenesis and cutaneous repair: A twoâ€headed coin. Developmental Dynamics, 2015, 244, 289-310.	0.8	15
202	Deciphering principles of morphogenesis from temporal and spatial patterns on the integument. Developmental Dynamics, 2015, 244, 905-920.	0.8	21
203	Visible red light enhances physiological anagen entry in vivo and has direct and indirect stimulative effects in vitro. Lasers in Surgery and Medicine, 2015, 47, 50-59.	1.1	33
204	Enhancing hair follicle regeneration by nonablative fractional laser: Assessment of irradiation parameters and tissue response. Lasers in Surgery and Medicine, 2015, 47, 331-341.	1.1	20
205	Skin equivalents: skin from reconstructions as models to study skin development and diseases. British Journal of Dermatology, 2015, 173, 391-403.	1.4	65
206	Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels. Experimental and Therapeutic Medicine, 2015, 9, 2025-2033.	0.8	14

#	Article	IF	CITATIONS
207	Epidermal stem cells and skin tissue engineering in hair follicle regeneration. World Journal of Stem Cells, 2015, 7, 711.	1.3	92
208	The Role of Symmetric Stem Cell Divisions in Tissue Homeostasis. PLoS Computational Biology, 2015, 11, e1004629.	1.5	39
209	Foxp1 Regulates the Proliferation of Hair Follicle Stem Cells in Response to Oxidative Stress during Hair Cycling. PLoS ONE, 2015, 10, e0131674.	1.1	21
210	Neural Hedgehog signaling maintains stem cell renewal in the sensory touch dome epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7195-7200.	3.3	51
211	Roles of GasderminA3 in Catagen–Telogen Transition During Hair Cycling. Journal of Investigative Dermatology, 2015, 135, 2162-2172.	0.3	26
212	Ceramide Synthase 4 Regulates Stem Cell Homeostasis and Hair Follicle Cycling. Journal of Investigative Dermatology, 2015, 135, 1501-1509.	0.3	40
213	The Dynamic Duo: Niche/Stem Cell Interdependency. Stem Cell Reports, 2015, 4, 961-966.	2.3	31
214	Leptin of dermal adipose tissue is differentially expressed during the hair cycle and contributes to adipocyte-mediated growth inhibition of anagen-phase vibrissa hair. Experimental Dermatology, 2015, 24, 57-60.	1.4	29
215	Skin and Skin Appendage Regeneration. , 2015, , 269-292.		8
216	Therapeutic Potential of Gingival Fibroblasts for Cutaneous Radiation Syndrome: Comparison to Bone Marrow-Mesenchymal Stem Cell Grafts. Stem Cells and Development, 2015, 24, 1182-1193.	1.1	27
217	Testing Chemotherapeutic Agents in the Feather Follicle Identifies a Selective Blockade of Cell Proliferation and a Key Role for Sonic Hedgehog Signaling in Chemotherapy-Induced Tissue Damage. Journal of Investigative Dermatology, 2015, 135, 690-700.	0.3	27
218	mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration. Journal of Molecular Cell Biology, 2015, 7, 62-72.	1.5	71
219	Earlier―born secondary hair follicles exhibit phenotypic plasticity. Experimental Dermatology, 2015, 24, 265-268.	1.4	11
220	The Circadian Clock in Skin. Journal of Biological Rhythms, 2015, 30, 163-182.	1.4	135
221	Intravital imaging of hair follicle regeneration in the mouse. Nature Protocols, 2015, 10, 1116-1130.	5.5	74
222	Integration of Bmp and Wnt signaling by Hopx specifies commitment of cardiomyoblasts. Science, 2015, 348, aaa6071.	6.0	132
223	Expansion of specialized epidermis induced by hormonal state and mechanical strain. Mechanisms of Development, 2015, 136, 73-86.	1.7	3
224	Stochastic control of proliferation and differentiation in stem cell dynamics. Journal of Mathematical Biology, 2015, 71, 883-901.	0.8	19

#	Article	IF	CITATIONS
225	Cell lineage branching as a strategy for proliferative control. BMC Biology, 2015, 13, 13.	1.7	34
226	Alopecias Due to Drugs and Other Skin and Systemic Disorders. Current Problems in Dermatology, 2015, 47, 97-106.	0.8	7
227	Organ-Level Quorum Sensing Directs Regeneration in Hair Stem Cell Populations. Cell, 2015, 161, 277-290.	13.5	195
228	Dermal white adipose tissue: a new component of the thermogenic response. Journal of Lipid Research, 2015, 56, 2061-2069.	2.0	104
229	Regulation of Long Bone Growth in Vertebrates; It Is Time to Catch Up. Endocrine Reviews, 2015, 36, 646-680.	8.9	58
230	Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Science Advances, 2015, 1, e1500973.	4.7	183
231	Thyroid hormone signaling controls hair follicle stem cell function. Molecular Biology of the Cell, 2015, 26, 1263-1272.	0.9	36
232	The effects of gamma rays on the regeneration of hair follicles are carried over to later hair cycles. International Journal of Radiation Biology, 2015, 91, 957-963.	1.0	5
233	Resting no more: reâ€defining telogen, the maintenance stage of the hair growth cycle. Biological Reviews, 2015, 90, 1179-1196.	4.7	125
234	Refining the role for adult stem cells as cancer cells of origin. Trends in Cell Biology, 2015, 25, 11-20.	3.6	109
235	Alopezien infolge von Medikamenten oder von anderen Haut- und systemischen Erkrankungen. Karger Kompass Dermatologie, 2016, 4, 5-12.	0.0	0
236	Immunohistochemical study of hair follicle stem cells in regenerated hair follicles induced by Wnt10b. International Journal of Medical Sciences, 2016, 13, 765-771.	1.1	11
237	3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling. Biomolecules and Therapeutics, 2016, 24, 572-580.	1.1	29
238	Wnt5a Suppresses β-catenin Signaling during Hair Follicle Regeneration. International Journal of Medical Sciences, 2016, 13, 603-610.	1.1	18
239	Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles. International Journal of Molecular Sciences, 2016, 17, 582.	1.8	22
240	Regeneration of hair and other skin appendages: A microenvironmentâ€centric view. Wound Repair and Regeneration, 2016, 24, 759-766.	1.5	12
241	Effects of Imiquimod on Hair Follicle Stem Cells and Hair Cycle Progression. Journal of Investigative Dermatology, 2016, 136, 2140-2149.	0.3	26
242	Foxi3 Deficiency Compromises Hair Follicle Stem Cell Specification and Activation. Stem Cells, 2016, 34, 1896-1908.	1.4	58

