Patterns of Bat Fatalities at Wind Energy Facilities in No

Journal of Wildlife Management 72, 61-78 DOI: 10.2193/2007-221

Citation Report

#	Article	IF	CITATIONS
1	Aeromechanics in aeroecology: flight biology in the aerosphere. Integrative and Comparative Biology, 2007, 48, 85-98.	2.0	18
2	Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biological Conservation, 2007, 139, 1-11.	4.1	125
3	Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integrative and Comparative Biology, 2007, 48, 107-118.	2.0	100
4	Aeroecology: probing and modeling the aerosphere. Integrative and Comparative Biology, 2007, 48, 1-11.	2.0	89
5	Assessing Impacts of Windâ€Energy Development on Nocturnally Active Birds and Bats: A Guidance Document. Journal of Wildlife Management, 2007, 71, 2449-2486.	1.8	197
6	Minimal effects of wind turbines on the distribution of wintering farmland birds. Journal of Applied Ecology, 2008, 45, 1689-1694.	4.0	75
7	Behavioral Responses of Bats to Operating Wind Turbines. Journal of Wildlife Management, 2008, 72, 123-132.	1.8	139
8	Mating Behavior as a Possible Cause of Bat Fatalities at Wind Turbines. Journal of Wildlife Management, 2008, 72, 845-849.	1.8	84
9	Barotrauma is a significant cause of bat fatalities at wind turbines. Current Biology, 2008, 18, R695-R696.	3.9	160
10	Long-term change in an assemblage of North American bats: are eastern red bats declining. Acta Chiropterologica, 2008, 10, 359-366.	0.6	28
11	Eighty-Eighth Annual Meeting American Society Of Mammalogists. Journal of Mammalogy, 2008, 89, 1572-1576.	1.3	0
12	Detection of polyoma and corona viruses in bats of Canada. Journal of General Virology, 2009, 90, 2015-2022.	2.9	80
13	A Large cale Mitigation Experiment to Reduce Bat Fatalities at Wind Energy Facilities. Journal of Wildlife Management, 2009, 73, 1077-1081.	1.8	122
14	Marine renewable energy: potential benefits to biodiversity? An urgent call for research. Journal of Applied Ecology, 2009, 46, 1145-1153.	4.0	327
15	Food Habits of the Hoary Bat (Lasiurus cinereus) during Spring Migration through New Mexico. Southwestern Naturalist, 2009, 54, 195-200.	0.1	38
16	Using Hydrogen Isotopes to Assign Origins of Bats in the Eastern United States. Journal of Mammalogy, 2009, 90, 743-751.	1.3	36
17	Causes of Bat Fatalities at Wind Turbines: Hypotheses and Predictions. Journal of Mammalogy, 2009, 90, 1330-1340.	1.3	177
18	Geographic Variation in Activity and Fatality of Migratory Bats at Wind Energy Facilities. Journal of Mammalogy, 2009, 90, 1341-1349.	1.3	91

#	Article	IF	CITATIONS
19	Differences in Bat Activity in Relation to Bat Detector Height: Implications for Bat Surveys at Proposed Windfarm Sites. Acta Chiropterologica, 2009, 11, 343-350.	0.6	40
20	Wind Turbines and Bat Mortality: Rotor Detectability Profiles. Wind Engineering, 2010, 34, 517-530.	1.9	2
21	Temporal Patterns in Capture Rate and Sex Ratio of Forest Bats in Arkansas. American Midland Naturalist, 2010, 164, 270-282.	0.4	16
22	Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making. Energy Policy, 2010, 38, 2508-2519.	8.8	306
23	Mortality of bats at wind turbines links to nocturnal insect migration?. European Journal of Wildlife Research, 2010, 56, 823-827.	1.4	72
24	Assessing the potential impact of wind turbines on the endangered Galapagos Petrel Pterodroma phaeopygia at San CristÃ ³ bal Island, Galapagos. Biodiversity and Conservation, 2010, 19, 679-694.	2.6	4
25	Potential impact of wind farms on territories of large eagles in southeastern Spain. Biodiversity and Conservation, 2010, 19, 3757-3767.	2.6	14
26	Tissue mercury concentrations and adrenocortical responses of female big brown bats (Eptesicus) Tj ETQq1	1 0.784314 rg 2.4	BT /Overlock
27	Bats are not birds and other problems with Sovacool's (2009) analysis of animal fatalities due to electricity generation. Energy Policy, 2010, 38, 2067-2069.	8.8	21
28	Potential impacts of waveâ€powered marine renewable energy installations on marine birds. Ibis, 2010, 152, 683-697.	1.9	67
29	Estimating carcass persistence and scavenging bias in a human-influenced landscape in western Alaska. Journal of Field Ornithology, 2010, 81, 206-214.	0.5	24
30	Grand Challenges in Migration Biology. Integrative and Comparative Biology, 2010, 50, 261-279.	2.0	170
31	Diet of Hoary (Lasiurus cinereus) and Silver-haired (Lasionycteris noctivagans) Bats While Migrating Through Southwestern Alberta in Late Summer and Autumn. American Midland Naturalist, 2010, 164, 230-237.	0.4	29
32	Wind turbines and bat mortality: Doppler shift profiles and ultrasonic bat-like pulse reflection from moving turbine blades. Journal of the Acoustical Society of America, 2010, 128, 2238-2245.	1.1	9
33	Bat Mortality at Wind Turbines in Northwestern Europe. Acta Chiropterologica, 2010, 12, 261-274.	0.6	191
34	Bat Migration. , 2010, , 145-149.		2
35	Spatial Pattern of Summer Bat Mortality from Collisions with Wind Turbines in Mixed-grass Prairie. American Midland Naturalist, 2010, 164, 260-269.	0.4	39
36	Reproductive timing, distribution, and sex ratios of tree bats in Lower Michigan. Journal of Mammalogy, 2010, 91, 586-592.	1.3	14

#	Article	IF	CITATIONS
37	Bat Mortality and Activity at a Northern Iowa Wind Resource Area. American Midland Naturalist, 2011, 165, 185-200.	0.4	17
38	A new method to determine bird and bat fatality at wind energy turbines from carcass searches. Wildlife Biology, 2011, 17, 350-363.	1.4	77
39	The application of Evolutionary Neural Network for bat echolocation calls recognition. , 2011, , .		10
40	Seasonal and Geographic Trends in Acoustic Detection of Tree-Roosting Bats. Acta Chiropterologica, 2011, 13, 157-168.	0.6	20
41	Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development. PLoS ONE, 2011, 6, e17566.	2.5	101
42	Development by Design: Mitigating Wind Development's Impacts on Wildlife in Kansas. PLoS ONE, 2011, 6, e26698.	2.5	27
43	Wind Power Compensation is not for the Birds: An Opinion from an Environmental Economist. Restoration Ecology, 2011, 19, 147-153.	2.9	22
44	Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 2011, 1223, 1-38.	3.8	929
45	State and local economic impacts from wind energy projects: Texas case study. Energy Policy, 2011, 39, 7930-7940.	8.8	97
46	Investigating the causes of death for wind turbine-associated bat fatalities. Journal of Mammalogy, 2011, 92, 917-925.	1.3	57
47	Altering turbine speed reduces bat mortality at windâ€energy facilities. Frontiers in Ecology and the Environment, 2011, 9, 209-214.	4.0	179
48	Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. Journal of Wildlife Management, 2011, 75, 1103-1114.	1.8	86
49	Bats and Gaps: The Role of Early Successional Patches in the Roosting and Foraging Ecology of Bats. Managing Forest Ecosystems, 2011, , 167-189.	0.9	18
50	Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA. Environmental Monitoring and Assessment, 2011, 173, 685-699.	2.7	34
51	Insect attraction to wind turbines: does colour play a role?. European Journal of Wildlife Research, 2011, 57, 323-331.	1.4	48
52	Free-Ranging Little Brown Myotis (Myotis lucifugus) Heal from Wing Damage Associated with White-Nose Syndrome. EcoHealth, 2011, 8, 154-162.	2.0	53
53	An estimator of wildlife fatality from observed carcasses. Environmetrics, 2011, 22, 318-329.	1.4	108
54	Risk evaluation for federally listed (roseate tern, piping plover) or candidate (red knot) bird species in offshore waters: A first step for managing the potential impacts of wind facility development on the Atlantic Outer Continental Shelf. Renewable Energy, 2011, 36, 338-351.	8.9	31

