The Population Reference Sample, POPRES: A Resource Pharmacological Genetics Research

American Journal of Human Genetics 83, 347-358 DOI: 10.1016/j.ajhg.2008.08.005

Citation Report

	EDODT	
Article	IF	CITATIONS
The delayed rise of present-day mammals. Nature, 2007, 446, 507-512.	27.8	1,832
Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature, 2008, 455, 358-362.	27.8	300
STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455, 674-678.	27.8	2,526
Genes mirror geography within Europe. Nature, 2008, 456, 98-101.	27.8	1,287
Laplacian Eigenfunctions Learn Population Structure. PLoS ONE, 2009, 4, e7928.	2.5	24
Global distribution of genomic diversity underscores rich complex history of continental human populations. Genome Research, 2009, 19, 795-803.	5.5	155
Application of principal component analysis to pharmacogenomic studies in Canada. Pharmacogenomics Journal, 2009, 9, 362-372.	2.0	23
Fine-scaled human genetic structure revealed by SNP microarrays. Genome Research, 2009, 19, 815-825.	5.5	91
Discovering genetic ancestry using spectral graph theory. Genetic Epidemiology, 2010, 34, 51-59.	1.3	90
Copy number variation in African Americans. BMC Genetics, 2009, 10, 15.	2.7	29
Shared susceptibility variations in autoimmune diseases: a brief perspective on common issues. Genes and Immunity, 2009, 10, 1-4.	4.1	26
HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nature Genetics, 2009, 41, 816-819.	21.4	950
Lowering industry firewalls: pre-competitive informatics initiatives in drug discovery. Nature Reviews Drug Discovery, 2009, 8, 701-708.	46.4	79

21	745-755.	16.3	180
22	Genome-wide Insights into the Patterns and Determinants of Fine-Scale Population Structure in Humans. American Journal of Human Genetics, 2009, 84, 641-650.	6.2	51
23	A spectral graph approach to discovering genetic ancestry. Annals of Applied Statistics, 2010, 4, 179-202.	1.1	26
24	Abraham's Children in the Genome Era: Major Jewish Diaspora Populations Comprise Distinct Genetic Clusters with Shared Middle Eastern Ancestry. American Journal of Human Genetics, 2010, 86, 850-859.	6.2	217
25	Population Genetic Structure of the People of Qatar. American Journal of Human Genetics, 2010, 87, 17-25.	6.2	110

#

1

3

11

13

15

18

20

#	Article	IF	CITATIONS
26	Connecting the Human Variome Project to nutrigenomics. Genes and Nutrition, 2010, 5, 275-283.	2.5	6
27	Metaâ€analysis of genetic association studies and adjustment for multiple testing of correlated SNPs and traits. Genetic Epidemiology, 2010, 34, 739-746.	1.3	18
28	Using ancestry matching to combine familyâ€based and unrelated samples for genomeâ€wide association studies. Statistics in Medicine, 2010, 29, 2932-2945.	1.6	15
29	Analysis of Population Structure: A Unifying Framework and Novel Methods Based on Sparse Factor Analysis. PLoS Genetics, 2010, 6, e1001117.	3.5	123
30	Ascertainment Biases in SNP Chips Affect Measures of Population Divergence. Molecular Biology and Evolution, 2010, 27, 2534-2547.	8.9	317
31	Genome-wide patterns of population structure and admixture among Hispanic/Latino populations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8954-8961.	7.1	360
32	Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Human Molecular Genetics, 2010, 19, 2927-2935.	2.9	146
33	Population differentiation as a test for selective sweeps. Genome Research, 2010, 20, 393-402.	5.5	600
34	Genetics and Genomics of Human Population Structure. , 2010, , 589-615.		2
35	Genetic Epidemiology. , 2010, , 617-634.		0
36	Ancestry informative markers for fine-scale individual assignment to worldwide populations. Journal of Medical Genetics, 2010, 47, 835-847.	3.2	65
37	Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 786-791.	7.1	430
38	A Consensus Tree Approach for Reconstructing Human Evolutionary History and Detecting Population Substructure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 918-928.	3.0	5
39	Susceptibility to Amoxicillin-Clavulanate-Induced Liver Injury Is Influenced by Multiple HLA Class I and II Alleles. Gastroenterology, 2011, 141, 338-347.	1.3	412
40	hzAnalyzer: detection, quantification, and visualization of contiguous homozygosity in high-density genotyping datasets. Genome Biology, 2011, 12, R21.	9.6	3
41	Perspectives on Human Population Structure at the Cusp of the Sequencing Era. Annual Review of Genomics and Human Genetics, 2011, 12, 245-274.	6.2	69
42	Overview: Adverse Drug Reactions. , 0, , 27-37.		0
43	Assessing and managing risk when sharing aggregate genetic variant data. Nature Reviews Genetics, 2011, 12, 730-736.	16.3	48