		CITATION REPORT		
#	Article		IF	CITATIONS
243	The Evolution of the Algorithms for Collective Behavior. Cell Systems, 2016, 3, 514-520		2.9	69
244	Signalling couples hair follicle stem cell quiescence with reduced histone H3 K4/K9/K27 tissue homeostasis. Nature Communications, 2016, 7, 11278.	me3 for proper	5.8	29
245	Computational modeling indicates that surface pressure can be reliably conveyed to tac even amidst changes in skin mechanics. Journal of Neurophysiology, 2016, 116, 218-22	tile receptors 8.	0.9	12
246	Touch Receptors Undergo Rapid Remodeling in Healthy Skin. Cell Reports, 2016, 17, 17	19-1727.	2.9	30
247	The Adult Stem Cell Niche: Multiple Cellular Players in Tissue Homeostasis and Regenera 794-806.	ation. , 2016, ,		1
248	STAT5 Activation in the Dermal Papilla IsÂImportant for Hair Follicle Growth PhaseÂIndu of Investigative Dermatology, 2016, 136, 1781-1791.	ction. Journal	0.3	43
249	What Lies Beneath: Wnt/β-Catenin Signaling and Cell Fate in the LowerÂDermis. Journa Dermatology, 2016, 136, 1084-1087.	l of Investigative	0.3	6
250	β-Catenin Stabilization in Skin Fibroblasts Causes Fibrotic Lesions by Preventing Adipoc Differentiation of the ReticularÂDermis. Journal of Investigative Dermatology, 2016, 136		0.3	79
251	FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to p long-term tissue-regenerating potential. Proceedings of the National Academy of Scienc United States of America, 2016, 113, E1506-15.	reserve ses of the	3.3	121
252	miR-128 regulates differentiation of hair follicle mesenchymal stem cells into smooth m targeting SMAD2. Acta Histochemica, 2016, 118, 393-400.	uscle cells by	0.9	38
253	The importance of basonuclin 2 in adult mice and its relation to basonuclin 1. Mechanis Development, 2016, 140, 53-73.	ms of	1.7	17
254	The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annual Review of O Developmental Biology, 2016, 32, 609-631.	Cell and	4.0	43
255	Quorum sensing and other collective regenerative behavior in organ populations. Curre Genetics and Development, 2016, 40, 138-143.	nt Opinion in	1.5	12
256	<scp>EGFR</scp> : stopping stathmin to start the cycle. Experimental Dermatology, 202	16, 25, 594-595.	1.4	0
257	Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the adipose tissue depot?. Experimental Dermatology, 2016, 25, 258-262.	he dermal	1.4	50
258	Androgenetic Alopecia: An Update of Treatment Options. Drugs, 2016, 76, 1349-1364.		4.9	153
259	Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Skin-Derived Precursors. Stem Cells Translational Medicine, 2016, 5, 1695-1706.	າ Cells and	1.6	49
260	Neural Stem Cells Restore Hair Growth through Activation of the Hair Follicle Niche. Cel Transplantation, 2016, 25, 1439-1451.		1.2	16

#	Article	IF	CITATIONS
261	Hair follicles' transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes and Development, 2016, 30, 2325-2338.	2.7	75
262	Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science, 2016, 351, 613-617.	6.0	109
263	Aging, alopecia, and stem cells. Science, 2016, 351, 559-560.	6.0	45
264	A Guide to Studying Human Hair Follicle Cycling In Vivo. Journal of Investigative Dermatology, 2016, 136, 34-44.	0.3	219
265	Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of cashmere goats. Gene, 2016, 575, 393-398.	1.0	43
266	The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration. Journal of Molecular Biology, 2016, 428, 1423-1440.	2.0	71
267	Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction. Journal of Dermatological Science, 2017, 86, 114-122.	1.0	40
268	TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022186.	2.3	101
269	Msi2 Maintains Quiescent State of Hair Follicle Stem Cells by Directly Repressing the Hh Signaling Pathway. Journal of Investigative Dermatology, 2017, 137, 1015-1024.	0.3	36
270	Corneal epithelial stem cells and their niche at a glance. Journal of Cell Science, 2017, 130, 1021-1025.	1.2	46
271	The transcriptional landscape of seasonal coat colour moult in the snowshoe hare. Molecular Ecology, 2017, 26, 4173-4185.	2.0	27
272	Identification of hair shaft progenitors that create a niche for hair pigmentation. Genes and Development, 2017, 31, 744-756.	2.7	43
273	Effect of miR-125b on dermal papilla cells of goat secondary hair follicle. Electronic Journal of Biotechnology, 2017, 25, 64-69.	1.2	7
274	Effects of gamma rays on the regeneration of murine hair follicles in the natural hair cycle. International Journal of Radiation Biology, 2017, 93, 937-946.	1.0	3
275	Aging in hair follicle stem cells and niche microenvironment. Journal of Dermatology, 2017, 44, 1097-1104.	0.6	39
276	Stem cell plasticity enables hair regeneration following Lgr5+ cell loss. Nature Cell Biology, 2017, 19, 666-676.	4.6	61
277	Requirement of Zinc Transporter SLC39A7/ZIP7 for Dermal Development to Fine-Tune Endoplasmic Reticulum Function by Regulating Protein Disulfide Isomerase. Journal of Investigative Dermatology, 2017, 137, 1682-1691.	0.3	55
278	PTEN Mediates Activation of Core Clock Protein BMAL1 and Accumulation of Epidermal Stem Cells. Stem Cell Reports, 2017, 9, 304-314.	2.3	22

ARTICLE

IF CITATIONS

279	Functional Hair Follicle Regeneration. , 2017, , 97-120.		0
280	Organ Regeneration Based on Developmental Biology. , 2017, , .		2
281	Concise Review: Mechanisms of Quiescent Hair Follicle Stem Cell Regulation. Stem Cells, 2017, 35, 2323-2330.	1.4	52
282	Mobilizing Transit-Amplifying Cell-Derived Ectopic Progenitors Prevents Hair Loss from Chemotherapy or Radiation Therapy. Cancer Research, 2017, 77, 6083-6096.	0.4	36
283	Horizontal Whole Mount: A Novel Processing and Imaging Protocol for Thick, Three-dimensional Tissue Cross-sections of Skin. Journal of Visualized Experiments, 2017, , .	0.2	6
284	MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clinical Science, 2017, 131, 1923-1940.	1.8	31
285	Emerging roles of transitâ€amplifying cells in tissue regeneration and cancer. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e282.	5.9	36
286	Epilation induces hair and skin pigmentation through an EDN3/EDNRB-dependent regenerative response of melanocyte stem cells. Scientific Reports, 2017, 7, 7272.	1.6	29
287	Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell, 2017, 43, 387-401.	3.1	314
288	Enhancement of human neural stem cell selfâ€renewal in 3D hypoxic culture. Biotechnology and Bioengineering, 2017, 114, 1096-1106.	1.7	12
289	Effects of Depilation Methods on Imiquimod-Induced Skin Inflammation inÂMice. Journal of Investigative Dermatology, 2017, 137, 528-531.	0.3	9
290	The Epithelial Stem Cell Niche in Skin. , 2017, , 127-143.		9
291	Roles of the Hedgehog Signaling Pathway in Epidermal and Hair Follicle Development, Homeostasis, and Cancer. Journal of Developmental Biology, 2017, 5, 12.	0.9	66
292	Anatomy and Physiology of Hair. , 2017, , .		11
293	Mechanism of Hair Loss from the Point of View of Epidermal Cell Polarity. , 2017, , .		0
294	Harnessing the Biology of Stem Cells' Niche. , 2017, , 15-31.		4
295	PDGFA regulation of dermal adipocyte stem cells. Stem Cell Investigation, 2017, 4, 72-72.	1.3	3
296	Platelet-rich plasma—an â€~Elixir' for treatment of alopecia: personal experience on 117 patients with review of literature. Stem Cell Investigation, 2017, 4, 64-64.	1.3	34