#	Article	IF	CITATIONS
55	RABIES PREVALENCE IN MIGRATORY TREE-BATS IN ALBERTA AND THE INFLUENCE OF ROOSTING ECOLOGY AND SAMPLING METHOD ON REPORTED PREVALENCE OF RABIES IN BATS. Journal of Wildlife Diseases, 2011, 47, 64-77.	0.8	27
57	Wind Power and Biofuels: A Green Dilemma for Wildlife Conservation. , 2011, , 131-155.		12
58	Bat mortality at a windâ€energy facility in southeastern Wisconsin. Wildlife Society Bulletin, 2012, 36, 773-783.	1.6	15
59	Bird and bat mortality at short, monopole cell towers in Rock Creek Park, Washington, D.C., USA. Wildlife Society Bulletin, 2012, 36, 78-84.	1.6	1
60	The avian and wildlife costs of fossil fuels and nuclear power. Journal of Integrative Environmental Sciences, 2012, 9, 255-278.	2.5	14
61	A Forensic Investigation Into the Etiology of Bat Mortality at a Wind Farm: Barotrauma or Traumatic Injury?. Veterinary Pathology, 2012, 49, 362-371.	1.7	51
62	Population-level impact of white-nose syndrome on the endangered Indiana bat. Journal of Mammalogy, 2012, 93, 1086-1098.	1.3	66
63	Roost selection by the solitary, foliage-roosting hoary bat (<i>LasiurusÂcinereus</i>) during lactation. Canadian Journal of Zoology, 2012, 90, 329-336.	1.0	30
64	Avian detection & tracking algorithm using infrared imaging. , 2012, , .		11
65	Assessing the status and trend of bat populations across broad geographic regions with dynamic distribution models. Ecological Applications, 2012, 22, 1098-1113.	3.8	34
66	Scavenger removal: Bird and bat carcass persistence in a tropical wind farm. Acta Oecologica, 2012, 43, 121-125.	1.1	34
67	The catchment area of wind farms for European bats: A plea for international regulations. Biological Conservation, 2012, 153, 80-86.	4.1	112
68	Seasonal Variation in Bat Activity in Relation to Detector Height: A Case Study. Acta Chiropterologica, 2012, 14, 401-408.	0.6	11
69	Bat Fatalities at Wind Farms in North-Eastern Greece. Acta Chiropterologica, 2012, 14, 459-468.	0.6	29
70	Variation in catchment areas of Indiana bat (<i>Myotis sodalis</i>) hibernacula inferred from stable hydrogen (δ ² H) isotope analysis. Canadian Journal of Zoology, 2012, 90, 1243-1250.	1.0	20
71	Bat Mortality at a Wind Power Facility in Central Canada. Northwestern Naturalist, 2012, 93, 194-202.	0.4	7
72	Factors Influencing Bat Activity and Mortality at a Wind Farm in the Mediterranean Region. Acta Chiropterologica, 2012, 14, 439.	0.6	50
73	Bat Fatalities at Wind Farms in Northern Spain — Lessons to be Learned. Acta Chiropterologica, 2012, 14, 205-212.	0.6	21

#	Article	IF	CITATIONS
74	Bats. , 2012, , 45-54.		2
75	Evidence of Latitudinal Migration in Tri-colored Bats, Perimyotis subflavus. PLoS ONE, 2012, 7, e31419.	2.5	42
76	Wind and Wildlife in the Northern Great Plains: Identifying Low-Impact Areas for Wind Development. PLoS ONE, 2012, 7, e41468.	2.5	52
77	Evidence of Late-Summer Mating Readiness and Early Sexual Maturation in Migratory Tree-Roosting Bats Found Dead at Wind Turbines. PLoS ONE, 2012, 7, e47586.	2.5	58
78	Assessing wave energy effects on biodiversity: the Wave Hub experience. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 502-529.	3.4	77
79	Using echolocation monitoring to model bat occupancy and inform mitigations at wind energy facilities. Journal of Wildlife Management, 2012, 76, 619-631.	1.8	54
80	Research priorities for wind energy and migratory wildlife. Journal of Wildlife Management, 2012, 76, 451-456.	1.8	33
81	Migratory stopover in the longâ€distance migrant silverâ€haired bat, <i>Lasionycteris noctivagans</i> . Journal of Animal Ecology, 2012, 81, 377-385.	2.8	98
82	The predominance of economic development in the support for large-scale wind farms in the U.S. Great Plains. Renewable and Sustainable Energy Reviews, 2012, 16, 3690-3701.	16.4	78
83	Advances in sex determination in bats and its utility in windâ€wildlife studies. Molecular Ecology Resources, 2013, 13, 776-780.	4.8	26
84	A new stochastic dynamic tool to improve the accuracy of mortality estimates for bats killed at wind farms. Ecological Indicators, 2013, 34, 428-440.	6.3	6
85	Challenges and opportunities for animal conservation from renewable energy development. Animal Conservation, 2013, 16, 367-369.	2.9	19
86	The effects of a largeâ€scale wind farm on breeding season survival of female mallards and blueâ€winged teal in the Prairie Pothole Region. Journal of Wildlife Management, 2013, 77, 1360-1371.	1.8	9
87	Is lek breeding rare in bats?. Journal of Zoology, 2013, 291, 3-11.	1.7	24
88	Responses of Bats to Climate Change: Learning from the Past and Predicting the Future. , 2013, , 457-478.		27
89	Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation, 2013, 168, 201-209.	4.1	203
90	Wildlife mortality from infrastructure collisions: statistical modeling of count data from carcass surveys. Ecology, 2013, 94, 2087-2096.	3.2	15
91	Bat fatalities at two wind farms in Tasmania, Australia: bat characteristics, and spatial and temporal patterns. New Zealand Journal of Zoology, 2013, 40, 5-15.	1.1	22

#	Article	IF	CITATIONS
92	Conservation Units of Pteronotus Davyi (Chiroptera: Mormoopidae) in Mexico Based on Phylogeographical Analysis. Acta Chiropterologica, 2013, 15, 353-363.	0.6	6
93	Insect Prey Eaten by Hoary Bats (<i>Lasiurus cinereus</i>) Prior to Fatal Collisions with Wind Turbines. Western North American Naturalist, 2013, 73, 516-524.	0.4	22
94	Assessing road effects on bats: the role of landscape, road features, and bat activity on roadâ€kills. Ecological Research, 2013, 28, 227-237.	1.5	49
95	Bats Killed in Large Numbers at United States Wind Energy Facilities. BioScience, 2013, 63, 975-979.	4.9	109
96	Modeling carcass removal time for avian mortality assessment in wind farms using survival analysis. Environmental and Ecological Statistics, 2013, 20, 147-165.	3.5	37
97	Effect of wind energy development on breeding duck densities in the Prairie Pothole Region. Journal of Wildlife Management, 2013, 77, 587-598.	1.8	21
98	Using species distribution modelling to predict bat fatality risk at wind farms. Biological Conservation, 2013, 157, 178-186.	4.1	62
99	Estimation of bird and bat mortality at windâ€power farms with superpopulation models. Journal of Applied Ecology, 2013, 50, 902-911.	4.0	41
100	A quantitative method to analyze the quality of EIA information in wind energy development and avian/bat assessments. Environmental Impact Assessment Review, 2013, 38, 142-150.	9.2	23
101	Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife. Applied Energy, 2013, 103, 52-60.	10.1	73
102	Bats of the Wildcat Hills and Surrounding Areas in Western Nebraska. Monographs of the Western North American Naturalist, 2013, 6, 20-42.	0.7	1
103	Estimating Bat and Bird Mortality Occurring at Wind Energy Turbines from Covariates and Carcass Searches Using Mixture Models. PLoS ONE, 2013, 8, e67997.	2.5	50
104	Recent Advances in Bat Migration Research. , 2013, , 293-313.		33
105	Bird Mortality at a Wind-Energy Facility near a Wetland of International Importance. Condor, 2013, 115, 700-711.	1.6	15
106	Impacts of wind energy developments on wildlife: a southern hemisphere perspective. New Zealand Journal of Zoology, 2013, 40, 1-4.	1.1	9
107	Impacts of Wind Energy Development on Bats: Implications for Conservation. , 2013, , 435-456.		114
108	Moving across the border: modeling migratory bat populations. Ecosphere, 2013, 4, 1-16.	2.2	40
109	Optimizing Wind Power Generation while Minimizing Wildlife Impacts in an Urban Area. PLoS ONE, 2013 8 e56036	2.5	13