ARTICLE IF CITATIONS # Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic 2.8 59 44 diversity. European Journal of Human Genetics, 2011, 19, 995-1001. Indian Siddis: African Descendants with Indian Admixture. American Journal of Human Genetics, 2011, 6.2 89, 154-161. Analyses of a set of 128 ancestry informative single-nucleotide polymorphisms in a global set of 119 46 3.3 147 population samples. Investigative Genetics, 2011, 2, 1. Recommendations for genetic variation data capture in developing countries to ensure a comprehensive worldwide data collection. Human Mutation, 2011, 32, 2-9. Phased Whole-Genome Genetic Risk in a Family Quartet Using a Major Allele Reference Sequence. PLoS 48 3.5 137 Genetics, 2011, 7, e1002280. Genetic Association and Gene-Environment Interaction: A New Method for Overcoming the Lack of Exposure Information in Controls. American Journal of Epidemiology, 2011, 173, 225-235. 49 3.4 The History of African Gene Flow into Southern Europeans, Levantines, and Jews. PLoS Genetics, 2011, 7, 50 3.5 224 e1001373. A Quantitative Comparison of the Similarity between Genes and Geography in Worldwide Human 3.5 106 Populations. PLoS Genetics, 2012, 8, e1002886. Genomewide Pharmacogenetics of Bisphosphonate-Induced Osteonecrosis of the Jaw: The Role of 52 3.7 100 <i>RBMS3</i>. Oncologist, 2012, 17, 279-287. Sequencing human diversity. Science-Business EXchange, 2012, 5, 567-567. Genome-wide association study of serious blistering skin rash caused by drugs. Pharmacogenomics 54 2.0 31 Journal, 2012, 12, 96-104. Heterogeneity in Genetic Admixture across Different Regions of Argentina. PLoS ONE, 2012, 7, e34695. 2.5 Combining Markers into Haplotypes Can Improve Population Structure Inference. Genetics, 2012, 190, 56 2.9 42 159-174. Limited contribution of common genetic variants to risk for liver injury due to a variety of drugs. Pharmacogenetics and Genomics, 2012, 22, 784-795. 1.5 108 Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in 58 7.3 173 the forest tree <i>Populus trichocarpa</i>. New Phytologist, 2012, 196, 713-725. The '3Is' of animal experimentation. Nature Genetics, 2012, 44, 611-611. 21.4 New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome 60 12.8 382 sequencing. Nature Communications, 2012, 3, 698. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nature 21.4 Genetics, 2012, 44, 1015-1019.

ARTICLE IF CITATIONS # Ancient Admixture in Human History. Genetics, 2012, 192, 1065-1093. 2.9 2,012 62 Dissecting the genetic make-up of North-East Sardinia using a large set of haploid and autosomal markers. European Journal of Human Genetics, 2012, 20, 956-964. 2.8 Exploring Genomic Structure Differences and Similarities between the Greek and European HapMap 64 0.8 6 Populations: Implications for Association Studies. Annals of Human Genetics, 2012, 76, 472-483. An Abundance of Rare Functional Variants in 202 Drug Target Genes Sequenced in 14,002 People. Science, 2012, 337, 100-104. A model-based approach for analysis of spatial structure in genetic data. Nature Genetics, 2012, 44, 21.4 66 147 725-731. Origins and Genetic Legacy of Neolithic Farmers and Hunter-Gatherers in Europe. Science, 2012, 336, 12.6 466-469. Stratificationâ€Score Matching Improves Correction for Confounding by Population Stratification in 68 1.3 21 Caseâ€Control Association Studies. Genetic Epidemiology, 2012, 36, 195-205. Modified versions of Bayesian Information Criterion for genome-wide association studies. 69 1.2 28 Computational Statistics and Data Analysis, 2012, 56, 1038-1051. Evaluation of the LIM homeobox genes <i>LHX6</i> and <i>LHX8</i> as candidates for Tourette 70 2.2 23 syndrome. Genes, Brain and Behavior, 2012, 11, 444-451. The impact of Converso Jews on the genomes of modern Latin Americans. Human Genetics, 2012, 131, 3.8 251-263. RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference. American 72 686 6.2 Journal of Human Genetics, 2013, 93, 278-288. Neurodegenerative Diseases: Integrative PPPM Approach as the Medicine of the Future. Advances in Predictive, Preventive and Personalised Medicine, 2013, , . GeneOnEarth: Fitting Genetic PC Plots on the Globe. IEEE/ACM Transactions on Computational Biology 74 3.0 2 and Bioinformatics, 2013, 10, 1009-1016. Influence of Admixture and Paleolithic Range Contractions on Current European Diversity Gradients. Molecular Biology and Evolution, 2013, 30, 57-61. Genetic ancestry inference using support vector machines, and the active emergence of a unique 76 2.8 16 American population. European Journal of Human Genetics, 2013, 21, 554-562. Separation of the largest eigenvalues in eigenanalysis of genotype data from discrete subpopulations. Theoretical Population Biology, 2013, 89, 34-43. Human loci involved in drug biotransformation: worldwide genetic variation, population structure, 78 3.8 16 and pharmacogenetic implications. Human Genetics, 2013, 132, 563-577. Enhanced Localization of Genetic Samples through Linkage-Disequilibrium Correction. American 79 6.2 Journal of Human Genetics, 2013, 92, 882-894.