#	Article	IF	CITATIONS
297	Comparative regenerative mechanisms across different mammalian tissues. Npj Regenerative Medicine, 2018, 3, 6.	2.5	157
298	Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nature Reviews Genetics, 2018, 19, 311-325.	7.7	129
299	Functional anatomy of the hair follicle: The Secondary Hair Germ. Experimental Dermatology, 2018, 27, 701-720.	1.4	45
300	A guide to studying human dermal adipocytes in situ. Experimental Dermatology, 2018, 27, 589-602.	1.4	20
301	Regulation of melanocyte stem cell behavior by the niche microenvironment. Pigment Cell and Melanoma Research, 2018, 31, 556-569.	1.5	25
302	Transforming growth factor- \hat{l}^2 in stem cells and tissue homeostasis. Bone Research, 2018, 6, 2.	5.4	262
303	Wnt Signaling in Adult Epithelial Stem Cells and Cancer. Progress in Molecular Biology and Translational Science, 2018, 153, 21-79.	0.9	30
304	Cellular Dedifferentiation and Regenerative Medicine. , 2018, , .		0
305	Temporal Layering of Signaling Effectors Drives Chromatin Remodeling during Hair Follicle Stem Cell Lineage Progression. Cell Stem Cell, 2018, 22, 398-413.e7.	5.2	85
306	Emerging nonmetabolic functions of skin fat. Nature Reviews Endocrinology, 2018, 14, 163-173.	4.3	67
307	In vivo monitoring of hair cycle stages via bioluminescence imaging of hair follicle NG2 cells. Scientific Reports, 2018, 8, 393.	1.6	15
308	Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metabolism, 2018, 27, 68-83.	7.2	298
309	mTOR signaling in stem and progenitor cells. Development (Cambridge), 2018, 145, .	1.2	146
310	Dermal white adipose tissue undergoes major morphological changes during the spontaneous and induced murine hair follicle cycling: a reappraisal. Archives of Dermatological Research, 2018, 310, 453-462.	1.1	21
311	TGF-β Family Signaling in Epithelial Differentiation and Epithelial–Mesenchymal Transition. Cold Spring Harbor Perspectives in Biology, 2018, 10, a022194.	2.3	90
312	Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells, 2018, 36, 22-35.	1.4	99
313	Delayed Hair Follicle Morphogenesis and Hair Follicle Dystrophy in a Lipoatrophy Mouse Model of Pparg Total Deletion. Journal of Investigative Dermatology, 2018, 138, 500-510.	0.3	63
314	Topical Inhibition of the Electron Transport Chain Can Stimulate the Hair Cycle. Journal of Investigative Dermatology, 2018, 138, 968-972.	0.3	11

#	Article	IF	CITATIONS
315	Stem cells, niches and scaffolds: Applications to burns and wound care. Advanced Drug Delivery Reviews, 2018, 123, 82-106.	6.6	48
316	NF- \hat{I}° B Participates in Mouse Hair Cycle Control and Plays Distinct Roles in the Various Pelage Hair Follicle Types. Journal of Investigative Dermatology, 2018, 138, 256-264.	0.3	23
317	Molecular Regulation of Cellular Quiescence: A Perspective from Adult Stem Cells and Its Niches. Methods in Molecular Biology, 2018, 1686, 1-25.	0.4	37
318	Multiâ€ŧasking epidermal stem cells: Beyond epidermal maintenance. Development Growth and Differentiation, 2018, 60, 531-541.	0.6	35
319	Protective Mechanism of Adipose-Derived Stem Cells in Remodelling of the Skin Stem Cell Niche During Photoaging. Cellular Physiology and Biochemistry, 2018, 51, 2456-2471.	1.1	14
320	The emerging link between cancer, metabolism, and circadian rhythms. Nature Medicine, 2018, 24, 1795-1803.	15.2	256
321	Comprehensive molecular and cellular studies suggest avian scutate scales are secondarily derived from feathers, and more distant from reptilian scales. Scientific Reports, 2018, 8, 16766.	1.6	22
322	Transcriptomic analysis reveals critical genes for the hair follicle of Inner Mongolia cashmere goat from catagen to telogen. PLoS ONE, 2018, 13, e0204404.	1.1	25
323	Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease. Cell, 2018, 175, 908-920.	13.5	170
324	Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , .	0.1	0
325	Analysing the dynamics of a model for alopecia areata as an autoimmune disorder of hair follicle cycling. Mathematical Medicine and Biology, 2018, 35, 387-407.	0.8	7
326	Polycomb Proteins and their Roles in Skin Development and Regeneration. Contributions To Management Science, 2018, , 75-104.	0.4	0
327	HOPX Defines Heterogeneity of Postnatal Subventricular Zone NeuralÂStemÂCells. Stem Cell Reports, 2018, 11, 770-783.	2.3	34
328	Therapeutic Potential of Stem Cells in Follicle Regeneration. Stem Cells International, 2018, 2018, 1-16.	1.2	54
329	Thyroid Hormone Receptors Regulate the Expression of microRNAs with Key Roles in Skin Homeostasis. Thyroid, 2018, 28, 921-932.	2.4	12
330	Macrophages Promote Wound-Induced Hair Follicle Regeneration in a CX3CR1- and TGF-β1–Dependent Manner. Journal of Investigative Dermatology, 2018, 138, 2111-2122.	0.3	48
331	External light activates hair follicle stem cells through eyes via an ipRGC–SCN–sympathetic neural pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6880-E6889.	3.3	60
332	Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development (Cambridge), 2018, 145, .	1.2	143

#	Article	IF	CITATIONS
333	Genome-wide discovery of lincRNAs with spatiotemporal expression patterns in the skin of goat during the cashmere growth cycle. BMC Genomics, 2018, 19, 495.	1.2	32
334	Transcriptome Reveals Long Non-coding RNAs and mRNAs Involved in Primary Wool Follicle Induction in Carpet Sheep Fetal Skin. Frontiers in Physiology, 2018, 9, 446.	1.3	72
335	The Mesenchymal Niche of the Hair Follicle Induces Regeneration by Releasing Primed Progenitors from Inhibitory Effects of Quiescent Stem Cells. Cell Reports, 2018, 24, 909-921.e3.	2.9	37
336	Heterocellular molecular contacts in the mammalian stem cell niche. European Journal of Cell Biology, 2018, 97, 442-461.	1.6	15
337	Isolation and Characterization of Cutaneous Epithelial Stem Cells. Methods in Molecular Biology, 2018, 1879, 87-99.	0.4	1
338	Advancing insights into stem cell niche complexities with next-generation technologies. Current Opinion in Cell Biology, 2018, 55, 87-95.	2.6	24
339	Integrative analysis reveals ncRNA-mediated molecular regulatory network driving secondary hair follicle regression in cashmere goats. BMC Genomics, 2018, 19, 222.	1.2	53
340	1359 Hair growth is induced by blockade of macrophage-derived oncostatin M and downstream JAK-STAT5 signaling in hair follicle stem cells. Journal of Investigative Dermatology, 2018, 138, S231.	0.3	0
341	Evaluating the Efficacy of Different Platelet-Rich Plasma Regimens for Management of Androgenetic Alopecia: A Single-Center, Blinded, Randomized Clinical Trial. Dermatologic Surgery, 2018, 44, 1191-1200.	0.4	53
342	Skin in vitro models to study dermal white adipose tissue role in skin healing. , 2018, , 327-352.		0
343	Healthy Hair (Anatomy, Biology, Morphogenesis, Cycling, and Function). , 2019, , 1-22.		0
344	Making and breaking symmetry in development, growth and disease. Development (Cambridge), 2019, 146,	1.2	27
345	Stem cells in tissues, organoids, and cancers. Cellular and Molecular Life Sciences, 2019, 76, 4043-4070.	2.4	44
346	Evolution and Developmental Diversity of Skin Spines in Pufferfishes. IScience, 2019, 19, 1248-1259.	1.9	12
347	Periodontal Ligament Stem Cells: Regenerative Potency in Periodontium. Stem Cells and Development, 2019, 28, 974-985.	1.1	155
348	Mice lacking the epidermal retinol dehydrogenases SDR16C5 and SDR16C6 display accelerated hair growth and enlarged meibomian glands. Journal of Biological Chemistry, 2019, 294, 17060-17074.	1.6	15
349	<i>Hes1</i> regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling. Stem Cells, 2020, 38, 301-314.	1.4	28
350	Stem cell–driven lymphatic remodeling coordinates tissue regeneration. Science, 2019, 366, 1218-1225.	6.0	122