#	Article	IF	CITATIONS
110	Improved Analysis of Long-Term Monitoring Data Demonstrates Marked Regional Declines of Bat Populations in the Eastern United States. PLoS ONE, 2013, 8, e65907.	2.5	64
111	Wind Farm Facilities in Germany Kill Noctule Bats from Near and Far. PLoS ONE, 2014, 9, e103106.	2.5	90
112	Blown in the wind: bats and wind farms in Brazil. Natureza A Conservacao, 2014, 12, 106-111.	2.5	16
113	Radar-based monitoring system for nocturnal assessment. , 2014, , .		1
114	REVIEW: Evidence of negative effects of anthropogenic structures on wildlife: a review of grouse survival and behaviour. Journal of Applied Ecology, 2014, 51, 1680-1689.	4.0	87
115	Warning sounds and color for reducing bird and bat mortality at wind turbines. , 2014, , .		3
116	Estimating the spatial distribution of wintering little brown bat populations in the eastern United States. Ecology and Evolution, 2014, 4, 3746-3754.	1.9	9
117	Wind energy: Increasing deployment, rising environmental concerns. Renewable and Sustainable Energy Reviews, 2014, 31, 270-288.	16.4	222
118	Accounting for unsearched areas in estimating wind turbine aused fatality. Journal of Wildlife Management, 2014, 78, 347-358.	1.8	45
119	A modelling approach to infer the effects of wind farms on landscape connectivity for bats. Landscape Ecology, 2014, 29, 891-903.	4.2	50
120	Cautious but Committed: Moving Toward Adaptive Planning and Operation Strategies for Renewable Energy's Wildlife Implications. Environmental Management, 2014, 54, 744-755.	2.7	40
121	Evaluation of Mobile Acoustic Techniques for Bat Population Monitoring. Acta Chiropterologica, 2014, 16, 223-230.	0.6	23
122	Estimating Sample Size for Landscape-Scale Mark-Recapture Studies of North American Migratory Tree Bats. Acta Chiropterologica, 2014, 16, 231-239.	0.6	16
123	Red aviation lights on wind turbines do not increase bat-turbine collisions. Animal Conservation, 2014, 17, 354-358.	2.9	28
124	Disease and community structure: whiteâ€nose syndrome alters spatial and temporal niche partitioning in sympatric bat species. Diversity and Distributions, 2014, 20, 1002-1015.	4.1	49
125	Offshore Acoustic Monitoring of Bats in the Gulf of Maine. Northeastern Naturalist, 2014, 21, 86-107.	0.3	12
126	Offshore Activity of Bats Along the Mid-Atlantic Coast. Northeastern Naturalist, 2014, 21, 154-163.	0.3	16
127	Behavior of bats at wind turbines. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15126-15131.	7.1	152

#	Article	IF	CITATIONS
128	Fuzzy clustering in avian infrared imagery application. , 2014, , .		1
129	Interactions Between Wildlife and Civil Aircraft in Mississippi. Southeastern Naturalist, 2014, 13, 156-165.	0.4	1
130	Interspecific effects of forest fragmentation on bats. Canadian Journal of Zoology, 2014, 92, 665-673.	1.0	8
131	Seasonal Bat Activity in Relation to Distance to Hedgerows in an Agricultural Landscape in Central Europe and Implications for Wind Energy Development. Acta Chiropterologica, 2014, 16, 65-73.	0.6	48
132	Continentalâ€scale, seasonal movements of a heterothermic migratory tree bat. Ecological Applications, 2014, 24, 602-616.	3.8	63
133	Thinking globally and siting locally – renewable energy and biodiversity in a rapidly warming world. Climatic Change, 2014, 126, 1-6.	3.6	34
134	Estimating scavenger and search bias for collision fatality surveys of large birds on power lines in the Karoo, South Africa. Ostrich, 2014, 85, 39-45.	1.1	19
135	Activity of tree bats at anthropogenic tall structures: implications for mortality of bats at wind turbines. Animal Behaviour, 2014, 97, 145-152.	1.9	35
136	Bat Activity, Insect Biomass, and Temperature Along an Elevational Gradient. Northeastern Naturalist, 2014, 21, 72-85.	0.3	39
137	A Comment on "Bats Killed in Large Numbers at United States Wind Energy Facilities― BioScience, 2014, 64, 546-547.	4.9	16
138	Pre-Construction Bat Activity At Four Wind Energy Sites in Northeastern British Columbia. Northwestern Naturalist, 2014, 95, 300-311.	0.4	3
139	Wind Energy Facility Siting: Learning from Experience and Guides for Moving Forward. Wind Engineering, 2014, 38, 203-216.	1.9	10
140	Establishing conservation baselines with dynamic distribution models for bat populations facing imminent decline. Diversity and Distributions, 2015, 21, 1401-1413.	4.1	30
141	Bat Activity at a Small Wind Turbine in the Baltic Sea. Acta Chiropterologica, 2015, 17, 359-364.	0.6	6
142	An autonomous GPS geofence alert system to curtail avian fatalities at wind farms. Animal Biotelemetry, 2015, 3, .	1.9	28
143	New Distribution Records for Bats in Northwestern North Carolina. Southeastern Naturalist, 2015, 14, 98-105.	0.4	5
144	Risk Analysis for U.S. Offshore Wind Farms: The Need for an Integrated Approach. Risk Analysis, 2015, 35, 587-593.	2.7	18
146	Seasonally-Dynamic Presence-Only Species Distribution Models for a Cryptic Migratory Bat Impacted by Wind Energy Development. PLoS ONE, 2015, 10, e0132599.	2.5	38

