Biofilm lifestyle of <i>Candida:</i> a mini review

Oral Diseases 14, 582-590 DOI: 10.1111/j.1601-0825.2007.01424.x

Citation Report

#	Article	IF	CITATIONS
1	Cell Density and Cell Aging as Factors Modulating Antifungal Resistance of <i>Candida albicans</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 3259-3266.	1.4	93
2	Biofilm Formation and Effect of Caspofungin on Biofilm Structure of <i>Candida</i> Species Bloodstream Isolates. Antimicrobial Agents and Chemotherapy, 2009, 53, 4377-4384.	1.4	75
3	Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Archives of Oral Biology, 2009, 54, 1052-1060.	0.8	97
5	Distribution Coefficients of Dietary Sugars in Artificial Candida Biofilms. Mycopathologia, 2009, 167, 325-331.	1.3	9
7	Community lifestyle of <i>Candida</i> in mixed biofilms: a mini review. Mycoses, 2009, 52, 467-475.	1.8	90
8	Can filamentous fungi form biofilms?. Trends in Microbiology, 2009, 17, 475-480.	3.5	212
9	Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. International Journal of Antimicrobial Agents, 2009, 34, 333-339.	1.1	38
10	Antifungal drug resistance of oral fungi. Odontology / the Society of the Nippon Dental University, 2010, 98, 15-25.	0.9	131
11	Susceptibility of Candida albicans filamentation-defective mutants to clinical biocides. Journal of Hospital Infection, 2010, 74, 189-191.	1.4	6
12	Global screening of potential Candida albicans biofilm-related transcription factors via network comparison. BMC Bioinformatics, 2010, 11, 53.	1.2	29
13	<i>Candida famata</i> modulates tollâ€like receptor, βâ€defensin, and proinflammatory cytokine expression by normal human epithelial cells. Journal of Cellular Physiology, 2010, 222, 209-218.	2.0	37
14	Candida albicans biofilm formation in a new in vivo rat model. Microbiology (United Kingdom), 2010, 156, 909-919.	0.7	97
15	Pathogenic Yeasts. , 2010, , .		8
16	Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals. Journal of Medical Microbiology, 2011, 60, 1241-1247.	0.7	29
18	Candida parapsilosis complex water isolates from a haemodialysis unit: biofilm production and in vitro evaluation of the use of clinical antifungals. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 646-654.	0.8	35
19	Conserved and Divergent Roles of Bcr1 and CFEM Proteins in Candida parapsilosis and Candida albicans. PLoS ONE, 2011, 6, e28151.	1.1	76
20	<i>Aspergillus Fumigatus</i> Biofilm on Primary Human Sinonasal Epithelial Culture. American Journal of Rhinology and Allergy, 2011, 25, 219-225.	1.0	34
21	Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses, 2011, 54, e801-e806.	1.8	101

#	Article	IF	CITATIONS
22	Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine, 2011, 18, 380-383.	2.3	36
23	Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine, 2011, 19, 56-63.	2.3	48
24	Susceptibility of Candida albicans and Candida dubliniensis to erythrosine- and LED-mediated photodynamic therapy. Archives of Oral Biology, 2011, 56, 1299-1305.	0.8	67
25	Anticandidal Efficacy of Cinnamon Oil Against Planktonic and Biofilm Cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia, 2011, 172, 453-464.	1.3	61
26	Starvation survival of <i>Candida albicans</i> in various water microcosms. Journal of Basic Microbiology, 2011, 51, 357-363.	1.8	9
27	Antimicrobial activity of Citrox® bioflavonoid preparations against oral microorganisms. British Dental Journal, 2011, 210, E22-E22.	0.3	33
28	Investigating Biofilm Production, Coagulase and Hemolytic Activity in Candida Species Isolated From Denture Stomatitis Patients. Eurasian Journal of Medicine, 2011, 43, 27-32.	0.2	50
29	Comparison of the Candida albicans and biofilm formation amount on natural tooth, porcelain and acrylic resin. Dicle Medical Journal, 2012, 39, 16-20.	0.2	0
30	Phytosphingosine-1-Phosphate Is a Signaling Molecule Involved in Miconazole Resistance in Sessile Candida albicans Cells. Antimicrobial Agents and Chemotherapy, 2012, 56, 2290-2294.	1.4	14
31	Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. Journal of Antimicrobial Chemotherapy, 2012, 67, 618-621.	1.3	136
32	N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis. Medical Mycology, 2012, 50, 252-258.	0.3	11
33	Photodynamic inactivation of biofilms formed by Candida spp., Trichosporon mucoides, and Kodamaea ohmeri by cationic nanoemulsion of zinc 2,9,16,23-tetrakis(phenylthio)-29H, 31H-phthalocyanine (ZnPc). Lasers in Medical Science, 2012, 27, 1205-1212.	1.0	62
34	The effect of antifungal agents on surface properties of poly(methyl methacrylate) and its relation to adherence of Candida albicans. Journal of Prosthodontic Research, 2012, 56, 272-280.	1.1	29
35	Biofilm inhibition by Cymbopogon citratus and Syzygium aromaticum essential oils in the strains of Candida albicans. Journal of Ethnopharmacology, 2012, 140, 416-423.	2.0	84
36	Transcription factor Efg1 contributes to the tolerance of Candida albicans biofilms against antifungal agents in vitro and in vivo. Journal of Medical Microbiology, 2012, 61, 813-819.	0.7	18
38	Oral colonization by yeasts in HIV-positive patients in Brazil. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2012, 54, 17-24.	0.5	78
39	Exopolysaccharide matrix of developed candida albicans biofilms after exposure to antifungal agents. Brazilian Dental Journal, 2012, 23, 716-722.	0.5	15
40	The Inactivation of Resistant <i>Candida Albicans</i> in a Sealed Package by Cold Atmospheric Pressure Plasmas. Plasma Processes and Polymers, 2012, 9, 17-21.	1.6	30