#	Article	IF	CITATIONS
351	Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration <i>inÂvivo</i> . EMBO Journal, 2019, 38, e101688.	3.5	47
352	Androgenetic alopecia: combing the hair follicle signaling pathways for new therapeutic targets and more effective treatment options. Expert Opinion on Therapeutic Targets, 2019, 23, 755-771.	1.5	24
353	Wnt Signaling Pathways in Keratinocyte Carcinomas. Cancers, 2019, 11, 1216.	1.7	27
354	Self-Activated Electrical Stimulation for Effective Hair Regeneration <i>via</i> a Wearable Omnidirectional Pulse Generator. ACS Nano, 2019, 13, 12345-12356.	7.3	90
355	LMCD1 promotes osteogenic differentiation of human bone marrow stem cells by regulating BMP signaling. Cell Death and Disease, 2019, 10, 647.	2.7	16
357	Anagen hair follicle repair: Timely regenerative attempts from plastic extraâ€bulge epithelial cells. Experimental Dermatology, 2019, 28, 406-412.	1.4	26
358	Dermal niche signaling and epidermal stem cells. Advances in Stem Cells and Their Niches, 2019, , 157-192.	0.1	0
359	Induction of hair follicle neogenesis with cultured mouse dermal papilla cells in de novo regenerated skin tissues. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1641-1650.	1.3	12
360	Synchronous profiling and analysis of mRNAs and ncRNAs in the dermal papilla cells from cashmere goats. BMC Genomics, 2019, 20, 512.	1.2	17
361	Extracellular Vesicles from Activated Dermal Fibroblasts Stimulate Hair Follicle Growth Through Dermal Papilla-Secreted Norrin. Stem Cells, 2019, 37, 1166-1175.	1.4	44
362	Immune cells and the epidermal stem cell niche. Advances in Stem Cells and Their Niches, 2019, 3, 193-218.	0.1	0
363	Molecular aspects governing epidermal stem cell niches. Advances in Stem Cells and Their Niches, 2019, , 73-113.	0.1	1
364	The Role of Extracellular Vesicles in Cutaneous Remodeling and Hair Follicle Dynamics. International Journal of Molecular Sciences, 2019, 20, 2758.	1.8	48
365	Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt Pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells, 2019, 8, 466.	1.8	176
366	Synthesized Ceramide Induces Growth of Dermal Papilla Cells with Potential Contribution to Hair Growth. Annals of Dermatology, 2019, 31, 164.	0.3	6
367	CD34 defines melanocyte stem cell subpopulations with distinct regenerative properties. PLoS Genetics, 2019, 15, e1008034.	1.5	38
368	Choreographing Immunity in the Skin Epithelial Barrier. Immunity, 2019, 50, 552-565.	6.6	72
369	Dermal White Adipose Tissue: A Newly Recognized Layer of Skin Innate Defense. Journal of Investigative Dermatology, 2019, 139, 1002-1009.	0.3	61

#	Article	IF	CITATIONS
370	Injury modifies the fate of hair follicle dermal stem cell progeny in a hair cycleâ€dependent manner. Experimental Dermatology, 2019, 28, 419-424.	1.4	15
371	A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell, 2019, 24, 654-669.e6.	5.2	111
	Mechanical stretch induces hair regeneration through the alternative activation of macrophages.		
372	Nature Communications, 2019, 10, 1524.	5.8	106
373	The balance of Bmp6 and Wnt10b regulates the telogen-anagen transition of hair follicles. Cell	2.7	37
070	Communication and Signaling, 2019, 17, 16.	2.1	57
374	Stem Cell Quiescence: Dynamism, Restraint, and Cellular Idling. Cell Stem Cell, 2019, 24, 213-225.	5.2	220
375	Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nature Communications, 2019, 10, 650.	5.8	345
376	Comparative regenerative biology of spiny (<i>Acomys cahirinus)</i> and laboratory (<i>Mus) Tj ETQq0 0 0 rgBT</i>	/Overlock 1.4	10 Tf 50 50
	Do human dermal adirect tes quitab from line genesis in anogen to line them, and line lusis during		
377	Do human dermal adipocytes switch from lipogenesis in anagen to lipophagy and lipolysis during catagen in the human hair cycle?. Experimental Dermatology, 2019, 28, 432-435.	1.4	26
	A mutation in MAP2 is associated with prenatal hair follicle density. FASEB Journal, 2019, 33,		
378	14479-14490.	0.2	4
379	Analysis of hidradenitis suppurativa–linked mutations in four genes and the effects of PSEN1-P242LfsX11 on cytokine and chemokine expression in macrophages. Human Molecular Genetics,	1.4	25
077	2019, 28, 1173-1182.	±• 1	20
380	The Role of Immature and Mature Adipocytes in Hair Cycling. Trends in Endocrinology and Metabolism, 2019, 30, 93-105.	3.1	42
381	Morphoâ€regulation in diverse chicken feather formation: Integrating branching modules and sex hormoneâ€dependent morphoâ€regulatory modules. Development Growth and Differentiation, 2019, 61,	0.6	13
	124-138.		
382	Epigenetic control in skin development, homeostasis and injury repair. Experimental Dermatology, 2019, 28, 453-463.	1.4	32
	Destaura fillen en liste Falltala Dialeme Demonstra af Nicher and Chara Call Damilation for Describia		
383	Review of Human Hair Follicle Biology: Dynamics of Niches and Stem Cell Regulation for Possible Therapeutic Hair Stimulation for Plastic Surgeons. Aesthetic Plastic Surgery, 2019, 43, 253-266.	0.5	25
	Regulation of melanocyte stem cells in the pigmentation of skin and its appendages: Biological		
384	patterning and therapeutic potentials. Experimental Dermatology, 2019, 28, 395-405.	1.4	44
205	A role for the Tgf- <b<math>\hat{l}^2/Bmp co-receptor Endoglin in the molecular oscillator that regulates the</b<math>	1.5	97
385	hair follicle cycle. Journal of Molecular Cell Biology, 2019, 11, 39-52.	1.5	27