		CITATION REPORT		
#	Article		IF	CITATIONS
147	Impact of Wind Facilities on Bats in the Neotropics. Acta Chiropterologica, 2015, 17, 3	365-370.	0.6	12
148	Use of thermal imaging to estimate the population sizes of Brazilian free-tailed bat, <i>brasiliensis</i> , maternity roosts in Oklahoma. Southwestern Naturalist, 2015, 60, 90-	Tadarida 96.	0.1	9
149	Mitigating impacts of roads on wildlife: an agenda for the conservation of priority Euro protected species in Great Britain. European Journal of Wildlife Research, 2015, 61, 19	opean 9-211.	1.4	14
150	Wildlife and renewable energy: German politics cross migratory bats. European Journa Research, 2015, 61, 213-219.	of Wildlife	1.4	93
151	Species composition and mortality of bats at the OsÃ ³ rio Wind Farm, southern Brazil. Neotropical Fauna and Environment, 2015, 50, 31-39.	Studies on	1.0	18
152	Insufficient sampling to identify species affected by turbine collisions. Journal of Wildli Management, 2015, 79, 513-517.	fe	1.8	16
153	How Chinese residents are aware of solar photovoltaic power generation?. Journal of R Sustainable Energy, 2015, 7, 023109.	enewable and	2.0	6
154	Relationships between bat occupancy and habitat and landscape structure along a sav forest gradient in the Missouri Ozarks. Wildlife Society Bulletin, 2015, 39, 20-30.	anna, woodland,	1.6	39
155	Genetic diversity, historic population size, and population structure in 2 North America Journal of Mammalogy, 2015, 96, 972-980.	an tree bats.	1.3	18
156	Consolidating the State of Knowledge: A Synoptical Review of Wind Energy's Wilc Environmental Management, 2015, 56, 300-331.	life Effects.	2.7	119
157	Do habitat characteristics determine mortality risk for bats at wind farms? Modelling s species activity patterns and anticipating possible mortality events. Ecological Informa 7-18.	usceptible Itics, 2015, 28,	5.2	19
158	Renewable energies and ecosystem service impacts. Renewable and Sustainable Energ 608-623.	y Reviews, 2015, 48,	16.4	113
159	Developing an automated risk management tool to minimize bird and bat mortality at Ambio, 2015, 44, 557-571.	wind facilities.	5.5	19
160	Regional Analysis of Wind Turbine-Caused Bat Mortality. Acta Chiropterologica, 2015,	17, 179-188.	0.6	6
161	Enhanced audio-visual warnings for reducing bird fatalities at wind turbines. , 2015, , .			0
162	How to mitigate impacts of wind farms on bats? A review of potential conservation me European context. Environmental Impact Assessment Review, 2015, 51, 10-22.	easures in the	9.2	37
163	Estimating windâ€ŧurbine aused bird and bat fatality when zero carcasses are obse Applications, 2015, 25, 1213-1225.	rved. Ecological	3.8	25
164	Animal reactions to oncoming vehicles: a conceptual review. Biological Reviews, 2015,	90, 60-76.	10.4	98

#	Article	IF	CITATIONS
165	Estimates and correlates of bird and bat mortality at small wind turbine sites. Biodiversity and Conservation, 2015, 24, 467-482.	2.6	7
166	Optimizing conservation strategies for Mexican free-tailed bats: a population viability and ecosystem services approach. Biodiversity and Conservation, 2015, 24, 63-82.	2.6	17
167	Seeing the Forest through the Trees: Considering Roost-Site Selection at Multiple Spatial Scales. PLoS ONE, 2016, 11, e0150011.	2.5	18
168	Assessing spring direct mortality to avifauna from wind energy facilities in the Dakotas. Journal of Wildlife Management, 2016, 80, 736-745.	1.8	8
169	Mitigation Measures for Wildlife in Wind Energy Development, Consolidating the State of Knowledge — Part 1: Planning and Siting, Construction. Journal of Environmental Assessment Policy and Management, 2016, 18, 1650013.	7.9	15
170	A macroecological perspective on strategic bat conservation in theÂU.S. National Park Service. Ecosphere, 2016, 7, e01576.	2.2	16
171	Experts' opinions on the effects of renewable energy development on ecosystem services in the Alpine region. Journal of Renewable and Sustainable Energy, 2016, 8, .	2.0	17
172	Bats in a tropical wind farm: species composition and importance of the spatial attributes of vegetation cover on bat fatalities. Journal of Mammalogy, 2016, 97, 1197-1208.	1.3	9
173	Effects of Renewable Energy Production and Infrastructure on Wildlife. Wildlife Research Monographs, 2016, , 97-123.	0.9	18
174	Bat activity during autumn relates to atmospheric conditions: implications for coastal wind energy development. Journal of Mammalogy, 2016, 97, 1565-1577.	1.3	23
175	Testing the efficacy of an acoustic lure on bat mist-netting success in North American central hardwood forests. Journal of Mammalogy, 2016, 97, 1617-1622.	1.3	11
176	Bat mortality due to wind turbines in Canada. Journal of Wildlife Management, 2016, 80, 1360-1369.	1.8	56
177	Habitat use of bats in relation to wind turbines revealed by GPS tracking. Scientific Reports, 2016, 6, 28961.	3.3	84
178	The avifauna of Bosque Fray Jorge National Park and Chile's Norte Chico. Journal of Arid Environments, 2016, 126, 23-36.	2.4	10
179	Effects of whiteâ€nose syndrome on regional population patterns of 3 hibernating bat species. Conservation Biology, 2016, 30, 1048-1059.	4.7	38
180	Using DNA barcoding to improve bat carcass identification at wind farms in the United States. Conservation Genetics Resources, 2016, 8, 27-34.	0.8	13
181	Geographic origins and population genetics of bats killed at windâ€energy facilities. Ecological Applications, 2016, 26, 1381-1395.	3.8	28
182	Multiple mortality events in bats: a global review. Mammal Review, 2016, 46, 175-190.	4.8	240

#	Article	IF	CITATIONS
183	Impacts of Wind Energy Development on Bats: A Global Perspective. , 2016, , 295-323.		75
184	Bats may eat diurnal flies that rest on wind turbines. Mammalian Biology, 2016, 81, 331-339.	1.5	29
185	Bats in a Mediterranean Mountainous Landscape: Does Wind Farm Repowering Induce Changes at Assemblage and Species Level?. Environmental Management, 2016, 57, 1240-1246.	2.7	8
186	Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern US. International Journal of Biodiversity Science, Ecosystem Services & Management, 2017, 13, 27-39.	2.9	5
187	Mitigating Bat Mortality with Turbine-Specific Curtailment Algorithms: A Model Based Approach. , 2017, , 135-160.		18
188	Day of year, temperature, wind, and precipitation predict timing of bat migration. Journal of Mammalogy, 0, , .	1.3	8
189	Strong geographic and temporal patterns in conservation status of North American bats. Biological Conservation, 2017, 212, 144-152.	4.1	44
190	Patterns of acceptance and non-acceptance within energy landscapes: A case study on wind energy expansion in Austria. Energy Policy, 2017, 109, 863-870.	8.8	79
191	Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation. Journal of Mammalogy, 2017, 98, 378-385.	1.3	41
192	Factors associated with bat mortality at wind energy facilities in the United States. Biological Conservation, 2017, 215, 241-245.	4.1	32
193	Ecosystem Services from Transborder Migratory Species: Implications for Conservation Governance. Annual Review of Environment and Resources, 2017, 42, 509-539.	13.4	51
194	Stable isotope investigation of the migratory behavior of silver-haired bats (Lasionycteris) Tj ETQq1 1 0.784314 r	gBT /Over 1.3	lock 10 Tf 50
196	Roosting Habits of TwoLasiurus borealis(Eastern Red Bat) in the Blue Ridge Mountains of Virginia. Northeastern Naturalist, 2017, 24, N15-N18.	0.3	1
197	Industrial wind turbine post-construction bird and bat monitoring: AÂpolicy framework for Canada. Journal of Environmental Management, 2017, 201, 252-259.	7.8	8
198	A spatial explicit agent based model approach to evaluate the performance of different monitoring options for mortality estimates in the scope of onshore windfarm impact assessments. Ecological Indicators, 2017, 73, 254-263.	6.3	6
199	Chirosurveillance: The use of native bats to detect invasive agricultural pests. PLoS ONE, 2017, 12, e0173321.	2.5	35
200	Environmental and Structural Safety Issues Related to Wind Energy. , 2017, , 475-491.		5
201	Lo que el viento se llevó: ¿conocemos el impacto que producir energÃa eólica causa sobre los vertebrados voladores de Costa Rica?. Ciencias Ambientales, 2017, 52, 239.	0.3	0