#	Article	IF	CITATIONS
41	Unraveling the resistance of microbial biofilms: Has proteomics been helpful?. Proteomics, 2012, 12, 651-665.	1.3	54
42	The effects of rose bengal†and erythrosineâ€mediated photodynamic therapy on <i>Candida albicans</i> . Mycoses, 2012, 55, 56-63.	1.8	90
43	Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. Journal of Applied Microbiology, 2012, 112, 1163-1172.	1.4	112
44	Photodynamic Antifungal Chemotherapy ^{â€} . Photochemistry and Photobiology, 2012, 88, 512-522.	1.3	145
45	Effect of erythrosine- and LED-mediated photodynamic therapy on buccal candidiasis infection of immunosuppressed mice and Candida albicans adherence to buccal epithelial cells. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2012, 114, 67-74.	0.2	50
46	Biocide resistance of Candida and Escherichia coli biofilms is associated with higher antioxidative capacities. Journal of Hospital Infection, 2012, 81, 79-86.	1.4	35
47	Plasma inactivation of candida albicans by an atmospheric cold plasma brush composed of hollow fibers. IEEE Transactions on Plasma Science, 2012, 40, 1098-1102.	0.6	37
48	Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Review of Anti-Infective Therapy, 2013, 11, 669-693.	2.0	140
49	Methods for obtaining reliable and reproducible results in studies of <i><scp>C</scp>andida</i> biofilms formed <i>in vitro</i> . Mycoses, 2013, 56, 614-622.	1.8	39
50	Recent insights into Candida albicans biofilm resistance mechanisms. Current Genetics, 2013, 59, 251-264.	0.8	230
51	Photodynamic inactivation of clinical isolates of <i>Candida</i> using Photodithazine [®] . Biofouling, 2013, 29, 1057-1067.	0.8	55
52	Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Current Opinion in Pharmacology, 2013, 13, 731-762.	1.7	210
53	Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, 2013, 62, 10-24.	0.7	897
54	The Brushâ€Shape Device Used to Generate Atmospheric and Homogeneous Plasmas for Biomedical Applications. Plasma Processes and Polymers, 2013, 10, 88-93.	1.6	18
55	ECM17-dependent methionine/cysteine biosynthesis contributes to biofilm formation in Candida albicans. Fungal Genetics and Biology, 2013, 51, 50-59.	0.9	29
56	Experimental biofilm-related <i>Candida</i> infections. Future Microbiology, 2013, 8, 799-805.	1.0	27
57	Determination of biofilm production by <i>Candida tropicalis</i> isolated from hospitalized patients and its relation to cellular surface hydrophobicity, plastic adherence and filamentation ability. Yeast, 2013, 30, 331-339.	0.8	33
58	Identification of Infection- and Defense-Related Genes via a Dynamic Host-Pathogen Interaction Network Using a Candida Albicans-Zebrafish Infection Model. Journal of Innate Immunity, 2013, 5, 137-152.	1.8	25

#	Article	IF	CITATIONS
59	Recent mouse and rat methods for the study of experimental oral candidiasis. Virulence, 2013, 4, 391-399.	1.8	47
60	The Biofilm Formation onto Implants and Prosthetic Materials May Be Contrasted Using Gallium (3+). Key Engineering Materials, 0, 587, 315-320.	0.4	7
61	Update on the challenging role of biofilms in peritoneal dialysis. Biofouling, 2013, 29, 1015-1027.	0.8	24
62	Assessment of Host Defence Mechanisms Induced by Candida Species. International Journal of Immunopathology and Pharmacology, 2013, 26, 663-672.	1.0	24
63	Influence of substratum position and acquired pellicle on Candida albicans biofilm. Brazilian Oral Research, 2013, 27, 369-375.	0.6	4
64	Resistant virulent Candida species colonizing preterm neonates and in vitro promising prospect of chlorhexidine gluconate. African Journal of Microbiology Research, 2013, 7, 3421-3428.	0.4	0
65	Potentiation of Antibiofilm Activity of Amphotericin B by Superoxide Dismutase Inhibition. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-7.	1.9	19
66	Dietary Carbohydrates Modulate Candida albicans Biofilm Development on the Denture Surface. PLoS ONE, 2013, 8, e64645.	1.1	39
67	Effect of Tetrandrine against Candida albicans Biofilms. PLoS ONE, 2013, 8, e79671.	1.1	56
68	BIOFILMS PRODUCED BY CANDIDA YEASTS AND ITS CONSEQUENCES: A REVIEW. Journal of Health and Allied Sciences NU, 2013, 03, 113-121.	0.1	0
69	The antimicrobial effects of Citrus limonum and Citrus aurantium essential oils on multi-species biofilms. Brazilian Oral Research, 2014, 28, 22-27.	0.6	27
70	In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections. PLoS ONE, 2014, 9, e85836.	1.1	78
71	Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus. Brazilian Journal of Microbiology, 2014, 45, 313-321.	0.8	21
72	Correlation between <i>Candida albicans</i> biofilm formation and invasion of the invertebrate host <i>Galleria mellonella</i> . Future Microbiology, 2014, 9, 163-173.	1.0	26
73	Essential oil of Melaleuca alternifolia for the treatment of oral candidiasis induced in an immunosuppressed mouse model. BMC Complementary and Alternative Medicine, 2014, 14, 489.	3.7	35
74	<i>In Vitro</i> and <i>In Vivo</i> Activities of Pterostilbene against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2014, 58, 2344-2355.	1.4	88
75	Bioceramic Materials Show Reduced Pathological Biofilm Formation. Key Engineering Materials, 2014, 631, 448-453.	0.4	7
76	Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans. PLoS Pathogens, 2014, 10, e1004365.	2.1	108