386	Planarian stem cell niche, the challenge for understanding tissue regeneration. Seminars in Cell and Developmental Biology, 2019, 87, 30-36.	2.3	20
387	Cholesterol homeostasis: Links to hair follicle biology and hair disorders. Experimental Dermatology, 2020, 29, 299-311.	1.4	31

#	Article	IF	CITATIONS
388	Rac-Dependent Signaling from Keratinocytes Promotes Differentiation of Intradermal White Adipocytes. Journal of Investigative Dermatology, 2020, 140, 75-84.e6.	0.3	6
389	Short communication: Clinical evaluation of pea sprout extract in the treatment of hair loss. Phytotherapy Research, 2020, 34, 428-431.	2.8	4
390	Solvent fractions of fermented <i>Trapa japonica</i> fruit extract stimulate collagen synthesis through TGFâ€i²1/GSKâ€3î²/î²â€eatenin pathway in human dermal fibroblasts. Journal of Cosmetic Dermatology, 2020, 19, 226-233.	0.8	7
391	BMP7 aberrantly induced in the psoriatic epidermis instructs inflammation-associated Langerhans cells. Journal of Allergy and Clinical Immunology, 2020, 145, 1194-1207.e11.	1.5	12
392	Histone H3 K4/9/27 Trimethylation Levels Affect Wound Healing and Stem Cell Dynamics in Adult Skin. Stem Cell Reports, 2020, 14, 34-48.	2.3	21
393	Methionine promotes the development of hair follicles via the Wnt/βâ€catenin signalling pathway in Rex rabbits. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 379-384.	1.0	10
394	Immune cell regulation of the hair cycle. Experimental Dermatology, 2020, 29, 322-333.	1.4	29
395	The Transcription Factor FOXN1 Regulates Skin Adipogenesis and Affects Susceptibility to Diet-Induced Obesity. Journal of Investigative Dermatology, 2020, 140, 1166-1175.e9.	0.3	13
396	The Hair Follicle as an Interdisciplinary Model for Biomedical Research: An Eclectic Literature Synthesis. BioEssays, 2020, 42, 2000053.	1.2	4
397	Tissue Stem Cells: Architects of Their Niches. Cell Stem Cell, 2020, 27, 532-556.	5.2	137
398	Synthetic peptide hydrogels as 3D scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2020, 160, 78-104.	6.6	76
399	Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nature Communications, 2020, 11, 5114.	5.8	49
400	Maintaining Hair Inductivity in Human Dermal Papilla Cells: A Review of Effective Methods. Skin Pharmacology and Physiology, 2020, 33, 280-292.	1.1	38
401	Its written all over your face: The molecular and physiological consequences of aging skin. Mechanisms of Ageing and Development, 2020, 190, 111315.	2.2	5
402	Transcriptome Profiling and Differential Gene Expression in Canine Microdissected Anagen and Telogen Hair Follicles and Interfollicular Epidermis. Genes, 2020, 11, 884.	1.0	8
403	The Effect of JAK Inhibitor on the Survival, Anagen Re-Entry, and Hair Follicle Immune Privilege Restoration in Human Dermal Papilla Cells. International Journal of Molecular Sciences, 2020, 21, 5137.	1.8	16
404	Progress in studies of epidermal stem cells and their application in skin tissue engineering. Stem Cell Research and Therapy, 2020, 11, 303.	2.4	30
405	miR-140-5p in Small Extracellular Vesicles From Human Papilla Cells Stimulates Hair Growth by Promoting Proliferation of Outer Root Sheath and Hair Matrix Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 593638.	1.8	18

#	Article	IF	Citations
406	An Intrinsic Oscillation of Gene Networks Inside Hair Follicle Stem Cells: An Additional Layer That Can Modulate Hair Stem Cell Activities. Frontiers in Cell and Developmental Biology, 2020, 8, 595178.	1.8	27
407	Bone Morphogenetic Protein Signaling Restricts Proximodistal Extension of the Ventral Fin Fold. Frontiers in Cell and Developmental Biology, 2020, 8, 603306.	1.8	1
408	Genetic Signatures of Selection for Cashmere Traits in Chinese Goats. Animals, 2020, 10, 1905.	1.0	21
409	Immune modulation of hair follicle regeneration. Npj Regenerative Medicine, 2020, 5, 9.	2.5	57
410	Treg regulation of the epithelial stem cell lineage. Journal of Immunology and Regenerative Medicine, 2020, 8, 100028.	0.2	11
411	Transient stimulation of TRPV4â€expressing keratinocytes promotes hair follicle regeneration in mice. British Journal of Pharmacology, 2020, 177, 4181-4192.	2.7	6
412	Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. Journal of Biomedical Science, 2020, 27, 43.	2.6	73
413	Molecular Mechanisms of Hair Growth and Regeneration: Current Understanding and Novel Paradigms. Dermatology, 2020, 236, 271-280.	0.9	82
414	Topical αâ€gal nanoparticles accelerate diabetic wound healing. Experimental Dermatology, 2020, 29, 404-413.	1.4	23
415	Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle–Dependent Dermal Adipose Expansion. Journal of Investigative Dermatology, 2020, 140, 1698-1705.e1.	0.3	7
416	Sustained release of dermal papilla-derived extracellular vesicles from injectable microgel promotes hair growth. Theranostics, 2020, 10, 1454-1478.	4.6	56
417	The effects of extended photoperiod and warmth on hair growth in ponies and horses at different times of year. PLoS ONE, 2020, 15, e0227115.	1.1	10
418	LncRNA-PCAT1 maintains characteristics of dermal papilla cells and promotes hair follicle regeneration by regulating miR-329/Wnt10b axis. Experimental Cell Research, 2020, 394, 112031.	1.2	17
419	Thymosin β4 Identified by Transcriptomic Analysis from HF Anagen to Telogen Promotes Proliferation of SHF-DPCs in Albas Cashmere Goat. International Journal of Molecular Sciences, 2020, 21, 2268.	1.8	4
420	Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Developmental Biology, 2020, 464, 71-87.	0.9	11
421	Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell, 2020, 26, 880-895.e6.	5.2	154
422	Relationship between rosacea and sleep. Journal of Dermatology, 2020, 47, 592-600.	0.6	19
423	Integrating levels of bone growth control: From stem cells to body proportions. Wiley Interdisciplinary Reviews: Developmental Biology, 2021, 10, e384.	5.9	2