#	Article	IF	CITATIONS
202	Raptor Interactions With Wind Energy: Case Studies From Around the World. Journal of Raptor Research, 2018, 52, 1-18.	0.6	48
203	A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biological Conservation, 2018, 222, 146-153.	4.1	71
204	Flight response to spatial and temporal correlates informs risk from wind turbines to the California Condor. Condor, 2018, 120, 330-342.	1.6	19
205	The utility of point count surveys to predict wildlife interactions with wind energy facilities: An example focused on golden eagles. Ecological Indicators, 2018, 88, 126-133.	6.3	1
206	Toward integrating citizen science and radar data for migrant bird conservation. Remote Sensing in Ecology and Conservation, 2018, 4, 127-136.	4.3	17
207	Human Activity and HabitatÂLoss: Destruction, Fragmentation, andÂDegradation. , 2018, , 451-482.		39
208	New records, potential distribution, and conservation of the Near Threatened cave bat <i>Natalus macrourus</i> in Brazil. Oryx, 2018, 52, 579-586.	1.0	13
209	Comparing Field Methods Used to Determine Bird and Bat Fatalities. , 2018, , 135-149.		1
210	Mercury contamination in bats from the central United States. Environmental Toxicology and Chemistry, 2018, 37, 160-165.	4.3	13
211	Bat Hibernacula in Caves of Southern Idaho: Implications for Monitoring and Management. Western North American Naturalist, 2018, 78, 165-173.	0.4	7
212	Roost Characteristics and Clustering Behavior of Western Red Bats (<i>Lasiurus blossevillii</i>) in Southwestern New Mexico. Western North American Naturalist, 2018, 78, 174-183.	0.4	2
213	Carcass age and searcher identity affect morphological assessment of sex of bats. Journal of Wildlife Management, 2018, 82, 1582-1587.	1.8	4
214	Predicting bird collisions with wind turbines: Comparison of the new empirical Flux Collision Model with the SOSS Band model. Ecological Modelling, 2018, 387, 144-153.	2.5	10
215	Impact of wind farms on soaring bird populations at a migratory bottleneck. European Journal of Wildlife Research, 2018, 64, 1.	1.4	20
216	The first artificial intelligence algorithm for identification of bat species in Uruguay. Ecological Informatics, 2018, 46, 97-102.	5.2	6
217	Evaluating anthropogenic landscape alterations as wildlife hazards, with wind farms as an example. Ecological Indicators, 2018, 94, 380-385.	6.3	5
218	A perfect storm for mammalogy: declining sample availability in a period of rapid environmental degradation. Journal of Mammalogy, 2018, 99, 773-788.	1.3	40
219	Long-term bat abundance in sagebrush steppe. Scientific Reports, 2018, 8, 12288.	3.3	6

#	Article	IF	CITATIONS
220	Red bat fatality: Geographic extents through deuterium and niche models. Journal of Wildlife Management, 2019, 83, 1345-1351.	1.8	1
221	Evidence for spring stopover refuelling in migrating silver-haired bats (<i>Lasionycteris</i>) Tj ETQq1 1	0.784314 rgBT 1.09	/Overlock 10 14
222	High Frequency of Multiple Paternity in Eastern Red Bats, Lasiurus borealis, Based on Microsatellite Analysis. Journal of Heredity, 2019, 110, 675-683.	2.4	5
223	Effects of fire and its severity on occupancy of bats in mixed pine-oak forests. Forest Ecology and Management, 2019, 446, 151-163.	3.2	12
224	Bat Migration. , 2019, , 605-610.		35
225	Patterns of acoustical activity of bats prior to and 10 years after WNS on Fort Drum Army Installation, New York. Global Ecology and Conservation, 2019, 18, e00633.	2.1	24
226	Multi-Objective Optimization for China's Power Carbon Emission Reduction by 2035. Journal of Thermal Science, 2019, 28, 184-194.	1.9	20
227	Common noctules exploit low levels of the aerosphere. Royal Society Open Science, 2019, 6, 181942.	2.4	27
229	Wildlife Mortality at Wind Facilities: How We Know What We Know How We Might Mislead Ourselves, and How We Set Our Future Course. , 2019, , 27-41.		2
230	A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities. Ecological Applications, 2019, 29, e01881.	3.8	55
231	Evaluation of an acoustic deterrent to reduce bat mortalities at an Illinois wind farm. Wildlife Society Bulletin, 2019, 43, 608-618.	1.6	21
232	An evidence-based approach to specifying survey effort in ecological assessments of bat activity. Biological Conservation, 2019, 231, 98-102.	4.1	9
234	Effects of historic wildfire and prescribed fire on site occupancy of bats in Shenandoah National Park, Virginia, USA. Journal of Forestry Research, 2020, 31, 1255-1270.	3.6	12
235	The management utility of large-scale environmental drivers of bat mortality at wind energy facilities: The effects of facility size, elevation and geographic location. Global Ecology and Conservation, 2020, 21, e00871.	2.1	4
236	How â€~Blue' Is â€~Green' Energy?. Trends in Ecology and Evolution, 2020, 35, 235-244.	8.7	13
237	Predicting landscape-scale summer resource selection for the northern long-eared bat (Myotis) Tj ETQq1 1	0.784314 rgBT	/Oyerlock 10
238	Publishing Environmental Assessment and Management Science: Crossing the Hurdles. BioScience, 2020, 70, 1015-1026.	4.9	0
239	Bat activity and evidence of bat migration at two high elevation passes in the Western Alps. European Journal of Wildlife Research, 2020, 66, 1.	1.4	3

#	Article	IF	CITATIONS
240	Longâ€ŧerm changes in bat activity in Quebec suggest climatic responses and summer niche partitioning associated with whiteâ€nose syndrome. Ecology and Evolution, 2020, 10, 5226-5239.	1.9	6
241	Energy Development and Production in the Great Plains: Implications and Mitigation Opportunities. Rangeland Ecology and Management, 2021, 78, 257-272.	2.3	17
242	An evaluation of bird and bat mortality at wind turbines in the Northeastern United States. PLoS ONE, 2020, 15, e0238034.	2.5	13
243	Bats and Wind Farms: The Role and Importance of the Baltic Sea Countries in the European Context of Power Transition and Biodiversity Conservation. Environmental Science & Technology, 2020, 54, 10385-10398.	10.0	21
244	Estimating bat fatality at a Texas wind energy facility: implications transcending the United States–Mexico border. Journal of Mammalogy, 2020, 101, 1533-1541.	1.3	8
245	Comparing methods to estimate the proportion of turbine-induced bird and bat mortality in the search area under a road and pad search protocol. Environmental and Ecological Statistics, 2020, 27, 769-801.	3.5	6
246	USA Wind Energy-Caused Bat Fatalities Increase with Shorter Fatality Search Intervals. Diversity, 2020, 12, 98.	1.7	5
247	Octopus's garden under the blade: Boosting biodiversity increases willingness to pay for offshore wind in the United States. Energy Research and Social Science, 2020, 69, 101744.	6.4	16
248	A Scheimpflug lidar used to observe insect swarming at a wind turbine. Ecological Indicators, 2020, 117, 106578.	6.3	16
249	Genetic Approaches Are Necessary to Accurately Understand Bat-Wind Turbine Impacts. Diversity, 2020, 12, 236.	1.7	12
250	Estimates of aerial vertebrate mortality at wind farms in a bird migration corridor and bat diversity hotspot. Global Ecology and Conservation, 2020, 22, e00966.	2.1	13
251	Comparing acoustic and radar deterrence methods as mitigation measures to reduce human-bat impacts and conservation conflicts. PLoS ONE, 2020, 15, e0228668.	2.5	13
252	Evaluating potential effects of solar power facilities on wildlife from an animal behavior perspective. Conservation Science and Practice, 2021, 3, e319.	2.0	12
253	Relative energy production determines effect of repowering on wildlife mortality at wind energy facilities. Journal of Applied Ecology, 2021, 58, 1284-1290.	4.0	10
254	Behavioral patterns of bats at a wind turbine confirm seasonality of fatality risk. Ecology and Evolution, 2021, 11, 4843-4853.	1.9	8
255	Predicting migration routes for three species of migratory bats using species distribution models. PeerJ, 2021, 9, e11177.	2.0	17
256	Impact of wind power plants on mammalian and avian wildlife species in shrub- and woodlands. Biological Conservation, 2021, 256, 109037.	4.1	13
257	Potential environmental effects of deepwater floating offshore wind energy facilities. Ocean and Coastal Management, 2021, 207, 105611.	4.4	39