#	Article	IF	CITATIONS
77	Effects of surface roughness and dimorphism on the adhesion of <scp><i>Candida albicans</i></scp> to the surface of resins: scanning electron microscope analyses of mode and number of adhesions. Journal of Investigative and Clinical Dentistry, 2014, 5, 307-312.	1.8	40
78	Mechanisms of Drug Resistance in Fungi and Their Significance in Biofilms. Springer Series on Biofilms, 2014, , 45-65.	0.0	9
79	Cell Viability of Candida albicans Against the Antifungal Activity of Thymol. Brazilian Dental Journal, 2014, 25, 277-281.	0.5	27
80	Non- <i>albicans Candida</i> Infection: An Emerging Threat. Interdisciplinary Perspectives on Infectious Diseases, 2014, 2014, 1-7.	0.6	151
81	Virulence Factors Contributing to Pathogenicity of <i>Candida tropicalis</i> and Its Antifungal Susceptibility Profile. International Journal of Microbiology, 2014, 2014, 1-6.	0.9	110
82	Green biocides, a promising technology: current and future applications to industry and industrial processes. Journal of the Science of Food and Agriculture, 2014, 94, 388-403.	1.7	98
83	Fungal Genomics. , 2014, , .		2
84	Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents, 2014, 43, 508-517.	1.1	208
85	Immunoinformatics. Methods in Molecular Biology, 2014, 1184, vii-xi.	0.4	7
86	The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. Journal of Medical Microbiology, 2014, 63, 936-944.	0.7	31
87	Chemical composition, antimicrobial, and cytotoxic properties of five Lamiaceae essential oils. Industrial Crops and Products, 2014, 61, 225-232.	2.5	92
88	Novel Nystatin A1 derivatives exhibiting low host cell toxicity and antifungal activity in an in vitro model of oral candidosis. Medical Microbiology and Immunology, 2014, 203, 341-355.	2.6	16
89	Derivatives of the Mouse Cathelicidin-Related Antimicrobial Peptide (CRAMP) Inhibit Fungal and Bacterial Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2014, 58, 5395-5404.	1.4	55
90	Novel role of a family of major facilitator transporters in biofilm development and virulence of <i>Candida albicans</i> . Biochemical Journal, 2014, 460, 223-235.	1.7	62
91	Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces. Journal of Prosthetic Dentistry, 2014, 112, 988-993.	1.1	55
92	Yeasts isolated from nosocomial urinary infections: Antifungal susceptibility and biofilm production. Revista Iberoamericana De Micologia, 2014, 31, 104-108.	0.4	10
93	Comparison of the effect of rose bengal- and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans. Lasers in Medical Science, 2014, 29, 949-955.	1.0	50
94	Aspartic proteinases of <i><scp>C</scp>andida</i> spp.: role in pathogenicity and antifungal resistance. Mycoses, 2014, 57, 1-11.	1.8	51