		CITATION R	EPORT	
#	Article		IF	CITATIONS
80	The Geography of Recent Genetic Ancestry across Europe. PLoS Biology, 2013, 11, e100)1555.	5.6	316
81	Anisotropic Isolation by Distance: The Main Orientations of Human Genetic Differentiati Biology and Evolution, 2013, 30, 513-525.	on. Molecular	8.9	35
82	Analysis of Latino populations from GALA and MEC studies reveals genomic loci with bia ancestry estimation. Bioinformatics, 2013, 29, 1407-1415.	ised local	4.1	38
83	Reconstructing the Population Genetic History of the Caribbean. PLoS Genetics, 2013, 9	9, e1003925.	3.5	296
84	Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationsh Migration. PLoS Genetics, 2013, 9, e1003447.	ips and	3.5	67
85	Pharmacogenomics in the Era of Personal Genomics: A Quick Guide to Online Resources 2013, , 187-211.	and Tools. ,		5
86	Gene flow from North Africa contributes to differential human genetic diversity in south Proceedings of the National Academy of Sciences of the United States of America, 2013	ern Europe. 3, 110, 11791-11796.	7.1	174
87	The Impact of Computer Science in Molecular Medicine: Enabling High- Throughput Res Topics in Medicinal Chemistry, 2013, 13, 526-575.	earch. Current	2.1	13
88	Genome-Wide Association Study Link Novel Loci to Endometriosis. PLoS ONE, 2013, 8,	e58257.	2.5	121
89	A Method for Inferring an Individual's Genetic Ancestry and Degree of Admixture As Major Continental Populations. Frontiers in Genetics, 2013, 3, 322.	sociated with Six	2.3	33
90	Analyzing Genome-Wide Association Studies with an FDR Controlling Modification of th Information Criterion. PLoS ONE, 2014, 9, e103322.	ie Bayesian	2.5	18
91	EPIQâ€"efficient detection of SNPâ€"SNP epistatic interactions for quantitative traits. E 2014, 30, i19-i25.	Bioinformatics,	4.1	11
92	Spatial Localization of Recent Ancestors for Admixed Individuals. G3: Genes, Genomes, (2505-2518.	Genetics, 2014, 4,	1.8	19
93	Effects of Sample Selection Bias on the Accuracy of Population Structure and Ancestry I Genes, Genomes, Genetics, 2014, 4, 901-911.	nference. G3:	1.8	28
94	Neutral genomic regions refine models of recent rapid human population growth. Proce National Academy of Sciences of the United States of America, 2014, 111, 757-762.	edings of the	7.1	106
95	Chip-based direct genotyping of coding variants in genome wide association studies: Ut prospects. Gene, 2014, 540, 104-109.	ility, issues and	2.2	10
96	Ancestry estimation and control of population stratification for sequence-based associa Nature Genetics, 2014, 46, 409-415.	tion studies.	21.4	136
97	Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic Europ 2014, 507, 225-228.	ean. Nature,	27.8	328