#	Article	IF	CITATIONS
258	Demographic and potential biological removal models identify raptor species sensitive to current and future wind energy. Ecosphere, 2021, 12, e03531.	2.2	17
259	Post-construction bird and bat fatality monitoring studies at wind energy projects in Latin America: A summary and review. Heliyon, 2021, 7, e07251.	3.2	9
260	Forecasting the Distribution of a Range-Expanding Bat Reveals Future Response to Climate Change and Habitat. Acta Chiropterologica, 2021, 23, .	0.6	3
261	Three-dimensional analysis of bat flight paths around small wind turbines suggests no major collision risk or behavioral changes. Mammal Research, 2022, 67, 83-98.	1.3	Ο
262	Assessing fatality minimization for hoary bats amid continued wind energy development. Biological Conservation, 2021, 262, 109309.	4.1	37
263	Bat activity patterns relative to temporal and weather effects in a temperate coastal environment. Global Ecology and Conservation, 2021, 30, e01769.	2.1	12
264	Wind energy facilities affect resource selection of capercaillie Tetrao urogallus. Wildlife Biology, 2021, 2021, .	1.4	5
265	Aeroecology. , 2013, , 149-167.		12
266	Terrestrial Wildlife in the Post-mined Appalachian Landscape: Status and Opportunities. , 2021, , 135-166.		9
267	Bat Activity at Nacelle Height Over Forest. , 2017, , 79-98.		5
267 268	Bat Activity at Nacelle Height Over Forest. , 2017, , 79-98. Akustisches Monitoring von Rauhautfledermaus an Windenergieanlagen: Ist ein zweites Ultraschallmikrofon am Turm notwendig?. , 2020, , 101-119.		5
267 268 269	Bat Activity at Nacelle Height Over Forest. , 2017, , 79-98. Akustisches Monitoring von Rauhautfledermaus an Windenergieanlagen: Ist ein zweites Ultraschallmikrofon am Turm notwendig?. , 2020, , 101-119. Sustaining Young Forest Communities. Managing Forest Ecosystems, 2011, , .	0.9	5 3 17
267 268 269 270	Bat Activity at Nacelle Height Over Forest., 2017, , 79-98. Akustisches Monitoring von Rauhautfledermaus an Windenergieanlagen: Ist ein zweites Ultraschallmikrofon am Turm notwendig?., 2020, , 101-119. Sustaining Young Forest Communities. Managing Forest Ecosystems, 2011, , . Local trends in abundance of migratory bats across 20 years. Journal of Mammalogy, 2020, 101, 1542-1547.	0.9	5 3 17 1
267 268 269 270 271	Bat Activity at Nacelle Height Over Forest., 2017,, 79-98.Akustisches Monitoring von Rauhautfledermaus an Windenergieanlagen: Ist ein zweites Ultraschallmikrofon am Turm notwendig?., 2020,, 101-119.Sustaining Young Forest Communities. Managing Forest Ecosystems, 2011, ,.Local trends in abundance of migratory bats across 20 years. Journal of Mammalogy, 2020, 101, 1542-1547.Hazards of wind turbines on avifauna - a preliminary appraisal within the Indian context. Journal of Threatened Taxa, 2020, 12, 15414-15425.	0.9 1.3 0.3	5 3 17 1
267 268 269 270 271 272	Bat Activity at Nacelle Height Over Forest. , 2017, , 79-98.Akustisches Monitoring von Rauhautfledermaus an Windenergieanlagen: Ist ein zweites Ultraschallmikrofon am Turm notwendig?. , 2020, , 101-119.Sustaining Young Forest Communities. Managing Forest Ecosystems, 2011, , .Local trends in abundance of migratory bats across 20 years. Journal of Mammalogy, 2020, 101, 1542-1547.Hazards of wind turbines on avifauna - a preliminary appraisal within the Indian context. Journal of Threatened Taxa, 2020, 12, 15414-15425.Factors Affecting Differential Underestimates of Bird Collision Fatalities at Electric Lines: A Case Study in the Canary Islands. Ardeola, 2020, 68, 71.	0.9 1.3 0.3 0.7	5 3 17 1 1 1 1 14
267 268 269 270 271 272 272	Bat Activity at Nacelle Height Over Forest., 2017, 79-98. Akustisches Monitoring von Rauhautfledermaus an Windenergieanlagen: Ist ein zweites Ultraschallmikrofon am Turm notwendig?., 2020, 101-119. Sustaining Young Forest Communities. Managing Forest Ecosystems, 2011, , . Local trends in abundance of migratory bats across 20 years. Journal of Mammalogy, 2020, 101, 1542-1547. Hazards of wind turbines on avifauna - a preliminary appraisal within the Indian context. Journal of Threatened Taxa, 2020, 12, 15414-15425. Factors Affecting Differential Underestimates of Bird Collision Fatalities at Electric Lines: A Case Study in the Canary Islands. Ardeola, 2020, 68, 71. The Aversive Effect of Electromagnetic Radiation on Foraging Batsâ€"A Possible Means of Discouraging Bats from Approaching Wind Turbines. PLoS ONE, 2009, 4, e6246.	0.9 1.3 0.3 0.7 2.5	5 3 17 1 1 14 41
267 268 269 270 271 272 273	Bat Activity at Nacelle Height Over Forest., 2017, , 79-98. Akustisches Monitoring von Rauhautfledermaus an Windenergieanlagen: Ist ein zweites Ultraschallmikrofon am Turm notwendig?., 2020, , 101-119. Sustaining Young Forest Communities. Managing Forest Ecosystems, 2011, , . Local trends in abundance of migratory bats across 20 years. Journal of Mammalogy, 2020, 101, 1542-1547. Hazards of wind turbines on avifauna - a preliminary appraisal within the Indian context. Journal of Threatened Taxa, 2020, 12, 15414-15425. Factors Affecting Differential Underestimates of Bird Collision Fatalities at Electric Lines: A Case Study in the Canary Islands. Ardeola, 2020, 68, 71. The Aversive Effect of Electromagnetic Radiation on Foraging BatsãC ^{or} A Possible Means of Discouraging Bats from Approaching Wind Turbines. PLoS ONE, 2009, 4, e6246. Energy Sprawl or Energy Efficiency: Climate Policy Impacts on Natural Habitat for the United States of America. PLoS ONE, 2009, 4, e6802.	0.9 1.3 0.3 0.7 2.5 2.5	5 3 17 1 1 14 41 264