#	Article	IF	CITATIONS
95	New "haploid biofilm model―unravels IRA2 as a novel regulator of Candida albicans biofilm formation. Scientific Reports, 2015, 5, 12433.	1.6	24
96	Confocal analysis of the exopolysaccharide matrix of <i>Candida albicans</i> biofilms. Journal of Investigative and Clinical Dentistry, 2015, 6, 179-185.	1.8	9
97	Biofilm formation on titanium implants counteracted by grafting gallium and silver ions. Journal of Biomedical Materials Research - Part A, 2015, 103, 1176-1187.	2.1	66
98	Biofilm and Dental Biomaterials. Materials, 2015, 8, 2887-2900.	1.3	61
99	Host-pathogen interactions between the human innate immune system and Candida albicans—understanding and modeling defense and evasion strategies. Frontiers in Microbiology, 2015, 6, 625.	1.5	83
100	Silver Nanoparticles in Dental Biomaterials. International Journal of Biomaterials, 2015, 2015, 1-9.	1.1	157
101	Silver Nanoparticles to Fight Candida Coinfection in the Oral Cavity. , 2015, , 283-295.		0
102	Surface functionalization by covalent immobilization of an innovative carvacrol derivative to avoid fungal biofilm formation. AMB Express, 2015, 5, 9.	1.4	5
103	Inhibition of Nucleic Acid Biosynthesis Makes Little Difference to Formation of Amphotericin B-Tolerant Persisters in Candida albicans Biofilm. Antimicrobial Agents and Chemotherapy, 2015, 59, 1627-1633.	1.4	4
104	Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation. Lasers in Medical Science, 2015, 30, 1511-1518.	1.0	15
105	Proanthocyanidins polymeric tannin from Stryphnodendron adstringens are active against Candida albicans biofilms. BMC Complementary and Alternative Medicine, 2015, 15, 68.	3.7	35
106	Inhibitory activity in vitro of probiotic lactobacilli against oral Candida under different fermentation conditions. Beneficial Microbes, 2015, 6, 361-368.	1.0	35
107	The discovery of novel antifungal scaffolds by structural simplification of the natural product sampangine. Chemical Communications, 2015, 51, 14648-14651.	2.2	40
108	Oral Candida albicans and its correlation with caries in children inÂvivo. Journal of Pierre Fauchard Academy (Pierre Fauchard Academy India Section), 2015, 29, 1-4.	0.0	1
109	Photodynamic inactivation of virulence factors of Candida strains isolated from patients with denture stomatitis. Journal of Photochemistry and Photobiology B: Biology, 2015, 153, 82-89.	1.7	8
110	<i>Candida albicans</i> aspects of novel silane system–coated titanium and zirconia implant surfaces. Clinical Oral Implants Research, 2015, 26, 332-341.	1.9	48
111	The effect of antifungal combination on transcripts of a subset of drug-resistance genes in clinical isolates of Candida species induced biofilms. Saudi Pharmaceutical Journal, 2015, 23, 55-66.	1.2	13
112	Biofilm Formation as a Pathogenicity Factor of Medically Important Fungi. , 0, , .		8

#	Article	IF	CITATIONS
113	Miniaturized Digestion and Extraction of Surface Proteins from Candida albicans following Treatment with Histatin 5 for Mass Spectrometry Analysis. International Journal of Proteomics, 2016, 2016, 1-12.	2.0	0
114	Medical Device-Associated <i>Candida</i> Infections in a Rural Tertiary Care Teaching Hospital of India. Interdisciplinary Perspectives on Infectious Diseases, 2016, 2016, 1-5.	0.6	22
115	Anti-candida biofilm properties of Cameroonian plant extracts. Journal of Medicinal Plants Research, 2016, 10, 603-611.	0.2	6
116	Genotypes and virulence factors of Candida species isolated from oralcavities of patients with type 2 diabetes mellitus. Turkish Journal of Medical Sciences, 2016, 46, 18-27.	0.4	7
117	Antifungal Susceptibility in Serum and Virulence Determinants of Candida Bloodstream Isolates from Hong Kong. Frontiers in Microbiology, 2016, 7, 216.	1.5	28
118	Attachment Capability of Antagonistic Yeast Rhodotorula glutinis to Botrytis cinerea Contributes to Biocontrol Efficacy. Frontiers in Microbiology, 2016, 7, 601.	1.5	20
119	Editorial: Antifungal Drug Discovery: New Theories and New Therapies. Frontiers in Microbiology, 2016, 7, 728.	1.5	25
120	Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity. Journal of Basic Microbiology, 2016, 56, 440-447.	1.8	151
121	Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species. Carbohydrate Polymers, 2016, 149, 77-82.	5.1	32
122	Effect of 5-aminolevulinic acid photodynamic therapy on Candida albicans biofilms: An in vitro study. Photodiagnosis and Photodynamic Therapy, 2016, 15, 40-45.	1.3	34
123	Immobilization of chlorophyll by using layer-by-layer technique for controlled release systems and photodynamic inactivation. Photodiagnosis and Photodynamic Therapy, 2016, 15, 147-155.	1.3	7
124	Comparative Ploidy Proteomics of Candida albicans Biofilms Unraveled the Role of the AHP1 Gene in the Biofilm Persistence Against Amphotericin B. Molecular and Cellular Proteomics, 2016, 15, 3488-3500.	2.5	37
125	Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation. Journal of Microbiological Methods, 2016, 130, 123-128.	0.7	18
126	Essential Oils for the Prevention and Treatment of Human Opportunistic Fungal Diseases. ACS Symposium Series, 2016, , 247-277.	0.5	5
127	Anti- Candida activity assessment of Pelargonium graveolens oil free and nanoemulsion in biofilm formation in hospital medical supplies. Microbial Pathogenesis, 2016, 100, 170-178.	1.3	23
128	Plasticity of Candida albicans Biofilms. Microbiology and Molecular Biology Reviews, 2016, 80, 565-595.	2.9	63
129	Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates. Bioorganic and Medicinal Chemistry, 2016, 24, 1277-1291.	1.4	34
130	Candida albicans Amphotericin B-Tolerant Persister Formation is Closely Related to Surface Adhesion. Mycopathologia, 2016, 181, 41-49.	1.3	21