#	Article	IF	CITATIONS
98	Demographic Events and Evolutionary Forces Shaping European Genetic Diversity. Cold Spring Harbor Perspectives in Biology, 2014, 6, a008516-a008516.	5.5	14
99	Population-specific common SNPs reflect demographic histories and highlight regions of genomic plasticity with functional relevance. BMC Genomics, 2014, 15, 437.	2.8	40
100	Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 2014, 513, 409-413.	27.8	1,179
101	Population and genomic lessons from genetic analysis of two Indian populations. Human Genetics, 2014, 133, 1273-1287.	3.8	27
102	Fast spatial ancestry via flexible allele frequency surfaces. Bioinformatics, 2014, 30, 2915-2922.	4.1	16
103	Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nature Communications, 2014, 5, 3513.	12.8	114
104	The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science, 2014, 344, 1280-1285.	12.6	420
105	Interactions between RNA polymerase and the "core recognition element―counteract pausing. Science, 2014, 344, 1285-1289.	12.6	158
106	The NIH Toolbox Cognition Battery: Results from a large normative developmental sample (PING) Neuropsychology, 2014, 28, 1-10.	1.3	163
107	SCN9A Variants May be Implicated in Neuropathic Pain Associated With Diabetic Peripheral Neuropathy and Pain Severity. Clinical Journal of Pain, 2015, 31, 976-982.	1.9	44
108	Across language families: Genome diversity mirrors linguistic variation within <scp>E</scp> urope. American Journal of Physical Anthropology, 2015, 157, 630-640.	2.1	63
109	Early modern human dispersal from Africa: genomic evidence for multiple waves of migration. Investigative Genetics, 2015, 6, 13.	3.3	34
110	Explicit Modeling of Ancestry Improves Polygenic Risk Scores and BLUP Prediction. Genetic Epidemiology, 2015, 39, 427-438.	1.3	30
111	Neon: An R Package to Estimate Human Effective Population Size and Divergence Time from Patterns of Linkage Disequilibrium between SNPS. Journal of Computer Science and Systems Biology, 2015, 8, .	0.0	28
112	Genomic Insights into the Ancestry and Demographic History of South America. PLoS Genetics, 2015, 11, e1005602.	3.5	198
113	Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. American Journal of Human Genetics, 2015, 96, 283-294.	6.2	225
114	The Genetic Ancestry of African Americans, Latinos, and European Americans across the United States. American Journal of Human Genetics, 2015, 96, 37-53.	6.2	516
115	Fine-scale human genetic structure in Western France. European Journal of Human Genetics, 2015, 23, 831-836.	2.8	31

#	Article	IF	CITATIONS
116	Fast individual ancestry inference from DNA sequence data leveraging allele frequencies for multiple populations. BMC Bioinformatics, 2015, 16, 4.	2.6	52
117	Are cultural values linked to genetics in Europe?. Biodiversity and Conservation, 2015, 24, 3253-3267.	2.6	2
118	Convex Clustering: An Attractive Alternative to Hierarchical Clustering. PLoS Computational Biology, 2015, 11, e1004228.	3.2	34
119	Posterior predictive checks to quantify lack-of-fit in admixture models of latent population structure. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3441-50.	7.1	11
120	Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8696-8701.	7.1	206
122	A Note on the Relations Between Spatio-Genetic Models. Journal of Computational Biology, 2015, 22, 905-917.	1.6	5
123	Genetic contribution to multiple sclerosis risk among Ashkenazi Jews. BMC Medical Genetics, 2015, 16, 55.	2.1	8
124	HaploPOP: a software that improves population assignment by combining markers into haplotypes. BMC Bioinformatics, 2015, 16, 242.	2.6	8
125	Impact of genetic similarity on imputation accuracy. BMC Genetics, 2015, 16, 90.	2.7	24
126	Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nature Genetics, 2015, 47, 1272-1281.	21.4	193
127	Algorithms in Bioinformatics. Lecture Notes in Computer Science, 2015, , .	1.3	1
128	Genomic analysis of the blood attributed to Louis XVI (1754–1793), king of France. Scientific Reports, 2015, 4, 4666.	3.3	16
129	Population Stratification in the Context of Diverse Epidemiologic Surveys Sans Genome-Wide Data. Frontiers in Genetics, 2016, 7, 76.	2.3	12
130	HLA-DRB1*16. Pharmacogenetics and Genomics, 2016, 26, 218-224.	1.5	63
131			
	Evolutionary Patterns and Processes: Lessons from Ancient DNA. Systematic Biology, 2017, 66, syw059.	5.6	73
132	Evolutionary Patterns and Processes: Lessons from Ancient DNA. Systematic Biology, 2017, 66, syw059. Comparative Fingerprinting of the Human Microbiota in Diabetes and Cardiovascular Disease. Journal of Medicinal Food, 2016, 19, 1188-1195.	5.6 1.5	73 30
132 133	Evolutionary Patterns and Processes: Lessons from Ancient DNA. Systematic Biology, 2017, 66, syw059. Comparative Fingerprinting of the Human Microbiota in Diabetes and Cardiovascular Disease. Journal of Medicinal Food, 2016, 19, 1188-1195. Comparing performance of modern genotype imputation methods in different ethnicities. Scientific Reports, 2016, 6, 34386.	5.6 1.5 3.3	73 30 49