#	Article	IF	CITATIONS
276	Evaluating the Effectiveness of an Ultrasonic Acoustic Deterrent for Reducing Bat Fatalities at Wind Turbines. PLoS ONE, 2013, 8, e65794.	2.5	56
277	Offshore Observations of Eastern Red Bats (Lasiurus borealis) in the Mid-Atlantic United States Using Multiple Survey Methods. PLoS ONE, 2013, 8, e83803.	2.5	24
278	Resource Selection by the California Condor (Gymnogyps californianus) Relative to Terrestrial-Based Habitats and Meteorological Conditions. PLoS ONE, 2014, 9, e88430.	2.5	9
279	Reconciling Biodiversity Conservation and Widespread Deployment of Renewable Energy Technologies in the UK. PLoS ONE, 2016, 11, e0150956.	2.5	20
280	Winter Activity of Coastal Plain Populations of Bat Species Affected by White-Nose Syndrome and Wind Energy Facilities. PLoS ONE, 2016, 11, e0166512.	2.5	39
281	Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed. PLoS ONE, 2018, 13, e0192493.	2.5	27
283	Spatial and Temporal Variation in the Diet of the Eastern Red Bat in Kentucky. Journal of the Kentucky Academy of Science, 2019, 79, 12.	0.1	3
285	Detection Probability of Bats Using Active Versus Passive Monitoring. Acta Chiropterologica, 2019, 21, 205.	0.6	4
286	Going Beyond a Leap of Faith When Choosing between Active and Passive Bat Monitoring Methods. Acta Chiropterologica, 2019, 21, 215.	0.6	2
287	Bat Fatalities at Wind-Farms in the Lowland Mediterranean of Southern Spain. Acta Chiropterologica, 2020, 21, 349.	0.6	10
288	Bat Activity Rates do not Predict Bat Fatality Rates at Wind Energy Facilities. Acta Chiropterologica, 2020, 22, 135.	0.6	16
289	Road-killed bats, highway design, and the commuting ecology of bats. Endangered Species Research, 2009, 8, 49-60.	2.4	52
290	Broadening the focus of bat conservation and research in the USA for the 21st century. Endangered Species Research, 2009, 8, 129-145.	2.4	53
291	Dim ultraviolet light as a means of deterring activity by the Hawaiian hoary bat Lasiurus cinereus semotus. Endangered Species Research, 2015, 28, 249-257.	2.4	12
292	Survey of Bat Mortalities at a Wind-Energy Facility in North Dakota. Journal of Fish and Wildlife Management, 2013, 4, 139-143.	0.9	1
293	Empirical Evidence for Factors Affecting Searcher Efficiency and Scavenging Rates at a Coastal, Terrestrial Wind-Power Facility. Journal of Fish and Wildlife Management, 2014, 5, 330-339.	0.9	6
294	Patterns of Acoustical Activity of Bats Prior to and Following White-Nose Syndrome Occurrence. Journal of Fish and Wildlife Management, 2011, 2, 125-134.	0.9	72
295	Capture and Reproductive Trends in Summer Bat Communities in West Virginia: Assessing the Impact of White-Nose Syndrome. Journal of Fish and Wildlife Management, 2012, 3, 33-42.	0.9	73

#	Article	IF	CITATIONS
296	Activity Patterns of Bats During the Fall and Spring Along Ridgelines in the Central Appalachians. Journal of Fish and Wildlife Management, 2019, 10, 180-195.	0.9	19
297	The State of Bats in Conservation Planning for the National Wildlife Refuge System, With Recommendations. Journal of Fish and Wildlife Management, 2013, 4, 406-422.	0.9	5
298	Effectiveness of Acoustic Lures for Increasing Indiana Bat Captures in Mist-Nets. Journal of Fish and Wildlife Management, 2019, 10, 206-212.	0.9	8
299	Changes in a summer bat community in southeastern Pennsylvania. Journal of the Pennsylvania Academy of Science, 2019, 93, 47-62.	0.1	3
300	Unifying Framework for Understanding Impacts of Human Developments on Wildlife. , 2011, , 27-54.		25
301	Using trace elements to identify the geographic origin of migratory bats. PeerJ, 2020, 8, e10082.	2.0	11
302	Genetic diversity in migratory bats: Results from RADseq data for three tree bat species at an Ohio windfarm. PeerJ, 2016, 4, e1647.	2.0	33
303	Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat. PeerJ, 2016, 4, e2830.	2.0	25
304	Increasing evidence that bats actively forage at wind turbines. PeerJ, 2017, 5, e3985.	2.0	31
305	Stable hydrogen isotopes record the summering grounds of eastern red bats (<i>Lasiurus) Tj ETQq1 1 0.784314</i>	rgBT/Ove 2.0	rlock 10 Tf 5(
306	Genetic approaches to the conservation of migratory bats: a study of the eastern red bat (<i>Lasiurus) Tj ETQq0</i>	0 0 rgBT /0 2.	Dverlock 10 1 13
307	Oceanic records of North American bats and implications for offshore wind energy development in the United States. Ecology and Evolution, 2021, 11, 14433-14447.	1.9	5
308	Flight Altitudes of Raptors in Southern Africa Highlight Vulnerability of Threatened Species to Wind Turbines. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	1
309	Renewable energy and biological conservation in a changing world. Biological Conservation, 2021, 263, 109354.	4.1	19
311	Can radar technology overcome the current limitations of surveying for the Southern Bent-wing Bat <i>Miniopterus schreibersii bassanii</i> at wind farms?. , 2011, , 185-194.		0
312	Climate Change and Wildlife inÂthe Southern United States. , 2013, , 379-420.		0
313	Habitat du faucon pÃ∵lerin dans le sud du Québec durant la période de reproductionÂ: conséquences pour l'implantation de parcs éoliens. Le Naturaliste Canadien, 2015, 139, 30-37.	0.2	0
316	Optimizing Wind Power Generation while Minimizing Wildlife Impacts in an Urban Area. , 2015, , 177-196.		0

#	Article	IF	CITATIONS
317	Status of wind in Pennsylvania: Social and environmental impacts of wind. Journal of the Pennsylvania Academy of Science, 2019, 93, 177.	0.1	0
318	Alternative energy in Pennsylvania in the twenty-first century. Journal of the Pennsylvania Academy of Science, 2019, 93, 162-166.	0.1	1
319	Dietary analysis of three migratory bats in eastern Pennsylvania. Journal of the Pennsylvania Academy of Science, 2019, 93, 26-36.	0.1	1
320	Bats of the Boston Harbor Islands. Northeastern Naturalist, 2019, 25, 90.	0.3	2
321	Species Richness and Seasonality of Bat Occupancy on Northwestern National Wildlife Refuges. Journal of Fish and Wildlife Management, 2019, 10, 468-479.	0.9	1
322	PRIMER REGISTRO DE MORTALIDAD INCIDENTAL DE Uta stansburiana EN UN PARQUE EÓLICO EN MÉXICO. Revista Latinoamericana De Herpetologia, 2019, 2, 94.	0.2	0
323	Chapter Five. Impacts of Anthropogenic Features on Habitat Use by Lesser Prairie-Chickens. , 2019, , 63-76.		2
324	An investigation into the potential for wind turbines to cause barotrauma in bats. PLoS ONE, 2020, 15, e0242485.	2.5	5
325	Mobile Bat Acoustic Routes Indicate Cavity-Roosting Species Undergo Compensatory Changes in Community Composition Following White-Nose Syndrome. Acta Chiropterologica, 2020, 22, .	0.6	4
326	High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. Renewable Energy, 2022, 182, 659-684.	8.9	82
327	Windkraft im Wald und Fledermausschutz – Überblick über den Kenntnisstand und geeignete Erfassungsmethoden und Maßnahmen. , 2020, , 29-54.		3
328	Fledermausaktivitäin Gondelhöhe in Bergwaldgebieten der Steiermark, ×sterreich. , 2020, , 121-144.		0
329	Integrating Multiple Survey Techniques to Document a Shifting Bat Community in the Wake of White-Nose Syndrome. Journal of Fish and Wildlife Management, 2021, 12, 395-411.	0.9	3
330	Monitoring and Modeling Tree Bat (Genera: Lasiurus, Lasionycteris) Occurrence Using Acoustics on Structures off the Mid-Atlantic Coast—Implications for Offshore Wind Development. Animals, 2021, 11, 3146.	2.3	5
331	Rüzgar Türbinlerinin Yaban Hayatına Etkilerinin İncelenmesi. Journal of Polytechnic, 2021, 24, 953-962.	0.7	2
332	Geographic Distribution, Reproduction, and Seasonal Activity of Bats in Iowa. Western North American Naturalist, 2020, 80, .	0.4	2
334	Birds not in flight: using camera traps to observe ground use of birds at a wind-energy facility. Wildlife Research, 2022, 49, 283-294.	1.4	1
335	An Updated Review of Hypotheses Regarding Bat Attraction to Wind Turbines. Animals, 2022, 12, 343.	2.3	13