#	Article	IF	CITATIONS
131	Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface. Archives of Oral Biology, 2017, 76, 1-6.	0.8	41
132	Activity of Sanguinarine against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	69
133	Deterrence in metabolic and biofilms forming activity of Candida species by mycogenic silver nanoparticles. Journal of Applied Biomedicine, 2017, 15, 249-255.	0.6	12
134	Enhancement of the Efficacy of Photodynamic Inactivation of <i>Candida albicans</i> with the Use of Biogenic Gold Nanoparticles. Photochemistry and Photobiology, 2017, 93, 1081-1090.	1.3	24
135	Influence of sucrose on growth and sensitivity of Candida albicans alone and in combination with Enterococcus faecalis and Streptococcus mutans to photodynamic therapy. Lasers in Medical Science, 2017, 32, 1237-1243.	1.0	15
136	Photoinactivation of single and mixed biofilms of Candida albicans and non-albicans Candida species using Photodithazine®. Photodiagnosis and Photodynamic Therapy, 2017, 17, 194-199.	1.3	26
137	Rhizocompetence of Applied Bioinoculants. , 2017, , 501-511.		5
139	Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Phytomedicine, 2017, 37, 14-26.	2.3	45
140	Dispersal of single and mixed non- albicans Candida species biofilms by β-1,3-glucanase in vitro. Microbial Pathogenesis, 2017, 113, 342-347.	1.3	10
141	Candida Species Biofilms' Antifungal Resistance. Journal of Fungi (Basel, Switzerland), 2017, 3, 8.	1.5	184
142	Fungal Biofilms and Polymicrobial Diseases. Journal of Fungi (Basel, Switzerland), 2017, 3, 22.	1.5	150
143	Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Frontiers in Microbiology, 2017, 08, 36.	1.5	281
144	Herpes simplex virus-1 entrapped in Candida albicans biofilm displays decreased sensitivity to antivirals and UVA1 laser treatment. Annals of Clinical Microbiology and Antimicrobials, 2017, 16, 72.	1.7	10
145	Inhibition of Candida species via Proteosome Inhibitor MG-262 (ZL3B). Archives of Clinical Microbiology, 2017, 08, .	0.2	0
146	Big Offensive and Defensive Mechanisms in Systems Immunity From System Modeling and Big Data Mining. , 2017, , 249-372.		0
147	Nanoengineered hollow mesoporous silica nanoparticles for the delivery of antimicrobial proteins into biofilms. Journal of Materials Chemistry B, 2018, 6, 1899-1902.	2.9	46
149	Methionine is required for cAMPâ€PKAâ€mediated morphogenesis and virulence of <i>Candida albicans</i> . Molecular Microbiology, 2018, 108, 258-275.	1.2	28
150	Comparative Study of the Effects of Fluconazole and Voriconazole on Candida glabrata, Candida parapsilosis and Candida rugosa Biofilms. Mycopathologia, 2018, 183, 499-511.	1.3	12

#	Article	IF	CITATIONS
151	Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis and Photodynamic Therapy, 2018, 21, 182-189.	1.3	37
152	Association between Candida biofilm-forming bloodstream isolates and the clinical evolution in patients with candidemia: An observational nine-year single center study in Mexico. Revista lberoamericana De Micologia, 2018, 35, 11-16.	0.4	11
153	The composition, antibiofilm and antimicrobial activities of essential oil of Ferula assa-foetida oleo-gum-resin. Biocatalysis and Agricultural Biotechnology, 2018, 14, 300-304.	1.5	29
154	Photodynamic inactivation in the expression of the Candida albicans genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in biofilms. Lasers in Medical Science, 2018, 33, 1447-1454.	1.0	17
155	Biofilm formation by Candida albicans is inhibited by photodynamic antimicrobial chemotherapy (PACT), using chlorin e6: increase in both ROS production and membrane permeability. Lasers in Medical Science, 2018, 33, 647-653.	1.0	38
156	Efficacy of carboxymethyl chitosan against Candida tropicalis and Staphylococcus epidermidis monomicrobial and polymicrobial biofilms. International Journal of Biological Macromolecules, 2018, 110, 150-156.	3.6	18
157	<i>In Vitro</i> Effect of <i>Cinnamomum zeylanicum</i> Blume Essential Oil on <i>Candida</i> spp. Involved in Oral Infections. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-13.	0.5	23
158	Controlling methylene blue aggregation: a more efficient alternative to treat Candida albicans infections using photodynamic therapy. Photochemical and Photobiological Sciences, 2018, 17, 1355-1364.	1.6	37
159	Candida Biofilms: Threats, Challenges, and Promising Strategies. Frontiers in Medicine, 2018, 5, 28.	1.2	400
160	Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Frontiers in Microbiology, 2018, 9, 1299.	1.5	286
161	Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. Frontiers in Microbiology, 2018, 9, 1351.	1.5	178
162	Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C18 Nanostructures for the Development of Antifungal Strategies. Nanomaterials, 2018, 8, 47.	1.9	15
163	Antimicrobial potential of Alpinia purpurata lectin (ApuL): Growth inhibitory action, synergistic effects in combination with antibiotics, and antibiofilm activity. Microbial Pathogenesis, 2018, 124, 152-162.	1.3	41
164	Virulence factors and determination of antifungal susceptibilities of Candida species isolated from palm wine and sorghum beer. Microbial Pathogenesis, 2018, 124, 5-10.	1.3	23
165	<p>Anticandidal activity of biosynthesized silver nanoparticles: effect on growth, cell morphology, and key virulence attributes of Candida species</p> . International Journal of Nanomedicine, 2019, Volume 14, 4667-4679.	3.3	88
166	Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substrate. Mycopathologia, 2019, 184, 775-786.	1.3	7
167	Anti-fungal susceptibility and virulence factors of Candida spp. isolated from blood cultures. Journal De Mycologie Medicale, 2019, 29, 325-330.	0.7	20
168	Meso-Raman approach for rapid yeast cells identification. Biophysical Chemistry, 2019, 254, 106249.	1.5	5