#	Article	IF	CITATIONS
135	A Method to Exploit the Structure of Genetic Ancestry Space to Enhance Case-Control Studies. American Journal of Human Genetics, 2016, 98, 857-868.	6.2	21
136	EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations. Heredity, 2016, 117, 51-61.	2.6	69
137	Rationale and Design of the Genetic Contribution to Drug Induced Renal InjuryÂ(DIRECT) Study. Kidney International Reports, 2016, 1, 288-298.	0.8	13
138	Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity. Genetics, 2016, 204, 711-722.	2.9	54
139	Identifying outlier loci in admixed and in continuous populations using ancestral population differentiation statistics. Molecular Ecology, 2016, 25, 5029-5042.	3.9	38
140	Blending Ethnicities: Perceptions of East Asian Identities Today. , 2016, , 155-176.		Ο
141	Population Structure of UK Biobank and Ancient Eurasians Reveals Adaptation at Genes Influencing Blood Pressure. American Journal of Human Genetics, 2016, 99, 1130-1139.	6.2	53
142	Detecting Genomic Signatures of Natural Selection with Principal Component Analysis: Application to the 1000 Genomes Data. Molecular Biology and Evolution, 2016, 33, 1082-1093.	8.9	123
143	Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 2016, 48, 94-100.	21.4	445
144	Statistical Analysis of GWAS. Computational Biology, 2016, , 105-161.	0.2	0
144 145	Statistical Analysis of GWAS. Computational Biology, 2016, , 105-161. Phenotypes and Genotypes. Computational Biology, 2016, , .	0.2	0
144 145 146	Statistical Analysis of GWAS. Computational Biology, 2016, , 105-161. Phenotypes and Genotypes. Computational Biology, 2016, , . Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. American Journal of Human Genetics, 2016, 98, 456-472.	0.2 0.2 6.2	0 11 335
144 145 146 147	Statistical Analysis of GWAS. Computational Biology, 2016, , 105-161. Phenotypes and Genotypes. Computational Biology, 2016, , . Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. American Journal of Human Genetics, 2016, 98, 456-472. The origin of the p.E180 growth hormone receptor gene mutation. Growth Hormone and IGF Research, 2016, 28, 51-52.	0.2 0.2 6.2 1.1	0 11 335 4
144 145 146 147 148	Statistical Analysis of GWAS. Computational Biology, 2016, , 105-161. Phenotypes and Genotypes. Computational Biology, 2016, , . Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. American Journal of Human Genetics, 2016, 98, 456-472. The origin of the p.E180 growth hormone receptor gene mutation. Growth Hormone and IGF Research, 2016, 28, 51-52. The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage, 2016, 124, 1149-1154.	0.2 0.2 6.2 1.1 4.2	0 11 335 4 251
144 145 146 147 148 149	Statistical Analysis of GWAS. Computational Biology, 2016, , 105-161. Phenotypes and Genotypes. Computational Biology, 2016, , . Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. American Journal of Human Genetics, 2016, 98, 456-472. The origin of the p.E180 growth hormone receptor gene mutation. Growth Hormone and IGF Research, 2016, 28, 51-52. The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage, 2016, 124, 1149-1154. Inferring Recent Demography from Isolation by Distance of Long Shared Sequence Blocks. Genetics, 2017, 205, 1335-1351.	0.2 0.2 6.2 1.1 4.2 2.9	0 11 335 4 251 61
144 145 146 147 148 149 150	Statistical Analysis of GWAS. Computational Biology, 2016, , 105-161. Phenotypes and Genotypes. Computational Biology, 2016, , . Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. American Journal of Human Cenetics, 2016, 98, 456-472. The origin of the p.E180 growth hormone receptor gene mutation. Growth Hormone and IGF Research, 2016, 28, 51-52. The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage, 2016, 124, 1149-1154. Inferring Recent Demography from Isolation by Distance of Long Shared Sequence Blocks. Genetics, 2017, 205, 1335-1351. Using Information of relatives in genomic prediction to apply effective stratified medicine. Scientific Reports, 2017, 7, 42091.	0.2 0.2 6.2 1.1 4.2 2.9 3.3	0 11 335 4 251 61 38
144 145 146 147 148 149 150	Statistical Analysis of GWAS. Computational Biology, 2016, , 105-161. Phenotypes and Genotypes. Computational Biology, 2016, , . Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. American Journal of Human Genetics, 2016, 98, 456-472. The origin of the p.E180 growth hormone receptor gene mutation. Growth Hormone and IGF Research, 2016, 28, 51-52. The Pediatric Imaging, Neurocognition, and Genetics (PING) Data Repository. NeuroImage, 2016, 124, 1149-1154. Inferring Recent Demography from Isolation by Distance of Long Shared Sequence Blocks. Genetics, 2017, 205, 1335-1351. Using Information of relatives in genomic prediction to apply effective stratified medicine. Scientific Reports, 2017, 7, 42091. Fast admixture analysis and population tree estimation for SNP and NGS data. Bioinformatics, 2017, 33, 2148-2155.	0.2 0.2 6.2 1.1 4.2 2.9 3.3 4.1	0 11 335 4 251 61 38 38