#	Article	IF	CITATIONS
336	Adverse environmental impacts of wind farm installations and alternative research pathways to their mitigation. Cleaner Engineering and Technology, 2022, 7, 100415.	4.0	6
337	ROOST CHARACTERISTICS OF BATS IN THE PINE RIDGE REGION OF NEBRASKA. , 2022, 103, .		1
338	Seasonal variation in age, sex, and reproductive status of Mexican freeâ€ŧailed bats. Population Ecology, 2022, 64, 254-266.	1.2	1
339	Factors affecting searcher efficiency and scavenger removal of bat carcasses in Neotropical wind facilities. Journal of Wildlife Management, 2022, 86, .	1.8	2
340	A seasonal multi-level trophic approach for bat habitat suitability assessments in peri-urban deciduous forests. European Journal of Wildlife Research, 2022, 68, 1.	1.4	0
341	Efficacy and cost of acoustic-informed and wind speed-only turbine curtailment to reduce bat fatalities at a wind energy facility in Wisconsin. PLoS ONE, 2022, 17, e0266500.	2.5	7
342	Can acoustic recordings of cave-exiting bats in winter estimate bat abundance in hibernacula?. Ecological Indicators, 2022, 137, 108755.	6.3	2
343	Methodology for the Automated Visual Detection of Bird and Bat Collision Fatalities at Onshore Wind Turbines. Journal of Imaging, 2021, 7, 272.	3.0	2
344	Influencing Activity of Bats by Dimly Lighting Wind Turbine Surfaces with Ultraviolet Light. Animals, 2022, 12, 9.	2.3	3
345	Winter Roosting by Eastern Red Bats in Ozark Mountain Forests of Missouri. Forests, 2021, 12, 1769.	2.1	1
346	Acoustic Exposure to Turbine Operation Quantifies Risk to Bats at Commercial Wind Energy Facilities. Wildlife Society Bulletin, 2021, 45, 552-565.	0.8	7
347	Offshore Occurrence of a Migratory Bat, Pipistrellus nathusii, Depends on Seasonality and Weather Conditions. Animals, 2021, 11, 3442.	2.3	3
348	Timing and Weather Offer Alternative Mitigation Strategies for Lowering Bat Mortality at Wind Energy Facilities in Ontario. Animals, 2021, 11, 3503.	2.3	6
349	The resource curse in renewable energy: A framework for risk assessment. Energy Strategy Reviews, 2022, 41, 100841.	7.3	19
353	Human–Wildlife Conflicts across Landscapes—General Applicability vs. Case Specificity. Diversity, 2022, 14, 380.	1.7	4
354	Curtailment and acoustic deterrents reduce bat mortality at wind farms. Journal of Wildlife Management, 2022, 86, .	1.8	5
355	Additional Evidence for Barotrauma as a Cause of Bat Mortality at Wind Farms. Journal of the Pennsylvania Academy of Science, 2011, 85, 147-150.	0.1	0
356	Informing wind energy development: Land cover and topography predict occupancy for Arizona bats. PLoS ONE, 2022, 17, e0268573.	2.5	2

ARTICLE

IF CITATIONS

Attraction to conspecific social-calls in a migratory, solitary, foliage-roosting bat (Lasiurus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 Td

358	Curtailment as a successful method for reducing bat mortality at a southern Australian wind farm. Austral Ecology, 2022, 47, 1329-1339.	1.5	4
359	Fault Diagnosis in Wind Energy Management System using Extreme Learning Machine: A Systematic Review. Journal of Physics: Conference Series, 2022, 2319, 012014.	0.4	0
360	Seasonal Activity Patterns of Bats in High-Elevation Conifer Sky Islands. Acta Chiropterologica, 2022, 24, .	0.6	0
361	Current State of Knowledge of Wind Energy Impacts on Bats in South Africa. Acta Chiropterologica, 2022, 24, .	0.6	0
362	Effects of turbine height and cut-in speed on bat and swallow fatalities at wind energy facilities. Facets, 2022, 7, 1281-1297.	2.4	3
363	Bird carcass detection from integrated trials at multiple wind farms. Journal of Wildlife Management, 0, , .	1.8	0
364	Reconciling climate action with the need for biodiversity protection, restoration and rehabilitation. Science of the Total Environment, 2023, 857, 159316.	8.0	4
366	Drivers of bat activity at wind turbines advocate for mitigating bat exposure using multicriteria algorithm-based curtailment. Science of the Total Environment, 2023, 866, 161404.	8.0	4
367	Optimizing Surveys for Imperiled Bat Species Post White-Nose Syndrome. Acta Chiropterologica, 2023, 24, .	0.6	0
368	Genetic Structure of the Vulnerable Tricolored Bat (Perimyotis subflavus). Acta Chiropterologica, 2023, 24, .	0.6	0
369	Standardised and referenced acoustic monitoring reliably estimates bat fatalities at wind turbines: comments on â€~Limitations of acoustic monitoring at wind turbines to evaluate fatality risk of bats'. Mammal Review, 2023, 53, 65-71.	4.8	1
370	Reducing bat mortality at wind farms using site-specific mitigation measures: a case study in the Mediterranean region, Croatia. Mammalia, 2023, 87, 259-270.	0.7	3
371	Design and Modelling of a Vertical Shaft River Turbine. Lecture Notes in Mechanical Engineering, 2023, , 189-197.	0.4	0
373	Seasonal patterns of bird and bat collision fatalities at wind turbines. PLoS ONE, 2023, 18, e0284778.	2.5	4
374	Fall migration, oceanic movement, and site residency patterns of eastern red bats (Lasiurus borealis) on the mid-Atlantic Coast. Movement Ecology, 2023, 11, .	2.8	1
375	Combining stable isotopes, trace elements, and distribution models to assess the geographic origins of migratory bats. Ecosphere, 2023, 14, .	2.2	2
376	Is saving the non-renewable resources worthwhile? Evidence of paradox of plenty on human capital development. Resources Policy, 2023, 83, 103728.	9.6	0

#	Article	IF	CITATIONS
377	Wind turbine power and land cover effects on cumulative bat deaths. Science of the Total Environment, 2023, 892, 164536.	8.0	0
378	Speciesâ€specific responses to whiteâ€nose syndrome in the Great Lakes region. Ecology and Evolution, 2023, 13, .	1.9	0
379	Economic Impacts of Curtailing Wind Turbine Operations for the Protection of Bat Populations in Ontario. Wind, 2023, 3, 291-301.	1.5	0
380	THE FLIGHT SPEED OF A MIGRATING SILVER-HAIRED BAT (LASIONYCTERIS NOCTIVAGANS). , 2023, 104, .		0
381	High Bat Fatality Rates Estimated at Wind Farms in Southern Spain. Acta Chiropterologica, 2023, 25, .	0.6	1
382	Bat mortality in wind farms of southern Europe: temporal patterns and implications in the current context of climate change. Biodiversity and Conservation, 2023, 32, 3953-3971.	2.6	2
383	Acoustic monitoring reveals spatiotemporal occurrence of Nathusius' pipistrelle at the southern North Sea during autumn migration. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
384	Changes in diversity and species composition in the assemblage of live and dead bats at wind farms in a highly diverse region. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
385	Understanding fatality patterns and sex ratios of Brazilian free-tailed bats (<i>Tadarida) Tj ETQq0 0 0 rgBT /Overl</i>	ock 10 Tf 5	50 ₀ 422 Td (br

386	Experimental trials of species-specific bat flight responses to an ultrasonic deterrent. PeerJ, 0, 11, e16718.	2.0	0
387	A multisensory approach to understanding bat responses to wind energy developments. Mammal Review, 0, , .	4.8	0
388	Localized Eco-Climatic Impacts of Onshore Wind Farms: A Review. Journal of Resources and Ecology, 2024, 15, .	0.4	0
390	Geographic source of bats killed at wind-energy facilities in the eastern United States. PeerJ, 0, 12, e16796.	2.0	0
391	Does size matter? Investigation of the effect of wind turbine size on bird and bat mortality. Biological Conservation, 2024, 291, 110474.	4.1	0
392	Wind turbines kill bats, but they don't have to. Austral Ecology, 2024, 49, .	1.5	0
393	Monitoring carcass persistence in windfarms: Recommendations for estimating mortality. Biological Conservation, 2024, 292, 110509.	4.1	0