#	ARTICLE	IF	CITATIONS
169	Effect of loureirin A against Candida albicans biofilms. Chinese Journal of Natural Medicines, 2019, 17, 616-623.	0.7	19
170	Inflammatory Cell Recruitment in Candida glabrata Biofilm Cell-Infected Mice Receiving Antifungal Chemotherapy. Journal of Clinical Medicine, 2019, 8, 142.	1.0	10
171	Effect of Shikonin Against Candida albicans Biofilms. Frontiers in Microbiology, 2019, 10, 1085.	1.5	51
172	Efficacy of newly developed denture cleaning device on physical properties of denture material and Candida biofilm. Journal of Dental Sciences, 2019, 14, 248-254.	1.2	9
173	Copolymeric micelles as efficient inert nanocarrier for hypericin in the photodynamic inactivation of <i>Candida</i> species. Future Microbiology, 2019, 14, 519-531.	1.0	25
174	Photodynamic Antimicrobial Chemotherapy (PACT) using methylene blue inhibits the viability of the biofilm produced by Candida albicans. Photodiagnosis and Photodynamic Therapy, 2019, 26, 316-323.	1.3	24
175	Candida parapsilosis: from Genes to the Bedside. Clinical Microbiology Reviews, 2019, 32, .	5.7	182
176	Chitosan Nanogel Design on Gymnema sylvestre Essential Oils to Inhibit Growth of Candida albicans Biofilm and Investigation of Gene Expression ALS1, ALS3. Periodica Polytechnica: Chemical Engineering, 2019, 63, 569-581.	0.5	3
177	<i>In vitro</i> and <i>in vivo</i> activity of chelerythrine against <i>Candida albicans</i> and underlying mechanisms. Future Microbiology, 2019, 14, 1545-1557.	1.0	19
178	Candida sp. Infections in Patients with Diabetes Mellitus. Journal of Clinical Medicine, 2019, 8, 76.	1.0	166
179	Antimicrobial Activity of Ozone against Pathogenic Oral Microorganisms on Different Denture Base Resins. Ozone: Science and Engineering, 2020, 42, 43-53.	1.4	2
180	The Role of Biofilms and Material Surface Characteristics in Microbial Adhesion to Maxillary Obturator Materials: A Literature Review. Cleft Palate-Craniofacial Journal, 2020, 57, 487-498.	0.5	8
181	The Proteome of Community Living Candida albicans Is Differentially Modulated by the Morphologic and Structural Features of the Bacterial Cohabitants. Microorganisms, 2020, 8, 1541.	1.6	1
182	Antagonistic effect of isolated and commercially available probiotics on the growth of Candida albicans on acrylic resin denture surfaces. Journal of Prosthetic Dentistry, 2020, , .	1.1	1
183	Lactobacillus Plantarum 108 Inhibits Streptococcus mutans and Candida albicans Mixed-Species Biofilm Formation. Antibiotics, 2020, 9, 478.	1.5	22
184	The Fungal Cell Wall. Current Topics in Microbiology and Immunology, 2020, , .	0.7	7
185	Micro- to nano-scale chemical and mechanical mapping of antimicrobial-resistant fungal biofilms. Nanoscale, 2020, 12, 19888-19904.	2.8	12
186	Prevalence, virulence and antifungal activity of C. albicans isolated from infected root canals. BMC Oral Health, 2020, 20, 347.	0.8	6