	Сітатіо	n Report	
#	Article	IF	Citations
153	Association of Liver Injury From Specific Drugs, or Groups ofÂDrugs, With Polymorphisms in HLA and Other Genes in aÂGenome-Wide Association Study. Gastroenterology, 2017, 152, 1078-1089.	1.3	174
154	Reconstructing human population history from dental phenotypes. Scientific Reports, 2017, 7, 12495.	3.3	46
155	A female Viking warrior confirmed by genomics. American Journal of Physical Anthropology, 2017, 164, 853-860.	2.1	69
156	Genetic adaptation to historical pathogen burdens. Infection, Genetics and Evolution, 2017, 54, 299-307.	2.3	7
157	Humans as a model species for sexual selection research. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171320.	2.6	27
158	Refining the South Asian Origin of the Romani people. BMC Genetics, 2017, 18, 82.	2.7	26
159	Performance of risk prediction for inflammatory bowel disease based on genotyping platform and genomic risk score method. BMC Medical Genetics, 2017, 18, 94.	2.1	36
160	Enlarging the gene-geography of Europe and the Mediterranean area to STR loci of common forensic use: longitudinal and latitudinal frequency gradients. Annals of Human Biology, 2018, 45, 77-85.	1.0	5
164	Trade and Exchanges along the Silk and Steppe Routes in Late Antique Eurasia. , 2018, , 70-83.		1
165	Sogdian Merchants and Sogdian Culture on the Silk Road. , 2018, , 84-95.		1
166	The Synthesis of the Tang Dynasty. , 2018, , 108-122.		0
167	Genetic History and Migrations in Western Eurasia, 500–1000. , 2018, , 135-150.		2
168	Northern Invaders. , 2018, , 151-165.		3
169	Chinese and Inner Asian Perspectives on the History of the Northern Dynasties (386–589) in Chinese Historiography. , 2018, , 166-175.		0
170	The Spread of Buddhist Culture to China between the Third and Seventh Centuries. , 2018, , 220-234.		0
171	Infrastructures of Legitimacy in Inner Asia. , 2018, , 302-316.		0
172	The Stateless Nomads of Central Eurasia. , 2018, , 317-332.		1
173	Aspects of Elite Representation among the Sixth- and Seventh-Century Türks. , 2018, , 333-356.		1