# 424	ARTICLE Lower proximal cup and outer root sheath cells regenerate hair bulbs during anagen hair follicle repair after chemotherapeutic injury. Experimental Dermatology, 2021, 30, 503-511.	IF 1.4	Citations 7
425	The dermal sheath: An emerging component of the hair follicle stem cell niche. Experimental Dermatology, 2021, 30, 512-521.	1.4	42
426	Androgens downregulate BMP2 impairing the inductive role of dermal papilla cells on hair follicle stem cells differentiation. Molecular and Cellular Endocrinology, 2021, 520, 111096.	1.6	10
427	Stem cellâ€intrinsic mechanisms regulating adult hair follicle homeostasis. Experimental Dermatology, 2021, 30, 430-447.	1.4	30
428	Multiple potential roles of thymosin β4 in the growth and development of hair follicles. Journal of Cellular and Molecular Medicine, 2021, 25, 1350-1358.	1.6	8
429	Dermal Drivers of Injury-Induced Inflammation: Contribution of Adipocytes and Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 1933.	1.8	20
430	Dietary Vitamin A Impacts Refractory Telogen. Frontiers in Cell and Developmental Biology, 2021, 9, 571474.	1.8	6
431	Functional hair follicle regeneration: an updated review. Signal Transduction and Targeted Therapy, 2021, 6, 66.	7.1	78
432	CELLULAR FEEDBACK NETWORKS AND THEIR RESILIENCE AGAINST MUTATIONS. Journal of Biological Systems, 2021, 29, 325-374.	0.5	0
433	Dietary interventions as regulators of stem cell behavior in homeostasis and disease. Genes and Development, 2021, 35, 199-211.	2.7	18
434	Inhibition of pyruvate oxidation as a versatile stimulator of the hair cycle in models of alopecia. Experimental Dermatology, 2021, 30, 448-456.	1.4	6
435	Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature, 2021, 592, 428-432.	13.7	73
436	The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules, 2021, 11, 667.	1.8	9
437	Hair follicle stem cells as a skinâ€organizing signaling center during adult homeostasis. EMBO Journal, 2021, 40, e107135.	3.5	28
438	Skin stem cells in health and in disease. Experimental Dermatology, 2021, 30, 424-429.	1.4	2
439	Selfâ€Organization Principles of Cell Cycles and Gene Expressions in the Development of Cell Populations. Advanced Theory and Simulations, 2021, 4, 2100005.	1.3	1
440	Regulation of tissue regeneration by the circadian clock. European Journal of Neuroscience, 2021, 53, 3576-3597.	1.2	7
441	Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clinical, Cosmetic and Investigational Dermatology, 2021, Volume 14, 527-539.	0.8	10

	Article	IF	CITATIONS
442	Recreation of a hair follicle regenerative microenvironment: Successes and pitfalls. Bioengineering and Translational Medicine, 2022, 7, e10235.	3.9	18
443	The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biological Reviews, 2021, 96, 2573-2583.	4.7	4
444	Molecular features and tissue engineering techniques applied to regenerative surgery: an overview of recent data. Minerva Dental and Oral Science, 2021, 70, 119-127.	0.5	2
445	miR-24 controls the regenerative competence of hair follicle progenitors by targeting Plk3. Cell Reports, 2021, 35, 109225.	2.9	7
446	Hair-Follicle Mesenchymal Stem Cell Activity during Homeostasis and Wound Healing. Journal of Investigative Dermatology, 2021, 141, 2797-2807.e6.	0.3	11
447	Dual Roles of the Activin Signaling Pathway in Pancreatic Cancer. Biomedicines, 2021, 9, 821.	1.4	5
448	Stem Cell Niche Microenvironment: Review. Bioengineering, 2021, 8, 108.	1.6	16
449	Platelet-rich Plasma and Cell Therapy. Dermatologic Clinics, 2021, 39, 429-445.	1.0	11
450	Defining a Role for G-Protein Coupled Receptor/cAMP/CRE-Binding Protein Signaling in Hair Follicle Stem Cell Activation. Journal of Investigative Dermatology, 2021, , .	0.3	6
451	Fibroblasts: Origins, definitions, and functions in health and disease. Cell, 2021, 184, 3852-3872.	13.5	340
		10.0	010
452	Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. Journal of Investigative Dermatology, 2021, 141, 1633-1645.e13.	0.3	35
452 453	Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. Journal of		
	Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. Journal of Investigative Dermatology, 2021, 141, 1633-1645.e13. Novel Insights Into the Mechanism of GVHD-Induced Tissue Damage. Frontiers in Immunology, 2021, 12,	0.3	35
453	Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. Journal of Investigative Dermatology, 2021, 141, 1633-1645.e13. Novel Insights Into the Mechanism of GVHD-Induced Tissue Damage. Frontiers in Immunology, 2021, 12, 713631.	0.3 2.2	35 12
453 454	Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. Journal of Investigative Dermatology, 2021, 141, 1633-1645.e13. Novel Insights Into the Mechanism of GVHD-Induced Tissue Damage. Frontiers in Immunology, 2021, 12, 713631. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Research and Therapy, 2021, 12, 453. A reflux-and-growth mechanism explains oscillatory patterning of lateral root branching sites.	0.3 2.2 2.4	35 12 46
453 454 455	Dermal Adipose Tissue Secretes HCF to Promote Human Hair Growth and Pigmentation. Journal of Investigative Dermatology, 2021, 141, 1633-1645.e13. Novel Insights Into the Mechanism of GVHD-Induced Tissue Damage. Frontiers in Immunology, 2021, 12, 713631. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Research and Therapy, 2021, 12, 453. A reflux-and-growth mechanism explains oscillatory patterning of lateral root branching sites. Developmental Cell, 2021, 56, 2176-2191.e10. Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Advances in	0.3 2.2 2.4 3.1	35 12 46 35
453 454 455 456	Dermal Adipose Tissue Secretes HGF to Promote Human Hair Growth and Pigmentation. Journal of Investigative Dermatology, 2021, 141, 1633-1645.e13. Novel Insights Into the Mechanism of GVHD-Induced Tissue Damage. Frontiers in Immunology, 2021, 12, 713631. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Research and Therapy, 2021, 12, 453. A reflux-and-growth mechanism explains oscillatory patterning of lateral root branching sites. Developmental Cell, 2021, 56, 2176-2191.e10. Modulating Cellular Responses to Mechanical Forces to Promote Wound Regeneration. Advances in Wound Care, 2022, 11, 479-495. Evolved <i>> Bmp6</i>	0.3 2.2 2.4 3.1 2.6	35 12 46 35 21

		EPORT	
#	Article	IF	CITATIONS
460	Pannexin 3 regulates skin development via Epiprofin. Scientific Reports, 2021, 11, 1779.	1.6	15
461	Non-thermal plasma promotes hair growth by improving the inter-follicular macroenvironment. RSC Advances, 2021, 11, 27880-27896.	1.7	5
463	Basic Principles and Current Approach for Soft Tissue Regeneration. , 2019, , 7-15.		1
464	Epidermal Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1201, 239-259.	0.8	7
465	The Hair Follicle Stem Cell Niche: The Bulge and Its Environment. Pancreatic Islet Biology, 2015, , 1-26.	0.1	2
467	Stem Cell Regulation of Circannual Rhythms. , 2014, , 227-245.		3
468	The Physician's Guide to Platelet-Rich Plasma in Dermatologic Surgery Part I: Definitions, Mechanisms of Action, and Technical Specifications. Dermatologic Surgery, 2020, 46, 348-357.	0.4	17
469	Bone Morophogenetic Protein Application as Grafting Materials for Bone Regeneration in Craniofacial Surgery: Current Application and Future Directions. Journal of Craniofacial Surgery, 2021, 32, 787-793.	0.3	41
471	Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice. Journal of Clinical Investigation, 2019, 129, 5327-5342.	3.9	112
472	Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling. PLoS Genetics, 2009, 5, e1000573.	1.5	146
473	Involvement of MicroRNAs in Regulation of Osteoblastic Differentiation in Mouse Induced Pluripotent Stem Cells. PLoS ONE, 2012, 7, e43800.	1.1	57
474	Augmenting Endogenous Wnt Signaling Improves Skin Wound Healing. PLoS ONE, 2013, 8, e76883.	1.1	55
475	Novel insights into the pathways regulating the canine hair cycle and their deregulation in alopecia X. PLoS ONE, 2017, 12, e0186469.	1.1	22
476	MicroRNA-148b promotes proliferation of hair follicle cells by targeting NFAT5. Frontiers of Agricultural Science and Engineering, 2016, 3, 72.	0.9	7
477	Clock genes, hair growth and aging. Aging, 2010, 2, 122-128.	1.4	55
478	Cutaneous wound healing in aged, high fat diet-induced obese female or male C57BL/6 mice. Aging, 2020, 12, 7066-7111.	1.4	18
479	Wnt \hat{l}^2 -catenin signaling promotes aging-associated hair graying in mice. Oncotarget, 2017, 8, 69316-69327.	0.8	15
480	PDGFA in Cashmere Goat: A Motivation for the Hair Follicle Stem Cells to Activate. Animals, 2019, 9, 38.	1.0	9