#	Article	IF	CITATIONS
187	Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of Candida albicans. Frontiers in Microbiology, 2020, 11, 1274.	1.5	11
188	Exopolysaccharides and Biofilms. Current Topics in Microbiology and Immunology, 2020, 425, 225-254.	0.7	5
189	Fluorinated vs. Zwitterionic-Polymer Grafted Surfaces for Adhesion Prevention of the Fungal Pathogen Candida albicans. Polymers, 2020, 12, 398.	2.0	9
190	The battle against biofilm infections: juglone loaded nanoparticles as an anticandidal agent. Journal of Biotechnology, 2020, 316, 17-26.	1.9	13
191	LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth. Microbial Pathogenesis, 2021, 152, 104614.	1.3	8
192	Fungal infections—Background to specific fungal species. , 2021, , 15-48.		2
194	Differential miRNA Expression in Human Macrophage-Like Cells Infected with Histoplasma capsulatum Yeasts Cultured in Planktonic and Biofilm Forms. Journal of Fungi (Basel, Switzerland), 2021, 7, 60.	1.5	1
195	Persistent inhibition of Candida albicans biofilm and hyphae growth on titanium by graphene nanocoating. Dental Materials, 2021, 37, 370-377.	1.6	27
196	Farnesol: An approach on biofilms and nanotechnology. Medical Mycology, 2021, 59, 958-969.	0.3	15
197	Oral Mucosa, Saliva, and COVID-19 Infection in Oral Health Care. Frontiers in Medicine, 2021, 8, 656926.	1.2	29
198	Nanocomposites obtained by incorporation of silanized silver nanowires to improve mechanical properties and prevent fungal adhesion. Nano Select, 0, , .	1.9	1
199	Analysis of Pathogenic Bacterial and Yeast Biofilms Using the Combination of Synchrotron ATR-FTIR Microspectroscopy and Chemometric Approaches. Molecules, 2021, 26, 3890.	1.7	28
200	Virulence and Pathogenicity of Fungal Pathogens with Special Reference to Candida albicans. , 2010, , 21-45.		30
201	Effect of Some Non steroidal Anti-Inflammatory Drugs on Growth, Adherence and Mature Biofilms of <i>Candida spp.</i> . American Journal of Microbiological Research, 2015, 3, 1-7.	0.2	10
202	Characterization of Mucosal Candida albicans Biofilms. PLoS ONE, 2009, 4, e7967.	1.1	179
203	EVALUATION OF CONGO RED AGAR FOR DETECTION OF BIOFILM PRODUCTION BY VARIOUS CLINICAL CANDIDA ISOLATES. Journal of Evolution of Medical and Dental Sciences, 2014, 3, 13234-13238.	0.1	7
204	STUDY OF BIOFILM FORMATION AS A VIRULENCE MARKER IN CANDIDA SPECIES ISOLATED FROM VARIOUS CLINICAL SPECIMENS Journal of Evolution of Medical and Dental Sciences, 2012, 1, 1238-1246.	0.1	7
205	Virulence Traits Contributing to Pathogenicity ofÂCandidaÂSpecies. Journal of Microbiology & Experimentation, 2017, 5, .	0.1	2

# 206	ARTICLE Antimicrobial Plant Metabolites: Structural Diversity and Mechanism of Action. Current Medicinal Chemistry, 2013, 20, 932-952.	IF 1.2	CITATIONS
207	Prevention of Candida albicans Biofilm Formation. The Open Mycology Journal, 2011, 5, 9-20.	0.8	20
208	Anti-Biofilm Strategies: How to Eradicate Candida Biofilms?. The Open Mycology Journal, 2011, 5, 29-38.	0.8	45
209	Pathogenesis of Polymicrobial Biofilms. The Open Mycology Journal, 2011, 5, 39-43.	0.8	27
210	Biofilm in dermatology. , 0, 1, 3-7.		3
211	Biofilm Formation and Antifungal Susceptibility of Candida Isolates from Various Clinical Specimens. British Microbiology Research Journal, 2013, 3, 590-601.	0.2	8
212	Virulence Markers and Antifungal Susceptibility Profile of Candida glabrata: An Emerging Pathogen. British Microbiology Research Journal, 2014, 4, 39-49.	0.2	10
213	12 Niet-plaquegerelateerde parodontale aandoeningen. , 2009, , 101-117.		0
214	Relationship between Biofilm Formation Ability and Virulence of Candida albicans. Journal of Bacteriology and Virology, 2009, 39, 119.	0.0	4
215	Mechanisms of Multidrug Resistance in Fungal Pathogens. , 2010, , 327-358.		0
216	13 Functional Genomics to Characterize Opportunistic Pathogens. , 2014, , 321-347.		0
217	A Systems Biology Approach to Study Systemic Inflammation. Methods in Molecular Biology, 2014, 1184, 403-416.	0.4	2
218	Exoenzymes Activity and Biofilm Production in Candida Species Isolated from Various Clinical Specimens in Benha University Hospital, Egypt. British Microbiology Research Journal, 2014, 4, 654-667.	0.2	2
219	Incidence of Candida Species in Urinary Tract Infections and Their Control by Using Bioactive Compounds Occurring in Medicinal Plants. , 2015, , 79-93.		0
220	Incidence of Candida Species in Urinary Tract Infections and Their Control by Using Bioactive Compounds Occurring in Medicinal Plants. , 2015, , 87-101.		0
221	ANALYSING THREE DIFFERENT SCREENING METHODS FOR BIOFILM FORMATION IN CLINICAL ISOLATES OF CANDIDA. Journal of Evolution of Medical and Dental Sciences, 2015, 4, 14515-14524.	0.1	1
222	Laser for Onychomycosis. , 2016, , 1-19.		0
223	MULTISPECIES BIOFILM FORMATION BY LACTIC ACID BACTERIA LACTOBACILLUS PLANTARUM Ð17630 AND YEASTS СÐNDIDÐ•ÐŁBIСÐNS ÐТСС 18804. Mikrobiologia I Biotehnologia, 2016, .	0.0	0