#	Article	IF	CITATIONS
174	Collapse of a Eurasian Hybrid. , 2018, , 369-385.		1
175	Ideological Interweaving in Eastern Eurasia. , 2018, , 386-399.		0
176	Followers and Leaders in Northeastern Eurasia, ca. Seventh to Tenth Centuries. , 2018, , 400-418.		0
181	How the Steppes Became Byzantine. , 2018, , 19-34.		2
182	The Relations between China and the Steppe. , 2018, , 35-53.		1
183	Sasanian Iran and the Projection of Power in Late Antique Eurasia. , 2018, , 54-69.		2
184	"Charismatic―Goods. , 2018, , 96-107.		0
185	Central Asia in the Late Roman Mental Map, Second to Sixth Centuries. , 2018, , 123-132.		0
186	Xiongnu and Huns. , 2018, , 176-188.		5
187	Ethnicity and Empire in the Western Eurasian Steppes. , 2018, , 189-205.		3
188	The Languages of Christianity on the Silk Roads and the Transmission of Mediterranean Culture into Central Asia. , 2018, , 206-219.		0
189	The Circulation of Astrological Lore and Its Political Use BETWEEN the Roman East, Sasanian Iran, Central Asia, India, and the Türks. , 2018, , 235-252.		1
190	Luminous Markers. , 2018, , 253-268.		2
191	Byzantium's Eurasian Policy in the Age of the Türk Empire. , 2018, , 271-286.		2
192	Sasanian Iran and Its Northeastern Frontier. , 2018, , 287-301.		9
193	Patterns of Roman Diplomacy with Iran and the Steppe Peoples. , 2018, , 357-368.		1
194	Evaluating methods to visualize patterns of genetic differentiation on a landscape. Molecular Ecology Resources, 2018, 18, 448-460.	4.8	17
195	Identifying Genetic Differences Between Dongxiang Blue-Shelled and White Leghorn Chickens Using Sequencing Data, G3: Genes, Genomes, Genetics, 2018, 8, 469-476,	1.8	11

11

#	Article	IF	CITATIONS
196	Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr. Bioinformatics, 2018, 34, 2781-2787.	4.1	217
197	Population genomic analysis of elongated skulls reveals extensive female-biased immigration in Early Medieval Bavaria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3494-3499.	7.1	73
198	Differences in Neurocognitive Impairment Among HIV-Infected Latinos in the United States. Journal of the International Neuropsychological Society, 2018, 24, 163-175.	1.8	29
199	Imputation-Aware Tag SNP Selection To Improve Power for Large-Scale, Multi-ethnic Association Studies. G3: Genes, Genomes, Genetics, 2018, 8, 3255-3267.	1.8	36
200	Understanding 6th-century barbarian social organization and migration through paleogenomics. Nature Communications, 2018, 9, 3547.	12.8	111
201	Revealing the Genetic Impact of the Ottoman Occupation on Ethnic Groups of East-Central Europe and on the Roma Population of the Area. Frontiers in Genetics, 2019, 10, 558.	2.3	9
202	UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts. PLoS Genetics, 2019, 15, e1008432.	3.5	166
203	Genomic GPS: using genetic distance from individuals to public data for genomic analysis without disclosing personal genomes. Genome Biology, 2019, 20, 175.	8.8	4
204	Patterns of genetic differentiation and the footprints of historical migrations in the Iberian Peninsula. Nature Communications, 2019, 10, 551.	12.8	63
205	Facial recognition from DNA using face-to-DNA classifiers. Nature Communications, 2019, 10, 2557.	12.8	46
206	Shared Genetic Risk Factors Across Carbamazepineâ€Induced Hypersensitivity Reactions. Clinical Pharmacology and Therapeutics, 2019, 106, 1028-1036.	4.7	52
207	Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. ELife, 2019, 8, .	6.0	276
208	MySeq: privacy-protecting browser-based personal Genome analysis for genomics education and exploration. BMC Medical Genomics, 2019, 12, 172.	1.5	1
209	Principals about principal components in statistical genetics. Briefings in Bioinformatics, 2019, 20, 2200-2216.	6.5	24
210	Estimating recent migration and population-size surfaces. PLoS Genetics, 2019, 15, e1007908.	3.5	76
211	Local PCA Shows How the Effect of Population Structure Differs Along the Genome. Genetics, 2019, 211, 289-304.	2.9	126
212	Optimal selection of genetic variants for adjustment of population stratification in European association studies. Briefings in Bioinformatics, 2020, 21, 753-761.	6.5	2
213	Genetic Landscapes Reveal How Human Genetic Diversity Aligns with Geography. Molecular Biology and Evolution, 2020, 37, 943-951.	8.9	40