#	Article	IF	Citations
483	Pathogenesis of alopecia areata based on bioinformatics analysis. Indian Journal of Dermatology, 2019, 64, 1.	0.1	6
484	EDA and EDAR expression at different stages of hair follicle development in cashmere goats and effects on expression of related genes. Archives Animal Breeding, 2020, 63, 461-470.	0.5	11
485	Red Deer Antler Extract Accelerates Hair Growth by Stimulating Expression of Insulin-like Growth Factor I in Full-thickness Wound Healing Rat Model. Asian-Australasian Journal of Animal Sciences, 2012, 25, 708-716.	2.4	4
486	A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. ELife, 2017, 6, .	2.8	57
487	Size control of the inner ear via hydraulic feedback. ELife, 2019, 8, .	2.8	46
488	Lef1 expression in fibroblasts maintains developmental potential in adult skin to regenerate wounds. ELife, 2020, 9, .	2.8	94
489	Escape of hair follicle stem cells causes stem cell exhaustion during aging. Nature Aging, 2021, 1, 889-903.	5.3	31
490	Assessment of the effects of a hair lotion in women with acute telogen effluvium: a randomized controlled study. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 12-20.	1.3	1
491	Building and Maintaining the Skin. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040840.	2.3	30
492	Emerging Role of Dermal White Adipose Tissue in Modulating Hair Follicle Development During Aging. Frontiers in Cell and Developmental Biology, 2021, 9, 728188.	1.8	4
493	Hair regrowth following treatment with hypoxic cell-derived hair follicle signaling molecules; safety and efficacy in a first-in-man clinical trial. International Society of Hair Restoration Surgery, 2011, 21, 162-165.	0.1	0
494	Cell Biology and Disease of Hair Follicle (1). Nishinihon Journal of Dermatology, 2013, 75, 336-341.	0.0	0
495	Embryology of the Pilosebaceous Unit. , 2014, , 9-17.		0
496	Notes from the Editor Emeritus. International Society of Hair Restoration Surgery, 2015, 25, 233-234.	0.1	0
497	Wnt Signaling in Hair Follicle Development. Asian Journal of Beauty and Cosmetology, 2017, 15, 242-246.	0.2	4
498	Notch Signaling in Hair Follicle Development. Asian Journal of Beauty and Cosmetology, 2017, 15, 377-386.	0.2	0
501	Histone Deacetylase Functions in Epidermal Development, Homeostasis and Cancer. Contributions To Management Science, 2018, , 121-157.	0.4	0
504	Effect of Polarized Light Therapy on Hair Regrowth in Alopecia Areata. Medical Journal of the University of Cairo Faculty of Medicine, 2018, 86, 2959-2965.	0.0	0

#	Article	IF	CITATIONS
506	From Scale to Spine: Evolution and Developmental Diversity of Skin Spines in Pufferfishes. SSRN Electronic Journal, 0, , .	0.4	0
510	A Photodynamic Tool to Promote a Sustained, ROS-Dependent Growth of Human Hair Follicles in Ex Vivo Culture. Methods in Molecular Biology, 2021, 2202, 51-61.	0.4	1
511	Comparative characterization and osteogenic / adipogenic differentiation of mesenchymal stem cells derived from male rat hair follicles and bone marrow. Cell Regeneration, 2020, 9, 13.	1.1	6
512	Microneedling for Hair Loss. Journal of Cosmetic Dermatology, 2022, 21, 108-117.	0.8	19
513	More than just bricks and mortar: Fibroblasts and ECM in skin health and disease. Experimental Dermatology, 2021, 30, 4-9.	1.4	2
514	Hair Follicle Stem Cells and Hair Regeneration. , 2020, , 265-296.		1
515	Hair Follicle Stem Cells and Hair Regeneration. , 2020, , 1-32.		0
517	Standardized Scalp Massage Results in Increased Hair Thickness by Inducing Stretching Forces to Dermal Papilla Cells in the Subcutaneous Tissue. Eplasty, 2016, 16, e8.	0.4	5
518	Adiponectin negatively regulates pigmentation, Wnt/β-catenin and HGF/c-Met signalling within human scalp hair follicles ex vivo. Archives of Dermatological Research, 2021, , 1.	1.1	2
519	Steroid hormones in hair and fresh wounds reveal sex specific costs of reproductive engagement and reproductive success in wild house mice (Mus musculus domesticus). Hormones and Behavior, 2022, 138, 105102.	1.0	2
521	Advances in hair growth. Faculty Reviews, 2022, 11, 1.	1.7	15
522	Electrical stimulation to human dermal papilla cells for hair regenerative medicine. Journal of Bioscience and Bioengineering, 2022, 133, 281-290.	1.1	10
523	KLHL24-Mediated Hair Follicle Stem Cells Structural Disruption Causes Alopecia. Journal of Investigative Dermatology, 2022, 142, 2079-2087.e8.	0.3	3
524	Niche formed by bone morphogenetic protein antagonists gremlin 1 and gremlin 2 in human hair follicles. Health Science Reports, 2022, 5, e486.	0.6	4
525	Role of peptide growth factors in the rhythm of change hair. Vestnik Dermatologii I Venerologii, 2015, 91, 54-61.	0.2	0
527	Parallels in signaling between development and regeneration in ectodermal organs. Current Topics in Developmental Biology, 2022, , 373-419.	1.0	4
528	Keratinocyte Stem Cells: Role in Aging. , 0, , .		0
529	Environmental Regulation of Skin Pigmentation and Hair Regeneration. Stem Cells and Development, 2022, 31, 91-96.	1.1	3