#	Article	IF	Citations
224	Methods of Determination of Biofilm Formation by Candida albicans. Research Journal of Microbiology, 2016, 12, 90-96.	0.2	3
225	Microbiomics of oral biofilms: Driving the future of dental research. Scientific Dental Journal, 2017, 1, 25.	0.2	1
226	<i>Candida</i> Biofilms. , 2017, , 103-128.		0
227	Microbial Biofilms. , 2017, , 1-32.		1
228	Proteomics Approaches to Uncover the Drug Resistance Mechanisms of Microbial Biofilms. , 2017, , 129-162.		0
230	Laser for Onychomycosis. Clinical Approaches and Procedures in Cosmetic Dermatology, 2018, , 267-284.	0.0	0
231	Antimicrobial Resistance and Biofilm Formation of Pseudomonas aeruginosa. The International Arabic Journal of Antimicrobial Agents, 2020, 10, .	0.3	1
232	Activity evaluation of ginger (Zingiber officinale) alcoholic extract against Candida albicans. AIP Conference Proceedings, 2020, , .	0.3	1
233	Non-Candida albicans Candida Species: Virulence Factors and Species Identification in India. Current Medical Mycology, 2021, 7, 8-13.	0.8	6
234	Antifungal and Anti-Biofilm Effects of Caffeic Acid Phenethyl Ester on Different Candida Species. Antibiotics, 2021, 10, 1359.	1.5	8
235	Efficacy of alpha-mangostin for antimicrobial activity against endodontopathogenic microorganisms in a multi-species bacterial-fungal biofilm model. Archives of Oral Biology, 2022, 133, 105304.	0.8	7
236	Prevalence of candida albicans in dental plaque and caries lesion of early childhood caries (ECC) according to sampling site. Caspian Journal of Internal Medicine, 2011, 2, 304-8.	0.1	13
237	Hemolytic activities of the Candida species in liquid medium. Eurasian Journal of Medicine, 2009, 41, 95-8.	0.2	13
238	Sensitivity of clinical isolates of Candida to essential oils from Burseraceae family. EXCLI Journal, 2016, 15, 280-9.	0.5	8
240	Evolution of antimicrobial drug resistance in human pathogenic fungi. , 2022, , 53-70.		1
241	The antifungal and antibiofilm activity of Cymbopogon nardus essential oil and citronellal on clinical strains of Candida albicans. Brazilian Journal of Microbiology, 2022, 53, 1231-1240.	0.8	8
242	Changes in the incidence of Candida-related central line-associated bloodstream infections in Pediatric Intensive Care Unit: Could central line bundle have a role?. Journal De Mycologie Medicale, 2022, 32, 101277.	0.7	5
245	Xylanase from <i>Bacillus Trypoxylicola</i> BTS1 Could Reverse Biofilm-Induced Fluconazole Resistance in Freshly Obtained Fluconazole-Sensitive <i>Candida Krusei</i> HvS2 Clinical Isolate. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
246	Microbial Analysis of Obturators During Maxillofacial Prosthodontic Treatment Over an 8-Year Period. Cleft Palate-Craniofacial Journal, 2023, 60, 1426-1441.	0.5	1
247	Diphenyl diselenide suppresses key virulence factors of <i>Candida krusei</i> , a neglected fungal pathogen. Biofouling, 2022, 38, 427-440.	0.8	4
248	(MeOPhSe)2, a synthetic organic selenium compound, inhibits virulence factors of Candida krusei: Adherence to cervical epithelial cells and biofilm formation. Journal of Trace Elements in Medicine and Biology, 2022, 73, 127019.	1.5	1
249	Antimicrobial Properties of Silver-Modified Denture Base Resins. Nanomaterials, 2022, 12, 2453.	1.9	11
250	Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans. Turkish Journal of Medical Sciences, 0, , .	0.4	6
251	Synbiotic <i>Musa acuminata</i> skin extract and <i>Streptococcus salivarius</i> K12 inhibit <i>candida</i> species biofilm formation. Biofouling, 2022, 38, 614-627.	0.8	1
252	Biofilmdannelse på orale proteser. , 2012, 122, .		0
253	Raman Metabolomics of Candida auris Clades: Profiling and Barcode Identification. International Journal of Molecular Sciences, 2022, 23, 11736.	1.8	8
254	Antimicrobial-free graphene nanocoating decreases fungal yeast-to-hyphal switching and maturation of cross-kingdom biofilms containing clinical and antibiotic-resistant bacteria. Biomaterials and Biosystems, 2022, 8, 100069.	1.0	4
255	Real-time assessment of Interspecies Candida Biofilm Formation. Open Microbiology Journal, 2022, 16, .	0.2	Ο
256	İnvazif Kandida Enfeksiyonu. , 0, , .		0
257	Molecular mechanism of biofilm formation of pathogenic microorganisms and their role in host pathogen interaction. , 2023, , 569-586.		Ο
258	Mycological evaluation of frozen meat with special reference to yeasts. Veterinary World, 2023, , 571-579.	0.7	0
259	Candidiasis and Rhodotorulosis. , 2021, , 1061-1068.		0
260	Impact of PVC microplastics on soil chemical and microbiological parameters. Environmental Research, 2023, 229, 115891.	3.7	6
261	Crinum latifolium mediated biosynthesis of gold nanoparticles and their anticandidal, antibiofilm and antivirulence activity. Journal of Saudi Chemical Society, 2023, 27, 101644.	2.4	1
265	Advancing understanding of microbial biofilms through machine learning-powered studies. Food Science and Biotechnology, 2023, 32, 1653-1664.	1.2	1