#	Article	IF	CITATIONS
214	Fine-scale genomic analyses of admixed individuals reveal unrecognized genetic ancestry components in Argentina. PLoS ONE, 2020, 15, e0233808.	2.5	23
215	Robust genome-wide ancestry inference for heterogeneous datasets: illustrated using the 1,000 genome project with 3D facial images. Scientific Reports, 2020, 10, 11850.	3.3	7
216	Population Histories of the United States Revealed through Fine-Scale Migration and Haplotype Analysis. American Journal of Human Genetics, 2020, 106, 371-388.	6.2	39
217	Patterns of African and Asian admixture in the Afrikaner population of South Africa. BMC Biology, 2020, 18, 16.	3.8	12
218	Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nature Communications, 2020, 11, 1915.	12.8	50
219	Beta-lactam-induced immediate hypersensitivity reactions: AÂgenome-wide association study of a deeply phenotyped cohort. Journal of Allergy and Clinical Immunology, 2021, 147, 1830-1837.e15.	2.9	26
220	Minimum-Distortion Embedding. Foundations and Trends in Machine Learning, 2021, 14, 211-378.	69.0	18
223	Multiple-Ancestor Localization for Recently Admixed Individuals. Lecture Notes in Computer Science, 2015, , 121-135.	1.3	2
239	Population Structure Analyses Provide Insight into the Source Populations Underlying Rural Isolated Communities in Illinois. Human Biology, 2019, 91, 31.	0.2	1
240	Inferring Geographic Coordinates of Origin for Europeans Using Small Panels of Ancestry Informative Markers. PLoS ONE, 2010, 5, e11892.	2.5	37
241	Mine, Yours, Ours? Sharing Data on Human Genetic Variation. PLoS ONE, 2012, 7, e37552.	2.5	36
242	Population Differentiation of Southern Indian Male Lineages Correlates with Agricultural Expansions Predating the Caste System. PLoS ONE, 2012, 7, e50269.	2.5	40
243	Reconstructing Roma History from Genome-Wide Data. PLoS ONE, 2013, 8, e58633.	2.5	61
244	Genome Wide Analysis of Drug-Induced Torsades de Pointes: Lack of Common Variants with Large Effect Sizes. PLoS ONE, 2013, 8, e78511.	2.5	57
245	Endometriosis Is Associated with Rare Copy Number Variants. PLoS ONE, 2014, 9, e103968.	2.5	14
246	The European Collaborative Project on Inflammation and Vascular Wall Remodeling in Atherosclerosis - Intravascular Ultrasound (ATHEROREMO-IVUS) study. EuroIntervention, 2018, 14, 194-203.	3.2	15
247	Recent shifts in the genomic ancestry of Mexican Americans may alter the genetic architecture of biomedical traits. ELife, 2020, 9, .	6.0	15
248	Clinical Trials of AD Delay of Onset: Enrichment by a Prognostic Genetic Biomarker. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 141-160.	0.6	0

#	Article	IF	CITATIONS
250	The Situation and Future Prospects of Pharmacogenomics Consortium in Novel Drug Development. Japanese Journal of Clinical Pharmacology and Therapeutics, 2013, 44, 101-105.	0.1	0
255	Bisphosphonate Related Osteonecrosis of the Jaw. , 2015, , 311-331.		1
273	KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis. Briefings in Bioinformatics, 2022, 23, .	6.5	2
274	Mapping the Mountains of Giants: Anthropometric Data from the Western Balkans Reveal a Nucleus of Extraordinary Physical Stature in Europe. Biology, 2022, 11, 786.	2.8	1
276	Impact of SLCO1B1*5 on Flucloxacillin and Co-Amoxiclav–Related Liver Injury. Frontiers in Pharmacology, 0, 13, .	3.5	0
278	Deciphering signatures of natural selection via deep learning. Briefings in Bioinformatics, 2022, 23, .	6.5	5
279	Twenty years of the Human Genome Diversity Project. , 0, , 1-17.		1
281	Hybrid autoencoder with orthogonal latent space for robust population structure inference. Scientific Reports, 2023, 13, .	3.3	1
285	Inferring human neutral genetic variation from craniodental phenotypes. , 2023, 2, .		1
286	Genetic history of East-Central Europe in the first millennium CE. Genome Biology, 2023, 24, .	8.8	2
287	Fine-scale sampling uncovers the complexity of migrations in 5th–6th century Pannonia. Current Biology, 2023, 33, 3951-3961.e11.	3.9	2
289	Demographic inference for spatially heterogeneous populations using long shared haplotypes. Theoretical Population Biology, 2024, , .	1.1	0