		CITATION REPORT		
#	Article		IF	Citations
530	Advancing Regenerative Cellular Therapies in Non-Scarring Alopecia. Pharmaceutics, 2022	[,] 14, 612.	2.0	12
531	Feasibility of adipose-derived therapies for hair regeneration: insights based on signaling in clinical overview. Journal of the American Academy of Dermatology, 2021, , .	nterplay and	0.6	1
532	Deficiency of Formyl Peptide Receptor 2 Retards Hair Regeneration by Modulating the Act Hair Follicle Stem Cells and Dermal Papilla Cells in Mice. Development & Reproduction, 20 279-291.		0.1	1
533	New insight into pathophysiology and treatment of GVHD. Journal of Illusion, 2022, 11, 9	0-100.	0.0	0
534	Regulation of signaling pathways in hair follicle stem cells. Burns and Trauma, 2022, 10, .		2.3	17
556	The role of adipose tissue in hair regeneration: A potential tool for management?. Journal Cutaneous and Aesthetic Surgery, 2021, 14, 295.	of	0.2	4
557	Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Frontiers in Cell Developmental Biology, 2022, 10, .	and	1.8	36
558	Melanocyte stem cells in skin diseases and their potential in cell-based therapy Histology Histopathology, 2022, , 18470.	and	0.5	0
563	The stem cell quiescence and niche signaling is disturbed in the hair follicle of the hairpoo an MUHH model mouse. Stem Cell Research and Therapy, 2022, 13, .	r mouse,	2.4	1
564	Stem Cell Biology: Structure and Function – The Adult Stem Cell Niche: Multiple Cellula Tissue Homeostasis and Regeneration. , 2022, , .	r Players in		0
565	Gene network analysis reveals candidate genes related with the hair follicle development BMC Genomics, 2022, 23, .	in sheep.	1.2	13
566	Expression of Signal Transducer and Activator of Transcription-3 in Androgenetic Alopecia control study. Skin Pharmacology and Physiology, 0, , .	: A case	1.1	1
567	Glucocorticoid signaling and regulatory T cells cooperate to maintain the hair-follicle stem niche. Nature Immunology, 2022, 23, 1086-1097.	ı-cell	7.0	30
568	A probabilistic Boolean model on hair follicle cell fate regulation by TGF- <mml:math altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/Math/Mt"><mml:mi>^/g</mml:mi>^/mml:mi></mml:math> . Biophys 121, 2638-2652.	ical Journal, 2022,	0.2	3
569	Foxp1 and Foxp4 Deletion Causes the Loss of Follicle Stem Cell Niche and Cyclic Hair She Inducing Inner Bulge Cell Apoptosis. Stem Cells, 2022, 40, 843-856.	dding by	1.4	2
570	Hedgehog signaling reprograms hair follicle niche fibroblasts to a hyper-activated state. Developmental Cell, 2022, 57, 1758-1775.e7.		3.1	25
571	Regulation and dysregulation of hair regeneration: aiming for clinical application. Cell Reg 2022, 11, .	eneration,	1.1	3
572	Comparative Spatial Transcriptomic and Single-Cell Analyses of Human Nail Units andÂHa Show Transcriptional Similarities between the Onychodermis andÂFollicular Dermal Papill Investigative Dermatology, 2022, 142, 3146-3157.e12.	ir Follicles a. Journal of	0.3	9

ARTICLE IF CITATIONS Vitamin A in Skin and Hair: An Update. Nutrients, 2022, 14, 2952. 573 1.7 11 Hair Follicle Morphogenesis During Embryogenesis, Neogenesis, and Organogenesis. Frontiers in Cell 574 1.8 and Developmental Biology, 0, 10, . Rapid Progression of Heterotopic Ossification in Severe Variant of Fibrodysplasia Ossificans 575 Progressiva with p.Arg258Gly in ACVR1: A Case Report and Review of Clinical Phenotypes. Case Reports 0.1 0 in Genetics, 2022, 2022, 1-6. ROR2 regulates self-renewal and maintenance of hair follicle stem cells. Nature Communications, 5.8 2022, 13, . Adipocyte plasticity in tissue regeneration, repair, and disease. Current Opinion in Genetics and 577 1.5 6 Development, 2022, 76, 101968. The evolution of complex multicellularity in animals. Biology and Philosophy, 2022, 37, . 0.7 An integrative analysis of the lncRNA-miRNA-mRNA competitive endogenous RNA network reveals 580 1.1 1 potential mechanisms in the murine hair follicle cycle. Frontiers in Genetics, 0, 13, . Does noncontact phased-array ultrasound promote hair regrowth?. Journal of Dermatological 581 Science, 2022, , . A full contraction-reaction-diffusion model for pattern formation in geometrically confined 582 2.2 2 microtissues. Applied Mathematical Modelling, 2023, 115, 203-220. 584 Stem Cells in Wound Healing and Scarring., 2022, , 103-126. Microenvironmental reprogramming of human dermal papilla cells for hair follicle tissue 585 7 4.1 engineering. Acta Biomaterialia, 2023, 165, 31-49. The alopecia areata donut sign. Evidence of synchronous hair growth in adult humans. Journal of the 586 1.3 European Academy of Dermatology and Venéreology, 2023, 37, . Enhancement of hair growth through stimulation of hair follicle stem cells by prostaglandin E2 587 1.2 1 collagen matrix. Experimental Cell Research, 2022, 421, 113411. Engineered Nanovesicles from Fibroblasts Modulate Dermal Papillae Cells In Vitro and Promote 588 1.8 Human Hair Follicle Growth Ex Vivo. Cells, 2022, 11, 4066. SCD1 Sustains Homeostasis of Bulge Niche via Maintaining Hemidesmosomes in Basal Keratinocytes. 589 5.6 4 Advanced Science, 2023, 10, . Appearance and suppression of Turing patterns under a periodically forced feed. Communications 2.0 Chemistry, 2023, 6, . Effects of short photoperiod on cashmere growth, hormone concentrations and hair follicle 591 development-related gene expression in cashmere goats. Journal of Applied Animal Research, 2023, 51, 0.4 0 52-61. Corneal stem cells niche and homeostasis impacts in regenerative medicine; concise review. European Journal of Ophthalmology, 2023, 33, 1536-1552.

	CITATION	CITATION REPORT		
#	Article	IF	Citations	
593	Effect of Sox18 on the Induction Ability of Dermal Papilla Cells in Hu Sheep. Biology, 2023, 12, 65.	1.3	0	
595	Establishing 3D Endometrial Organoids from the Mouse Uterus. Journal of Visualized Experiments, 2023, , .	0.2	1	
596	Mechanical stimuli-induced CCL2 restores adult mouse cells to regenerate hair follicles. Molecular Therapy - Nucleic Acids, 2023, 32, 94-110.	2.3	0	
597	Aging of hair follicle stem cells and their niches. BMB Reports, 2023, 56, 2-9.	1.1	9	
598	Lrig1-expressing epidermal progenitors require SCD1 to maintain the dermal papilla niche. Scientific Reports, 2023, 13, .	1.6	0	
599	Heterozygous Pathogenic and Likely Pathogenic Symptomatic HTRA1 Variant Carriers in Cerebral Small Vessel Disease. International Journal of General Medicine, 0, Volume 16, 1149-1162.	0.8	0	
600	Blood endothelial ALK1â€BMP4 signaling axis regulates adult hair follicle stem cell activation. EMBO Journal, 2023, 42, .	3.5	4	
601	Maintenance of high-turnover tissues during and beyond homeostasis. Cell Stem Cell, 2023, 30, 348-361.	5.2	1	
626	Immune cell interactions with the stem cell niche. Advances in Stem Cells and Their Niches, 2023, , 59-90.	0.1	0	
628	Local and systemic mechanisms that control the hair follicle stem cell niche. Nature Reviews Molecular Cell Biology, 0, , .	16.1	2	
636	Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration. Experimental and Molecular Medicine, 2024, 56, 110-117.	3.2	2	
643	Stem Cells and Extracellular Vesicles in Epithelial Repair: Hints for Improving Chronic Wound Healing. , 2024, , .		0	